General Aptitude (GA)

Q. 1 - Q. 5 Carry ONE mark Each

Q. 1	If ' \rightarrow ' denotes increasing order of intensity, then the meaning of the words [talk \rightarrow shout \rightarrow scream] is analogous to [please \rightarrow Which one of the given options is appropriate to fill the blank?
(A)	flatter pander].
(B)	flutter
(C)	fritter
(D)	frizzle

Q. 2	P and Q have been allotted a hostel room with two beds, a study table, and an almirah. P is an avid bird-watcher and wants to sit at the table and watch birds outside the window. Q does not mind that as long as his bed is close to the ceiling fan. Which one of the following arrangements suits them the most?
(A)	
(B)	
(C)	
(D)	

Q.3	The decimal number system uses the characters $0,1,2, \ldots, 8,9$, and the octal number system uses the characters $0,1,2, \ldots, 6,7$. For example, the decimal number $12\left(=1 \times 10^{1}+2 \times 10^{0}\right)$ is expressed as $14\left(=1 \times 8^{1}+4 \times 8^{0}\right)$ in the octal number system. The decimal number 108 in the octal number system is
(A)	168
(B)	108
(C)	150
(D)	154
Q.4	A shopkeeper buys shirts from a producer and sells them at 20\% profit. A customer has to pay ₹3,186.00 including 18\% taxes, per shirt. At what price did the shopkeeper buy each shirt from the producer?
(B)	₹1,975.40
(C)	$₹ 2,250.00$
₹2,500.00	

Q. 5	If, for non-zero real variables x, y, and real parameter $a>1$,
	$x: y=(a+1):(a-1)$,
then, the ratio $\left(x^{2}-y^{2}\right):\left(x^{2}+y^{2}\right)$ is	
(A)	$2 a:\left(a^{2}+1\right)$
(B)	$a:\left(a^{2}+1\right)$
(C)	$2 a:\left(a^{2}-1\right)$
(D)	$a:\left(a^{2}-1\right)$

Q. 6 - Q. 10 Carry TWO marks Each

Q. 7	In the following figure, $\begin{gathered} \mathrm{CD}=5 \mathrm{~cm}, \mathrm{BE}=10 \mathrm{~cm}, \mathrm{AE}=12 \mathrm{~cm}, \\ \angle \mathrm{DAB}=\angle \mathrm{DCB}, \text { and } \angle \mathrm{DAE}=\angle \mathrm{DBC}=90^{\circ} \end{gathered}$ Points AFCD create a rhombus. The length of BF (in cm) is
	$\overline{0}$
(A)	3
(B)	2
(C)	
(D)	6

Q. 8	The chart below shows the data of the number of cars bought by Millennials and Gen X people in a country from the year 2010 to 2020 as well as the yearly fuel consumption of the country (in Million liters). Considering the data presented in the chart, which one of the following options is true?
(A)	The percentage increase in fuel consumption from 2010 to 2015 is more than the percentage increase in fuel consumption from 2015 to 2020.
(B)	The increase in the number of Millennial car buyers from 2015 to 2020 is less than the decrease in the number of Gen X car buyers from 2010 to 2015.
(C)	The increase in the number of Millennial car buyers from 2010 to 2015 is more than the decrease in the number of Gen X car buyers from 2010 to 2015.
(D)	The decrease in the number of Gen X car buyers from 2015 to 2020 is more than the increase in the number of Millennial car buyers from 2010 to 2015.

Q. 9	The assembly shown below has three teethed circular objects (Pinions) and two teethed flat objects (Racks), which are perfectly mating with each other. Pinions can only rotate clockwise or anti-clockwise staying at its own center. Racks can translate towards the left (\leftarrow) or the right (\rightarrow) direction. If the object A (Rack) is translating towards the right (\rightarrow) direction, the correct statement among the following is
(A)	Object B translates towards the right direction.
(B)	Object B translates towards the left direction.
(C)	Object R rotates in the anticlockwise direction.
(D)	Object Q rotates in the clockwise direction.

