GATE I PSUs

HYDROLOGY

Text Book: Theory with worked out Examples and Practice Questions

Hydrology

(Solutions for Text Book Practice Questions)

01. Precipitation

1. Ans: (d)

Sol: Existing no.of rain gauge stations $\mathrm{m}=6$
Average depth of rainfall $\overline{\mathrm{P}}=92.8 \mathrm{~cm}$
Standard deviation of rainfall $\sigma=30.7 \mathrm{~cm}$
Allowable error (E) = 10\%
Optimum no. of rain gauge stations,

$$
\begin{aligned}
\mathrm{n} & =\left[\frac{\mathrm{C}_{\mathrm{v}}}{\mathrm{E}}\right]^{2} \\
\mathrm{C}_{\mathrm{v}} & =\frac{100 \sigma}{\overline{\mathrm{P}}}=\frac{100 \times 30.7}{92.8}=33.08 \% \\
\mathrm{n} & =\left[\frac{\mathrm{C}_{\mathrm{V}}}{\mathrm{E}}\right]^{2}=\left[\frac{33.08}{10}\right]^{2}=10.94 \approx 11 \mathrm{No} ' \mathrm{~s}
\end{aligned}
$$

2. Ans: (b)

Sol: $\mathrm{n}=5 ; \quad \mathrm{C}_{\mathrm{V}}=33 \%$

$$
\begin{aligned}
& \therefore \mathrm{n}=\left[\frac{\mathrm{C}_{\mathrm{v}}}{\mathrm{E}}\right]^{2} \Rightarrow 5=\left[\frac{33}{\mathrm{E}}\right]^{2} \\
& \mathrm{E}=14.758 \%
\end{aligned}
$$

$\%$ Accuracy $=100-\%$ error

$$
\begin{aligned}
& =100-14.758 \\
& =85.24 \%
\end{aligned}
$$

03. Ans: (c)

Sol: Missing rain fall @ station $\mathrm{P}_{\mathrm{III}}=$?
Missing rainfall

$$
\mathrm{P}_{\mathrm{III}}=\frac{\mathrm{N}_{\mathrm{III}}}{\mathrm{~m}}\left[\frac{\mathrm{P}_{\mathrm{I}}}{\mathrm{~N}_{\mathrm{I}}}+\frac{\mathrm{P}_{\mathrm{II}}}{\mathrm{~N}_{\mathrm{II}}}+\frac{\mathrm{P}_{\mathrm{IV}}}{\mathrm{~N}_{\mathrm{IV}}}\right]
$$

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{III}}=\frac{80}{3}\left[\frac{90}{60}+\frac{60}{75}+\frac{70}{100}\right] \\
& \mathrm{P}_{\mathrm{III}}=80 \mathrm{~cm}
\end{aligned}
$$

4. Ans: 1093.43

Sol: $P_{P}=\frac{N_{P}}{m}\left[\frac{P_{Q}}{N_{Q}}+\frac{P_{R}}{N_{R}}+\frac{P_{S}}{N_{S}}\right]$

$$
860=\frac{780}{3}\left[\frac{930}{850}+\frac{1010}{920}+\frac{\mathrm{P}_{\mathrm{S}}}{980}\right]
$$

$$
\mathrm{P}_{\mathrm{s}}=1093.43 \mathrm{~mm}
$$

5. Ans: (b)

Sol:

For 3day storm
Average depth $>$ depth of one day storm $>47 \mathrm{~cm}$
06. Ans: (c)

Sol : Double mass curve: Used to check inconsistency of rainfall record and to check arithmetical errors in transferring rainfall data from one record to another.

N. ACE	2	CIVIL-Postal Coaching Solutions

7. Ans: (a) \& (d)

Sol: Stn	P	Q	R	S
$\mathrm{N}(\mathrm{cm})$	50	48	46	40
P (mm)	$\mathrm{P}_{\mathrm{P}}=\mathrm{P}_{\mathrm{x}}=$?	43	42	38
(-) 10\%	$\mathrm{N}_{\mathrm{x}}=\mathrm{N}_{\mathrm{P}}=50$		(+) 10\%	

\downarrow
$\mathrm{N}_{\mathrm{s}}=40$, is not within 10% of N_{x}, use normal ratio method
$\frac{\mathrm{P}_{\mathrm{x}}}{\mathrm{N}_{\mathrm{x}}}=\frac{1}{\mathrm{~m}}\left[\frac{\mathrm{P}_{1}}{\mathrm{~N}_{1}}+\frac{\mathrm{P}_{2}}{\mathrm{~N}_{2}}+\ldots \ldots \ldots+\frac{\mathrm{P}_{\mathrm{m}}}{\mathrm{N}_{\mathrm{m}}}\right]$
$\frac{\mathrm{P}_{\mathrm{p}}}{50}=\frac{1}{3}\left[\frac{43}{48}+\frac{42}{46}+\frac{38}{40}\right]$
$\mathrm{P}_{\mathrm{P}}=45.98 \mathrm{~mm}$
08. Ans: (a) \& (c)

Sol: Precipitation is measured using a rain gauge (also called pluviometer, ombrometer).
Lysimeter: is a device used to measure evapotranspiration which is released by plants. (Usually crops or trees).
Phytometer: is generally used to measure transpiration, of plants.

02. Mean Precipitation Calculation

1. Ans: (a)

Sol: $\overline{\mathrm{P}}=\frac{\mathrm{P}_{A} \mathrm{~A}_{A}+\mathrm{P}_{\mathrm{B}} \mathrm{A}_{\mathrm{B}}+\mathrm{P}_{\mathrm{C}} \mathrm{A}_{\mathrm{C}}+\mathrm{P}_{\mathrm{D}} \mathrm{A}_{\mathrm{D}}}{\mathrm{A}_{\mathrm{A}}+\mathrm{A}_{\mathrm{B}}+\mathrm{A}_{\mathrm{C}}+\mathrm{A}_{\mathrm{D}}}$

$$
\begin{aligned}
& =\frac{3 \times 75+5 \times 125+4 \times 150+6 \times 150}{75+125+150+150} \\
& =4.7 \mathrm{~cm}
\end{aligned}
$$

2. Ans: (b)

Sol: $\bar{P}=P_{A} \times \frac{A_{A}}{A}+P_{B} \times \frac{A_{B}}{A}+P_{C} \times \frac{A_{C}}{A}+P_{D} \times \frac{A_{D}}{A}$

$$
\frac{\mathrm{A}_{\mathrm{D}}}{\mathrm{~A}}=1-\left(\frac{\mathrm{A}_{\mathrm{A}}}{\mathrm{~A}}+\frac{\mathrm{A}_{\mathrm{B}}}{\mathrm{~A}}+\frac{\mathrm{A}_{\mathrm{C}}}{\mathrm{~A}}\right)
$$

$$
=1-(0.1+0.2+0.3)=0.4
$$

$$
\overline{\mathrm{P}}=10 \times 0.1+15 \times 0.2+20 \times 0.3+25 \times 0.4
$$

$=20 \mathrm{~cm}$
03. Ans: (a)

Sol:

1) ACE	3	Hydrology

$$
\mathrm{A}_{1}=\mathrm{A}_{2}=\frac{1}{2} \times 2 \times 2=2 \mathrm{~km}^{2}
$$

$$
\mathrm{A}_{3}=\mathrm{A}_{5}=\frac{1}{2} \times 2 \times 2+\frac{1}{3} \times \frac{\sqrt{3}}{4} \times(4)^{2}
$$

$$
\mathrm{A}_{4}=\frac{1}{3} \times \frac{\sqrt{3}}{4}(4)^{2}=2.308 \mathrm{~km}^{2}
$$

$$
\mathrm{A}_{6}=\sqrt{8} \times \sqrt{8}=8 \mathrm{~km}^{2}
$$

$$
\begin{aligned}
& \overline{\mathrm{P}}=\frac{\mathrm{P}_{1} \mathrm{~A}_{1}+\mathrm{P}_{2} \mathrm{~A}_{2}+\mathrm{P}_{3} \mathrm{~A}_{3}+\mathrm{P}_{4} \mathrm{~A}_{4}+\mathrm{P}_{5} \mathrm{~A}_{5}+\mathrm{P}_{6} \mathrm{~A}_{6}}{\mathrm{~A}} \\
& \overline{8 \times 2+13 \times 2+4.8 \times 4.309+3.2 \times 2.309+5.4 \times} \\
& \overline{\mathrm{P}}=\frac{4.309+9.4 \times 8}{22.928} \\
& \overline{\mathrm{P}}=7.35 \mathrm{~cm}
\end{aligned}
$$

