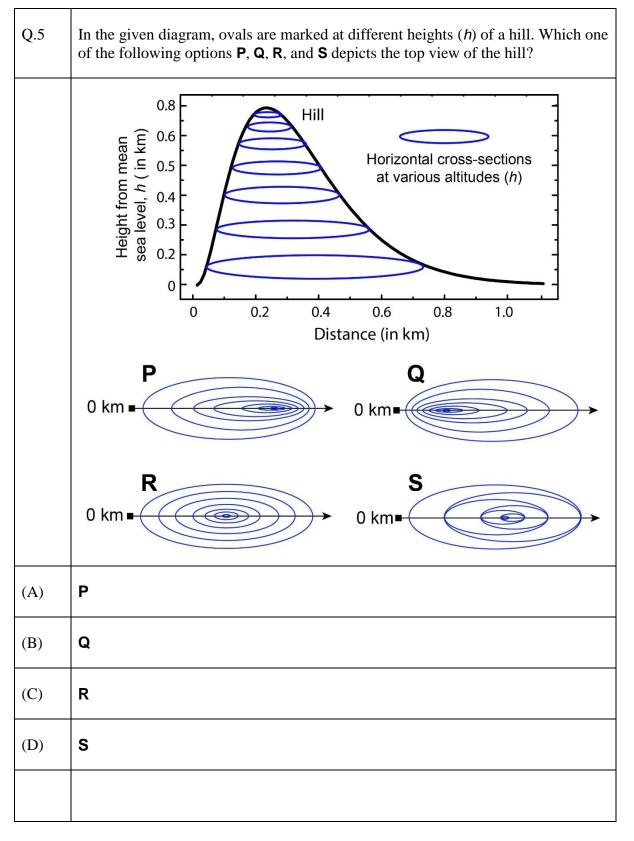


General Aptitude (GA)

Q.1 – Q.5 Carry ONE mark Each

Q.1	The village was nestled in a green spot, the ocean and the hills.
(A)	through
(B)	in
(C)	at
(D)	between

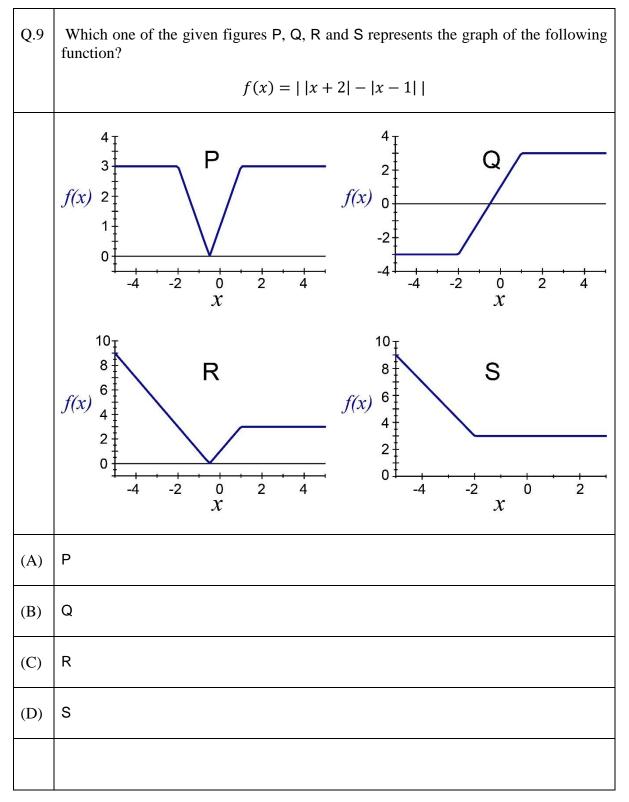

Q.2	Disagree : Protest : : Agree : (By word meaning)
(A)	Refuse
(B)	Pretext
(C)	Recommend
(D)	Refute

Q.3	A 'frabjous' number is defined as a 3 digit number with all digits odd, and no two adjacent digits being the same. For example, 137 is a frabjous number, while 133 is not. How many such frabjous numbers exist?
(A)	125
(B)	720
(C)	60
(D)	80

Q.4	Which one among the following statements must be TRUE about the mean and the median of the scores of all candidates appearing for GATE 2023?
(A)	The median is at least as large as the mean.
(B)	The mean is at least as large as the median.
(C)	At most half the candidates have a score that is larger than the median.
(D)	At most half the candidates have a score that is larger than the mean.

Q.6 – Q.10 Carry TWO marks Each

Q.6	Residency is a famous housing complex with many well-established individuals among its residents. A recent survey conducted among the residents of the complex revealed that all of those residents who are well established in their respective fields happen to be academicians. The survey also revealed that most of these academicians are authors of some best-selling books. Based only on the information provided above, which one of the following statements can be logically inferred with <i>certainty</i> ?
(A)	Some residents of the complex who are well established in their fields are also authors of some best-selling books.
(B)	All academicians residing in the complex are well established in their fields.
(C)	Some authors of best-selling books are residents of the complex who are well established in their fields.
(D)	Some academicians residing in the complex are well established in their fields.



