GATE I PSUs

TRANSPORTATION ENGINEERING

Text Book: Theory with worked out Examples and Practice Questions

Transportation Engineering

(Solutions for Text Book Practice Questions)

01. Highway Development and Planning

1. Ans: (d)

Sol:

Road	Length $\mathbf{(k m)}$	Number of Villages with population			Utility	Utility/km
		$<\mathbf{2 0 0 0}$	$\mathbf{2 0 0 0}-$ $\mathbf{5 0 0 0}$	$>\mathbf{5 0 0 0}$		
\mathbf{P}	20	8	6	1	$8 \times 0.5+6 \times 1+1 \times 2=12$	$12 / 20=0.6$
\mathbf{Q}	28	19	8	4	$19 \times 0.5+8 \times 1+4 \times 2$ $=25.5$	$25.5 / 28$ $=0.91$
\mathbf{R}	12	7	5	2	$7 \times 0.5+5 \times 1+2 \times 2=12.5$	$12.5 / 12=1.04$
Weightage factor		0.5	1	2		

$\therefore \quad \mathrm{RQP}$
02. Ans: (a)

Sol:

Road Lane	Length $(\mathbf{c m})$	Number of villages with population ranges		Industrial Product	Utility	Utility/km		
P	300	100	80	$1000-2000$	$2000-5000$	$5000-10000$	>10000	
Q	400	200	90	30	6	200	$100 \times 1+80 \times 2+30 \times$ $3+6 \times 4+200$ $=574$	$574 / 300$ $=1.91$
R	500	240	110	70	8	270	$200 \times 1+90 \times 2+8 \times 4+270$ $=682$	$682 / 400$ $=1.70$
S	550	248	112	73	12	315	$240 \times 1+110 \times 2+70$ $\times 3+10 \times 4+315$ $=1025$	$1025 / 500$ $=2.05$
Weightage factor	1	2	3	435	$248 \times 1+112 \times 2+73 \times 3$ $+12 \times 4+335$ $=1074$	$1074 / 550$ $=1.95$		

\therefore RSPQ

04. Highway Geometric Design Gradients

Common data for Questions 01 \& 02

1. Ans: (b)

Sol: Height of crown $=\frac{W}{2 \mathrm{n}}=\frac{3.5 \times 1000}{2 \times 60}$

$$
=29.2 \mathrm{~mm}
$$

2. Ans: (d)

Sol: Height of crown $=\frac{\mathrm{W}}{2 \mathrm{n}}=\frac{3.5 \times 1000}{2 \times 40}$

$$
=43.75 \mathrm{~mm}
$$

04. Ans: (a)

Sol: $G . C=\frac{30+\mathrm{R}}{\mathrm{R}}$
G.C $=\frac{30+50}{50}=1.6$

Max GC $=\frac{75}{50}=1.5 \quad \therefore \mathrm{GC}=1.5$
The compensated gradient $=6 \%-1.5$

$$
=4.5 \%
$$

5. Ans: (a)

Sol: Height of crown $=\frac{\mathrm{W}}{2 \mathrm{n}}=7.5 \mathrm{~cm}$

$$
\begin{gathered}
\frac{\mathrm{W}}{2 \mathrm{n}}=7.5 \\
2 \mathrm{n}=\frac{9 \times 100}{7.5} \\
\mathrm{n}=60 \Rightarrow 1 \text { in } 60
\end{gathered}
$$

05. Highway Geometric Design Sight Distance

1. Ans: (c)

Sol: B.D $=16 \mathrm{~m}$,

$$
\mathrm{f}=0.4
$$

$$
\frac{\mathrm{V}^{2}}{254 \mathrm{f}}=16 \Rightarrow \frac{\mathrm{~V}^{2}}{254 \times 0.4}=16
$$

$$
\mathrm{V}=40.3 \mathrm{kmph} \approx 40 \mathrm{kmph}
$$

2. Ans: (c)

Sol: V = 30 kmph ,

$$
\mathrm{f}=0.4
$$

$\mathrm{BD}_{\text {down }}=2 \mathrm{BD}_{\text {up }}$
$\frac{\mathrm{V}^{2}}{254(\mathrm{f}-0.01 \mathrm{n})}=\frac{2 \times \mathrm{V}^{2}}{254(\mathrm{f}+0.01 \mathrm{n})}$
$\begin{aligned} \mathrm{f}+0.01 \mathrm{n} & =2 \mathrm{f}-0.02 \mathrm{n} \\ 0.03 \mathrm{n} & =0.4\end{aligned}$

$$
\mathrm{n}=13.33 \%
$$

3. Ans: (b)

Sol: $\mathrm{V}=72 \mathrm{kmph}, \mathrm{n}=2 \%$,
$\mathrm{f}=0.15$,
$\mathrm{t}=1.5 \mathrm{sec}$
$\mathrm{SSD}=0.278 \mathrm{Vt}+\frac{\mathrm{V}^{2}}{254(\mathrm{f}+0.01 \mathrm{n})}=150 \mathrm{~m}$

(1) ACM	3	Transportation Engineering

04. Ans: (b)

Sol: $\mathrm{V}=60 \mathrm{kmph}$

$$
\begin{aligned}
& \mathrm{t}=2.5 \mathrm{sec}, \mathrm{f}=0.36 \\
& \frac{0.278 \mathrm{Vt}}{\mathrm{~V}^{2} / 254(\mathrm{f}+0.01 \mathrm{n})}=\frac{6}{5} \\
& 0.278 \times 60 \times 2.5=\frac{6}{5}\left[\frac{60^{2}}{254(0.36+0.01 \mathrm{n})}\right] \\
& \mathrm{n}=4.78 \simeq 4.8
\end{aligned}
$$

05. Ans: (c)

Sol: $V=60 \mathrm{kmph}, \mathrm{t}=2.5 \mathrm{sec}, \quad \mathrm{f}=0.35$

$$
\begin{aligned}
& \mathrm{SSD}=0.278 \mathrm{Vt}+\frac{\mathrm{V}^{2}}{254 \mathrm{f}} \\
& \quad=0.278 \times 60 \times 2.5+\frac{60^{2}}{254 \times 0.35}=82.1 \mathrm{~m}
\end{aligned}
$$

SSD for single two way traffic $=2 \times$ SSD

$$
=2 \times 82.1=164.2 \mathrm{~m}
$$

06. Ans: (c)

Sol: $\mathrm{ISD}=2 \times 80=160 \mathrm{~m}$

07. Ans: (83 kmph)

Sol: There are 3 phases in the problem

1. Driver lifts foot from accelerator and moves it to brake pedal - the velocity is uniform.
2. Deceleration increases from zero to maximum
3. Braking system locks the wheels and deceleration assumed to be constant until vehicle strikes the stationary vehicle.

$\mathrm{A}=\mathrm{fg}=0.75 \times 9.81=7.35 \mathrm{~m} / \mathrm{s}^{2}$
During $1^{\text {st }}$ phase, assume driver reaction time 0.5 sec

$$
\mathrm{v}_{\mathrm{o}}=\mathrm{v}_{1}+\frac{\mathrm{a}}{2}\left(\mathrm{t}_{1}-\mathrm{t}_{\mathrm{o}}\right)
$$

During $3^{\text {rd }}$ phase, deceleration assumed to be uniform

$$
\begin{aligned}
\mathrm{v}_{1} & =\sqrt{\mathrm{v}_{2}^{2}+2 \mathrm{aS}}=\sqrt{11.18^{2}+2 \times 7.35 \times 27.45} \\
& =22.98 \mathrm{~m} / \mathrm{s}=82.76 \mathrm{kmph} \\
\mathrm{v}_{\mathrm{o}} & =82.76+\frac{7.35}{2}(0.8-0.5) \\
& =83 \mathrm{kmph}
\end{aligned}
$$

8. Ans: (13.6 m)

Sol: $\frac{\mathrm{dv}}{\mathrm{dt}}=3-0.04 \mathrm{v}$
$\mathrm{A}=3, \beta=0.04, \mathrm{t}=5-0.75=4.25$
Width of intersection $=7.5 \mathrm{~m}$
Equation for distance as a function of time
$\mathrm{x}=\frac{\alpha \mathrm{t}}{\beta}-\frac{\alpha}{\beta^{2}}\left(1-\mathrm{e}^{-\beta \mathrm{t}}\right)+\frac{\mathrm{v}_{\mathrm{o}}}{\beta}\left(1-\mathrm{e}^{-\beta \mathrm{t}}\right)$
$\mathrm{v}_{\mathrm{o}}=$ initial speed $=0$

$$
=\frac{3(4.25)}{0.04}-\frac{3}{(0.04)^{2}}\left(1-\mathrm{e}^{-0.04 \times 4.25}\right)+0
$$

$\mathrm{x}=25.62 \mathrm{~m}$
Intersection + length of car
$7.5+6.1=13.6 \mathrm{~m}$
\therefore He can clear the intersection
09. Ans: $T=7.13 \mathrm{sec}, \mathrm{V}=138 \mathrm{kmph}$

Sol:

$$
\frac{20}{20} \rightarrow 230 \mathrm{~m}
$$

$$
\frac{20}{40} \rightarrow x
$$

$\mathrm{x}=115 \mathrm{~m}$
In question they have given it will take 3 sec to read sign

So

Speed of $\frac{20}{40}$ vision driver $=\frac{115}{3} \mathrm{~m} / \mathrm{sec}$
$=138 \mathrm{kmph}$
For speed of $\frac{20}{40}$ vision driver is 58 kmph

$$
\text { i..e } \begin{aligned}
58 \times \frac{5}{18} & =16.11 \mathrm{~m} / \mathrm{sec} \\
\text { Velocity } & =\frac{\mathrm{D}}{\mathrm{~T}} \\
\mathrm{~T} & =\frac{115}{16.11} \\
\mathrm{~T} & =7.13 \mathrm{sec}
\end{aligned}
$$

10. Ans: 142

Sol: For normal driver with $6 / 6$ vision the position of sign post is shown below.

$\mathrm{S}_{2}=174-48=126 \mathrm{~m}$
$\mathrm{S}_{2}=$ The distance from sign post to the start of zone-y
$\mathrm{S}_{1}=$ Distance traveled by the vehicle during perception - reaction time for $6 / 6$
vision driver
$\mathrm{S}=$ total distance required to reduce the speed to 30 kmph from design speed.