04. Ans: (c)

Sol: $\mathrm{P}_{1}=45 \mathrm{~cm}$, $\mathrm{P}_{2}=55 \mathrm{~cm}$,
$\mathrm{P}_{3}=65 \mathrm{~cm}$
$\overline{\mathrm{P}}=\frac{\mathrm{A}_{1}\left[\frac{\mathrm{P}_{1}+\mathrm{P}_{2}}{2}\right]+\mathrm{A}_{2}\left[\frac{\mathrm{P}_{2}+\mathrm{P}_{3}}{2}\right]}{\mathrm{A}}$

$$
=\frac{100\left[\frac{45+55}{2}\right]+150\left[\frac{55+65}{2}\right]}{100+150}=56 \mathrm{~cm}
$$

05. Ans: (b)

Sol: $\bar{P}=\frac{A_{1}\left[\frac{P_{1}+P_{2}}{2}\right]+\ldots \ldots+A_{n-1}\left[\frac{P_{n-1}+P_{n}}{2}\right]}{A}$

$$
92\left[\frac{15+12}{2}\right]+12 \S\left[\frac{12+9}{2}\right]+12\left\lceil\left[\frac{9+6}{2}\right]\right.
$$

$$
\overline{\mathrm{P}}=\frac{+175\left[\frac{6+3}{2}\right]+85\left[\frac{3+1}{2}\right]}{600}
$$

$=7.4 \mathrm{~cm}$

06. Ans: (b)

Sol

$$
\begin{aligned}
& 30 \times 12+140 \times\left(\frac{12+10}{2}\right)+80 \times\left(\frac{10+8}{2}\right) \\
\overline{\mathrm{P}} & =\frac{+180 \times\left(\frac{8+6}{2}\right)+20\left(\frac{6+4}{2}\right)}{30+140+80+180+20} \\
& =8.84 \mathrm{~cm}
\end{aligned}
$$

Note: Formula same as earlier problem

07 Ans: (b)

Sol: Hyetograph: It is a graph between time in hour (x -axis) and rainfall intensity ($\mathrm{mm} / \mathrm{hr} \mathrm{)}$ on y-axis.
Direct runoff hydrograph: From rainfall excess we can draw direct runoff hydrograph with time on x-axis and discharge on y-axis.
Isohyets: is defined as a lime joining points of equal rainfall (Rainfall averaging)
Mass curve: It is a plot of cumulative rainfall and time.
08. Ans: (c)

Sol: Thiessen - Polygon method: Rainfall recorded at each station is given a Weightage on the basis of an area closest to the station.

$$
\mathrm{P}_{\mathrm{a}}=\frac{\mathrm{P}_{1} \mathrm{~A}_{1}+\mathrm{P}_{2} \mathrm{~A}_{2}+\ldots . . \mathrm{P}_{\mathrm{m}} \mathrm{~A}_{\mathrm{m}}}{\mathrm{~A}_{1}+\mathrm{A}_{2}+\ldots . \mathrm{A}_{\mathrm{m}}}=\frac{\Sigma \mathrm{P}_{1} \mathrm{~A}_{1}}{\Sigma \mathrm{~A}_{1}}
$$

The ratio $\frac{\mathrm{A}_{1}}{\Sigma \mathrm{~A}_{1}}=$ Weightage factor where $\mathrm{P}_{1} \mathrm{P}_{2} \ldots$. Are rainfalls and $\mathrm{A}_{1}, \mathrm{~A}_{2} \ldots$. Are respective theissen polygon areas.

03. Frequency of Point Rainfall \& Probability

1. Ans: (i) $\mathbf{2 . 5}$, (ii) $\mathbf{2}$, (iii) $\mathbf{1 . 2 5}$

Sol: Return period (T) for a magnitude listed at a position " m " in a total of ' n ' entries is

$$
\mathrm{T}=\frac{\mathrm{n}+1}{\mathrm{~m}}
$$

Arrange all flood data in descending order and allot rank to each flood (i.e)

Annual peak flood $\left(\mathbf{m}^{\mathbf{3} / \mathbf{s})}\right.$	Rank
130	1
120	2
100	3
80	4
75	5
70	6
60	8
50	9
40	

(i) Return period of flood $80 \mathrm{~m}^{3} / \mathrm{sec}=\frac{9+1}{4}$

$$
=\frac{10}{4}=2.5
$$

(ii) Return period of flood $75 \mathrm{~m}^{3} / \mathrm{sec}=\frac{9+1}{5}=2$
(iii) Return period of flood $50 \mathrm{~m}^{3} / \mathrm{sec}=\frac{9+1}{8}$

$$
=\frac{10}{8}=1.25
$$

02. Ans: (d)

Sol: For 6 cm rain fall
Rank $m=6$

$$
\mathrm{n}=10
$$

(i) Hazen formula,

$$
\begin{aligned}
& \mathrm{T}=\frac{\mathrm{n}}{\mathrm{~m}-0.5} \\
& \mathrm{~T}=\frac{10}{6-0.5}=\frac{10}{5.5}=\frac{20}{11}
\end{aligned}
$$

(ii) By Weibull Formula

$$
\mathrm{T}=\frac{\mathrm{n}+1}{\mathrm{~m}}=\frac{10+1}{6}=\frac{11}{6}
$$

3. Ans: (d)

Sol: T=20 years
$\therefore p=\frac{1}{T}=\frac{1}{20}=0.05$
$\mathrm{n}=12$ years
$\mathrm{q}=1-\mathrm{p}=1-0.05=0.95$
Probability of occurring at least once

$$
=1-q^{n}=1-0.95^{12}=45.96 \% \approx 46 \% \text {. }
$$

04. Ans: (a)

Sol: $\mathrm{n}=50 \mathrm{yrs}$

$$
\mathrm{T}=100 \mathrm{yrs}
$$

$$
\mathrm{P}=\frac{1}{\mathrm{~T}}=\frac{1}{100}=0.01
$$

$$
\mathrm{q}=1-\mathrm{P}=1-0.01=0.99
$$

$$
\text { Risk }=1-(q)^{\mathrm{n}}=1-(0.99)^{50}
$$

$$
=0.395=39.5 \%
$$

	Regular Live Doubt clearing Sessions \| Free Online Test Series	ASK an expert			
- online	Affordable Fee \| Available 1M	3M	6M	12M	18M and 24 Months Subscription Packages

Hydrology

05. Ans: (c)

Sol: Risk $=20 \%=0.2 ; \mathrm{n}=10 \mathrm{yrs}, \mathrm{T}=$?

$$
\begin{aligned}
\text { Risk } & =1-(\mathrm{q})^{\mathrm{n}} \\
0.2 & =1-(\mathrm{q})^{10} \Rightarrow \mathrm{q}=0.9778 \\
\mathrm{P} & =1-\mathrm{q}=0.022 \\
\mathrm{~T} & =\frac{1}{\mathrm{P}}=\frac{1}{0.022}=45.45 \approx 45 \mathrm{yrs}
\end{aligned}
$$

06. Ans: (d)

Sol: T = 100 yr
$\mathrm{n}=2$
$\mathrm{P}=\frac{1}{\mathrm{~T}}=\frac{1}{100}=0.01$
$\mathrm{q}=1-\mathrm{P}=1-0.01=0.99$
Risk $=1-(\mathrm{q})^{\mathrm{n}}=1-(0.99)^{2}=0.0199=1.99 \%$
07. Ans: (i) 0.025 , (ii) 0.397 , (iii) 0.975

