## General Aptitude (GA)

## Q. 1 - Q. 5 Carry ONE mark Each

| Q.1 | If ' $\rightarrow$ ' denotes increasing order of intensity, then the meaning of the words <br> [sick $\rightarrow$ infirm $\rightarrow$ moribund] is analogous to [silly $\rightarrow$ <br> Which one of the given options is appropriate to fill the blank? |
| :--- | :--- |
| (A) | frown daft]. |
| (B) | fawn |
| (C) | vein |
| (D) | vain |


| Q.2 | The 15 parts of the given figure are to be painted such that no two adjacent parts <br> with shared boundaries (excluding corners) have the same color. The minimum <br> number of colors required is |
| :--- | :--- |
| (A) | 4 |
| (B) | 3 |
| (C) | 5 |
| (D) | 6 |


| Q.3 | How many 4-digit positive integers divisible by 3 can be formed using only the <br> digits $\{1,3,4,6,7\}$, such that no digit appears more than once in a number? |
| :--- | :--- |
| (A) | 24 |
| (B) | 48 |
| (C) | 72 |
| (D) | 12 |
| Q.4 | The sum of the following infinite series is |
|  |  |
| (B) | $7 / 2$ |
| (D) | $9 / 2$ |
| (A) | $11 / 3$ |
|  |  |
|  |  |


| Q. 5 | In an election, the share of valid votes received by the four candidates A, B, C, and <br> D is represented by the pie chart shown. The total number of votes cast in the <br> election were 1,15,000, out of which 5,000 were invalid. |
| :--- | :--- |
|  |  |
| (A) Share of valid votes |  |
| candidates B and C is |  |

## Q. 6 - Q. 10 Carry TWO marks Each

| Q.6 | Thousands of years ago, some people began dairy farming. This coincided with a <br> number of mutations in a particular gene that resulted in these people developing <br> the ability to digest dairy milk. <br> Based on the given passage, which of the following can be inferred? |
| :--- | :--- |
| (A) | All human beings can digest dairy milk. |
| (B) | No human being can digest dairy milk. |
| (C) | Digestion of dairy milk is essential for human beings. |
| (D) | In human beings, digestion of dairy milk resulted from a mutated gene. |
| Q.7 | The probability of a boy or a girl being born is $1 / 2$. For a family having only <br> three children, what is the probability of having two girls and one boy? |
| (C) | $1 / 4$ |
| (D) | $1 / 8$ |
| (B) | $1 / 8$ |
|  |  |
|  |  |



| Q. 9 | Three different views of a dice are shown in the figure below. <br> The piece of paper that can be folded to make this dice is |
| :---: | :---: |
|  |  |
| (A) | 5 1 <br>  4 <br>  6 <br>   <br> 2 3 <br>   |
| (B) | $\begin{array}{\|l\|l\|} \hline 5 & 1 \\ \hline & 4 \\ \hline & 2 \\ \hline & \\ \hline & 3 \\ \hline \end{array}$ |
| (C) | 5 1 <br>  3 <br>   <br>  2 <br>  4 <br>  4 <br>  6 |
| (D) | 5 1 <br>  4 <br>  6 <br>   <br>  3$\|$ |
|  |  |


| Q.10 | Visualize two identical right circular cones such that one is inverted over the other <br> and they share a common circular base. If a cutting plane passes through the vertices <br> of the assembled cones, what shape does the outer boundary of the <br> resulting cross-section make? |
| :--- | :--- |
|  |  |
| (A) | A rhombus |
| (B) | A triangle |
| (C) | An ellipse |
| (D) | A hexagon |
|  |  |

## Q. 11 - Q. 35 Carry ONE mark Each

| Q.11 | In the Taylor series expansion of $\sin z$ around $z=0$, the coefficient of the term $z^{3}$ <br> is |
| :--- | :--- |
| (A) | 0 |
| (B) | $1 / 3$ |
| (C) | $-1 / 6$ |
| (D) | $-1 / 3$ |


| Q. 12 | A vector field is given as $\mathbf{F}(x, y)=(100 x+100 y) \boldsymbol{i}+(-50 x+200 y) \boldsymbol{j}$, where <br> $\boldsymbol{i}$ and $\boldsymbol{j}$ are the unit vectors along the $x$ and $y$ axes in the Cartesian frame, <br> respectively. Then the value of |
| :--- | :--- |
| where $\mathbf{d l}=d x \boldsymbol{i}+d y \boldsymbol{j}$ is an elemental path taken over an anticlockwise circular |  |
| contour $C$ of radius $r=2$ is |  |


