GATE I PSUs

SIGNALS \& SYSTEMS

Text Book:

Theory with worked out Examples and Practice Questions

Chapter Introduction

(Solutions for Text Book Practice Questions)

01. Ans: (c)

Sol: The maximum value of
A. $x(n)+2 x(-n)=\{-1,-1,3,1,1\}$ is 3 The maximum value of
B. $5 \mathrm{x}(\mathrm{n}) \mathrm{x}(\mathrm{n}-1)=\{0,5,5,-5,5,0\}$ is 5 The maximum value of
C. $\mathrm{x}(\mathrm{n}) \mathrm{x}(-\mathrm{n}-1)=\{0,-1,1,1,-1,0\}$ is 1 The maximum value of
D. $4 \mathrm{x}(2 \mathrm{n})=\{4,4,-4\}$ is 4 B $>$ D $>\mathrm{A}>\mathrm{C}$
02. Ans: (a)

Sol:

$$
\begin{gathered}
x\left(-\frac{t}{2}+1\right) \\
\underset{-2}{ } \underset{4}{\longrightarrow} \mathrm{t}
\end{gathered}
$$

Non zero duration $=6$
03.

Sol: Sifting property of impulse is
$\int_{\mathrm{t}_{1}}^{\mathrm{t}_{2}} \mathrm{x}(\mathrm{t}) \delta\left(\mathrm{t}-\mathrm{t}_{0}\right) \mathrm{dt}=\mathrm{x}\left(\mathrm{t}_{0}\right) \mathrm{t}_{1} \leq \mathrm{t}_{0} \leq \mathrm{t}_{2}$
$=0$ other wise
(a) $t_{0}=4$ is out of the limit so value $=0$
(b) $\left.(\mathrm{t}+\cos \pi \mathrm{t})\right|_{\mathrm{t}=1}=0$
(c) $\left.\operatorname{cost} \mathrm{u}(\mathrm{t}-3)\right|_{\mathrm{t}=0}=1 \mathrm{u}(-3)=0$
(d) $\left.\frac{1}{2} \mathrm{e}^{\mathrm{t}-2}\right|_{\mathrm{t}=2}=\frac{1}{2}$
(e) $\left.\operatorname{tsin} \mathrm{t}\right|_{\mathrm{t}=\frac{\pi}{2}}=\frac{\pi}{2}$
04.

Sol: $x(n)=1-[\delta(n-4)+\delta(n-5)+-----]$

$$
\mathrm{x}(\mathrm{n})=\mathrm{u}(-\mathrm{n}+3)=\mathrm{u}\left(\mathrm{Mn}-\mathrm{n}_{0}\right)
$$

$$
\mathrm{M}=-1 \quad \mathrm{n}_{\mathrm{o}}=-3
$$

5.

Sol:
(a)

(b)

06.

Sol: (a) as $t \rightarrow \infty$, amp $\rightarrow 0$, Energy signal
(b) Constant amp - Power signal
(c) Power + energy $=$ Power signal
(d) Periodic signal \rightarrow Power signal
(e) as $\mathrm{t} \rightarrow \infty$, amp $\rightarrow \infty$, NENP
(f) as $\mathrm{t} \rightarrow \infty$, amp $\rightarrow \infty$, NENP
07.

Sol:
(i)

$$
\begin{aligned}
\mathrm{E}_{\mathrm{x}_{1}(\mathrm{n})}= & \sum_{\mathrm{n}=-\infty}^{\infty}\left|\mathrm{x}_{1}(\mathrm{n})\right|^{2}=\sum_{\mathrm{n}=0}^{\infty}\left(\alpha(0.5)^{\mathrm{n}}\right)^{2}=\sum_{\mathrm{n}=0}^{\infty} \alpha^{2}(0.25)^{\mathrm{n}} \\
= & \alpha^{2} \sum_{\mathrm{n}=0}^{\infty}(0.25)^{\mathrm{n}}=\frac{\alpha^{2}}{1-0.25}=\frac{\alpha^{2}}{0.75} \\
& E_{x_{2}(\mathrm{n})}=\sum_{\mathrm{n}=-\infty}^{\infty}\left|\mathrm{x}_{2}(\mathrm{n})\right|^{2}=1.5+1.5=3
\end{aligned}
$$

Given $\mathrm{E}_{\mathrm{x}_{1}(\mathrm{n})}=\mathrm{E}_{\mathrm{x}_{2}(\mathrm{n})}$

$$
\begin{aligned}
& \frac{\alpha^{2}}{0.75}=3 \\
& \alpha^{2}=2.25 \\
& \alpha=1.5
\end{aligned}
$$

(ii) Ans: (a)

Sol: $\mathrm{x}_{1}(\mathrm{t})=|\mathrm{t}| ; \quad-1 \leq \mathrm{t} \leq 1$

$$
\mathrm{x}_{2}(\mathrm{t})=1-|\mathrm{t}| ; \quad-1 \leq \mathrm{t} \leq 1
$$

$$
\mathrm{T}=0.25 \mathrm{secs}
$$

Energy in $x(n)=\sum_{n=-\infty}^{\infty}|x(n)|^{2}$
Energy of the first signal

$$
\begin{aligned}
& =2\left(1^{2}+0.75^{2}+0.5^{2}+0.25^{2}\right) \\
& =3.75
\end{aligned}
$$

Energy of the secondary signal

$$
\begin{aligned}
& =1+2\left(0.75^{2}+0.5^{2}+0.25^{2}\right) \\
& =2.75
\end{aligned}
$$

$$
\mathrm{E}_{\mathrm{x}_{1}(\mathrm{n})}>\mathrm{E}_{\mathrm{x}_{2}(\mathrm{n})}
$$

8.

Sol: $\quad \mathrm{x}_{\mathrm{oc}}(\mathrm{n})=\frac{\mathrm{x}(\mathrm{n})-\mathrm{x}^{*}(-\mathrm{n})}{2}$

$$
=\left[\frac{1+\mathrm{j} 7}{2}, \underset{\uparrow}{0}, \frac{-1+\mathrm{j} 7}{2}\right]
$$

9.

Sol:

10.

Sol:

$$
\text { (a) } \begin{aligned}
\mathrm{T}_{1} & =\frac{1}{9}, \mathrm{~T}_{2}=\frac{1}{6} \\
\frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}} & =\frac{2}{3} \mathrm{LCM}=3 \\
\mathrm{~T}_{0} & =\mathrm{LCM} \times \mathrm{T}_{1}=1 / 3
\end{aligned}
$$

(b) $\mathrm{T}_{1}=\frac{15}{11}, \mathrm{~T}_{2}=15$
$\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\frac{1}{11}$
LCM $=11$
$\mathrm{T}_{0}=\mathrm{LCM} \times \mathrm{T}_{1}=15$
(c) $\mathrm{T}_{1}=\frac{2 \pi}{3}, \mathrm{~T}_{2}=\frac{2}{5}$
$\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\frac{5 \pi}{3}$ irrational number So a non-periodic.

D2: AC	4	Signals \& Systems

(d) $\mathrm{T}_{0}=\frac{2 \pi}{10}=\frac{\pi}{5}$
(e) It is extending from 0 to ∞

So non-periodic
(f) $x_{e}(t)=\frac{x(t)+x(-t)}{2}=\frac{1}{2} \cos 2 \pi t$
$\mathrm{T}_{0}=\frac{2 \pi}{\omega_{0}}=\frac{2 \pi}{2 \pi}=1$
(g) $\frac{\omega_{0}}{2 \pi}=\frac{5}{6}$ - rational, so periodic
$\mathrm{N}_{0}=\frac{2 \pi}{\omega_{0}} \mathrm{~m}=\frac{6}{5} \mathrm{~m}$
$\mathrm{N}_{0}=6$
(h) $\mathrm{N}_{1}=8 \mathrm{~m} \Rightarrow \mathrm{~N}_{1}=8$
$\mathrm{N}_{2}=16 \mathrm{~m} \Rightarrow \mathrm{~N}_{2}=16$
$\mathrm{N}_{3}=4 \mathrm{~m} \Rightarrow \mathrm{~N}_{3}=4$
$\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}=\frac{1}{2}, \frac{\mathrm{~N}_{1}}{\mathrm{~N}_{3}}=2$
LCM $=2$
$\mathrm{N}_{0}=\mathrm{LCM} \times \mathrm{N}_{1}=16$
(i) $\frac{\omega_{0}}{2 \pi}=\frac{7}{2}$ - rational, so periodic
$\mathrm{N}_{\mathrm{o}}=\frac{2 \pi}{\omega_{0}} \mathrm{~m}=\frac{2}{7} \mathrm{~m}$
$\mathrm{N}_{0}=2$
(j) multiplication of one periodic \& non-periodic is non-periodic
(k) $\mathrm{u}(\mathrm{n})+\mathrm{u}(-\mathrm{n})=1+\delta(\mathrm{n})$ is non-periodic
(1)

$$
\mathrm{N}_{0}=2
$$

(m)

11.

Sol:
(A) $\mathrm{x}\left(\mathrm{nT}_{\mathrm{s}}\right)=2 \cos \left(150 \times \pi \times \mathrm{n} \times \mathrm{T}_{\mathrm{s}}+30^{\circ}\right)$

$$
=2 \cos \left(\frac{3 \pi}{4} n+30^{\circ}\right)
$$

$$
\begin{aligned}
& \omega_{0}=\frac{3 \pi}{4} \\
& \mathrm{~N}_{0}=\frac{2 \pi}{\omega_{0}} \mathrm{~m}=\frac{8}{3} \mathrm{~m} \\
& \mathrm{~N}_{0}=8
\end{aligned}
$$

(B) Ans: (a)

$$
\begin{aligned}
& \mathrm{N}_{1}=\frac{2}{3} \mathrm{~m} \Rightarrow \mathrm{~N}_{1}=2 \\
& \mathrm{~N}_{2}=\frac{2}{7} \mathrm{~m} \Rightarrow \mathrm{~N}_{2}=2 \\
& \mathrm{~N}_{3}=\frac{20}{25} \mathrm{~m} \Rightarrow \mathrm{~N}_{3}=4 \\
& \frac{\mathrm{~N}_{1}}{\mathrm{~N}_{2}}=1, \frac{\mathrm{~N}_{1}}{\mathrm{~N}_{3}}=\frac{1}{2}, \mathrm{LCM}=2 \\
& \mathrm{~N}_{0}=\mathrm{LCM} \times \mathrm{N}_{1}=4 \\
& \omega_{0}=\frac{2 \pi}{4}=\frac{\pi}{2}
\end{aligned}
$$

$$
x(n)=\cos \left(6 \omega_{0} n\right)+\sin \left(14 \omega_{0} n\right)+\cos \left(5 \omega_{0} n\right)
$$

$$
\text { so } 14^{\text {th }} \text { harmonic. }
$$

(C)

$\mathrm{T}=2 \mathrm{sec}$

$$
\begin{array}{rl}
\mathrm{x}(\mathrm{t})=1 \cdot \sin \frac{\pi}{2} \mathrm{t} & 0 \leq \mathrm{t} \leq 2 \\
\text { Average value } & =\frac{\int_{0}^{2} \sin \frac{\pi}{2} \mathrm{tdt}}{2} \\
& =-\frac{\left(\cos \frac{\pi}{2} \mathrm{t}\right)_{0}^{2}}{\frac{\pi}{2}(2)} \\
& =-\frac{(\cos \pi-\cos 0)}{\pi} \\
& =\frac{2}{\pi} \\
\mathrm{x}_{\text {avg }} & =\frac{2}{\pi}
\end{array}
$$

Energy in one period

$$
\begin{aligned}
& =\int_{0}^{2} \sin ^{2} \frac{\pi}{2} \mathrm{tdt} \\
& =\int_{0}^{2}\left(\frac{1-\cos \pi \mathrm{t}}{2}\right) \mathrm{dt} \\
& =\left[\frac{1}{2} \mathrm{t}-\frac{\sin \pi \mathrm{t}}{2 \pi}\right]_{0}^{2}=1 \mathrm{~J}
\end{aligned}
$$

Signal power $=\frac{\text { Energy in one period }}{\text { Time period }}$

$$
=\frac{1}{2} \mathrm{~W}
$$

$R M S$ value $=\sqrt{\mathrm{P}_{\text {avg }}}$

$$
=\frac{1}{\sqrt{2}}
$$

\rightarrow

$\mathrm{T}=7 \mathrm{sec}$
Average value $=\frac{\int_{0}^{2} 0 d t+\int_{2}^{5} 4 d t+\int_{5}^{7}-2 d t}{7}$

$$
\begin{aligned}
& =\frac{12-4}{7} \\
& =\frac{8}{7}
\end{aligned}
$$

Energy in one period

$$
\begin{aligned}
& =\int_{0}^{2} 0^{2} \mathrm{dt}+\int_{2}^{5} 4^{2} \mathrm{dt}+\int_{5}^{7}(-2)^{2} \mathrm{dt} \\
& =16 \times 3+4 \times 2 \\
& =56 \mathrm{~J}
\end{aligned}
$$

Signal power $=\frac{\text { Energy in one period }}{\text { Time period }}$

$$
=\frac{56}{7}
$$

$$
=8 \mathrm{~W}
$$

RMS value $=\sqrt{\mathrm{P}_{\text {avg }}}=\sqrt{8}$

$\mathrm{T}=5 \mathrm{sec}$

$$
\mathrm{x}(\mathrm{t})= \begin{cases}\frac{1}{3}(\mathrm{t}+4.5), & -1.5 \leq \mathrm{t} \leq 1.5 \\ 0 \quad, & 1.5<\mathrm{t}<3.5\end{cases}
$$

Average value
$=\frac{\text { Area of rectangle }+ \text { Area of Triangle }}{5}$
$=\frac{3(1)+\frac{1}{2}(3)(1)}{5}$
$=0.9$
$=0.9$

Energy in one period

$$
\begin{aligned}
&=\int_{-1.5}^{1.5}\left(\frac{1}{3}(\mathrm{t}+4.5)\right)^{2} \mathrm{dt} \\
&=\frac{1}{9} \int_{-1.5}^{1.5}(\mathrm{t}+4.5)^{2} \mathrm{dt} \\
&=\frac{1}{9}\left[\frac{(\mathrm{t}+4.5)^{3}}{3}\right]_{-1.5}^{1.5}=7 \mathrm{~J} \\
& \mathrm{P}_{\text {avg }}=\frac{7}{5}=1.4 \mathrm{~W} \\
& \mathrm{RMS}=\sqrt{1.4}
\end{aligned}
$$

12.

Sol: (a) $\left[\mathrm{x}_{1}(\mathrm{t})+\mathrm{x}_{2}(\mathrm{t})\right]\left[\mathrm{x}_{1}(\mathrm{t}-2)+\mathrm{x}_{2}(\mathrm{t}-2)\right]$

$$
\neq \mathrm{x}_{1}(\mathrm{t}) \mathrm{x}_{1}(\mathrm{t}-2)+\mathrm{x}_{2}(\mathrm{t}) \mathrm{x}_{2}(\mathrm{t}-2)
$$

is non linear
(b) $\sin \left[\mathrm{x}_{1}(\mathrm{t})+\mathrm{x}_{2}(\mathrm{t})\right] \neq \sin \left[\mathrm{x}_{1}(\mathrm{t})\right]+\sin \left[\mathrm{x}_{2}(\mathrm{t})\right]$ is non linear
(c) $\frac{d}{d t}\left[\alpha x_{1}(t)+\beta x_{2}(t)\right]=\frac{\alpha d x_{1}(t)}{d t}+\frac{\beta \mathrm{dx}_{2}(\mathrm{t})}{\mathrm{dt}}$ is linear
(d) $2\left[\mathrm{x}_{1}(\mathrm{t})+\mathrm{x}_{2}(\mathrm{t})\right]+3 \neq 2\left[\mathrm{x}_{1}(\mathrm{t})+\mathrm{x}_{2}(\mathrm{t})\right]+6$ is non linear
(e) $\int_{-\infty}^{t}\left[\alpha x_{1}(\tau)+\beta x_{2}(\tau)\right] d \tau$

$$
=\alpha \int_{-\infty}^{\mathrm{t}} \mathrm{x}_{1}(\tau) \mathrm{d} \tau+\beta \int_{-\infty}^{\mathrm{t}} \mathrm{x}_{2}(\tau) \mathrm{d} \tau \text { is linear }
$$

(f) $\left[\mathrm{x}_{1}(\mathrm{t})+\mathrm{x}_{2}(\mathrm{t})\right]^{2} \neq \mathrm{x}_{1}^{2}(\mathrm{t})+\mathrm{x}_{2}^{2}(\mathrm{t})$ is non linear
(g) $\left[\alpha \mathrm{x}_{1}(\mathrm{t})+\beta \mathrm{x}_{2}(\mathrm{t})\right] \cos \omega_{0} \mathrm{t}$
$=\alpha \mathrm{x}_{1}(\mathrm{t}) \cos \omega_{0} \mathrm{t}+\beta \mathrm{x}_{2}(\mathrm{t}) \cos \omega_{0} \mathrm{t}$ is linear
(h) $\log \left[\mathrm{x}_{1}(\mathrm{n})+\mathrm{x}_{2}(\mathrm{n})\right] \neq \log \left[\mathrm{x}_{1}(\mathrm{n})\right]+\log \left[\mathrm{x}_{2}(\mathrm{n})\right]$ is non linear
(i) $\left|\mathrm{x}_{1}(\mathrm{n})+\mathrm{x}_{2}(\mathrm{n})\right| \neq\left|\mathrm{x}_{1}(\mathrm{n})\right|+\left|\mathrm{x}_{2}(\mathrm{n})\right|$
is non linear
(j) $\alpha^{*} x^{*}(\mathrm{n}) \neq \alpha \mathrm{x}^{*}(\mathrm{n})$ is non linear
(k) non linear (median is a non linear operator)
(l) $\frac{x_{1}(n)+x_{2}(n)}{x_{1}(n-1)+x_{2}(n-1)} \neq \frac{x_{1}(n)}{x_{1}(n-1)}+\frac{x_{2}(n)}{x_{2}(n-1)}$ is non linear
(m) linear (no non linear operator is present)
(n) $\mathrm{e}^{\mathrm{x}_{1}(\mathrm{n})+\mathrm{x}_{2}(\mathrm{n})} \neq \mathrm{e}^{\mathrm{x}_{1}(\mathrm{n})}+\mathrm{e}^{\mathrm{x}_{2}(\mathrm{n})}$ is non linear
13.

Sol: (a) $\operatorname{tx}\left(\mathrm{t}-\mathrm{t}_{\mathrm{o}}\right)+3 \neq\left(\mathrm{t}-\mathrm{t}_{\mathrm{o}}\right) \mathrm{x}\left(\mathrm{t}-\mathrm{t}_{\mathrm{o}}\right)+3$ time variant
(b) $e^{x\left(t-t_{0}\right)}=e^{x\left(t-t_{0}\right)}$ time invariant
(c) $\mathrm{x}\left(\mathrm{t}-\mathrm{t}_{0}\right) \cos 3 \mathrm{t} \neq \mathrm{x}\left(\mathrm{t}-\mathrm{t}_{0}\right) \cos 3\left(\mathrm{t}-\mathrm{t}_{0}\right)$ time variant
(d) $\sin \left[\mathrm{x}\left(\mathrm{t}-\mathrm{t}_{0}\right)\right]=\sin \left[\mathrm{x}\left(\mathrm{t}-\mathrm{t}_{0}\right)\right]$ time invariant
(e) $\frac{d\left[x\left(t-t_{0}\right)\right]}{d\left(t-t_{0}\right)}=\frac{d x\left(t-t_{0}\right)}{d t-\mathrm{dt}_{0}}=\frac{d}{d t}\left[x\left(t-t_{0}\right)\right]$ time invariant
(f) $\mathrm{x}^{2}\left(\mathrm{t}-\mathrm{t}_{0}\right)=\mathrm{x}^{2}\left(\mathrm{t}-\mathrm{t}_{0}\right)$ time invariant
(g) $x\left(2 t-t_{0}\right) \neq x\left(2 t-2 t_{0}\right)$ time variant
(h) $2^{\mathrm{x}\left(\mathrm{n}-\mathrm{n}_{0}\right)} \mathrm{x}\left(\mathrm{n}-\mathrm{n}_{0}\right)=2^{\mathrm{x}\left(\mathrm{n}-\mathrm{n}_{0}\right)} \mathrm{x}\left(\mathrm{n}-\mathrm{n}_{0}\right)$ time invariant
(i) time variant (time reversal operation is time variant)
(j) time variant(coefficient is time variable)
(k) all coefficients are constant - time invariant

14.

Sol: $\quad x_{2}(t)=x_{1}(t)-x_{1}(t-2)$
$\mathrm{y}_{2}(\mathrm{t})=\mathrm{y}_{1}(\mathrm{t})-\mathrm{y}_{1}(\mathrm{t}-2)$
$\mathrm{x}_{3}(\mathrm{t})=\mathrm{x}_{1}(\mathrm{t}+1)+\mathrm{x}_{1}(\mathrm{t})$
$\mathrm{y}_{3}(\mathrm{t})=\mathrm{y}_{1}(\mathrm{t}+1)+\mathrm{y}_{1}(\mathrm{t})$
15.

Sol: (a) Preset output depends on present inputcausal
(b) preset output depends on present inputcausal
(c) preset output depends on present inputcausal
(d) preset output depends on future inputnon causal $(y(-\pi)=x(0))$
(e) preset output depends on present inputcausal
(f) preset output depends on present inputcausal
(g) $\mathrm{n}>\mathrm{n}_{0}$ causal, $\mathrm{n}<\mathrm{n}_{0}$ non-causal
(h) non - causal(present output depends on future input)
(i) $y(0)=\sum_{k=-\infty}^{0} x(k)$ present output depends on present input - causal
(j) $y(-1)=\sum_{k=0}^{-1} x(k)$ future input non causal
(k) non-causal for any value of ' m '
(l) $\alpha=1$ causal, $\alpha \neq 1$ non causal
(m) causal(present output depends on past inputs)
(n) non causal(present output depends on future input)
16.

Sol: (a) present output depends on present input -static
(b) present output depends on present input -static
(c) present output depends on present input -static
(d) present output depends on present input -static
(e) $y(1)=x(3)$ present output depends on future input - dynamic
(f) dynamic (differentiation operation is dynamic)
(g) present output depends on past input

- dynamic

17.

Sol: If a system expressed with differential equation then it is dynamic.

The coefficients of differential equation are function of time then it is time variant.
(a) linear, time variant, dynamic
(b) linear, time invariant, dynamic
(c) linear, time invariant, dynamic
(d) non linear, time variant, dynamic

18.

Sol: If a system expressed with differential equation then it is dynamic.

The coefficients of differential equation are function of time then it is time variant.
(a) linear, time invariant, dynamic (a $\rightarrow 2$)
(b) non linear, time variant, static ($\mathrm{b} \rightarrow 5$)
(c) linear, time variant, dynamic $(\mathrm{c} \rightarrow 1)$
(d)nonlinear, time invariant, dynamic $(\mathrm{d} \rightarrow 4)$
19.

Sol: (a) $y(t)=u(t) \cdot u(t)=u(t)$ - stable
(b) $\mathrm{y}(\mathrm{t})=\cos 3 \mathrm{tu}(\mathrm{t}) \Rightarrow-1<\mathrm{y}(\mathrm{t})<1$ stable
(c) $y(t)=u(t-3)$ stable

Regular Live Doubt clearing Sessions | Free Online Test Series |ASK an expert
online
(d) $y(t)=\frac{d u(t)}{d t}=\delta(t)$ unstable
(e) $\mathrm{y}(\mathrm{t})=\int_{-\infty}^{\mathrm{t}} \mathrm{u}(\tau) \mathrm{d} \tau \Rightarrow \mathrm{r}(\mathrm{t})$ is unstable
(f) $\sin ($ finite $)=$ finite . stable
(g) $y(t)=t u(t)=r(t)$ unstable
(h) $y(n)=e^{\text {finite }}=$ finite stable
(i) $y(n)=u(3 n)$ bounded stable
(j) $x(n)=1 \Rightarrow y(n)=n-n_{0}+1 \Rightarrow y(\infty)=\infty$
20.

Sol: Two different inputs produces same output then it is non invertible.

Two different inputs produces two different outputs then it is invertible.
(a) $\mathrm{x}_{1}(\mathrm{t})=\mathrm{u}(\mathrm{t}) \Rightarrow \mathrm{y}_{1}(\mathrm{t})=\mathrm{u}(\mathrm{t})$
$\mathrm{x}_{2}(\mathrm{t})=-\mathrm{u}(\mathrm{t}) \Rightarrow \mathrm{y}_{2}(\mathrm{t})=\mathrm{u}(\mathrm{t})$
So, non invertible
(b) $\mathrm{x}_{1}(\mathrm{t})=\mathrm{u}(\mathrm{t}) \Rightarrow \mathrm{y}_{1}(\mathrm{t})=\mathrm{u}(\mathrm{t})$
$\mathrm{x}_{2}(\mathrm{t})=-\mathrm{u}(\mathrm{t}) \Rightarrow \mathrm{y}_{2}(\mathrm{t})=\mathrm{u}(\mathrm{t})$
So, non invertible
(c) $\mathrm{x}_{1}(\mathrm{t})=\mathrm{u}(\mathrm{t}) \Rightarrow \mathrm{y}_{1}(\mathrm{t})=\mathrm{u}(\mathrm{t}-3)$
$\mathrm{x}_{2}(\mathrm{t})=-\mathrm{u}(\mathrm{t}) \Rightarrow \mathrm{y}_{2}(\mathrm{t})=-\mathrm{u}(\mathrm{t}-3)$
So, invertible
(d) $\mathrm{x}_{1}(\mathrm{t})=\mathrm{A} \Rightarrow \mathrm{y}_{1}(\mathrm{t})=0$
$\mathrm{x}_{2}(\mathrm{t})=-\mathrm{A} \Rightarrow \mathrm{y}_{2}(\mathrm{t})=0$
So, non invertible
(e) $\mathrm{x}_{1}(\mathrm{n})=\delta(\mathrm{n}) \Rightarrow \mathrm{y}_{1}(\mathrm{n})=0$
$\mathrm{x}_{2}(\mathrm{n})=-\delta(\mathrm{n}) \Rightarrow \mathrm{y}_{2}(\mathrm{n})=0$
So, non invertible
(f) $\mathrm{x}_{1}(\mathrm{n})=\delta(\mathrm{n}) \Rightarrow \mathrm{y}_{1}(\mathrm{n})=0$
$\mathrm{x}_{2}(\mathrm{n})=-\delta(\mathrm{n}) \Rightarrow \mathrm{y}_{2}(\mathrm{n})=0$
So, non invertible
(g) So, non invertible
(h) $\mathrm{x}_{1}(\mathrm{n})=\delta(\mathrm{n}) \Rightarrow \mathrm{y}_{1}(\mathrm{n})=\mathrm{u}(\mathrm{n})$
$\mathrm{x}_{2}(\mathrm{n})=-\delta(\mathrm{n}) \Rightarrow \mathrm{y}_{2}(\mathrm{n})=-\mathrm{u}(\mathrm{n})$
So, invertible
21.

Sol: Given

Convert to Z-domain

$$
\frac{Y(z)}{X(z)}=\frac{z^{-1}}{1+z^{-1}}=\frac{1}{z+1}
$$

(i) $\mathrm{x}(\mathrm{n})=\delta(\mathrm{n})$;
$\Rightarrow \mathrm{Y}(\mathrm{z})=\frac{1}{\mathrm{z}+1} \mathrm{X}(\mathrm{z})$
$Y(z)=\frac{1}{z+1} 1=\frac{1}{z+1}$
$Y(z)=z^{-1} \frac{z}{z+1}$
Taking inverse Z - transform
$\mathrm{y}(\mathrm{n})=(-1)^{\mathrm{n}-1} \mathrm{u}(\mathrm{n}-1)$
if $\mathrm{n}=0,1,2,3 \ldots \ldots$.
Then $\mathrm{y}(\mathrm{n})=[0,1,-1,1,-1 \ldots \ldots$.
(ii) $\mathrm{x}(\mathrm{n})=\mathrm{u}(\mathrm{n})$;
$\Rightarrow \mathrm{Y}(\mathrm{z})=\frac{1}{\mathrm{z}+1} \mathrm{X}(\mathrm{z})$
$Y(z)=\frac{1}{z+1} \frac{z}{z-1}$
$\frac{Y(z)}{z}=\frac{1}{(z+1)(z-1)}=\frac{A}{z+1}+\frac{B}{z-1}$
$=\frac{-\frac{1}{2}}{z+1}+\frac{\frac{1}{2}}{z-1}$
$\mathrm{Y}(\mathrm{z})=-\frac{1}{2} \frac{\mathrm{z}}{\mathrm{z}+1}+\frac{1}{2} \frac{\mathrm{z}}{\mathrm{z}-1}$
$\mathrm{y}(\mathrm{n})=-\frac{1}{2}(-1)^{\mathrm{n}} \mathrm{u}(\mathrm{n})+\frac{1}{2} \mathrm{u}(\mathrm{n})$
22. Ans: $(\mathbf{a}, \mathrm{b} \& \mathrm{~d})$

Sol: (a) True ex: $\left[e^{t} u(-t)\right]\left[e^{-t} u(t)\right]=0$
(b) True ex: $[u(t))]\left[e^{-t} u(t)\right]=e^{-t} u(t)$ $[\mathrm{u}(-\mathrm{t})]\left[\mathrm{e}^{\mathrm{t}} \mathrm{u}(\mathrm{t})\right]=0$
(c) False
ex:

\Downarrow

(d) True
23. Ans: $(\mathbf{a}, \mathrm{b} \& \mathrm{c})$

Sol:
(a) True
(b) True
(c) True
(d) False - Nonlinear system
24. Ans: (b)

Sol: Constant added - non linear
So, statement-I is true.
Time varying term - time variant
So, statement-II is true.
Both Statement I and Statement II are individually true but Statement II is not the correct explanation of Statement I.
25. Ans: (d)

Sol: $(S-I): y(n)=2 x(n)+4 x(n-1)$
If $x(n)$ is bounded, $y(n)$ is bounded.
\therefore Stable. (S-I) is false.
$(\mathrm{S}-\mathrm{II}): \mathrm{h}(\mathrm{n})=2 \delta(\mathrm{n})+4 \delta(\mathrm{n}-1)$
$\mathrm{h}(\mathrm{n})=\underset{\uparrow}{\{2,4\}}$
Impulse response $h(n)$ has only two finite nonzero samples. This is the condition for stability.
\therefore (S-II) is True.
Statement I is false but Statement II is true.
26. Ans: (a)

Sol: A system is memory less if output, $y(t)$ depends only on $x(t)$ and not on past or future values of input, $x(t)$.
A system is causal if the output, $\mathrm{y}(\mathrm{t})$ at any time depends only on values of input, $\mathrm{x}(\mathrm{t})$ at that time and in the past.
Both (S-I) and (S-II) are true and (S-II) is the correct explanation of (S-I).
Both Statement I and Statement II are individually true and Statement II is the correct explanation of Statement I.

Chapter 2 LTI (LSI) Systems

1.

Sol:
(a) $y(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau$

Case (i) t-2 $<0 \quad \mathrm{y}(\mathrm{t})=0, \mathrm{t}<2$
Case (ii) $t-2>0$

$$
y(t)=\int_{0}^{t-2} e^{-3 t} d \tau=\frac{1-e^{-3(t-2)}}{3}, t>2
$$

$$
\mathrm{y}(\mathrm{t})=\frac{1-\mathrm{e}^{-3(\mathrm{t}-2)}}{3} \mathrm{u}(\mathrm{t}-2)
$$

(b)

Case (i) $\mathrm{t}<0 \quad \mathrm{y}(\mathrm{t})=0$
Case (ii) $0<\mathrm{t}<1 \quad \mathrm{y}(\mathrm{t})=\int_{0}^{\mathrm{t}} \tau \mathrm{d} \tau=\frac{\mathrm{t}^{2}}{2}$
Case (iii) $\mathrm{t}>1$

$$
\mathrm{y}(\mathrm{t})=\int_{0}^{1} \tau \mathrm{~d} \tau=\frac{1}{2}
$$

2. Ans: (b)

Sol: $x(t) * h(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d t=y(t)$

$$
y(2)=\int_{\infty}^{\infty} x(\tau) h(2-\tau) d \tau
$$

$$
\mathrm{y}(2)=\int_{0}^{2}\left(\frac{\tau}{4}\right) \cdot \mathrm{d} \tau=\left.\frac{\tau^{2}}{8}\right|_{0} ^{2}=\frac{1}{2}
$$

3.

Sol:

$$
\begin{aligned}
& \mathrm{y}(4)=\int_{6}^{5} 1 \mathrm{~d} \tau=1 \\
& \mathrm{y}\left(\frac{1}{2}\right)=\int_{1.5}^{6} \mathrm{x}(\tau) \mathrm{h}\left(\frac{1}{2}-\tau\right) \mathrm{d} \tau=\frac{3}{2}+4=5.5
\end{aligned}
$$

4. Ans: (b)

Sol: $\mathrm{s}(\mathrm{t})=\int_{\mathrm{t}}^{\mathrm{t}} \mathrm{h}(\tau) \mathrm{d} \tau=\mathrm{u}(\mathrm{t}-1)+\mathrm{u}(\mathrm{t}-3)$

$$
s(2)=1
$$

5.

Sol: Assume $-\tau+\mathrm{a}=\lambda \Rightarrow-\mathrm{d} \tau=\mathrm{d} \lambda$

$$
z(t)=\int_{-\infty}^{\infty} x(\lambda) h(t+a-\lambda) d \lambda=y(t+a)
$$

6.

Sol: (a) $x(t-7+5)=x(t-2)$
(b) $x(t) * \frac{1}{|a|} \delta\left(t+\frac{b}{a}\right)=\frac{1}{|a|} x\left(t+\frac{b}{a}\right)$
(c) $\mathrm{x}(\mathrm{t}) *[2 \delta(\mathrm{t}+3)+2 \delta(\mathrm{t}-3)]$ $=2 \mathrm{x}(\mathrm{t}+3)+2 \mathrm{x}(\mathrm{t}-3)$
(d) Ans: (a)

$$
\begin{aligned}
& \mathrm{h}(\mathrm{t})=\delta(\mathrm{t})+0.5 . \delta(\mathrm{t}-4) \\
& \mathrm{x}(\mathrm{t})=\cos \left(\frac{7 \pi \mathrm{t}}{4}\right) \quad \mathrm{x}(\mathrm{t}) * \delta\left(\mathrm{t}-\mathrm{t}_{0}\right)=\mathrm{x}\left(\mathrm{t}-\mathrm{t}_{0}\right)
\end{aligned}
$$

$$
\mathrm{o} / \mathrm{p} y(\mathrm{t})=\mathrm{x}(\mathrm{t}) * \mathrm{~h}(\mathrm{t})
$$

$$
=\cos \left(\frac{7 \pi \mathrm{t}}{4}\right) *\left[\delta(\mathrm{t})+\frac{1}{2} \delta(\mathrm{t}-4)\right]
$$

$\operatorname{Cos}\left(180^{\circ}-\theta\right)=-\cos \theta$

$$
\operatorname{Cos}\left(180^{\circ}+\theta\right)=-\cos \theta
$$

$$
\begin{aligned}
\mathrm{y}(\mathrm{t})= & \cos \left(\frac{7 \pi \mathrm{t}}{4}\right)+\frac{1}{2} \cos \left[\frac{7 \pi}{4}(\mathrm{t}-4)\right] \\
& +\frac{1}{2} \cos \left[\frac{7 \pi \mathrm{t}}{4}-7 \pi\right]+\frac{1}{2} \cos \left(\frac{7 \pi \mathrm{t}}{4}+\pi\right) \\
= & 0.5 \cos \left(\frac{7 \pi \mathrm{t}}{4}\right)
\end{aligned}
$$

7.