For a driver with $6 / 9$ vision (with defective sight), the distance of sign post should be nearer as compared to driver with normal sight.
\therefore Modified $\mathrm{S}_{1}=\frac{6}{9} \times 48=32 \mathrm{~m}$
The position of sign post is as shown below

The distance from modified position of sign post to the start of zone-y (i.e. $\mathrm{C}^{\prime} \mathrm{B}$)

$$
=174-32=142 \mathrm{~m} .
$$

11. Refer previous GATE solutions Book

 (Cha-2, Two marks $\mathbf{9}^{\text {th }}$ Question)
06. Highway Geometric Design Overtaking Sight Distance

Common data for Questions 01,02 \& 03

1. Ans: (c)

Sol: $\mathrm{V}=80 \mathrm{kmph}, \mathrm{a}=2.5 \mathrm{kmph} / \mathrm{sec}$
$\mathrm{V}_{\mathrm{b}}=50 \mathrm{kmph}, \mathrm{S}=16 \mathrm{~m}$
$\mathrm{t}=2 \mathrm{sec}$
$\mathrm{T}=\sqrt{\frac{14.4 \mathrm{~s}}{\mathrm{a}}}=\sqrt{92.16 \mathrm{sec}}$
$=9.6 \mathrm{sec}$
OSD $=\mathrm{d}_{1}+\mathrm{d}_{2}$

$$
\begin{aligned}
& =0.278 \mathrm{~V}_{\mathrm{b}} \mathrm{t}+\left(0.278 \mathrm{~V}_{\mathrm{b}} \mathrm{~T}+2 \mathrm{~s}\right) \\
& =193.24 \mathrm{~m}
\end{aligned}
$$

02. Ans: (d)

$$
\text { Sol: } \begin{aligned}
\text { OSD } & =\mathrm{d}_{1}+\mathrm{d}_{2}+\mathrm{d}_{3} \\
& =0.278 \mathrm{~V}_{\mathrm{b}} \mathrm{t}+\left(0.278 \mathrm{~V}_{\mathrm{b}} \mathrm{~T}+2 \mathrm{~s}\right)+0.278 \mathrm{VT} \\
& =406.74 \mathrm{~m}
\end{aligned}
$$

3. Ans: (c)

Sol: Since division is there
OSD $=d_{1}+d_{2}=193.24 \mathrm{~m}$

Common data for Questions 04 \& 05

4. Ans: (c)

Sol: $V=u+a t$
$\mathrm{u}=100 \mathrm{kmph}$
$=27.7 \mathrm{~m} / \mathrm{s}=27.7+0.8 \times 5$
$\mathrm{V}=31.72 \mathrm{~m} / \mathrm{s}$
$\mathrm{V}^{2}-\mathrm{u}^{2}=2 \times$ as
$(31.7)^{2}-(27.7)^{2}=2 \times 0.8 \times S$

$$
\mathrm{S}=148.5 \mathrm{~m}
$$

Distance traveled in next 2 sec

$$
\begin{aligned}
= & 323-148.5 \\
\mathrm{~S} & =174.5 \mathrm{~m}
\end{aligned}
$$

Now, $u=31.7 \mathrm{~m} / \mathrm{s}$

$$
S=u t+1 / 2 a t^{2}
$$

$$
174.5=(31.7 \times 5)+\left(\frac{1}{2} \times \mathrm{a} \times 5^{2}\right)
$$

$$
\mathrm{a}=1.2 \mathrm{~m} / \mathrm{sec}^{2}
$$

5. Ans: (d)

Sol: Distance traveled in overtaking process $\left(\mathrm{d}_{2}\right)$

$$
\begin{aligned}
\mathrm{d}_{2} & =\left(\mathrm{V}_{\mathrm{b}} \mathrm{~T}+2 \mathrm{~s}\right) \quad \mathrm{S}_{1}=25 \mathrm{~m} \\
& =\left(\mathrm{V}_{\mathrm{b}} \mathrm{~T}+\mathrm{S}_{1}+\mathrm{S}_{2}\right) \quad \mathrm{S}_{2}=20 \mathrm{~m} \\
\mathrm{~T} & =\sqrt{\frac{4 \mathrm{~s}}{\mathrm{a}}}=10.6 \mathrm{sec} \\
\mathrm{~d}_{2} & =(0.278 \times 100 \times 10)+(25+20) \\
& =323 \mathrm{~m}
\end{aligned}
$$

Common data for Questions 06 \& 07

6. Ans: (c)

Sol: $\mathrm{OSD}=\mathrm{d}_{1}+\mathrm{d}_{2}$

$$
\begin{aligned}
& \mathrm{V}=22.22 \mathrm{~m} / \mathrm{s} \mathrm{~V}_{\mathrm{b}}=16.67 \mathrm{~m} / \mathrm{s} \\
& \mathrm{a}=0.7 \mathrm{~m} / \mathrm{s}^{2} \\
& \mathrm{~S}=\left(0.7 \mathrm{~V}_{\mathrm{b}}+l\right)=17.67 \mathrm{~m}
\end{aligned}
$$

$$
\mathrm{T}=\sqrt{\frac{4 \mathrm{~s}}{\mathrm{a}}}=10.05 \mathrm{sec} \quad \mathrm{t}=2 \mathrm{sec}
$$

$$
\mathrm{OSD}=\mathrm{d}_{1}+\mathrm{d}_{2}+\mathrm{d}_{3}
$$

$$
=\mathrm{V}_{\mathrm{b}} \mathrm{t}+\left(\mathrm{V}_{\mathrm{b}} \mathrm{~T}+2 \mathrm{~s}\right)+\mathrm{VT}
$$

$$
=236.21+(22.22 \times 10.05)
$$

$$
=459.521 \mathrm{~m} \approx 460 \mathrm{~m}
$$

7. Ans: (d)

Sol: Desirable length of OZ $=5$ OSD

$$
\begin{aligned}
& =5\left(\mathrm{~d}_{1}+\mathrm{d}_{2}+\mathrm{d}_{3}\right) \\
& =5 \times 460 \\
& \simeq 2300 \mathrm{~m}
\end{aligned}
$$

07. Highway Geometric Design Horizontal Curves

Common data for Questions 01 \& 02

1. Ans: (a)

Sol: $\mathrm{e}=\frac{\mathrm{V}^{2}}{225 \mathrm{R}}=\frac{65^{2}}{225 \times 600}=0.031$

$\mathrm{E}=\mathrm{e} \mathrm{w}=0.031 \times 7=0.22 \mathrm{~m}$
w.r.t centre line $=0.11 \mathrm{~m}$
02. Ans: (b)

Sol: w.r.t inner edge ; $\mathrm{E}=0.22 \mathrm{~m}$
03. Ans: (c)

Sol: $\mathrm{e}_{\text {cal }}=\frac{\mathrm{V}^{2}}{225 \mathrm{R}}=\frac{65^{2}}{225 \times 125}=0.15$

$$
\begin{aligned}
& \mathrm{e}_{\mathrm{cal}}>0.07 \\
& \begin{aligned}
& \therefore \mathrm{V}=65 \mathrm{kmph} \text { is not suitable } \\
& 0.07+\mathrm{f}=\frac{\mathrm{V}^{2}}{127 \mathrm{R}} \rightarrow \mathrm{f}=\frac{65^{2}}{127 \times 125}-0.07 \\
&=0.196>0.15
\end{aligned}
\end{aligned}
$$

V_{a} should be calculated

$$
\begin{aligned}
0.07+0.15 & =\frac{\mathrm{V}_{\mathrm{a}}^{2}}{127 \times 125} \\
\mathrm{~V}_{\mathrm{a}} & =59.1 \mathrm{kmph}
\end{aligned}
$$

Common data for Questions 04 to 06

4. Ans: (b)

Sol: $\mathrm{e}+\mathrm{f}=\frac{\mathrm{V}^{2}}{127 \mathrm{R}}$

$$
\begin{aligned}
e+0.15 & =\frac{100^{2}}{127 \times 500} \\
\Rightarrow e & =0.00748=0.74 \%
\end{aligned}
$$

5. Ans: (b)

Sol: $\mathrm{f}=\frac{\mathrm{V}^{2}}{127 \mathrm{R}}=\frac{100^{2}}{127 \times 500}=0.157 \simeq 0.16$
06. Ans: (c)

Sol: $\mathrm{f}=0 ; \quad \mathrm{e}+0=\frac{100^{2}}{127 \times 500}$

$$
\Rightarrow \mathrm{e}=15.75 \%
$$

7. Ans: (a)

Sol: $\mathrm{e}=\frac{\mathrm{V}^{2}}{225 \mathrm{R}}=\frac{60^{2}}{225 \times 500}=0.032=3.2 \%$
08. Ans: (b)

Sol: $R_{\text {Ruling }}=\frac{V^{2}}{127(f+e)}$

$$
\begin{aligned}
& =\frac{100^{2}}{127(0.07+0.13)} \\
& =393.7 \mathrm{~m} \approx 395 \mathrm{~m}
\end{aligned}
$$

(1) ACE	7	Transportation Engineering

9. Ans: (a)

Sol: $b=2.4 \mathrm{~m}$
$\mathrm{h}=4.2 \mathrm{~m}$
$\frac{\mathrm{b}}{2 \mathrm{~h}}=\frac{2.4}{2 \times 4.2}=0.286>\mathrm{f}$
$\frac{b}{2 h}>f$
\therefore Lateral skidding occur first
10. Ans: (a, d)

Sol: Given: V = 80kmph; H=2b
Critical case for no overturning: $\frac{V^{2}}{127 R}=\frac{b}{2 h}$
Where: $b=$ width of vehicle;
$\mathrm{h}=$ distance of CG of vehicle from bottom $=$ total height of vehicle $(\mathrm{H}) / 2$
$\frac{\mathrm{b}}{2 \mathrm{~h}}=\frac{\mathrm{b}}{\mathrm{H}}$
Critical case for no overturning $=0.5$
Speed at which the vehicle overturns

$$
\begin{aligned}
& =\frac{\mathrm{V}^{2}}{127 \times 250}=0.5 \\
\mathrm{~V} & =126 \mathrm{kmph} \\
& =1.57 \text { times allowable speed }
\end{aligned}
$$

Super elevation to be provided

$$
=\frac{802}{225 \times 250}=0.113>0.07
$$

Hence super elevation provided is 7\%

08. Horizontal Curves (Extra Widening)

Common data for Questions $01 \& 02$

1. Ans: (d)

Sol: $\quad e+f=\frac{V^{2}}{127 R}$

$$
\mathrm{R}_{\text {Ruling }}=\frac{76^{2}}{127\left(\frac{1}{15}+0.15\right)}=209.9 \mathrm{~m}
$$

2. Ans: (d)

Sol: $\mathrm{W}_{\mathrm{e}}=\frac{\mathrm{n} \ell^{2}}{2 \mathrm{R}}+\frac{\mathrm{V}}{9.5 \sqrt{\mathrm{R}}}$

$$
=\frac{2 \times 7^{2}}{2 \times 209}+\frac{76}{9.5 \sqrt{209}}=0.787 \mathrm{~m}
$$