Q.7	Ankita has to climb 5 stairs starting at the ground, while respecting the following rules:1. At any stage, Ankita can move either one or two stairs up.
	2. At any stage, Ankita cannot move to a lower step.
	Let $F(N)$ denote the number of possible ways in which Ankita can reach the N^{th} stair. For example, $F(1) = 1$, $F(2) = 2$, $F(3) = 3$.
	The value of $F(5)$ is
(A)	8
(B)	7
(C)	6
(D)	5

Q.8	 The information contained in DNA is used to synthesize proteins that are necessary for the functioning of life. DNA is composed of four nucleotides: Adenine (A), Thymine (T), Cytosine (C), and Guanine (G). The information contained in DNA can then be thought of as a sequence of these four nucleotides: A, T, C, and G. DNA has coding and non-coding regions. Coding regions—where the sequence of these nucleotides are read in groups of three to produce individual amino acids—constitute only about 2% of human DNA. For example, the triplet of nucleotides CCG codes for the amino acid glycine, while the triplet GGA codes for the amino acid proline. Multiple amino acids are then assembled to form a protein. Based only on the information provided above, which of the following statements can be logically inferred with <i>certainty</i>? (i) The majority of human DNA has no role in the synthesis of proteins. (ii) The function of about 98% of human DNA is not understood.
(A)	only (i)
(B)	only (ii)
(C)	both (i) and (ii)
(D)	neither (i) nor (ii)

Q.10 An opaque cylinder (shown below) is suspended in the path of a parallel beam of light, such that its shadow is cast on a screen oriented perpendicular to the direction of the light beam. The cylinder can be reoriented in any direction within the light beam. Under these conditions, which one of the shadows **P**, **Q**, **R**, and **S** is NOT possible?

	Opaque cylinder
	P Q
	RS
(A)	Ρ
(B)	Q
(C)	R
(D)	S

Q.11 – Q.35 Carry ONE mark Each

Q.11	Choose solution set S corresponding to the systems of two equations
	$\begin{array}{l} x - 2y + z = 0\\ x - z = 0 \end{array}$
	Note: \mathcal{R} denotes the set of real numbers
(A)	$S = \left\{ \alpha \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \middle \alpha \in \mathcal{R} \right\}$
(B)	$S = \left\{ \alpha \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \middle \alpha, \beta \in \mathcal{R} \right\}$
(C)	$S = \left\{ \alpha \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} \middle \alpha, \beta \in \mathcal{R} \right\}$
(D)	$S = \left\{ \alpha \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \middle \alpha \in \mathcal{R} \right\}$

Q.12	Inductance of a coil is measured as 10 mH, using an LCR meter, when no other objects are present near the coil. The LCR meter uses a sinusoidal excitation at 10 kHz. If a pure copper sheet is brought near the coil, the same LCR meter will read
(A)	less than 10 mH
(B)	10 mH
(C)	more than 10 mH
(D)	less than 10 mH initially and then stabilizes to more than 10 mH
Q.13	Which of the following flow meters offers the lowest resistance to the flow?
(A)	Turbine flow meter
(B)	Orifice flow meter*
(C)	Venturi meter
(D)	Electromagnetic flow meter

Q.14	Pair the quantities (p) to (s) with the measure	uring devices (i) to (iv).	
	(i) Linear Variable Differential Transformer (LVDT)	(p) Torque	
	(ii) Thermistor	(q) Pressure	
	(iii) Strain gauge	(r) Linear position	
	(iv) Diaphragm	(s) Temperature	
(A)	(i) - (r), (ii) - (s), (iii) - (q), (iv) - (p)		
(B)	(i) - (p), (ii) - (s), (iii) - (r), (iv) - (q)		
(C)	(i) - (r), (ii) - (s), (iii) - (p), (iv) - (q)		
(D)	(i) - (q), (ii) - (s), (iii) - (p), (iv) - (r)		

Q.15	Capacitance 'C' of a parallel plate structure is calculated as 20 pF using $C = \frac{\varepsilon_0 \varepsilon_r A}{d}$, where ε_0 is the permittivity of free space, ε_r is the relative permittivity of the dielectric, A is the overlapping area of the electrodes and d is the distance between them. The value of C is then measured using an LCR meter. If the meter is assumed to be ideal and it introduces no error due to cable capacitance, which one of the following readings is likely to be correct?
(A)	20.5 pF
(B)	20 pF
(C)	19.5 pF
(D)	10 pF

Q.16	The table shows the present state $Q(t)$, next state $Q(t+1)$, and the control input in a flip-flop. Identify the flip-flop.				
		Q (t)	Q (t+1)	Input	
		0	0	0	
		0	1	1	
		1	0	1]
		1	1	0	
(A)	T flip-flop				
(B)	D flip-flop				
(C)	SR flip-flop				
(D)	JK flip-flop				