Sol:
(a) $\mathrm{e}^{-1} \mathrm{u}(1) \delta(\mathrm{t}-1)=\mathrm{e}^{-1} \delta(\mathrm{t}-1)$
[From product property]
(b) $\left.\mathrm{e}^{-\mathrm{t}}\right|_{\mathrm{t}=1}=\mathrm{e}^{-1}$ [From sifting property]
(c) $\mathrm{e}^{-(\mathrm{t}-1)} \mathrm{u}(\mathrm{t}-1)$ [From convolution property]
08.

Sol:

$$
\begin{aligned}
& \frac{\mathrm{dx}(\mathrm{t})}{\mathrm{dt}}=\delta(\mathrm{t}-3)-\delta(\mathrm{t}-5) \\
& \frac{\mathrm{dx}(\mathrm{t})}{\mathrm{dt}} * \mathrm{~h}(\mathrm{t})=\mathrm{h}(\mathrm{t}-3)-\mathrm{h}(\mathrm{t}-5)
\end{aligned}
$$

9.

Sol: (a) $\mathrm{A}_{\mathrm{x}} \mathrm{A}_{\mathrm{h}}=\mathrm{A}_{\mathrm{y}}, \quad \int_{-\infty}^{\infty} \delta(\alpha \mathrm{t}) \mathrm{dt}=\frac{1}{\alpha}$

$$
\frac{1}{\alpha} \cdot \frac{1}{\alpha}=\frac{A}{\alpha}
$$

$$
\mathrm{A}=\frac{1}{\alpha}
$$

(b) $\frac{1}{\alpha} \cdot \frac{1}{\alpha}=\frac{\mathrm{A}}{\alpha}, \quad \int_{-\infty}^{\infty} \sin \mathrm{c}(\alpha \mathrm{t}) \mathrm{dt}=\frac{1}{\alpha}$

$$
A=\frac{1}{\alpha}
$$

(c) (1). (1) $=\mathrm{A} \sqrt{2}$

$$
\mathrm{A}=\frac{1}{\sqrt{2}}
$$

(d) $\pi \times \pi=2 \mathrm{~A} \pi$

$$
\int_{-\infty}^{\infty} \frac{1}{1+\mathrm{t}^{2}} \mathrm{dt}=\pi
$$

$$
\mathrm{A}=\frac{\pi}{2}
$$

10.

Sol: (i) $\mathrm{T}=4$

(ii) $\mathrm{T}=2$

11.

Sol:

(b) Ans: (c)

$$
\begin{aligned}
& \mathrm{tu}(\mathrm{t}) * \mathrm{u}(\mathrm{t}-1) \leftrightarrow \frac{1}{\mathrm{~s}^{2}} \frac{\mathrm{e}^{-\mathrm{s}}}{\mathrm{~s}} \\
& =\frac{\mathrm{e}^{-\mathrm{s}}}{\mathrm{~s}^{3}} \leftrightarrow \frac{1}{2}(\mathrm{t}-1)^{2} \mathrm{u}(\mathrm{t}-1)
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \mathrm{h}(\mathrm{t})=\frac{1}{\mathrm{~T}}[\mathrm{u}(\mathrm{t})-\mathrm{u}(\mathrm{t}-\mathrm{T})] \\
& \mathrm{x}(\mathrm{t})=\mathrm{u}(\mathrm{t}) \\
& \mathrm{y}(\mathrm{t})=\mathrm{x}(\mathrm{t}) * \mathrm{~h}(\mathrm{t})=\frac{1}{\mathrm{~T}}[\mathrm{r}(\mathrm{t})-\mathrm{r}(\mathrm{t}-\mathrm{T})]
\end{aligned}
$$

12. Ans: (a)

Sol: To get three discontinuities in $\mathrm{y}(\mathrm{t})$ both rectangular pause must be same width. To get equal width $\mathrm{h}(\mathrm{t})=\mathrm{x}(\mathrm{t})$. It is possible only
$\alpha=1$
13. Ans: (a)

$$
y(t)=10 \text { for all ' } t \text { ' }
$$

14. Ans: (d)

Sol: $\quad \mathrm{x}(\mathrm{t}) * \mathrm{~h}(-\mathrm{t})=\int_{-\infty}^{\infty} \mathrm{x}(\tau) \mathrm{h}(-(\mathrm{t}-\tau)) \mathrm{d} \tau$

$$
=\int_{-\infty}^{\infty} \mathrm{x}(\tau) \mathrm{h}(\tau-\mathrm{t}) \mathrm{d} \tau
$$

15.

Sol: $y(n)=---+x(-2) g(n+4)+x(-1) g(n+2)$
$+x(0) g(n)+x(1) g(n-2)+x(2) g(n-4)+---$

$$
\begin{aligned}
\mathrm{x}(\mathrm{n})=\delta(\mathrm{n}-2) & =1 & & \mathrm{n}=2 \\
& =0 & & \text { otherwise }
\end{aligned}
$$

$$
y(n)=g(n-4)
$$

16.

Sol: $\mathrm{y}(\mathrm{n})=\mathrm{x}(\mathrm{n})^{*} \mathrm{~h}(\mathrm{n})$

$$
=2(0.5)^{\mathrm{n}} \mathrm{u}(\mathrm{n})+(0.5)^{\mathrm{n}-3} \mathrm{u}(\mathrm{n}-3)
$$

$y(1)=1, y(4)=5 / 8$

17. Ans: (a)

Sol: $\mathrm{y}(\mathrm{n})=[\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}---\mathrm{N}$ times $]$ $\mathrm{y}(\mathrm{n})$ is a periodic function with periodic ' 4 '.

So $\mathrm{h}(\mathrm{n})$ must be $\mathrm{h}(\mathrm{n})=\sum_{\mathrm{i}=0}^{\mathrm{N}-1} \delta(\mathrm{n}-4 \mathrm{i})$
18. Ans: 31

Sol: $\mathrm{x}(\mathrm{n})=\{1,2,1\}$
$\mathrm{h}(\mathrm{n})=\{1, \mathrm{x}, \mathrm{y}\}$
$\mathrm{y}(\mathrm{n})=\mathrm{x}(\mathrm{n}) * \mathrm{~h}(\mathrm{n})$

$\mathrm{y}(\mathrm{n})=\{1,2+\mathrm{x}, 2 \mathrm{x}+\mathrm{y}+1, \mathrm{x}+2 \mathrm{y}, \mathrm{y}\}$
$y(1)=3=2+x \Rightarrow x=1$
$y(2)=4=2 x+y+1 \Rightarrow y=1$
$y(n)=\{1,3,4,3,1\}$
$10 y(3)+y(4)=10 \times 3+1=31$
19. Ans: (d)

Sol: $\sum_{n=-\infty}^{\infty} h(n)=\sum_{n=0}^{\infty} a^{n}+\sum_{n=-\infty}^{-1} b^{n}<\infty$
only when $|\mathrm{a}|<1,|\mathrm{~b}|>1$

20. Ans: (b)

Sol: $\int_{-\infty}^{\infty}|\mathrm{h}(\mathrm{t}) \mathrm{dt}|=\int_{0}^{\infty} \mathrm{e}^{\alpha t} \mathrm{dt}+\int_{-\infty}^{0} \mathrm{e}^{\beta t} \mathrm{dt}<\infty \quad$ only when $\alpha<0, \beta>0$
21.

Sol: (a) $h(n)=\alpha^{n} u(n)+\beta \alpha^{n-1} u(n-1)$
(b) $h(n)=0 \quad n<0$ causal

System stable for any value of ' β ' except $\beta \neq \infty$ and $|\alpha|<1$, except $\alpha=0$
22.

Sol: (a) $\left(\frac{1}{5}\right)^{\mathrm{n}} \mathrm{u}(\mathrm{n})-\mathrm{A}\left(\frac{1}{5}\right)^{\mathrm{n}-1} \mathrm{u}(\mathrm{n}-1)=\delta(\mathrm{n})$
When $\mathrm{n}=1, \mathrm{~A}=1 / 5$
(b) $\mathrm{H}(\mathrm{z})=\frac{1}{1-\frac{1}{5} \mathrm{z}^{-1}}$

$$
\mathrm{H}_{\text {inv }}(\mathrm{z})=1-\frac{1}{5} \mathrm{z}^{-1}
$$

$$
\mathrm{g}(\mathrm{n})=\delta(\mathrm{n})-\frac{1}{5} \delta(\mathrm{n}-1)
$$

23.

Sol: $\quad h_{1}(n)=\delta(n)-\frac{1}{2} \delta(n-1)$

$$
\begin{aligned}
\mathrm{h}_{1}(\mathrm{n}) * \mathrm{~h}_{2}(\mathrm{n}) & =\left(\frac{1}{2}\right)^{\mathrm{n}} \mathrm{u}(\mathrm{n})-\frac{1}{2}\left(\frac{1}{2}\right)^{\mathrm{n}-1} \cdot \mathrm{u}(\mathrm{n}-1) \\
& =\left(\frac{1}{2}\right)^{\mathrm{n}} \delta(\mathrm{n})=\delta(\mathrm{n})
\end{aligned}
$$

24. Ans: (a)

Sol: $s(t)=u(t)-e^{-\alpha t} u(t)$

$$
\begin{aligned}
\mathrm{h}(\mathrm{t}) & =\frac{\mathrm{ds}(\mathrm{t})}{\mathrm{dt}}=\delta(\mathrm{t})-\left[\mathrm{e}^{-\alpha \mathrm{t}} \delta(\mathrm{t})-\alpha \mathrm{e}^{-\alpha \mathrm{t}} \mathrm{u}(\mathrm{t})\right] \\
& =\alpha \mathrm{e}^{-\alpha \mathrm{t}} \mathrm{u}(\mathrm{t})
\end{aligned}
$$

25.

Sol: $s(n)=\sum_{k=-\infty}^{n} h(k)=\sum_{k=-\infty}^{n}\left(\frac{1}{2}\right)^{\mathrm{k}} \mathrm{u}(\mathrm{k})$

$$
\begin{aligned}
& =\sum_{\mathrm{k}=0}^{\mathrm{n}}\left(\frac{1}{2}\right)^{\mathrm{k}} \mathrm{n} \geq 0 \\
& =0 \quad \mathrm{n}<0 \\
\mathrm{~s}(\mathrm{n}) & =2\left[1-\left(\frac{1}{2}\right)^{\mathrm{n}+1}\right] \mathrm{u}(\mathrm{n})
\end{aligned}
$$

26.

Sol: $\mathrm{x}(\mathrm{n})=\mathrm{u}(\mathrm{n}), \mathrm{y}(\mathrm{n})=\delta(\mathrm{n})$
$\mathrm{u}(\mathrm{n})-\mathrm{u}(\mathrm{n}-1)=\delta(\mathrm{n})$
$y(n)=x(n)-x(n-1)$
$x(n)=n u(n)$
$y(n)=n u(n)-n u(n-1)+u(n-1)$
$=\mathrm{n} \delta(\mathrm{n})+\mathrm{n}(\mathrm{n}-1)$ $=\mathrm{u}(\mathrm{n}-1)$
27.

Sol: $h_{c}(t)=h_{1}(t) * h_{2}(t)$

$$
\begin{aligned}
& \begin{aligned}
\int_{-\infty}^{t} h_{c}(\tau) d \tau & =\int_{-\infty}^{t} h_{1}(\tau) d \tau * h_{2}(\tau) \\
& =h_{1}(\tau) * \int_{-\infty}^{t} h_{2}(\tau) d \tau
\end{aligned} \\
& \begin{array}{l}
s_{c}(t)=s^{\prime}(t) * s_{2}(t)=s_{1}(t) * s_{2}^{\prime}(t) \\
s_{c}(t) \neq s_{1}(t) * s_{2}(t)
\end{array}
\end{aligned}
$$

28.

Sol: (a) True
(b) False
(c) True
(d) True
29.

Sol:

(a) TRUE

(b) FALSE

(c) FALSE

Stability of LTI system $\sum_{n=-\infty}^{+\infty}|h(n)|<\infty$
If $|h(n)| \leq k \quad \sum_{n=-\infty}^{+\infty}|k|<\infty \quad$ unstable
(d) TRUE

If $h(n)$ is of finite duration with finite amplitude then it is stable

$$
\begin{aligned}
& \xrightarrow[012]{ } \xrightarrow{\text { ion }} \leftarrow h(n) \\
& \sum_{n=0}^{2}|h(n)|=1+1+1=3
\end{aligned}
$$

(e) FALSE

$$
h(t)=e^{t} u(t)
$$

Causal

$$
\int_{0}^{\infty} \mathrm{e}^{\tau} \mathrm{d} \tau=\infty \Rightarrow \text { unstable }
$$

(f) FALSE

(g) FALSE

Impulse Response $h(t)=e^{-t} u(t)$
$\rightarrow \mathrm{s}(\mathrm{t})=\int_{-\infty}^{\mathrm{t}} \mathrm{h}(\tau) \mathrm{d} \tau=\int_{0}^{\mathrm{t}} \mathrm{e}^{-\tau} \mathrm{d} \tau=\left[1-\mathrm{e}^{-\mathrm{t}}\right] \mathrm{u}(\mathrm{t})$

Ni"	15	Postal Coaching Solutions

This step response is not absolutely integrable
(h) TRUE
$\mathrm{u}(\mathrm{n})=\sum_{\mathrm{k}=0}^{\infty} \delta(\mathrm{n}-\mathrm{k})$
$S(n)=\sum_{k=0}^{\infty} h(n-k)$
If $\mathrm{h}(\mathrm{n})=0$ for $\mathrm{n}<0$
Then $\mathrm{s}(\mathrm{n})=0$ for $\mathrm{n}<0$
So, LTI system is Causal

Chapter 3 Fourier Series

01. Ans: Zero

Sol: $\quad T_{1}=\frac{\pi}{2}, T_{2}=\frac{\pi}{6}$
$\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=3, \mathrm{~T}_{0}=\mathrm{LCM} \times \mathrm{T}_{1}=\frac{\pi}{2}$
$\omega_{0}=4$
$\mathrm{x}(\mathrm{t})=3 \sin \left(\omega_{0} \mathrm{t}+30^{\circ}\right)-4 \cos \left(3 \omega_{0} \mathrm{t}-60^{\circ}\right)$
second harmonic amplitude $=0$
02. Ans: (d)

Sol: (a) Given signal is periodic.
So, fourier series exists
(b) Given signal is periodic.

So, fourier series exists.
(c) Given signal is periodic.

So, fourier series exists.
(d) Given signal is non-periodic.

So, fourier series does not exists.
03.

Sol:
(P) Ans: (b)

Hidden symmetry a_{0}, b_{n} exists
(Q) Ans: (b)

Half wave symmetry a_{n}, b_{n} exists with odd harmonics
(R) Ans: (b)

Odd symmetry \& HWS \rightarrow sine terms with odd ' n '
(S) Ans: (c)

Even and odd HWS $\rightarrow \mathrm{a}_{0}$, cosine with odd ' n '
(T) Ans: (d)
$\mathrm{a}_{0}=0$ (because average value $=0$)
Even \& HWS as cosine with odd ' n '
04. Ans: (b)

Sol: $\mathrm{f}_{1}=5 \mathrm{~Hz}, \mathrm{f}_{2}=15 \mathrm{~Hz}$
The signal lying with in the frequency band 10 Hz to 20 Hz is $4 \sin \left(30 \pi \mathrm{t}+\frac{\pi}{8}\right)$
$\mathrm{p}=\frac{(4)^{2}}{2}=8$ Watts
05. Ans: (b)

Sol: At $\omega_{0} \mathrm{t}=\pi / 2$

$$
\begin{aligned}
\mathrm{x}(\mathrm{t}) & =1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+--- \\
& =\tan ^{-1}(1)=\frac{\pi}{4}
\end{aligned}
$$

6. Ans: (c)

Sol: $\quad \omega=\frac{2 \pi}{T}(2 k), k=1,2, \ldots \ldots$
The above frequency terms are absent. The above frequency contains even harmonics and also gives that sin terms are absent. only cosine terms are present Finally odd harmonics with cosine terms are present so, $x(t)$ it is a even and halfwave so,
$\mathrm{x}(\mathrm{t})=\mathrm{x}(\mathrm{T}-\mathrm{t})$ even
$x(t)=-x(t-T / 2)$ halfwave
07. Ans: (a)

Sol: $\mathrm{T}_{1}=1, \mathrm{~T}_{2}=10 \pi, \mathrm{~T}_{3}=8 \pi, \mathrm{~T}_{4}=\frac{20}{3} \pi$
$\mathrm{T}_{0}=40 \pi$
$\omega_{0}=\frac{2 \pi}{\mathrm{~T}_{0}}=0.05 \mathrm{rad} / \mathrm{sec}$

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups \& PSC Exams
08. Ans: (a)

Sol: Average value $=\frac{\frac{1}{2}(2)(1)+(1)(1)+(1)(3)}{6}=\frac{5}{6}$
09. Ans: (a)

Sol: $a_{0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) d t$
$\mathrm{a}_{0}=$ Average value $=0$
10. Ans: (d)

Sol: $\mathrm{T}_{0}=4 \mathrm{msec} \mathrm{f}_{0}=\frac{1}{\mathrm{~T}_{0}}=250 \mathrm{~Hz}$ $5 \mathrm{f}_{0}=1250 \mathrm{~Hz}$
11. Ans: (b)

Sol: Odd + HWS \rightarrow sine terms with odd harmonics
12. Ans: (a)

Sol: $(\mathrm{RMS})^{2}=\frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}} \mathrm{x}^{2}(\mathrm{t}) \mathrm{dt}$

$$
=\frac{1}{T}\left[\int_{0}^{T / 2}\left(\frac{-12}{T} t\right)^{2} d t+\int_{\frac{T}{2}}^{T} 36 d t\right]
$$

$$
=\frac{1}{\mathrm{~T}}\left[\left.\frac{144}{\mathrm{~T}^{2}} \cdot \frac{\mathrm{t}^{3}}{3}\right|_{0} ^{\mathrm{T} / 2}+\left.36 \mathrm{t}\right|_{\mathrm{T} / 2} ^{\mathrm{T}}\right]
$$

$$
=\frac{1}{\mathrm{~T}}\left[\frac{144}{\mathrm{~T}^{2}}\left[\frac{\mathrm{~T}^{3}}{24}\right]+36\left(\frac{\mathrm{~T}}{2}\right)\right]
$$

$$
=\frac{1}{\mathrm{~T}}[6 \mathrm{~T}+18 \mathrm{~T}]
$$

$$
=24
$$

$\mathrm{RMS}=\sqrt{24}=2 \sqrt{6} \mathrm{~A}$

13. Ans: (c)

Sol: Average value $=\frac{1}{2 \pi} \int_{0}^{\pi} 10 \sin \mathrm{tdt}=\frac{10}{\pi}$
$\mathrm{a}_{1}=\frac{2}{2 \pi} \int_{0}^{\pi} 10 \sin \mathrm{t} \cos \mathrm{tdt}=0$
$\mathrm{b}_{1}=\frac{2}{2 \pi} \int_{0}^{\pi} 10 \sin \mathrm{t} \sin \mathrm{tdt}=5$
$\mathrm{d}_{1}=\sqrt{\mathrm{a}_{1}^{2}+\mathrm{b}_{1}^{2}}=5$
14. Ans: (d)

Sol: $\omega_{0}=\pi$

$$
\begin{aligned}
& x(t)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n \pi t)+b_{n} \sin (n \pi t) \\
& x(t)=A \cos (\pi t) \\
& \begin{aligned}
A & =a_{1}
\end{aligned}=\int_{0}^{2} x(t) \cos \left(n \omega_{0}\right) d t \\
& \\
& =
\end{aligned}
$$

15.

Sol: $\mathrm{a}_{0}=5$
$\mathrm{b}_{\mathrm{n}}=\int_{0}^{1} 10 \sin \mathrm{n} \pi \mathrm{td}=\frac{10\left[1-(-1)^{\mathrm{n}}\right]}{\mathrm{n} \pi}$
$\mathrm{a}_{\mathrm{n}}=0$
$x(t)=5+\frac{20}{\pi} \sin \pi t+\frac{20}{3 \pi} \sin 3 \pi t+---$

$\mathrm{y}(\mathrm{t})=5+\frac{20}{\pi} \sin \pi \mathrm{t}+\frac{20}{3 \pi} \sin 3 \pi \mathrm{t}$
16.

Sol: $\omega_{0}=\frac{\pi}{3}$

$$
\begin{aligned}
& x(t)=2+\cos \left(2 \omega_{0} t\right)+4 \sin \left(5 \omega_{0} t\right) \\
& x(t)=2+\frac{1}{2} e^{j 2 \omega_{0} t}+\frac{1}{2} e^{-j 2 \omega_{0} t}+\frac{4}{2 j} e^{j 5 \omega_{0} t}-\frac{4}{2 j} e^{-j 5 \omega_{0} t} \\
& c_{0}=2, c_{2}=1 / 2, c_{-2}=\frac{1}{2}, c_{5}=\frac{4}{2 j}, c_{-5}=\frac{-4}{2 j}
\end{aligned}
$$

17.

Sol: $c_{n}=\int_{0}^{1} t e^{-j n \omega_{0} t} d t=\int_{0}^{1} t e^{-j n 2 \pi t} d t=\frac{j}{2 n \pi}$
$c_{0}=1 / 2$
$\mathrm{a}_{\mathrm{n}}=\mathrm{c}_{\mathrm{n}}+\mathrm{c}_{-\mathrm{n}}=0$
$\mathrm{b}_{\mathrm{n}}=\mathrm{j}\left(\mathrm{c}_{\mathrm{n}}-\mathrm{c}_{-\mathrm{n}}\right)=\frac{-1}{\mathrm{n} \pi}$
18.

Sol: (i) $y(t) \Rightarrow d_{n}=e^{-j n \omega_{o}} c_{n}=e^{-j n \pi} c_{n}=c_{n}(-1)^{n}$
(ii) $f(t)=x(t)-y(t)$

$$
\mathrm{d}_{\mathrm{n}}=\mathrm{c}_{\mathrm{n}}-(-1)^{\mathrm{n}} \mathrm{c}_{\mathrm{n}}=\mathrm{c}_{\mathrm{n}}\left[1-(-1)^{\mathrm{n}}\right]
$$

(iii) $g(t)=x(t)+y(t)$

$$
\mathrm{d}_{\mathrm{n}}=\mathrm{c}_{\mathrm{n}}+(-1)^{\mathrm{n}} \mathrm{c}_{\mathrm{n}}=\mathrm{c}_{\mathrm{n}}\left\lfloor 1+(-1)^{\mathrm{n}}\right\rfloor
$$

19. Ans: (b)

Sol: $d_{n}=e^{-j n \omega_{0} t_{0}} c_{n}+e^{j n \omega_{0} t_{0}} c_{n}=2 \cos \left(n \omega_{0} t_{0}\right) c_{n}$
Assume $\mathrm{t}_{0}=\frac{\mathrm{T}}{4}$
$d_{n}=2 c_{n} \cos \left(\frac{n \pi}{2}\right)$
$\mathrm{d}_{\mathrm{n}}=0$ for odd harmonics
20.

Sol: $y(t)=\frac{d x(t)}{d t}$
$\mathrm{d}_{\mathrm{n}}=\mathrm{jn} \omega_{0} \mathrm{c}_{\mathrm{n}}$
$\mathrm{c}_{\mathrm{n}}=\frac{\mathrm{d}_{\mathrm{n}}}{\mathrm{jn} \omega_{0}}$
$d_{n}=\frac{1}{T} \int_{-T / 2}^{T / 2}(\delta(t+d / 2)-\delta(t-d / 2)) e^{-j n \omega} 0{ }_{d t}$
$=\frac{2 \mathrm{j}}{\mathrm{T}} \sin \left(\frac{\mathrm{n} \omega_{0} \mathrm{~d}}{2}\right)$
$\mathrm{C}_{0}=\frac{\mathrm{d}}{\mathrm{T}}$
21.

Sol: 1. $\mathrm{x}(\mathrm{t})$ is neither even nor odd.
2. $\mathrm{x}(\mathrm{t})$ does not have half wave symmetry \Rightarrow option (b) is eliminated
3. If we take the time period as 6 sec then second half of its period is exactly same as the first half. As a result of this all odd harmonic coefficients vanish and only even harmonic terms are present in Fourier series.
22. Ans: (c)

Sol: W_{1} is a periodic square waveform with period T and it is having odd symmetry and also odd harmonic symmetry (or Half-wave symmetry).
W_{2} is a periodic triangular waveform with period T and it is having odd symmetry and also odd harmonic symmetry (or Half-wave symmetry).
\therefore Only odd harmonics: $\mathrm{nf}_{0}, \mathrm{n}=1,3,5$ etc of sine terms are present in wave forms W_{1} and W_{2} in their Fourier series expansion.

Note that waveform, W_{2} can be obtained by integrating the waveform, W_{1}.

If c_{n} is the exponential FS coefficient of the $\mathrm{n}^{\text {th }}$ harmonic component, $\mathrm{c}_{\mathrm{n}} \mathrm{e}^{\mathrm{jn} \omega_{0} t}$
$\left|\mathrm{c}_{\mathrm{n}}\right| \propto\left|\frac{1}{\mathrm{n}}\right|=\left|\mathrm{n}^{-1}\right|$ for wave form W_{1}
$\left|\mathrm{c}_{\mathrm{n}}\right| \propto\left|\frac{1}{\mathrm{n}^{2}}\right|=\left|\mathrm{n}^{-2}\right|$ for wave form W_{2}
23.

Sol:
(a) Polar form of TFS

$$
\begin{aligned}
&=d_{o}+\sum_{n=1}^{\infty} d_{n} \cos \left(n \omega_{0} t+\phi_{\mathrm{n}}\right) \\
& \mathrm{d}_{\mathrm{n}}=2\left|\mathrm{c}_{\mathrm{n}}\right| \\
& \mathrm{d}_{\mathrm{o}}= 2, \mathrm{~d}_{1}=4, \mathrm{~d}_{2}=4, \mathrm{~d}_{3}=4
\end{aligned}
$$

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups \& PSC Exams

$$
\begin{aligned}
\text { polar form }=2 & +4 \cos \left(\omega_{0} t+30^{\circ}\right) \\
& +4 \cos \left(2 \omega_{0} t+60^{\circ}\right) \\
& +4 \cos \left(3 \omega_{0} t+90^{\circ}\right)
\end{aligned}
$$

(b) $\mathrm{x}(\mathrm{t}) \leftrightarrow \mathrm{c}_{\mathrm{n}}$
$\mathrm{x}(\mathrm{at}) \leftrightarrow \mathrm{c}_{\mathrm{n}}, \omega_{0}=\mathrm{a} \omega_{0}$
$\mathrm{x}(\mathrm{t}) \leftrightarrow \mathrm{c}_{\mathrm{n}}$
$\mathrm{x}\left(\mathrm{t}-\mathrm{t}_{0}\right) \leftrightarrow \mathrm{e}^{-\mathrm{jn} \omega_{0} \mathrm{t}_{0}} \mathrm{c}_{\mathrm{n}}$
$\frac{\mathrm{dx}(\mathrm{t})}{\mathrm{dt}} \leftrightarrow\left(\mathrm{jn} \omega_{0}\right) \mathrm{c}_{\mathrm{n}}$
24.

Sol:
(a) $\mathrm{C}_{\mathrm{n}}=\frac{1}{\mathrm{~T}_{0}} \int_{0}^{\mathrm{T}_{0}} \mathrm{x}(\mathrm{t}) \mathrm{e}^{-\mathrm{jn} \omega_{0} \mathrm{t}} \mathrm{dt}$
$C_{n}=\frac{1}{2} \int_{0}^{1} 1 \cdot e^{-j n \pi t} d t$
$\mathrm{C}_{\mathrm{n}}=\frac{1-(-1)^{\mathrm{n}}}{2 \mathrm{jn} \pi}$
$C_{0}=\frac{1}{2} \int_{0}^{1} \mathrm{dt}=\frac{1}{2}$
$\mathrm{C}_{-1}=\frac{\mathrm{j}}{\pi}, \mathrm{C}_{1}=\frac{-\mathrm{j}}{\pi}, \mathrm{C}_{-2}=0, \mathrm{C}_{2}=0$
Power upto second harmonics is

$$
\mathrm{P}=\sum_{\mathrm{n}=-2}^{2}\left|\mathrm{C}_{\mathrm{n}}\right|^{2}=\frac{1}{\pi^{2}}+\frac{1}{4}+\frac{1}{\pi^{2}}=0.453 \mathrm{~W}
$$

(b) $c_{K}=\frac{1}{8}\left[\int_{0}^{4} \mathrm{e}^{-\mathrm{jk} \frac{\pi}{4} \mathrm{t}} \mathrm{dt}+\int_{4}^{8}-\mathrm{e}^{-\mathrm{jk} \frac{\pi}{4} \mathrm{t}} \mathrm{dt}\right]$

$$
=\frac{1}{8}\left[\left.\frac{e^{-j k \frac{\pi}{4} t}}{-j k \frac{\pi}{4}}\right|_{0} ^{4}-\left.\frac{e^{-j k \frac{\pi}{4} t}}{-j k \frac{\pi}{4}}\right|_{4} ^{8}\right]
$$

$$
=\frac{1}{-j k 2 \pi}\left[e^{-j k \pi}-1-\left(e^{-j k 2 \pi}-e^{-j k \pi}\right)\right]
$$

$$
=\frac{-1}{\mathrm{jk} 2 \pi}\left[(-1)^{\mathrm{k}}-1-1+(-1)^{\mathrm{k}}\right]
$$

$c_{K}=\frac{2}{j \mathrm{k} 2 \pi}\left[1-(-1)^{\mathrm{k}}\right]$
$\mathrm{c}_{\mathrm{K}}=0$ for ' K ' even $(\mathrm{K}=10)$
Power $=0$
25.

Sol: Let us show that this information is sufficient to determine the signal $\mathrm{x}(\mathrm{t})$ to within a sign factor. According to Fact 3, $x(t)$ has at most three nonzero Fourier series coefficients $a_{k}: a_{0}, a_{1}$ and a_{-1}. Then, since $x(t)$ has fundamental frequency $\omega_{0}=\frac{2 \pi}{4}=\frac{\pi}{2}$, it follows that
$x(t)=a_{0}+a_{1} e^{j \frac{\pi}{2} t}+a_{-1} e^{-j \frac{\pi}{2} t}$.
Since $x(t)$ is real (Fact 1), we can use the symmetry properties to conclude that a_{0} is real and $\quad a_{1}=a_{-1}^{*}$. Consequently,
$x(t)=a_{0}+a_{1} e^{j \frac{\pi t}{2}}+\left(a_{1} e^{-j \frac{\pi t}{2}}\right)^{*}$
$=a_{0}+2 \operatorname{Re}\left(a_{1} e^{j \frac{\pi t}{2}}\right)$

Let us now determine the signal corresponding to the Fourier coefficients b_{k} given in Fact 4. Using the time-reversal property we note that $\mathrm{a}_{-\mathrm{k}}$ corresponds to the signal $x(-t)$. Also, the time-shift property in the table indicates that multiplication of the $\mathrm{k}^{\text {th }}$ Fourier coefficient by $e^{-\mathrm{jk} \frac{\pi}{2}}=\mathrm{e}^{-\mathrm{jk} \omega_{0}}$ corresponds to the underlying signal being shifted by 1 to the right (i.e., having t replaced by $t-1$). We conclude that the coefficients by correspond to the signal $\mathrm{x}(-(\mathrm{t}-1))=\mathrm{x}(-\mathrm{t}+1)$, which, according to Fact 4, must be odd. Since $x(t)$ is real, $x(-t+1)$ must also be real.
Fourier coefficients of $x(-t+1)$ must be purely imaginary and odd. Thus $\mathrm{b}_{0}=0$ and $\mathrm{b}_{-1}=-\mathrm{b}_{1}$. Since time-reversal and timeshift operations cannot change the average power per period, Fact 5 holds even if $x(t)$ is replaced by $x(-t+1)$.
i.e., $\frac{1}{4} \int_{4}|x(-t+1)|^{2} d t=1 / 2$.

We can now use Parseval's relation to conclude that
$\left|b_{1}\right|^{2}+\left|b_{-1}\right|^{2}=1 / 2$
Substituting $b_{1}=-b_{-1}$ in this equation, we obtain $\left|b_{1}\right|=1 / 2$. Since b_{1} is also known to be purely imaginary, it must be either $\mathrm{j} / 2$ or $-\mathrm{j} / 2$.
Now we can translate these conditions on b_{0} and b_{1} into equivalent statements on a_{0} and a_{1}. First, since $b_{0}=0$, Fact 4 implies that $\mathrm{a}_{0}=0$. With $\mathrm{k}=1$, this condition implies that $\mathrm{a}_{1}=\mathrm{e}^{-\mathrm{j} \frac{\pi}{2}} \mathrm{~b}_{-1}=-\mathrm{j} \mathrm{b}_{-1}=\mathrm{j} \mathrm{b}_{1}$. Thus, if we take $b_{1}=\frac{j}{2}$, then $a_{1}=-\frac{1}{2}$, and therefore, from equation (1), $x(t)=-\cos \left(\frac{\pi t}{2}\right)$. Alternatively, if we take $b_{1}=-\frac{j}{2}$, then $a_{1}=\frac{1}{2}$, and therefore $\mathrm{x}(\mathrm{t})=\cos \left(\frac{\pi \mathrm{t}}{2}\right)$.
26.