\therefore Total width $=7+0.787$

$$
=7.78 \mathrm{~m}
$$

3. Ans: (c)

Sol: $\mathrm{W}_{\mathrm{e}}=\frac{\mathrm{n} \ell^{2}}{2 \mathrm{R}}+\frac{\mathrm{V}}{9.5 \sqrt{\mathrm{R}}}$

$$
=\frac{2 \times 8^{2}}{2 \times 300}+\frac{100}{9.5 \sqrt{300}}=0.821 \mathrm{~m}
$$

04. Ans: (c)

Sol: Given

$$
\begin{aligned}
\mathrm{W}_{\mathrm{m}} & =0.096 \\
\frac{\ell^{2}}{2 \mathrm{R}} & =0.096 \Rightarrow \mathrm{R}=226.87 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{W}_{\mathrm{e}} & =\mathrm{W}_{\mathrm{m}}+\mathrm{W}_{\mathrm{ps}}=\frac{\mathrm{n} \ell^{2}}{2 \mathrm{R}}+\frac{\mathrm{V}}{9.5 \sqrt{\mathrm{R}}} \\
& =\frac{2 \times 6.6^{2}}{2 \times 226.87}+\frac{80}{9.5 \sqrt{226.87}} \\
& =0.75 \mathrm{~m}
\end{aligned}
$$

09. Set Back Distance and Curve Resistance

01. Ans: (a)

Sol: Set back or the clearance is the distance required from the centre line of horizontal curve to an obstruction on the inner side of the curve to provide adequate sight distance at a horizontal curve.
02. Ans: (c)

Sol: $\mathrm{m}=\frac{\mathrm{S}^{2}}{8 \mathrm{R}} \Rightarrow \mathrm{R}=\frac{80^{2}}{8 \times 10}=80 \mathrm{~m}$

Common data for Questions 03 \& 04

3. Ans: (c)

Sol: $\mathrm{L}=180 \mathrm{~m} \quad \mathrm{~S}=80 \mathrm{~m}$
L > S
$\mathrm{m}=\frac{\mathrm{S}^{2}}{8 \mathrm{R}}=\frac{80^{2}}{8 \times 360}=2.22 \mathrm{~m}$
Width of pavement is not indicated
$\mathrm{m}=\mathrm{R}-\mathrm{R} \cos (\alpha / 2)$
$\frac{\alpha}{2}=\frac{180 \mathrm{~S}}{2 \pi \mathrm{R}}=\frac{180 \times 80}{2 \pi \times 360}=6.36$
$\mathrm{m}=360-360 \cos (6.36)$

$$
=2.2 \mathrm{~m}
$$

4. Ans: (c)

Sol: $\mathrm{L}=180 \mathrm{~m} \quad \mathrm{~S}=250 \mathrm{~m}$
L $<$ S
$\mathrm{m}=\mathrm{R}-\mathrm{R} \cos \left(\frac{\alpha}{2}\right)+\frac{\mathrm{S}-\mathrm{L}}{2} \sin \left(\frac{\alpha}{2}\right)$
$\frac{\alpha}{2}=\frac{180 \mathrm{~L}}{2 \pi \mathrm{R}}=\frac{180 \times 180}{2 \pi \times 360}=14.32$
$\mathrm{m}=360-360 \cos (14.32)$
$+\frac{250-180}{2} \sin (14.32)=19.85 \mathrm{~m}$

Common data for Questions 05 \& 06
05. Ans: (c)

Sol: $\operatorname{SSD}=0.278 \mathrm{Vt}+\frac{\mathrm{V}^{2}}{254 \mathrm{f}}$

$$
=(0.278 \times 80 \times 2.4)+\frac{80^{2}}{254 \times 0.355}
$$

$$
=124.35 \mathrm{~m} \approx 125 \mathrm{~m}
$$

6. Ans: (d)

Sol: $\mathrm{S}=125 \mathrm{~m}$

$$
\begin{aligned}
\mathrm{d} & =\frac{\mathrm{W}}{4}=\frac{7}{4}=1.75 \mathrm{~m} \\
\frac{\alpha}{2} & =\frac{180 \mathrm{~S}}{2 \pi(\mathrm{R}-\mathrm{d})}=\frac{180 \times 125}{2 \pi(200-1.75)}=18.06 \\
\mathrm{~m} & =\mathrm{R}-(\mathrm{R}-\mathrm{d}) \cos \left(\frac{\alpha}{2}\right)=11.52 \mathrm{~m} \\
\mathrm{~m}^{1} & =\mathrm{m}-\mathrm{d} \\
& =11.52-1.75=9.77 \mathrm{~m} \\
& \text { (or) }
\end{aligned}
$$

In approximately

$$
\mathrm{m}=\frac{\mathrm{S}^{2}}{8 \mathrm{R}}=9.76 \mathrm{~m}
$$

Problems on Curve Resistance
07. Ans: (b)

Sol: Let ' T ' is the original Tractive force
loss of tractive force $=T(1-\cos \theta)$

$$
=\mathrm{T}\left(1-\cos 45^{\circ}\right)
$$

Ratio of loss of Tractive force to original is

$$
=0.293
$$

8. Ans: (a)

Sol: Curve resistance $=\mathrm{T}(1-\cos \theta)$

$$
\begin{aligned}
& =\mathrm{T}\left(1-\cos 30^{\circ}\right) \\
& =0.134 \mathrm{~T}
\end{aligned}
$$

10. Highway Geometric Design Transition Curves

Common data for Questions 01 \& 02

1. Ans: (d)

Sol: $\mathrm{L}=\frac{0.0215 \mathrm{~V}^{3}}{\mathrm{CR}}$

$$
=\frac{0.0215 \times 60^{3}}{0.6 \times 200}=38.7 \mathrm{~m}
$$

Considering N value
$\mathrm{L}=\mathrm{eN}\left(\mathrm{W}+\mathrm{W}_{\mathrm{e}}\right)=0.07 \times 100(7+0.2)$

$$
=50.4 \mathrm{~m}
$$

$\mathrm{L}=\frac{2.7 \mathrm{~V}^{2}}{\mathrm{R}}=\frac{2.7 \times 60^{2}}{200}=48.6 \mathrm{~m}$
\therefore The length of T.C $=50.4 \mathrm{~m}$
(from the 3 values maximum value)
02. Ans: (d)

Sol: $S=\frac{L^{2}}{24 R}=\frac{(50.4)^{2}}{24 \times 200}=0.53 \mathrm{~m}$

Common data for Questions 03 \& 04

3. Ans: (c)

Sol: $C=\frac{80}{75+V}=\frac{80}{75+80}=0.516 \mathrm{~m} / \mathrm{sec}^{3}$

04. Ans: (a)

Sol: Considering 'C' value

$$
\begin{aligned}
\mathrm{L}=\frac{0.0215 \mathrm{~V}^{3}}{\mathrm{CR}} & =\frac{0.0215 \times 80^{3}}{0.516 \times 900} \\
& =23.7 \mathrm{~m}
\end{aligned}
$$

Considering ' N ' value

$$
\mathrm{e}=\frac{\mathrm{V}^{2}}{225 \mathrm{R}}=\frac{80^{2}}{225 \times 900}=0.0316
$$

(for mixed traffic)

$$
\begin{aligned}
\mathrm{L} & =\frac{\mathrm{eN}}{2}\left(\mathrm{~W}+\mathrm{W}_{\mathrm{e}}\right) \\
& =\frac{0.0316 \times 150}{2} \times 7=16.59 \mathrm{~m}
\end{aligned}
$$

Considering terrain
$\mathrm{L}=\frac{2.7 \mathrm{~V}^{2}}{\mathrm{R}}=\frac{2.7 \times 80^{2}}{900}=19.2 \mathrm{~m}$
\therefore Length of T.C $=23.7 \mathrm{~m}$

	10	CIVIL-Postal Coaching Solutions

11. Highway Geometric Design Vertical Curves

01. Ans: (b)

Sol: Length of summit parabolic curve,
Assume L > S
$\begin{aligned} L & =\frac{\mathrm{NS}^{2}}{(\sqrt{2 \mathrm{H}}+\sqrt{2 \mathrm{~h}})^{2}} \\ & =\frac{0.09 \times 120^{2}}{(\sqrt{2 \times 1.5}+\sqrt{2 \times 0.15})^{2}}=249 \mathrm{~m}\end{aligned}$
02. Ans: (d)

Sol: $\mathrm{N}=4-(-2)=6 \%$
$6 \% \rightarrow 150 \mathrm{~m}$
$4 \% \rightarrow \frac{4}{6} \times 150=100 \mathrm{~m}$

03. Ans: (c)

Sol: $\mathrm{N}=\frac{1}{50}-\left(-\frac{1}{100}\right)=0.03=3 \%$
$1 \% \rightarrow 100 \mathrm{~m}$
$3 \% \rightarrow \frac{3}{1} \times 100=300 \mathrm{~m}$

Common data for Q $04 \& 05$

4. Ans: (c)

Sol: $\mathrm{N}=\frac{1}{25}-\left(-\frac{1}{50}\right)=0.06=6 \%$

$$
\mathrm{S}=180 \mathrm{~m}
$$

Take L > SSD

$$
\begin{aligned}
\mathrm{L}=\frac{\mathrm{NS}^{2}}{4.40}=\frac{0.06 \times 180^{2}}{4.4} & =441.8 \mathrm{~m} \\
& \simeq 442 \mathrm{~m}
\end{aligned}
$$

5. Ans: (b)

Sol: $6 \% \rightarrow 442 \mathrm{~m}$
$4 \% \rightarrow \frac{4}{6} \times 442=294.66 \mathrm{~m}$
06. Ans: (a)

07. Ans: (b)

Sol: $\mathrm{N}=\frac{1}{100}-\left(\frac{-1}{120}\right)=0.0183$
Assume L> OSD

$$
\mathrm{L}=\frac{\mathrm{NS}^{2}}{9.6}=\frac{0.0183 \times 470^{2}}{9.6}=421.09 \mathrm{~m}
$$

$$
421.09<470
$$

Take L < OSD

$$
\begin{aligned}
\mathrm{L}=2 \mathrm{~S}-\frac{9.6}{\mathrm{~N}} & =2 \times 470-\frac{9.6}{0.0183} \\
& =406.66 \mathrm{~m}
\end{aligned}
$$

8. Ans: (c)

Sol: Take L \geq OSD

$$
\begin{aligned}
\mathrm{L} & =\frac{\mathrm{NS}^{2}}{9.6} \\
& =\frac{0.018 \times 500^{2}}{9.6} \\
& =468.75 \mathrm{~m}<500 \mathrm{~m}
\end{aligned}
$$

ACE	11	Transportation Engineering

TakeL < OSD

$$
\begin{aligned}
\mathrm{L} & =2 \mathrm{~S}-\frac{9.6}{\mathrm{~N}} \\
& =2 \times 500-\frac{9.6}{0.018} \\
& =466.67 \mathrm{~m}<500 \mathrm{~m}
\end{aligned}
$$