| Q.13 | A uniform cantilever beam of length $L$ and flexural rigidity $E I$ is loaded by a force <br> $F$ as shown in the figure. Assuming that the Euler-Bernoulli beam theory is <br> applicable here, the magnitude of the static deflection at the free end of the beam is |
| :--- | :--- |
|  |  |
| (A) | $F L^{3} /(6 E I)$ |
| (B) | $14 F L^{3} /(81 E I)$ |
| (C) | $5 F L^{3} /(27 E I)$ |


| Q.15 | The solidification time of a cube and a cylinder of the same material, produced <br> through the same sand casting process, is found to be equal. Each side of the cube <br> is $a$, and the radius and the length of the cylinder are $r$ and $4 r$, respectively. If the <br> solidification time is governed by Chvorinov's equation, then the ratio $r / a$ is |
| :--- | :--- |
|  |  |
| (A) | $1 / 3$ |
| (B) | $5 / 12$ |
| (C) | $7 / 12$ |
| (D) | $5 / 9$ |
|  |  |



| Q.17 | Which one of the following pure metals has the hexagonal close packed (HCP) <br> crystal structure at room temperature? |
| :--- | :--- |
| (A) | Magnesium |
| (B) | Iron |
| (C) | Aluminium |
| (D) | Copper |
| Q.18 | To create 12 divisions on a disc by using simple indexing and dividing head on a <br> horizontal milling machine, choose the correct option for the rotation of the crank <br> pin. |
| (D) | 5 full rotations and 4 holes on a 20-hole circle |
| (A) | 3 full rotations and 5 holes on a 15-hole circle |
| (B) | 3 full rotations and 4 holes on a 16-hole circle |
| (Dull rotations and 5 holes on a 18-hole circle |  |


| Q. 19 | The following layout of four departments $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S is provided as input to CRAFT (Computerized Relative Allocation of Facilities Technique). Which one of the following department pairs cannot be considered for exchange in CRAFT? |
| :---: | :---: |
|  |  |
| (A) | P and Q |
| (B) | R and S |
| (C) | P and R |
| (D) | Q and R |
| Q. 20 | Which of the following concepts is not closely inter-related with INTERCHANGEABILITY in the context of product design? |
| (A) | Standardization |
| (B) | Simplification |
| (C) | Diversification |
| (D) | Specialization |
|  |  |


| Q.21 | Which one of the following THERBLIGS does not advance the progress of the work <br> and can be eliminated by applying the principles of motion economy? |
| :--- | :--- |
| (A) | Move |
| (B) | Grasp |
| (C) | Search |
| (D) | Preposition |
| Q.22 | If work sampling is carried out using a large number of observations, then the <br> required sample size is estimated using |
| (D) | Exponential distribution |
| (A) | Poisson distribution |
| (B) | Uniform distribution |
| (Dormal distribution |  |


| Q.23 | Which of the following is NOT an assumption of a linear programming problem? |
| :--- | :--- |
| (A) | Proportionality |
| (B) | Additivity |
| (C) | Integrality |
| (D) | Certainty |
| Q.24 | In a single server Markovian queuing system, if the customers arrive following the <br> Poisson distribution, then the inter-arrival time follows |
| (A) | Poisson distribution |
| (B) | Uniform distribution |
| (C) | Exponential distribution |
| Binomial distribution |  |


| Q.25 | Which one of the following methods requires the least amount of data for <br> forecasting? |
| :--- | :--- |
| (A) | Econometric forecasting method |
| (B) | Linear regression method |
| (C) | ARIMA method |
| (D) | Simple exponential smoothing method |
| Q.26 | Which one of the following is not true about Total Productive Maintenance (TPM)? |
|  |  |
| (A) | It allows operators to perform preventive maintenance on the machines. |
| (B) | It allows operators to perform reactive maintenance on the machines. |
| (C) | It is consistent with the Just-in-Time (JIT) system. |
| It is consistent with the Lean system. |  |
|  |  |