Sol:
(a) Power $=\frac{1}{T} \int_{-\infty}^{\infty}|x(t)|^{2} d t=\sum_{n=-\infty}^{\infty}\left|C_{n}\right|^{2}$

$$
\begin{aligned}
P & =\sum_{x=-4}^{4}\left|C_{n}\right|^{2} \\
& =(0.5)^{2}+(1)^{2}+(2)^{2}+(4)^{2}+(2)^{2}+(1)^{2}+(0.5)^{2} \\
& =26.5 \text { Watts }
\end{aligned}
$$

(b) $x(t)=\sum_{n=-\infty}^{\infty} C_{n} e^{j n \omega_{0} t}$

$$
\begin{aligned}
& =C_{-4} e^{-j \omega_{0} t}+C_{-3} e^{-j 3 \omega_{0} t} e^{-\frac{j \pi}{2}}+C_{-2} e^{-j 2 \omega_{0} t} e^{-\frac{j \pi}{4}}+C_{-1} e^{-j \omega_{0} t} \\
& +C_{0}+C_{1} \mathrm{e}^{\mathrm{j} \omega_{0} \mathrm{t}}+\mathrm{C}_{2} \mathrm{e}^{\mathrm{j} 2 \omega_{0} \mathrm{t}} \mathrm{e}^{\frac{j \pi}{4}}+\mathrm{C}_{3} \mathrm{e}^{\mathrm{j} 3 \omega_{0} \mathrm{t}} \mathrm{e}^{\frac{\mathrm{j} \pi}{2}}+\mathrm{C}_{4} \mathrm{e}^{\mathrm{j} 4 \omega_{0} \mathrm{t}}
\end{aligned}
$$

$$
\begin{aligned}
&= 0.5 \mathrm{e}^{-\mathrm{j} 4 \omega_{0} \mathrm{t}}+1 \mathrm{e}^{-\mathrm{j} 3 \omega_{0} t-\frac{\pi}{2}} \\
&+2 \mathrm{e}^{-\mathrm{j} 2 \omega_{0} t-\frac{\pi}{4}}+0.5 \mathrm{e}^{\mathrm{j} 4 \omega_{0} \mathrm{t}}+1 \mathrm{e}^{\mathrm{j} 3 \omega_{0} t+\frac{\pi}{2}}+2 \mathrm{e}^{\mathrm{j} 2 \omega_{0} t+\frac{\pi}{4}}+4 \\
&=(0.5)\left[\mathrm{e}^{-\mathrm{j} 4 \omega_{0} t}+\mathrm{e}^{\mathrm{j} 4 \omega_{0} \mathrm{t}}\right]+2\left[\mathrm{e}^{-\mathrm{j} 2 \omega_{0} t-\frac{\pi}{4}}+\mathrm{e}^{\mathrm{j} 2 \omega_{0} t+\frac{\pi}{4}}\right] \\
& {\left[\mathrm{e}^{-\mathrm{j} 3 \omega_{0} t-\frac{\pi}{2}}+\mathrm{e}^{\mathrm{j} 3 \omega_{0} t+\frac{\pi}{2}}\right]+4 } \\
& \Rightarrow x(t)=\cos 4 \omega_{0} t+4 \cos \left(2 \omega_{0} t+\frac{\pi}{4}\right) \\
&+2 \cos \left(3 \omega_{0} t+\frac{\pi}{2}\right)+4 \\
& x(t) \neq x(-t) \\
& x(-t) \neq-x(t)
\end{aligned}
$$

So, neither even nor odd signal.
(c) $\mathrm{f}_{0}=10 \mathrm{~Hz}$

$$
\begin{aligned}
& \omega_{0}=2 \pi f_{0}=20 \pi \mathrm{rad} \\
& x(t)=\cos (80 \pi t)+4 \cos \left(40 \pi t+\frac{\pi}{4}\right) \\
& \\
& \quad+2 \cos \left(60 \pi t+\frac{\pi}{2}\right)+4
\end{aligned}
$$

(d) Cut off frequency $=25 \mathrm{~Hz}$

$$
=50 \pi \mathrm{rad}
$$

So output of the filter is
$y(t)=4 \cos \left(40 \pi t+\frac{\pi}{4}\right)+4$
27.

Sol: A. Fourier transform of periodic impulse train is also periodic impulse train
A $\rightarrow 2$
B. For a full wave rectified wave form $c_{n}=\frac{2 A}{\pi\left(1-4 n^{2}\right)}, n$ is even

B $\rightarrow 1$
C $\rightarrow 3$
D. Given signal satisfied half-wave symmetry so only harmonics are present
$\mathrm{D} \rightarrow 4$
28. Ans: (b)

Sol: Frequency is constant. So, S_{1} is LTI system, frequency is not constant. So, S_{2} is not LTI system.
29. Ans: (d)

Sol: Fourier series expresses the given periodic waveform as a combination of d.c. component, sine and cosine waveforms of different harmonic frequencies as

$$
\begin{aligned}
f(t) & =a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(n \omega_{0} t\right)+\sum_{n=1}^{\infty} b_{n} \sin \left(n \omega_{0} t\right) \\
& =A_{0}+A_{n} \cos \left(n \omega_{0} t+\phi_{n}\right)
\end{aligned}
$$

So, statement (1) is true.
A_{n} and ϕ_{n} (Amplitude and phase spectra) occur at discrete frequencies.
So, statement (2) is true.

Waveform symmetries (Even, odd, Halfwave) simplify the evaluation of FS coefficients.
So, statement (3) is true.
Statements 1, 2, 3 are correct.
30. Ans: (d)

Sol: For a real valued periodic function $f(t)$ of frequency f_{0}

$$
\mathrm{C}_{\mathrm{n}}=\mathrm{C}_{-\mathrm{n}}^{*}
$$

Statement (I) is False but Statement (II) is True because the discrete magnitude spectrum of real function $f(t)$ is even and phase spectrum is odd.
31. Ans: (d)

Sol: S_{1}, S_{3} are not LTI.

Chapter (4. Fourier Transform

1.

Sol: $X(f)=\int_{-\infty}^{\infty} x(t) e^{-j 2 \pi f t} d t$
$x(t)$ units are volts and dt units are sec
So, Unit of $\mathrm{X}(\mathrm{f})$ is volt-sec (or) volt/Hz
02.

Sol:

(a) $X(0)=\int_{-\infty}^{\infty} x(t) d t=$ area

$$
=(4 \times 2)-\left(\frac{1}{2} \times 1 \times 2\right)=7
$$

(b) $2 \pi x(0)=2 \pi \times 2=4 \pi$
03.

Sol:
(i) $x(t)=e^{-a t} u(t)+e^{a t} u(-t)$

$$
X(\omega)=\frac{1}{a+j \omega}+\frac{1}{a-j \omega}=\frac{2 a}{a^{2}+\omega^{2}}
$$

(ii) $e^{-a t} u(t)-e^{a t} u(-t) \leftrightarrow \frac{-2 j \omega}{a^{2}+\omega^{2}}$

$$
\text { As a } \rightarrow 0
$$

$$
\begin{aligned}
& u(t)-u(-t) \leftrightarrow \frac{2}{j \omega} \\
& \operatorname{sgn}(t) \leftrightarrow \frac{2}{j \omega}
\end{aligned}
$$

05. Ans: Zero

Sol: $x(t)=\operatorname{rect}(t / 2), \quad X(\omega)=2 \operatorname{sa}(\omega)$
$y(t)=x(t)+x(t / 2), \quad Y(\omega)=X(\omega)+2 X(2 \omega)$
$Y(\omega)=\frac{2 \sin \omega}{\omega}+\frac{4 \sin 2 \omega}{\omega}$
$\mathrm{f}=1 \Rightarrow \omega=2 \pi, \mathrm{Y}(2 \pi)=0$
06. Ans: (d)

Sol: $Y(\omega)=3 X(2 \omega)$

$$
\begin{aligned}
& x(a t) \leftrightarrow \frac{1}{|a|} X\left(\frac{\omega}{a}\right) \\
& x\left(\frac{t}{2}\right) \leftrightarrow 2 X(2 \omega)
\end{aligned}
$$

$$
\frac{1}{2} \mathrm{X}\left(\frac{\mathrm{t}}{2}\right) \leftrightarrow \mathrm{X}(2 \omega)
$$

$$
y(t)=3 / 2 x(t / 2)
$$

7.

Sol: i) $1 \leftrightarrow 2 \pi \delta(\omega)$
ii) $\frac{1}{a+j t} \leftrightarrow 2 \pi \mathrm{e}^{\mathrm{a} \mathrm{\omega}} . \mathrm{u}(-\omega)$
iii) $\frac{2 \mathrm{a}}{\mathrm{a}^{2}+\mathrm{t}^{2}} \leftrightarrow 2 \pi \mathrm{e}^{-\mathrm{a}|-\omega|}$
iv) $\frac{1}{\pi \mathrm{t}} \leftrightarrow-\mathrm{j} \operatorname{sgn}(\omega)$
04.

Sol: $G(\omega)=1+\frac{12}{\omega^{2}+9}$
Apply inverse Fourier Transform $\mathrm{g}(\mathrm{t})=\delta(\mathrm{t})+2 \mathrm{e}^{-3 \mid \mathrm{tt}}$
08.

Sol: $\quad Y(f)=\operatorname{Sinc}\left(\frac{f}{4}\right) \cos (2 \pi f)$

$$
\begin{gathered}
=X(f)\left[\frac{\mathrm{e}^{\mathrm{j} 2 \pi \mathrm{f}}+\mathrm{e}^{-\mathrm{j} 2 \pi \mathrm{f}}}{2}\right] \\
\mathrm{e}^{\mathrm{j} 2 \pi \mathrm{f}} \rightarrow \mathrm{t}_{0}=-1 \\
\mathrm{e}^{-\mathrm{j} 2 \pi \mathrm{f}} \rightarrow \mathrm{t}_{0}=1
\end{gathered}
$$

$A T \operatorname{Sinc}\left(\frac{\omega T}{2 \pi}\right)$
AT Sinc(fT)
I.F.T
$\mathrm{y}(\mathrm{t})=\frac{\mathrm{x}(\mathrm{t}+1)+\mathrm{x}(\mathrm{t}-1)}{2}$
Assume

$$
X(\mathrm{f})=\operatorname{Sinc}\left(\frac{\mathrm{f}}{4}\right)
$$

09.

Sol: $u(t) \leftrightarrow \pi \delta(\omega)+\frac{1}{j \omega}$

$$
\begin{aligned}
& \frac{1}{\mathrm{jt}}+\pi \delta(\mathrm{t}) \leftrightarrow 2 \pi \mathrm{u}(-\omega) \\
& \frac{1}{2} \delta(\mathrm{t})-\frac{1}{\mathrm{j} 2 \pi \mathrm{t}} \leftrightarrow \mathrm{u}(\omega)
\end{aligned}
$$

10.

Sol:
i) $\mathrm{x}(\mathrm{t})=\mathrm{e}^{-3(\mathrm{t}-1)} \mathrm{u}(\mathrm{t}-1) \mathrm{e}^{-3}$
$X(\omega)=e^{-j \omega} e^{-3} \frac{1}{3+j \omega}$
ii) $\pi\left(\frac{\mathrm{t}}{2}\right) \leftrightarrow 2 \operatorname{Sa}(\omega)$

$$
\pi\left(\frac{\mathrm{t}-1}{2}\right) \leftrightarrow 2 \mathrm{e}^{-\mathrm{j} \omega} \mathrm{Sa}(\omega)
$$

iii) $\mathrm{e}^{-2 t \mid} \leftrightarrow \frac{4}{4+\omega^{2}}$

$$
\mathrm{e}^{-2|t-2|} \leftrightarrow \frac{4 \mathrm{e}^{-2 j \omega}}{4+\omega^{2}}
$$

11.

Sol:

$$
\text { (a) } \begin{aligned}
\mathrm{f}_{1}(\mathrm{t}) & =\mathrm{f}(\mathrm{t}-1 / 2)+\mathrm{f}(-\mathrm{t}-1 / 2) \\
\mathrm{F}_{1}(\omega) & =\mathrm{e}^{-\frac{\mathrm{j} \omega}{2}} \mathrm{~F}(\omega)+\mathrm{e}^{\frac{\mathrm{j} \omega}{2}} \cdot \mathrm{~F}(-\omega)
\end{aligned}
$$

(b) $\mathrm{f}_{2}(\mathrm{t})=\frac{3}{2} \mathrm{f}\left(\frac{\mathrm{t}}{2}-1\right)$

$$
\mathrm{F}_{2}(\omega)=3 \mathrm{e}^{-2 \mathrm{j} \omega} \mathrm{~F}(2 \omega)
$$

12.

Sol: $Y(\omega)=\frac{\cos \left(\frac{\omega}{2}\right) \mathrm{e}^{-\mathrm{j} \frac{\omega}{2}}}{1+j \omega}$

$$
\begin{aligned}
= & {\left[\frac{e^{j \frac{\omega}{2}}+e^{-\mathrm{j} \frac{\omega}{2}}}{2}\right] \mathrm{e}^{-\mathrm{j} \frac{\omega}{2}} \mathrm{X}(\omega) } \\
Y(\omega) & =\left[\frac{1+\mathrm{e}^{-\mathrm{j} \omega}}{2}\right] X(\omega)
\end{aligned}
$$

$$
\text { Assume, } \begin{array}{r}
X(\omega)=\frac{1}{1+j \omega} \\
x(t)=e^{-t} u(t)
\end{array}
$$

By applying Inverse Fourier Transform

$$
\begin{aligned}
& y(t)=\frac{1}{2}[x(t)+x(t-1)] \\
& y(t)=\frac{1}{2}\left[e^{-t} u(t)+e^{-(t-1)} u(t-1)\right]
\end{aligned}
$$

13.

Sol:
i) $\cos \omega_{0} \mathrm{t}=\frac{1}{2}\left[\mathrm{e}^{\mathrm{j} \omega_{0} \mathrm{t}}+\mathrm{e}^{-\mathrm{j} \omega_{0} \mathrm{t}}\right] \leftrightarrow \pi\left[\delta\left(\omega+\omega_{0}\right)+\delta\left(\omega-\omega_{0}\right)\right]$
ii) $\sin \omega_{0} \mathrm{t} \leftrightarrow \frac{\pi}{\mathrm{j}}\left[\delta\left(\omega-\omega_{0}\right)-\delta\left(\omega+\omega_{0}\right)\right]$
iii) $e^{-a t} \sin \omega_{c} t u(t) \leftrightarrow \frac{1}{2 j}\left[\frac{1}{a+j\left(\omega-\omega_{c}\right)}-\frac{1}{a+j\left(\omega+\omega_{c}\right)}\right]$
iv) $\operatorname{Arect}\left(\frac{\mathrm{t}}{\mathrm{T}}\right) \cos \omega_{0} \mathrm{t}=\frac{\mathrm{AT}}{2}\left[\mathrm{Sa}\left[\frac{\omega+\omega_{0}}{2}\right] \mathrm{T}+\mathrm{Sa}\left[\frac{\omega-\omega_{0}}{2}\right] \mathrm{T}\right]$
14.

Sol: $\operatorname{Sinc}(\mathrm{t}) \leftrightarrow \operatorname{rect}(\mathrm{f})$

$$
\begin{aligned}
\operatorname{Sin} \mathrm{c}(\mathrm{t}) \cos (10 \pi \mathrm{t}) \leftrightarrow \frac{1}{2}[& \operatorname{rect}(\mathrm{f}-5) \\
& +\operatorname{rect}(\mathrm{f}+5)]
\end{aligned}
$$

15.

Sol: (i) $e^{-j 3 t} x(t) \leftrightarrow X(\omega+3)$
(Frequency sifting property)
$\mathrm{e}^{-\mathrm{j} \frac{3}{4} \mathrm{t}} \mathrm{x}(\mathrm{t} / 4) \leftrightarrow 4 \mathrm{X}(4 \omega+3)$
(Time scaling property)
$\frac{1}{4} \mathrm{e}^{-\mathrm{j} \frac{3}{4} \mathrm{t}} \mathrm{x}(\mathrm{t} / 4) \leftrightarrow \mathrm{X}(4 \omega+3)$
(ii) Ans: (a)

$$
\begin{aligned}
& \mathrm{X}(\omega)=2 \pi \delta(\omega)+\pi[\delta(\omega-4 \pi)+\delta(\omega+4 \pi)] \\
& \mathrm{x}(\mathrm{t})=1+\cos (4 \pi \mathrm{t})
\end{aligned}
$$

16.

Sol:

$\mathrm{Y}(\omega)=\mathrm{X}(\omega+3 \pi)-\mathrm{X}(\omega-3 \pi)$

By applying Inverse Fourier Transform $y(t)=x(t) e^{j(-3 \pi) t}-x(t) e^{j 3 \pi t}$

$$
\begin{aligned}
& =-\left[\frac{e^{j 3 \pi t}-e^{-j 3 \pi t}}{2 j}\right](2 j) x(t) \\
& =-2 j \operatorname{Sinc}(t) \sin (3 \pi t)
\end{aligned}
$$

17. Ans: (b)

Sol:

$\mathrm{x}(\mathrm{t}) \cos 2 \pi \mathrm{t} \leftrightarrow \frac{1}{2}[\mathrm{X}(\mathrm{f}-1)+\mathrm{X}(\mathrm{f}+1)]$

18. Ans: (d)

Sol: Output of multiplier

$$
=\frac{1}{2} \mathrm{x}(\mathrm{t}) \cos \left(2 \omega_{\mathrm{c}} \mathrm{t}+\theta\right)+\frac{1}{2} \mathrm{x}(\mathrm{t}) \cos \theta
$$

Output of the filter is $=\frac{1}{2} \mathrm{x}(\mathrm{t}) \cos \theta \times 2$

$$
=\mathrm{x}(\mathrm{t}) \cos \theta
$$

19. Ans: (b)

Sol: $y(t)=\frac{d x(t)}{d t}$

$$
Y(\omega)=j \omega X(\omega)
$$

If $x(t)$ is even function, then $y(t)$ is odd function.
If $x(t)$ is triangular function $X(\omega)$ is Sinc^{2} function, it is real.
$y(t)$ is odd function, $Y(\omega)$ is imaginary.
20. Ans: $=\frac{-1}{2 \sqrt{\pi}}$

Sol: $\quad \mathrm{x}(\mathrm{t})=\frac{1}{2 \pi}\left[\int_{-\infty}^{\infty} \mathrm{X}(\omega) \mathrm{e}^{\mathrm{j} \omega \mathrm{t}} \mathrm{d} \omega\right]$

$$
\frac{\mathrm{dx}(\mathrm{t})}{\mathrm{dt}}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} j \omega X(\omega) . \mathrm{e}^{\mathrm{j} \omega \mathrm{t}} \mathrm{~d} \omega
$$

$$
\left.\frac{\mathrm{dx}(\mathrm{t})}{\mathrm{dt}}\right|_{\mathrm{t}=0}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} j \omega \mathrm{X}(\omega) \mathrm{d} \omega
$$

$$
=\frac{1}{2 \pi}\left[\int_{-1}^{0} j \omega(-j \sqrt{\pi}) d \omega+\int_{0}^{1} j \omega(j \sqrt{\pi}) d \omega\right]
$$

$$
=\frac{-1}{2 \sqrt{\pi}}
$$

21.

Sol: $\quad \operatorname{te}^{-a|t|} \leftrightarrow j \frac{d}{d \omega}\left[\frac{2 a}{a^{2}+\omega^{2}}\right]=\frac{-4 j a \omega}{\left(a^{2}+\omega^{2}\right)^{2}}$

$$
\mathrm{te}^{-|\mathrm{t}|} \leftrightarrow \frac{-4 \mathrm{j} \omega}{\left(\omega^{2}+1\right)^{2}}
$$

Apply duality property

22.

Sol:
(i) $X_{1}(\omega)=e^{-2 j \omega} X(-\omega)+e^{2 j \omega} X(-\omega)$
(ii) $\mathrm{X}_{2}(\omega)=\frac{1}{3} \mathrm{e}^{-2 \mathrm{j} \omega} \mathrm{X}\left(\frac{\omega}{3}\right)$
(iii) $\mathrm{X}_{3}(\omega)=(\mathrm{j} \omega)^{2} \mathrm{e}^{-3 \mathrm{j} \omega} . \mathrm{X}(\omega)$
(iv) $X_{4}(\omega)=j \frac{d}{d \omega}[j \omega X(\omega)]$
23.

Sol: $\mathrm{x}(\mathrm{t})=\operatorname{rect}(\mathrm{t} / 2)$
$X(\omega)=\frac{2 \sin \omega}{\omega}$
(a) $\mathrm{y}_{1}(\mathrm{t})=\mathrm{x}(\mathrm{t}-1) \Rightarrow \mathrm{Y}_{1}(\omega)=\mathrm{e}^{-\mathrm{j} \omega} \mathrm{X}(\omega)$
(b) $\Rightarrow \mathrm{y}_{2}(\mathrm{t})=\mathrm{x}(\mathrm{t}) * \mathrm{x}(\mathrm{t})$

$$
\begin{aligned}
& Y_{2}(\omega)=X(\omega) X(\omega)=\frac{2 \sin \omega}{\omega} \frac{2 \sin \omega}{\omega} \\
& Y_{2}(\omega)=4 \frac{\sin ^{2} \omega}{\omega^{2}}
\end{aligned}
$$

(c) $\quad y_{3}(t)=t x(t) \quad Y_{3}(\omega)=j \frac{d}{d \omega}[x(\omega)]$
(d) $y_{4}(t)=x(t) \sin \pi t \leftrightarrow \frac{1}{2 \mathrm{j}}[\mathrm{X}(\omega-\pi)-\mathrm{X}(\omega+\pi)]$
(e) $y_{5}(t)=\frac{d x(t)}{d t} \leftrightarrow j \omega x(\omega)$
(f) $\mathrm{y}_{6}(\mathrm{t})=(\mathrm{t}+1) \mathrm{x}(\mathrm{t})+2 \mathrm{u}(\mathrm{t}-1)$
(g) $\mathrm{y}_{7}(\mathrm{t})=\mathrm{y}_{1}\left(\frac{\mathrm{t}}{2}\right) \leftrightarrow 2 \mathrm{Y}_{1}(2 \omega)$
(h) $\mathrm{y}_{8}(\mathrm{t})=\mathrm{y}_{2}(2(\mathrm{t}+1))-\mathrm{y}_{2}(2(\mathrm{t}-1))$

$$
\mathrm{Y}_{8}(\omega)=\frac{1}{2} \mathrm{Y}_{2}\left(\frac{\omega}{2}\right) \mathrm{e}^{-\mathrm{j} \omega(-1)}-\frac{1}{2} \mathrm{Y}_{2}\left(\frac{\omega}{2}\right) \mathrm{e}^{-\mathrm{j} \omega(1)}
$$

$$
=\frac{1}{2} Y_{2}\left(\frac{\omega}{2}\right) \mathrm{e}^{\mathrm{j} \omega}-\frac{1}{2} \mathrm{Y}_{2}\left(\frac{\omega}{2}\right) \mathrm{e}^{-\mathrm{j} \omega}
$$

$$
=\frac{1}{2} \mathrm{Y}_{2}\left(\frac{\omega}{2}\right)\left[\mathrm{e}^{\mathrm{j} \omega}-\mathrm{e}^{-\mathrm{j} \omega}\right]
$$

(i) $\mathrm{y}_{9}(\mathrm{t})=\mathrm{x}\left(\frac{\mathrm{t}}{2}\right)-\frac{1}{2} \mathrm{y}_{2}(\mathrm{t})$
$\mathrm{Y}_{9}(\omega)=2 \mathrm{X}(2 \omega)-\frac{1}{2} \mathrm{Y}_{2}(\omega)$
(j) $z(t)=\frac{1}{2} y_{2}(2 t)$
$\mathrm{y}_{10}(\mathrm{t})=\mathrm{z}(\mathrm{t}+1)+\mathrm{z}(\mathrm{t})+\mathrm{z}(\mathrm{t}-1)$
$\mathrm{Y}_{10}(\omega)=(1+2 \cos \omega) \mathrm{Z}(\omega)$
24. Ans: $\mathbf{y}(\mathrm{t})=\cos 2 \mathrm{t}$

Sol: $\mathrm{h}(\mathrm{t})=\frac{\sin 4 \mathrm{t}}{\pi \mathrm{t}} \quad \mathrm{H}(\omega)=\operatorname{rect}\left(\frac{\omega}{8}\right)$

$y(t)=\cos 2 t$
25.

Sol: $\quad X(\omega)=\operatorname{rect}\left(\frac{\omega}{2 \omega_{1}}\right)+\operatorname{rect}\left(\frac{\omega}{2 \omega_{2}}\right)$

(a) $\quad 0<\omega_{\mathrm{f}}<\omega_{1} \quad \mathrm{Y}(\omega)=\mathrm{X}(\omega) \cdot \mathrm{H}(\omega)$

$$
\mathrm{y}(\mathrm{t})=\frac{2 \sin \omega_{\mathrm{f}} \mathrm{t}}{\pi \mathrm{t}}
$$

(b) $\omega_{1}<\omega_{\mathrm{f}}<\omega_{2}$

$$
y(t)=\frac{\sin \omega_{1} t}{\pi t}+\frac{\sin \omega_{\mathrm{f}} \mathrm{t}}{\pi \mathrm{t}}
$$

(c) $\omega_{\mathrm{f}}>\omega_{2} \quad \mathrm{y}(\mathrm{t})=\frac{\sin \omega_{1} \mathrm{t}}{\pi \mathrm{t}}+\frac{\sin \omega_{2} \mathrm{t}}{\pi \mathrm{t}}$
26.

Sol:
(a) $\mathrm{X}(\omega)=\delta(\omega)+\delta(\omega-5)+\delta(\omega-\pi)$
$x(t)=1+e^{-\mathrm{j} 5 t}+e^{-\mathrm{j} \pi t}$
$\mathrm{e}^{-\mathrm{j} \pi \mathrm{t}} \Rightarrow \mathrm{T}_{1}=\frac{2 \pi}{\pi}=2$
$\mathrm{e}^{-\mathrm{j} 5 \mathrm{t}} \Rightarrow \mathrm{T}_{2}=\frac{2 \pi}{5}=\frac{2 \pi}{5}$
$\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\frac{5}{\pi}$ is irrational
So, non-periodic
(b) $\mathrm{h}(\mathrm{t})=\mathrm{u}(\mathrm{t})-\mathrm{u}(\mathrm{t}-2)$

$\Rightarrow \mathrm{h}(\mathrm{t})=\operatorname{rect}\left(\frac{\mathrm{t}}{2}-0.5\right)$
$\operatorname{rect}(\mathrm{t}) \leftrightarrow \frac{\sin \frac{\omega}{2}}{\frac{\omega}{2}}$
$\operatorname{rect}\left(\frac{\mathrm{t}}{2}-0.5\right) \leftrightarrow 2 \mathrm{e}^{-\mathrm{j} \omega} \frac{\sin \omega}{\omega}$
$\Rightarrow \mathrm{H}(\omega)=2 \mathrm{e}^{-\mathrm{j} \omega} \frac{\sin \omega}{\omega}$
$\mathrm{x}(\mathrm{t}) * \mathrm{~h}(\mathrm{t}) \leftrightarrow \mathrm{H}(\omega) \mathrm{X}(\omega)$
$\mathrm{X}(\omega) \mathrm{H}(\omega)=[\delta(\omega)+\delta(\omega-5)+\delta(\omega-\pi)]\left[2 \mathrm{e}^{-\mathrm{j} \omega} \frac{\sin \omega}{\omega}\right]$

$$
=\delta(\omega) \underset{\mathrm{x} \rightarrow 0}{\operatorname{Lt}} 2 \mathrm{e}^{-\mathrm{j} \omega} \frac{\sin \omega}{\omega}+\delta(\omega-5) 2 \mathrm{e}^{-\mathrm{j} 5} \frac{\sin 5}{5}
$$

$$
+\delta(\omega) 2 \mathrm{e}^{-\mathrm{j} \pi} \frac{\sin \pi}{\pi}
$$

$$
=2 \delta(\omega)+2 \mathrm{e}^{-\mathrm{j} 5} \frac{\sin 5}{5} \delta(\omega-5)\left[\underset{\mathrm{x} \rightarrow \pi}{\mathrm{Lt}} \frac{\sin \mathrm{x}}{\mathrm{x}}=0\right]
$$

$\mathrm{X}(\omega) \mathrm{H}(\omega)=2 \delta(\omega)+2 \mathrm{e}^{-\mathrm{j} 5} \frac{\sin 5}{5} \delta(\omega-5)$
$\Rightarrow \mathrm{x}(\mathrm{t}) * \mathrm{~h}(\mathrm{t})=2+2 \mathrm{e}^{-\mathrm{j} 5} \frac{\sin 5}{5} \mathrm{e}^{-\mathrm{j} 5 \mathrm{t}}$
\Rightarrow Periodic
(c) In above problem, convolution of two non periodic signals can be a periodic signal
27.

Sol:
(a) $y_{1}(t)=\operatorname{rect}(t) * \cos \pi t$
$\operatorname{rect}(\mathrm{t}) \leftrightarrow \frac{2}{\omega} \sin \frac{\omega}{2}\left[\because \mathrm{Y}(\omega)=\int_{-\infty}^{\infty} \mathrm{y}(\mathrm{t}) \mathrm{e}^{-\mathrm{j} \omega \mathrm{t}} \mathrm{dt}\right]$
$\operatorname{rect}(\mathrm{t}) \leftrightarrow \frac{\sin \left(\frac{\omega}{2}\right)}{\left(\frac{\omega}{2}\right)}$
$\operatorname{rect}(\mathrm{t}) \leftrightarrow \frac{\sin \left(\pi \cdot \frac{\omega}{2 \pi}\right)}{\pi \frac{\omega}{2 \pi}}$
$\operatorname{rect}(\mathrm{t}) \leftrightarrow \sin \mathrm{c}\left(\frac{\omega}{2 \pi}\right)$
$\cos \pi \leftrightarrow \pi[\delta(\omega-\pi)+\delta(\omega+\pi)]$
$Y_{1}(\omega)=\sin c\left(\frac{\omega}{2 \pi}\right) \times \pi[\delta(\omega-\pi)+\delta(\omega+\pi)]$
$\mathrm{Y}_{1}(\omega)=\frac{2}{\omega} \sin \frac{\omega}{2} \times \pi[\delta(\omega-\pi)+\delta(\omega+\pi)]$ $=\frac{2}{\omega} \sin \frac{\omega}{2} \times \pi \delta(\omega-\pi)+\frac{2}{\omega} \sin \frac{\omega}{2} \times \pi \delta(\omega+\pi)$
$=\frac{2}{\pi} \sin \frac{\pi}{2} \pi \delta(\omega-\pi)+\frac{2}{-\pi} \sin \left(\frac{-\pi}{2}\right) \pi \delta(\omega+\pi)$
$=2 \delta(\omega-\pi)+2 \delta(\omega+\pi)$
$\mathrm{Y}_{1}(\omega)=\frac{2}{\pi} \pi[\delta(\omega-\pi)+\delta(\omega+\pi)]$
Taking inverse fourier transform
$\therefore \mathrm{y}_{1}(\mathrm{t})=\frac{2}{\pi} \cos \pi \mathrm{t}$
(b) $\mathrm{y}_{2}(\mathrm{t})=\operatorname{rect}(\mathrm{t}) * \cos 2 \pi \mathrm{t}$

Similar to above

$$
\begin{aligned}
& \mathrm{Y}_{2}(\omega)=\frac{2}{\omega} \sin \frac{\omega}{2} \times \pi[\delta(\omega-2 \pi)+\delta(\omega+2 \pi)] \\
& \quad=\frac{2}{\omega} \sin \left(\frac{\omega}{2}\right) \pi \delta(\omega-2 \pi)+\frac{2}{\omega} \sin \left(\frac{\omega}{2}\right) \pi \delta(\omega+2 \pi) \\
& =\frac{2}{2 \pi} \sin \left(\frac{2 \pi}{2}\right) \pi \delta(\omega-2 \pi)+\frac{2}{-2 \pi} \sin \left(\frac{-2 \pi}{2}\right) . \pi \delta(\omega+2 \pi)=0 \\
& \therefore \mathrm{y}_{2}(\mathrm{t})=0
\end{aligned}
$$

(c) $y_{3}(t)=\sin c(t) * \operatorname{sinc}\left(\frac{t}{2}\right)$

(1) ACE	28	Signals \& Systems

$\operatorname{rect}(\mathrm{t}) \leftrightarrow \sin \mathrm{c}\left(\frac{\omega}{2 \pi}\right)$
$\operatorname{sinc}\left(\frac{\mathrm{t}}{2 \pi}\right) \leftrightarrow 2 \pi \operatorname{rect}(-\omega)$
$\sin \mathrm{c}\left(\frac{\mathrm{t}}{2 \pi}\right) \leftrightarrow 2 \pi \operatorname{rect}(\omega)$
$\sin c(t) \leftrightarrow \operatorname{rect}\left(\frac{\omega}{2 \pi}\right)$
$\operatorname{sinc}\left(\frac{\mathrm{t}}{2}\right) \leftrightarrow 2 \operatorname{rect}\left(\frac{\omega}{\pi}\right)$
$\therefore \mathrm{Y}_{3}(\omega)=\operatorname{rect}\left(\frac{\omega}{2 \pi}\right) 2 \operatorname{rect}\left(\frac{\omega}{\pi}\right)$

$$
Y_{3}(\omega)=2 \operatorname{rect}\left(\frac{\omega}{\pi}\right)
$$

$$
\mathrm{Y}_{3}(\omega) \leftrightarrow 2 \operatorname{rect}\left(\frac{\omega}{\pi}\right)
$$

Taking inverse fourier transform

$$
y_{3}(t)=\sin c\left(\frac{t}{2}\right)
$$

(d) $\operatorname{sinc}(\mathrm{t}) \leftrightarrow \operatorname{rect}\left(\frac{\omega}{2 \pi}\right)$

$$
\mathrm{e}^{\mathrm{j} 3 \pi \mathrm{t}} \sin \mathrm{c}(\mathrm{t}) \leftrightarrow \operatorname{rect}\left(\frac{\omega-3 \pi}{2 \pi}\right)
$$

$$
\sin c(t) * e^{j 3 \pi t} \sin c(t) \leftrightarrow \operatorname{rect}\left(\frac{\omega}{2 \pi}\right) \times \operatorname{rect}\left(\frac{\omega-3 \pi}{2 \pi}\right)
$$

$$
\begin{aligned}
& \leftrightarrow 0 \\
& \therefore \mathrm{Y}_{4}(\omega)=0 \\
& \Rightarrow \mathrm{y}_{4}(\mathrm{t})=0
\end{aligned}
$$

28.

Sol: $x(t)=4+\cos (4 \pi t)-\sin (8 \pi t)$
(a) (1) $h_{1}(t)=\sin c(5 t-2)$

$$
\begin{array}{r}
\mathrm{h}_{1}(\mathrm{t})=\sin \mathrm{c}\left[5\left(\mathrm{t}-\frac{2}{5}\right)\right] \\
\downarrow \\
\mathrm{t}_{0}=\frac{2}{5}
\end{array}
$$

By Applying Fourier Transform

$\sin \mathrm{c}(5 \mathrm{t})=\frac{\sin 5 \pi \mathrm{t}}{5 \pi \mathrm{t}}$

$y(t)=\frac{4}{5}+\frac{1}{5} \cos (4 \pi t-1.6 \pi)$
(2) $h_{2}(t)=\operatorname{Sinc}^{2} t \cos (5 \pi t)$

$$
\mathrm{H}(\mathrm{f})=\frac{\operatorname{Tri}(\mathrm{f}-2.5)+\operatorname{Tri}(\mathrm{f}+2.5)}{2}
$$

This filter compass only $\cos (4 \pi t)$
Output $=0.25 \cos (4 \pi t)$
(b) Ans: (d)
$G(f)=e^{-\pi f^{2}} \quad H(f)=e^{-\pi f^{2}}$
$Y(f)=G(f) H(f)=e^{-2 \pi f^{2}}$
(c) $\mathrm{y}_{1}(\mathrm{t})=(\operatorname{Sinc}(2 \mathrm{t}))^{2}$

$$
\begin{aligned}
& =\frac{\sin 2 \pi \mathrm{t}}{2 \pi \mathrm{t}} \cdot \frac{\sin 2 \pi \mathrm{t}}{2 \pi \mathrm{t}} \\
& =\frac{1}{4} \frac{\sin 2 \pi \mathrm{t}}{\pi \mathrm{t}} \cdot \frac{\sin 2 \pi \mathrm{t}}{\pi \mathrm{t}}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{Y}_{1}(\omega) & =\frac{1}{4}\left(\frac{1}{2 \pi} \operatorname{rect}\left(\frac{\omega}{4 \pi}\right) * \operatorname{rect}\left(\frac{\omega}{4 \pi}\right)\right) \\
& =\frac{1}{2} \operatorname{Tri}\left(\frac{\omega}{4 \pi}\right)
\end{aligned}
$$

$\mathrm{y}_{1}(\mathrm{t}) \cos 6 \pi \mathrm{t} \leftrightarrow \frac{1}{2}\left[\mathrm{Y}_{1}(\omega-6 \pi)+\mathrm{Y}_{1}(\omega+6 \pi)\right]$

29. Ans: (c)

Sol: $\mathrm{e}^{-\pi t^{2}} \leftrightarrow \mathrm{e}^{-\pi f^{2}}$
From frequency shifting property
$x(t)=e^{j 2 \pi t} e^{-\pi t^{2}}$ $\because \mathrm{x} *(-\mathrm{t})=\mathrm{x}(\mathrm{t})$
-conjugate even symmetry
30.