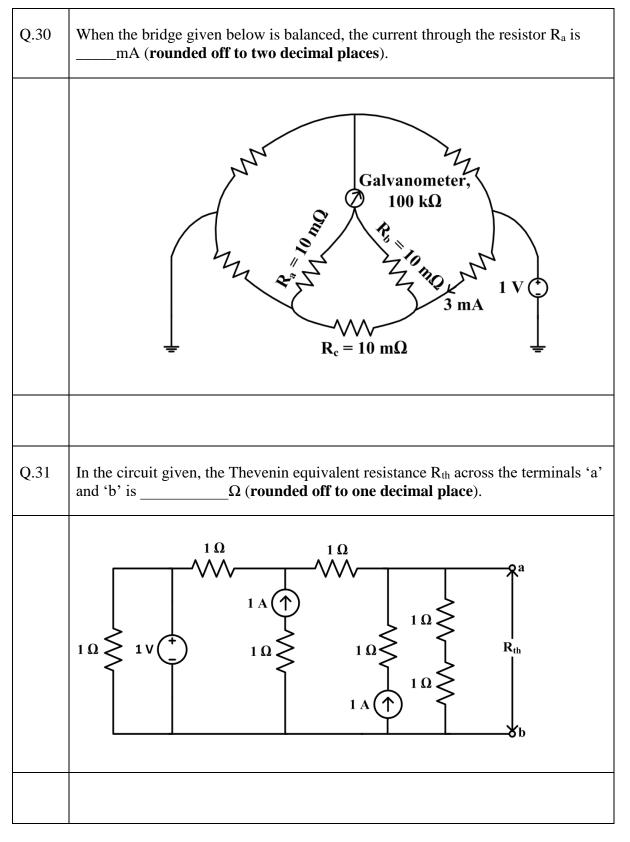
٦

Q.17	Match the Exclusive-OR (XOR) operate where X is a Boolean input.	ions (i) to (iv) with the results (p) to (s),
	(i) $X \oplus X$	(p) 1
	(ii) $X \oplus \overline{X}$	(q) 0
	(iii) $X \oplus 0$	(r) \overline{X}
	(iv) $X \oplus 1$	(s) <i>X</i>
(A)	(i) - (q), (ii) - (r), (iii) - (s), (iv) - (p)	
(B)	(i) - (q), (ii) - (r), (iii) - (p), (iv) - (s)	
(C)	(i) - (p), (ii) - (s), (iii) - (q), (iv) - (r)	
(D)	(i) - (q), (ii) - (p), (iii) - (s), (iv) - (r)	

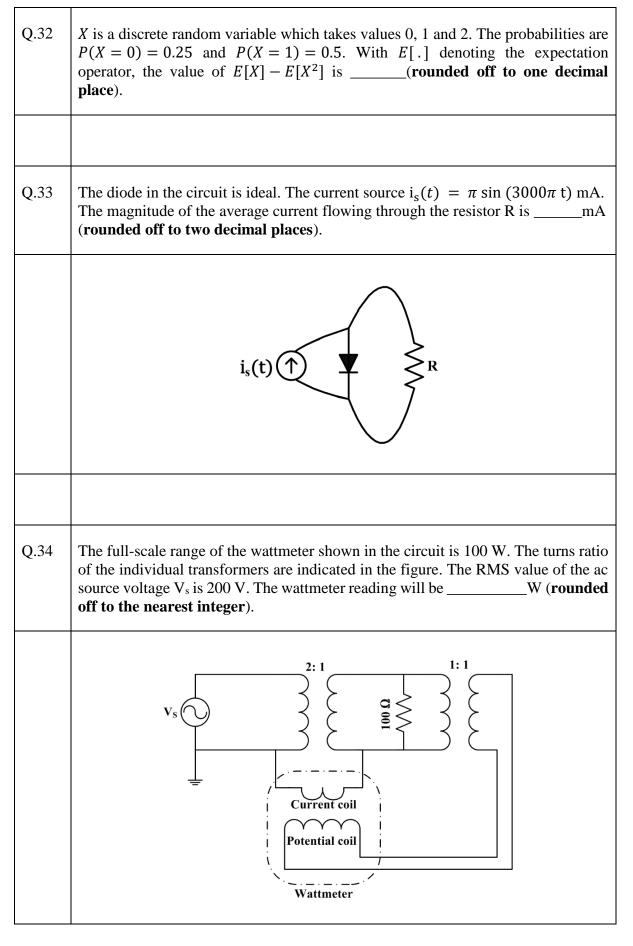
٦

Q.18	A light emitting diode (LED) emits light when it isbiased. A photodiode provides maximum sensitivity to light when it is biased.
(A)	forward, forward
(B)	forward, reverse
(C)	reverse, reverse
(D)	reverse, forward
Q.19	$F(z) = \frac{1}{1-z}$, when expanded as a power series around $z = 2$, would result in $F(z) = \sum_{k=0}^{\infty} a_k (z-2)^k$, with the region of convergence (ROC) $ z-2 < 1$. The coefficients $a_k, k \ge 0$, are given by the expression
(A)	$(-1)^{k}$
(B)	$(-1)^{k+1}$
(C)	$\left(\frac{1}{2}\right)^k$
(D)	$\left(\frac{-1}{2}\right)^{k+1}$