Sol T $=40$ years
(i) $p=\frac{1}{T}=\frac{1}{40}=0.025$

$$
\mathrm{q}=1-\mathrm{p}=1-0.025=0.975
$$

(ii) At least once in next 20 years

$$
\begin{aligned}
\text { Risk }=\left(1-q^{n}\right) & =1-0.975^{20} \\
& =0.3973 \\
\mathrm{R} & =39.73 \%
\end{aligned}
$$

(iii) Probability of occurring of flood magnitude less than $4000 \mathrm{~m}^{3} / \mathrm{sec}$

Probability of not occurring a flood of magnitude $\geq 4000 \mathrm{~m}^{3} / \mathrm{sec}$

$$
\mathrm{q}=0.975
$$

8. Ans: (c)

Sol: The probability of a event whose magnitude equal to or in excess of a specified magnitude(x) and having a recurrence interval ' T ', occurring in a given year, is given by
$P=\frac{1}{T}$ where P is called exceedence probability

$$
\mathrm{T}=\frac{1}{\mathrm{P}}
$$

04. Evaporation \& Evapotranspiration

01. Ans: 5.157

Sol: Depth of water removed,

$$
\mathrm{Z}=\frac{4.2 \times 10^{-3}}{\frac{\pi}{4}(1.22)^{2}} \times 1000=3.592 \mathrm{~mm}
$$

Pan evaporation
$\mathrm{E}=\mathrm{P} \pm \mathrm{Z}=8.75-3.592=5.157 \mathrm{~mm}$

02. Ans: $11.94 \mathrm{~mm} \& 8.35 \mathrm{~mm}$

Sol: Depth of water added

$$
(\mathrm{Z})=\frac{8.75 \times 10^{-3}}{\frac{\pi}{4}(1.2)^{2}} \times 1000=7.736 \mathrm{~mm}
$$

Pan evaporation, $\mathrm{E}=\mathrm{p} \pm \mathrm{Z}$
$=4.2+7.736$
$=11.936 \mathrm{~mm}(+\mathrm{Z} \rightarrow$ water added

$$
-\mathrm{Z} \rightarrow \text { water removed) }
$$

(Actual evaporation $=\mathrm{C}_{\mathrm{P}} \times$ pan evaporation)

$$
\begin{aligned}
& =0.7 \times 11.936 \\
& =8.35 \mathrm{~mm}
\end{aligned}
$$

3. Ans: 61.08

Sol: Increase in storage

$$
=103.258-103.2=0.058 \mathrm{~m}
$$

$\sum \mathrm{I}-\sum \mathrm{O}= \pm \Delta \mathrm{S}=+\Delta \mathrm{S}$
$(\because+\rightarrow$ increase $)$

$$
[\mathrm{I}+\mathrm{P}]-[\mathrm{O}+\mathrm{E}+\mathrm{S}]=+\Delta \mathrm{S}
$$

$\left[\frac{6 \times 30 \times 24 \times 60 \times 60}{5000 \times 10^{4}} \times 1000+145\right]$
$-\left[\frac{6.5 \times 30 \times 24 \times 60 \times 60}{5000 \times 10^{4}} \times 1000-\mathrm{E}+0\right]$
$=0.058 \times 1000$
$[456.04]-[336.96-\mathrm{E}]=0.058 \times 1000$
$\mathrm{E}=61.08 \mathrm{~mm}$
\therefore Evaporation loss in that month $\mathrm{E}=61.08 \mathrm{~mm}$
04. Ans: (d)

Sol: $\Sigma \mathrm{I}-\Sigma \mathrm{O}= \pm \Delta \mathrm{S}$
Plan area of reservoir $=1 \mathrm{~km}^{2}$

$$
=1 \times 100=100 \mathrm{ha}
$$

$$
=\left[10+\frac{3}{100} \times 100\right]-\left[20+\frac{12 \times 0.7}{100} \times 100+\text { seepage }\right]
$$

$$
=\frac{-20}{100} \times 100
$$

[inflow + Precipitation]-[outflow + Evaporation + seepage $]$
(Ha.m) (Ha.m) (Ha.m) (Ha.m) (Ha.m)
$=$ change in storage
(Ha.m)
$[10+3]-[20+8.4+$ seepage $]=-20$
\therefore seepage loss $=4.6$ Ha.m
Note: All values substitute in above equation in ha-m

05. Ans: (a)

Sol: $\mathrm{R}=200 \mathrm{watt} / \mathrm{m}^{2}$

$$
\begin{aligned}
\mathrm{L} & =2441 \mathrm{~kJ} / \mathrm{kg} \\
& =2441 \times 10^{3} \mathrm{~J} / \mathrm{kg}
\end{aligned}
$$

$$
\rho_{\mathrm{w}}=997 \mathrm{~kg} / \mathrm{m}^{3}
$$

$$
\begin{aligned}
\mathrm{E} & =\frac{\mathrm{R}}{\rho_{\mathrm{w}} \mathrm{~L}}=\frac{200}{997 \times 2441 \times 10^{3}} \\
& =8.218 \times 10^{-8} \mathrm{~m} / \mathrm{sec} \\
& \simeq 7.1 \mathrm{~mm} / \text { day }
\end{aligned}
$$

Regular Live Doubt clearing Sessions | Free Online Test Series | ASK an expert Affordable Fee \| Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

¢1 ACE	7	Hydrology

06. Ans: (c)

Sol: $\mathrm{P}=7.2 \%$,

$$
\begin{aligned}
\mathrm{T}_{\mathrm{m}} & =18^{\circ} \mathrm{C} \\
\mathrm{~K} & =0.7
\end{aligned}
$$

Consumptive use

$$
=\mathrm{PET}=\frac{\mathrm{KPT}_{\mathrm{m}}}{100} \times 2.54 \mathrm{~cm} / \text { month }
$$

$$
\begin{aligned}
\text { PET } & =\frac{0.7 \times 7.2 \times(1.8 \times 18+32)}{100} \times 25.4 \frac{\mathrm{~mm}}{\text { month }} \\
& =82.44 \mathrm{~mm} / \text { month }
\end{aligned}
$$

\therefore consumptive use
$\operatorname{PET}=\frac{82.44}{30}=2.74 \mathrm{~mm} /$ day
07. Ans: (a)

Sol: $K=\frac{\text { consumptive use }}{\text { pan evaporation }}$

$$
0.52=\frac{\text { consumptive use }}{9.5}
$$

Consumptive use $=9.5 \times 0.52$

$$
=4.94 \mathrm{~cm} / \text { month }
$$

January no.of days $\}=31$
Consumptive use

$$
=4.94 \times \frac{10}{31} \simeq 1.6 \mathrm{~mm} / \text { day }
$$

08. Ans: (c)

Sol: Indian standard pan

$$
\therefore \mathrm{C}_{\mathrm{P}}=0.8
$$

Pan evaporation $=4.0 \mathrm{~cm}$
Actual evaporation from reservoir

$$
\begin{aligned}
& =C_{p} \times \text { pan evaporation } \\
& =0.8 \times 4=3.2 \mathrm{~cm}
\end{aligned}
$$

Volume of water evaporated = plan area of reservoir \times actual evaporation loss

$$
=100 \times \frac{3.2}{100} \times 10^{4}=3.2 \times 10^{4} \mathrm{~m}^{3} / \text { day }
$$

9. Ans: (d)

Sol: Cetyl alcohol and stearyl alchol are used to minimize the loss of water through the process of evaporation.
10. Ans: (a)

Sol: Aridity Index $(A I)=\frac{\text { PET }- \text { AET }}{\text { PET }} \times 100$
Where AET = Actual Evapotranpiration PET = Potential Evapotranpiration Potential Evapotranpiration (PET): Evapotransipration which occurs when sufficient moisture is always available to completely meet the needs of vegetation, fully covering the area.
Acutal Evapotranpiration (AET) : The actual Evapotranpiration occurring in a specific situation.