\therefore Length of summit cure,
$\mathrm{L} \approx 467 \mathrm{~m}$

12. Highway Geometric Design Valley Curves

Common data for Questions 01 to 03

01. Ans: (c)

Sol: $-\mathrm{n}_{1}=\frac{1}{25} \quad \mathrm{~V}=100 \mathrm{kmph}$

$$
\begin{aligned}
\mathrm{n}_{2}=\frac{1}{20} \quad \mathrm{C} & =0.6 \mathrm{~m} / \mathrm{s}^{3} \\
\mathrm{SSD} & =180 \mathrm{~m}
\end{aligned}
$$

$\mathrm{N}=\left|\left(-\mathrm{n}_{1}-\mathrm{n}_{2}\right)\right|=\mathrm{n}_{1}+\mathrm{n}_{2}$

$$
=\frac{1}{25}+\frac{1}{20}=0.09
$$

(a) $\mathrm{L}=0.38\left(\mathrm{NV}^{3}\right)^{1 / 2}$

$$
\begin{aligned}
& =0.38\left(0.09 \times 100^{3}\right)^{\frac{1}{2}} \\
& =114
\end{aligned}
$$

L > SSD
(b) $\mathrm{L}=\frac{\mathrm{NS}^{2}}{1.5+(0.035 \mathrm{~S})}=\frac{0.09 \times 180^{2}}{1.5+0.035(180)}$

$$
=373.86 \mathrm{~m} \simeq 374 \mathrm{~m}
$$

2. Ans: (b)

Sol: $I=\frac{1.6 \mathrm{NV}^{2}}{\mathrm{~L}}$

$$
=\frac{1.6 \times 0.09 \times 100^{2}}{374}=3.85
$$

03. Ans: (a)

Sol: For $9 \% \rightarrow 373.86$
For $4 \% \rightarrow$?

$$
=\frac{4 \times 374.0}{9}=166.22 \mathrm{~m} \simeq 166
$$

4. Ans: (a, b, c, d)

Sol: Length of the valley curve from comfort criteria $=0.38 \sqrt{\mathrm{NV}^{3}}$
$=0.38 \sqrt{0.075 \times 80^{3}}=74.46 \mathrm{~m}$ say 75 m
Length of the valley curve from headlight sight distance criteria
$=\frac{\mathrm{NS}^{2}}{1.5+0.035 \mathrm{~S}}=\frac{0.075 \times 130^{2}}{1.5+0.035 \times 130}=209.5 \mathrm{~m}$ say 210 m

$$
\begin{aligned}
\text { Impact factor } & =\frac{1.59 \mathrm{NV}^{2}}{\mathrm{~L}} \\
& =\frac{1.59 \times 0.075 \times 80^{2}}{210}=3.63
\end{aligned}
$$

13. Highway Materials and Testing

1. Ans: (a)

Sol: $\mathrm{k}_{1} \mathrm{~d}_{1}=\mathrm{k}_{2} \mathrm{~d}_{2}$

$$
\begin{aligned}
& (200) \times(30)=\left(\mathrm{k}_{2}\right)(75) \\
& \mathrm{k}_{2}=\mathrm{k}_{\text {of soil }}=80 \mathrm{~N} / \mathrm{cm}^{3}
\end{aligned}
$$

3. Ans: (a)

Sol: $\mathrm{E}=\frac{1.18 \mathrm{~Pa}}{\delta}=\frac{1.18 \times 800 \times(75 / 2)}{2.5 \times 10^{-1}}$

$$
=141600 \mathrm{~N} / \mathrm{cm}^{2}
$$

$$
=141.6 \mathrm{kN} / \mathrm{cm}^{2}
$$

4.

Sol: Total weight $=825+1200+325+150+100$

$$
=2600 \mathrm{gm}
$$

\% wt of material ;

$$
\begin{aligned}
& \mathrm{A}_{1} \rightarrow \frac{825}{2600} \times 100=31.7 \% \\
& \mathrm{~A}_{2} \rightarrow \frac{1200}{2600} \times 100=46.15 \% \\
& \mathrm{~A}_{3} \rightarrow \frac{325}{2600} \times 100=12.5 \% \\
& \mathrm{~A}_{4} \rightarrow \frac{150}{2600} \times 100=5.7 \%
\end{aligned}
$$

$$
\text { Bitumen } \rightarrow \frac{100}{2600} \times 100=3.8 \%
$$

$$
\mathrm{G}_{\mathrm{t}}=\frac{100}{\left(\frac{\mathrm{w}_{1}}{\mathrm{G}_{1}}+\frac{\mathrm{w}_{2}}{\mathrm{G}_{2}}+\frac{\mathrm{w}_{3}}{\mathrm{G}_{3}}+\frac{\mathrm{w}_{4}}{\mathrm{G}_{4}}+\frac{\mathrm{w}_{5}}{\mathrm{G}_{5}}\right)}
$$

$$
\begin{aligned}
& =\frac{100}{\left[\frac{31.7}{2.63}+\frac{46.15}{2.51}+\frac{12.5}{2.46}+\frac{5.7}{2.43}+\frac{3.8}{1.05}\right]} \\
& =2.41
\end{aligned}
$$

$$
\mathrm{G}_{\mathrm{m}}=\frac{1100}{475}=2.31
$$

(a) $\mathrm{V}_{\mathrm{a}}=\frac{\mathrm{G}_{\mathrm{t}}-\mathrm{G}_{\mathrm{m}}}{\mathrm{G}_{\mathrm{t}}} \times 100=\frac{2.41-2.31}{2.41} \times 100$

$$
=4.15 \%
$$

(b) $\mathrm{V}_{\mathrm{b}}=\frac{\mathrm{w}_{\mathrm{b}}}{\mathrm{G}_{\mathrm{b}}} \times \mathrm{G}_{\mathrm{m}}=\frac{3.80}{1.05} \times 2.31=8.36$
(c) $\mathrm{VMA}=\mathrm{V}_{\mathrm{a}}+\mathrm{V}_{\mathrm{b}}=4.15 \%+8.36$

$$
=12.51 \%
$$

$\mathrm{VFB}=\frac{\mathrm{V}_{\mathrm{b}}}{\mathrm{VMA}} \times 100$

$$
=\frac{8.36}{12.51} \times 100=67 \%
$$

5. Ans: $G_{t}=2.48, G_{m}=2.30$

Sol: $G_{t}=\frac{100}{\frac{w_{1}}{G_{1}}+\frac{w_{2}}{G_{2}}+\frac{w_{3}}{G_{3}}}$

$$
=\frac{100}{\frac{60}{2.72}+\frac{35}{2.66}+\frac{5}{1.0}}=2.48
$$

$$
\mathrm{V}_{\mathrm{a}}=7 \%
$$

$$
V_{a}=\frac{G_{t}-G_{m}}{G_{t}} \times 100
$$

$$
\Rightarrow 7=\frac{2.48-\mathrm{G}_{\mathrm{m}}}{2.48} \times 100
$$

$$
\mathrm{G}_{\mathrm{m}}=2.30
$$

6. Ans: (c)

Sol: CBR (\%) $=\frac{\mathrm{P}_{2.5}}{\mathrm{P}_{\text {st } 2.5}} \times 100$

$$
=\frac{60.5}{1370} \times 100=4.4 \%
$$

$\operatorname{CBR}(\%)=\frac{\mathrm{P}_{5}}{\mathrm{P}_{\mathrm{st} 5}} \times 100$

$$
\begin{aligned}
& =\frac{80.5}{2055} \times 100 \\
& =3.92 \%
\end{aligned}
$$

Adopt higher one.
$\therefore \mathrm{CBR}(\%)=4.4$

14. Pavement Design

01. Ans: $\mathbf{3 4 . 2 2} \mathbf{~ m s a}$

Sol: Assume lane distribution factor, $\mathrm{F}=1$

$$
\begin{aligned}
\mathrm{A} & =1000\left(1+\frac{7.5}{100}\right)^{5}=1435.6 \mathrm{CVPD} \\
\mathrm{~N} & =\frac{365\left[(1+0.075)^{15}-1\right] \times 1435.6 \times 2.5 \times 1}{0.075} \\
& =34.22 \mathrm{msa}
\end{aligned}
$$

2. Ans: (c)

Sol: $\mathrm{N}=\frac{365\left[(1+\mathrm{r})^{\mathrm{n}}-1\right] \times \mathrm{A} \times \mathrm{D} \times \mathrm{F}}{\mathrm{r}}$
Assume F $=0.75$

$$
\begin{aligned}
\mathrm{N} & =\frac{365\left[(1+0.1)^{15}-1\right] \times 1610.51 \times 3 \times 0.75}{0.1} \\
& =42.02 \mathrm{msa}
\end{aligned}
$$

$$
\mathrm{A}=\mathrm{P}(1+\mathrm{r})^{\mathrm{n}}
$$

$$
=1000(1+0.1)^{5}=1610.51
$$

3. Ans: (b)

Sol: $\mathrm{N}=\mathrm{N}_{1}+\mathrm{N}_{2}$

$$
\begin{aligned}
& =\frac{365\left[(1+\mathrm{r})^{\mathrm{n}}-1\right] \times \mathrm{A} \times \mathrm{D} \times \mathrm{F}}{\mathrm{r}} \\
\mathrm{~N} & =\frac{365\left[(1+0.075)^{10}-1\right][2000 \times 5+200 \times 6]}{0.075} \\
& =57.8 \mathrm{msa}
\end{aligned}
$$

4. Ans: $F=3.74, \mathrm{~N}=25.86 \mathrm{msa}$

Sol:

S.No	Wheel load	\% Total Traffic (Ni)	EF [Fi]
1	2268	25	1
2	2722	12	2.07
3	3175	9	3.84
4	3629	6	6.55
5	4082	4	10.49
6	4536	2	16
7	4490	1	23.43
75		$\Sigma \mathrm{~N}_{\mathrm{i}}=59 \%$	

$\Sigma \mathrm{EF}=\left(\frac{\text { Actualload }}{\text { Stan dard load }}\right)^{4}$
(1) $\rightarrow \mathrm{EF}_{1}=\left(\frac{2268}{2268}\right)^{4}=1$
(2) $\rightarrow \mathrm{EF}_{2}=\left(\frac{2722}{2268}\right)^{4}=2.07 \ldots \ldots$
$25 \times 1+12 \times 2.07+9 \times 3.84+6 \times 6.55$
$\mathrm{VDF}=\frac{\Sigma \mathrm{N}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}}{\Sigma \mathrm{N}_{\mathrm{i}}}=\frac{+4 \times 10.49+2 \times 16+1 \times 23.23}{59}$
$\mathrm{VDF}=3.74$