Q.20	The solution $x(t), t \ge 0$, to the differential equation	
	$\ddot{x} = -k\dot{x}, k > 0$ with initial conditions $x(0) = 1$ and $\dot{x}(0) = 0$ is	
(A)	$x(t) = 2e^{-kt} + 2kt - 1$	
(B)	$x(t) = 2e^{-kt} - 1$	
(C)	x(t) = 1	
(D)	$x(t) = 2e^{-kt} - kt - 1$	
Q.21	A system has the transfer-function	
	$\frac{Y(s)}{X(s)} = \frac{s-\pi}{s+\pi}$	
	Let $u(t)$ be the unit-step function. The input $x(t)$ that results in a steady-state output $y(t) = \sin \pi t$ is	
(A)	$x(t) = \sin(\pi t) \ u(t)$	
(B)	$x(t) = \sin\left(\pi t + \frac{\pi}{2}\right) \ u(t)$	
(C)	$x(t) = \sin\left(\pi t - \frac{\pi}{2}\right) \ u(t)$	
(D)	$x(t) = \cos\left(\pi t + \frac{\pi}{4}\right) u(t)$	



Q.22	Choose the fastest logic family among the following:
(A)	Transistor-Transistor Logic
(B)	Emitter-Coupled Logic
(C)	CMOS Logic
(D)	Resistor-Transistor Logic
Q.23	What is $\lim_{x \to 0} f(x)$, where $f(x) = x \sin \frac{1}{x}$?
(A)	0
(B)	1
(C)	∞
(D)	Limit does not exist
Q.24	The number of zeros of the polynomial $P(s) = s^3 + 2s^2 + 5s + 80$ in the right-half plane is
Q.25	The number of times the Nyquist plot of $G(s)H(s) = \frac{1}{2} \frac{(s-1)(s-2)}{(s+1)(s+2)}$ encircles the origin is

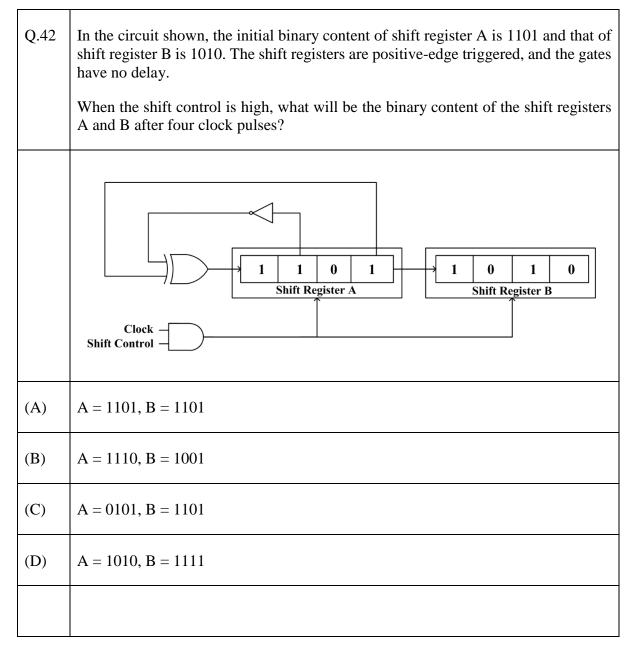


Q.26	The opamp in the circuit shown is ideal, except that it has an input bias current of 1 nA and an input offset voltage of 10 μ V. The resulting worst-case output voltage will be \pm μ V (rounded off to the nearest integer).		
	100 k\Omega 1 k\Omega $- + + + + + + + + + + + + + + + + + + +$		
Q.27	The force per unit length between two infinitely long parallel conductors, with a gap of 2 cm between them is 10 μ N/m. When the gap is doubled, the force per unit length will be μ N/m (rounded off to one decimal place).		
0.29			
Q.28	Consider the discrete-time signal $x[n] = u[-n+5] - u[n+3]$, where $u[n] = \begin{cases} 1; n \ge 0\\ 0; n < 0 \end{cases}$. The smallest <i>n</i> for which $x[n] = 0$ is		
Q.29	Let $y(t) = x(4t)$, where $x(t)$ is a continuous-time periodic signal with fundamental period of 100 s. The fundamental period of $y(t)$ is s (rounded off to the nearest integer).		