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups \& PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

05. Infiltration

01. Ans: (a)

Sol: $\mathrm{f}<\mathrm{f}_{\mathrm{c}}$ when $\mathrm{i}<\mathrm{f}_{\mathrm{c}}$
02. Ans: (d)

Sol: $\mathrm{f}_{\mathrm{t}}=\mathrm{f}_{\mathrm{c}}+\left(\mathrm{f}_{0}-\mathrm{f}_{\mathrm{c}}\right) \mathrm{e}^{-\mathrm{kt}}$
$\mathrm{f}_{\mathrm{t}}=1.34+(7.62-1.34) \mathrm{e}^{-4.182 \mathrm{t}}$
$\mathrm{f}_{2}=1.34+(7.62-1.34) \mathrm{e}^{-4.182 \times 2}=1.34$
$\mathrm{f}_{2}=\mathrm{f}_{\mathrm{c}}$
\therefore steady state attained
Total infiltration in 2 hrs

$$
\begin{aligned}
& =f_{c} \times t+\frac{f_{0}-f_{c}}{K} \\
& =1.34 \times 2+\frac{7.62-1.34}{4.182}=4.18 \mathrm{~cm}
\end{aligned}
$$

3. Ans: 4.375

Sol: $\mathrm{f}_{0}=2 \mathrm{~cm} / \mathrm{hr} ; \mathrm{f}_{\mathrm{c}}=0.5 \mathrm{~cm} / \mathrm{hr} ; \mathrm{K}=4 \mathrm{hr}^{-1}$
Infiltration in $8 h r=f_{c} \times t+\frac{f_{0}-f_{c}}{K}$

$$
=0.5 \times 8+\frac{1.5}{4}=4.375 \mathrm{~cm}
$$

4. Ans: $40320 \mathrm{~m}^{3}$

Sol: In 24 hrs Rainfall $=10 \mathrm{~cm}$
In 24 hrs evaporation $=C_{P} \times$ pan

$$
\begin{aligned}
& \text { evaporation } \\
& =0.7 \times 0.6
\end{aligned}
$$

In 24 hrs infiltration $=f_{c} \times t+\frac{f_{0}-f_{c}}{K}$

$$
\begin{aligned}
& =0.3 \times 24+\frac{1-0.3}{5} \\
& =7.34 \mathrm{~cm}
\end{aligned}
$$

Run off $=\mathrm{P}-\mathrm{E}-\mathrm{I}$
Runoff $(R)=10-(0.7 \times 0.6)-7.34=2.24 \mathrm{~cm}$
Depth of runoff $=2.24 \mathrm{~cm}$
Volume of runoff
$=$ Area of catchment \times depth of Runoff

$$
=1.8 \times(1000)^{2} \times \frac{2.24}{100}
$$

$$
=40320 \mathrm{~m}^{3}
$$

05. Ans: (d)

Sol: Runoff $=$ Area of hyetograph above IC curve

Area of hyetograph above IC curve
$=\left[\begin{array}{l}\text { Total area of hyetograph } \\ \text { between } 1 \mathrm{hr} \text { to } 3 \mathrm{hr}\end{array}\right]-\left[\begin{array}{l}\text { Area below IC } \\ \text { curve between } 1 \mathrm{hr} \text { to 3hr }\end{array}\right]$
$=[20 \times 1+10 \times 1]-\int_{1}^{3} f_{t} . d t$
$=30-\left[\int_{1}^{3}\left(6.8+8.7 \mathrm{e}^{-\mathrm{t}}\right) \mathrm{dt}\right]$
$=30-\left[6.8 \times(\mathrm{t})_{1}^{3}+\frac{8.7}{-1}\left[\mathrm{e}^{-\mathrm{t}}\right]\right]_{1}^{3}$
$=30-\left[6.8 \times[3-1]-8.7\left[\mathrm{e}^{-3}-\mathrm{e}^{-1}\right]\right.$
$=13.63 \mathrm{~mm}$

	Regular Live Doubt clearing Sessions \| Free Online Test Series	ASK an expert			
online	Affordable Fee \| Available 1M	3M	6M	12M	18 M and 24 Months Subscription Packages

06. Ans: (b)

Sol: $\quad \phi_{\text {index }}=0.5 \mathrm{~cm} / \mathrm{h}$
$\mathrm{P}=2 \mathrm{~cm} ; \quad \mathrm{T}=6$ hour
Given, Uniform rate $\mathrm{R}=$?

$$
\begin{aligned}
\mathrm{W}_{\text {index }} & =\frac{\mathrm{P}-\mathrm{R}-\text { losses }}{\mathrm{t}} \\
0.50 & =\frac{2-\mathrm{R}-0}{6} \\
\mathrm{R} & =-1 \mathrm{~cm}
\end{aligned}
$$

Runoff $=0 \mathrm{~cm}$

07. Ans: (d)

Sol: The total observed runoff volume

$$
\begin{aligned}
& =25.2 \times 10^{6} \mathrm{~m}^{3} \\
\text { Area of basin } & =280 \mathrm{~km}^{2}
\end{aligned}
$$

Rainfall intensity $=4 \mathrm{hr}$
Duration of rain $=4 \mathrm{hr}$
Total rainfall in $4 \mathrm{hr}, \mathrm{P}=2.8 \times 4=11.2 \mathrm{~cm}$
Runoff depth (R)

$$
=\frac{25.2 \times 10^{6}}{280 \times(1000)^{2}} \times 100=9 \mathrm{~cm}
$$

Average infiltration

$$
\begin{aligned}
=\frac{\mathrm{P}-\mathrm{R}}{\mathrm{t}}=\frac{11.2-9}{4} & =0.55 \mathrm{~cm} / \mathrm{hr} \\
& =5.5 \mathrm{~mm} / \mathrm{hr}
\end{aligned}
$$

8. Ans: (a)

Sol: $\phi_{\text {index }}=\frac{P_{e_{1}}-R_{1}}{t_{e_{1}}}=\frac{P_{e_{2}}-R_{2}}{t_{e_{2}}}$
$\Rightarrow \frac{4-2}{4}=\frac{10-\mathrm{R}_{2}}{8} \Rightarrow \mathrm{R}_{2}=6 \mathrm{~cm}$

Linked answer questions for $\mathbf{0 9} \boldsymbol{\&} \mathbf{1 0}$

9. Ans: (a)

Sol: Storm - I

$\mathrm{i}_{\mathrm{e}}=2 \mathrm{~cm} / \mathrm{hr}$
$\mathrm{t}_{\mathrm{e}}=5 \mathrm{hr}, \mathrm{R}=4 \mathrm{~cm}$
$\mathrm{P}_{\mathrm{e}}=\mathrm{i}_{\mathrm{e}} \mathrm{t}_{\mathrm{e}}=2 \times 5=10 \mathrm{~cm}$
$\phi_{\text {index }}=\frac{P_{e}-R}{t_{e}}=\frac{10-4}{5}=1.2 \mathrm{~cm} / \mathrm{hr}$

10. Ans: (d)

Sol: $\mathrm{R}_{2}=8.4 \mathrm{~cm} ; \quad \phi=1.2 \mathrm{~cm} / \mathrm{hr} ; \mathrm{t}_{\mathrm{e}}=8 \mathrm{hr}$

$$
\phi=\frac{\mathrm{P}_{\mathrm{e}_{2}}-\mathrm{R}_{2}}{\mathrm{t}_{\mathrm{e} 2}}=\frac{\mathrm{P}_{\mathrm{e}_{2}}-8.4}{8} \Rightarrow \mathrm{P}_{\mathrm{e}_{2}}=18 \mathrm{~cm}
$$

Intensity $=\frac{P}{t}=\frac{18}{8}=2.25 \mathrm{~cm} / \mathrm{hr}$
11. Ans: (c)