Sol:
(a) $\mathrm{Y}(\omega)=\frac{1}{2}\left[\mathrm{X}\left(\omega-\omega_{0}\right)+\mathrm{X}\left(\omega+\omega_{0}\right)\right]$
(b) $x(t)=\frac{\sin t}{\pi t} \pi \frac{\sin (t / 2)}{\pi t}$
$X(\omega)=\frac{1}{2 \pi}\left[\operatorname{rect}\left(\frac{\omega}{2}\right) * \pi \operatorname{rect}\left(\frac{\omega}{1}\right)\right]$

31.

Sol: $\quad \int_{-\infty}^{\mathrm{t}} \mathrm{x}(\mathrm{t}) \mathrm{dt} \leftrightarrow \frac{\mathrm{X}(\omega)}{\mathrm{j} \omega}+\pi \mathrm{X}(0) \delta(\omega)$

$$
\leftrightarrow \frac{\operatorname{rect}(\omega / 4 \pi)}{\mathrm{j} \omega}+\pi \delta(\omega)
$$

32.

Sol: $\frac{\sin (\mathrm{at})}{\pi \mathrm{t}} \leftrightarrow \operatorname{rect}\left(\frac{\omega}{2 \mathrm{a}}\right)$

$$
\mathrm{E}=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|X(\omega)|^{2} \mathrm{~d} \omega=\frac{2 \mathrm{a}}{\pi}=\frac{\mathrm{a}}{\pi}
$$

33.

Sol: $\quad \mathrm{E}=\frac{1}{2 \pi}\left[\int_{-1}^{-1 / 2} \pi \mathrm{~d} \omega+\int_{-1 / 2}^{1 / 2} \frac{\pi}{4} \mathrm{~d} \omega+\int_{1 / 2}^{1} \pi \mathrm{~d} \omega\right]=\frac{5}{8}$
34.

Sol: $\mathrm{E}_{\mathrm{x}(\mathrm{t})}=1 / 4$
$|X(\omega)|^{2}=\frac{1}{4+\omega^{2}}$
$S_{\mathrm{YY}}(\omega)=|\mathrm{X}(\omega)|^{2}|\mathrm{H}(\omega)|^{2}=\frac{1}{4+\omega^{2}},-\omega_{\mathrm{c}}<\omega<\omega_{\mathrm{c}}$
$\mathrm{E}_{\mathrm{y}(\mathrm{t})}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{S}_{\mathrm{yy}}(\omega) \mathrm{d} \omega \Rightarrow \frac{1}{8}=\left.\frac{1}{2 \pi} \frac{1}{2} \tan ^{-1}\left(\frac{\omega}{2}\right)\right|_{-\omega_{c}} ^{\omega_{c}}$
$\omega_{\mathrm{c}}=2 \mathrm{rad} / \mathrm{sec}$
35.

Sol: $\mathrm{e}^{-2|t|} \leftrightarrow \frac{4}{\omega^{2}+4}$

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{8}{\left(\omega^{2}+4\right)^{2}} \mathrm{~d} \omega & =2 \int_{-\infty}^{\infty}\left(\frac{4}{\omega^{2}+4}\right)^{2} \mathrm{~d} \omega \\
& =\frac{1}{2}(2 \pi) \int_{-\infty}^{\infty}\left|\mathrm{e}^{-2 \mid t}\right|^{2} \mathrm{dt} \\
& =\frac{\pi}{2}
\end{aligned}
$$

36. Ans: $\mathrm{B}=\frac{2.302}{\mathrm{a}}$

Sol: $g(t)=\frac{2 a}{a^{2}+t^{2}}$
We know $\mathrm{e}^{-\mathrm{a}|\mathrm{t}|} \leftrightarrow \frac{2 \mathrm{a}}{\mathrm{a}^{2}+\omega^{2}}$
By duality property $\frac{2 \mathrm{a}}{\mathrm{a}^{2}+\mathrm{t}^{2}} \leftrightarrow \mathrm{e}^{-\mathrm{a}|\omega|}$
Given $\int_{-B}^{B}\left|\mathrm{e}^{-\mathrm{a}|\omega|}\right|^{2} \mathrm{~d} \omega=0.99 \int_{-\infty}^{\infty}\left|\mathrm{e}^{-\mathrm{a}|\omega|}\right|^{2} \mathrm{~d} \omega$

$$
\Rightarrow \int_{-B}^{0} \mathrm{e}^{2 a \omega} \mathrm{~d} \omega+\int_{0}^{\mathrm{B}} \mathrm{e}^{-22 \omega} \mathrm{~d} \omega=0.99\left[\int_{-\infty}^{0} \mathrm{e}^{2 a \omega} \mathrm{~d} \omega+\int_{0}^{\infty} \mathrm{e}^{-2 a \omega} \mathrm{~d} \omega\right.
$$

$$
\left.\left.\left.\Rightarrow \frac{\mathrm{e}^{2 \mathrm{a} \omega}}{2 \mathrm{a}}\right]_{-\mathrm{B}}^{0}+\frac{\mathrm{e}^{-2 \mathrm{a} \mathrm{\omega} \omega}}{-2 \mathrm{a}}\right]_{0}^{\mathrm{B}}=0.99\left[\left[\frac{\mathrm{e}^{2 \mathrm{a} \omega}}{2 \mathrm{a}}\right]_{-\infty}^{0}+\frac{\mathrm{e}^{-2 \mathrm{aa} \omega}}{-2 \mathrm{a}}\right]_{0}^{\infty}\right]
$$

$$
\Rightarrow \frac{1}{2 \mathrm{a}}\left[1-\mathrm{e}^{-2 \mathrm{aB}}\right]-\frac{1}{2 \mathrm{a}}\left[\mathrm{e}^{-2 \mathrm{aB}}-1\right]=\frac{0.99}{2 \mathrm{a}}[1+1]
$$

$$
\Rightarrow 2-2 \mathrm{e}^{-2 \mathrm{aB}}=2 \times 0.99
$$

$$
\Rightarrow 1-\mathrm{e}^{-2 \mathrm{aB}}=0.99
$$

$$
\Rightarrow 0.01=\mathrm{e}^{-2 \mathrm{aB}}
$$

$$
\Rightarrow \ln (100)=2 \mathrm{aB}
$$

$$
\Rightarrow \mathrm{B}=\frac{\ln (100)}{2 \mathrm{a}}=\frac{4.605}{2 \mathrm{a}}=\frac{2.302}{\mathrm{a}}
$$

37. Ans: (a)

Sol: $\quad E=\int_{-\infty}^{\infty}\left|X_{1}(\mathrm{f})\right|^{2} \mathrm{df}=\frac{2}{3} \times 10^{-8}$

38. Ans: (c)

Sol: $\angle H(\omega)=\frac{-\omega}{60} \quad-30 \pi<\omega<30 \pi$

$$
\omega_{0}=10 \pi|H(10 \pi)|=2, \quad \angle \mathrm{H}(10 \pi)=\frac{-\pi}{6}
$$

$$
\omega_{0}=26 \pi \quad|\mathrm{H}(26 \pi)|=1, \angle \mathrm{H}(26 \pi)=\frac{-13 \pi}{30}
$$

$\mathrm{y}(\mathrm{t})=4 \cos \left(10 \pi \mathrm{t}-\frac{\pi}{6}\right)+\sin \left(26 \pi \mathrm{t}-\frac{13 \pi}{30}\right)$
39.

Sol: $\theta(\omega)=-\omega \mathrm{t}_{0}$

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{p}}(\omega)=\frac{-\theta(\omega)}{\omega}=\mathrm{t}_{0} \\
& \mathrm{t}_{\mathrm{g}}(\omega)=\frac{-\mathrm{d} \theta(\omega)}{\mathrm{d} \omega}=\mathrm{t}_{0}
\end{aligned}
$$

Both are constant

40.

Sol:
(i) Ans: (c)

$$
\begin{aligned}
& \mathrm{H}(\mathrm{f})=\frac{1}{1+\mathrm{j} 2 \pi \mathrm{fRC}} \\
& |\mathrm{H}(\mathrm{f})|=\frac{1}{\sqrt{1+4 \pi^{2} \mathrm{f}^{2} \mathrm{R}^{2} \mathrm{C}^{2}}} \\
& \left|\mathrm{H}\left(\mathrm{f}_{1}\right)\right| \geq 0.95 \\
& \mathrm{f}_{1}=52.2 \mathrm{~Hz}
\end{aligned}
$$

(ii) Ans: (a)

$$
\begin{aligned}
& \theta(\mathrm{f})=-\tan ^{-1}(2 \pi \mathrm{fRC}) \\
& \mathrm{t}_{\mathrm{g}}(\mathrm{f})=\frac{-\mathrm{d} \theta(\mathrm{f})}{\mathrm{df}}=\frac{1}{2 \pi}\left[\frac{2 \pi \mathrm{RC}}{1+(2 \pi \mathrm{fRC})^{2}}\right] \\
& \mathrm{t}_{\mathrm{g}}(100)=0.71 \mathrm{msec}
\end{aligned}
$$

41. Ans: (c)

Sol: $y(t)=\frac{1}{100} \cos \left(100\left(t-10^{-8}\right)\right) \cos \left(10^{6}\left(t-1.56 \times 10^{-6}\right)\right)$ $\mathrm{t}_{\mathrm{g}}=10^{-8}, \mathrm{t}_{\mathrm{p}}=1.56 \times 10^{-6}$
42.

Sol: The condition for distortion less transmission system is magnitude response is constant and phase response is linear function of frequency. These two conditions are satisfied in the frequency range 20 to 30 kHz . So, from 20 to 30 kHz no distortion.
43. Ans: 8

Sol: Given input signal frequencies are 10 Hz , $20 \mathrm{~Hz}, 40 \mathrm{~Hz}$. Only 20 Hz is allowed.
So, $y(t)=$
$\frac{1}{2} \times 8 \cos \left(20 \pi t+\frac{\pi}{4}-20^{\circ}\right)=4 \cos \left(20 \pi t+\frac{\pi}{4}-20^{\circ}\right)$
Power in $\mathrm{y}(\mathrm{t})=\frac{(4)^{2}}{2}=8$
44.

Sol: The condition for distortion less transmission system is magnitude response is constant and phase response is linear function of frequency.
For $-200<\omega<200$, there is no amplitude distortion.
And For $-100<\omega<100$, there is no phase distortion
$\mathrm{x}_{1}(\mathrm{t})$
$\omega=20$ and $\omega=60$
So no phase distortion and no amplitude distortion.
$\mathrm{x}_{2}(\mathrm{t})$
$\omega=20, \quad \omega=140$
Amplitude distortion, do not occurs.
Phase distortion occurs.
$[\because \omega=140]$
$\mathrm{x}_{3}(\mathrm{t})$
$\omega=20, \quad \omega=220$,
Phase distortion and amplitude distortion occurs
$[\because \omega=220]$
45.

Sol: $\quad R_{x x}(\tau)=\int_{0}^{T} x(t) x(t-\tau) d t$

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{xx}}(\tau)=\frac{\mathrm{A}^{2}}{2} \cos \left(\omega_{0} \tau\right)=18 \cos (6 \pi \tau) \\
& \text { Power }=\mathrm{R}_{\mathrm{xx}}(0)=18
\end{aligned}
$$

46.

Sol: $r_{x x}(\tau)=x(t) * x(-t)=e^{-3 t} u(t) * e^{3 t} \cdot u(-t)$

$$
\mathrm{r}_{\mathrm{xx}}(\tau) \stackrel{\mathrm{F.T}}{\leftrightarrow} \mathrm{~S}_{\mathrm{xx}}(\omega)=\frac{1}{9+\omega^{2}} \Rightarrow \mathrm{r}_{\mathrm{xx}}(\tau)=\frac{1}{6} \mathrm{e}^{-3|\tau|}
$$

47.

Sol:
(a) $|\mathrm{H}(\omega)|^{2}=\frac{1}{1+\omega^{2}},|X(\omega)|^{2}=\frac{1}{4+\omega^{2}}$

$$
\mathrm{S}_{\mathrm{YY}}(\omega)=|\mathrm{X}(\omega)|^{2}|\mathrm{H}(\omega)|^{2}
$$

(b) $\mathrm{y}(\mathrm{t})=\mathrm{x}(\mathrm{t}) * \mathrm{~h}(\mathrm{t})=\left[\mathrm{e}^{-\mathrm{t}}-\mathrm{e}^{-2 \mathrm{t}}\right] \mathrm{u}(\mathrm{t})$

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{y}(\mathrm{t})}=\int_{-\infty}^{\infty}|\mathrm{y}(\mathrm{t})|^{2} \mathrm{dt}=\frac{1}{12} \\
& \mathrm{E}_{\mathrm{x}(\mathrm{t})}=\frac{1}{4} \\
& \mathrm{E}_{\mathrm{y}(\mathrm{t})}=\frac{1}{3} \mathrm{E}_{\mathrm{x}(\mathrm{t})}
\end{aligned}
$$

48.

Sol:
i) Ans: (b)

$$
\begin{aligned}
& x(t)=e^{-8 t} u(t) * e^{-8 t} u(t)=\frac{1}{16} e^{-8 t t} \\
& x\left(\frac{1}{16}\right)=\frac{1}{16 \sqrt{e}}
\end{aligned}
$$

ii) Ans: (c)
$\mathrm{S}_{\mathrm{GG}}(\omega)=\left\lvert\, \mathrm{G}(\omega)^{2}=\frac{1}{64+\omega^{2}}\right.$

$$
\mathrm{S}_{\mathrm{GG}}(0)=\frac{1}{64}
$$

iii) Ans: (b)

$$
\begin{aligned}
& \mathrm{y}(\tau)=\mathrm{e}^{-8 \mathrm{t}} \mathrm{u}(\mathrm{t}) * \mathrm{e}^{8 \mathrm{t}} \mathrm{u}(-\mathrm{t}) \\
& \mathrm{y}(\tau)=\frac{1}{16} \mathrm{e}^{-8|\tau|} \\
& \mathrm{y}(0)=\frac{1}{16}
\end{aligned}
$$

49.

Sol: $\quad \mathrm{r}_{\mathrm{xy}}(\tau)=\mathrm{x}(\mathrm{t}) * \mathrm{y}(-\mathrm{t})=\mathrm{e}^{-\mathrm{t}} \mathrm{u}(\mathrm{t}) * \mathrm{e}^{3 \mathrm{t}} \mathrm{u}(-\mathrm{t})$

$$
\begin{aligned}
& r_{x y}(\tau) \leftrightarrow \frac{1}{1+j \omega} \frac{1}{3-j \omega}=\frac{1 / 4}{1+j \omega}+\frac{1 / 4}{3-j \omega} \\
& r_{x y}(\tau)=\frac{1}{4} e^{-\tau} u(\tau)+\frac{1}{4} e^{3 \tau} u(-\tau)
\end{aligned}
$$

50.

Sol: Given $x(t)=\operatorname{sinc} 10 t$
Sinct $\leftrightarrow \operatorname{rect}\left(\frac{\omega}{2 \pi}\right)$ $\sin \mathrm{c}(10 t) \leftrightarrow \frac{1}{10} \operatorname{rect}\left(\frac{\omega}{20 \pi}\right)$
$X(\omega)=\frac{1}{10} \operatorname{rect}\left(\frac{\omega}{20 \pi}\right)$
$H(\omega)=3 \operatorname{rect}\left(\frac{\omega}{8 \pi}\right) \mathrm{e}^{-\mathrm{j} 2 \omega}$

$$
\begin{aligned}
\therefore \mathrm{Y}(\omega) & =\mathrm{X}(\omega) \mathrm{H}(\omega) \\
& =\frac{1}{10} \operatorname{rect}\left(\frac{\omega}{20 \pi}\right) 3 \operatorname{rect}\left(\frac{\omega}{8 \pi}\right) \mathrm{e}^{-\mathrm{j} 2 \omega}
\end{aligned}
$$

$$
=\frac{3}{10} \operatorname{rect}\left(\frac{\omega}{8 \pi}\right) \mathrm{e}^{-\mathrm{j} 2 \omega}
$$

\therefore output energy

$$
\begin{aligned}
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty}|\mathrm{Y}(\omega)|^{2} \mathrm{~d} \omega \\
& =\frac{1}{2 \pi} \int_{-4 \pi}^{4 \pi} \frac{9}{100} \\
& =\frac{1}{2 \pi} \cdot \frac{9}{100} \times 8 \pi
\end{aligned}
$$

Output energy $=\frac{36}{100} \mathrm{~J}$
51.

Sol:
(a) $\omega_{\mathrm{m}}=200 \pi$
$\omega_{\mathrm{s}}=400 \pi \mathrm{rad} / \mathrm{sec}$

(b) $\omega_{\mathrm{m}}=400 \pi$
$\omega_{\mathrm{s}}=800 \pi \mathrm{rad} / \mathrm{sec}$

(c) $\mathrm{x}_{3}(\mathrm{t})=\frac{5}{2}[\cos (500 \pi \mathrm{t})+\cos (3000 \pi \mathrm{t})]$
$\omega_{\mathrm{m}}=5000 \pi$
$\omega_{\mathrm{s}}=10,000 \pi \mathrm{rad} / \mathrm{sec}$
(d) $X_{4}(\omega)=\frac{1}{6+\mathrm{j} \omega} \cdot \operatorname{rect}\left(\frac{\omega}{2 \mathrm{a}}\right)$
$\omega_{\mathrm{m}}=\mathrm{a}$
$\mathrm{f}_{\mathrm{m}}=\frac{\mathrm{a}}{2 \pi}$
$\mathrm{f}_{\mathrm{s}}=2 \mathrm{f}_{\mathrm{m}}=\frac{\mathrm{a}}{\pi} \mathrm{Hz}$
(e) $\omega_{\mathrm{m}}=120 \pi, \mathrm{f}_{\mathrm{m}}=60 \mathrm{~Hz}$
$\left(\mathrm{f}_{\mathrm{s}}\right)=2 \mathrm{f}_{\mathrm{m}}=120 \mathrm{~Hz}$
(f) Ans: 0.4

Sol:

$$
\begin{aligned}
& \sum_{\mathrm{n}=-\infty}^{+\infty} \delta\left(\mathrm{t}-\mathrm{nT} \mathrm{~s}_{\mathrm{s}}\right) \leftrightarrow \mathrm{f}_{\mathrm{s}} \sum_{\mathrm{n}=-\infty}^{+\infty} \delta\left(\omega-\mathrm{n} \omega_{\mathrm{s}}\right) \\
& \sum_{\mathrm{n}=-\infty}^{+\infty} \delta(\mathrm{t}-10 \mathrm{n}) \leftrightarrow \frac{1}{10} \sum_{\mathrm{n}=-\infty}^{+\infty} \delta\left(\omega-\mathrm{n} \frac{\pi}{5}\right) \\
& \mathrm{x}_{1}(\mathrm{t}) * \sum_{\mathrm{n}=-\infty}^{\infty} \delta(\mathrm{t}-10 \mathrm{n}) \leftrightarrow \mathrm{X}_{1}(\omega) \frac{1}{10} \sum_{\mathrm{n}=-\infty}^{+\infty} \delta\left(\omega-\mathrm{n} \frac{\pi}{5}\right) \\
& X(\omega)=\frac{1}{10} \sum_{n=-\infty}^{+\infty} X_{1}\left(\frac{n \pi}{5}\right) \delta\left(\omega-n \frac{\pi}{5}\right) \\
& \mathrm{X}(\omega)=\frac{1}{10}\left[---+\mathrm{X}_{1}(0) \delta(\omega)+\mathrm{X}_{1}\left(\frac{\pi}{5}\right) \delta\left(\omega-\frac{\pi}{5}\right)+\right. \\
& \left.\mathrm{X}_{1}\left(\frac{2 \pi}{5}\right) \delta\left(\omega-\frac{2 \pi}{5}\right)+\mathrm{X}_{1}\left(\frac{3 \pi}{5}\right) \delta\left(\omega-\frac{3 \pi}{5}\right)+----\right] \\
& \mathrm{X}_{1}\left(\frac{\pi}{5}\right)=2, \mathrm{X}_{1}\left(\frac{2 \pi}{5}\right)=2, \\
& X_{1}\left(\frac{3 \pi}{5}\right)=X_{1}\left(\frac{4 \pi}{5}\right)=----=0
\end{aligned}
$$

The maximum frequency in above signal is
$\omega_{\mathrm{m}}=2 \pi / 5$
$2 \pi f_{m}=2 \pi / 5$
$\mathrm{f}_{\mathrm{m}}=1 / 5$
Nyquist rate $=2 \mathrm{f}_{\mathrm{m}}=2 / 5=0.4$
52.

Sol:

(a) $\mathrm{X}(\omega)+\mathrm{e}^{-\mathrm{j} \omega} \mathrm{X}(\omega)$ no change in frequency axis $\left(\omega_{\mathrm{s}}\right)_{\min }=2 \omega_{\mathrm{m}}=\omega_{0}$
(b) $\frac{d x(t)}{d t} \leftrightarrow j \omega \cdot X(\omega)$

(c) $\quad x(3 t) \leftrightarrow \frac{1}{3} \cdot x\left(\frac{\omega}{3}\right)$

$$
\omega_{\mathrm{S}}=2 \times \frac{3 \omega_{0}}{2}=3 \omega_{0}
$$

(d) $\frac{1}{2} \mathrm{X}\left(\omega+\omega_{0}\right)+\frac{1}{2} \mathrm{X}\left(\omega+\omega_{0}\right)$

$$
\omega_{\mathrm{S}}=2 \times \frac{3 \omega_{0}}{2}=3 \omega_{0}
$$

53.

Sol:
(a) $\mathrm{X}_{1}(2 \mathrm{t}) \leftrightarrow \frac{1}{2} \mathrm{X}_{1}\left(\frac{\omega}{2}\right)$

In this operation maximum frequency becomes double. So, $f_{m}=4 k, f_{s}=2 f_{m}=8 k$
(b) $\mathrm{x}_{2}(\mathrm{t}-3) \leftrightarrow \mathrm{e}^{-3 \mathrm{j} \omega} . \mathrm{X}_{2}(\omega)$

In this operation maximum frequency does not change double. So, $\mathrm{f}_{\mathrm{m}}=3 \mathrm{k}, \mathrm{f}_{\mathrm{s}}=2 \mathrm{f}_{\mathrm{m}}=6 \mathrm{k}$
(c) $\mathrm{X}_{1}(\omega)+\mathrm{X}_{2}(\omega)$

In this operation maximum frequency is $\max (2 \mathrm{k}, 3 \mathrm{k})$. So, $\mathrm{f}_{\mathrm{m}}=3 \mathrm{k}, \mathrm{f}_{\mathrm{s}}=2 \mathrm{f}_{\mathrm{m}}=6 \mathrm{k}$
(d) $X_{1}(\omega) * X_{2}(\omega)$

In this operation maximum frequency is $2 \mathrm{k}+3 \mathrm{k} . \mathrm{So}, \mathrm{f}_{\mathrm{m}}=5 \mathrm{k}, \mathrm{f}_{\mathrm{s}}=2 \mathrm{f}_{\mathrm{m}}=10 \mathrm{k}$
(e) $X_{1}(\omega) \cdot X_{2}(\omega)$

In this operation maximum frequency is $\min (2 k, 3 k)$. So, $f_{m}=2 k, f_{s}=2 f_{m}=4 k$
(f) $\frac{1}{2}\left[\mathrm{X}_{1}(\omega+1000 \pi)+\mathrm{X}_{1}(\omega-1000 \pi)\right]$
$\mathrm{f}_{\mathrm{m}}=2.5 \mathrm{kHz},\left(\mathrm{f}_{\mathrm{s}}\right)_{\min }=2 \mathrm{f}_{\mathrm{m}}=5 \mathrm{kHz}$
54. Ans: 80

Sol: Given
$x(t)=2 \cos (180 \pi t) \cos (60 \pi t)$,
$\mathrm{f}_{\mathrm{s}}=200 \mathrm{~Hz}$

$$
\begin{array}{ll}
\mathrm{x}(\mathrm{t})=\cos (240 \pi \mathrm{t})+\cos (120 \pi \mathrm{t}) \\
\omega_{1}=240 \pi & \omega_{2}=120 \pi \\
\mathrm{f}_{1}=120 \mathrm{~Hz} & \mathrm{f}_{2}=60 H z
\end{array}
$$

The frequencies present in the sampled signal are

$$
\begin{aligned}
& \mathrm{n}=0 \Rightarrow \pm \mathrm{f}_{1}, \pm \mathrm{f}_{2},= \pm 120, \pm 60 \\
& \mathrm{n}=1 \Rightarrow \mathrm{f}_{\mathrm{s}} \pm \mathrm{f}_{1}, \mathrm{f}_{\mathrm{s}} \pm \mathrm{f}_{2}=320,80,260,140 \\
& \mathrm{n}=2 \Rightarrow 2 \mathrm{f}_{\mathrm{s}} \pm \mathrm{f}_{1}, 2 \mathrm{f}_{\mathrm{s}} \pm \mathrm{f}_{2}=520,280,460,340
\end{aligned}
$$

The above frequencies are passed through an ideal LPF whose cutoff frequency is 100 Hz .

The frequencies present at the output of LPF are $60 \mathrm{~Hz}, 80 \mathrm{~Hz}$.
So, the maximum frequency present at the output of low pass filter $=80 \mathrm{~Hz}$.
55. Ans: (a)

Sol: $f_{m}=200 H z, f_{s}=300 H z$
The frequency in sampled signals are $=$ $200,100,500,400,800$.
Cutoff frequency of filter is 100 Hz .
Output frequency $=100 \mathrm{~Hz}$

56. Ans: (b)

Sol: The sampled signal spectrum is

	35	Postal Coaching Solutions

$\mathrm{X}_{\delta}(\mathrm{f})=\frac{1}{\mathrm{~T}_{\mathrm{s}}} \sum_{\mathrm{n}=-\infty}^{\infty} \mathrm{X}\left(\mathrm{f}-\mathrm{nf}_{\mathrm{s}}\right)$
If $f_{s}=f_{m} \rightarrow$ The spectrum is constant spectrum
57. Ans: (a)

Sol: $\mathrm{f}_{\mathrm{m}}<\mathrm{f}_{\mathrm{c}}<\mathrm{f}_{\mathrm{s}}-\mathrm{f}_{\mathrm{m}} \Rightarrow 5<\mathrm{f}_{\mathrm{c}}<9$
58. Ans: (c)

Sol: $\mathrm{f}_{\mathrm{m}}=100, \mathrm{f}_{\mathrm{s}}-\mathrm{f}_{\mathrm{m}}=150$
$\mathrm{f}_{\mathrm{s}}=250$
$\mathrm{T}_{\mathrm{s}}=\frac{1}{\mathrm{f}_{\mathrm{s}}}=4 \mathrm{~m} \mathrm{sec}$
59. Ans: (d)

Sol: $\mathrm{f}_{\mathrm{s}}=\frac{1}{\mathrm{~T}_{0}}=\frac{1}{10^{-3}}=10^{3}=1 \mathrm{kHz}$

$$
C_{n}=\frac{1}{T_{0}} \int_{\frac{-T_{0}}{6}}^{\frac{T_{0}}{6}} 3 \cdot e^{-j n \omega_{0} t} d t=\frac{\sin \left(\frac{n \pi}{3}\right)}{n \pi}
$$

$\therefore \mathrm{C}_{\mathrm{n}}=0$ for $\mathrm{n}=3,6,9 \ldots$.
$\mathrm{C}_{\mathrm{n}} \neq 0$ for $\mathrm{n}=0,1,2,4,6,7,8,10 \ldots .$.
$\therefore \pm \mathrm{f} \pm 3 \mathrm{f}_{\mathrm{s}}, \quad+\mathrm{f} \pm 6 \mathrm{f}_{\mathrm{s}} \ldots$.
Are not present in signal
$\pm 400 \pm 3(1000)= \pm 3.4 \mathrm{~K}, \pm 2.6 \mathrm{~K}$
So options with 3.4 K and 2.6 K are wrong
So (c) and (a) are wrong.
3.6 K is out of the given range [2.5 to 3.5]

So (B) is wrong
So (D) is correct.
60.
(i) Ans: (b)

Sol:

Output of multiplier is $=x(t) \cdot \cos (1000 \pi \mathrm{t})$

$$
=\frac{1}{2} X(\omega-1000 \pi)+\frac{1}{2} X(\omega+1000 \pi)
$$

$$
\mathrm{h}(\mathrm{t})=\frac{\sin (1500 \pi \mathrm{t})}{\pi \mathrm{t}}
$$

The maximum frequency in $y(t)=1500 \pi$
(ii) Ans: (a)

Sol: $x(t)=\cos \left(10 \pi t+\frac{\pi}{4}\right)$
$\mathrm{f}_{\mathrm{s}}=15 \mathrm{~Hz}, \omega_{\mathrm{s}}=2 \pi \mathrm{f}_{\mathrm{s}}=30 \pi \mathrm{~Hz}$

$$
\begin{aligned}
& \omega_{m}=1500 \pi \\
& f_{n}=750 \\
& \left(f_{s}\right)_{\text {min }}=2 f_{n}=1500 \mathrm{~Hz} \\
& =1500 \text { samples } / \mathrm{sec}
\end{aligned}
$$

	36	Signals \& Systems

$$
\mathrm{h}(\mathrm{t})=\left(\frac{\sin \pi \mathrm{t}}{\pi \mathrm{t}}\right) \cdot \cos \left(40 \pi \mathrm{t}-\frac{\pi}{2}\right)
$$

$$
\begin{aligned}
h(t) & =\frac{\sin \pi \mathrm{t}}{\pi \mathrm{t}}\left[\cos (40 \pi \mathrm{t}) \cos \frac{\pi}{2}+\sin 40 \pi \mathrm{t} \sin \frac{\pi}{2}\right] \\
\mathrm{h}(\mathrm{t}) & =\frac{\sin \pi \mathrm{t}}{\pi \mathrm{t}} \cdot \sin 40 \pi \mathrm{t} \\
& =\frac{1}{2 \mathrm{j}}\left[\frac{\sin \pi \mathrm{t}}{\pi \mathrm{t}} \cdot \mathrm{e}^{\mathrm{j} 40 \pi \mathrm{t}}-\frac{\sin \pi \mathrm{t}}{\pi \mathrm{t}} \cdot \mathrm{e}^{-\mathrm{j} 40 \pi \mathrm{t}}\right]
\end{aligned}
$$

$$
x(t)=\cos (10 \pi t) \cos \frac{\pi}{4}-\sin (10 \pi t) \sin \frac{\pi}{4}
$$

$$
\mathrm{X}(\omega)=\frac{1}{\sqrt{2}}[\pi(\delta(\omega+10 \pi)+\delta(\omega-10 \pi))]
$$

$$
-\frac{1}{\sqrt{2}}\left[\frac{\pi}{\mathrm{j}}(\delta(\omega-10 \pi)-\delta(\omega+10 \pi))\right]
$$

Sampled signal spectrum
$X_{\delta}(\omega)=f_{\mathrm{s}} \sum_{\mathrm{n}=-\infty}^{\infty} \mathrm{X}\left(\omega-\mathrm{n} \omega_{\mathrm{s}}\right)$
$\mathrm{n}=0, \omega_{\mathrm{m}},-\omega_{\mathrm{m}}=-10 \pi, 10 \pi$
$\mathrm{n}=1, \omega_{\mathrm{s}}-\omega_{\mathrm{m}}, \omega_{\mathrm{s}}+\omega_{\mathrm{m}}=20 \pi, 40 \pi$
$\mathrm{n}=2,2 \omega_{\mathrm{s}}-\omega_{\mathrm{m}}, 2 \omega_{\mathrm{s}}+\omega_{\mathrm{m}}=50 \pi, 70 \pi$
only 40π frequency is allowed output of filter is

$$
\begin{aligned}
Y(\omega)= & \frac{15}{\sqrt{2}}\left[\frac{-\pi}{2 \mathrm{j}} \delta(\omega+40 \pi)+\frac{\pi}{2 \mathrm{j}} \delta(\omega-40 \pi)\right] \\
& -\frac{15}{\sqrt{2}}\left[\frac{\pi}{\mathrm{j}} \times \frac{1}{2 \mathrm{j}} \delta(\omega-40 \pi)-\frac{\pi}{\mathrm{j}}\left(\frac{-1}{2 \mathrm{j}}\right) \delta(\omega+40 \pi)\right]
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{15}{\sqrt{2}}\left[-\frac{\pi}{2 \mathrm{j}} \delta(\omega+40 \pi)+\frac{\pi}{2 \mathrm{j}} \delta(\omega-40 \pi)\right] \\
& -\frac{15}{\sqrt{2}}\left[\frac{-\pi}{2} \delta(\omega-40 \pi)-\frac{\pi}{2} \delta(\omega+40 \pi)\right] \\
= & \frac{15}{\sqrt{2}}\left[-\frac{\pi}{2 \mathrm{j}} \delta(\omega+40 \pi)+\frac{\pi}{2 \mathrm{j}} \delta(\omega-40 \pi)\right. \\
& \left.+\frac{\pi}{2} \delta(\omega-40 \pi)+\frac{\pi}{2} \delta(\omega+40 \pi)\right] \\
\mathrm{Y}(\omega)= & \frac{15}{\sqrt{2}}\left[\frac{\pi}{2}[\delta(\omega+40 \pi)+\delta(\omega-40 \pi)]\right] \\
& \left.+\frac{\pi}{2 \mathrm{j}}[\delta(\omega-40 \pi)-\delta(\omega+40 \pi)]\right] \\
\mathrm{y}(\mathrm{t})= & \frac{15}{\sqrt{2}}\left[\frac{1}{2} \cos 40 \pi \mathrm{tt}+\frac{1}{2} \sin 40 \pi \mathrm{t}\right] \\
\mathrm{y}(\mathrm{t})= & \frac{15}{2}\left[\cos 40 \pi \mathrm{t} \cos \frac{\pi}{4}+\sin 40 \pi \mathrm{t} \sin \frac{\pi}{4}\right] \\
\mathrm{y}(\mathrm{t})= & \frac{15}{2} \cos \left(40 \pi \mathrm{t}-\frac{\pi}{4}\right)
\end{aligned}
$$

61. Ans: (c)

Sol: $\mathrm{x}(\mathrm{t})=\mathrm{m}(\mathrm{t}) \mathrm{c}(\mathrm{t})$
Where $c(t)$ is carrier signal and $m(t)$ is a base band signal and $f_{c}>f_{H}$ (where f_{c} is carrier frequency, f_{H} is the highest frequency component of $m(t)$)
$\hat{\mathrm{x}}(\mathrm{t})=\mathrm{m}(\mathrm{t}) . \hat{\mathrm{c}}(\mathrm{t})$
Where $\hat{f}(t)$ is Hilbert transform of $f(t)$.
For the above problem $\mathrm{c}(\mathrm{t})=\sin \left(\pi \mathrm{t}-\frac{\pi}{4}\right)$ and $m(t)=-\sqrt{2}\left(\frac{\sin (\pi t / 5)}{\pi t / 5}\right)$
Complex envelope

$$
\begin{aligned}
& =[\mathrm{x}(\mathrm{t})+\mathrm{j} \hat{\mathrm{x}}(\mathrm{t})] \mathrm{e}^{-\mathrm{j} 2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{t}} \\
& =-\sqrt{2}\left[\mathrm{~m}(\mathrm{t}) \sin \left(\pi \mathrm{t}-\frac{\pi}{4}\right)-\mathrm{jm}(\mathrm{t}) \cos \left(\pi \mathrm{t}-\frac{\pi}{4}\right)\right] \mathrm{e}^{-\mathrm{j} 2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{t}} \\
& =-\sqrt{2} \mathrm{~m}(\mathrm{t})\left[\cos \left(\pi \mathrm{t}-\frac{\pi}{4}\right)+\mathrm{j} \sin \left(\pi \mathrm{t}-\frac{\pi}{4}\right)\right] \mathrm{e}^{-\mathrm{j} 2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{t}}
\end{aligned}
$$

$$
\begin{aligned}
& =-\sqrt{2} m(t) e^{+j\left(\pi t-\frac{\pi}{4}\right)} \cdot e^{-\mathrm{j} 2 \pi\left(\frac{1}{2}\right) t} \\
& =j \sqrt{2} \mathrm{~m}(\mathrm{t}) \mathrm{e}^{-\mathrm{j} \frac{\pi}{4}}=\sqrt{2} \mathrm{~m}(\mathrm{t}) \mathrm{e}^{-\frac{\mathrm{j} \pi}{4}} \\
& =\sqrt{2}\left(\frac{\sin (\pi \mathrm{t} / 5)}{\pi \mathrm{t} / 5}\right) \mathrm{e}^{\mathrm{j} \frac{\pi}{4}}
\end{aligned}
$$

62. Ans: (b)

Sol: $\operatorname{Givens}(\mathrm{t})=\mathrm{e}^{-\mathrm{at}} \cos \left[\left(\omega_{\mathrm{c}}+\Delta \omega\right) \mathrm{t}\right] \mathrm{u}(\mathrm{t})$
Complex Envelope $\vec{s}(t)=s_{+}(t) \mathrm{e}^{-\mathrm{j} \omega_{\mathrm{c}} \mathrm{t}}$
$\widetilde{s}(t)=\left[e^{-a t} e^{j\left(\omega_{c}+\Delta \omega\right) t} u(t)\right] e^{-j \omega_{c} t}$
Complex Envelope $=e^{-a t} e^{j \Delta \omega t} u(t)$
63. Ans: 8

Sol: $Y(\omega)=X(\omega) H(\omega)$

$$
\begin{aligned}
\mathrm{Y}(\omega) & =-2 \mathrm{j} \quad 0<\omega<2 \pi \\
& =2 \mathrm{j} \quad-2 \pi<\omega<0 \\
\int_{-\infty}^{\infty} \mid \mathrm{y}(\mathrm{t}) & \left.\right|^{2} \mathrm{dt}
\end{aligned}=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|\mathrm{y}(\omega)|^{2} \mathrm{~d} \omega .
$$

$$
=\frac{1}{2 \pi}\left[\int_{0}^{2 \pi} 4 \mathrm{~d} \omega+\int_{-2 \pi}^{0} 4 \mathrm{~d} \omega\right]
$$

$$
\begin{aligned}
& =\frac{4}{2 \pi}[2 \pi+2 \pi] \\
& =\frac{16 \pi}{2 \pi} \\
& =8
\end{aligned}
$$

64. Ans: 10 kHz

Sol: $\quad \mathrm{m}(\mathrm{t}) \rightarrow$ band limited to 5 kHz
$\mathrm{m}(\mathrm{t}) \cos (40000 \pi \mathrm{t}) \rightarrow$ modulated signal we require least sampling rate to recover $\mathrm{m}(\mathrm{t}) \rightarrow 2 \times 5 \mathrm{kHz}=10 \mathrm{kHz}$.
65. Ans: (c)

Sol: Aliasing occurs when the sampling frequency is less than twice the maximum frequency in the signal, and it is irreversible process.
So, Statement I is true but Statement II is false.
66. Ans: (b)

Sol: Sampling in one domain makes the signal to be periodic in the other domain. It is true.
Multiplication in one domain is the convolution in the other domain.
Both statements are correct and statement (II) is not the correct explanation of statement (I).