Given LDF $=0.4$
Total Traffic $=1860 \mathrm{cv} /$ day
\therefore Total commercial traffic (A)
$=1860 \times \frac{59}{100}=1094.4 \mathrm{cv} /$ day
$\mathrm{N}=\frac{365\left((1+0.075)^{20}-1\right)(1094.4 \times 0.4 \times 3.74)}{0.075}$
$\mathrm{N}=25.87 \times 10^{6} \mathrm{csa}=25.87 \mathrm{msa}$
05. Ans: 266.25 kN, 1.26

Sol: Equivalent axle load and vehicle damage factor (VDF)

Axl e load	Number of load repetition	Equivalent factor	Equivalent axle load
80	1000	$(80 / 80)^{4}=1$	1000
160	100	$(160 / 80)^{4}=16$	1600
40	1000	$(40 / 80)^{4}=0.0625$	62.5
			2662.5

\therefore The equivalent axle load $=2662.5 \mathrm{kN}$
$\mathrm{VDF}=\frac{(1000 \times 1)+(100 \times 16)+(1000 \times 0.0625)}{1000+100+1000}$
$=1.26$

15. Rigid Pavements

01. Ans: (a)

Sol: $\mathrm{L}=\frac{\delta^{\prime}}{\alpha\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)}=\frac{2.5 / 2}{10 \times 10^{-6}(45-10)}=3571.42 \mathrm{~cm}$ $=35.71 \mathrm{~m}$
($\delta^{\prime}=50 \%$ of gap expansion joint)

Common data for Questions 02 \& 03

2. Ans: (a)

Sol: $\sigma_{w(e)}=\frac{C_{x} E \alpha t}{2}$

$$
\begin{aligned}
& =\frac{0.92 \times 3 \times 10^{5} \times 10 \times 10^{-6} \times 16.2}{2} \\
& =22.35 \mathrm{~kg} / \mathrm{cm}^{2}
\end{aligned}
$$

3. Ans: (d)

Sol: $l=\left[\frac{E h^{3}}{12 \mathrm{k}\left(1-\mu^{2}\right)}\right]^{1 / 4}$

$$
=\left[\frac{3 \times 10^{5} \times 20^{3}}{12 \times 8\left(1-0.15^{2}\right)}\right]^{1 / 4}=71.1 \mathrm{~cm}
$$

$$
\sigma_{\mathrm{w}(\mathrm{c})}=\frac{\mathrm{E} \alpha \mathrm{t}}{3(1-\mu)} \sqrt{\frac{\mathrm{a}}{l}}
$$

$$
\begin{aligned}
& =\frac{3 \times 10^{5} \times 10 \times 10^{-6} \times 16.2}{3(1-0.15)} \times \sqrt{\frac{15}{71.1}} \\
& 8.75 \mathrm{~kg} / \mathrm{cm}^{2}
\end{aligned}
$$

Common data for Questions 04 \& 05
04. Ans: (a)

Sol: $\mathrm{A}_{\mathrm{s}}=\frac{\mathrm{Bhfr}_{\mathrm{c}}}{\sigma_{\mathrm{s}} \times 100}=\frac{1 / 2 \times 7.2 \times 18 \times 1.5 \times 2400}{1700 \times 100}$

$$
=137.22 \mathrm{~cm}^{2} / \mathrm{m}
$$

Spacing $=\frac{100 \times \mathrm{A}}{\mathrm{A}_{\mathrm{s}}}=\frac{100 \times\left(\pi / 4 \times 10^{2}\right)}{137.22}$

$$
=57.23 \mathrm{~cm} \simeq 550 \mathrm{~mm} \mathrm{c} / \mathrm{c}
$$

A A C	15	Transportation Engineering

5. Ans: (b)

Sol: $\mathrm{L}=\frac{\mathrm{d} \sigma_{\mathrm{s}}}{2 \sigma_{\mathrm{b}}}=\frac{1 \times 1700}{2 \times 24.6}=34.55 \mathrm{~cm} \simeq 35 \mathrm{~cm}$

Common data for Questions 06 \& 07

6. Ans: (c)

Sol: $L=\frac{2 \sigma_{c}}{\gamma_{c} \mathrm{f}}=\frac{2 \times 0.8 \times 10^{4}}{2400 \times 1.5}=4.4 \mathrm{mc} / \mathrm{c}$
07. Ans: (c)

Sol: $L=\frac{200 \sigma_{s} A_{s}}{B h \gamma_{c} f}$

$$
\begin{aligned}
& =\frac{200 \times 1200 \times \frac{\pi}{4} \times\left(10 \times 10^{-1}\right)^{2}}{3.75 \times 20 \times 2400 \times 1.5} \times \text { no. of bars } \\
& =8.72 \mathrm{c} / \mathrm{c}
\end{aligned}
$$

No. of bars $=\frac{\text { width }}{0.3}=\frac{3.75}{0.3}=12.5 \simeq 13 \mathrm{No}$'s
08. Ans: (a)

$$
\text { Sol: } \begin{aligned}
\sigma_{\mathrm{f}}=\frac{\gamma_{\mathrm{c}} \mathrm{fL}}{2 \times 10^{4}} & =\frac{2400 \times 4 \times 1.2}{2 \times 10^{4}} \\
& =0.576 \mathrm{~kg} / \mathrm{cm}^{2}
\end{aligned}
$$

16. Traffic Engineering

01. Ans: (a)

Sol: Time mean speed

$$
=\frac{50+40+60+54+45}{5}
$$

$\left(\mathrm{V}_{\mathrm{t}}\right)=49.8 \mathrm{kmph}$
$\mathrm{V}_{\mathrm{s}} \Rightarrow$ space mean speed
$\frac{1}{\mathrm{~V}}=\frac{1}{50}+\frac{1}{40}+\frac{1}{60}+\frac{1}{54}+\frac{1}{45}$
$\mathrm{V}=9.76$
$\mathrm{V}_{\mathrm{s}}=\mathrm{V} \times \mathrm{n}=9.76 \times 5=48.80 \mathrm{kmph}$
02. Ans: (a)

Sol:

Speed Range $(\mathbf{m} / \mathbf{s})$	Frequency $\mathbf{P C U} / \mathbf{h r}$ (\mathbf{q})	Mid- $\mathbf{p t}$ speed (\mathbf{v})	$\mathbf{q v}$	\mathbf{q} / \mathbf{v}
2.5	1	2.5	2.5	0.4
7.5	4	7.5	30	0.533
11.5	0	11.5	0	0
15.5	7	15.5	108.5	0.45
	$\Sigma \mathrm{q}=12$		$\Sigma \mathrm{qv}=141.0$	$\Sigma \frac{\mathrm{q}}{\mathrm{v}} 1.38$

$\mathrm{V}_{\mathrm{t}}=\frac{\sum \mathrm{q} \mathrm{v}}{\sum \mathrm{q}}=\frac{141}{12}=11.75 \mathrm{~m} / \mathrm{s}$
$\mathrm{V}_{\mathrm{s}}=\frac{\sum \mathrm{q}}{\sum(\mathrm{q} / \mathrm{v})}=\frac{12}{1.38}=8.69 \mathrm{~m} / \mathrm{s}$
Always the time mean speed is more than space mean speed i.e, $V_{t}>V_{s}$

03. Ans: 41.8 \& 40.91

Sol: Speed of vehicle-A $=\frac{1}{1.2 / 60}=50 \mathrm{kmph}$
Speed of vehicle-B $=\frac{1}{1.5 / 60}=40 \mathrm{kmph}$
Speed of vehicle-C $=\frac{1}{1.7 / 60}=35.3 \mathrm{kmph}$

$\because \stackrel{A}{4}$	16	CIVIL-Postal Coaching Solutions

Average travel speed

$$
\begin{aligned}
\left(\mathrm{V}_{\mathrm{t}}\right) & =\frac{50+40+35.3}{3} \\
& =41.8 \mathrm{kmph}
\end{aligned}
$$

Space mean speed $\left(\mathrm{V}_{\mathrm{s}}\right)=\frac{\mathrm{n}}{\sum\left(\frac{1}{\mathrm{v}_{\mathrm{i}}}\right)}$

$$
\begin{aligned}
& =\frac{3}{\frac{1}{50}+\frac{1}{40}+\frac{1}{35.3}} \\
& =40.91 \mathrm{kmph}
\end{aligned}
$$

04. Ans: $\mathbf{4 0 0 0}$ veh/hr

Sol: Design flow rate $=\frac{\mathrm{q}}{\mathrm{pHF}}$

$$
\mathrm{PHF}=\frac{\mathrm{q}}{4\left(\mathrm{q}_{15}\right)}
$$

Volume during peak $15 \mathrm{~min}\left(\mathrm{q}_{15}\right)=1000$ Peak hour volume (q)

$$
\begin{aligned}
& =700+812+1000+635 \\
& =3147
\end{aligned}
$$

\therefore Design flow rate $=\frac{3147}{\frac{3147}{4000}} \approx 4000$ veh $/ \mathrm{hr}$
05.

Sol: Total frequency $=100$

$$
\% \text { frequency }=\frac{10}{1000} \times 100=1
$$

(i) $85^{\text {th }}$ percentile speed is considered as a safe speed from graph $\mathrm{V}_{85}=65 \mathrm{kmph}$
(ii) $98^{\text {th }}$ percentile speed is considered as a design speed from graph $V_{98}=85 \mathrm{kmph}$
(iii) $15^{\text {th }}$ percentile speed is considered as a minimum speed on the highway from graph $\mathrm{V}_{15}=35 \mathrm{kmph}$

06. Ans: (c)

$$
\text { Sol: } \begin{aligned}
\text { SSD } & =0.278 \mathrm{Vt}+\frac{\mathrm{V}^{2}}{254 \mathrm{f}} \\
& =0.278 \times 65 \times 2.5+\frac{65^{2}}{254 \times 0.4} \\
& =86.7 \mathrm{~m}
\end{aligned}
$$

$$
\mathrm{S}=\mathrm{SSD}+\mathrm{L}=86.7+5=91.7 \mathrm{~m}
$$

$$
\mathrm{C}=\frac{1000 \mathrm{~V}}{\mathrm{~S}}=\frac{1000 \times 65}{91.7}
$$

$$
\simeq 709 \mathrm{veh} / \mathrm{hr} / \text { lane }
$$

07. Ans: (b)

Sol: $t=0.7$ Assume

$$
\begin{aligned}
& \mathrm{SSD}=0.278 \mathrm{Vt}=7.78 \mathrm{~m} \\
& \mathrm{~S}=\mathrm{SSD}+\mathrm{L}=12.78 \mathrm{~m} \\
& \mathrm{C}=\frac{1000 \mathrm{~V}}{\mathrm{~S}}=3129 \simeq 3130 \mathrm{veh} / \mathrm{hr}
\end{aligned}
$$