Q.10	A surveyor has to measure the horizontal distance from her position to a distant reference point C. Using her position as the center, a 200 m horizontal line segment is drawn with the two endpoints A and B. Points A, B, and C are not collinear. Each of the angles $\angle \mathrm{CAB}$ and $\angle \mathrm{CBA}$ are measured as 87.8°. The distance (in m) of the reference point C from her position is nearest to
(A)	2603
(B)	2606
(C)	2306
(D)	2063

Q. 11 - Q. 35 Carry ONE mark Each

Q. 11	Which one of the following matrices has an inverse?
(A)	$\left[\begin{array}{lll}1 & 4 & 8 \\ 0 & 4 & 2 \\ 0.5 & 2 & 4\end{array}\right]$
(B)	$\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 2 & 9\end{array}\right]$
(C)	$\left[\begin{array}{lll}1 & 4 & 8 \\ 0 & 4 & 2 \\ 1 & 2 & 4\end{array}\right]$
(D)	$\left[\begin{array}{lll}1 & 4 & 8 \\ 0 & 4 & 2 \\ 3 & 12 & 24\end{array}\right]$

Q. 12	The number of junctions in the circuit is
(A)	6
(B)	7
(D)	9

Q. 13	All the elements in the circuit are ideal. The power delivered by the 10 V source in watts is
(A)	0
(B)	50
(C)	100
(D)	dependent on the value of α

Q.14	The circuit shown in the figure with the switch S open, is in steady state. After the switch S is closed, the time constant of the circuit in seconds is
(A)	1.25
(B)	0
(C)	1
(D)	1.5

Electrical Engineering (EE)

Q. 17	A three phase, $50 \mathrm{~Hz}, 6$ pole induction motor runs at 960 rpm. The stator copper loss, core loss, and the rotational loss of the motor can be neglected. The percentage efficiency of the motor is
(A)	92
(B)	94
(C)	96
(D)	98

IISC Bengaluru

Q.19	The figure shows the single line diagram of a 4-bus power network. Branches b_{1}, b_{2}, b_{3}, and b_{4} have impedances $4 z, z, 2 z$, and $4 z$ per-unit (pu), respectively, where $z=r+j x$, with $r>0$ and $x>0$. The current drawn from each load bus (marked as arrows) is equal to I pu, where $I \neq 0$. If the network is to operate with minimum loss, the branch that should be opened is
(A)	b_{1}
(D)	b_{2}
(D)	b_{3}

Q.20	For the block-diagram shown in the figure, the transfer function $\frac{C(s)}{R(s)}$ is
(A)	$\frac{G(s)}{1+2 G(s)}$
(B)	$-\frac{G(s)}{1+2 G(s)}$
(C)	$\frac{G(s)}{1-2 G(s)}$
(D)	$-\frac{G(s)}{1-2 G(s)}$

12041

Q. 21	Consider the standard second-order system of the form $\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}$ with the poles p and p^{*} having negative real parts. The pole locations are also shown in the figure. Now consider two such second-order systems as defined below: System 1: $\omega_{n}=3 \mathrm{rad} / \mathrm{sec}$ and $\theta=60^{\circ}$ System 2: $\omega_{n}=1 \mathrm{rad} / \mathrm{sec}$ and $\theta=70^{\circ}$ Which one of the following statements is correct?
(A)	Settling time of System 1 is more than that of System 2.
(B)	Settling time of System 2 is more than that of System 1.
(C)	Settling times of both the systems are the same.
(D)	Settling time cannot be computed from the given information.

| Q. 22 | Consider the cascaded system as shown in the figure. Neglecting the faster
 component of the transient response, which one of the following options is a first-
 order pole-only approximation such that the steady-state values of the unit step
 responses of the original and the approximated systems are same? |
| :--- | :--- | :--- |
| | |
| (A) | $\frac{1}{s+1}$ |
| (B) | $\frac{2}{s+1}$ |
| (C) | $\frac{1}{s+20}$ |
| (D) | $\frac{2}{s+20}$ |