Chapter 5 Laplace Transform

1.

Sol: $\quad \mathrm{e}^{-\mathrm{at}} \mathrm{u}(\mathrm{t}) \leftrightarrow \frac{1}{\mathrm{~s}+\mathrm{a}}, \sigma>-\mathrm{a}$
$\mathrm{e}^{\mathrm{at}} \mathrm{u}(-\mathrm{t}) \leftrightarrow \frac{-1}{\mathrm{~s}-\mathrm{a}}, \sigma<\mathrm{a}$
$\mathrm{e}^{-\mathrm{at}} \mathrm{u}(-\mathrm{t}) \leftrightarrow \frac{-1}{\mathrm{~s}+\mathrm{a}}, \sigma>-\mathrm{a}$
(1) $\mathrm{X}_{1}(\mathrm{~s})=\frac{1}{\mathrm{~s}+1}+\frac{1}{\mathrm{~s}+3}, \sigma>-1$
(2) $\mathrm{X}_{2}(\mathrm{~s})=\frac{1}{\mathrm{~s}+2}-\frac{1}{\mathrm{~s}-4},-2<\sigma<4$
(3) no common ROC so no laplace transform for $\mathrm{x}_{3}(\mathrm{t})$.
(4) no common ROC, no laplace transform
(5) no common ROC, no laplace transform
(6) $\mathrm{X}_{6}(\mathrm{~s})=\frac{1}{\mathrm{~s}+1}-\frac{1}{\mathrm{~s}-1},-1<\sigma<1$
02.

Sol: $\operatorname{ROC}=(\sigma>-5) \cap(\sigma>\operatorname{Re}(-\beta))=\sigma>-3$
Imaginary port of ' β ' any value, real part of ' β ' is 3 .
03.

Sol: The possible ROC's are

$$
\sigma>2, \sigma<-3,-3<\sigma<-1,-1<\sigma<2
$$

4.

Sol: $Y(s)=\frac{e^{-3 s}}{s+1}-\frac{e^{-3 s}}{s+2}$

$$
\mathrm{y}(\mathrm{t})=\mathrm{e}^{-(\mathrm{t}-3)} \cdot \mathrm{u}(\mathrm{t}-3)-\mathrm{e}^{-2(\mathrm{t}-3)} \cdot \mathrm{u}(\mathrm{t}-3)
$$

5.

Sol:

(a) $x(t)=e^{-5(t-1)} \cdot u(t-1) \cdot e^{-5} \leftrightarrow X(s)=\frac{\mathrm{e}^{-s} \cdot \mathrm{e}^{-5}}{\mathrm{~s}+5}, \sigma>-5$
(b) $g(t)=A e^{-5 t} \cdot u\left(-t-t_{0}\right)$

$$
\begin{aligned}
& G(\mathrm{~s})=\frac{-\mathrm{A} \cdot \mathrm{e}^{(\mathrm{s}+5) \mathrm{t}_{0}}}{\mathrm{~s}+5}, \sigma<-5 \\
& \mathrm{~A}=-1, \mathrm{t}_{0}=-1
\end{aligned}
$$

6.

Sol:
(a) $x(t)=5 r(t)-5 r(t-2)-15 u(t-2)+5 u(t-4)$

$$
X(s)=\frac{5}{s^{2}}-\frac{5 e^{-2 s}}{s^{2}}-\frac{15 e^{-2 s}}{s}+\frac{5 e^{-4 s}}{s}
$$

(b) Ans: (a)

Sol: $x(t)=r(t)-r(t-1)-r(t-4)+1.5 r(t-6)-0.5 r(t-8)$ $X(s)=\frac{1}{s^{2}}-\frac{\mathrm{e}^{-s}}{\mathrm{~s}^{2}}-\frac{\mathrm{e}^{-4 \mathrm{~s}}}{\mathrm{~s}^{2}}+\frac{3}{2} \frac{\mathrm{e}^{-6 \mathrm{~s}}}{\mathrm{~s}^{2}}-\frac{1}{2} \frac{\mathrm{e}^{-8 \mathrm{~s}}}{\mathrm{~s}^{2}}$
So, $D=-\frac{1}{2}=-0.5$
07.

Sol: $Y(s)=\frac{4\left(s^{2}-e^{-s}\right)}{(s+1)(s+2)}$

$$
\begin{aligned}
&= 4\left[1+\frac{(-3 \mathrm{~s}-2)}{(\mathrm{s}+1)(\mathrm{s}+2)}\right]-\frac{4 \mathrm{e}^{-\mathrm{s}}}{(\mathrm{~s}+1)(\mathrm{s}+2)} \\
& \mathrm{Y}(\mathrm{~s})= 4\left[1+\frac{1}{\mathrm{~s}+1}-\frac{4}{\mathrm{~s}+2}\right]-4 \mathrm{e}^{-\mathrm{s}}\left[\frac{1}{\mathrm{~s}+1}-\frac{1}{\mathrm{~s}+2}\right] \\
& \downarrow_{\text {I.L.T }} \\
& \mathrm{y}(\mathrm{t})= 4 \delta(\mathrm{t})+4 \mathrm{e}^{-\mathrm{t}} \mathrm{u}(\mathrm{t})-16 \mathrm{e}^{-2 \mathrm{t}} \mathrm{u}(\mathrm{t}) \\
&-4 \mathrm{e}^{-(\mathrm{t}-1)} \mathrm{u}(\mathrm{t}-1)+4 \mathrm{e}^{-2(\mathrm{t}-1)} \mathrm{u}(\mathrm{t}-1)
\end{aligned}
$$

8. Ans: (c)

Sol: $\quad X(s)=\frac{1}{(s+1)(s+3)}$

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups \& PSC Exams

$$
\mathrm{G}(\mathrm{~s})=\mathrm{X}(\mathrm{~s}-2)=\frac{1}{(\mathrm{~s}-1)(\mathrm{s}+1)}
$$

$G(\omega)$ converges means ROC include $j \omega$ axis $\quad-1<\sigma<1$.
09.

Sol: $\mathrm{G}(\mathrm{s})=\mathrm{X}(\mathrm{s})+\alpha \mathrm{X}(-\mathrm{s})$, where $\mathrm{X}(\mathrm{s})=\frac{\beta}{\mathrm{s}+1}$

$$
\mathrm{G}(\mathrm{~s})=\frac{\beta \mathrm{s}-\beta-\alpha \beta \mathrm{s}-\alpha \beta}{\mathrm{s}^{2}-1}=\frac{\mathrm{s}}{\mathrm{~s}^{2}-1}
$$

$\alpha \beta-\beta=-1,-\beta-\alpha \beta=0$
$\alpha=-1, \beta=1 / 2$
10.

Sol: $\quad \frac{d y(t)}{d t}=-2 y(t)+\delta(t) \quad \frac{d y(t)}{d t}=2 x(t)$
$\mathrm{sY}(\mathrm{s})=-2 \mathrm{Y}(\mathrm{s})+1----(1)$
$\mathrm{sY}(\mathrm{s})=2 \mathrm{X}(\mathrm{s})$------ (2)
solving (1) and (2)
$Y(s)=\frac{2}{s^{2}+4}, X(s)=\frac{s}{s^{2}+4}$
11.

Sol: (a) $X(s)=\frac{-4}{s+2}+\frac{4}{(s+1)^{3}}-\frac{4}{(s+1)^{2}}+\frac{4}{s+1}$

$$
\begin{aligned}
x(t)= & -4 e^{-2 t} \cdot u(t)+4 \frac{t^{2}}{2} e^{-t} \cdot u(t) \\
& -4 t e^{-t} \cdot u(t)+4 e^{-t} \cdot u(t)
\end{aligned}
$$

(b) $X(s)=-\frac{e^{-2 s}}{(s+1)^{3}}$

$$
x(t)=-(t-2)^{2} \cdot e^{-(t-2)} \cdot u(t-2)
$$

$$
\frac{\mathrm{t}^{2}}{2} \mathrm{e}^{-\mathrm{t}} \mathrm{u}(\mathrm{t}) \leftrightarrow \frac{1}{(\mathrm{~s}+1)^{3}}
$$

12.

Sol: $\mathrm{y}(\mathrm{t})+\mathrm{y}(\mathrm{t}) * \mathrm{x}(\mathrm{t})=\mathrm{x}(\mathrm{t})+\delta(\mathrm{t})$
$\mathrm{Y}(\mathrm{s})+\mathrm{Y}(\mathrm{s}) \mathrm{X}(\mathrm{s})=\mathrm{X}(\mathrm{s})+1$
$\mathrm{Y}(\mathrm{s})=1$
$\mathrm{y}(\mathrm{t})=\delta(\mathrm{t})$
13.

Sol: $\quad \mathrm{x}_{1}(\mathrm{t}-2) \leftrightarrow \frac{\mathrm{e}^{-2 \mathrm{~s}}}{\mathrm{~s}+2}, \sigma>-2$
$\mathrm{x}_{2}(-\mathrm{t}+3) \leftrightarrow \frac{\mathrm{e}^{-3 \mathrm{~s}}}{-\mathrm{s}+3}, \sigma<3$

$$
\mathrm{Y}(\mathrm{~s})=\frac{\mathrm{e}^{-2 \mathrm{~s}}}{\mathrm{~s}+2} \cdot \frac{\mathrm{e}^{-3 \mathrm{~s}}}{-\mathrm{s}+3},-2<\sigma<3
$$

14.

Sol: $\quad \mathrm{sY}(\mathrm{s})+4 \mathrm{Y}(\mathrm{s})+3 \frac{\mathrm{Y}(\mathrm{s})}{\mathrm{s}}=\mathrm{X}(\mathrm{s})$

$$
H(s)=\frac{s}{(s+1)(s+3)}=\frac{\frac{-1}{2}}{s+1}+\frac{\frac{3}{2}}{s+3}
$$

$$
\mathrm{h}(\mathrm{t})=\frac{-1}{2} \mathrm{e}^{-\mathrm{t}} \cdot \mathrm{u}(\mathrm{t})+\frac{3}{2} \mathrm{e}^{-3 \mathrm{t}} \cdot \mathrm{u}(\mathrm{t})
$$

$$
X(s)=\frac{1}{s}+1=\frac{s+1}{s}
$$

$$
\mathrm{Y}(\mathrm{~s})=\mathrm{X}(\mathrm{~s}) \cdot \mathrm{H}(\mathrm{~s})=\frac{1}{\mathrm{~s}+3}
$$

$$
\mathrm{y}(\mathrm{t})=\mathrm{e}^{-3 \mathrm{t}} \cdot \mathrm{u}(\mathrm{t})
$$

15. Ans: (d)

Sol: $\quad X(s)=\frac{1}{s+2}+e^{-6 s}, H(s)=\frac{1}{s}$

$$
\begin{aligned}
& Y(s)=X(s) \cdot H(s)=\frac{1}{s(s+2)}+\frac{e^{-6 s}}{s} \\
& y(t)=\frac{1}{2}\left[u(t)-e^{-2 t} \cdot u(t)\right]+u(t-6)
\end{aligned}
$$

16. Ans: (b)

Sol: $H(s)=\frac{1}{s+5}$

$$
Y(s)=\frac{1}{s+3}-\frac{1}{s+5}=\frac{2}{(s+3)(s+5)}
$$

$\mathrm{X}(\mathrm{s})=\frac{\mathrm{Y}(\mathrm{s})}{\mathrm{H}(\mathrm{s})}=\frac{2}{\mathrm{~s}+3}$
$\mathrm{x}(\mathrm{t})=2 \mathrm{e}^{-3 \mathrm{t}} \mathrm{u}(\mathrm{t})$
17. Ans: (b)

Sol: $\frac{V(s)}{X(s)}=\frac{1}{s+1} \quad \frac{Y(s)}{V(s)}=\frac{1}{s+1}$
$H(s)=\frac{Y(s)}{X(s)}=\frac{1}{s+1} \cdot \frac{1}{s+1}=\frac{1}{(s+1)^{2}}$
$\mathrm{h}(\mathrm{t})=\mathrm{t} \mathrm{e}^{-\mathrm{t}} \cdot \mathrm{u}(\mathrm{t})$
18.

Sol: $y(t)=x(t) * h(t)=e^{-t} u(t) * \sin t u(t)$

$$
\begin{gathered}
\downarrow_{\text {L.T }} \\
\mathrm{Y}(\mathrm{~s})=\frac{1}{\left(\mathrm{~s}^{2}+1\right)(\mathrm{s}+1)}=\frac{\mathrm{A}}{\mathrm{~s}+1}+\frac{\mathrm{Bs}+\mathrm{C}}{\mathrm{~s}^{2}+1} \\
=\frac{1 / 2}{\mathrm{~s}+1}+\frac{-1 / 2 \mathrm{~s}+1 / 2}{\mathrm{~s}^{2}+1} \\
\downarrow_{\text {I.L.T }}
\end{gathered}
$$

$y(t)=\frac{1}{2} e^{-t} u(t)-\frac{1}{2} \cos t u(t)+\frac{1}{2} \sin t u(t)$
19.

Sol: $s^{2} Y(s)+\alpha s Y(s)+\alpha^{2} Y(s)=X(s)$
$H(s)=\frac{1}{s^{2}+\alpha s+\alpha^{2}}$
$\mathrm{G}(\mathrm{s})=\frac{\alpha^{2}}{\mathrm{~s}} \mathrm{H}(\mathrm{s})+\mathrm{sH}(\mathrm{s})+\alpha \mathrm{H}(\mathrm{s})$
$\mathrm{G}(\mathrm{s})=\left[\frac{\alpha^{2}+\mathrm{s}^{2}+\mathrm{s} \alpha}{\mathrm{s}}\right]\left[\frac{1}{s^{2}+\alpha \mathrm{s}+\alpha^{2}}\right]=\frac{1}{\mathrm{~s}}$
Number of poles $=1$.
20. Ans: (d)

Sol: Change the initial condition to $-2 y(0)$ and the forcing function to $-2 x(t)$
21.

Sol: (a) $x(0)=\underset{s \rightarrow \infty}{\operatorname{Lt}} \mathrm{sX}(\mathrm{s})=2$

$$
x(\infty)=\underset{s \rightarrow 0}{\operatorname{Lt} s X}(s)=0
$$

(b) $X(s)=\frac{4 s+5}{2 s+1}$ improper function
$X(s)=2+\frac{3}{2 s+1}=\frac{3}{2 s+1}$
neglect the constant ' 2 ' in the above function.

$$
\mathrm{x}(0)=\underset{\mathrm{s} \rightarrow \infty}{\mathrm{Lt} \mathrm{~s} \cdot} \frac{3}{2 \mathrm{~s}+1}=\frac{3}{2}
$$

$$
x(\infty)=\underset{s \rightarrow 0}{\operatorname{Lt}} \mathrm{SX}(\mathrm{~s})=\underset{\mathrm{s} \rightarrow 0}{\operatorname{Lt}} \frac{4 \mathrm{~s}^{2}+5 \mathrm{~s}}{2 \mathrm{~s}+1}=0
$$

(c) $x(0)=0$

Final value theorem not applicable, because poles on imaginary axis.
(d) $\mathrm{x}(0)=0$
$x(\infty)=-1$
22.

Sol: $H(s)=\frac{k(s+1)}{(s+2)(s+4)} \quad X(s)=\frac{1}{s}$

$$
\mathrm{Y}(\mathrm{~s})=\mathrm{H}(\mathrm{~s}) \cdot \mathrm{X}(\mathrm{~s})=\frac{\mathrm{k}(\mathrm{~s}+1)}{\mathrm{s}(\mathrm{~s}+2)(\mathrm{s}+4)}
$$

$$
\mathrm{y}(\infty)=\underset{\mathrm{s} \rightarrow 0}{\operatorname{Lt}} \mathrm{sY}(\mathrm{~s})=\frac{\mathrm{k}}{8}=1 \Rightarrow \mathrm{k}=8
$$

$$
\mathrm{H}(\mathrm{~s})=\frac{-4}{\mathrm{~s}+2}+\frac{12}{\mathrm{~s}+4}
$$

$$
\mathrm{h}(\mathrm{t})=-4 \mathrm{e}^{-2 \mathrm{t}} \mathrm{u}(\mathrm{t})+12 \mathrm{e}^{-4 \mathrm{t}} \cdot \mathrm{u}(\mathrm{t})
$$

23.

Sol: $\quad H(j \omega)=\frac{j \omega-2}{(j \omega)^{2}+4 j \omega+4}$

$$
x(t)=8 \cos 2 t, \omega_{0}=2
$$

$$
\begin{aligned}
& \mathrm{H}\left(\mathrm{j} \omega_{0}\right)=\frac{\mathrm{j}-1}{4 \mathrm{j}}=\frac{1}{4}+\frac{1}{4} \mathrm{j} \\
& \left|\mathrm{H}\left(\omega_{0}\right)\right|=\frac{1}{2 \sqrt{2}}, \angle \mathrm{H}\left(\omega_{0}\right)=\frac{\pi}{4} \\
& \mathrm{y}(\mathrm{t})=\frac{8}{2 \sqrt{2}} \cos \left(2 \mathrm{t}+\frac{\pi}{4}\right)=2 \sqrt{2} \cos \left(2 \mathrm{t}+\frac{\pi}{4}\right)
\end{aligned}
$$

24. Ans: (a)

Sol: $H(j \omega)=\frac{-\omega^{2}+1}{-\omega^{2}+2 j \omega+1}$

$$
\begin{aligned}
\omega_{0} & =1 \mathrm{rad} / \mathrm{sec} \\
\mathrm{H}\left(\omega_{0}\right) & =0 \\
\mathrm{y}(\mathrm{t}) & =0 \text { for all } \omega_{\mathrm{s}}
\end{aligned}
$$

25.

Sol:
(i) Ans: (d)

$$
\begin{aligned}
& H(s)=\frac{2}{s^{2}-s-2} \quad X(s)=\frac{1}{s} \\
& Y(s)=X(s) H(s)=\frac{2}{s(s+1)(s-2)}
\end{aligned}
$$

$S=2$ pole lies right side of s-plane
$y(\infty)=\infty$ unbounded
(ii) Ans: 0.5

$$
\begin{aligned}
& H(s)=\frac{1}{s} \\
& x(t)=\frac{\sin t}{\pi t} u(t)
\end{aligned}
$$

$$
\sin \mathrm{t} u(\mathrm{t}) \leftrightarrow \frac{1}{\mathrm{~s}^{2}+1}
$$

$$
\frac{\sin t u(t)}{t} \leftrightarrow \int_{\mathrm{s}}^{\infty} \frac{1}{\mathrm{~s}^{2}+1} \mathrm{ds}=\left.\tan ^{-1}(\mathrm{~s})\right|_{\mathrm{s}} ^{\infty}
$$

$$
=\frac{\pi}{2}-\tan ^{-1}(\mathrm{~s})
$$

$$
X(s)=\frac{1}{\pi}\left[\frac{\pi}{2}-\tan ^{-1}(s)\right]
$$

$$
\begin{aligned}
& =\frac{1}{2}-\frac{1}{\pi} \tan ^{-1}(\mathrm{~s}) \\
\mathrm{H}(\mathrm{~s}) & =\frac{\mathrm{Y}(\mathrm{~s})}{\mathrm{X}(\mathrm{~s})} \\
\Rightarrow \mathrm{Y}(\mathrm{~s}) & =\mathrm{X}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})=\left[\frac{1}{2}-\frac{1}{\pi} \tan ^{-1}(\mathrm{~s})\right] \frac{1}{\mathrm{~s}} \\
\mathrm{y}(\infty) & =\lim _{\mathrm{s} \rightarrow 0} \mathrm{sY}(\mathrm{~s})=\lim _{\mathrm{s} \rightarrow 0}\left[\frac{1}{2}-\frac{1}{\pi} \tan ^{-1}(\mathrm{~s})\right] \\
& =\frac{1}{2}
\end{aligned}
$$

26. Ans: (d)

Sol: For an LTI system input and output frequencies must be same, there may be change in phase.
Given that input is $a_{1} \sin \left(\omega_{1} t+\phi_{1}\right)$ and corresponding output is $\mathrm{a}_{2} \mathrm{~F}\left(\omega_{2} t+\phi_{2}\right)$.
From the above condition F may be sin or \cos and $\omega_{1}=\omega_{2}$.
27.

Sol: Given $X(s)=\frac{s+2}{s-2}$
$y(t)=-\frac{2}{3} e^{2 t} u(-t)+\frac{1}{3} e^{-t} u(t)$
$\mathrm{Y}(\mathrm{s})=\frac{2}{3} \cdot \frac{1}{\mathrm{~s}-2}+\frac{1}{3} \mathrm{e}^{-\mathrm{t}} \mathrm{u}(\mathrm{t})$
$\mathrm{Y}(\mathrm{s})=\frac{2}{3} \cdot \frac{1}{\mathrm{~s}-2}+\frac{1}{3} \frac{1}{\mathrm{~s}+1}$
$\Downarrow \quad \Downarrow$
$\sigma<2 \quad \sigma>-1$
(a) $\quad \therefore \mathrm{H}(\mathrm{s})=\frac{\mathrm{Y}(\mathrm{s})}{\mathrm{X}(\mathrm{s})}$

$$
=\frac{\frac{1}{3}\left[\frac{2(s+1)+s-2}{(s-2)(s+1)}\right] \sigma<2, \sigma>-1, \sigma>0}{\left[\frac{s+2}{s-2}\right]} \quad \begin{aligned}
& \Downarrow \\
& \\
& \sigma>-1
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{3} \frac{3 \mathrm{~s}}{(\mathrm{~s}+1)(\mathrm{s}+2)} \\
& =\frac{\mathrm{s}}{(\mathrm{~s}+1)(\mathrm{s}+2)}, \sigma>-1
\end{aligned}
$$

(b) The input is $\mathrm{e}^{3 \mathrm{t}} \forall \mathrm{t}$
\therefore the output $=H(3) \times$ input

$$
\begin{aligned}
& =\frac{3}{4 \times 5} e^{3 t} \\
y(t) & =\frac{3}{20} e^{3 t}
\end{aligned}
$$

28.

Sol: $H(s)=\frac{s^{2}+s-2}{s+3}$

$$
\mathrm{H}_{\mathrm{inv}}(\mathrm{~s})=\frac{1}{\mathrm{H}(\mathrm{~s})}=\frac{\mathrm{s}+3}{(\mathrm{~s}+2)(\mathrm{s}-1)}
$$

$\sigma>+1$ causal unstable
Does not exist in this case a causal \& stable system.
29. Ans: (c)

Sol:
(a) A system to be stable \& causal all the poles of the system should lie in the left half of s-plane.
(b) Any system property like causality, stability doesn't depend on the location of zero's. It depends only on poles location.
(c) There is no necessity that the poles lie within $|\mathbf{s}|=1$
All the roots of characteristic equation means all the poles of the system should lie in left half of s-plane.
30. Ans: (a)

Sol: $\quad Y(s)=\frac{1}{s+2}, H(s)=\frac{s-1}{s+1}$
$\mathrm{X}(\mathrm{s})=\frac{\mathrm{Y}(\mathrm{s})}{\mathrm{H}(\mathrm{s})}=\frac{\mathrm{s}+1}{(\mathrm{~s}-1)(\mathrm{s}+2)}=\frac{2 / 3}{\mathrm{~s}-1}+\frac{1 / 3}{\mathrm{~s}+2}$
Stable input $-2<\sigma<1$
$x(t)=-\frac{2}{3} e^{t} u(-t)+\frac{1}{3} e^{-2 t} \cdot u(t)$

31. Ans: $\mathbf{- 2 . 1 9}$

Sol: $\quad Y(s)=1-\frac{4}{s+6}$

$$
\begin{aligned}
\mathrm{y}(\mathrm{t}) & = \\
\mathrm{y}(0.1) & =-4 \mathrm{e}^{-0.6} \\
& =-2.19
\end{aligned}
$$

32. Ans: $(\mathrm{a}, \mathrm{c}$ \& d)

Chapter (6) Discrete Time Fourier Transform

1.

Sol:

(a) $H(\omega)=\frac{\sin \left(\frac{7 \omega}{2}\right)}{\sin \left(\frac{\omega}{2}\right)}$

Here $\mathrm{N}_{1}=3$

$\mathrm{h}(\mathrm{n}) \neq 0 \mathrm{n}<0-$ non - causal
(b)

Here $\mathrm{N}_{1}=1$
After applying time shifting property

$\mathrm{h}(\mathrm{n})=0 \mathrm{n}<0$ causal
(c) $\mathrm{h}(\mathrm{n})=\delta(\mathrm{n}-3)+\delta(\mathrm{n}+2)-$ non causal
02.

Sol: (a) $a^{n} u(n) \leftrightarrow \frac{1}{1-a^{-j \omega}}$

$$
\begin{gathered}
y(n)=\left(\frac{1}{4}\right)^{n} u(n) \\
Y\left(e^{j \omega}\right)=\frac{1}{1-\frac{1}{4} e^{-j \omega}}
\end{gathered}
$$

$\mathrm{Y}\left(\mathrm{e}^{\mathrm{j} 0}\right)=\frac{1}{1-\frac{1}{4}}=\frac{4}{3}$
(b) $X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x(n) e^{-j \omega n}$

$$
\omega=\pi
$$

$$
X\left(e^{\mathrm{j} \pi}\right)=\sum_{\mathrm{n}=-\infty}^{\infty} \mathrm{x}(\mathrm{n})(-1)^{\mathrm{n}}=\cos ^{3}(3 \pi)=-1
$$

(c) $\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=1+2 \mathrm{e}^{-\mathrm{j} \omega}+3 \mathrm{e}^{-2 \mathrm{j} \omega}+4 \mathrm{e}^{-3 \mathrm{j} \omega}$

DC gain $\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=1+2+3+4=10$
HF gain $\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \pi}\right)=1-2+3-4=-2$
03.

Sol:
(i) $\mathrm{X}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=1+\mathrm{e}^{\mathrm{j} \omega}+\mathrm{e}^{-\mathrm{j} \omega}+\frac{3}{2}[1+\cos 2 \omega]$
$X\left(e^{j \omega}\right)=1+\mathrm{e}^{-\mathrm{j} \omega}+\mathrm{e}^{\mathrm{j} \omega}+\frac{3}{2}\left[1+\frac{\mathrm{e}^{2 j \omega}+\mathrm{e}^{-2 j \omega}}{2}\right]$
$X\left(e^{j \omega}\right)=1+e^{-j \omega}+e^{j \omega}+\frac{3}{2}+\frac{3}{4} \mathrm{e}^{2 j \omega}+\frac{3}{4} \mathrm{e}^{-2 \mathrm{j} \omega}$
$X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x(n) e^{-j \omega n}$
$x(0)=1+\frac{3}{2}=\frac{5}{2}, x(1)=1, x(-1)=1$,
$x(2)=\frac{3}{4}, x(-2)=\frac{3}{4}$
$\mathrm{x}(\mathrm{n})=\left[\frac{3}{4}, 1, \frac{5}{2}, 1, \frac{3}{4}\right]$
\uparrow
(ii) $\quad \mathrm{x}(\mathrm{n})=2 \delta(\mathrm{n}+3)-3 \delta(\mathrm{n}-3)$
$X\left(\mathrm{e}^{\mathrm{j} \omega}\right)=2 \mathrm{e}^{3 j \omega}-3 \mathrm{e}^{-3 j \omega}=2\left[\mathrm{e}^{3 j \omega}-\mathrm{e}^{-3 j \omega}\right]-\mathrm{e}^{-3 j \omega}$
$X\left(\mathrm{e}^{\mathrm{j} \omega}\right)=4 \mathrm{j} \sin (3 \omega)-\mathrm{e}^{-3 j \omega}$
Given $X\left(e^{j \omega}\right)=\operatorname{asin}(b \omega)+c e^{\mathrm{j} d \omega}$
$a=4 j, b=3, c=-1, d=-3$

	44	Signals \& Systems

4.

$$
Y\left(e^{j \omega}\right)=\frac{\sin \left(\frac{\pi n}{4}\right)}{n \pi}\left[e^{j \frac{\pi}{2} n}+e^{-j \frac{\pi}{2} n}\right]
$$

$$
\mathrm{y}(\mathrm{n})=2 \frac{\sin \left(\frac{\pi \mathrm{n}}{4}\right)}{\mathrm{n} \pi} \cos \left(\frac{\pi \mathrm{n}}{2}\right)
$$

5.

Sol:
(b) $Y\left(\mathrm{e}^{\mathrm{j} \omega}\right)=\mathrm{X}\left(\mathrm{e}^{\mathrm{j} \omega}\right)+\mathrm{X}\left(\mathrm{e}^{\mathrm{j}(\omega-\pi)}\right)$

$$
\begin{aligned}
& \text { (a) } \omega \\
& \mathrm{g}(\mathrm{n})=(-1)^{\mathrm{n}} \cdot \mathrm{~h}(\mathrm{n}) \\
& G\left(\mathrm{e}^{\mathrm{j} \omega}\right)=\mathrm{H}\left(\mathrm{e}^{\mathrm{j}(\omega-\pi)}\right) \\
& \text { Ideal HPF }
\end{aligned}
$$

06.

Sol: $\left(\frac{1}{2}\right)^{n} u(n) \leftrightarrow \frac{1}{1-\frac{1}{2} \mathrm{e}^{-\mathrm{j} \omega}}$
From time scaling property

$$
\left(\frac{1}{2}\right)^{\frac{\mathrm{n}}{10}} \mathrm{u}\left(\frac{\mathrm{n}}{10}\right) \leftrightarrow \frac{1}{1-\frac{1}{2} \mathrm{e}^{-\mathrm{j} 10 \omega}}
$$

7. Ans: (b)

Sol: $x(2 n)=\{1,3,1\}$

$$
\begin{aligned}
& \mathrm{x}(2 \mathrm{n})=\delta(\mathrm{n}+1)+3 \delta(\mathrm{n})+\delta(\mathrm{n}-1) \\
& \delta\left(\mathrm{n}-\mathrm{n}_{0}\right) \leftrightarrow \mathrm{e}^{-\mathrm{j} \omega \mathrm{n}_{0}}
\end{aligned}
$$

$$
\mathrm{FT}[x(2 n)]=3+2 \cos \omega
$$

8.

Sol:

$$
\begin{aligned}
& \begin{array}{l|l|ll}
& & \\
& & \\
& -\omega_{1} & & \\
\hline-\pi & \downarrow & \omega_{1} & \pi \\
\hline
\end{array} \\
& \begin{aligned}
& \mathrm{X}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=\frac{-\mathrm{j}}{2} \delta\left(\omega+\omega_{1}\right)+\frac{\mathrm{j}}{2} \delta\left(\omega-\omega_{1}\right) \\
& 1 \leftrightarrow 2 \pi \delta(\omega) \\
& 1 . \mathrm{e}^{\mathrm{j} \omega_{0} \mathrm{n}} \leftrightarrow 2 \pi \delta\left(\omega-\omega_{0}\right)
\end{aligned}
\end{aligned}
$$

By applying inverse DTFT

$$
\begin{aligned}
x(n) & =\frac{1}{2 \pi}\left[\frac{-j}{2} e^{j\left(-\omega_{1}\right) n}+\frac{j}{2} e^{j \omega_{1} \mathrm{n}}\right] \\
& =\frac{1}{2 \pi}\left[\frac{1}{2 j} e^{-\mathrm{j} \omega_{1} \mathrm{n}}-\frac{1}{2 j} e^{\mathrm{j} \omega_{1} \mathrm{n}}\right] \\
& =-\frac{1}{2 \pi} \sin \omega_{1} \mathrm{n}
\end{aligned}
$$

9.