	17	Transportation Engineering

8. Ans: (b)

Sol: $\mathrm{S}=\mathrm{SSD}+\mathrm{L}=20+6=26 \mathrm{~m}$

$$
\mathrm{C}=\frac{1000 \mathrm{~V}}{\mathrm{~S}}=\frac{1000 \times 40}{26}=1538 \mathrm{veh} / \mathrm{hr} / \text { lane }
$$

9. Ans: (c)

Sol: Given standard deviation (SD) $=8.8 \mathrm{kmph}$ mean speed $\bar{x}=33 \mathrm{kmph}$

Coefficient of variation $=\frac{\mathrm{SD}}{\overline{\mathrm{x}}}=\frac{8.8}{33}$

$$
=0.2666
$$

10. Ans: (b)

Sol: $q=u k$

$$
\begin{aligned}
& \mathrm{U}=\mathrm{U}_{\mathrm{sf}}\left[1-\frac{\mathrm{k}}{\mathrm{k}_{\mathrm{j}}}\right] \\
& \therefore \mathrm{q}=\mathrm{U}_{\mathrm{sf}}\left[1-\frac{\mathrm{k}}{\mathrm{k}_{\mathrm{j}}}\right] \mathrm{k}=\mathrm{U}_{\mathrm{sf}}\left[\mathrm{k}-\frac{\mathrm{k}^{2}}{\mathrm{k}_{\mathrm{j}}}\right]
\end{aligned}
$$

For max traffic flow ; $\frac{\mathrm{d}_{\mathrm{q}}}{\mathrm{d}_{\mathrm{k}}}=0$

$$
\begin{aligned}
\frac{\mathrm{d}_{\mathrm{q}}}{\mathrm{~d}_{\mathrm{k}}} & =\mathrm{U}_{\mathrm{sf}}\left[1-\frac{2 \mathrm{k}}{\mathrm{k}_{\mathrm{j}}}\right]=0 \\
1-\frac{2 \mathrm{k}}{\mathrm{k}_{\mathrm{j}}} & =0 \\
\mathrm{k}_{\mathrm{j}} & =2 \mathrm{k} \\
\mathrm{U}_{\mathrm{sf}} & =70 \mathrm{~km} / \mathrm{hr} \\
\mathrm{k}_{\mathrm{j}} & =\frac{1000}{\mathrm{~s}}=\frac{1000}{7} \\
\mathrm{k} & =\mathrm{k}_{\mathrm{j}} / 2
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{q} & =\mathrm{U}_{\mathrm{sf}}\left[\mathrm{k}-\frac{\mathrm{k}^{2}}{\mathrm{k}_{\mathrm{j}}}\right]=\mathrm{U}_{\mathrm{sf}}\left[\mathrm{k}-\frac{\mathrm{k}}{2}\right] \\
& =\mathrm{U}_{\mathrm{sf}}\left[\mathrm{k}_{\mathrm{j}} / 2-\mathrm{k}_{\mathrm{j}} / 4\right] \\
& =\mathrm{U}_{\mathrm{sf}}\left[\mathrm{k}_{\mathrm{j}} / 4\right] \\
\mathrm{q} & =70 \times \frac{1000}{7} \times \frac{1}{4} \\
& =2500 \mathrm{veh} / \mathrm{hr}
\end{aligned}
$$

11. Ans: (d)

Sol: $\mathrm{V}_{\mathrm{sf}}=80 \mathrm{kmph}$

$$
\mathrm{k}_{\mathrm{j}}=100 \mathrm{veh} / \mathrm{km}
$$

$\mathrm{q}_{\max }=\frac{\mathrm{V}_{\mathrm{sf}} \times \mathrm{k}_{\mathrm{j}}}{4}=\frac{80 \times 100}{4}=2000 \mathrm{veh} / \mathrm{hr}$
$\mathrm{V}_{\mathrm{s}}=\frac{\mathrm{V}_{\text {sf }}}{2}$ (the speed corresponding to

$$
\left.\mathrm{q}_{\max } \text { is } \mathrm{V}_{\mathrm{s} \max }\right)=\frac{80}{2}=40 \mathrm{kmph}
$$

12. Ans: $\mathbf{3 3}$ veh/km \& $\mathbf{1 4 9}$ veh/km

Sol: $\mathrm{q}_{\mathrm{m}}=1700 \mathrm{veh} / \mathrm{hr}$
$\mathrm{k}_{\mathrm{m}}=\frac{1000}{\mathrm{~S}}=\frac{1000}{5.5}=181.81$
$\mathrm{q}_{\mathrm{m}}=\left(\frac{\mathrm{V}_{\mathrm{m}}}{2}\right)\left(\frac{\mathrm{k}_{\mathrm{m}}}{2}\right)$
$1700=\left(\frac{\mathrm{V}_{\mathrm{m}}}{2}\right)\left(\frac{181.81}{2}\right)$
$\mathrm{v}_{\mathrm{m}}=37.40 \mathrm{kmph}$
For $\mathrm{q}=1000 \mathrm{veh} / \mathrm{hr}$

$$
\tan \theta=\frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{k}_{\mathrm{m}}}
$$

 18

$$
\mathrm{v}=\frac{37.4}{181.81} \times(181.81-\mathrm{k})
$$

For normal condition

$$
\begin{aligned}
& \mathrm{q}=\mathrm{v} . \mathrm{k} \\
& 1000=\frac{37.4}{181.81} \times(181.81-\mathrm{k}) \times \mathrm{k} \\
& 4861.23=(181.81-\mathrm{k}) \mathrm{k} \\
& 4861.23=181.81 \mathrm{k}-\mathrm{k}^{2} \\
& \mathrm{k}=149 \mathrm{veh} / \mathrm{km} \text { and } \mathrm{k}=32.6 \mathrm{veh} / \mathrm{km} \\
& \\
& \simeq 33 \mathrm{veh} / \mathrm{km}
\end{aligned}
$$

13. Ans: 35.7 kmph

Sol: $\mathrm{V}_{\mathrm{sf}}=50 \mathrm{kmph}$
$\mathrm{k}_{\mathrm{j}}=70 \mathrm{veh} / \mathrm{km}$

$$
\mathrm{q}_{\max }=\frac{\mathrm{V}_{\mathrm{sf}} \times \mathrm{K}_{\mathrm{j}}}{4}=\frac{50 \times 70}{4}=875 \mathrm{veh} / \mathrm{hr}
$$

$\mathrm{K}=20 \mathrm{veh} / \mathrm{km}$

$$
\frac{K_{j}}{V_{\text {sf }}}=\frac{K_{j}-K}{V-0}
$$

$$
\frac{70}{50}=\frac{70-20}{\mathrm{~V}} \Rightarrow \mathrm{~V}=35.7 \mathrm{kmph}
$$

14. Ans: $\mathbf{1 2 6 8}$ veh/hr

Sol:

$$
\begin{gathered}
\frac{\mathrm{V}_{\max }}{\mathrm{K}_{\max }}=\frac{30 \mathrm{kmph}}{(130-30)} \\
\mathrm{K}_{\max }=130 \mathrm{veh} / \mathrm{km}
\end{gathered}
$$

$$
\begin{aligned}
\mathrm{V}_{\max } & =\frac{30}{130-30} \times 130=39 \mathrm{kmph} \\
\mathrm{Q}_{\max } & =\left(\frac{\mathrm{V}_{\max }}{2}\right)\left(\frac{\mathrm{K}_{\max }}{2}\right) \\
& =\frac{39}{2} \times \frac{130}{2} \simeq 1268 \mathrm{veh} / \mathrm{hr}
\end{aligned}
$$

15. Ans: (b)

Sol: $\mathrm{Q}_{\mathrm{p}}=\frac{280 \mathrm{w}\left(1+\frac{\mathrm{e}}{\mathrm{w}}\right)\left(1-\frac{\mathrm{p}}{3}\right)}{1+\mathrm{w} / \mathrm{L}}$

$$
\mathrm{w}=14 \mathrm{~m} ; \quad \mathrm{e}=8.4 \mathrm{~m}
$$

$$
\mathrm{L}=35 \mathrm{~m}
$$

$$
\mathrm{p}=\frac{\text { Crossing traffic }}{\text { Total traffic }}
$$

$$
=\frac{1000}{2000}=0.5
$$

$$
\mathrm{Q}_{\mathrm{p}}=\frac{280 \times 14\left(1+\frac{8.4}{14}\right)\left(1-\frac{0.5}{3}\right)}{1+14 / 35}
$$

$=3733.33 \mathrm{PCU} / \mathrm{hr}$

16. Ans: 2064.10 veh/hr

Sol:

$$
\begin{array}{ll}
\mathrm{w}=6 \mathrm{~m} ; & \mathrm{p}=0.5 \\
\mathrm{~L}=20 \mathrm{~m} & ; \quad \mathrm{e}=5.5 \mathrm{~m}
\end{array}
$$

$$
=\frac{280 \times 6\left[1+\frac{5.5}{6}\right]\left[1-\frac{0.5}{3}\right]}{1+\frac{6}{20}}
$$

$\mathrm{Q}_{\mathrm{p}}=2064.10 \mathrm{veh} / \mathrm{hr}$
17. Ans: $\mathbf{0 . 8 \%}$

Sol: Weaving ratio $=\frac{\text { weaving traffic }}{\text { total traffic }}$

$$
=\frac{V_{13}+V_{24}+V_{43}}{V_{13}+V_{23}+V_{24}+V_{14}+V_{43}+V_{21}}
$$

	19	Transportation Engineering

$$
=\frac{450+1090+600+310}{450+200+1090+412+600+310}
$$

Weaving ratio $=0.80 \%$
18. Ans: (b)

Sol: $\left.\begin{array}{l}y_{\mathrm{N}}=\frac{1000}{2500} \\ \mathrm{y}_{\mathrm{S}}=\frac{700}{2500}\end{array}\right\} \mathrm{y}_{\mathrm{NS}}=0.4$
$\left.\begin{array}{l}\mathrm{y}_{\mathrm{E}}=\frac{900}{3000} \\ \mathrm{y}_{\mathrm{w}}=\frac{550}{3000}\end{array}\right\} \mathrm{y}_{\mathrm{EW}}=0.3$

$$
\begin{aligned}
\mathrm{y} & =\mathrm{y}_{\mathrm{NS}}+\mathrm{y}_{\mathrm{EW}} \\
& =0.4+0.3=0.7 \\
\mathrm{~L} & =12 \mathrm{sec}
\end{aligned}
$$

$$
\begin{aligned}
C_{o}= & \frac{1.5 \mathrm{~L}+5}{1-y}=\frac{1.5 \times 12+5}{1-0.7} \\
& =76.7 \mathrm{sec} \approx 77 \mathrm{sec}
\end{aligned}
$$