Q.24	Simplified form of the Boolean function
	$\quad F(P, Q, R, S)=\bar{P} \bar{Q}+\bar{P} Q S+P \bar{Q} \bar{R} \bar{S}+P \bar{Q} R \bar{S}$
(A)	$\bar{P} S+\bar{Q} \bar{S}$
(B)	$\bar{P} \bar{Q}+\bar{Q} \bar{S}$
(C)	$\bar{P} Q+R \bar{S}$
(D)	$P \bar{S}+Q \bar{R}$

Q. 26	To obtain the Boolean function $F(X, Y)=X \bar{Y}+\bar{X}$, the inputs $P Q R S$ in the figure should be
(A)	1010
(B)	1110
(C)	0110
(D)	0001

Q.27	If the following switching devices have similar power ratings, which one of them is the fastest?
(A)	SCR
(B)	GTO
(C)	IGBT
(D)	Power MOSFET
Q.28	A single-phase triac based AC voltage controller feeds a series RL load. The input AC supply is 230 V, 50 Hz. The values of R and L are 10Ω and 18.37 mH, respectively. The minimum triggering angle of the triac to obtain controllable output voltage is
(C)	45°
(D)	60°
(B)	30°
(C)	

Q.29	Let X be a discrete random variable that is uniformly distributed over the set $\{-10,-9, \cdots, 0, \cdots, 9,10\}$. Which of the following random variables is/are uniformly distributed?
(A)	X^{2}
(B)	X^{3}
(C)	$(X-5)^{2}$
(D)	$(X+10)^{2}$
Q.30	Which of the following complex functions is/are analytic on the complex plane?
(D)	
(D)	$f(z)=z^{2}-z$
(B)	$f(z)=\operatorname{Im}(z)$
(A) $z(z)$	

Q.31	Consider the complex function $f(z)=\cos z+e^{z^{2}}$. Taylor series expansion of $f(z)$ about the origin is decimal place).
Q.32	The sum of the eigenvalues of the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]^{2}$ is___ (rounded off to 1 nearest integer).
Q.33	Let $X(\omega)$ be the Fourier transform of the signal off to the
$x(t)=e^{-t^{4}} \cos t$,	
The value of the derivative of $X(\omega)$ at $\omega=0$ is	
place).	(rounded off to 1 decimal

Q. 34	The incremental cost curves of two generators (Gen A and Gen B) in a plant supplying a common load are shown in the figure. If the incremental cost of supplying the common load is Rs. 7400 per MWh, then the common load in MW is \qquad (rounded off to the nearest integer).

Q. 35	A forced commutated thyristorized step-down chopper is shown in the figure. Neglect the ON-state drop across the power devices. Assume that the capacitor is initially charged to 50 V with the polarity shown in the figure. The load current $\left(I_{L}\right)$ can be assumed to be constant at 10 A . Initially, Th_{M} is ON and Th_{A} is OFF. The turn-off time a arailable to Th_{M} in microseconds, when Th_{A} is triggered, is__ (rounded off to the nearest integer).

Q. 36 - Q. 65 Carry TWO marks Each

Q.36	Consider a vector $\bar{u}=2 \hat{x}+\hat{y}+2 \hat{z}$, where $\hat{x}, \hat{y}, \hat{z}$ represent unit vectors along the coordinate axes x, y, z respectively. The directional derivative of the function $f(x, y, z)=2 \ln (x y)+\ln (y z)+3 \ln (x z)$ at the point $(x, y, z)=(1,1,1)$ in the direction of \bar{u} is
(A)	0
(B)	$\frac{7}{5 \sqrt{2}}$
(C)	7
(D)	21

Q. 37	The input $x(t)$ and the output $y(t)$ of a system are related as
	The system is
(A)	nonlinear.
(B)	linear and time-invariant.
(C)	linear but not time-invariant.
(D)	noncausal.

