General Aptitude (GA)

Q. 1 - Q. 5 Carry ONE mark Each

Q. 1	"I cannot support this proposal. My ___ will not permit it."
(A)	conscious
(B)	consensus
(C)	conscience
(D)	consent

Q.2	Courts : ___ $:$: Parliament : Legislature (By word meaning)
(A)	Judiciary
(B)	Executive
(C)	Governmental
(D)	Legal

Q.3	What is the smallest number with distinct digits whose digits add up to 45?
(A)	123555789
(B)	123457869
(C)	123456789
(D)	99999

Q.4	In a class of 100 students, (i) \quadthere are 30 students who neither like romantic movies nor comedy movies, (ii) the number of students who like romantic movies is twice the number of students who like comedy movies, and (he number of students who like both romantic movies and comedy movies is 20. How many students in the class like romantic movies?
(A)	40
(B)	20
(C)	60
(D)	30

Q. 5	How many rectangles are present in the given figure?
(A)	8
(B)	9
(C)	10
(D)	12

Q. 6 - Q. 10 Carry TWO marks Each

Q.6	Forestland is a planet inhabited by different kinds of creatures. Among other creatures, it is populated by animals all of whom are ferocious. There are also creatures that have claws, and some that do not. All creatures that have claws are ferocious. Based only on the information provided above, which one of the following options can be logically inferred with certainty?
(A)	All creatures with claws are animals.
(B)	Some creatures with claws are non-ferocious.
(C)	Some non-ferocious creatures have claws.
(D)	Some ferocious creatures are creatures with claws.

Q.7	Which one of the following options represents the given graph?
(A)	$f(x)=x^{2} 2^{-\|x\|}$
(B)	$f(x)=x 2^{-\|x\|}$
(C)	$f(x)=\|x\| 2^{-x}$
(D)	$f(x)=x 2^{-x}$

Q.8	Which one of the following options can be inferred from the given passage alone? When I was a kid, I was partial to stories about other worlds and interplanetary travel. I used to imagine that I could just gaze off into space and be whisked to another planet. [Excerpt from The Truth about Stories by T. King]				
(A)	It is a child's description of what he or she likes.	$	$	(B)	It is an adult's memory of what he or she liked as a child.
:---	:---				
(C)	The child in the passage read stories about interplanetary travel only in parts.				

Q.9	Out of 1000 individuals in a town, 100 unidentified individuals are covid positive. Due to lack of adequate covid-testing kits, the health authorities of the town devised a strategy to identify these covid-positive individuals. The strategy is to: (i) \quadCollect saliva samples from all 1000 individuals and randomly group them into sets of 5. (ii) \quadMix the samples within each set and test the mixed sample for covid. (iii) If the test done in (ii) gives a negative result, then declare all the 5 individuals to be covid negative. (iv)If the test done in (ii) gives a positive result, then all the 5 individuals are separately tested for covid. Given this strategy, no more than all the 100 covid positive individuals irrespective of how they are grouped.
(A)	700
(B)	600
(C)	800
(D)	1000

Q.10	A $100 \mathrm{~cm} \times 32 \mathrm{~cm}$ rectangular sheet is folded 5 times. Each time the sheet is folded, the long edge aligns with its opposite side. Eventually, the folded sheet is a rectangle of dimensions $100 \mathrm{~cm} \times 1 \mathrm{~cm}$. The total number of creases visible when the sheet is unfolded is (A)(B) (B) (C) 31 (D) 63

Q. 11 - Q. 35 Carry ONE mark Each

Q. 11	Let $\boldsymbol{v}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$ and $\boldsymbol{v}_{\mathbf{2}}=\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]$ be two vectors. The value of the coefficient α in the expression $\boldsymbol{v}_{\mathbf{1}}=\alpha \boldsymbol{v}_{2}+\boldsymbol{e}$, which minimizes the length of the error vector \boldsymbol{e}, is
(A)	$\frac{7}{2}$
(B)	$\frac{-2}{7}$
(C)	$\frac{2}{7}$
(D)	$\frac{-7}{2}$
Q. 12	The rate of increase, of a scalar field $f(x, y, z)=x y z$, in the direction $\boldsymbol{v}=(2,1,2)$ at a point $(0,2,1)$ is
(A)	$\frac{2}{3}$
(B)	$\frac{4}{3}$
(C)	2
(D)	4