19. Ans: (d)

Sol: $\mathrm{y}=0.5=\mathrm{y}_{\mathrm{a}}+\mathrm{y}_{\mathrm{b}}$

$$
\mathrm{L}=10 \mathrm{sec}
$$

$$
\mathrm{C}_{0}=\frac{1.5 \mathrm{~L}+5}{1-\mathrm{y}}=\frac{1.5 \times 10+5}{1-0.5}=40 \mathrm{sec}
$$

20. Ans: $\mathbf{1 4 . 2 3 / v e h , 1 5 4 0 ~ v e h / h r ~}$

Sol: $\mathrm{C}=\mathrm{S} \times \frac{\mathrm{g}}{\mathrm{C}_{\mathrm{o}}}$
$\mathrm{S} \rightarrow$ Saturation flow
$\mathrm{g}_{\mathrm{i}} \rightarrow$ effective green time
$\mathrm{C}_{0} \rightarrow$ Cycle time/Optimum signal cycle length

$$
\frac{\mathrm{g}_{\mathrm{i}}}{\mathrm{C}_{\mathrm{o}}} \rightarrow \text { Green Ratio }
$$

$$
\mathrm{C}=2800 \times 0.55=1540 \mathrm{veh} / \mathrm{hr}
$$

$$
\mathrm{d}_{\mathrm{i}}=\frac{\frac{\mathrm{C}_{\mathrm{o}}}{2}\left(1-\frac{\mathrm{g}_{\mathrm{i}}}{\mathrm{C}_{\mathrm{o}}}\right)^{2}}{1-\frac{\mathrm{V}_{\mathrm{i}}}{\mathrm{~s}}}
$$

$$
=\frac{\frac{90}{2}(1-0.55)^{2}}{1-\frac{1000}{2800}}=14.23 / \mathrm{veh}
$$

21. Ans: (a)

Sol: Average delay at red signal is $=\frac{\text { red time }}{2}$

$$
\begin{aligned}
& \quad=\frac{30}{2} \\
& =15 \mathrm{sec}
\end{aligned}
$$

Alternative Solution:

From fig:

The average delay $=$ The area between cumulative arrival and cumulative departure /Total no of vehicles (or) The hatched area in above figure/total number of vehicles
\therefore The average delay

$$
\begin{aligned}
& =\frac{\frac{1}{2}(50)(40)-\frac{1}{2}(20)(40)}{40} \\
& =\frac{1}{2}(50)-\frac{1}{2}(20)=25-10=15 \mathrm{sec}
\end{aligned}
$$

22. Ans: (a)

Sol: Critical lane volume on major road is increased to $440 \mathrm{veh} / \mathrm{hr} /$ lane those for green time should be increased for major road and it remains same for minor road.

23. Ans: (a)

Sol: Green Time $=27 \mathrm{sec}$
Yellow Time $=4 \mathrm{sec}$
Total lost time, $\mathrm{t}_{\mathrm{L}}=$ Start up lost time

$$
\begin{aligned}
& \text { +Clearance lost time } \\
& =2+1=3 \mathrm{sec}
\end{aligned}
$$

Effective green time ; $g=G+y-t_{L}$

$$
=27+4-3=28 \mathrm{sec}
$$

Saturation flow rate; $S=\frac{3600}{h}=\frac{3600}{2.4}$

$$
=1500 \mathrm{veh} / \mathrm{hr}
$$

$\mathrm{h} \rightarrow$ Time headway
Capacity of lane, $\mathrm{C}=\mathrm{S} \times\left(\frac{\mathrm{g}_{\mathrm{i}}}{\mathrm{C}_{\mathrm{o}}}\right)$

$$
\begin{aligned}
& =1500 \times\left(\frac{28}{60}\right) \\
& =700 \mathrm{veh} / \mathrm{hr} / \text { lane }
\end{aligned}
$$

24. Ans: (d)

Sol: Distance travelled by bicycle $=5 \mathrm{~km}$
Time of travel, $\mathrm{t}=40-15=25 \mathrm{~min}$
Stop time $=15 \mathrm{~min}$
Speed of bicycle $=V_{b}=\frac{5}{25} \mathrm{~km} / \mathrm{min}$
Let speed of stream is $V \mathrm{~km} / \mathrm{min}$
Assume traffic density is the constant on the road ($\mathrm{K}=$ Constant).
but $K=\frac{q}{V}$
During journey relative speed of stream $=\mathrm{V}-\mathrm{V}_{\mathrm{b}}$

$$
\begin{align*}
& =\left(\mathrm{V}-\frac{5}{25}\right) \tag{1}\\
& \mathrm{K}=\frac{\left(\frac{60}{25}\right) \text { Vechicles } / \mathrm{min}}{\left(\mathrm{~V}-\frac{5}{25}\right)}
\end{align*}
$$

During stop $\left(\mathrm{V}_{\mathrm{b}}=0\right)$

$$
\begin{equation*}
\mathrm{K}=\frac{\left(\frac{45}{15}\right) \text { Vehicles } / \min }{\mathrm{V}}=\frac{45}{15 \mathrm{~V}} . \tag{2}
\end{equation*}
$$

Equating (1) \& (2)

$$
\mathrm{K}=\frac{\left(\frac{60}{25}\right)}{\left(\mathrm{V}-\frac{5}{25}\right)}=\frac{\left(\frac{45}{15}\right)}{\mathrm{V}}=\frac{45}{15 \mathrm{~V}}
$$

	21	Transportation Engineering

$$
\begin{aligned}
0.8 & =\left(1-\frac{5}{25 \mathrm{~V}}\right) \\
0.2 & =\frac{5}{25 \mathrm{~V}} \\
\Rightarrow \mathrm{~V} & =\frac{5}{25 \times 0.2} \\
\Rightarrow \mathrm{~V} & =1 \mathrm{~km} / \mathrm{min} \\
\mathrm{~V} & =60 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

25. Ans: 2133.33 veh/hr

Sol: $V=80-0.75 \mathrm{~K}$
$\mathrm{V}_{\text {max }}$ occur, when $\mathrm{K}=0$
$\mathrm{V}_{\text {max }}=80 \mathrm{kmph}$
$\mathrm{K}_{\text {max }}$ occur when $\mathrm{V}=0$
$\mathrm{K}_{\text {max }}=\frac{80}{0.75}=106.67 \mathrm{veh} / \mathrm{km}$
Capacity of road, $\mathrm{q}=\left[\frac{\mathrm{K}_{\text {max }} \times \mathrm{V}_{\text {max }}}{4}\right]$
$\mathrm{q}=\frac{106.67 \times 80}{4}$
$\mathrm{q}=2133.33 \mathrm{veh} / \mathrm{hr}$

26. Ans: (c)

Sol: In R: 2,5 combination is possible 1,3 and 4,6 are not possible

27. Ans: Drivers Claim was Correct

Sol: Given:

Speed of the vehicle $=60 \mathrm{kmph}$
Amber duration $=4 \mathrm{sec}$
Comfortable deceleration $=3 \mathrm{~m} / \mathrm{sec}^{2}$
Car length $=4.0 \mathrm{~m}$
Intersection width $=14 \mathrm{~m}$
Longitudinal friction factor $=0.35$

Perception reaction time $=1.5 \mathrm{sec}$
When the vehicle reaches section A, he sees the amber. Hear, two situation are possible.

(i) Driver decides to cross intersection:

Total distance to be covered

$$
\begin{aligned}
& =S S D+14+4.0 \\
\mathrm{SSD} & =(v t)+\frac{\mathrm{v}^{2}}{2 \mathrm{gf}} \\
& =(16.67 \times 1.5)+\frac{(16.67)^{2}}{2 \times 9.81 \times 0.35} \\
& =65.47 \mathrm{~m}
\end{aligned}
$$

Total distance to be covered

$$
=65.47+14+4=83.47 \mathrm{~m}
$$

Time required $=\frac{\text { distance }}{\text { speed of vehicle }}=\frac{83.47}{16.67}$

$$
=5.0 \mathrm{sec}>4 \mathrm{sec}
$$

(ii) He decides to stop the vehicle time taken to stop the vehicle after sighting the amber light.
$=$ Reaction time + time taken to stop the vehicle after application of brakes
$=1.5+\left(\frac{60 \times \frac{5}{18}-0}{3}\right)$
$=1.5+5.55$
$=7.05 \mathrm{sec}>4 \mathrm{sec}$
Therefore, in both the situation, the required duration is greater than the provided amber duration hence the driver's claim is correct.

28. Ans: 0.1353

Sol: Probability that the gap is greater than 8 sec
$P(h \geq t)=e^{-\lambda t}$
$\lambda=$ rate of arrival per second

$$
=\frac{900}{3600}=0.25
$$

$\mathrm{t}=8 \mathrm{sec}$
$\mathrm{P}(\mathrm{h} \geq 8)=\mathrm{e}^{-0.25 \times 8}$
$\mathrm{P}(\mathrm{h} \geq 8)=0.1353$
29. Ans: (a, d)

Sol: In North/south direction.
Flow ratio $\mathrm{q}_{1}=900 / 2100=0.428$
In East west direction.
Flow ratio $\mathrm{q}_{2}=950 / 2150=0.442$
Cycle time $=\frac{1.5 \mathrm{~L}+5}{1-\mathrm{y}}$
$\mathrm{L}=$ lost time $=2 \mathrm{n}+\mathrm{R}=(2 \mathrm{x} 2)+10=14 \mathrm{sec}$
$\mathrm{y}=\mathrm{q}_{1}+\mathrm{q}_{2}=0.428+0.442=0.87$
Cycle time $=\frac{1.5 \times 14+8}{1-0.87}=200$
Effective green time per cycle $=200-14=$ 186 sec

17. Geometric Design of Railway Track

01. Ans: (b)

Sol: Grade compensations on curves:
For BG : 0.04% per degree of curve
For MG: 0.03% per degree of curve
For NG: 0.02\% per degree of curve
Therefore, in the present case, for 4° curve, the grade compensation is

$$
=0.04 \times 4=0.16 \%
$$

3. Ans: (b)

Sol: Ruling gradient in $\%=\frac{1}{250} \times 100=0.4 \%$
Grade compensation at 0.04% per degree of Curve $=0.04 \times 3=0.12 \%$
Compensated gradient $=0.4-0.12$

$$
\begin{aligned}
& =0.28 \% \\
& =\frac{0.28}{100}=\frac{1}{357}
\end{aligned}
$$

6. Ans: (c)

Sol:
From circle property,
$\frac{\ell}{2} \cdot \frac{\ell}{2}=h(2 r-h)$

$$
\frac{\ell^{2}}{4}=2 r h-h^{2}
$$

h^{2} is neglected (being very small)
$\therefore \mathrm{h}=\frac{\ell^{2}}{8 \mathrm{r}}$
07. Ans: (a)