Sol: $\mathrm{P}=7+18+25+17+11+3$

$$
\begin{aligned}
& \mathrm{P}=81 \mathrm{~cm} \\
& \begin{aligned}
\mathrm{W}_{\text {index }} & =\frac{\mathrm{P}-\mathrm{R}-\text { losses }}{\mathrm{t}} \\
\quad= & \frac{81-39}{6}=7 \mathrm{~mm} / \mathrm{hr} \\
\phi_{\text {index }} & >\mathrm{W}_{\text {index }} \\
\therefore 8 \mathrm{~mm} / \mathrm{h} & >7 \mathrm{~mm} / \mathrm{h} \\
\phi_{\text {index }} & =8 \mathrm{~mm} / \mathrm{h}
\end{aligned}
\end{aligned}
$$

12. Ans: (b)

Sol: $\mathbf{W}_{\text {index }}$:

$$
\begin{aligned}
& P=\sum i_{i} \times t_{i} \\
& P=[1.6+3.6+5+2.8+2.2+1] \times \frac{30}{60}=8.1 \mathrm{~cm}
\end{aligned}
$$

ACE	10	CIVIL-Postal Coaching Solutions

$\mathrm{t}=3 \mathrm{hr} ; \mathrm{R}=3.6 \mathrm{~cm}$

$$
\begin{aligned}
\mathrm{W}_{\mathrm{index}}=\frac{\mathrm{P}-\mathrm{R}-\text { losses }}{\mathrm{t}} & =\frac{8.1-3.6-0}{3} \\
& =1.5 \mathrm{~cm} / \mathrm{hr}
\end{aligned}
$$

$\phi_{\text {Index }}$:
$\phi_{\text {index }}>\mathrm{W}_{\text {index }}$

$$
P_{e}=[1.6+3.6+5+2.8+2.2] \times \frac{30}{60}=7.6 \mathrm{~cm}
$$

$$
\mathrm{t}_{\mathrm{e}}=2.5 \mathrm{hr} ; \mathrm{R}=3.6 \mathrm{~cm}
$$

$$
\phi_{\text {index }}=\frac{\mathrm{P}_{\mathrm{e}}-\mathrm{R}}{\mathrm{t}_{\mathrm{e}}}=\frac{7.6-3.6}{2.5}=1.6 \mathrm{~cm} / \mathrm{hr}
$$

13. Ans: (a)

Sol: $\mathbf{W}_{\text {index }}$:

$\phi_{\text {index }}$:

$$
\begin{aligned}
\phi_{\text {index }} & >\mathrm{W}_{\text {index }} \\
\mathrm{P}_{\mathrm{e}} & =[5.4+4.1]=9.5 \mathrm{~cm} \\
\mathrm{t}_{\mathrm{e}} & =16 \mathrm{hr}
\end{aligned}
$$

$$
\phi_{\text {index }}=\frac{\mathrm{P}_{\mathrm{e}}-\mathrm{R}}{\mathrm{t}_{\mathrm{e}}}=\frac{9.5-4.7}{16}=0.3 \mathrm{~cm} / \mathrm{hr}
$$

14. Ans: (c)

Sol: $\mathbf{W}_{\text {index }}$:

$$
\begin{aligned}
& \mathrm{P}=\sum \mathrm{i}_{\mathrm{i}} \mathrm{t}_{\mathrm{i}}=0.5+2.8+1.6=4.9 \mathrm{~cm} \\
& \mathrm{R}=3.2 \mathrm{~cm} \\
& \mathrm{~W}_{\text {index }}=\frac{\mathrm{P}-\mathrm{R}-\text { losses }}{\mathrm{t}}=\frac{4.9-3.2-0}{6} \\
&=0.283 \mathrm{~cm} / \mathrm{hr}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{P}=1.6+5.4+4.1=11.1 \mathrm{~cm} \\
& \mathrm{R}=4.7 \mathrm{~cm}, \mathrm{t}=24 \mathrm{hr}, \text { losses }=0.6 \mathrm{~cm} \\
& \mathrm{~W}_{\text {index }}=\frac{\mathrm{P}-\mathrm{R}-\text { losses }}{\mathrm{t}}=\frac{11.1-4.7-0.6}{24} \\
& =0.241 \mathrm{~cm} / \mathrm{h}
\end{aligned}
$$

$\phi_{\text {index }}$:

$$
\begin{aligned}
\mathrm{P}_{\mathrm{e}} & =1.4 \times 2+0.8 \times 2=4.4 \mathrm{~cm} \\
\mathrm{t}_{\mathrm{e}} & =4 \mathrm{hr}, \mathrm{R}=3.2 \mathrm{~cm}
\end{aligned}
$$

$$
\phi_{\text {index }}=\frac{\mathrm{P}_{\mathrm{e}}-\mathrm{R}}{\mathrm{t}_{\mathrm{e}}}=\frac{4.4-3.2}{4}=0.3 \mathrm{~cm} / \mathrm{hr}
$$

15. Ans: (c)

Sol: $\phi_{\text {index }}=10 \mathrm{~mm} / \mathrm{hr}$

$$
\mathrm{P}_{\mathrm{e}}=\mathrm{i}_{\mathrm{e}} \times \mathrm{t}_{\mathrm{e}} \quad\left(\mathrm{i}_{\mathrm{e}} \rightarrow \mathrm{i}>\phi_{\text {index }}\right)
$$

$$
\begin{aligned}
= & 28 \times 1+12 \times 1=40 \mathrm{~mm} \\
\mathrm{t}_{\mathrm{e}} & =2 \mathrm{hr} \\
\phi_{\text {index }} & =\frac{\mathrm{P}_{\mathrm{e}}-\mathrm{R}}{\mathrm{t}_{\mathrm{e}}} \Rightarrow 10=\frac{40-\mathrm{R}}{2}=20 \mathrm{~mm}
\end{aligned}
$$

16. Ans:($\mathbf{1 . 8 1 6} \mathbf{~ c m}, \mathbf{1 . 6 1 6 ~ c m}$)

Sol: $f_{t}=f_{c}+\left(f_{o}-f_{c}\right) e^{-k t}$

$$
=3+\mathrm{e}^{-2 \mathrm{t}}
$$

(i) Infiltration in 30 minutes (or) 0.5 hr

$$
\begin{aligned}
& =\int_{0}^{0.5}\left(3+\mathrm{e}^{-2 \mathrm{t}}\right) \mathrm{dt} \\
& =3(\mathrm{t})_{0}^{0.5}+\frac{\left[\mathrm{e}^{-2 \mathrm{t}}\right]_{0}^{0.5}}{-2} \\
& =3 \times 0.5-0.5\left[\mathrm{e}^{-1}-\mathrm{e}^{2 \times 0}\right] \\
& =1.816 \mathrm{~cm}
\end{aligned}
$$

(1) ACE	11	Hydrology

(ii) Infiltration in $2^{\text {nd }} 30$ minutes

First we have to calculate infiltration in 0 hr to 1 hr
$=\int_{0}^{1}\left(3+\mathrm{e}^{-2 t}\right) \mathrm{dt}$
$=[3 \mathrm{t}]_{0}^{1}+\frac{\left[\mathrm{e}^{-2 \mathrm{t}}\right]_{0}^{1}}{-2}$
$=3-0.5\left[\mathrm{e}^{-2}-\mathrm{e}^{0}\right]=3.432 \mathrm{~cm}$
But in question he ask next 30 minutes so we subtract
$1^{\text {st }} 30$ min infiltration
$=3.432 \mathrm{~cm}-1.816 \mathrm{~cm}$
$=1.616 \mathrm{~cm}$

17. Ans: (a) \& (d)

Sol: $\mathrm{R}=\frac{57.2 \times 10^{6}}{650 \times 10^{6}}=0.088 \mathrm{~m}=8.8 \mathrm{~cm}$

$$
\mathrm{P}=\mathrm{i} \times \mathrm{t}=1.6 \times 8=12.8 \mathrm{~cm}
$$

$\phi-$ Index $=\frac{12.8-8.8}{8}=0.5 \mathrm{~cm} / \mathrm{hr}$

$$
=5 \mathrm{~mm} / \mathrm{hr}
$$

06. Runoff

1. Ans: (d)

Sol: Runoff can also be known as
i. Effective rainfall
ii. Rainfall excess
iii. Net rain
iv. Direct runoff

02. Ans: (a)

Sol: Methods to estimate runoff are

1. Regression analysis (Runoff - Rainfall relationship).
2. Binnie's percentages
3. Barlow's Tables
4. Stranges Tables
5. Water shed simulations
6. Hortone's infiltration capacity
7. Infiltration indices
8. $\mathrm{SCN}-\mathrm{CN}$ method.
9. Ans: (a)

Sol: The ratio between runoff to rainfall is know as runoff factor.
04. Ans: (a)

Sol: A conventional flow duration curve is a plot between flow rate and percentage time flow is exceeded (Percentage probability).