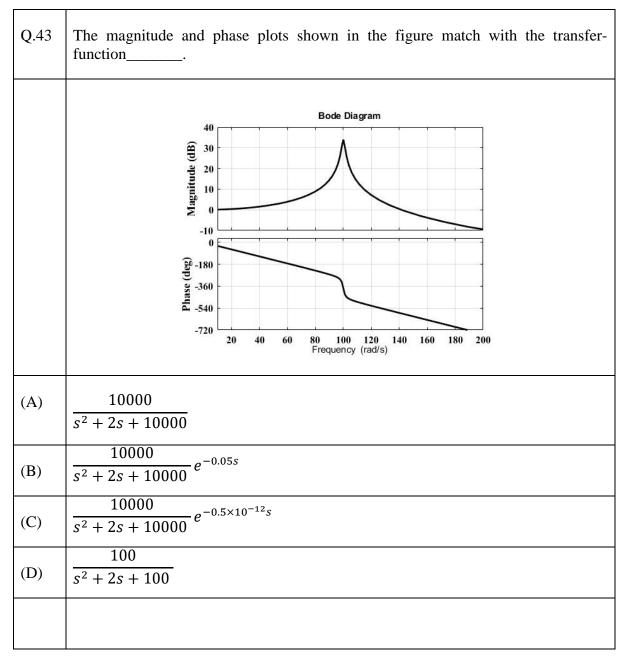
¢	2.35	The no-load steady-state output voltage of a DC shunt generator is 200 V when it is driven in the clockwise direction at its rated speed. If the same machine is driven at the rated speed but in the opposite direction, the steady-state output voltage will beV (rounded off to the nearest integer).

Q.36 – Q.65 Carry TWO marks Each

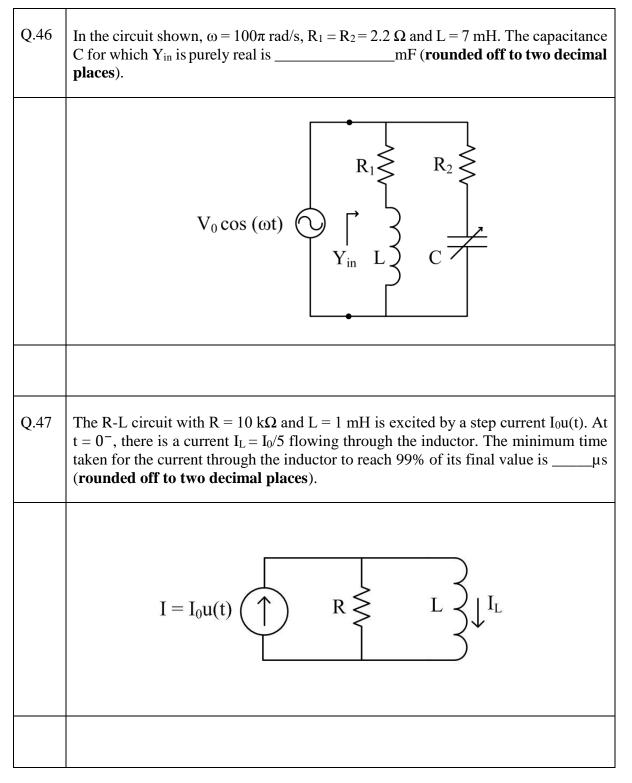
Q.36	The impulse response of an LTI system is $h(t) = \delta(t) + 0.5 \delta(t-4)$, where $\delta(t)$ is the continuous-time unit impulse signal. If the input signal $x(t) = \cos\left(\frac{7\pi}{4}t\right)$, the output is
(A)	$0.5\cos\left(\frac{7\pi}{4}t\right)$
(B)	$1.5\cos\left(\frac{7\pi}{4}t\right)$
(C)	$0.5\sin\left(\frac{7\pi}{4}t\right)$
(D)	$1.5\sin\left(\frac{7\pi}{4}t\right)$
Q.37	The Laplace transform of the continuous-time signal $x(t) = e^{-3t}u(t-5)$ is, where $u(t)$ denotes the continuous-time unit step signal.
(A)	$\frac{e^{-5s}}{s+3}, Real\{s\} > -3$
(B)	$\frac{e^{-5(s-3)}}{s-3}$, Real{s} > 3
(C)	$\frac{e^{-5(s+3)}}{s+3}$, $Real\{s\} > -3$
(D)	$\frac{e^{-5(s-3)}}{s+3}$, $Real\{s\} > -3$