Sol: $\alpha^{\mathrm{n}} \mathrm{u}(\mathrm{n}) \leftrightarrow \frac{1}{1-\alpha \mathrm{e}^{-\mathrm{j} \omega}}$

$$
\begin{aligned}
& \alpha^{n-3} u(n-3) \leftrightarrow \frac{e^{-3 j \omega}}{1-\alpha e^{-j \omega}} \\
& e^{\mathrm{jn} \frac{\pi}{8}} \alpha^{n-3} \cdot u(n-3) \leftrightarrow\left[\frac{\mathrm{e}^{-3 j(\omega-\pi / 8)}}{1-\alpha \mathrm{e}^{-\mathrm{j}(\omega-\pi / 8)}}\right] \\
& \mathrm{ne}^{\mathrm{jn} \frac{\pi}{8}} \alpha^{\mathrm{n}-3} \cdot \mathrm{u}(\mathrm{n}-3) \leftrightarrow \mathrm{j} \frac{\mathrm{~d}}{\mathrm{~d} \omega}\left[\frac{\mathrm{e}^{-3 \mathrm{j}(\omega-\pi / 8)}}{1-\alpha \mathrm{e}^{-\mathrm{j}(\omega-\pi / 8)}}\right]
\end{aligned}
$$

10.

Sol:

Input signal frequencies are $\frac{\pi}{8}, \frac{\pi}{4}$
Then the output is $y(n)=\sin \left(\frac{\pi}{8} n\right)$
11.

Sol: For an LTI system input is $x(n)=e^{j \omega_{0} n}$ then output is $y(n)=e^{j \omega_{0} n} \cdot H\left(e^{j \omega_{0}}\right)$
$\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=\sum_{\mathrm{n}=-\infty}^{\infty} \mathrm{h}(\mathrm{n}) \mathrm{e}^{-\mathrm{j} \omega \mathrm{n}}$
$H\left(e^{j \omega}\right)=8 \sqrt{2} \cos 2 \omega-4 \sqrt{2} \cos \omega$
$\omega_{0}=\frac{\pi}{4}$
$H\left(e^{j \omega_{0}}\right)=-4 \quad y(n)=-4 e^{j n \frac{\pi}{4}}$
12.

Sol: (a) $\mathrm{y}_{1}(\mathrm{n})=\mathrm{x}_{1}^{2}(\mathrm{n})$ it is not an LTI system.
(b) Input frequency and output frequency are same. So, it is LTI system.
$H\left(\mathrm{e}^{\mathrm{j} \omega}\right)=2$
(c) $y_{3}(n)=x_{3}(2 n)$ it is not an LTI system.
13.

Sol: $\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=2 \alpha \cos \omega+\beta$
$\left.\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)\right|_{\omega=\frac{2 \pi}{3}}=\left.0 \quad \mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)\right|_{\omega=\frac{2 \pi}{8}}=1$
$\alpha=\beta \quad \alpha \sqrt{2}+\beta=1$
$\beta=\frac{1}{1+\sqrt{2}}$
DC gain $=\mathrm{H}\left(\mathrm{e}^{\mathrm{j} 0}\right)=3 \alpha=\frac{3}{1+\sqrt{2}}$
14.

Sol: $H\left(e^{j \omega}\right)=\frac{b+e^{-j \omega}}{1-a e^{-j \omega}}$ $\left|\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)\right|^{2}=1 \Rightarrow \mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right) \cdot \mathrm{H}^{*}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=1$ $\left[\frac{b+e^{-j \omega}}{1-a e^{-j \omega}}\right]\left[\frac{b+e^{j \omega}}{1-a e^{j \omega}}\right]=1$

Only when $\mathrm{a}=-\mathrm{b}$
15. Ans: (a)

Sol: $H\left(e^{j \omega}\right)=1+\alpha e^{-j \omega}+\beta e^{-2 j \omega}$
$x(n)=1+4 \cos n \pi$
$\mathrm{x}_{1}(\mathrm{n})=1 \omega=0$
$\left|\mathrm{H}\left(\mathrm{e}^{\mathrm{j} 0}\right)\right|=1+\alpha+\beta \angle \mathrm{H}\left(\mathrm{e}^{\mathrm{j} 0}\right)=0$
$\mathrm{y}_{1}(\mathrm{n})=1+\alpha+\beta$
$\mathrm{x}_{2}(\mathrm{n})=4 \cos n \pi \quad \omega=\pi$
$\left|\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \pi}\right)\right|=1-\alpha+\beta \angle \mathrm{H}\left(\mathrm{e}^{\mathrm{j} \pi}\right)=0$
$\mathrm{y}_{2}(\mathrm{n})=4(1-\alpha+\beta) \cos n \pi$
$y(n)=(1+\alpha+\beta)+4(1-\alpha+\beta) \cos n \pi$
$y(n)=4$ only when $\alpha=2, \beta=1$
16. Ans: (a)

Sol: $\quad \mathrm{Y}\left(\mathrm{e}^{\mathrm{j} 0}\right)=\sum_{\mathrm{n}=0}^{2} \mathrm{x}(\mathrm{n}) \cdot \sum_{\mathrm{n}=0}^{4} \mathrm{~h}(\mathrm{n})=15 \mathrm{LB}$
17.

Sol: $y(n)=x(n)+2 x(n-1)+x(x-2)$
$\mathrm{Y}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=\mathrm{X}\left(\mathrm{e}^{\mathrm{j} \omega}\right)\left[1+2 \mathrm{e}^{-\mathrm{j} \omega}+\mathrm{e}^{-2 \mathrm{j} \omega}\right]$
$\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=\left[1+\mathrm{e}^{-\mathrm{j} \omega}\right]^{2}$

$$
=[1+\cos \omega-\mathrm{j} \sin \omega]^{2}
$$

(a) $\left|\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)\right|=|2+2 \cos \omega|$
$\angle \mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=-\omega$

(b) Output of given input $10+4 \cos \left(\frac{\pi \mathrm{n}}{2}+\frac{\pi}{4}\right)$ is

$$
\begin{aligned}
\mathrm{x}(\mathrm{n}) & =10, \mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=4 \\
\mathrm{y}(\mathrm{n}) & =40 \\
& =40+4(2) \cos \left(\frac{\pi \mathrm{n}}{4}+\frac{\pi}{4}-\frac{\pi}{2}\right) \\
& =40+8 \cos \left(\frac{\pi \mathrm{n}}{4}-\frac{\pi}{4}\right)
\end{aligned}
$$

18. Ans: (b)

Sol: Anti symmetric, $\mathrm{k}=-2$
$\theta(\omega)=-2 \omega$
Slope $=-2$
19. Ans: (b)

Sol: $\quad x(n)=\cos \left(\frac{5 \pi}{2} n\right)=\cos \left(\frac{\pi}{2} n\right) \quad \omega_{0}=\frac{\pi}{2}$
$\left|\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)\right|=1 \angle \mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega_{0}}\right)=-\frac{\pi}{8}$

$$
\mathrm{y}(\mathrm{n})=\cos \left(\frac{\mathrm{n} \pi}{2}-\frac{\pi}{8}\right)
$$

20. Ans: (b)

Sol:

$\mathrm{x}(\mathrm{n})$ is symmetric about $\mathrm{n}=2$

$$
\angle \mathrm{X}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=-2 \omega
$$

$$
\angle \mathrm{X}\left(\mathrm{e}^{\mathrm{j} \pi / 4}\right)=-2\left(\frac{\pi}{4}\right)=\frac{-\pi}{2}
$$

21. Ans: 3

Sol: $\begin{array}{r}X\left(e^{j \omega}\right)=\frac{6}{4-2 e^{-j \omega}}=\frac{6 / 4}{1-\frac{1}{2} e^{-\mathrm{j} \omega}} \\ \downarrow_{\text {I.F.T }} \\ x(n)=\frac{3}{2}\left(\frac{1}{2}\right)^{n} u(n)\end{array}$

$$
E_{x(n)}=\sum_{n=-\infty}^{+\infty}|x(n)|^{2}=\sum_{n=0}^{\infty}\left(\frac{3}{2}\right)^{2}\left(\frac{1}{2}\right)^{2 n}
$$

$$
=\frac{9}{4} \sum_{\mathrm{n}=0}^{\infty}\left(\frac{1}{4}\right)^{\mathrm{n}}
$$

$$
=\frac{9}{4}\left[\frac{1}{1-1 / 4}\right]=3
$$

22.

Sol:

$$
\mathrm{E}=\frac{1}{2 \pi} \int_{-\omega_{\mathrm{c}}}^{\omega_{\mathrm{c}}} 1 \mathrm{~d} \omega=\frac{\omega_{\mathrm{c}}}{\pi}
$$

23.

Sol:
(a) Ans: $\frac{1}{40}$

By plancheral's relation

$$
\begin{aligned}
& \sum_{\mathrm{n}=-\infty}^{\infty} \mathrm{x}(\mathrm{n}) \mathrm{y}(\mathrm{n})=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathrm{X}\left(\mathrm{e}^{\mathrm{j} \omega}\right) \mathrm{Y}\left(\mathrm{e}^{\mathrm{j} \omega}\right) \mathrm{d} \omega \\
& \mathrm{x}(\mathrm{n})=\frac{\sin \left(\frac{\mathrm{n} \pi}{4}\right)}{2 \pi \mathrm{n}}=\frac{1}{2}\left[\frac{\sin \left(\frac{\mathrm{n} \pi}{4}\right)}{\pi \mathrm{n}}\right]
\end{aligned}
$$

$$
x(n)=2^{n-1} u \underbrace{(-n+2)}_{n \leq 2}
$$

$$
y(n)=2^{-n+2} u(n+1)
$$

Use Plancheral's theorem

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} X\left(e^{j \omega}\right) Y\left(e^{-j \omega}\right) d \omega=\sum_{n=-\infty}^{+\infty} x(n) y(n) \\
&=\sum_{n=-1}^{2} 2^{n-1} \cdot 2^{-n+2} \\
&=\sum_{n=-1}^{2} 2=2+2+2+2 \\
&=8
\end{aligned}
$$

24.

$$
\begin{aligned}
\sum_{\mathrm{n}=-\infty}^{\infty} \frac{\sin \frac{\mathrm{n} \pi}{4}}{2 \pi \mathrm{n}} \times \frac{\sin \frac{\mathrm{n} \pi}{3}}{5 \pi \mathrm{n}} & =\frac{1}{2 \pi} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\left(\frac{1}{2}\right)\left(\frac{1}{5}\right) \mathrm{d} \omega \\
& =\frac{1}{40}
\end{aligned}
$$

(b) Ans: $\mathbf{8}$

Sol:
(a) $\mathrm{X}\left(\mathrm{e}^{\mathrm{j} 0}\right)=\sum_{\mathrm{n}=-\infty}^{\infty} \mathrm{x}(\mathrm{n})=6$
(b) $X\left(\mathrm{e}^{\mathrm{j} \pi}\right)=\sum_{\mathrm{n}=-\infty}^{\infty}(-1)^{\mathrm{n}} \mathrm{x}(\mathrm{n})=2$
(c) $\int_{-\pi}^{\pi} \mathrm{X}\left(\mathrm{e}^{\mathrm{j} \omega}\right) \mathrm{d} \omega=2 \pi \mathrm{x}(0)=4 \pi$
(d) $\int_{-\pi}^{\pi} \mathrm{X}\left(\mathrm{e}^{\mathrm{j} \omega}\right) \mathrm{e}^{2 \mathrm{j} \omega} \mathrm{d} \omega=2 \pi \mathrm{x}(2)=0$
(e) $\int_{-\pi}^{\pi} \mid X\left(e^{j \omega}\right)^{2} d \omega=2 \pi\left[\sum_{n=-\infty}^{\infty}|x(n)|^{2}\right]=28 \pi$
(f) $\int_{-\pi}^{\pi}\left|\frac{d}{d \omega} \mathrm{X}\left(\mathrm{e}^{\mathrm{j} \omega}\right)\right|^{2} \mathrm{~d} \omega=2 \pi\left[\sum_{\mathrm{n}=-\infty}^{\infty}|\mathrm{nx}(\mathrm{n})|^{2}\right]$ $=158 \times 2 \pi=316 \pi$
(g) $\angle \mathrm{X}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=-\alpha \omega=-2 \omega \quad(\alpha=2)$
25. Ans: (d)

Sol: $\mathrm{f}(\mathrm{n})=\mathrm{h}(\mathrm{n}) * \mathrm{~h}(\mathrm{n})$

	1	2	2
1	1	2	2
2	2	4	4
2	2	4	4

$f(n)=\left\{1_{\uparrow}, 4,8,8,4\right\} \Rightarrow$ causal
$\mathrm{g}(\mathrm{n})=\mathrm{h}(\mathrm{n}) * \mathrm{~h}(-\mathrm{n})$
$\mathrm{h}(-\mathrm{n})=\left\{\begin{array}{lll}2 & 2 & 1\end{array}\right\}$
\uparrow
$h(-n)$ ranges from $n=-2$ to $n=0$
$h(n)$ ranges from $n=0$ to $n=2$
$\therefore \mathrm{g}(\mathrm{n})$ ranges from $\mathrm{n}=-2$ to $\mathrm{n}=2$

	1	2	2
2	2	4	4
2	2	4	4
1	1	2	2

$\mathrm{g}(\mathrm{n})=\{2,6,9,6,2\}$
$\Rightarrow \mathrm{g}(\mathrm{n})$ is non causal and maximum value is 9 .
26.

Sol: $\frac{2 \pi \times 5 \mathrm{k}}{40 \mathrm{k}} \leq \omega \leq \frac{2 \pi \times 10 \mathrm{k}}{40 \mathrm{k}}$

$$
\begin{aligned}
\mathrm{F}_{\mathrm{S}} & =2 \mathrm{f}_{\mathrm{m}} \\
& =2 \times 20 \mathrm{k} \\
& =40 \mathrm{kHz}
\end{aligned}
$$

$\frac{\pi}{4} \leq \omega \leq \frac{\pi}{2}$

27. Ans: (a)

Sol: $\quad x(t)=\cos \left(\Omega_{0} t\right)$

$$
\begin{equation*}
\mathrm{x}\left(\mathrm{nT}_{\mathrm{s}}\right)=\cos \left(\Omega_{0} n T_{\mathrm{s}}\right)=\cos \left(\frac{\Omega_{0} \mathrm{n}}{1000}\right) \tag{1}
\end{equation*}
$$

Given $x(n)=\cos \left(\frac{n \pi}{4}\right)=\cos \left(\frac{9 \pi n}{4}\right)$
By comparing (1) \& (2)

$$
\begin{array}{ll}
\frac{\Omega_{0}}{1000}=\frac{\pi}{4} ; & \frac{\Omega_{0}}{1000}=\frac{9 \pi}{4} \\
\Omega_{0}=250 \pi, & 2250 \pi
\end{array}
$$

28. Ans: 2.25 kHz

Sol: $\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=0.5+0.5 \mathrm{e}^{-\mathrm{j} \omega}$
$\omega=\frac{\pi}{2}$ is $3-\mathrm{dB}$ cutoff frequency
$\omega=\frac{2 \pi \mathrm{f}}{\mathrm{f}_{\mathrm{s}}}=\frac{\pi}{2}$
$\frac{2 \pi \mathrm{f}}{9 \mathrm{kHz}}=\frac{\pi}{2}$
$\mathrm{f}=2.25 \mathrm{kHz}$

Chapter
 Z - Transform

1.

Sol: $a^{n} u(n) \leftrightarrow \frac{z}{z-a},|z|>|a|$
$-\mathrm{a}^{\mathrm{n}} \mathrm{u}(-\mathrm{n}-1) \leftrightarrow \frac{\mathrm{z}}{\mathrm{z}-\mathrm{a}},|\mathrm{z}|<|\mathrm{a}|$
ROC $=(|z|>1) \cap(|z|<|\alpha|)=1<|z|<2$
Only when $\alpha= \pm 2$, ' n_{0} ' any value
02.

Sol: (a) finite duration both sided signal $0<|z|<\infty$
(b) finite duration right sided signal $|z|>0$
(c) infinite duration right sided signal

$$
(|z|>1 / 2) \cap(|z|>3 / 4)=|z|>3 / 4
$$

(d) $(|z|>1 / 3) \cap(|z|<3) \cap(|z|>1 / 2)=1 / 2<|z|<3$
03. Ans: (a)

Sol: $\operatorname{ROC}=(|z|>|a|) \cap\left(|z|<\left|b^{2}\right|\right)$ common ROC exists only when $|a|<\left|b^{2}\right|$

04. i) Ans: (b)

Sol:

$$
\begin{aligned}
\text { ROC } & =(|z|>|a|) \cap(|z|>|b|) \cap(|z|<|c|) \\
& =|\mathrm{b}|<|\mathrm{z}|<|\mathrm{c}|
\end{aligned}
$$

ii) $\operatorname{ROC}=(|Z|>|\alpha|) \cap(|Z|<|\beta|)$

$$
x(z)=\frac{Z}{Z-\alpha}-\frac{Z}{Z-\beta}
$$

(a) $\alpha>\beta$ no Z.T
(b) $\alpha<\beta$ Z.T is exist
(c) $\alpha=\beta$ no Z.T
05. Ans: (c)

Sol: $X(z)=\frac{-1 / 2}{1-\frac{1}{2} z^{-1}}+\frac{3 / 2}{1+\frac{1}{2} z^{-1}}$

$$
\begin{aligned}
& x(\mathrm{n})=-\frac{1}{2}\left(\frac{1}{2}\right)^{\mathrm{n}} \mathrm{u}(\mathrm{n})+\frac{3}{2}\left(\frac{-1}{2}\right)^{\mathrm{n}} \cdot \mathrm{u}(\mathrm{n}) \\
& \mathrm{x}(2)=1 / 4
\end{aligned}
$$

6. Ans: (d)

Sol: poles $=\mathrm{j},-\mathrm{j}$, zeros $=0,0$

$$
\begin{aligned}
& X(z)=\frac{k z^{2}}{z^{2}+1} \\
& X(1)=1 \Rightarrow k=2 \\
& X(z)=\frac{2 z^{2}}{z^{2}+1}
\end{aligned}
$$

Given right sided sequence so ROC is $|z|>| \pm j| \Rightarrow|z|>1$

$$
\mathrm{X}(\mathrm{z})=\frac{2 \mathrm{z}^{2}}{\mathrm{z}^{2}+1}, \text { ROC is }|\mathrm{z}|>1
$$

7. Ans: (b)

Sol: $X(z)=\sum_{n=0}^{\infty} \frac{3^{n}}{2+n} z^{2 n}$

$$
\begin{aligned}
= & \frac{1}{2}+z^{2}+\frac{9}{4} z^{4}+\cdots-- \\
x(n) & =\left\{\begin{array}{r}
---\frac{9}{4}, 0,1,0, \frac{1}{2} \\
\uparrow
\end{array}\right\}
\end{aligned}
$$

Now consider (a) option

$$
\begin{aligned}
& Y_{1}(\mathrm{z})=\sum_{\mathrm{n}=0}^{\infty}\left(\frac{2}{3}\right)^{\mathrm{n}} \mathrm{z}^{-\mathrm{n}} \\
&=1+\frac{2}{3} \mathrm{z}^{-1}+\frac{9}{4} \mathrm{z}^{-2}+\cdots-- \\
& \sum_{\mathrm{n}=-\infty}^{\infty} \mathrm{x}(\mathrm{n}) \mathrm{y}_{1}(\mathrm{n}) \neq 0
\end{aligned}
$$

Now consider option (b)

$$
\begin{aligned}
& Y_{2}(z)=z^{-1}+4 z^{-3}+\cdots-\cdots \\
& y_{2}(n)=\{0,1,0,4,-\cdots-\cdots\} \\
& \sum_{n=-\infty}^{\infty} x(n) y_{2}(n)=0
\end{aligned}
$$

8. Ans: $\mathbf{r}=\mathbf{- 1 / 2}$

Sol: $H(z)=\frac{1}{1-\frac{1}{2} z^{-1}}+\frac{r}{1+\frac{1}{4} Z^{-1}}=\frac{1+\frac{1}{4} z^{-1}+r\left(1-\frac{1}{2} z^{-1}\right)}{\left(1-\frac{1}{2} z^{-1}\right)\left(1+\frac{1}{4} z^{-1}\right)}$
Consider the numerator
$1+\frac{1}{4} z^{-1}+r\left(1-\frac{1}{2} z^{-1}\right)$
$(1+r)+\left(\frac{1}{4}-\frac{r}{2}\right) z^{-1}$
zero $=\frac{-\left(\frac{1}{4}-\frac{r}{2}\right)}{1+r}$
If zero $=1$
$\frac{\frac{1}{4}-\frac{\mathrm{r}}{2}}{1+\mathrm{r}}=1 \Rightarrow \frac{1}{4}-\frac{\mathrm{r}}{2}=1+\mathrm{r}$
$\frac{-3 r}{2}=\frac{3}{4} \Rightarrow r=-1 / 2$
If zero $=-\mathbf{1}$
$\frac{\frac{1}{4}-\frac{\mathrm{r}}{2}}{1+\mathrm{r}}=-1 \Rightarrow \frac{1}{4}-\frac{\mathrm{r}}{2}=-1-\mathrm{r}$
$\frac{r}{2}=\frac{-5}{4} \Rightarrow r=-5 / 2$ is not valid
Because given as $|r|<1$
09. Ans: (a)

Sol: $H(z)=\frac{z^{4}}{z^{4}+\frac{1}{4}}$
$\mathrm{H}(\mathrm{z}) \neq \mathrm{H}\left(\mathrm{z}^{-1}\right)$
$\mathrm{h}(\mathrm{n}) \neq \mathrm{h}(-\mathrm{n})$
$\therefore \mathrm{h}(\mathrm{n})$ is not even.
$\mathrm{x}\left(\frac{\mathrm{n}}{\mathrm{m}}\right) \leftrightarrow \mathrm{X}\left(\mathrm{z}^{\mathrm{m}}\right)$
$\frac{z^{4}}{z^{4}+\frac{1}{4}} \leftrightarrow\left(-\frac{1}{4}\right)^{\mathrm{n} / 4} \mathrm{u}\left(\frac{\mathrm{n}}{4}\right)$
So $h(n)$ is real for all ' n '
10.

Sol: $(-3)^{n} \cdot u(n-2) \leftrightarrow \frac{9 z^{-1}}{z+3},|z|>3$
$(-3)^{-n} \cdot u(-n-2) \leftrightarrow \frac{9 z}{z^{-1}+3},|z|<\frac{1}{3}$
11.

Sol: $\mathrm{g}(\mathrm{n})=\delta(\mathrm{n})-\delta(\mathrm{n}-6)$

$$
G(z)=1-z^{-6},|z|>0
$$

12.

Sol: $X(z)=z^{2}+2 z+\frac{2 z}{z-2}$

$$
\mathrm{x}(\mathrm{n})=\delta(\mathrm{n}+2)+2 \delta(\mathrm{n}+1)-2(2)^{\mathrm{n}} \mathrm{u}(-\mathrm{n}-1)
$$

13. Ans: 0.097

Sol: The poles of $\mathrm{H}(\mathrm{z})$ are

$$
\begin{aligned}
& P_{k}=\frac{1}{\sqrt{2}} \exp \left(\frac{j(2 \mathrm{k}-1) \pi}{4}\right) \mathrm{k}=1,2,3,4 \\
& P_{1}=\frac{1}{\sqrt{2}} e^{\frac{j \pi}{4}}=\frac{1}{2}+\frac{j}{2}=\frac{1+j}{2} \\
& P_{2}=\frac{1}{\sqrt{2}} e^{\frac{j 3 \pi}{4}}=\frac{-1}{2}+\frac{j}{2} \\
& P_{3}=\frac{1}{\sqrt{2}} e^{\frac{j 5 \pi}{4}}=-\frac{1}{2}-\frac{j}{2} \\
& P_{4}=\frac{1}{\sqrt{2}} e^{\frac{j 7 \pi}{4}}=\frac{1}{2}-\frac{j}{2} \\
& H(z)=\frac{k z^{4}}{\left(z-P_{1}\right)\left(z-P_{2}\right)\left(z-P_{3}\right)\left(z-P_{4}\right)} \\
& =\frac{k z^{4}}{z^{4}+\frac{1}{4}}
\end{aligned}
$$

Given $\mathrm{H}(1)=5 / 4$

$$
\frac{5}{4}=\frac{\mathrm{k}}{5 / 4}
$$

$\mathrm{k}=\frac{25}{16}$
$H(z)=\frac{\frac{25}{16} z^{4}}{z^{4}+\frac{1}{4}}$
Given $\mathrm{g}(\mathrm{n})=(\mathrm{j})^{\mathrm{n}} \mathrm{h}(\mathrm{n})$

$$
\mathrm{G}(\mathrm{z})=\mathrm{H}(\mathrm{z} / \mathrm{j})
$$

$G(z)=\frac{\frac{25}{16}\left(\frac{z}{j}\right)^{4}}{\left(\frac{z}{j}\right)^{4}+\frac{1}{4}}=\frac{\frac{25}{16} z^{4}}{z^{4}+\frac{1}{4}}$
$\mathrm{G}(\mathrm{z})=\frac{25}{16}-\frac{25}{64} \mathrm{z}^{-4}+\frac{25}{256} \mathrm{z}^{-8}+\ldots .$.
$g(8)=\frac{25}{256}=0.097$
14.

Sol: $\mathrm{x}(\mathrm{n})=\left(\frac{5}{4}\right)^{\mathrm{n}} \mathrm{u}(\mathrm{n})+\left(\frac{10}{7}\right)^{\mathrm{n}} \mathrm{u}(-\mathrm{n})$

$$
\begin{aligned}
& \left(\frac{5}{4}\right)^{n} u(n) \leftrightarrow \frac{z}{z-\frac{5}{4}}, \quad|z|>5 / 4 \\
& \left(\frac{7}{10}\right)^{n} u(n) \leftrightarrow \frac{z}{z-\frac{7}{10}} \quad|z|>\frac{7}{10}
\end{aligned}
$$

$$
\left(\frac{7}{10}\right)^{-n} \mathrm{u}(-\mathrm{n}) \leftrightarrow \frac{\mathrm{z}^{-1}}{\mathrm{z}^{-1}-\frac{7}{10}}\left|\mathrm{z}^{-1}\right|>\frac{7}{10}
$$

$$
\left(\frac{10}{7}\right)^{n} u(-n) \leftrightarrow \frac{\frac{1}{z}}{\frac{1}{z}-\frac{7}{10}}|z|<\frac{10}{7}
$$

$$
\begin{aligned}
& X(z)=\frac{z}{z-\frac{5}{4}}+\frac{\frac{1}{z}}{\frac{1}{z}-\frac{7}{10}} \quad \text { ROC } \\
& \left(|z|>\frac{5}{4} \cap|z|<\frac{10}{7}\right) \\
& \text { ROC }=\frac{5}{4}<|z|<\frac{10}{7}
\end{aligned}
$$

15.

Sol: $\quad \mathrm{X}(\mathrm{z})=\mathrm{z}^{4}+\mathrm{z}^{2}-2 \mathrm{z}+2-3 \mathrm{z}^{-4}$

$$
\mathrm{H}(\mathrm{z})=2 \mathrm{z}^{-3}
$$

$$
\mathrm{Y}(\mathrm{z})=\mathrm{X}(\mathrm{z}) \cdot \mathrm{H}(\mathrm{z})=2 \mathrm{z}+2 \mathrm{z}^{-1}-4 \mathrm{z}^{2}+4 \mathrm{z}^{-3}-6 \mathrm{z}^{-7}
$$

$$
y(4)=0
$$

16.

Sol: $\mathrm{x}_{1}(\mathrm{n}+3) \leftrightarrow \frac{\mathrm{z}^{3}}{1-\frac{1}{2} \mathrm{z}^{-1}},|\mathrm{z}|>\frac{1}{2}$
$\mathrm{x}_{2}(-\mathrm{n}+1) \leftrightarrow \frac{\mathrm{z}^{-1}}{1-\frac{1}{3} \mathrm{z}},|\mathrm{z}|<3$
$\mathrm{Y}(\mathrm{z})=\frac{\mathrm{z}^{2}}{\left(1-\frac{1}{2} \mathrm{z}^{-1}\right)\left(1-\frac{1}{3} \mathrm{z}\right)}, \frac{1}{2}<|\mathrm{z}|<3$
17.

Sol: Causal system $H(z)=\frac{1-z^{-1}}{1+\frac{3}{4} z^{-1}} ; \quad|z|>\frac{3}{4}$
Input z-transform

$$
\begin{aligned}
& \mathrm{X}(\mathrm{z})=\frac{1}{1-\frac{1}{3} \mathrm{z}^{-1}}-\frac{1}{1-\mathrm{z}^{-1}} ; \frac{1}{3}<|\mathrm{z}|<1 \\
& \mathrm{Y}(\mathrm{z})=\mathrm{X}(\mathrm{z}) \mathrm{H}(\mathrm{z})
\end{aligned}
$$

$=\frac{-\frac{2}{3} z^{-1}}{\left(1-\frac{1}{3} z^{-1}\right)\left(1+\frac{3}{4} z^{-1}\right)} ;|z|>\frac{3}{4}$

$$
=-\frac{\frac{8}{13}}{1-\frac{1}{3} z^{-1}}+\frac{\frac{8}{13}}{1+\frac{3}{4} z^{-1}}
$$

$\downarrow_{\text {I.Z.T }}$

$$
\mathrm{y}(\mathrm{n})=-\frac{8}{13}\left(\frac{1}{3}\right)^{\mathrm{n}} \mathrm{u}(\mathrm{n})+\frac{8}{13}\left(-\frac{3}{4}\right)^{\mathrm{n}} \mathrm{u}(\mathrm{n})
$$

18.

Sol:

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{h}(\mathrm{n})=\delta(\mathrm{n})-\delta(\mathrm{n}-1) \quad \mathrm{x}(\mathrm{n})=(-1)^{\mathrm{n}} \mathrm{u}(\mathrm{n}) \\
\mathrm{H}(\mathrm{z})=1-\mathrm{z}^{-1} \quad \mathrm{X}(\mathrm{z})=\frac{1}{1+\mathrm{z}^{-1}} \\
\mathrm{Y}(\mathrm{z})=\mathrm{X}(\mathrm{z}) \mathrm{H}(\mathrm{z})=\frac{1-\mathrm{z}^{-1}}{1+\mathrm{z}^{-1}} \\
\quad \downarrow_{\text {I.Z.T }} \\
\mathrm{y}(\mathrm{n})=(-1)^{\mathrm{n}} \mathrm{u}(\mathrm{n})-(-1)^{\mathrm{n}-1} \mathrm{u}(\mathrm{n}-1)
\end{array}
\end{aligned}
$$

19.

Sol: $\begin{gathered}\mathrm{y}(\mathrm{n})-\underset{\downarrow_{\text {Z.T }}}{ } 0.25 \mathrm{y}(\mathrm{n}-2)=\mathrm{x}(\mathrm{n}) \\ \left.{ }^{2}\right)\end{gathered}$

$$
\mathrm{H}(\mathrm{z})=\frac{\mathrm{Y}(\mathrm{z})}{\mathrm{X}(\mathrm{z})}=\frac{1}{1-0.25 \mathrm{z}^{-2}}
$$

$$
\begin{aligned}
& \mathrm{x}(\mathrm{n})=\underbrace{2}_{\substack{\omega=0 \\
\downarrow=0 \\
z=1}}+\underbrace{\cos \left(\frac{\mathrm{n} \pi}{2}\right)}_{\substack{\omega=\frac{\pi}{2} \\
\downarrow z=\mathrm{j}}} \rightarrow \mathrm{H}(\mathrm{z})=\frac{1}{1-0.25 \mathrm{z}^{-2}} \\
& \mathrm{H}(\mathrm{z})_{\mathrm{z}=1}=\frac{1}{1-0.25}=\frac{1}{\frac{3}{4}}=\frac{4}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\mathrm{H}(\mathrm{z})\right|_{\mathrm{z}=\mathrm{j}}=\frac{1}{1+0.25}=\frac{1}{\frac{5}{4}}=\frac{4}{5} \\
& \therefore \mathrm{y}(\mathrm{n})=2\left(\frac{4}{3}\right)+\frac{4}{5} \cos \left(\frac{\mathrm{n} \pi}{2}\right)
\end{aligned}
$$

20.

Sol: (1) $x(n)=z_{0}{ }^{n}, y(n)=z_{0}{ }^{n} H\left(z_{0}\right)$

$$
\mathrm{y}(\mathrm{n})=(-2)^{\mathrm{n}} \cdot \mathrm{H}(-2)=0
$$

$\mathrm{H}(-2)=0$
(2) $H(z)=\frac{Y(z)}{X(z)}=\frac{1+a \cdot \frac{1}{1-\frac{1}{4} z^{-1}}}{\frac{1}{1-\frac{1}{2} z^{-1}}}$
(a) $\mathrm{H}(-2)=0$

$$
a=\frac{-9}{8}
$$

(b) $\mathrm{y}(\mathrm{n})=(1)^{\mathrm{n}} \cdot \mathrm{H}(1)$
$H(1)=-1 / 4$

$$
\mathrm{y}(\mathrm{n})=\frac{-1}{4}(1)^{\mathrm{n}}
$$

21. Ans: (a)

Sol: $\mathrm{y}(\mathrm{n})=\mathrm{h}(\mathrm{n}) * \mathrm{~g}(\mathrm{n})$

$$
\begin{aligned}
& Y\left(\mathrm{e}^{\mathrm{j} \omega}\right)=\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right) \mathrm{G}\left(\mathrm{e}^{\mathrm{j} \omega}\right) \\
& \Rightarrow \mathrm{Y}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=\frac{\mathrm{G}\left(\mathrm{e}^{\mathrm{j} \omega}\right)}{\left[1-\frac{1}{2} \mathrm{e}^{-\mathrm{j} \omega}\right]} \\
& \Rightarrow \mathrm{G}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=\mathrm{Y}\left(\mathrm{e}^{\mathrm{j} \omega}\right)-\frac{1}{2} \mathrm{e}^{-\mathrm{j} \omega} \mathrm{Y}\left(\mathrm{e}^{\mathrm{j} \omega}\right) \\
& \Rightarrow \mathrm{g}(\mathrm{n})=\mathrm{y}(\mathrm{n})-\frac{1}{2} \mathrm{y}(\mathrm{n}-1)
\end{aligned}
$$

Put $\mathrm{n}=1$

$$
\begin{aligned}
\Rightarrow & g(1)=y(1)-\frac{1}{2} y(0)=\frac{1}{2}-\frac{1}{2} \\
g(1) & =0
\end{aligned}
$$

22. Ans: (c)

Sol: $H\left(e^{j \omega}\right)=1-e^{-6 j \omega}=0$ only when
$6 \omega=2 \pi n(n=1)$
$\omega=\frac{\pi}{3}$
$\frac{2 \pi \times \mathrm{f}}{9 \mathrm{k}}=\frac{\pi}{3}$

$\mathrm{f}=1.5 \mathrm{k}$

23.

Sol: $X(z)=\frac{0.5}{1-2 z^{-1}},|z|<2$

$$
\begin{aligned}
& \mathrm{x}(\mathrm{n})=-0.5(2)^{\mathrm{n}} \cdot \mathrm{u}(-\mathrm{n}-1) \\
& \mathrm{x}(0)=0
\end{aligned}
$$

24.