07. Hydrographs

1. Ans: (d)

Sol: Volume of runoff = Area of DRH

$$
\begin{aligned}
& =\frac{1}{2} \times 80 \times 200 \times 60 \times 60 \\
& =28.8 \times 10^{6} \mathrm{~m}^{3}
\end{aligned}
$$

$$
\begin{aligned}
\text { Runoff depth } & =\frac{\text { Volume of runoff }}{\text { Area of catchment }} \\
& =\frac{28.8 \times 10^{6}}{1440 \times 10^{6}} \times 100=2 \mathrm{~cm}
\end{aligned}
$$

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups \& PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

A A A A	12	CIVIL-Postal Coaching Solutions

2. Ans: (b)

Sol: Area of catchment $=\frac{\text { Volume of Runoff }}{\text { depth of Runoff }}$

$$
\frac{\left[\frac{70+4}{2}\right] \times 60 \times 60 \times 90}{\frac{2}{100} \times(1000)^{2}}=599.4 \mathrm{~km}^{2}
$$

3. Ans: (d)

Sol:

$$
\begin{aligned}
& A_{1}=\frac{1}{2} \times 10 \times 10 \times 60 \times 60=50 \times 60 \times 60 \\
& A_{2}=\left[\frac{10+70}{2}\right] \times 10 \times 60 \times 60=400 \times 60 \times 60 \\
& A_{3}=\left[\frac{70+90}{2}\right] \times 10 \times 60 \times 60=800 \times 60 \times 60 \\
& A_{4}=\left[\frac{90+40}{2}\right] \times 20 \times 60 \times 60=1300 \times 60 \times 60 \\
& A_{5}=\left[\frac{1}{2} \times 40 \times 40 \times 60 \times 60\right]=800 \times 60 \times 60 \\
& A=A_{1}+A_{2}+A_{3}+A_{4}+A_{5}=3350 \times 60 \times 60
\end{aligned}
$$

$$
\begin{aligned}
& \text { Rainfall excess }=\text { Runoff } \\
& =\frac{3350 \times 60 \times 60}{300 \times(1000)^{2}} \times 100=4.02 \mathrm{~cm}
\end{aligned}
$$

04. Ans: (c)

Sol: Volume of runoff = Area of DRH

$$
\begin{aligned}
& =\frac{1}{2} \times 48 \times 300 \times 60 \times 60 \\
& =25.92 \times 10^{6} \mathrm{~m}^{3}
\end{aligned}
$$

$$
\text { Runoff depth }=\frac{\text { Volume of runoff }}{\text { Area of catchment }}
$$

$$
\text { Area of catchment }=\frac{25.92 \times 10^{6}}{\frac{1}{100}}=2592 \mathrm{~km}^{2}
$$

05. Ans: (c)

Sol: Volume of runoff $=$ Area of catchment

$$
\begin{aligned}
& =\frac{1}{2} \times \mathrm{Q} \times 20 \\
& =10 \times \mathrm{Q}
\end{aligned}
$$

$$
\text { Runoff depth }=\frac{\text { Volume of runoff }}{\text { Area of catchment }}
$$

$$
\frac{1}{100}=\frac{10 \times \mathrm{Q}}{500 \times 10^{4}}
$$

$$
\mathrm{Q}=5000 \mathrm{~m}^{3} / \mathrm{h}
$$

06. Ans: $9.09 \mathrm{~m}^{3} / \mathrm{sec}$

Sol:

$\frac{1}{2} \times 10 \times 40 \times 60 \times 60$	
$\frac{1}{100}$	$=\frac{\frac{1}{2} \times \mathrm{Q}_{\mathrm{P}} \times 44 \times 60 \times 60}{\frac{1}{100}}$
10×40	$=44 \mathrm{Q}_{\mathrm{p}}$
$\mathrm{Q}_{\mathrm{P}}=\frac{10 \times 40}{44}=9.09 \mathrm{~m}^{3} / \mathrm{sec}$	

7. Ans: (d)

Sol:

Same base but peak has increased to 90 $\mathrm{m}^{3} / \mathrm{sec}$
i.e., 3 times increase
\therefore Area also increase to 3 times
$\mathrm{A}_{2}=3 \mathrm{~A}_{1}=3 \times 235=705 \mathrm{~km}^{2}$

08. Ans: a) $7.6 \mathrm{~cm} \quad$ b) $\mathbf{4 0} \mathrm{m}^{3} / \mathrm{sec}$

Sol: Peak flood resulting for 6 hr storm

$$
=150 \mathrm{~m}^{3} / \mathrm{sec}
$$

Base flow $=6 \mathrm{~m}^{3} / \mathrm{sec}$
Peak flood of 6 hr DRH $=150-6$

$$
=144 \mathrm{~m}^{3} / \mathrm{sec}
$$

Peak ordinate of $6 \mathrm{hr} \mathrm{UHG}=36 \mathrm{~m}^{3} / \mathrm{sec}$
Peak ordinate of 6hr DRH
$=$ Peak ordinate of $6 \mathrm{hr} \mathrm{UHG} \times \mathrm{R}$
a) $144=36 \times$ R
$\mathrm{R}=\frac{144}{36}=4 \mathrm{~cm} ; \phi=6 \mathrm{~mm} / \mathrm{hr}$
$\phi=\frac{\mathrm{P}_{\mathrm{e}}-\mathrm{R}}{\mathrm{t}_{\mathrm{e}}} \Rightarrow 6=\frac{\mathrm{P}_{\mathrm{e}}-40}{6}$
$\Rightarrow \mathrm{P}_{\mathrm{e}}=76 \mathrm{~mm}$
$P_{e}=7.6 \mathrm{~cm}=$ depth of storm rainfall
b) $15^{\text {th }} \mathrm{hr}$

Time interval	6hr UHG
0	0
3	15
6	36
9	30
12	17.5
15	8.5

6hr UHG ordinate at $15^{\text {th }} \mathrm{hr}=8.5 \mathrm{~m}^{3} / \mathrm{sec}$
6 hr DRH ordinate at $15^{\text {th }} \mathrm{hr}$

$$
\begin{aligned}
& =6 \mathrm{hr} \mathrm{UHG} \times \mathrm{R} \\
& =8.5 \times 4=34 \mathrm{~m}^{3} / \mathrm{sec}
\end{aligned}
$$

6 hr storm flow at $15^{\text {th }} \mathrm{hr}=34+6$

$$
=40 \mathrm{~m}^{3} / \mathrm{sec}
$$

9. Ans: (b)

Sol: $\mathrm{P}_{\mathrm{e}}=2.7 \mathrm{~cm}, \mathrm{t}_{\mathrm{e}}=3 \mathrm{hr}, \phi=0.3 \mathrm{~cm} / \mathrm{hr}$
$\phi=\frac{\mathrm{P}_{\mathrm{e}}-\mathrm{R}}{\mathrm{t}_{\mathrm{e}}} \Rightarrow 0.3=\frac{2.7-\mathrm{R}}{3} \Rightarrow \mathrm{R}=1.8 \mathrm{~cm}$
Peak of $3 \mathrm{hr} \mathrm{FHG}=210 \mathrm{~m}^{3} / \mathrm{sec}$
Base flow $=20 \mathrm{~m}^{3} / \mathrm{sec}$
Peak of 3 hr DRH $=$ Peak of 3 hr FHG