Q. 38	Consider the discrete-time systems T_{1} and T_{2} defined as follows: $\begin{gathered} \left\{T_{1} x\right\}[n]=x[0]+x[1]+\cdots+x[n] \\ \left\{T_{2} x\right\}[n]=x[0]+\frac{1}{2} x[1]+\cdots+\frac{1}{2^{n}} x[n] \end{gathered}$ Which one of the following statements is true?
(A)	T_{1} and T_{2} are BIBO stable.
(B)	T_{1} and T_{2} are not BIBO stable.
(C)	T_{1} is BIBO stable but T_{2} is not BIBO stable.
(D)	T_{1} is not BIBO stable but T_{2} is BIBO stable.

IISC Bengaluru
Electrical Engineering (EE)

Q.39	If the Z-transform of a finite-duration discrete-time signal $x[n]$ is $X(z)$, then the Z - transform of the signal $y[n]=x[2 n]$ is
(A)	$Y(z)=X\left(z^{2}\right)$
(B)	$Y(z)=\frac{1}{2}\left[X\left(z^{-1 / 2}\right)+X\left(-z^{-1 / 2}\right)\right]$
(C)	$Y(z)=\frac{1}{2}\left[X\left(z^{1 / 2}\right)+X\left(-z^{1 / 2}\right)\right]$
(D)	$Y(z)=\frac{1}{2}\left[X\left(z^{2}\right)+X\left(-z^{2}\right)\right]$
Q.40	A 3-phase, $11 \mathrm{kV}, 10 \mathrm{MVA}$ synchronous generator is connected to an inductive load of power factor $(\sqrt{3} / 2)$ via a lossless line with a per-phase inductive reactance of 5Ω. The per-phase synchronous reactance of the generator is 30Ω with negligible armature resistance. If the generator is producing the rated current at the rated voltage, then the power factor at the terminal of the generator is
(B)	0.87 lagging. (A) 0.63 lagging. (C) 0.63 leading.

Q.41	For the three-bus lossless power network shown in the figure, the voltage magnitudes at all the buses are equal to 1 per unit (pu), and the differences of the voltage phase angles are very small. The line reactances are marked in the figure, where α, β, γ, and x are strictly positive. The bus injections P_{1} and P_{2} are in pu. If $P_{1}=m P_{2}$, where $m>0$, and the real power flow from bus 1 to bus 2 is 0 pu, then which one of the following options is correct?
	$\beta=m \beta$
(A)	$\gamma=m \beta$
(D)	$\alpha=m \gamma$
(D)	$\alpha=m \gamma$

Q.42 | A BJT biasing circuit is shown in the figure, where $V_{B E}=0.7 \mathrm{~V}$ and $\beta=100$. The |
| :--- |
| Quiescent Point values of $V_{C E}$ and I_{C} are respectively |

Q.43	Let $f(t)$ be a real-valued function whose second derivative is positive for $-\infty<t<\infty$. Which of the following statements is/are always true?			
(A)	$f(t)$ has at least one local minimum.			
(B)	$f(t)$ cannot have two distinct local minima.			
(C)	$f(t)$ has at least one local maximum.			
(D)	The minimum value of $f(t)$ cannot be negative.	\quad	Q.44	Consider the function $f(t)=(m a x(0, t))^{2}$ for $-\infty<t<\infty$, where max (a, b) denotes the maximum of a and b. Which of the following statements is/are true?
:---	:---			
(A)	$f(t)$ is not differentiable.			
(B)	$f(t)$ is differentiable and its derivative is continuous.			
(C)	$f(t)$ is differentiable but its derivative is not continuous.			
	$f(t)$ and its derivative are differentiable.			