Q.13	Let $w^{4}=16 j$. Which of the following cannot be a value of w ?
(A)	$2 e^{\frac{j 2 \pi}{8}}$
(B)	$2 e^{\frac{j \pi}{8}}$
(C)	$2 e^{\frac{j 5 \pi}{8}}$
(D)	$2 e^{\frac{j 9 \pi}{8}}$
Q.14	The value of the contour integral, $\oint_{C}\left(\frac{z+2}{z^{2}+2 z+2}\right) d z$, where the contour C is
(C)	$\pi(1-j)$
(D) $\left.\left\|z+1-\frac{3}{2} j\right\|=1\right\}$, taken in the counter clockwise direction, is	
(A)	$-\pi(1+j)$
	$\pi(1+j)$

Q.17	For an intrinsic semiconductor at temperature $T=0 K$, which of the following statement is true?
(A)	All energy states in the valence band are filled with electrons and all energy states in the conduction band are empty of electrons.
(B)	All energy states in the valence band are empty of electrons and all energy states in the conduction band are filled with electrons.
(C)	All energy states in the valence and conduction band are filled with holes.
(D)	All energy states in the valence and conduction band are filled with electrons.
Q.18	A series $R L C$ circuit has a quality factor Q of 1000 at a center frequency of 10^{6} rad/s. The possible values of R, L and C are
(D)	$R=0.01 \Omega, L=1 \mu H$ and $C=1 \mu F$
(D)	$R=0.001 \Omega, L=1 \mu H$ and $C=1 \mu F$
(A)	$R=1 \Omega, L=1 \mu H$ and $C=1 \mu F$
(B	
	$R=1 \Omega, L=1 \mu H$ and $C=1 \mu F$

Q. 19	For a MOS capacitor, V_{fb} and V_{t} are the flat-band voltage and the threshold voltage, respectively. The variation of the depletion width $\left(\mathrm{W}_{\mathrm{dep}}\right)$ for varying gate voltage $\left(\mathrm{V}_{\mathrm{g}}\right)$ is best represented by
(A)	
(B)	
(C)	
(D)	

Q.20	Consider a narrow band signal, propagating in a lossless dielectric medium $\left(\varepsilon_{r}=4, \mu_{r}=1\right)$, with phase velocity v_{p} and group velocity v_{g}. Which of the following statement is true? (c is the velocity of light in vacuum.)
(A)	$v_{p}>c, v_{g}>c$
(B)	$v_{p}<c, v_{g}>c$
(C)	$v_{p}>c, v_{g}<c$
(D)	$v_{p}<c, v_{g}<c$

Q.21	In the circuit shown below, V_{I} and V_{2} are bias voltages. Based on input and output impedances, the circuit behaves as a
(A)	voltage controlled voltage source.
(B)	voltage controlled current source.
(C)	current controlled voltage source.
(D)	current controlled current source.
(D)	the closed loop gain is greater than 1 and the phase shift is greater than 180°.
(A)	the closed loop gain is less than 1 and the phase shift is less than 180°.
(B)	A cascade of common-source amplifiers in a unity gain feedback configuration oscillates when

Q. 23	In the circuit shown below, P and Q are the inputs. The logical function realized by the circuit shown below is
(A)	$Y=P Q$
(B)	$\mathrm{Y}=\mathrm{P}+\mathrm{Q}$
(C)	$\mathrm{Y}=\overline{\mathrm{PQ}}$
(D)	$Y=\overline{P+Q}$

Q.25	The open loop transfer function of a unity negative feedback system is $G(s)=\frac{k}{s\left(1+s T_{1}\right)\left(1+s T_{2}\right)}$, where k, T_{1} and T_{2} are positive constants. The phase cross- over frequency, in rad/s, is
(A)	$\frac{1}{\sqrt{T_{1} T_{2}}}$
(B)	$\frac{1}{T_{1} T_{2}}$
(C)	$\frac{1}{T_{1} \sqrt{T_{2}}}$
(D)	$\frac{1}{T_{2} \sqrt{T_{1}}}$
Q.26	Consider a system with input $x(t)$ and output $y(t)=x\left(e^{t}\right)$. The system is
(D)	Non-causal and time varying.
(C)	Causal and time varying.
	Causal and time invariant.