Sol: $x(n)=\left\{\begin{array}{cc}1 & n \text { even } \\ 0 & n \text { odd }\end{array}\right.$

$$
\begin{aligned}
\Rightarrow \mathrm{X}(\mathrm{z}) & =1+\mathrm{z}^{-2}+\mathrm{z}^{-4}+\ldots \\
& =\frac{1}{1-\mathrm{z}^{-2}}
\end{aligned}
$$

$$
=\frac{1}{\left(1-\mathrm{z}^{-1}\right)\left(1+\mathrm{z}^{-1}\right)}
$$

$$
\mathrm{x}(\infty)=\operatorname{Lt}_{\mathrm{z} \rightarrow 1}\left(1-\mathrm{z}^{-1}\right) \mathrm{X}(\mathrm{z})
$$

$$
=\operatorname{Lt}_{\mathrm{z} \rightarrow 1}\left(1-\mathrm{z}^{-1}\right) \frac{1}{\left(1+\mathrm{z}^{-1}\right)\left(1-\mathrm{z}^{-1}\right)}
$$

$$
=\frac{1}{2}
$$

25.

Sol:
(a) $\mathrm{h}(\mathrm{n})=\frac{\delta(\mathrm{n})+\delta(\mathrm{n}-1)+\delta(\mathrm{n}-2)}{10}$
$H(z)=\frac{1+z^{-1}+z^{-2}}{10}=\frac{z^{2}+z+1}{10 z^{2}}$
2 finite poles, 2 finite zeros
(b) Given $\mathrm{x}(\mathrm{n})=\mathrm{u}(\mathrm{n})$

$$
\begin{aligned}
X(z) & =\frac{1}{1-z^{-1}} \\
Y(z) & =H(z) X(z)=\frac{\left(1+z^{-1}+z^{-2}\right)}{10\left(1-z^{-1}\right)} \\
y(\infty) & =\underset{z \rightarrow 1}{\operatorname{Lt}\left(1-z^{-1}\right) Y(z)} \\
& =\operatorname{Lt}_{z \rightarrow 1}\left(1-z^{-1}\right)\left[\frac{1+z^{-1}+z^{-2}}{10}\right]\left[\frac{1}{1-z^{-1}}\right] \\
y(\infty) & =\frac{1+1+1}{10}=\frac{3}{10}
\end{aligned}
$$

26. Ans: (a)

Sol: The output of the sampling process is

$$
x(n T s)=2+5 \sin \left(100 \times \pi \times n \times T_{s}\right)
$$

$$
\mathrm{T}_{\mathrm{S}}=\frac{1}{400}
$$

$$
\mathrm{x}(\mathrm{n})=2+5 \sin \left(100 \times \pi \times \mathrm{n} \times \frac{1}{400}\right)
$$

$$
\mathrm{x}(\mathrm{n})=2+5 \sin \left(\frac{\mathrm{n} \pi}{4}\right), \quad \omega_{0}=\frac{\pi}{4}
$$

$$
\mathrm{N}_{0}=\frac{2 \pi}{\omega_{0}} \mathrm{~m}=\frac{2 \pi}{\frac{\pi}{4}} \mathrm{~m}
$$

$\mathrm{N}_{0}=8 \mathrm{~m}$
$\mathrm{N}_{0}=8$ is the No. of samples per cycle
$\frac{\mathrm{Y}(\mathrm{z})}{\mathrm{X}(\mathrm{z})}=\frac{1}{\mathrm{~N}}\left[\frac{1-\mathrm{z}^{-\mathrm{N}}}{1-\mathrm{z}^{-1}}\right]$
$\mathrm{N}=8$
$\mathrm{Y}(\mathrm{z})=\frac{1}{8}\left[\frac{1-\mathrm{z}^{-8}}{1-\mathrm{z}^{-1}}\right] \cdot \mathrm{X}(\mathrm{z})$
Final value theorem
$y(\infty)=\underset{z \rightarrow 1}{\operatorname{Lt}}\left(1-z^{-1}\right) Y(z)$
$y(\infty)=\underset{Z \rightarrow 1}{\operatorname{Lt}}\left(1-z^{-1}\right) \frac{1}{8}\left[\frac{1-z^{-8}}{1-z^{-1}}\right] X(z)$
$\mathrm{y}(\infty)=\underset{\mathrm{Zt}}{\mathrm{Lt}} \frac{1-\mathrm{z}^{-8}}{8} \mathrm{X}(\mathrm{z})$
$y(\infty)=0$
27. Ans: (c)

Sol: $\mathrm{Y}(\mathrm{z})=\mathrm{H}(\mathrm{z}) \mathrm{X}(\mathrm{z})$

$$
\begin{aligned}
= & \frac{A}{1-z^{-1}}+\frac{1}{\left(1-\frac{1}{3} z^{-1}\right)\left(1-z^{-1}\right)} \\
y(\infty) & =\operatorname{Lt}\left(1-z^{-1}\right) Y(z) \\
\Rightarrow A & +\frac{3}{2}=0 \\
A & =\frac{-3}{2}
\end{aligned}
$$

28. Ans: (c)

Sol: $H(z)=\frac{\beta z-2 z^{2}}{2 z^{2}-\alpha}$
Pole $= \pm \sqrt{\frac{\alpha}{2}}$
$\left|\sqrt{\frac{\alpha}{2}}\right|<1 \Rightarrow|\alpha|<2$, any value of ' β '
29.

Sol:

(a) An LTI system is stable if and only if ROC includes unit circle.
$0.5<|\mathrm{z}|<2$
(b) For an LTI system to be causal \& stable, all the poles must lie inside the unit circle.
$\mathrm{z}=2$ is the pole lying outside the unit circle.
So it is not possible.
(c) $|\mathrm{z}|>3$
$|\mathrm{z}|<0.5$
$0.5<|\mathrm{z}|<2$
$2<|z|<3$ are the four possible ROC's
30. Ans: (d)

Sol: $H(z)=\frac{\left(z-\frac{3}{4} e^{j \theta}\right)\left(z-\frac{3}{4} e^{-j \theta}\right)}{z-\frac{4}{3}}$
Numerator order $>$ denominator order so, anti-causal system $\&|z|<\frac{4}{3}$ - stable

31. Ans: (d)

Sol: Poles $\Rightarrow 1-0.5 \mathrm{z}^{-1}=0 \Rightarrow \mathrm{z}=0.5$
Zeros $\Rightarrow 1-2 z^{-1}=0 \Rightarrow z=2$
If all zeros and poles are inside the unit circle $[|z|=1]$ then it is a minimum phase system.

So given system is Non minimum phase system if all poles are inside unit circle then we can say system is causal and stable. So given system is stable.

32. Ans: (a)

Sol: $H(z)=-\frac{1}{2}+\frac{1}{2} \frac{z}{z-2}$
Given stable system. So, ROC includes unit circle. ROC is $|z|<2$

$$
\mathrm{h}(\mathrm{n})=\frac{-1}{2} \delta(\mathrm{n})-\frac{1}{2}(2)^{\mathrm{n}} \mathrm{u}(-\mathrm{n}-1)
$$

33. Ans: (c)

Sol: Poles $\mathrm{z}= \pm 2 \mathrm{j}$
\mid poles $\mid=2$
ROC $=|z|<2$ because system is stable (ROC includes unit circle).
In this case system is non-causal.
34. Ans: (d)

Sol: $\mathrm{y}(\mathrm{n})-0.8 \mathrm{y}(\mathrm{n}-1)=\mathrm{x}(\mathrm{n})+1.25 \mathrm{x}(\mathrm{n}+1)$

$$
\mathrm{Y}(\mathrm{z})\left(1-0.8 \mathrm{z}^{-1}\right)=\mathrm{X}(\mathrm{z})(1+1.25 \mathrm{z})
$$

T.F $H(z)=\frac{Y(z)}{X(z)}=\frac{1+1.25 z}{1-0.8 z^{-1}}$

$$
\begin{aligned}
\mathrm{H}(\mathrm{z})= & \frac{1}{1-0.8 \mathrm{z}^{-1}}+\frac{1.25 \mathrm{z}}{1-0.8 \mathrm{z}^{-1}} \\
& \downarrow_{\text {I.Z.T }}
\end{aligned}
$$

$$
\mathrm{h}(\mathrm{n})=(0.8)^{\mathrm{n}} \mathrm{u}(\mathrm{n})+1.25(0.8)^{\mathrm{n}+1} \mathrm{u}(\mathrm{n}+1)
$$

Non-negative samples of impulse response.

35. Ans: (c)

Sol: $H(z)=\frac{z^{2}+1}{(z+0.5)(z-0.5)}$
(1) The system is stable because poles $\mathrm{z}= \pm 0.5$ are inside the unit circle.
(2) $h(0)=\operatorname{Lt}_{z \rightarrow \infty} H(z)=1$
(3) $\omega=\frac{2 \pi f}{\mathrm{f}_{\mathrm{s}}}=\frac{2 \pi \times \frac{\mathrm{f}_{\mathrm{s}}}{4}}{\mathrm{f}_{\mathrm{s}}}=\frac{\pi}{2}$

$$
\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=\frac{\mathrm{e}^{2 \mathrm{j} \omega}+1}{\left(\mathrm{e}^{\mathrm{j} \omega}+0.5\right)\left(\mathrm{e}^{\mathrm{j} \omega}-0.5\right)} \text { at } \omega=\frac{\pi}{2}=0
$$

36. Ans: (c)

Sol: A causal LTI system is stable if and only if all of poles of $\mathrm{H}(\mathrm{z})$ lie inside the unit circle.
So, Assertion (A) is true but Reason (R) is false.
37. Ans: (b)

Sol: $H(z)=\frac{z^{3}-2 z^{2}+z}{z^{2}+\frac{1}{4} z+\frac{1}{8}}=\frac{N(z)}{D(z)}$
As $N(z)$ is of higher order than $D(z)$, the system is not causal, as $\delta(\mathrm{n}+1)$ is one of the terms in the output for the input $\delta(\mathrm{n})$.
If the $N(z)$ is of lower order than the denominator, the system
(i) may be causal or
(ii) may not be causal as it depends upon the ROC of the given $\mathrm{H}(\mathrm{z})$.
So, Both Statement I and Statement II are individually true but Statement II is not the correct explanation of Statement I
38. Ans: (a)

Sol: Both Statement I and Statement II are individually true and Statement II is the correct explanation of Statement I
39. Ans: (b)

Sol: $H(Z)=\frac{P_{0}+P_{1} Z^{-1}+P_{3} Z^{-3}}{1+d_{3} Z^{-3}}$
Direct Form - I

No. of delays $=6$
Direct Form - II

No. of delay's $=3$
40.

Sol: $\mathrm{y}(\mathrm{n})=\mathrm{x}(\mathrm{n}-1) \Rightarrow \mathrm{Y}(\mathrm{z})=\mathrm{z}^{-1} \mathrm{X}(\mathrm{z})$

$$
\mathrm{H}(\mathrm{z})=\mathrm{z}^{-1}=\mathrm{H}_{1}(\mathrm{z}) \mathrm{H}_{2}(\mathrm{z})
$$

$\mathrm{H}_{2}(\mathrm{z})=\mathrm{z}^{-1}\left[\frac{1-0.6 \mathrm{z}^{-1}}{1-0.4 \mathrm{z}^{-1}}\right]$
41. Ans: (a)

Sol: $\quad \mathrm{H}(\mathrm{z})=\frac{1}{1-0.7 \mathrm{z}^{-1}+0.13 \mathrm{z}^{-2}}$
From the given plot

$$
\begin{equation*}
\mathrm{H}(\mathrm{z})=\frac{\mathrm{a}_{0}}{1-\mathrm{a}_{1} \mathrm{z}^{-1}-\mathrm{a}_{2} \mathrm{z}^{-2}} \tag{2}
\end{equation*}
$$

By comparing (1) \& (2)
$\mathrm{a}_{0}=1, \mathrm{a}_{1}=0.7, \mathrm{a}_{2}=-0.13$
42.

Sol: $H(z)=\frac{1}{1-\mathrm{az}^{-1}}$
$h(n)=(a)^{n} u(n)$

$$
\begin{aligned}
\sum_{\mathrm{n}=-\infty}^{\infty}|\mathrm{h}(\mathrm{n})| & <\infty \text { stable } \\
& =\infty \text { unstable } \\
\sum_{\mathrm{n}=0}^{\infty}(\mathrm{a})^{\mathrm{n}}= & \frac{1}{1-\mathrm{a}},|\mathrm{a}|<1 \\
= & \infty,|\mathrm{a}| \geq 1
\end{aligned}
$$

For b, c cases system transit from stable to unstable system.
43.

Sol: From signal flow graph

$$
\begin{aligned}
& H(z)=\frac{1-\frac{k}{4} z^{-1}}{1+\frac{k}{3} z^{-1}} \\
& \text { Pole }=\left|\frac{-k}{3}\right|<1 \\
& |k|<3
\end{aligned}
$$

44. Ans: (c)

Sol: From signal below graph reduction

$$
\begin{aligned}
H(z) & =\frac{2+z^{-1}}{1+2 z^{-1}} \\
& =\frac{2 z+1}{z+2}
\end{aligned}
$$

45. Ans: (b)

Sol: $H\left(\mathrm{e}^{\mathrm{j} \omega}\right)=\frac{2 \mathrm{e}^{\mathrm{j} \omega}+1}{\mathrm{e}^{\mathrm{j} \omega}+2}$
$\left|\mathrm{H}\left(\mathrm{e}^{\mathrm{j} 0}\right)\right|=1$
$\left|\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \pi / 2}\right)\right|=1$
$\left|\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \pi}\right)\right|=1$
So, All pass filter
46. Ans: (a)

Sol: $1-\mathrm{k}\left[\mathrm{z}^{-1}+\mathrm{z}^{-2}\right]=0$
$z^{2}-z k-k=0$

A C A	57	Postal Coaching Solutions

$$
\mathrm{z}_{1,2}=\frac{+\mathrm{k} \pm \sqrt{\mathrm{k}^{2}+4 \mathrm{k}}}{2}
$$

For causal \& stable \mid poles $\mid<1$

$$
\mathrm{k}=1 \Rightarrow \mathrm{z}_{1,2}=\frac{1 \pm \sqrt{5}}{2}=\frac{1 \pm 2.236}{2}
$$

(outside the unit circle)

$$
\begin{aligned}
\mathrm{k}=2 \Rightarrow \mathrm{z}_{1,2} & =\frac{2 \pm \sqrt{12}}{2}=1 \pm \sqrt{3} \\
& =1 \pm 1.732
\end{aligned}
$$

outside the unit circle
Here $\mathrm{k}=[-1,1 / 2]$
47.

Sol: $\quad H(z)=\frac{-0.54+z^{-1}}{1-0.54 z^{-1}}$
$\mathrm{H}(\mathrm{z})=\frac{\mathrm{d}+\mathrm{dcz}^{-1}}{1-\mathrm{bz}^{-1}}$
By comparing
$\mathrm{d}=-0.54, \mathrm{c}=-\frac{1}{0.54}, \mathrm{~b}=0.54$
48.

Sol: (a) All the finite poles of an FIR filter must lie at $\mathrm{z}=0$. True
(b) An FIR filter is always linear phase. False
(c) An FIR filter is always stable. True
(d) A causal IIR filter can never display linear phase. True
(e) A linear phase sequence is always symmetric about is midpoint. True
(f) A minimum phase filter (poles, zeros inside unit circle) is not linear phase. True
(g) An allpass filter can never display linear phase. True

From the above block diagram

Chapter 8 Digital Filter Design

1.

Sol:
(a) $H(s)=\frac{1}{s+2}$

$$
\mathrm{H}(\mathrm{~s})=\frac{1}{\mathrm{~s}+\mathrm{a}} \Rightarrow \mathrm{H}(\mathrm{z})=\frac{1}{1-\mathrm{e}^{-\mathrm{aT} \mathrm{~T}_{\mathrm{s}}} \mathrm{z}^{-1}}
$$

Where $\mathrm{T}_{\mathrm{S}}=\frac{1}{\mathrm{~F}_{\mathrm{s}}}=\frac{1}{2}$

$$
\begin{gathered}
a=2 \\
H(z)=\frac{1}{1-e^{-1} z^{-1}}=\frac{z}{z-e^{-1}}
\end{gathered}
$$

(b) $\mathrm{h}(\mathrm{t})=\mathrm{e}^{-2 \mathrm{t}} . \mathrm{u}(\mathrm{t})$

$$
\mathrm{h}\left(\mathrm{nT}_{\mathrm{s}}\right)=\mathrm{e}^{-2 \mathrm{nTs}} \mathrm{u}\left(\mathrm{n} T_{\mathrm{s}}\right)=\mathrm{e}^{-\mathrm{n}} \cdot \mathrm{u}\left(\frac{\mathrm{n}}{2}\right)
$$

(c) $Y(s)=H(s) \cdot X(s)=\frac{1}{s(s+2)}=\frac{\left(\frac{1}{2}\right)}{s}-\frac{\left(\frac{1}{2}\right)}{s+2}$

$$
\begin{aligned}
& \mathrm{y}(\mathrm{t})=\frac{1}{2}\left[1-\mathrm{e}^{-2 \mathrm{t}}\right] \mathrm{u}(\mathrm{t}) \\
& \mathrm{y}\left(\mathrm{nT}_{\mathrm{S}}\right)=\frac{1}{2}\left[1-\mathrm{e}^{-\mathrm{n}}\right] \mathrm{u}\left(\frac{\mathrm{n}}{2}\right)
\end{aligned}
$$

4.

Sol: $H(s)=\frac{1}{s+a} \Rightarrow H(z)=\frac{1}{1-e^{-\mathrm{aT}_{\mathrm{s}} \mathrm{z}^{-1}}}$
$\mathrm{f}_{\mathrm{s}}=200 \mathrm{~Hz}, \mathrm{f}_{\mathrm{c}}=50 \mathrm{~Hz}$
$\omega_{\mathrm{c}}=\frac{2 \pi \mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{s}}}=\frac{\pi}{2}$
$\mathrm{H}^{\prime}(\mathrm{s})=\left.\mathrm{H}(\mathrm{s})\right|_{\mathrm{s} \rightarrow \frac{\mathrm{s}}{\omega_{\mathrm{c}}}}=\frac{\mathrm{s}}{1.57}$
$\mathrm{H}^{\prime}(\mathrm{s})=\frac{1.57}{\mathrm{~s}+1.57}$
$\mathrm{H}(\mathrm{z})=\frac{1.57}{1-\mathrm{e}^{-1.57(1)} \mathrm{z}^{-1}}=\frac{1.57}{1-0.208 \mathrm{z}^{-1}}$
If we want to match the gains of $\mathrm{H}(\mathrm{s})$ at $\mathrm{s}=0$ and $\mathrm{H}(\mathrm{z})$ at $\mathrm{z}=1$, the digital transfer function is extra multiplied by

$$
\begin{aligned}
& \frac{1}{1.98}\left[\left.\mathrm{H}(\mathrm{z})\right|_{\mathrm{z}=1}=1.98\right] \\
& \mathrm{H}(\mathrm{z})=\frac{1.57\left(\frac{1}{1.98}\right)}{1-0.208 \mathrm{z}^{-1}}
\end{aligned}
$$

5.

Sol:
(a) $\mathrm{H}(\mathrm{z})=\mathrm{H}(\mathrm{s})_{\mathrm{s} \rightarrow \frac{2}{\mathrm{~T}}}\left[\frac{1-\mathrm{z}^{-1}}{1+\mathrm{z}^{-1}}\right]$

$$
\begin{aligned}
& T=\frac{1}{F_{s}}=\frac{1}{2} \\
& H(z)=\left.H(s)\right|_{S=4}\left[\frac{1-z^{-1}}{1+z^{-1}}\right]
\end{aligned}
$$

$$
\mathrm{H}(\mathrm{z})=\frac{3}{\left[4\left[\frac{1-z^{-1}}{1+\mathrm{z}^{-1}}\right]\right]^{2}+3\left[4\left[\frac{1-z^{-1}}{1+z^{-1}}\right]\right]+3}
$$

$$
\mathrm{H}(\mathrm{z})=\frac{3\left[1+\mathrm{z}^{-1}\right]^{2}}{16\left[1-\mathrm{z}^{-1}\right]^{2}+12\left[1-\mathrm{z}^{-2}\right]+3\left[1+\mathrm{z}^{-1}\right]^{2}}
$$

(b) Gain of $\mathrm{H}(\mathrm{s})$ at $\omega=3$ is

$$
\begin{aligned}
& \mathrm{H}(\mathrm{j} \omega)=\frac{3}{(\mathrm{j} \omega)^{2}+3 \mathrm{j} \omega+3} \\
& \begin{aligned}
|\mathrm{H}(\mathrm{j} \omega)| & =\frac{3}{\sqrt{\left(3-\omega^{2}\right)^{2}+(3 \omega)^{2}}} \\
|\mathrm{H}(\mathrm{j} \omega)|_{\omega=3} & =\frac{3}{\sqrt{(3-9)^{2}+(6)^{2}}}=\frac{3}{\sqrt{(6)^{2}+(6)^{2}}} \\
& =\frac{3}{\sqrt{72}}=\frac{3}{6 \sqrt{2}}=\frac{1}{2 \sqrt{2}}=2.828
\end{aligned}
\end{aligned}
$$

Given $\mathrm{f}=20 \mathrm{~Hz}$

$$
\begin{aligned}
& \omega=\frac{2 \pi \times \mathrm{f}}{\mathrm{fs}}=\frac{2 \pi \times 20 \mathrm{kHz}}{80 \mathrm{kHz}}=\frac{\pi}{2} \\
& \mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=\frac{3\left(1+\mathrm{e}^{-\mathrm{j} \omega}\right)^{2}}{16\left(1-\mathrm{e}^{-\mathrm{j} \omega}\right)^{2}+12\left(1-\mathrm{e}^{-2 \mathrm{j} \omega}\right)+3\left(1+\mathrm{e}^{-\mathrm{j} \omega}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\left.H\left(\mathrm{e}^{\mathrm{j} \omega}\right)\right|_{\omega=\frac{\pi}{2}} & =\frac{3(1-\mathrm{j})^{2}}{16(1+\mathrm{j})^{2}+12(2)+3(1-\mathrm{j})^{2}} \\
& =\frac{3(-2 \mathrm{j})}{16(2 \mathrm{j})+24+3(-2 \mathrm{j})}=\frac{-6 \mathrm{j}}{26 \mathrm{j}+24} \\
\left|\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \frac{\pi}{2}}\right)\right| & =\frac{6}{\sqrt{(26)^{2}+(24)^{2}}}=\frac{6}{35.38}=0.169
\end{aligned}
$$

6.

Sol:
(a) $H(s)=\frac{s}{s^{2}+s+1}$
$H(j \omega)=\frac{j \omega}{-\omega^{2}+j \omega+1}=\frac{j \omega}{1-\omega^{2}+j \omega}$
$|H(j \omega)|=\frac{\omega}{\sqrt{\left(1-\omega^{2}\right)^{2}+\omega^{2}}}$

ω	$\|H(j \omega)\|$
0	0
∞	0

Band pass filter
07.

Sol: $\alpha_{p}=1 \mathrm{db}, \quad \mathrm{fp}=4 \mathrm{kHz}$
$\alpha_{\mathrm{s}}=40 \mathrm{db}, \mathrm{fs}=6 \mathrm{kHz}$
FS $=24 \mathrm{kHz}$
Butterworth filter :
(1) order $\mathrm{N} \geq$

$$
\frac{\log \left[\sqrt{\frac{10^{0.1 \alpha_{\mathrm{s}}}-1}{10^{0.1 \alpha_{\mathrm{P}}}-1}}\right]}{\log \left[\frac{\Omega_{\mathrm{S}}}{\Omega_{\mathrm{P}}}\right]}
$$

$\omega_{\mathrm{p}}=\frac{2 \pi \times \mathrm{f}_{\mathrm{p}}}{\mathrm{F}_{\mathrm{s}}}=\frac{2 \pi \times 4}{24}=\frac{\pi}{3}$
$\omega_{\mathrm{s}}=\frac{2 \pi \times \mathrm{f}_{\mathrm{s}}}{\mathrm{F}_{\mathrm{s}}}=\frac{2 \pi \times 6}{24}=\frac{\pi}{2}$
$\frac{\Omega_{\mathrm{s}}}{\Omega_{\mathrm{P}}}=\frac{\tan \left(\frac{\omega_{\mathrm{S}}}{2}\right)}{\tan \left(\frac{\omega_{\mathrm{P}}}{2}\right)}=\frac{\tan \left(\frac{\pi}{4}\right)}{\tan \left(\frac{\pi}{6}\right)}=\frac{1}{\frac{1}{\sqrt{3}}}=\sqrt{3}$
$\mathrm{N} \geq \frac{\log \left[\sqrt{\frac{10^{0.1(40)}-1}{10^{0.1(1)}-1}}\right]}{\log (\sqrt{3})}=\frac{\log \left[\sqrt{\frac{10^{4}-1}{10^{0.1}-1}}\right]}{\log (\sqrt{3})}$
$\mathrm{N} \geq \frac{\log \left[\sqrt{\frac{9999}{1.258}}\right]}{\log (\sqrt{3})}=\frac{\log [\sqrt{7948.33}]}{\log (\sqrt{3})}$
$\mathrm{N} \geq \frac{\log [89.15]}{\log (1.732)}$
$\mathrm{N} \geq \frac{1.950}{0.238}$
$\mathrm{N} \geq 8.19$
$\mathrm{N}=9$
Chebyshev filter:
$\mathrm{N} \geq \frac{\cosh ^{-1}\left[\sqrt{\frac{10^{0.1 \alpha_{\mathrm{S}}}-1}{10^{0.1 \alpha_{\mathrm{P}}}-1}}\right]}{\cosh ^{-1}\left[\frac{\Omega_{\mathrm{s}}}{\Omega_{\mathrm{P}}}\right]}$
$\frac{\cosh ^{-1}[89.15]}{\cosh ^{-1}[1.732]}=\frac{5.183}{1.146}$
$\mathrm{N} \geq 4.52$
$\mathrm{N}=5$
08.

Sol: $\alpha_{p}=0.5 \mathrm{~dB}, \mathrm{f}_{\mathrm{p}}=1.2 \mathrm{kHz}$
$\alpha_{\mathrm{s}}=40 \mathrm{~dB}, \mathrm{f}_{\mathrm{s}}=2 \mathrm{kHz}$
$\mathrm{F}_{\mathrm{S}}=8 \mathrm{kHz}$
Butterworth filter:

$$
\begin{aligned}
& \omega_{\mathrm{P}}=\frac{2 \pi \mathrm{f}_{\mathrm{p}}}{\mathrm{~F}_{\mathrm{s}}}=\frac{2 \pi \times 1.2}{8}=\frac{3 \pi}{10} \\
& \omega_{\mathrm{S}}=\frac{2 \pi \mathrm{f}_{\mathrm{p}}}{\mathrm{~F}_{\mathrm{S}}}=\frac{2 \pi \times 2}{8}=\frac{\pi}{2} \\
& \mathrm{~N} \geq \frac{\log \left[\sqrt{\frac{10^{0.1 \alpha_{\mathrm{s}}}-1}{10^{0.1 \alpha_{\mathrm{p}}}-1}}\right]}{\log \left[\frac{\Omega_{\mathrm{s}}}{\Omega_{\mathrm{P}}}\right]}
\end{aligned}
$$

$\frac{\Omega_{\mathrm{S}}}{\Omega_{\mathrm{P}}}=\frac{\tan \left(\frac{\omega_{\mathrm{P}}}{2}\right)}{\tan \left(\frac{\omega_{\mathrm{S}}}{2}\right)}=\frac{\tan \left(\frac{3 \pi}{20}\right)}{\tan \left(\frac{\pi}{4}\right)}=0.509$
$\mathrm{N} \geq \frac{\log \left[\sqrt{\frac{10^{0.1(40)}-1}{10^{0.1(1)}-1}}\right]}{\log (1.964)}$
$\mathrm{N} \geq \frac{3.949}{0.293}$
$\mathrm{N} \geq 13.47$
$\mathrm{N}=14$
Chebyshev filter:

$\mathrm{N} \geq \frac{\cosh ^{-1}[8911]}{\cosh ^{-1}[1.964]}=\frac{9.788}{1.295}$
$\mathrm{N} \geq 7.55$
$\mathrm{N}=8$
09.

Sol:
$\alpha_{p}=1 \mathrm{~dB}, \quad \omega_{\mathrm{p}}=0.3 \pi$
$\alpha_{\mathrm{s}}=60 \mathrm{~dB}, \omega_{\mathrm{s}}=0.35 \pi$
Butter worth filter:
order $\mathrm{N} \geq \frac{\cosh ^{-1}\left[\frac{10^{0.1 \alpha_{\mathrm{S}}}-1}{10^{0.1 \alpha_{\mathrm{p}}}-1}\right]}{\cosh ^{-1}\left[\frac{\Omega_{\mathrm{S}}}{\Omega_{\mathrm{P}}}\right]}$
$\frac{\Omega_{\mathrm{S}}}{\Omega_{\mathrm{P}}}=\frac{\tan \left(\frac{0.35 \pi}{2}\right)}{\tan \left(\frac{0.3 \pi}{2}\right)}=\frac{0.612}{0.509}=1.202$

$$
\begin{aligned}
& \mathrm{N}=\frac{\cosh ^{-1}\left[\frac{10^{6}-1}{10^{0.1}-1}\right]}{\cosh ^{-1}[1.202]} \\
& \mathrm{N}=\frac{15.85}{0.625}=25.36 \\
& \mathrm{~N}=26
\end{aligned}
$$

11.

Sol: $Z_{1}=\frac{1}{2} e^{j \frac{\pi}{3}}$

$$
\begin{aligned}
& z_{2}=z_{1}^{*}=\frac{1}{2} e^{-j \frac{\pi}{3}} \\
& z_{3}=z_{1}^{-1}=2 e^{-j \frac{\pi}{3}} \\
& z_{4}=\left[z_{1}^{*}\right]^{-1}=2 e^{j \frac{\pi}{3}}
\end{aligned}
$$

12. Ans: (a)

Sol: $H(z)=\left[1+2 z^{-1}+2 z^{-2}\right] G(z)$
Liner FIR has symmetry (or) anti symmetry So, $G(z)=3+2 z^{-1}+z^{-2}$
$\begin{aligned} \mathrm{H}(\mathrm{z}) & =\left[1+2 z^{-1}+2 \mathrm{z}^{-2}\right]\left[3+2 \mathrm{z}^{-1}+\mathrm{z}^{-2}\right] \\ & =3+8 \mathrm{z}^{-1}+10 \mathrm{z}^{-2}+8 z^{-3}+3 z^{-4}\end{aligned}$

$$
=3+8 z^{-1}+10 z^{-2}+8 z^{-3}+3 z^{-4}
$$

13.

Sol: (a) $H(z)=1+z^{-2}$

$$
\begin{aligned}
& \left.\mathrm{H}(\mathrm{z})\right|_{\mathrm{z}=1}=2 \text { Band stop filter type - I } \\
& \left.\mathrm{H}(\mathrm{z})\right|_{\mathrm{z}=-1}=2
\end{aligned}
$$

(b) $\mathrm{H}(\mathrm{z})=1+2 \mathrm{z}^{-1}+2 \mathrm{z}^{-2}+\mathrm{z}^{-3}$
$\left.H(z)\right|_{z=1}=6$ low pass filter type - II
$\left.H(z)\right|_{z=-1}=0$
(c) $\mathrm{H}(\mathrm{z})=1-\mathrm{z}^{-2}$
$\left.H(z)\right|_{z=1}=0$ Band pass filter type - III
$\left.H(z)\right|_{z=-1}=0$
(d) $\mathrm{H}(\mathrm{z})=-1+2 \mathrm{z}^{-1}-2 \mathrm{z}^{-2}+\mathrm{z}^{-3}$
$\left.H(z)\right|_{z=1}=0$ High pass filter of type-IV
$\left.H(z)\right|_{z=-1}=-6$
14.

Sol: (a) $h(n)=[2,-3,4,1,4,-3,2]$
(b) $h(n)=[2,-3,4,1,1,4,-3,2]$
(c) $h(n)=[2,-3,4,1,0,1,4,3,-2]$
(d) $h(n)=[2,-3,4,1,-1,-4,3,-2]$
16.

Sol: $h_{d}(n)=\frac{1}{2 \pi} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} e^{-3 j \omega} \cdot e^{j \omega n} d \omega=\frac{\sin \frac{\pi}{4}(n-3)}{\pi(n-3)}$

n	$\mathrm{h}_{\mathrm{d}}(\mathrm{n})$	$\omega(\mathrm{n})=0.54-0.48 \cos \left(\frac{2 \pi \mathrm{n}}{6}\right)$	$\mathrm{H}(\mathrm{n})=$ $\mathrm{h}_{\mathrm{d}}(\mathrm{n}) . \omega(\mathrm{n})$
0	0.075	0.08	$\mathrm{a}=6 \times 10^{-3}$
1	0.159	0.31	$\mathrm{~b}=0.049$
3	$1 / 4$	1	$\mathrm{c}=0.173$
4	0.225	0.77	$\mathrm{~d}=0.25$
5	0.159	0.31	$\mathrm{c}=0.173$
6	0.075	0.08	$\mathrm{b}=0.049$ $\mathrm{a}=6 \times 10^{-3}$

$$
\begin{aligned}
H(z) & =\sum_{n=0}^{6} h(n) z^{-4} \\
& =a\left[1+z^{-6}\right]+b\left[z^{-1}+z^{-5}\right]+c\left[z^{-2}+z^{-4}\right]+d z^{-3}
\end{aligned}
$$

Chapter 9 DFT \& FFT

1.

Sol: $\Delta \mathrm{F}=\frac{\mathrm{F}_{\mathrm{S}}}{\mathrm{N}}=\frac{10 \times 10^{3}}{1024}$
02.

Sol: $\begin{aligned} & {\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j\end{array}\right]\left[\begin{array}{l}0 \\ 1 \\ 2 \\ 3\end{array}\right]=\left[\begin{array}{c}6 \\ -2+2 j \\ -2 \\ -2-2 j\end{array}\right] } \\ & X(k)=\{6,-2+2 j,-2,-2-2 j\}\end{aligned}$
03.

Sol: i) $X(K)=\sum_{n=0}^{N-1} x(n) e^{-j \frac{2 \pi}{N} n k}$

$$
X(0)=\sum_{n=0}^{N-1} x(n)
$$

Given $\mathrm{x}(\mathrm{n})=-\mathrm{x}(\mathrm{N}-1-\mathrm{n})$

$$
\begin{aligned}
& \mathrm{n}=0 \Rightarrow \mathrm{x}(0)=-\mathrm{x}(\mathrm{~N}-1) \\
& \mathrm{n}=1 \Rightarrow \mathrm{x}(1)=-\mathrm{x}(\mathrm{~N}-2) \\
& \mathrm{X}(0)=\mathrm{x}(0)+\mathrm{x}(1)+\ldots .+\mathrm{x}(\mathrm{~N}-3) \\
& \quad+\mathrm{x}(\mathrm{~N}-2)+\mathrm{x}(\mathrm{~N}-1)
\end{aligned}
$$

From the given condition $x(0)$ and $x(N-1)$ Cancel each other. In the same way $x(1)$ and $x(N-2)$ cancel each other.
So finally all the terms will cancel and becomes zero.
ii) $x(n)=x(N-1-n)$

$$
\begin{aligned}
& X\left(\frac{N}{2}\right)=\sum_{n=0}^{N-1} x(n) e^{-j \frac{2 \pi}{N} \cdot \frac{N}{2}} \\
&=\sum_{n=0}^{N-1} x(n) e^{j \pi n} \\
&=\sum_{n=0}^{N-1} x(n)(-1)^{n} \\
&=x(0)-x(1)+x(2)+\ldots . .-x(N-3)+x(N-2)-x(N-1)
\end{aligned}
$$

Given condition is $x(n)=x(N-1-n)$
$\mathrm{n}=0 \Rightarrow \mathrm{x}(0)=\mathrm{x}(\mathrm{N}-1)$
$\mathrm{n}=1 \Rightarrow \mathrm{x}(1)=\mathrm{x}(\mathrm{N}-2)$
From given condition, $x(0), x(N-1)$ cancel each other.
$x(1), x(N-2)$ cancel each other. Finally all the terms vanishes and becomes zero.
04.