Sol:
Grade compensation $=2 \times 0.04 \%$

$$
=0.08 \%
$$

Stipulated ruling gradient $=0.5 \%$
Steepest gradient $=0.5 \%-0.08 \%$

$$
=0.42 \%=\frac{1}{238}
$$

8. Ans: (c)

Sol:
Curve resistance $=0.04 \% \times \mathrm{D}^{\circ}$

$$
=0.04 \times 4=0.16 \%
$$

Ruling gradient $=\frac{1}{150}=\frac{1}{150} \times 100=0.67 \%$
Compensated gradient

$$
\begin{aligned}
& =0.67-0.16 \\
& =0.51 \% \\
& =\frac{0.51}{100}=\frac{1}{196}
\end{aligned}
$$

10. Ans: 91.26 kmph

Sol: Given, $\mathrm{D}^{\circ}=2^{\circ}$
$\mathrm{R}=\frac{1720}{\mathrm{D}^{\circ}}=\frac{1720}{2}$
$\mathrm{R}=860 \mathrm{~mm}$
The "weighted average" of different trains at different speeds is calculated from the equation
Weighted average $=\frac{n_{1} V_{1}+n_{2} V_{2}+n_{3} V_{3}+n_{4} V_{4}}{n_{1}+n_{2}+n_{3}+n_{4}}$
$\mathrm{V}=\frac{15 \times 50+10 \times 60+5 \times 70+2 \times 80}{15+10+5+2}$
$\mathrm{V}=58.125 \mathrm{kmph}$

$$
\begin{aligned}
\mathrm{e}=\frac{\mathrm{GV}^{2}}{127 \mathrm{R}}= & \frac{1.676 \times 58.125^{2}}{127 \times 860} \\
& =0.0518 \mathrm{~m} \\
& =5.18 \mathrm{~cm}
\end{aligned}
$$

Theoretical cant $=$ Equilibrium cant + cant
deficiency

$$
=5.18+7.60
$$

$$
=12.78 \mathrm{~cm}
$$

$$
\mathrm{e}=\frac{\mathrm{GV}^{2}}{127 \mathrm{R}}
$$

$$
\begin{gathered}
\frac{12.78}{100}=\frac{1.676 \times \mathrm{V}^{2}}{127 \times 860} \\
\mathrm{~V}=91.26 \mathrm{kmph}
\end{gathered}
$$

According to railway boards Speed formula
$\mathrm{V}=4.35 \sqrt{\mathrm{R}-67}$
$\mathrm{V}=4.35 \sqrt{860-67}$
$\mathrm{V}=122.5 \mathrm{kmph}$
Hence maximum permissible speed
(i.e lower of the two value) is 91.26 kmph

11. Ans: 86.4 m

Sol: $\mathrm{e}=12 \mathrm{~cm}$
$\mathrm{V}_{\text {max }}=85 \mathrm{kmph}$
$\mathrm{D}=7.6 \mathrm{~cm}$ (BG)
Length of transition curves maximum of following:
(a) Based on arbitrary gradient of 1 in $\mathbf{7 2 0}$
$\mathrm{L}=7.20 \times \mathrm{e}$
$\mathrm{L}=7.20 \times 12=86.4 \mathrm{~cm}$
(b) Based on rate of change of cant deficiency
$\mathrm{L}=0.073 \mathrm{DV}_{\text {max }}$
$\mathrm{L}=0.073 \times 7.6 \times 85$
$\mathrm{L}=47.158 \mathrm{~cm}$
(c) Based on rate of change of super elevation
$\mathrm{L}=0.073 \mathrm{e}_{\text {max }}$
$\mathrm{L}=0.073 \times 12 \times 85$
$\mathrm{L}=74.46 \mathrm{~cm}$
\therefore Take maximum $\mathrm{L}=86.4 \mathrm{~cm}$
12. (a, b, c, d)

Sol: The permissible speed on a curve in a railway track is minimum
(i) Maximum sanctioned speed
(ii) Speed obtained from Martin's formula which depends on Radius of the curve
(iii) Speed based on Super elevation
(iv) Speed based on length of the transition curve

18. Airport Runway and Taxiway Design

01. Ans: (a)

Sol: Wind coverage is the time in a year of time during which cross wind component is as minimum as possible.

02. Ans: (a)

Sol: Length of runway under Standard condition

$$
=2100 \mathrm{~m}
$$

We have to increase 7% for every 300 m elevation above ground so length of runway

$$
=2100+\frac{7}{100} \times 2100=2247 \mathrm{~m}
$$

03. Ans: (c)

Sol: Runway elevation $=1000 \mathrm{~m}$ (above msl)
Airport reference temperature $(A R T)=16^{\circ} \mathrm{C}$
Airport standard temperature(AST)
$=$ standard temperature at $\mathrm{ms} l-6.5^{\circ} \mathrm{C}$ for
1 km height above $\mathrm{ms} l$
$\mathrm{AST}=15-6.5=8.5^{\circ} \mathrm{C}$
Rise in temperature as per
ICAO $=16-8.5=7.5^{\circ} \mathrm{C}$
04. Ans: 3388.89 m

Sol: Runway length $=2460 \mathrm{~m}$

Correction for elevation (ICAO)

$300 \mathrm{~m} \rightarrow 7 \%$

$$
\begin{aligned}
& 486 \rightarrow x \\
& x=11.34 \%
\end{aligned}
$$

Corrected length after elevation correction

$$
=\frac{11.34}{100} \times 2460+2460
$$

$$
=2738.964 \mathrm{~m}
$$

Correction for temperature

$$
\begin{aligned}
\mathrm{ART} & =\mathrm{T}_{1}+\frac{\mathrm{T}_{2}-\mathrm{T}_{1}}{3} \\
& =30.2+\frac{(46.3-30.2)}{3}
\end{aligned}
$$

$\mathrm{ART}=35.57^{\circ}$
Standard Temperature at airport

$$
=15-0.0065 \mathrm{~h}
$$

Temperature @ airport @ 486 m elevation

$$
=15-0.0065 \times 486=11.841^{\circ}
$$

Runway length corrected for elevation is further corrected at 1% increase in length for
1° rise above standard temperature.
Rise in temperature $=\left(35.57^{\circ}-11.841^{\circ}\right)$

$$
=23.729^{\circ}
$$

$$
\begin{aligned}
1 \% & \rightarrow 1^{\circ} \text { change } \\
x & \rightarrow 23.729^{\circ} \\
x & =23.729 \%
\end{aligned}
$$

$$
\begin{aligned}
\text { Correction } & =\frac{23.729}{100} \times 2738.964+2738.964 \\
& =3388.89 \mathrm{~m}
\end{aligned}
$$

05. Ans: (d)

Sol: The runway length after being corrected for elevation and temperature should further be increased at the rate of 20% for every 1% of the effective gradient for $0.5 \%, 10 \%$ should be increased.

So runway length after correction of temperature and elevation
$=2845+10\left(\frac{2845}{100}\right)=3129.5 \simeq 3130 \mathrm{~m}$

06. Ans: (d)

Sol: Given $\mathrm{T}_{\mathrm{m}}=40^{\circ} \mathrm{C}$

$$
\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}
$$

$$
\mathrm{ART}=\frac{2 \mathrm{~T}_{\mathrm{a}}+\mathrm{T}_{\mathrm{m}}}{3}
$$

$$
=\frac{2 \times 25+40}{3}
$$

$$
=30^{\circ} \mathrm{C}
$$

07. Ans: 2186.26 m

Sol: Length of runway $=1640 \mathrm{~m}$
Elevation $=280 \mathrm{~m}$
Reference temperature $=33.5^{\circ} \mathrm{C}$
Effective gradient $=0.2 \%$

Correction for Elevation (ICAO)

Basic runway length should be increased at the rate of 7% per 300 m rise in elevation.
For 300 m-7 \%

$$
\begin{aligned}
& 280 \rightarrow x \\
& x=6.53 \%
\end{aligned}
$$

Correction $=1640+\frac{6.53}{100} \times 1640$

$$
=1747.15 \mathrm{~m}
$$

Correction for temperature (ICAO)

Runway length corrected for elevation is further corrected at 1% increase in length for 1^{0} rise above standard temperature.
$\mathrm{ART}=33.5^{\circ} \mathrm{C} \mathrm{m}$
Temp@ airport @ 280 m elevation

$$
=15-0.0065 \times 280=13.18^{\circ}
$$

Raise above standard temperature

$$
\begin{aligned}
& =33.5^{\circ}-13.18^{\circ} \\
& =20.32^{\circ} \\
& \quad 1^{\circ} \uparrow \rightarrow 1 \% \uparrow \\
& 20.32^{\circ} \uparrow \rightarrow x \\
& x=20.32 \%
\end{aligned}
$$

$$
\begin{aligned}
\text { Correction } & =\frac{20.32}{100} \times 1747.15+1747.15 \\
& =2102.17 \mathrm{~m}
\end{aligned}
$$

Correction for gradient:

The runway length corrected for elevation and temperature should further be increased by 20% for 1% effective gradient.

For 0.2%, correction $=4 \%$
Runway length corrected to gradient

$$
=2102.17+(2102.17 \times 4 / 100)=2186.26 \mathrm{~m}
$$

08. Ans: 0.2 \%

Sol:

Chainage	Gradient	Elevation
0	-	280 m
300	$+1 \%$	$(280+0.01 \times 300)=283$
900	-0.5%	$283-\frac{0.5}{100} \times 600=280$
1500	+0.5	$280+\frac{0.5}{100} \times 600=283$
1800	+1	$283+0.01 \times 300=286$
2100	-0.5	$286-\frac{0.5}{100} \times 300=284.5$
2700	-0.4	$\frac{0.4}{100} \times 600=284.5-$
3000	-0.1	$\frac{0.1}{100} \times 300=281.8$

Effective gradient $=$ maximum difference in elevation between highest and lowest point of runway divided by total length of runway

$$
=\left(\frac{286-280}{3000}\right) \times 100=0.2 \%
$$

9. Ans: 400 m

Sol:
(i) Horonjeff's equation:

$$
\begin{aligned}
\mathrm{R} & =\frac{0.388 \mathrm{w}^{2}}{0.5 \mathrm{~T}-\mathrm{S}} \\
& =\frac{0.388 \times 17.7^{2}}{0.5(23)-\left(6+\frac{6.62}{2}\right)}=55.50 \mathrm{~m}
\end{aligned}
$$

(ii) Turning radius

$$
\begin{aligned}
\mathrm{R} & =\frac{\mathrm{V}^{2}}{125 \mathrm{f}} \\
& =\frac{80^{2}}{125 \times 0.13}=393.85 \mathrm{~m}
\end{aligned}
$$

(iii) The minimum radius of sub sonic aircraft is 135 m
\therefore Turning radius $=$ Maximum of three conditions
$=393.85 \mathrm{~m}$
$\mathrm{R} \approx 400 \mathrm{~m}$