Q. 32 | In the circuit shown below, the current i flowing through 200Ω resistor is |
| :--- |
| mA (rounded off to two decimal places). |
| For the two port network shown below, the [Y]-parameters is given as |
| The value of load impedance Z, in Ω, for maximum power transfer will be |
| (rounded off to the nearest integer). |
| [Y] |

Q. 34	For the circuit shown below, the propagation delay of each NAND gate is 1 ns . The critical path delay, in ns , is (rounded off to the nearest integer).
Q .35	In the circuit shown below, switch S was closed for a long time. If the switch is opened at $t=0$, the maximum magnitude of the voltage V_{R}, in volts, is (rounded off to the nearest integer).

Q. 36 - Q. 65 Carry TWO marks Each

Q.36	A random variable X, distributed normally as $N(0,1)$, undergoes the transformation $\mathrm{Y}=\mathrm{h}(\mathrm{X})$, given in the figure. The form of the probability density function of Y is (In the options given below, a, b, c are non-zero constants and $g(y)$ is piece-wise continuous function)
(A)	$a \delta(y-1)+b \delta(y+1)+g(y)$
(B)	$a \delta(y+1)+b \delta(y)+c \delta(y-1)+g(y)$
	$a \delta(y+2)+b \delta(y)+c \delta(y-2)+g(y)$
	$a \delta(y+2)+b \delta(y-2)+g(y)$

Q. 39	The $\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}$ of the circuit shown below is
(A)	$-\frac{\mathrm{R}_{4}}{\mathrm{R}_{3}}$
(B)	$\frac{\mathrm{R}_{4}}{\mathrm{R}_{3}}$
(C)	$1+\frac{\mathrm{R}_{4}}{\mathrm{R}_{3}}$
(D)	$1-\frac{\mathrm{R}_{4}}{\mathrm{R}_{3}}$

Q. 40	In the circuit shown below, D_{1} and D_{2} are silicon diodes with cut-in voltage of 0.7 V . $\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {OUT }}$ are input and output voltages in volts. The transfer characteristic is
(A)	
(B)	
(C)	
(D)	

| Q.41 | A closed loop system is shown in the figure where $\mathrm{k}>0$ and $\alpha>0$. The steady state
 error due to a ramp input $\left(\mathrm{R}(\mathrm{s})=\alpha / \mathrm{s}^{2}\right)$ is given by |
| :--- | :--- | :--- |
| | $\mathrm{R}(\mathrm{s})=\alpha / \mathrm{s}^{2} \longrightarrow$ |
| (A) | $\frac{2 \alpha}{\mathrm{k}}$ |
| (B) | $\frac{\alpha}{\mathrm{k}}$ |
| (D) | $\frac{\alpha}{4 \mathrm{k}}$ |

Q. 42	In the following block diagram, $R(s)$ and $D(s)$ are two inputs. The output $Y(s)$ is expressed as $Y(s)=G_{1}(s) R(s)+G_{2}(s) D(s)$. $\mathrm{G}_{1}(\mathrm{~s})$ and $\mathrm{G}_{2}(\mathrm{~s})$ are given by
(A)	$G_{1}(s)=\frac{G(s)}{1+G(s)+G(s) H(s)} \text { and } G_{2}(s)=\frac{G(s)}{1+G(s)+G(s) H(s)}$
(B)	$\mathrm{G}_{1}(\mathrm{~s})=\frac{\mathrm{G}(\mathrm{~s})}{1+\mathrm{G}(\mathrm{~s})+\mathrm{H}(\mathrm{~s})} \text { and } \mathrm{G}_{2}(\mathrm{~s})=\frac{\mathrm{G}(\mathrm{~s})}{1+\mathrm{G}(\mathrm{~s})+\mathrm{H}(\mathrm{~s})}$
(C)	$\mathrm{G}_{1}(\mathrm{~s})=\frac{\mathrm{G}(\mathrm{~s})}{1+\mathrm{G}(\mathrm{~s})+\mathrm{H}(\mathrm{~s})} \text { and } \mathrm{G}_{2}(\mathrm{~s})=\frac{\mathrm{G}(\mathrm{~s})}{1+\mathrm{G}(\mathrm{~s})+\mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})}$
(D)	$\mathrm{G}_{1}(\mathrm{~s})=\frac{\mathrm{G}(\mathrm{~s})}{1+\mathrm{G}(\mathrm{~s})+\mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})} \text { and } \mathrm{G}_{2}(\mathrm{~s})=\frac{\mathrm{G}(\mathrm{~s})}{1+\mathrm{G}(\mathrm{~s})+\mathrm{H}(\mathrm{~s})}$