| Q.27 | In a complex function $\quad f(x, y)=u(x, y)+i v(x, y)$, <br> $i$ is the imaginary unit, and $x, y, u(x, y)$ and $v(x, y)$ are real. <br> If $f(x, y)$ is analytic then which of the following equations is/are TRUE? |
| :--- | :--- |
|  |  |
| (A) | $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ |
| (B) | $\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=0$ |
| (C) | $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=0$ |
| (D) | $\left(\frac{\partial u}{\partial x}\right)\left(\frac{\partial v}{\partial x}\right)+\left(\frac{\partial u}{\partial y}\right)\left(\frac{\partial v}{\partial y}\right)=0$ |
| Q.28 | For a mild steel specimen subjected to uniaxial tensile load, which of the following <br> is/are TRUE? |
| (D) | The specimen does not regain its original dimensions after complete unloading <br> from an initial stress above the yield stress. <br> (B) <br> The engineering stress-strain curve is linear within the elastic limit. <br> The specimen fails in cup and cone type fracture. |
|  |  |


| Q.29 | Which among the following is/are TRUE for friction stir welding (FSW) process? |
| :--- | :--- |
| (A) | It can be used to produce lap, butt and tee joints. |
| (B) | A non-consumable rotating tool with shoulder and pin is used to melt the work- <br> piece material. |
| (C) | Retreating side of the weld is where the linear velocity vector at a point on that side <br> of the rotating tool and the welding direction are opposite. |
| (D) | Advancing side of the weld is where the linear velocity vector at a point on that side <br> of the rotating tool and the welding direction are opposite. |
| Q.30 | Which of the following areas is/are supply chain decision(s)? |
| (D) | Machine scheduling |
| (A) | Location |
| (B) | Inventory |
| (C) | Distribution |
|  |  |



| Q.34 | An offset slider-crank mechanism is shown in the figure. If the length $l=10 \mathrm{~cm}$, <br> then the stroke length (in cm) of the slider is <br> place) |
| :--- | :--- |
| Q.35 | A blank of 100 mm diameter is to be cut out of a 2 mm thick sheet through blanking <br> operation. If the radial clearance between the punch and die is 6\% of the sheet <br> thickness then the diameter (in mm) of the punch is <br> decimal places) |
|  | (Rounded off to 2 |

## Q. 36 - Q. 65 Carry TWO marks Each

| Q.36 | If $\mathbf{A}=\left[\begin{array}{cc}a & b \\ c & -a\end{array}\right]$ is a matrix such that $\mathbf{A}^{2}=\mathbf{I}$, where $\mathbf{I}$ is an identity matrix, then <br> which of the following is TRUE? |
| :--- | :--- |
| (A) | $1+a^{2}+b c=0$ |
| (B) | $1-a^{2}+b c=0$ |
| (C) | $1-a^{2}-b c=0$ |
| (D) | $1+a^{2}-b c=0$ |
| Q.37 | In the iron-carbon equilibrium phase diagram, the temperature and composition <br> of the eutectoid point are $727^{\circ} \mathrm{C}$ and 0.77 weight $\%$ carbon, respectively. If a <br> steel specimen with 1.2 weight $\%$ carbon is cooled from $1000{ }^{\circ} \mathrm{C}$ to the room <br> temperature, then the fraction of pro-eutectoid cementite phase in the steel <br> is (Rounded off to 2 decimal places) |
| (B) | 0.93 |
| (D) | 0.18 |
| (D) | 0.12 |



| Q.39 | In a forming operation, the plastic deformation of a steel specimen starts under <br> plane stress condition, where the principal stresses are $\sigma_{1}=200$ Mpa and <br> $\sigma_{2}=100$ Mpa. If the steel specimen follows von-Mises yield criterion, then <br> the uniaxial tensile yield strength (in Mpa) of this steel material is <br> (Rounded off to l decimal place) |
| :--- | :--- |
|  |  |
| (A) | 173.2 |
| (B) | 200.0 |
| (C) | 100.0 |
| (D) | 223.6 |
|  |  |



| Q. 41 | A project has six activities and the precedence relationship among them is shown in the table. <br> The minimum number of dummy activities needed to draw an activity-on-arrow (AOA) representation of the project network is |
| :---: | :---: |
|  |  |
| (A) | 0 |
| (B) | 1 |
| (C) | 2 |
| (D) | $3 \times$ |
|  |  |