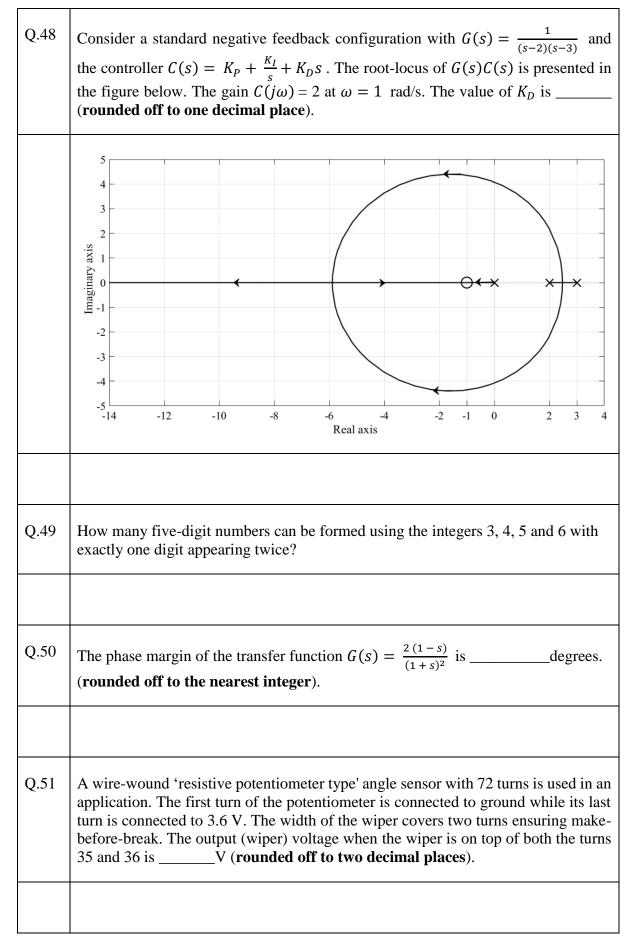


Q.38	In a p-i-n photodiode, a pulse of light containing 8×10^{12} incident photons at wavelength $\lambda_0 = 1.55 \ \mu m$ gives rise to an average 4×10^{12} electrons collected at the terminals of the device. The quantum efficiency of the photodiode at this wavelength is%.
(A)	50
(B)	54.2
(C)	62.5
(D)	80
Q.39	Let $f(z) = j \frac{1-z}{1+z}$, where z denotes a complex number and j denotes $\sqrt{-1}$. The inverse function $f^{-1}(z)$ maps the real axis to the
(A)	unit circle with centre at the origin
(B)	unit circle with centre not at the origin
(C)	imaginary axis
(D)	real axis

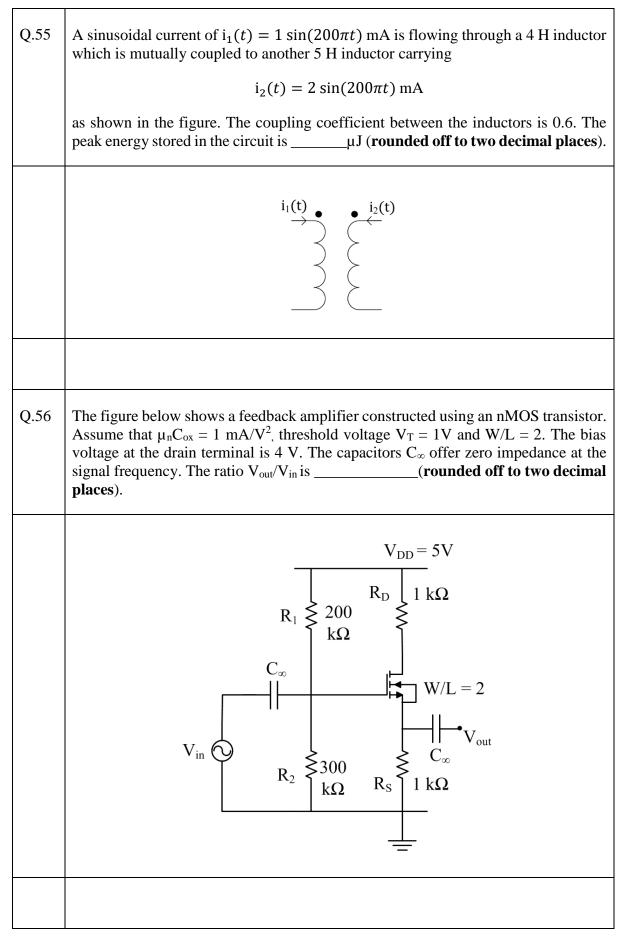


Q.40	The simplified form of the Boolean function F (W, X, Y, Z) = Σ (4, 5, 10, 11, 12, 13, 14, 15) with the minimum number of terms and smallest number of literals in each term is		
(A)	$WX + \overline{W}X\overline{Y} + W\overline{X}Y$		
(B)	$WX + WY + X\overline{Y}$		
(C)	$X\overline{Y} + WY$		
(D)	$\overline{X}Y + \overline{W}\overline{Y}$		
Q.41	For the given digital circuit, $A = B = 1$. Assume that AND, OR, and NOT gates have propagation delays of 10 ns, 10 ns, and 5 ns respectively. All lines have zero propagation delay. Given that $C = 1$ when the circuit is turned on, the frequency of steady-state oscillation of the output Y is		
(A)	20 MHz		
(B)	15 MHz		
(C)	40 MHz		
(D)	50 MHz		