Q. 43	The state equation of a second order system is $\dot{\boldsymbol{x}}(t)=\mathrm{A} \boldsymbol{x}(t), \quad \boldsymbol{x}(0)$ is the initial condition. Suppose λ_{1} and λ_{2} are two distinct eigenvalues of A and \boldsymbol{v}_{1} and \boldsymbol{v}_{2} are the corresponding eigenvectors. For constants α_{1} and α_{2}, the solution, $\boldsymbol{x}(t)$, of the state equation is
(A)	$\sum_{i=1}^{2} \alpha_{i} e^{\lambda_{i} \mathrm{t}} \boldsymbol{v}_{i}$
(B)	$\sum_{i=1}^{2} \alpha_{i} e^{2 \lambda_{i} \mathrm{t}} \boldsymbol{v}_{i}$
(C)	$\sum_{i=1}^{2} \alpha_{i} e^{3 \lambda_{i} \mathrm{t}} \boldsymbol{v}_{i}$
(D)	$\sum_{i=1}^{2} \alpha_{i} e^{4 \lambda_{i} \mathrm{t}} \boldsymbol{v}_{i}$

Q.44	The switch S_{1} was closed and S_{2} was open for a long time. At $t=0$, switch S_{1} is opened and S_{2} is closed, simultaneously. The value of $\mathrm{i}_{\mathrm{c}}\left(0^{+}\right)$, in amperes, is
(A)	1
(B)	-1
(C)	0.2

Q.45	Let a frequency modulated (FM) signal $x(t)=A \cos \left(\omega_{c} t+k_{f} \int_{-\infty}^{t} m(\lambda) d \lambda\right)$, where $m(t)$ is a message signal of bandwidth W. It is passed through a non-linear system with output $y(t)=2 x(t)+5(x(t))^{2}$. Let B_{T} denote the FM bandwidth. The minimum value of ω_{c} required to recover $x(t)$ from $y(t)$ is (A) (B)$\frac{3}{2} B_{T}+W$ (C) (D)$2 B_{T}+W$

Q.46	The h-parameters of a two port network are shown below. The condition for the maximum small signal voltage gain $\frac{\mathrm{v}_{\text {out }}}{\mathrm{v}_{\mathrm{s}}}$ is
(A)	$\mathrm{h}_{11}=0, \mathrm{~h}_{12}=0, \mathrm{~h}_{21}=$ very high and $\mathrm{h}_{22}=0$

Q.49	Let $x(t)=10 \cos (10.5 W t)$ be passed through an LTI system having impulse response $h(t)=\pi\left(\frac{\sin W t}{\pi t}\right)^{2} \cos 10 W t$. The output of the system is
(A)	$\left(\frac{15 W}{4}\right) \cos (10.5 W t)$
(B)	$\left(\frac{15 W}{2}\right) \cos (10.5 W t)$
(C)	$\left(\frac{15 W}{8}\right) \cos (10.5 W t)$
(D)	$(15 W) \cos (10.5 W t)$

Q. 50	Let $\mathrm{x}_{1}(\mathrm{t})$ and $\mathrm{x}_{2}(\mathrm{t})$ be two band-limited signals having bandwidth $B=4 \pi \times 10^{3} \mathrm{rad} / \mathrm{s}$ each. In the figure below, the Nyquist sampling frequency, in $\mathrm{rad} / \mathrm{s}$, required to sample $\mathrm{y}(\mathrm{t})$, is
(A)	$20 \pi \times 10^{3}$
(B)	$40 \pi \times 10^{3}$
(C)	$8 \pi \times 10^{3}$
(D)	$32 \pi \times 10^{3}$