$\mathbf{A C E}$	14	CIVIL-Postal Coaching Solutions

Base flow $=210-20$

$$
=190 \mathrm{~m}^{3} / \mathrm{sec}
$$

Peak of 3hr

$$
\begin{aligned}
\mathrm{UHG} & =\frac{\text { Peak of } 3 \mathrm{hr} \mathrm{DRH}}{\mathrm{R}}=\frac{190}{1.8} \\
& =105.55 \mathrm{~m}^{3} / \mathrm{sec}
\end{aligned}
$$

Linked answers (10 \& 11)

10. Ans: (b)

Sol: Area of catchment $=720 \mathrm{~km}^{2}$
Base flow $=30 \mathrm{~m}^{3} / \mathrm{sec}$
$\phi_{\text {index }}=1 \mathrm{~mm} / \mathrm{hr}$
$\mathrm{P}_{\mathrm{e}}=4 \mathrm{~cm}, \mathrm{t}_{\mathrm{e}}=4 \mathrm{hr}=40 \mathrm{~mm}$

\because UHG runoff depth $=1 \mathrm{~cm}$
Volume of runoff $=$ Area of catchment \times
Depth of runoff
$\frac{1}{2} \times \mathrm{Q}_{\mathrm{P}} \times 80 \times 60 \times 60=720 \times(1000)^{2} \times \frac{1}{100}$
$\mathrm{Q}_{\mathrm{P}}=50 \mathrm{~m}^{3} / \mathrm{sec}$

11. Ans: (a)

Sol: $\phi_{\text {index }}=\frac{P_{e}-R}{t_{e}} \Rightarrow 1=\frac{40-R}{4}$

$$
\mathrm{R}=36 \mathrm{~mm}=3.6 \mathrm{~cm}
$$

Peak ordinate of 4 hr DRH $=$ Peak ordinate
of $4 \mathrm{hr} \mathrm{UHG} \times \mathrm{R}$

$$
=50 \times 3.6=180 \mathrm{~m}^{3} / \mathrm{sec}
$$

Peak flood discharge $=$ Peak DRH + Base flow

$$
=180+30=210 \mathrm{~m}^{3} / \mathrm{sec}
$$

Common data for Q 12 \& 13
12. Ans: (c)

Sol: $\phi_{\text {index }}=0.4 \mathrm{~cm} / \mathrm{hr}$
Base flow $=15 \mathrm{~m}^{3} / \mathrm{sec}$
Area of catchment $=\frac{\text { Volume of Runoff }}{\text { depth of Runoff }}$
$=\frac{\frac{1}{2} \times 60 \times 30 \times 60 \times 60}{\frac{1}{100} \times(1000)^{2}}=324 \mathrm{~km}^{2}$

13. Ans: (b)

Sol: $\phi_{\text {index }}=0.4 \mathrm{~cm} / \mathrm{hr}$

$\leftarrow 10 \rightarrow \leftarrow 20 \longrightarrow$

At $15^{\text {th }} \mathrm{hr}$ time interval ordinate of 1 hr

$$
\begin{aligned}
& \mathrm{UHG}=\frac{60}{20} \times 15=45 \mathrm{~m}^{3} / \mathrm{sec} \\
& \phi=\frac{\mathrm{P}_{\mathrm{e}}-\mathrm{R}}{\mathrm{t}_{\mathrm{e}}} \Rightarrow 0.4=\frac{5.4-\mathrm{R}}{1}
\end{aligned}
$$

Ordinate of 1 hr DRH

$$
\begin{aligned}
& =\text { ordinate of } \mathrm{UHG} \times \mathrm{R} \\
& =45 \times 5=225 \mathrm{~m}^{3} / \mathrm{sec}
\end{aligned}
$$

FHG ordinate at $15^{\text {th }} \mathrm{hr}$

$$
\begin{aligned}
& =\mathrm{DRH}+\text { Base flow } \\
& =225+15=240 \mathrm{~m}^{3} / \mathrm{sec}
\end{aligned}
$$

Common data for Q 14 \& 15

14. Ans: (b)

Sol: Area watershed $=50 \mathrm{~km}^{2}$
Base flow $=10 \mathrm{~m}^{3} / \mathrm{sec}$
ϕ Index $=0.5 \mathrm{~cm} / \mathrm{hr}$

Volume of Runoff $=$ Area of water shed \times Runoff depth

$$
\begin{aligned}
\frac{1}{2} \times \mathrm{Q}_{\mathrm{p}} \times 15 \times 60 \times 60 & =50 \times(1000)^{2} \times \frac{1}{100} \\
\mathrm{Q}_{\mathrm{p}} & =18.52 \mathrm{~m}^{3} / \mathrm{sec}
\end{aligned}
$$

15. Ans: (d)

Sol: $\mathrm{P}_{\mathrm{e}}=5.5 \mathrm{~cm}$
$\mathrm{t}_{\mathrm{e}}=1 \mathrm{hr}$
$\phi_{\text {index }}=0.5 \mathrm{~cm} / \mathrm{hr}$
Peak ordinate of $1 \mathrm{hr} \mathrm{UHG}=18.52 \mathrm{~m}^{3} / \mathrm{sec}$
Peak ordinate of 1 hr DRH

$$
\begin{aligned}
& =\text { Peak ordinate } 1 \mathrm{hr} \mathrm{UHG} \times \mathrm{R} \\
& =18.52 \times 5=92.60 \mathrm{~m}^{3} / \mathrm{sec}
\end{aligned}
$$

Peak ordinate of 1 hr SHG

$$
\begin{aligned}
& =\mathrm{DRH}+\text { Base flow } \\
& =92.60+10 \\
& =102.6 \mathrm{~m}^{3} / \mathrm{sec}
\end{aligned}
$$

Common data for Q 16 \& 17
16. Ans: (b)

Sol: $\mathrm{P}_{\mathrm{e}}=16 \mathrm{~cm}, \mathrm{t}_{\mathrm{e}}=12 \mathrm{hr}$

$$
\phi_{\text {index }}=0.5 \mathrm{~cm} / \mathrm{hr}
$$

$$
\phi_{\text {index }}=\frac{P_{e}-R}{t_{e}} \Rightarrow 0.5=\frac{16-R}{12}
$$

$\mathrm{R}=10 \mathrm{~cm}$

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups \& PSC Exams

Time	$\mathbf{6 h r}$ $\mathbf{U H G}$ ordinate	$\mathbf{6 h r}$ lagged $\mathbf{6 h r}$ UHG	$\mathbf{1 2 h r}$ DRH R=2 $\mathbf{c m}$	$\mathbf{1 2 ~ h r ~}$ UHG ordinate
0	0	-	0	0
6	30	0	30	15
12	15	30	45	22.5
18	0	15	15	7.5
		0	0	0

Peak discharge of $12 \mathrm{hr} \mathrm{UHG}=22.5 \mathrm{~m}^{3} / \mathrm{sec}$
Peak discharge 12hr DRH
$=$ Peak discharge of $12 \mathrm{hr} \mathrm{UHG} \times \mathrm{R}$
$=22.5 \times 10=225 \mathrm{~m}^{3} / \mathrm{sec}$

17. Ans: (c)

Sol: Area of catchment

$$
\begin{aligned}
& =\frac{\text { Volume of Runoff }}{\text { depth of runoff }} \\
& =\frac{\frac{1}{2} \times 30 \times 18 \times 60 \times 60}{\frac{1}{100} \times 10^{4}}=9720 \mathrm{ha}
\end{aligned}
$$

18. Ans: (d)

Sol: Catchment area $=\frac{\text { Volume of Runoff }}{\text { depth of Runoff }}$

$$
=\frac{1 \times 60 \times 60\left[\frac{0+0}{2}+(2+6+4+2+1)\right]}{\frac{1}{100} \times(1000)^{2}}
$$

$=5.4 \mathrm{~km}^{2}$
19. Ans: (c)