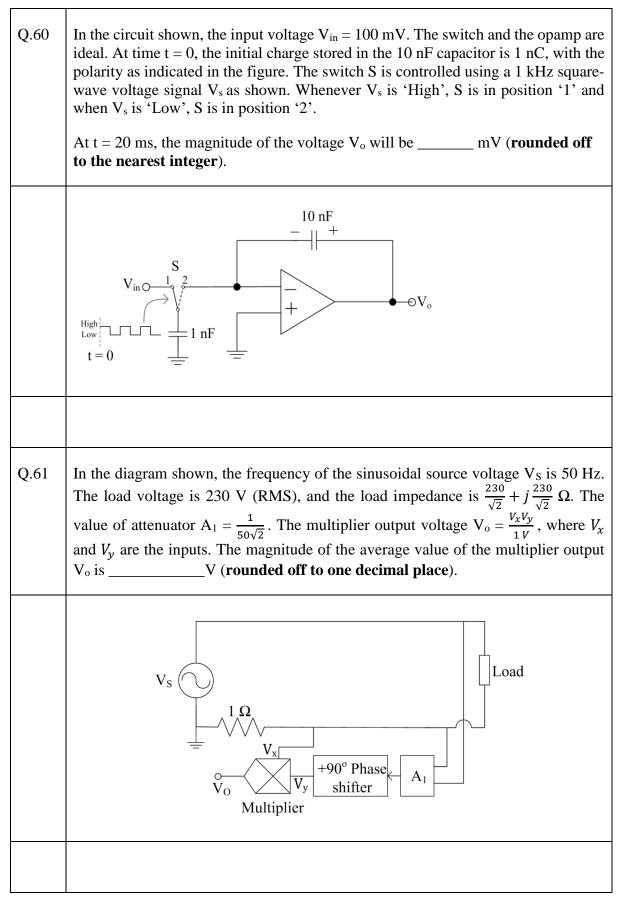




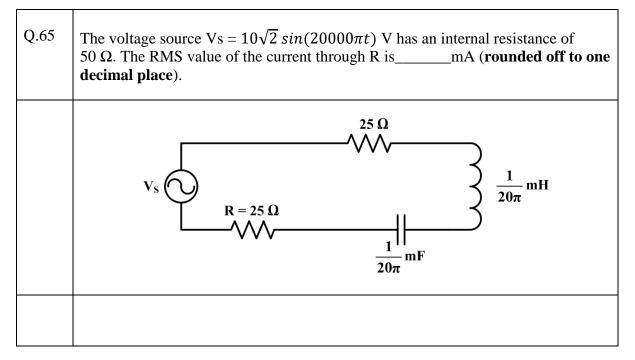
A continuous real-valued signal $x(t)$ has finite positive energy and $x(t) = 0, \forall t < 0$. From the list given below, select ALL the signals whose continuous-time Fourier transform is purely imaginary.
x(t) + x(-t)
x(t) - x(-t)
j(x(t) + x(-t))
j(x(t) - x(-t))
A silica-glass fiber has a core refractive index of 1.47 and a cladding refractive index of 1.44. If the cladding is completely stripped out and the core is dipped in water having a refractive index of 1.33, the numerical aperture of the modified fiber is (rounded off to three decimal places).



Q.52	The two secondaries of a linear variable differential transformer (LVDT) showed a magnitude of 2 V (RMS) for zero displacement position of the core. It is noted that the phase of one of the secondaries has a deviation of one degree from the expected phase. Other than this deviation, the LVDT is ideal. If the differential output sensitivity of the LVDT is 1 mV (RMS)/1 µm, the output for zero displacement is µm (rounded off to one decimal place).
Q.53	Five measurements are made using a weighing machine, and the readings are 80 kg, 79 kg, 81 kg, 79 kg and 81 kg. The sample standard deviation of the measurement is kg (rounded off to two decimal places).
Q.54	Four strain gauges R_A , R_B , R_C and R_D , each with nominal resistance R, are connected in a bridge configuration. When a force is applied, R_A and R_D increase by ΔR and R_B and R_C decrease by ΔR as shown. A potentiometer with total resistance R_v is connected as shown. If $R = 100 \Omega$, and $\Delta R = 1 \Omega$, the minimum value of resistance R_v required to balance the bridge is Ω (rounded off to two decimal places).
	$V_{B} (+) (+) (+) (+) (+) (+) (+) (+) (+) (+)$



Q.57	Consider the real-valued function $g(x) = \max\{(x-2)^2, -2x+7\},\$					
	where $x \in (-\infty, \infty)$. The minimum value attained by $g(x)$ is (rounded off to one decimal place).					
Q.58	A short-circuit test is conducted on a single-phase transformer by shorting its secondary. The frequency of input voltage is 1 kHz. The corresponding wattmeter reading, primary current and primary voltage are 8 W, 2 A and 6 V respectively. Assume that the no-load losses and the no-load currents are negligible, and the core has linear magnetic characteristics. Keeping the secondary shorted, the primary is connected to a 2 V (RMS), 1 kHz sinusoidal source in series with a $\frac{1}{2\pi\sqrt{5}}$ mF capacitor. The primary current (RMS) will be A (rounded off to two decimal places).					
Q.59	The opamps in the circuit are ideal. The input signals are					
	$V_{S1} = 3 + 0.10 \sin(300t)$ V and $V_{S2} = -2 + 0.11 \sin(300t)$ V.					
	The average value of the voltage V_0 isV (rounded off to two decimal places).					
	V_{S1} R R R R V_{0} $ R$ $ V_{0}$ $ -$					