Q. 51	The S-parameters of a two port network is given as $[S]=\left[\begin{array}{ll} S_{11} & S_{12} \\ S_{21} & S_{22} \end{array}\right]$ with reference to Z_{0}. Two lossless transmission line sections of electrical lengths $\theta_{1}=\beta l_{1}$ and $\theta_{2}=\beta l_{2}$ are added to the input and output ports for measurement purposes, respectively. The S-parameters $\left[S^{\prime}\right]$ of the resultant two port network is
(A)	$\left[\begin{array}{ll}S_{11} e^{-j 2 \theta_{1}} & S_{12} e^{-j\left(\theta_{1}+\theta_{2}\right)} \\ S_{21} e^{-j\left(\theta_{1}+\theta_{2}\right)} & S_{22} e^{-j 2 \theta_{2}}\end{array}\right]$
(B)	$\left[\begin{array}{ll}S_{11} e^{j 2 \theta_{1}} & S_{12} e^{-j\left(\theta_{1}+\theta_{2}\right)} \\ S_{21} e^{-j\left(\theta_{1}+\theta_{2}\right)} & S_{22} e^{j 2 \theta_{2}}\end{array}\right]$
(C)	$\left[\begin{array}{ll}S_{11} e^{j 2 \theta_{1}} & S_{12} e^{j\left(\theta_{1}+\theta_{2}\right)} \\ S_{21} e^{j\left(\theta_{1}+\theta_{2}\right)} & S_{22} e^{j 2 \theta_{2}}\end{array}\right]$
(D)	$\left[\begin{array}{ll}S_{11} e^{-j 2 \theta_{1}} & S_{12} e^{j\left(\theta_{1}+\theta_{2}\right)} \\ S_{21} e^{j\left(\theta_{1}+\theta_{2}\right)} & S_{22} e^{-j 2 \theta_{2}}\end{array}\right]$

Q. 52	The standing wave ratio on a 50Ω lossless transmission line terminated in an unknown load impedance is found to be 2.0. The distance between successive voltage minima is 30 cm and the first minimum is located at 10 cm from the load. Z_{L} can be replaced by an equivalent length l_{m} and terminating resistance R_{m} of the same line. The value of R_{m} and l_{m}, respectively, are	
		\bullet

Q.53	The electric field of a plane electromagnetic wave is $\boldsymbol{E}=\boldsymbol{a}_{x} C_{1 x} \cos (\omega t-\beta z)+\boldsymbol{a}_{y} C_{1 y} \cos (\omega t-\beta z+\theta) \quad \mathrm{V} / \mathrm{m}$. Which of the following combination(s) will give rise to a left handed elliptically polarized (LHEP) wave?
(A)	$C_{1 x}=1, C_{1 y}=1, \theta=\pi / 4$
(B)	$C_{1 x}=2, C_{1 y}=1, \theta=\pi / 2$
(C)	$C_{1 x}=1, C_{1 y}=2, \theta=3 \pi / 2$
(D)	$C_{1 x}=2, C_{1 y}=1, \theta=3 \pi / 4$

Q. 55	The value of the integral $\iint_{R} x y d x$ dy over the region R, given in the figure, is \qquad (rounded off to the nearest integer).
Q. 56	In an extrinsic semiconductor, the hole concentration is given to be $1.5 n_{i}$ where n_{i} is the intrinsic carrier concentration of $1 \times 10^{10} \mathrm{~cm}^{-3}$. The ratio of electron to hole mobility for equal hole and electron drift current is given as \qquad (rounded off to two decimal places).
Q. 57	The asymptotic magnitude Bode plot of a minimum phase system is shown in the figure. The transfer function of the system is $(s)=\frac{k(s+z)^{a}}{s^{b}(s+p)^{c}}$, where k, z, p, a, b and c are positive constants. The value of $(a+b+c)$ is \qquad (rounded off to the nearest integer).