Q. 45	Which of the following differential equations is/are nonlinear?
(A)	$t x(t)+\frac{d x(t)}{d t}=t^{2} e^{t}, \quad x(0)=0$
(B)	$\frac{1}{2} e^{t}+x(t) \frac{d x(t)}{d t}=0, \quad x(0)=0$
(C)	$x(t) \cos t-\frac{d x(t)}{d t} \sin t=1, \quad x(0)=0$
(D)	$x(t)+e^{\left(\frac{d x(t)}{d t}\right)}=1, \quad x(0)=0$
Q. 46	For a two-phase network, the phase voltages V_{p} and V_{q} are to be expressed in terms of sequence voltages V_{α} and V_{β} as $\left[\begin{array}{l}V_{p} \\ V_{q}\end{array}\right]=\mathbf{S}\left[\begin{array}{l}V_{\alpha} \\ V_{\beta}\end{array}\right]$. The possible option(s) for matrix \mathbf{S} is/are
(A)	$\left[\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right]$
(B)	$\left[\begin{array}{ll} 1 & 1 \\ 1 & 1 \end{array}\right]$
(C)	$\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$
(D)	$\left[\begin{array}{cc}-1 & 1 \\ 1 & 1\end{array}\right]$

2024

Q.47	Which of the following options is/are correct for the Automatic Generation Control (AGC) and Automatic Voltage Regulator (AVR) installed with synchronous generators?
(A)	AGC response has a local effect on frequency while AVR response has a global effect on voltage.
(B)	AGC response has a global effect on frequency while AVR response has a local effect on voltage.
(C)	AGC regulates the field current of the synchronous generator while AVR regulates the generator's mechanical power input.
(D)	AGC regulates the generator's mechanical power input while AVR regulates the field current of the synchronous generator.

Q. 48	Two passive two-port networks \mathbf{P} and \mathbf{Q} are connected as shown in the figure. The impedance matrix of network \mathbf{P} is $Z_{\mathbf{P}}=\left[\begin{array}{cc}40 \Omega & 60 \Omega \\ 80 \Omega & 100 \Omega\end{array}\right]$. The admittance matrix of network \mathbf{Q} is $Y_{\mathbf{Q}}=\left[\begin{array}{cc}5 \mathrm{~S} & -2.5 \mathrm{~S} \\ -2.5 \mathrm{~S} & 1 \mathrm{~S}\end{array}\right]$. Let the ABCD matrix of the two-port network \mathbf{R} in the figure be $\left[\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right]$. The value of β in Ω is \qquad (rounded off to 2 decimal places).
Q. 49	For the circuit shown in the figure, the source frequency is $5000 \mathrm{rad} / \mathrm{sec}$. The mutual inductance between the magnetically coupled inductors is 5 mH with their self inductances being 125 mH and 1 mH . The Thevenin's impedance, $Z_{t h}$, between the terminals P and Q in Ω is \qquad (rounded off to 2 decimal places).

Q. 50	In the circuit shown, $Z_{1}=50 \angle-90^{\circ} \Omega$ and $Z_{2}=200 \angle-30^{\circ} \Omega$. It is supplied by a three phase 400 V source with the phase sequence being R-Y-B. Assume the watt meters W_{1} and W_{2} to be ideal. The magnitude of the difference between the readings of W_{1} and W_{2} in watts is \qquad (rounded off to 2 decimal places).
Q. 51	In the (x, y, z) coordinate system, three point-charges Q, Q, and αQ are located in free space at $(-1,0,0),(1,0,0)$, and $(0,-1,0)$, respectively. The value of α for the electric field to be zero at $(0,0.5,0)$ is \qquad (rounded off to 1 decimal place).
Q. 52	The given equation represents a magnetic field strength $\bar{H}(r, \theta, \phi)$ in the spherical coordinate system, in free space. Here, \hat{r} and $\hat{\theta}$ represent the unit vectors along r and θ, respectively. The value of P in the equation should be \qquad (rounded off to the nearest integer).
	$\bar{H}(r, \theta, \phi)=\frac{1}{r^{3}}(\hat{r} P \cos \theta+\hat{\theta} \sin \theta)$
Q. 53	If the energy of a continuous-time signal $x(t)$ is E and the energy of the signal $2 x(2 t-1)$ is $c E$, then c is \qquad (rounded off to 1 decimal place).