Q.62	In the circuit shown, assuming an ideal opamp, the value of the output voltage $V_0 = __V$ (rounded off to one decimal place).						
	3R $3R$ $3R$ $3R$ $3R$ R R R R R R R R R						
Q.63	The rank of the matrix A given below is one. The ratio $\frac{\alpha}{\beta}$ is (rounded off to the nearest integer).						
	$A = \begin{bmatrix} 1 & 4 \\ -3 & \alpha \\ \beta & 6 \end{bmatrix}$						
Q.64	 A 1.999 V True RMS 3-1/2 digit multimeter has an accuracy of ±0.1 % of reading ±2 digits. It is used to measure 100 A (RMS) current flowing through a line using a 100:5 ratio, Class-1 current transformer with a burden of 0.1 Ω ±0.5 %. The worst-case absolute error in the multimeter output is V (rounded off to three decimal places). 						

*This option did not appear in GATE 2023 Examination. It appeared as "Turbine flow meter", that is, "Turbine flow meter" option was repeated.

END OF QUESTION PAPER

GATE 2023 Instrumentation Engineering (IN)								
Q. No.	Session	Question Type (QT) MCQ/MSQ/NAT	Subject Name (SN)	Key/Range (KY)	Mark (MK)			
1	5	MCQ	GA	D	1			
2	5	MCQ	GA	С	1			
3	5	MCQ	GA	D	1			
4	5	MCQ	GA	С	1			
5	5	MCQ	GA	В	1			
6	5	MCQ	GA	MTA	2			
7	5	MCQ	GA	A	2			
8	5	MCQ	GA	D	2			
9	5	MCQ	GA	A	2			
10	5	MCQ	GA	D	2			
11	5	MCQ	IN	A	1			
12	5	MCQ	IN	A	1			
13	5	MCQ	IN	D	1			
14	5	MCQ	IN	С	1			
15	5	MCQ	IN	A	1			
16	5	MCQ	IN	А	1			
17	5	MCQ	IN	D	1			
18	5	MCQ	IN	В	1			
19		MCQ	IN	В	1			
20		MCQ	IN	С	1			
21		MCQ	IN	С	1			
22		MCQ	IN	В	1			
23		MCQ	IN	A	1			
24		NAT	IN	2 to 2	1			
25		NAT	IN	2 to 2	1			
26		NAT	IN	1110 to 1110	1			
27		NAT	IN	4.9 to 5.1	1			
28		NAT	IN	-3 to -3	1			
29	5	NAT	IN	25 to 25	1			
30	5	NAT	IN	0.99 to 1.01	1			
31	5	NAT	IN	1.0 to 1.0	1			
32		NAT	IN	-0.5 to -0.5	1			
33		NAT	IN	0.95 to 1.05	1			
34		NAT	IN	0 to 0	1			
35		NAT	IN	0 to 0	1			
36		MCQ	IN	А	2			
37		MCQ	IN	С	2			
38		MCQ	IN	A	2			
39		MCQ	IN	A	2			
40		MCQ	IN	С	2			
41		MCQ	IN	A	2			
42		MCQ	IN	C	2			
43		MCQ	IN	В	2			
44		MSQ	IN	B,C	2			
45		NAT	IN	0.620 to 0.640	2			

				· · ·	1
46	5	NAT	IN	1.40 to 1.50	2
47	5	NAT	IN	0.43 to 0.45	2
48	5	NAT	IN	0.9 to 1.1	2
49	5	NAT	IN	240 to 240	2
50	5	NAT	IN	-2 to 2	2
51	5	NAT	IN	1.77 to 1.78	2
52	5	NAT	IN	34.5 to 35.5	2
53	5	NAT	IN	0.98 to 1.02	2
54	5	NAT	IN	4.00 to 4.10	2
55	5	NAT	IN	17.00 to 18.00	2
56	5	NAT	IN	0.64 to 0.70	2
57	5	NAT	IN	0.9 to 1.1	2
58	5	NAT	IN	0.95 to 1.05	2
59	5	NAT	IN	0.49 to 0.51	2
60	5	NAT	IN	99 to 101	2
61	5	NAT	IN	2.1 to 2.5	2
62	5	NAT	IN	1.9 to 2.1	2
63	5	NAT	IN	-8 to -8	2
64	5	NAT	IN	0.009 to 0.011	2
65	5	NAT	IN	99.0 to 101.0	2

MTA = Marks to All