Q.58	Let $\mathrm{x}_{1}(\mathrm{t})=\mathrm{u}(\mathrm{t}+1.5)-\mathrm{u}(\mathrm{t}-1.5)$ and $\mathrm{x}_{2}(\mathrm{t})$ is shown in the figure below. For $\mathrm{y}(\mathrm{t})=\mathrm{x}_{1}(\mathrm{t}) * \mathrm{x}_{2}(\mathrm{t})$, the $\int_{-\infty}^{\infty} \mathrm{y}(\mathrm{t}) \mathrm{dt}$ is the nearest integer).			
Q. rounded off to		$	$	Q.59
:---				

Q. 63	In a given sequential circuit, initial states are $\mathrm{Q}_{1}=1$ and $\mathrm{Q}_{2}=0$. For a clock frequency of 1 MHz, the frequency of signal Q_{2} in kHz , is off to the nearest integer). In the circuit below, the voltage places).

Q. 65	The frequency of occurrence of 8 symbols (a-h) is shown in the table below. A symbol is chosen and it is determined by asking a series of "yes/no" questions which are assumed to be truthfully answered. The average number of questions when asked in the most efficient sequence, to determine the chosen symbol, is ___ (rounded off to two decimal places).						
	Symbols	a	b	c	d	e	f

END OF QUESTION PAPER

		GATE 2023 Electronics and Communication Engineering (EC)			
Q. No.	Session	Question Type (QT) MCQ/MSQ/NAT	Subject Name (SN)	Key/Range (KY)	Mark (MK)
1	4	MCQ	GA	C	1
2	4	MCQ	GA	A	1
3	4	MCQ	GA	C	1
4	4	MCQ	GA	C	1
5	4	MCQ	GA	C	1
6	4	MCQ	GA	D	2
7	4	MCQ	GA	A	2
8	4	MCQ	GA	B	2
9	4	MCQ	GA	A	2
10	4	MCQ	GA	C	2
11	4	MCQ	EC	C	1
12	4	MCQ	EC	B	1
13	4	MCQ	EC	A	1
14	4	MCQ	EC	B	1
15	4	MCQ	EC	C	1
16	4	MCQ	EC	A	1
17	4	MCQ	EC	A	1
18	4	MCQ	EC	D	1
19	4	MCQ	EC	B	1
20	4	MCQ	EC	D	1
21	4	MCQ	EC	D	1
22	4	MCQ	EC	MTA	1
23	4	MCQ	EC	A	1
24	4	MCQ	EC	A	1
25	4	MCQ	EC	A	1
26	4	MCQ	EC	B	1
27	4	MCQ	EC	B	1
28	4	MCQ	EC	C	1
29	4	MCQ	EC	B	1
30	4	MSQ	EC	A, B	1
31	4	NAT	EC	10 to 10	1
32	4	NAT	EC	1.30 to 1.40	1
33	4	NAT	EC	80 to 80	1
34	4	NAT	EC	02 to 02	1
35	4	NAT	EC	04 to 04	1
36	4	MCQ	EC	B	2
37	4	MCQ	EC	B	2
38	4	MCQ	EC	A	2
39	4	MCQ	EC	A	2
40	4	MCQ	EC	A	2
41	4	MCQ	EC	A	2
42	4	MCQ	EC	A	2
43	4	MCQ	EC	A	2
44	4	MCQ	EC	B	2
45	4	MCQ	EC	B	2

46	4	MCQ	EC	MTA	2
47	4	MCQ	EC	A	2
48	4	MCQ	EC	C	2
49	4	MCQ	EC	A	2
50	4	MCQ	EC	D	2
51	4	MCQ	EC	A	2
52	4	MSQ	EC	B, C	2
53	4	MSQ	EC	A, B, D	2
54	4	MSQ	EC	B,C,D	2
55	4	NAT	EC	0 to 0	2
56	4	NAT	EC	2.20 to 2.30	2
57	4	NAT	EC	4 to 4	2
58	4	NAT	EC	15 to 15	2
59	4	NAT	EC	0.24 to 0.26	2
60	4	NAT	EC	0.12 to 0.14	2
61	4	NAT	EC	60.00 to 70.00	2
62	4	NAT	EC	8.30 to 8.34	2
63	4	NAT	EC	250 to 250 OR 500 to 500	2
64	4	NAT	EC	2.00 to 2.00	2
65	4	NAT	EC	1.97 to 1.99	2

MTA = Marks to ALL