| Q. 42 | Consider the following linear programming problem with two decision variables $x_{1}$ and $x_{2}$. There are three constraints involving resources R1, R2 and R3 as indicated. $\text { Maximize } Z=6 x_{1}+5 x_{2}$ <br> Subject to $\begin{array}{ll} 2 x_{1}+5 x_{2} \leq 40 & \text { R1 } \\ 2 x_{1}+x_{2} \leq 22 & \text { R2 } \\ x_{1}+x_{2} \leq 13 & \text { R3 } \\ x_{1} \geq 0, \quad x_{2} \geq 0 & \end{array}$ <br> The optimal solution of the problem is: $x_{1}=9$ and $x_{2}=4$. <br> For which one of the following options, the shadow price of the resource(s) will have non-zero value(s)? |
| :---: | :---: |
|  |  |
| (A) | R1, R2 and R3 |
| (B) | R1 and R2 |
| (C) | R2 and R3 |
| (D) | R1 only |
|  |  |


| Q.43 | Choose the item(s) which is/are required to make an eccentric hole on a disc, as <br> shown, using a lathe. |
| :--- | :--- |
|  |  |
| (A) | Single point cutting tool |
| (B) | Four jaw chuck |
| (C) | Drill bit |
| (D) | Three jaw chuck |
| Q.44 | Which of the following statement(s) is/are TRUE for a given acceptance sampling <br> plan? |
| (B) | The probability of rejecting a good quality lot is producer's risk. |
| (C) | Type II error decreases with a decrease in sample size. |
| The probability of rejecting a good quality lot is consumer's risk. |  |
|  |  |


| Q. 45 | Seven cards numbered 1 to 7 are placed in a box. After thoroughly mixing all the cards, one card is drawn at random. <br> If it is known that the number on the card drawn is odd, then the probability that the number on the card drawn is greater than 4 is $\qquad$ $\%$. (Answer in integer) |
| :---: | :---: |
|  |  |
| Q. 46 | The following differential equation governs the evolution of variable $x(t)$ with time $t, t \geq 0$. $\frac{d^{2} x}{d t^{2}}+4 x=e^{-t}$ <br> Given the initial conditions $x=0$ and $\frac{d x}{d t}=0$ at $t=0$, the value of $x$ at $t=\pi / 8$ is $\qquad$ . (Rounded off to 3 decimal places) |
|  |  |
| Q. 47 | The values of function $y(x)$ at discrete values of $x$ are given in the table. The value of $\int_{0}^{4} y(x) d x$, using Trapezoidal rule is $\qquad$ . (Rounded off to 1 decimal place) |
|  | $x$ 0 1 2 3 4 <br> $y(x)$ 1 3 6 9 12 |
|  |  |
|  |  |


|  |  |
| :---: | :---: |
| Q. 48 | An irrigation pump is used to draw water from a pond. One end of a 5.05 cm diameter hose pipe is connected to the outlet of the pump at 1.02 m below the surface level, and just after the pump, the static gauge pressure and flow rate of the water are 50 kPa and $8 \mathrm{~kg} / \mathrm{s}$, respectively. The pumped water is discharged at the ground level through a nozzle. Assume that the flow through the hose pipe and nozzle is steady and laminar, and frictional and viscous losses are negligible. The density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$ and the acceleration due to gravity is $9.81 \mathrm{~m} / \mathrm{s}^{2}$. If the static pressure at the nose/exit of the nozzle just reduces to atmospheric pressure then the nose diameter ( in cm ) of the nozzle is $\qquad$ (Rounded off to 2 decimal places) |
|  |  |
| Q. 49 | In an air-standard Otto cycle, the pressure and temperature of air just before the compression stroke are 200 kPa and $26.85^{\circ} \mathrm{C}$, respectively. The combustion process is assumed to be a constant volume process, where $1.02 \mathrm{MJ} / \mathrm{kg}$ heat is added. The cycle efficiency is $50 \%$. The adiabatic index $\gamma$ and specific heat at constant volume $c_{v}$ can be considered to be constant during the process (corresponding values taken at the mean cycle temperature). <br> Assuming that the ideal gas law is applicable, $\gamma=4 / 3$ and $c_{v}=0.85 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$, the maximum pressure (in MPa) reached during the cycle is $\qquad$ (Rounded off to 1 decimal place) |
| Q. 50 | A metallic cylindrical pressure vessel, used to store compressed air in a plant, has 1 m mean radius and 4 mm wall thickness. The maximum allowable normal and shear stresses in the cylindrical portion of the vessel are 100 MPa and 40 MPa , respectively. Considering only these data in the design, the maximum allowable internal gauge pressure (in MPa) of the compressed air is $\qquad$ . (Rounded off to 2 decimal places) |