Sol: $x(n)=\{6,5,4,3\}$
a. $x([n-2])_{4}=\{4,3,6,5\}$
b. $x([n+1])_{4}=\{5,4,3,6\}$
c. $x([-\mathrm{n}])_{4}=\{6,3,4,5\}$
05.

Sol: If $x(n)$ is real $X(k)=X^{*}(N-k)$
$\mathrm{X}(5)=\mathrm{X} *(3)=0.125+\mathrm{j} 0.0518$
$X(6)=X *(2)=0$
$X(7)=X *(1)=0.125+j 0.3018$
06. Ans: (a)

Sol: $[\mathrm{pq} \mathrm{r} \mathrm{s}]=[\mathrm{abcd}](\mathbb{N}[\mathrm{abcd}]$
DFT of $[\mathrm{pqrs}]=[\alpha \beta \gamma \delta] .[\alpha \beta \gamma \delta]$
DFT of $[\mathrm{pqrs}]=\left[\alpha^{2} \beta^{2} \gamma^{2} \delta^{2}\right]$
07.

Sol: (a) $X(0)=\sum_{n=0}^{5} x(n)=-3$
(b) $\mathrm{Nx}(0)=6 \times 1=6$
(c) $\sum_{\mathrm{n}=0}^{5}(-1)^{\mathrm{n}} \mathrm{x}(\mathrm{n})=21$
(d) $N\left[\sum_{n=0}^{5}|x(n)|^{2}\right]=546$
(e) $\mathrm{Nx}(3)=6(-4)=-24$

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups \& PSC Exams
Enjoy a smooth online learning experience in various languages at your convenience
08. Ans: (a)

Sol: $\mathrm{X}(\mathrm{k})=\mathrm{X}^{*}(\mathrm{~N}-\mathrm{k})$
$X(1)=X^{*}(5)=1+j 1$
$X(4)=X^{*}(2)=2-j 2$
$\mathrm{x}(0)=\frac{1}{6} \sum_{\mathrm{k}=0}^{5} \mathrm{X}(\mathrm{k})=\frac{18}{6}=3$
09.

Sol:
(i) According to given signals we can say
$\mathrm{x}_{2}(\mathrm{n})=\mathrm{x}_{1}(\mathrm{n}-4)$
$\mathrm{X}_{2}(\mathrm{~K})=\mathrm{X}_{1}(\mathrm{~K}) \mathrm{e}^{-\mathrm{j}} \frac{2 \pi}{8} .4 \mathrm{~K}$
$\mathrm{X}_{2}(\mathrm{~K})=\mathrm{e}^{-\mathrm{j} \pi \mathrm{K}} \mathrm{X}_{1}(\mathrm{~K})$
$\mathrm{X}_{2}(\mathrm{~K})=(-1)^{\mathrm{K}} \mathrm{X}_{1}(\mathrm{~K})$
(ii) $\mathrm{Y}(\mathrm{k})=\mathrm{e}^{-\mathrm{j} \frac{2 \pi}{6} 4 \mathrm{k}}$
$y(n)=x((n-4))_{6}=\{2,1,0,0,4,3\}$
10.

Sol: $x(n)=\frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{\frac{i \pi}{N} n k}, n=0$ to $N-1$
11.

Sol: (a) $\Delta f=\frac{f_{s}}{N}=\frac{20 \times 10^{3}}{10^{3}}=20$
(b) For $\mathrm{k}=150, \mathrm{f}=20 \times 150=3 \mathrm{kHz}$

For $\mathrm{k}=800, \mathrm{f}=(16-20) \mathrm{kHz}=-4 \mathrm{kHz}$
12. Ans: (a)

Sol: $\mathrm{Q}(\mathrm{K})-3$ point DFT

$$
\begin{aligned}
& \mathrm{q}(\mathrm{n})=\frac{1}{\mathrm{~N}} \sum_{\mathrm{K}=0}^{\mathrm{N}-1} \mathrm{Q}(\mathrm{~K}) \mathrm{e}^{\frac{\mathrm{j} 2 \pi \mathrm{n} \mathrm{~K}}{\mathrm{~N}}} \\
& \mathrm{n}=0
\end{aligned}
$$

$\mathrm{q}(0)=\frac{1}{3} \sum_{\mathrm{K}=0}^{2} \mathrm{Q}(\mathrm{K})=\frac{\mathrm{Q}(0)+\mathrm{Q}(1)+\mathrm{Q}(2)}{3}$
$\mathrm{Q}(0)=\mathrm{X}(0), \mathrm{Q}(1)=\mathrm{X}(2), \mathrm{Q}(2)=\mathrm{X}(4)$

$$
\begin{aligned}
Q(0) & =X(0)=\sum_{n=0}^{N-1} x(n) \\
& =\sum_{n=0}^{5} x(n)=4+3+2+1=10 \\
Q(1) & =X(2)=\sum_{n=0}^{5} x(n) \cdot e^{\frac{-j 2 \pi n(2)}{6}} \\
& =\sum_{n=0}^{5} x(n) e^{\frac{-j 2 \pi}{3} n} \\
& =x(0)+x(1) e^{\frac{-j 2 \pi}{3}}+x(2) e^{\frac{-j 4 \pi}{3}}+x(3) e^{-\mathrm{j} 2 \pi} \\
& =4+3\left[\frac{-1}{2}-j \frac{\sqrt{3}}{2}\right]+2\left[\frac{-1}{2}+\frac{j \sqrt{3}}{2}\right]+1 \\
& =4-\frac{3}{2}-\frac{j 3 \sqrt{3}}{2}-1+\frac{2 j \sqrt{3}}{2}+1
\end{aligned}
$$

$$
Q(1)=\frac{5}{2}-\frac{\sqrt{3}}{2} j
$$

$$
Q(2)=X(4)=\sum_{n=0}^{5} x(n) e^{\frac{-\mathrm{j} 2 \pi n(4)}{6}}
$$

$$
=\sum_{n=0}^{5} x(n) e^{\frac{-j 4 \pi n}{3}}
$$

$$
\mathrm{Q}(2)=\mathrm{x}(0)+\mathrm{x}(1) \mathrm{e}^{\frac{-\mathrm{j} 4 \pi}{3}}+\mathrm{x}(2) \mathrm{e}^{\frac{-\mathrm{j} 8 \pi}{3}}
$$

$$
+x(3) \mathrm{e}^{\frac{-\mathrm{j} 4 \pi(3)}{3}}
$$

$$
=4+3\left[\frac{-1}{2}+\frac{\mathrm{j} \sqrt{3}}{2}\right]+2\left[\frac{-1}{2}-\frac{\mathrm{j} \sqrt{3}}{2}\right]+x(3) \cdot(1)
$$

$$
=4-\frac{3}{2}+\frac{\mathrm{j} \sqrt{3}(3)}{2}-1-\mathrm{j} \frac{2}{2} \sqrt{3}+1
$$

$$
=\frac{5}{2}+\frac{\sqrt{3}}{2} \mathrm{j}
$$

$$
q(0)=\frac{10+\frac{5}{2}-\frac{\sqrt{3}}{2} j+\frac{5}{2}+\frac{\sqrt{3}}{2} j}{3}=\frac{15}{3}=5
$$

13.

Sol: $X(0)=\sum_{n=0}^{7} x(n)=A+B+27=20$

$$
\begin{align*}
& A+B=-7----(1) \tag{1}\\
& X(4)=\sum_{n=0}^{7}(-1)^{n} x(n)
\end{align*}
$$

$X(4)=A-2+3-4+5-6+7-B=0$

$$
\begin{equation*}
\mathrm{A}-\mathrm{B}=-3 \tag{2}
\end{equation*}
$$

From (1) and (2)
$\mathrm{A}=-5, \mathrm{~B}=-2$

14. Ans: 3

Sol: $\quad \mathrm{X}(\mathrm{k})=\mathrm{k}+1$ for $0 \leq \mathrm{k} \leq 7 \rightarrow 8 \mathrm{pt}$ DFT of $\mathrm{x}(\mathrm{n})$

Using Signal Flow Graph of IDFT based on inverse radix-2 DIT-FFT

Value of $\sum_{n=0}^{3} x(2 n)=x(0)+x(2)+x(4)+x(6)=\frac{36-4-4-4 j-4+4 j}{8}=\frac{24}{8}=3$

OR

$$
X(k)=k+1 \quad 0 \leq k \leq 7
$$

$X(k)=\sum_{n=0}^{N-1} x(n) e^{-j \frac{2 \pi}{N} n k} X(k)=\sum_{n=0}^{\frac{N}{2}-1} x(2 n) e^{-j \frac{2 \pi}{N}(2 n) k}+\sum_{n=0}^{\frac{N}{2}-1} x(2 n+1) e^{-j \frac{2 \pi}{N}(2 n+1) k}$
$X(k)=\sum_{n=0}^{\frac{N}{2}-1} x(2 n) e^{-j \frac{2 \pi}{N}(2 n) k}+e^{-j \frac{2 \pi}{N} k} \sum_{n=0}^{\frac{N}{2}-1} x(2 n+1) e^{-j \frac{2 \pi}{N}(2 n) k}$
Given $\mathrm{N}=8$

$$
X(k)=\sum_{n=0}^{3} x(2 n) e^{-j \frac{2 \pi}{8}(2 n) k}+e^{-j \frac{\pi}{4} \frac{k}{k}} \sum_{n=0}^{3} x(2 n+1) e^{-j \frac{2 \pi}{8}(2 n) k}
$$

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups \& PSC Exams

$$
\begin{aligned}
& X(0)=\sum_{n=0}^{3} x(2 n)+\sum_{n=0}^{3} x(2 n+1) \\
& X(4)=\sum_{n=0}^{3} x(2 n) e^{-j 2 \pi n}+e^{-j \pi} \sum_{n=0}^{3} x(2 n+1) e^{-j 2 \pi n} \\
& X(4)=\sum_{n=0}^{3} x(2 n)-\sum_{n=0}^{3} x(2 n+1) \\
& X(0)+X(4)=2 \sum_{n=0}^{3} x(2 n) \\
& \sum_{n=0}^{3} x(2 n)=\frac{X(0)+X(4)}{2}=\frac{1+5}{2}=\frac{6}{2} \\
& \quad=3
\end{aligned}
$$

16. Ans: (a)

Sol: $\quad W(k)=X(k) . Y(k)=[176,12+4 j, 0,12-4 j]$

$$
\mathrm{w}(2)=\frac{-1}{\mathrm{~N}} \sum_{\mathrm{k}=0}^{3}(-1)^{\mathrm{k}} \cdot \mathrm{~W}(\mathrm{k})=\frac{152}{4}=38
$$

17.

Sol:
(i) $\mathrm{f}_{\mathrm{s}}=10 \mathrm{~Hz}$

Sampling Period $\left(\mathrm{T}_{\mathrm{s}}\right)=\frac{1}{\mathrm{f}_{\mathrm{s}}}=\frac{1}{10}=0.1 \mathrm{sec}$
Time index for $x(3)$ is 3
Sampling instant for $\mathrm{x}(3)=3(0.1)=0.3 \mathrm{sec}$
(ii) Frequency Resolution $=\frac{\mathrm{f}_{\mathrm{s}}}{\mathrm{N}}=\frac{10}{4}=2.5 \mathrm{~Hz}$

Frequency bin number for $\mathrm{X}(1)$ and $\mathrm{X}(3)$ are 1 and 3 respectively.
Frequency for $\mathrm{X}(1)$ and $\mathrm{X}(3)$ are 2.5 Hz and 7.5 Hz
18.

Sol: $f_{m}=100 \mathrm{~Hz}$
$\mathrm{f}_{\mathrm{s}}=200 \mathrm{~Hz}$
$\Delta \mathrm{f} \leq 0.5 \mathrm{~Hz}$
(a) DFT $\Delta \mathrm{f}=\frac{\mathrm{f}_{\mathrm{s}}}{\mathrm{N}}$
$\mathrm{N}=\frac{\mathrm{f}_{\mathrm{s}}}{\Delta \mathrm{f}}=\frac{200}{0.5}=400$
(b) radix -2 FFT
$\mathrm{N}=2^{9}=512$ samples (at $\left.\mathrm{N}=400\right)$

$$
\Delta \mathrm{f}=\frac{200}{512}=0.39 \mathrm{~Hz}
$$

(C) $\mathrm{Y}(\mathrm{K})=2 \mathrm{X}(\mathrm{K}) \quad \mathrm{K}=0,2,4,6$

$$
\begin{gathered}
=0 \quad K=1,3,5,7 \\
\Rightarrow Y(K)=X(K)+(-1)^{K} X(K) \\
\Rightarrow y(n)=x(n)+x\left(n-\frac{N}{2}\right)
\end{gathered}
$$

$$
\begin{aligned}
& x(n)=\frac{1}{N} \sum_{K=0}^{N-1} X(K) e^{j\left(\frac{2 \pi}{N}\right) K n} \\
& \frac{1}{8} \sum_{K=0}^{7} X(K) e^{j\left(\frac{2 \pi}{N}\right) K \cdot 1}=x(1)
\end{aligned}
$$

(B) $\mathrm{W}(\mathrm{K})=\mathrm{X}(\mathrm{K})+\mathrm{X}(\mathrm{K}+4)$

$$
\begin{aligned}
& \mathrm{W}(\mathrm{~K})=\mathrm{X}(\mathrm{~K})+\mathrm{X}\left(\mathrm{~K}+\frac{\mathrm{N}}{2}\right) \\
& \mathrm{w}(\mathrm{n})=\mathrm{x}(\mathrm{n})+(-1)^{\mathrm{n}} \mathrm{x}(\mathrm{n})
\end{aligned}
$$

19.

Sol:
$\mathrm{f}_{1}=25, \mathrm{f}_{2}=100, \mathrm{f}_{\mathrm{s}}=800 \mathrm{~Hz}$
(a) $\mathrm{N}=100$ samples
$\Delta \mathrm{f}=\frac{\mathrm{f}_{\mathrm{s}}}{\mathrm{N}}=\frac{800}{8}=8 \mathrm{~Hz}$
25 Hz corresponding to $\frac{25}{8}=3.125$
100 Hz corresponding to $\frac{100}{8}=12.5$
Both frequencies are not relating.
(b) $\mathrm{N}=128$
$\Delta \mathrm{f}=\frac{800}{128}=6.25 \mathrm{~Hz}$
$25 \mathrm{~Hz} \rightarrow \frac{25}{6.25}=4$
$100 \mathrm{~Hz} \rightarrow \frac{100}{6.25}=16$
20.

Sol: $\quad X(k)=[1,-2,1-j, j 2,0, \cdots-\cdots]$
(a) $\mathrm{X}(\mathrm{k})=\mathrm{X}^{*}(\mathrm{~N}-\mathrm{k})$
$X(5)=X^{*}(8-5)=X^{*}(3)=-j 2$
$X(6)=X^{*}(2)=1+j$
$X(7)=X^{*}(1)=-2$
(b) $\mathrm{y}(\mathrm{n})=(-1)^{\mathrm{n}} \mathrm{x}(\mathrm{n})$
$Y(k)=X(k-4)$ last four sample will shifted to beginning
(c) $g(n)=x\left(\frac{n}{2}\right)$

Zero interpolation in time domain corresponds to replication of the DFT spectrum
21. Ans: 6

Sol: Interpolation in time domain equal to replication in frequency domain.
$\mathrm{x}_{1}(\mathrm{n})=\mathrm{x}\left(\frac{\mathrm{n}}{3}\right)$

$$
\begin{aligned}
& \mathrm{X}_{1}(\mathrm{k})= {[12,2 \mathrm{j}, 0,-2 \mathrm{j}, 12,2 \mathrm{j}, 0,-2 \mathrm{j}, 12,2 \mathrm{j},} \\
&0,-2 \mathrm{j}] \\
& \mathrm{X}_{1}(8)= 12, \mathrm{X}_{1}(11)=-2 \mathrm{j} \\
&\left|\frac{\mathrm{X}_{1}(8)}{\mathrm{X}_{1}(11)}\right|=\left|\frac{12}{-2 \mathrm{j}}\right|=6
\end{aligned}
$$

22.

Sol:
(a) $t=1 \mu \mathrm{~s}$
$\mathrm{N}=1024$, total time to perform multiplication using DFT directly $=(1024)^{2} \times 1 \mu \mathrm{~s}=1.05 \mathrm{sec}$
(b) by FFT, $\mathrm{T}=\left[\frac{\mathrm{N}}{2} \log _{2} \mathrm{~N}\right] 1 \mu \mathrm{~s}$
$=\left[\frac{1024}{2} \log _{2} 1024\right] 1 \mu \mathrm{~s}$
$=5.12 \mathrm{msec}$
23. Ans: $\mathbf{6 1 . 4 4} \mathbf{~ m s}$

Sol: $\mathrm{f}_{\mathrm{s}}=10 \mathrm{kHz}, \mathrm{N}=1024, \Delta \mathrm{f}=\frac{\mathrm{f}_{\mathrm{s}}}{\mathrm{N}}$
Over all time required for processing the entire data $=\frac{\mathrm{N}}{\mathrm{f}_{\mathrm{s}}}=\frac{1024}{10 \times 10^{3}}=102.4 \mathrm{msec}$
Complex multiplications $=4$ times real multiplications
With a radix - 2 FFT , the number of complex multiplications for a 1024 point DFT is approximately $512 \log _{2} 1024=5120$. this means we have to perform $5120 \times 4=$ 20480 real multiplications for the DFT and the same number of for IDFT. With $1 \mu \mathrm{~s}$ per multiplication, this will take $\mathrm{t}=2 \times 20480 \times 10^{-6}=40.96 \mathrm{~ms}$.
The time remaining after DFT and IDFT is $102.4-40.96=61.44 \mathrm{~ms}$.

Chapter 11 Discrete-Time Processing of Continuous-Time Signals

1. Ans: (a)

Sol: Assume $x(t)=\operatorname{Cos}\left(2 \pi f_{0} t\right)$

$$
\begin{array}{ll}
=\operatorname{Cos}(2 \pi(21) \mathrm{t}) & \mathrm{f}_{0}=\frac{1}{\mathrm{~T}_{0}}=\frac{1}{\frac{1}{21}}=21 \\
=\operatorname{Cos}(42 \pi \mathrm{t}) &
\end{array}
$$

$$
\begin{gathered}
\mathrm{f}_{\mathrm{s}}=200 \mathrm{~Hz} \\
\quad \downarrow \\
\mathrm{~T}_{\mathrm{S}}=\frac{1}{\mathrm{f}_{\mathrm{s}}}
\end{gathered} \quad \mathrm{x}\left(\mathrm{nT}_{\mathrm{S}}\right)=\mathrm{x}\left(\frac{\mathrm{n}}{200}\right)=\cos \left(\frac{42 \pi \mathrm{n}}{200}\right)=\cos \left(\frac{21 \pi \mathrm{n}}{100}\right)
$$

For discrete signal periodicity condition is
$\frac{\omega_{0}}{2 \pi}=\frac{\mathrm{m}}{\mathrm{N}}$
$\frac{\omega_{0}}{2 \pi}=\frac{21 \pi}{200}=\frac{\mathrm{m}}{\mathrm{N}}$
$\therefore \mathrm{N}=200$
02. Ans: (c)

Sol: $\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=10 \mathrm{j} \omega ;-\pi \leq \omega<\pi$

> Sampler

$$
\begin{aligned}
& x(t)=\operatorname{Cos}(6 \pi t) \\
& x(n T)=x\left(\frac{n}{10}\right)=\operatorname{Cos}\left(\frac{6 \pi n}{10}\right)=\operatorname{Cos}\left(\frac{3 \pi n}{5}\right)
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{t} & =\mathrm{nT} \\
& =\frac{\mathrm{n}}{10}
\end{aligned}
$$

Output $y(n)=\left|H\left(\mathrm{e}^{\mathrm{j} \frac{3 \pi}{5}}\right)\right| \operatorname{Cos}\left(\frac{3 \pi n}{5}+\angle \mathrm{H}\left(\mathrm{e}^{\mathrm{j} \frac{3 \pi}{5}}\right)\right)$
$=6 \pi \operatorname{Cos}\left(\frac{3 \pi}{5} \mathrm{n}+\frac{\pi}{2}\right) \quad\left|\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \frac{3 \pi}{5}}\right)\right|=\left|10 j\left(\frac{3 \pi}{5}\right)\right|=6 \pi$

$$
=-6 \pi \operatorname{Sin}\left(\frac{3 \pi n}{5}\right)
$$

$$
\text { Continuous output } \begin{aligned}
y(t) & =-6 \pi \operatorname{Sin}\left(\frac{3 \pi}{5}(10 \mathrm{t})\right) \\
& =-6 \pi \operatorname{Sin}(6 \pi \mathrm{t})
\end{aligned}
$$

Regular Live Doubt clearing Sessions | Free Online Test Series | ASK an expert
Affordable Fee | Available $1 \mathrm{M}|3 \mathrm{M}| 6 \mathrm{M}|12 \mathrm{M}| 18 \mathrm{M}$ and 24 Months Subscription Packages

Chapter 2 Discrete-Time Fourier Series

1. Ans: (b)

Sol: $x(n)=\sum_{k=0}^{2} a_{k} e^{\mathrm{jk}\left(\frac{2 \pi}{3}\right) \mathrm{n}}=\mathrm{a}_{0}+\mathrm{a}_{1} \mathrm{e}^{\mathrm{j} 2 \pi(n)(1)}+\mathrm{a}_{2} \mathrm{e}^{\mathrm{j} 2 \pi(2)(\mathrm{n})}$
$\omega_{0}=\frac{2 \pi}{3}=\frac{4 \pi}{6} \quad=2+1 e^{\frac{\mathrm{j} 2 \pi n}{3}}$
$a_{k}=a_{k+3} \quad=1+1+e^{\frac{\mathrm{j} 4 \pi n}{6}} \quad \because 1=e^{\frac{\mathrm{j} 2 \pi n}{6}} . e^{-\frac{\mathrm{j} 2 \pi n}{6}}$
$\mathrm{a}_{-3}=\mathrm{a}_{-3+3}=\mathrm{a}_{0}=2$
$\mathrm{a}_{4}=\mathrm{a}_{1}=1$

$$
\begin{aligned}
& =1+e^{\frac{j 2 \pi n}{6}}\left[e^{\frac{-j 2 \pi n}{6}}+e^{\frac{j 2 \pi n}{6}}\right] \\
& =1+2 e^{\frac{j 2 \pi n}{6}} \cos \left(\frac{2 \pi n}{6}\right)
\end{aligned}
$$

2. Ans: (b)

Sol: Given

$$
\begin{aligned}
x(n) & =1+2 \operatorname{Sin}\left(\frac{4 \pi}{5} n+\frac{3 \pi}{4}\right)+4 \operatorname{Sin}\left(\frac{8 \pi}{5} n+\frac{5 \pi}{6}\right) \\
& =1+2 \operatorname{Cos}\left(\frac{4 \pi}{5} n+\frac{\pi}{4}\right)+4 \operatorname{Cos}\left(\frac{8 \pi}{5} n+\frac{\pi}{3}\right) \\
& \left.\left.=1+e^{-j 2\left(\frac{2 \pi}{5}\right)}\right)^{n} \cdot e^{-j \frac{\pi}{4}}+e^{-j 2\left(\frac{2 \pi}{5}\right) n} \cdot e^{j \frac{\pi}{4}}+2 e^{-j 4\left(\frac{2 \pi}{5}\right) n} \cdot e^{-j \frac{\pi}{3}}+2 e^{j 4\left(\frac{2 \pi}{5}\right)}\right)^{n} \cdot e^{j \frac{\pi}{3}}
\end{aligned}
$$

The value of $\mathrm{C}_{-2}=\mathrm{e}^{-\mathrm{j} \frac{\pi}{4}}$
03.

Sol:

$$
\begin{gathered}
x\left(\mathrm{nT}_{\mathrm{s}}\right)=\mathrm{x}\left[\frac{\mathrm{n}}{1000}\right]=\mathrm{A} \cos \left[\frac{\pi \mathrm{n}}{5}\right]+\mathrm{B} \cos \left[\frac{\pi \mathrm{n}}{2}\right] \\
\downarrow \\
\mathrm{N}_{1}=10 \quad \mathrm{~N}_{2}=4 \\
\mathrm{~N}=20 \Rightarrow \omega_{0}=\frac{\pi}{10} \\
\sum_{\mathrm{k}=0}^{\mathrm{N}-1} \mathrm{C}_{\mathrm{k}} \mathrm{e}^{\mathrm{jk} \omega_{0} \mathrm{n}} \\
\mathrm{x}(\mathrm{n})=\frac{\mathrm{A}}{2} \mathrm{e}^{\mathrm{j}(2)\left(\frac{\pi}{10}\right)^{n}}+\frac{\mathrm{A}}{2} \mathrm{e}^{\mathrm{j}(-2)\left(\frac{\pi}{10}\right) \mathrm{n}}+\frac{B}{2} \mathrm{e}^{\mathrm{j}(5)\left(\frac{\pi}{10}\right) \mathrm{n}}+\frac{B}{2} \mathrm{e}^{\mathrm{j}(-5)\left(\frac{\pi}{10}\right) \mathrm{n}} \\
\mathrm{C}_{2}=\frac{\mathrm{A}}{2}=\mathrm{C}_{2+20} \\
C_{-2}=\frac{\mathrm{A}}{2}=\mathrm{C}_{18} \quad \mathrm{C}_{5}=\mathrm{C}_{-5}=\frac{B}{2} \\
C_{-5}=C_{-5+20}
\end{gathered}
$$

4.

Sol: $\mathrm{C}_{15}=\mathrm{C}_{14+1}=\mathrm{C}_{1}=\mathrm{j}$
$\mathrm{C}_{16}=\mathrm{C}_{14+2}=\mathrm{C}_{2}=2 \mathrm{j}$
$\mathrm{C}_{17}=\mathrm{C}_{14+3}=\mathrm{C}_{3}=3 \mathrm{j}$

$$
\begin{aligned}
\mathrm{C}_{\mathrm{k}} & =\mathrm{C}_{\mathrm{k}+\mathrm{N}} \\
& =\mathrm{C}_{\mathrm{k}+7} \\
& =\mathrm{C}_{\mathrm{k}+14}
\end{aligned}
$$

\because Signal is real \& odd, Fourier series C_{k} will be imaginary \& odd $\mathrm{C}_{0}=0$
$C_{1}=-C_{-1} \Rightarrow C_{-1}=-j$
$\mathrm{C}_{2}=-\mathrm{C}_{-2} \Rightarrow \mathrm{C}_{-2}=-2 \mathrm{j}$
$\mathrm{C}_{3}=-\mathrm{C}_{-3} \Rightarrow \mathrm{C}_{-3}=-3 \mathrm{j}$
05.

Sol: $\mathrm{x}(\mathrm{n})=(-1)^{\mathrm{n}} \rightarrow \mathrm{N}=2 \rightarrow \omega_{0}=\pi \quad \mathrm{x}(\mathrm{n})=\{1,-1\}$
$\left[\begin{array}{l}\mathrm{C}_{0} \\ \mathrm{C}_{1}\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]\left[\begin{array}{c}1 \\ -1\end{array}\right]=\left[\begin{array}{l}0 \\ 1\end{array}\right]$
Input coefficient $\rightarrow \mathrm{C}_{\mathrm{k}}$
Output coefficient $\rightarrow \mathrm{C}_{\mathrm{k}} \mathrm{H}\left(\mathrm{e}^{\mathrm{jn} \omega_{0}}\right)=\mathrm{d}_{\mathrm{k}}$

$$
\begin{aligned}
& \mathrm{d}_{0}=\mathrm{C}_{0}=0 \\
& \mathrm{~d}_{1}=\mathrm{C}_{1} \mathrm{H}\left(\mathrm{e}^{\mathrm{jn} \pi}\right)=(1)(0)=0
\end{aligned}
$$

6.

Sol: $\mathrm{x}(\mathrm{n})=\sum_{\mathrm{k}=0}^{\mathrm{N}-1} \mathrm{C}_{\mathrm{k}} \mathrm{e}^{\mathrm{j} k \omega_{0} \mathrm{n}} \quad \omega_{0}=\frac{2 \pi}{5}$

$$
\mathrm{C}_{\mathrm{k}}=\mathrm{C}_{\mathrm{k}+5}
$$

$$
=\sum_{\mathrm{k}=0}^{4} \mathrm{C}_{\mathrm{k}} \mathrm{e}^{\mathrm{jk}\left(\frac{2 \pi}{5}\right) \mathrm{n}}
$$

$$
\mathrm{C}_{-2}=\mathrm{C}_{3}=2 \mathrm{e}^{-\mathrm{j} \frac{\pi}{6}}
$$

$$
\mathrm{C}_{-4}=\mathrm{C}_{1}=\mathrm{e}^{-\frac{\mathrm{j} \pi}{3} \mathrm{n}}
$$

$$
=C_{0}+C_{2} e^{j 2\left(\frac{2 \pi}{5}\right) n}+C_{-2} e^{-\mathrm{j} 2\left(\frac{2 \pi}{5}\right) \mathrm{n}}+\mathrm{C}_{4} \mathrm{e}^{\mathrm{j} 4\left(\frac{2 \pi}{5}\right) \mathrm{n}}+\mathrm{C}_{-4} \mathrm{e}^{-\mathrm{j} 4\left(\frac{2 \pi}{5}\right) \mathrm{n}}
$$

$$
=2+2 e^{\frac{j \pi}{6}} e^{\frac{j 4 \pi}{5} n}+2 e^{-\frac{j \pi}{6}} e^{-\frac{j 4 \pi}{5} n}+e^{\frac{j \pi}{3}} e^{\frac{j 8 \pi}{5} n}+e^{-\frac{j \pi}{3}} e^{-\frac{j 8 \pi}{5} n}
$$

$$
=2+4 \cos \left[\frac{4 \pi}{5} n+\frac{\pi}{6}\right]+2 \cos \left[\frac{8 \pi}{5} n+\frac{\pi}{3}\right]
$$

$$
4 \sin \left[\frac{4 \pi}{5} n+\frac{2 \pi}{3}\right]+2 \sin \left[\frac{8 \pi}{5} n+\frac{5 \pi}{6}\right]
$$

7.

Sol: $\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=-\mathrm{e}^{\mathrm{j} 2 \omega}-\mathrm{e}^{\mathrm{j} \omega}+1+\mathrm{e}^{-\mathrm{j} \omega}+\mathrm{e}^{-\mathrm{j} 2 \omega}$
$\mathrm{N}=4 \Rightarrow \omega_{0}=\frac{\pi}{2} \Rightarrow \mathrm{C}_{\mathrm{k}}=\frac{1}{4} \forall \mathrm{k}$

	Regular Live Doubt clearing Sessions \| Free Online Test Series	ASK an expert			
online	Affordable Fee \| Available 1M	3M	6M	12M	18M and 24 Months Subscription Packages

必 ACM	70	Signals \& Systems

Output coefficient $=C_{k} H\left(e^{j k \omega_{0}}\right)=\frac{1}{4}\left[1-e^{j k \frac{\pi}{2}}+e^{-\mathrm{jk} \frac{\pi}{2}}\right]$
08.

Sol: $\mathrm{e}^{\mathrm{j}\left(\frac{2 \pi}{N}\right)\left(\frac{N}{2}\right)^{\mathrm{n}}} \leftrightarrow \mathrm{C}_{\mathrm{k}-\mathrm{k}_{0}}$

$$
\begin{gathered}
\leftrightarrow C_{k-\frac{N}{2}} \\
y(n)=\frac{\mathrm{x}(\mathrm{n})+(-1)^{\mathrm{n}} \mathrm{x}(\mathrm{n})}{2} \\
\rightarrow \frac{\mathrm{C}_{\mathrm{k}}+\mathrm{C}_{\mathrm{k}-\frac{\mathrm{N}}{2}}}{2}
\end{gathered}
$$

9.

Sol: $x(n)=-(-1)^{n} x(n)$
$x(0)=x(\pm 2)=x(\pm 4)=0$
$\mathrm{n}=0, \mathrm{x}(1)=+1 \quad \mathrm{x}(2)=-1$

$$
x(3)=-1 \quad n=3
$$

$\mathrm{n}=2, \quad 2(5)=1$

10.

Sol: $\mathrm{x}(\mathrm{n})=\sum_{\mathrm{k}=0}^{2} \mathrm{a}_{\mathrm{k}} \mathrm{e}^{\mathrm{jk}\left(\frac{2 \pi}{3}\right)_{\mathrm{n}}}=\mathrm{a}_{0}+\mathrm{a}_{1} \mathrm{e}^{\mathrm{j} \frac{2 \pi}{3}(\mathrm{n})(1)}+\mathrm{a}_{2} \mathrm{e}^{\mathrm{j} \frac{2 \pi}{3}(2)(0)}$

$$
=2+1 \mathrm{e}^{\mathrm{j} \frac{2 \pi}{3} \mathrm{n}}
$$

$\omega_{0}=\frac{2 \pi}{3}=\frac{4 \pi}{6}$
$\mathrm{a}_{\mathrm{k}}=\mathrm{a}_{\mathrm{k}+3}$
$=1+1+\mathrm{e}^{\mathrm{j} \frac{4 \pi}{6} \mathrm{n}}$
\downarrow
$e^{j \frac{2 \pi}{6} n} \cdot e^{-j \frac{2 \pi}{6} n}$
$=1+e^{j \frac{2 \pi}{6} n}\left[e^{-j \frac{2 \pi}{6} n}+e^{j \frac{2 \pi}{6} n}\right]$
$=1+2 \mathrm{e}^{\mathrm{j} \frac{2 \pi \mathrm{n}}{6}} \cos \left(\frac{2 \pi n}{6}\right)$
$\mathrm{a}_{-3}=\mathrm{a}_{-3+3}=\mathrm{a}_{0}=2$
$a_{4}=a_{1}=1$

11. Ans: 0.038

Sol: $\mathrm{a}_{\mathrm{k}}=\frac{\mathrm{X}(\mathrm{k})}{\mathrm{N}} \quad \omega_{\mathrm{k}}=\frac{2 \pi \mathrm{k}}{\mathrm{N}}=\frac{2 \pi \mathrm{k}}{5}$
$\mathrm{a}_{\mathrm{k}}=\frac{1}{5}\left[1+\cos \left(\frac{2 \pi \mathrm{k}}{5}\right)\right] \mathrm{e}^{-\mathrm{j} \frac{2 \pi \mathrm{k}}{5}}$
$\mathrm{a}_{3}=\frac{1}{5}\left|1+\cos \frac{6 \pi}{5}\right|=\left|\frac{1-0.809}{5}\right|=0.0382$
12.

Sol: Example:
$\mathrm{x}(\mathrm{n})$
\downarrow
Period N $=3$
$\omega_{0}=\frac{2 \pi}{\mathrm{~N}}=\frac{2 \pi}{3}$
Possible frequencies of the input are

$$
\begin{aligned}
\mathrm{k} \omega_{0} & =\mathrm{k}\left(\frac{2 \pi}{3}\right) \\
& =0,1\left(\frac{2 \pi}{3}\right) 2\left(\frac{2 \pi}{3}\right) \ldots \ldots . .
\end{aligned}
$$

This is passed through filter with cut-off frequency $\omega_{c}=\frac{\pi}{8}$, So output can have only one non-zero coefficient.