Q. $60 \quad$| In the given circuit, the diodes are ideal. The current I through the diode $D 1$ in |
| :--- |
| milliamperes is |
| (rounded off to two decimal places). |

Q.61	A difference amplifier is shown in the figure. Assume the op-amp to be ideal. The CMRR (in dB) of the difference amplifier is places).
(rounded off to 2 decimal	

| Q. 64 | In the DC-DC converter shown in the figure, the current through the inductor is
 continuous. The switching frequency is 500 Hz. The voltage (V_{o}) across the load is
 assumed to be constant and ripple free. The peak inductor current in amperes is
 (rounded off to the nearest integer). |
| :--- | :--- | :--- |

		GRADUATE APTITUDE TEST IN ENGINEERING 2024 अभियांत्रिकी स्नातक अभिक्षमता परीक्षा २०२४ ORGANISING INSTITUTE: INDIAN INSTITUTE OF SCIENCE, BENGALURU			
Electrical Engineering (EE) Final Answer Key					
Q. No.	Session	Question Type	Section	Key/Range	Mark
1	8	MCQ	GA	A	1
2	8	MCQ	GA	A	1
3	8	MCQ	GA	D	1
4	8	MCQ	GA	C	1
5	8	MCQ	GA	A	1
6	8	MCQ	GA	C	2
7	8	MCQ	GA	MTA	2
8	8	MCQ	GA	C	2
9	8	MCQ	GA	B	2
10	8	MCQ	GA	A	2
11	8	MCQ	EE	C	1
12	8	MCQ	EE	A	1
13	8	MCQ	EE	A	1
14	8	MCQ	EE	A	1
15	8	MCQ	EE	A	1
16	8	MCQ	EE	A	1
17	8	MCQ	EE	C	1
18	8	MCQ	EE	MTA	1
19	8	MCQ	EE	C	1
20	8	MCQ	EE	D	1
21	8	MCQ	EE	B	1
22	8	MCQ	EE	B	1
23	8	MCQ	EE	C	1
24	8	MCQ	EE	A	1
25	8	MCQ	EE	C	1
26	8	MCQ	EE	B	1
27	8	MCQ	EE	D	1
28	8	MCQ	EE	B	1
29	8	MSQ	EE	B; D	1

30	8	MSQ	EE	D	1
31	8	NAT	EE	0.0 to 0.0	1
32	8	NAT	EE	29 to 29	1
33	8	NAT	EE	0.0 to 0.0	1
34	8	NAT	EE	35 to 35	1
35	8	NAT	EE	50 to 50	1
36	8	MCQ	EE	C	2
37	8	MCQ	EE	B	2
38	8	MCQ	EE	D	2
39	8	MCQ	EE	C	2
40	8	MCQ	EE	A	2
41	8	MCQ	EE	A	2
42	8	MCQ	EE	A	2
43	8	MSQ	EE	B	2
44	8	MSQ	EE	B	2
45	8	MSQ	EE	B; D	2
46	8	MSQ	EE	A; D	2
47	8	MSQ	EE	B; D	2
48	8	NAT	EE	-19.90 to -19.70	2
49	8	NAT	EE	5.32 to 5.34	2
50	8	NAT	EE	692 to 693	2
51	8	NAT	EE	-1.7 to -1.5	2
52	8	NAT	EE	2 to 2	2
53	8	NAT	EE	2.0 to 2.0	2
54	8	NAT	EE	0.26 to 0.29	2
55	8	NAT	EE	27.19 to 27.39	2
56	8	NAT	EE	0.10 to 0.12	2
57	8	NAT	EE	4 to 8	2
58	8	NAT	EE	0.09 to 0.11	2
59	8	NAT	EE	1.11 to 1.13	2
60	8	NAT	EE	1.64 to 1.70	2
61	8	NAT	EE	39.50 to 41.50	2
62	8	NAT	EE	0.940 to 0.970	2
63	8	NAT	EE	50 to 50	2
64	8	NAT	EE	13 to 13	2
65	8	NAT	EE	113.00 to 116.00	2

Page 2 of 2