| Q.54 | In a sand mold, a sprue of height $h_{2}=200 \mathrm{~mm}$ is to be provided for maintaining <br> the molten metal flow rate of $10^{6} \mathrm{~mm}^{3} / \mathrm{s}$. The height of liquid column above the <br> point 2 is kept constant at $h_{c}=25 \mathrm{~mm}$. The cross-sectional areas of the sprue at <br> points 2 and 3 are $A_{2}$ and $A_{3}$, respectively. The points 1 and 3 are at the atmospheric <br> pressure. Assuming the gauge pressure at point 2 to be zero as the limiting case to <br> prevent aspiration effect, the ratio $A_{3} / A_{2}$ is <br> places) |
| :--- | :--- | :--- |



| Q. 59 | Electro-chemical machining is performed on a flat copper workpiece. If the material removal rate is $2 \mathrm{~cm}^{3} / \mathrm{min}$ throughout the process, then the required current (in A) is $\qquad$ . (Rounded off to 1 decimal place) <br> Copper properties: Melting point $=1085^{\circ} \mathrm{C}$, density $=9 \mathrm{~g} / \mathrm{cm}^{3}$, gram atomic weight $=63$, and valency of dissolution $=2$ <br> Faraday's constant $=96500 \mathrm{C}$ <br> Stefan-Boltzmann constant $=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2}-\mathrm{K}^{4}$ |
| :---: | :---: |
|  |  |
| Q. 60 | A repairable machine operated for 2400 hours in a year and for that year the machine broke down 8 times. The mean time to repair including waiting time is found to be 20 hours for that year. <br> If the mean time to repair including waiting time could have been reduced to 10 hours for that year, then the improvement in the availability of that machine would be $\qquad$ \%. (Rounded off to 2 decimal places) |
| Q. 61 | In a time study, the average time taken for packaging a product in a warehouse by a worker with $120 \%$ performance rating is observed as 9 minutes. Assuming an allowance of $10 \%$ of the standard time, the standard time (in minutes) for packaging is $\qquad$ . (Answer in integer) |
| Q. 62 | An assembly line consists of three work stations (S1, S2 and S3) in series to assemble a toy. The times required to perform tasks at these stations are 6,4 and $T$ minutes, respectively. If the efficiency of the assembly line in the steady state is $75 \%$, then the maximum value of $T$ (in minutes) is $\qquad$ . (Answer in integer) |
|  |  |


| Q. 63 | A company purchased two machines, Machine A and Machine B, at the same time. The purchase price, estimated useful life and the estimated salvage value of the two machines are given in the table. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Machine A | Machine B |  |
|  |  | Purchase price | INR 20,000 | INR 15,000 |  |
|  |  | Estimated useful life | 10 years | 20 years |  |
|  |  | Estimated salvage value | INR 5,000 | INR 5,000 |  |
|  | Using the straight-line depreciation method for both the machines, the difference (in INR) between the value of Machine A and the value of Machine B at the end of five years is $\qquad$ (Answer in integer) |  |  |  |  |
|  |  |  |  |  |  |
| Q. 64 | A company orders an item using the classical economic order quantity formula. If the ordering cost per order is increased by $20 \%$ and the demand per unit time is also increased by $20 \%$, then the time between orders increases (in \%) by $\qquad$ (Answer in integer) |  |  |  |  |
| Q. 65 | Five jobs A, B , C, D and E are available at time $t=0$ for processing at a machine, and their processing times are listed. |  |  |  |  |
|  | Job | A B | C | D | E |
|  | Processing time (in days) | $9$ | $4$ | $5$ | $8$ |
|  | If the jobs are processed using the shortest processing time (SPT) rule, the average flow time (in days) is $\qquad$ . (Rounded off to 1 decimal place) |  |  |  |  |
|  |  |  |  |  |  |


|  |  | GRADUATE APTITUDE TEST IN ENGINEERING 2024 अभियांत्रिकी स्रातक अभिक्षमता परीक्षा २०२४ ORGANIIING INSTITUTE: INDIAN INSTITUTE OF SCIENCE, BENGALURU |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Production \& Industrial Engineering (PI) Final Answer Key |  |  |  |  |  |
|  |  |  |  |  |  |
| Q. No. | Session | Question Type | Section | Key/Range | Mark |
| 1 | 1 | MCQ | GA | D | 1 |
| 2 | 1 | MCQ | GA | A | 1 |
| 3 | 1 | MCQ | GA | B | 1 |
| 4 | 1 | MCQ | GA | B | 1 |
| 5 | 1 | MCQ | GA | B | 1 |
| 6 | 1 | MCQ | GA | D | 2 |
| 7 | 1 | MCQ | GA | A | 2 |
| 8 | 1 | MCQ | GA | B | 2 |
| 9 | 1 | MCQ | GA | A | 2 |
| 10 | 1 | MCQ | GA | A | 2 |
| 11 | 1 | MCQ | PI | C | 1 |
| 12 | 1 | MCQ | PI | MTA | 1 |
| 13 | 1 | MCQ | PI | B | 1 |
| 14 | 1 | MCQ | PI | C | 1 |
| 15 | 1 | MCQ | Pl | B | 1 |
| 16 | 1 | MCQ | PI | C | 1 |
| 17 | 1 | MCQ | PI | A | 1 |
| 18 | 1 | MCQ | PI | A | 1 |
| 19 | 1 | MCQ | Pl | D | 1 |
| 20 | 1 | MCQ | PI | C | 1 |
| 21 | 1 | MCQ | Pl | C | 1 |
| 22 | 1 | MCQ | PI | C | 1 |
| 23 | 1 | MCQ | PI | C | 1 |
| 24 | 1 | MCQ | PI | C | 1 |
| 25 | 1 | MCQ | Pl | D | 1 |
| 26 | 1 | MCQ | PI | B | 1 |
| 27 | 1 | MSQ | Pl | A;B;D | 1 |
| 28 | 1 | MSQ | PI | B;C;D | 1 |
| 29 | 1 | MSQ | PI | A; ${ }^{\text {c }}$ | 1 |
| 30 | 1 | MSQ | PI | A;B;C | 1 |


| 31 | 1 | NAT | PI | 4 to 4 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 32 | 1 | NAT | PI | 4 to 4 | 1 |
| 33 | 1 | NAT | PI | 199.95 to 200.05 | 1 |
| 34 | 1 | NAT | PI | 21.3 to 21.5 | 1 |
| 35 | 1 | NAT | PI | 99.76 to 99.76 | 1 |
| 36 | 1 | MCQ | PI | C | 2 |
| 37 | 1 | MCQ | PI | A | 2 |
| 38 | 1 | MCQ | PI | D | 2 |
| 39 | 1 | MCQ | PI | A | 2 |
| 40 | 1 | MCQ | PI | B | 2 |
| 41 | 1 | MCQ | PI | D | 2 |
| 42 | 1 | MCQ | PI | C | 2 |
| 43 | 1 | MSQ | PI | B; | 2 |
| 44 | 1 | MSQ | PI | A; B | 2 |
| 45 | 1 | NAT | PI | 50 to 50 | 2 |
| 46 | 1 | NAT | PI | 0.064 to 0.065 | 2 |
| 47 | 1 | NAT | PI | 24.5 to 24.5 | 2 |
| 48 | 1 | NAT | PI | 3.20 to 3.25 | 2 |
| 49 | 1 | NAT | PI | 9.5 to 9.7 | 2 |
| 50 | 1 | NAT | PI | 0.31 to 0.33 | 2 |
| 51 | 1 | NAT | PI | 1.13 to 1.15 | 2 |
| 52 | 1 | NAT | PI | 240 to 240 | 2 |
| 53 | 1 | NAT | PI | 5.8 to 6.1 | 2 |
| 54 | 1 | NAT | PI | 0.31 to 0.35 | 2 |
| 55 | 1 | NAT | PI | 2 to 2 | 2 |
| 56 | 1 | NAT | PI | 4.5 to 4.5 | 2 |
| 57 | 1 | NAT | PI | 0.79 to 0.81 | 2 |
| 58 | 1 | NAT | PI | 800 to 800 | 2 |
| 59 | 1 | NAT | PI | 915.0 to 925.0 | 2 |
| 60 | 1 | NAT | PI | 3.19 to 3.23 | 2 |
| 61 | 1 | NAT | PI | 12 to 12 | 2 |
| 62 | 1 | NAT | PI | 8 to 8 | 2 |
| 63 | 1 | NAT | PI | 0 to 0 | 2 |
| 64 | 1 | NAT | PI | 0 to 0 | 2 |
| 65 | 1 | NAT | PI | 16.6 to 16.6 | 2 |

Page 2 of 2