Sol:

Time (hr)	1hr UHG ordinate ($\mathrm{m}^{3} / \mathrm{sec}$)	1hr delayed 1 hr UHG ordinate $\left(\mathrm{m}^{3} / \mathrm{sec}\right)$	2hr delay 1hr UHG $\left(\mathrm{m}^{3} / \mathrm{sec}\right)$	$\begin{gathered} \hline 3 \mathrm{hr} \\ \text { DRH } \\ \mathbf{R}=3 \\ \mathrm{~cm} \\ \left(\mathrm{~m}^{3} / \mathrm{sec}\right) \end{gathered}$
0	0	-	-	0
1	2	0	-	2
2	6	2	0	8
3	4	6	2	12
4	2	4	6	12
5	1	2	4	7
6	0	1	2	3
		0	1	1

At time interval $(\mathrm{t})=3 \mathrm{hr}$
3 hr DRH ordinate $=12 \mathrm{~m}^{3} / \mathrm{sec} ; \mathrm{R}=3 \mathrm{~cm}$
3 hr UHG ordinate $=\frac{3 \mathrm{hr} \text { DRH ordinate }}{\mathrm{R}}$

$$
=\frac{12}{3}=4 \mathrm{~m}^{3} / \mathrm{sec}
$$

20. Ans: (c)

Sol: $\mathrm{Q}_{\text {equi }}=2.778 \frac{\mathrm{~A}}{\mathrm{D}}$
$\mathrm{A}=270 \mathrm{~km}^{2}$
D $=3 \mathrm{hr}$
$\mathrm{Q}=2.778 \times \frac{270}{3}=250 \mathrm{~m}^{3} / \mathrm{sec}$
21. Ans: $160 \mathrm{~m}^{3} / \mathrm{sec}$

Sol: $\mathrm{t}_{\mathrm{p}}=64$ hours
$\mathrm{Q}_{\mathrm{P}}=30 \mathrm{~m}^{3} / \mathrm{sec}$
Volume of runoff = Area of DRH

$$
=\frac{1}{2} \times 64 \times 30 \times 3600=3.456 \times 10^{6} \mathrm{~m}^{3}
$$

Runoff depth $=1 \mathrm{~cm}=0.01 \mathrm{~m}$
Runoff depth $=\frac{\text { Volumeof runoff }}{\text { Area of catchment }}$

Area of catchment $=\frac{3.456 \times 10^{6}}{0.01}$

$$
=345.6 \mathrm{~km}^{2}
$$

Equilibrium discharge $=2.778 \frac{\mathrm{~A}}{\mathrm{D}}$
$\mathrm{Q}_{\mathrm{eq}}=2.778 \times \frac{345.6}{6}$
$\mathrm{Q}_{\mathrm{eq}}=160 \mathrm{~m}^{3} / \mathrm{sec}$
22. Ans: $\mathbf{2 5 6} \mathbf{m}^{3} / \mathrm{sec}$

Sol:

Time	4H UHG ordinate	S-curve addition	S-curve ordinate $\left(\mathbf{S}_{\mathbf{A}}\right)$
0	0		0
2	6		6
4	33	0	33
6	90	6	96
8	119	33	152
10	103	96	199
12	79	152	231
14	50	199	249
16	25	231	256
18	7	249	256
20	0		

Common data for 23 \& 24
23. Ans: (c)

Sol: Area of catchment $=\frac{\text { Volume of Runoff }}{\text { depth of Runoff }}=\frac{\text { Area of UHG }}{\text { depth of Runoff }}$

$$
=\frac{1 \times 60 \times 60\left[\frac{0+0}{2}+(3+8+6+3+2)\right]}{\frac{1}{100} \times(1000)^{2}}=7.92 \mathrm{~km}^{2}
$$

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups \& PSC Exams
Enjoy a smooth online learning experience in various languages at your convenience

24. Ans: (a)

Sol:

Time (hr)	2hr UHG Ordinate $\left(\mathrm{m}^{3} / \mathrm{sec}\right)$	S-curve Additions ($\mathrm{m}^{3} / \mathrm{sec}$)	S-curve Ordinates ($\mathrm{m}^{3} / \mathrm{sec}$)	3hr lagged S-curve ordinate ($\mathrm{m}^{3} / \mathrm{sec}$)	$\begin{gathered} \hline \text { 3hr DRH } \\ \mathbf{S}_{\mathrm{A}}-\mathbf{S}_{\mathrm{B}} \\ \left(\mathrm{~m}^{3} / \mathrm{sec}\right) \end{gathered}$	$\begin{gathered} \text { 3hr UHG } \\ \frac{\left(\mathrm{S}_{\mathrm{A}}-\mathrm{S}_{\mathrm{B}}\right)^{2}}{3}\left(\mathrm{~m}^{3} / \mathrm{sec}\right) \end{gathered}$
0	0	\rightarrow	0	-	0	0
1	3	\rightarrow	3	-	3	2
2	8		8	-	8	16/3
3	6	3	9	0	9	6
4	3	8	11	3	8	16/3
5	2	9	11	8	3	2
6	0	11	11	9	2	4/3
		11	11	11	0	0

$P_{e}=6.6 \mathrm{~cm}=66 \mathrm{~mm}$
$\phi_{\text {index }}=2 \mathrm{~mm} / \mathrm{hr}$
$\mathrm{t}_{\mathrm{e}}=3 \mathrm{hr} \quad \phi_{\text {index }}=\frac{\mathrm{P}_{\mathrm{e}}-\mathrm{R}}{\mathrm{t}_{\mathrm{e}}}$
base flow $=5 \mathrm{~m}^{3} / \mathrm{sec} \quad 2=\frac{66-\mathrm{R}}{3}$

$$
\Rightarrow \mathrm{R}=60 \mathrm{~mm}=6 \mathrm{~cm}
$$

Peak ordinate of $3 \mathrm{hr} \mathrm{UHG}=6 \mathrm{~m}^{3} / \mathrm{sec}$
Peak ordinate of 3 hr DRH $=$ Peak ordinate $3 \mathrm{hr} \mathrm{UHG} \times \mathrm{R}=6 \times 6=36 \mathrm{~m}^{3} / \mathrm{sec}$
Peak ordinate of 3 hr SHG $=$ Peak of 3 hr DRH + Base flow $=36+5=41 \mathrm{~m}^{3} / \mathrm{sec}$

Common Data for 25 \& 26
25. Ans: (b)

Sol: $\mathrm{Q}=1-(1+\mathrm{t}) \mathrm{e}^{-\mathrm{t}}$
$\frac{1}{\mathrm{D}}=1 \mathrm{~cm} / \mathrm{hr} \Rightarrow \mathrm{D}=1 \mathrm{hr}$
At $\mathrm{t}=\propto, \mathrm{Q}=\mathrm{E}_{\text {quilibrium }}$
$\mathrm{Q}_{\text {equi }}=1-(1+\propto) \mathrm{e}^{-\infty}=1 \mathrm{~m}^{3} / \mathrm{sec}$

	Regular Live Doubt clearing Sessions \| Free Online Test Series	ASK an expert			
- online	Affordable Fee \| Available 1M	3M	6M	12M	18M and 24 Months Subscription Packages

But $\mathrm{Q}_{\text {equi }}=2.778 \frac{\mathrm{~A}}{\mathrm{D}}$

$$
\begin{aligned}
1 & =2.778 \frac{\mathrm{~A}}{1} \\
\Rightarrow \mathrm{~A} & =\frac{1}{2.778}=0.36 \mathrm{~km}^{2}
\end{aligned}
$$

26. Ans: (c)

Time	$\mathbf{S}_{\mathbf{A}}$ S-curve ordinates $\mathbf{Q}=\mathbf{1 - (1 + \mathbf { t }) \mathbf { e } ^ { \mathbf { t } }}$	$\mathbf{S}_{\mathbf{B}}$ $\mathbf{2 ~ h r}$ delayed S-curve ordinate	$\mathbf{2 h r} \mathbf{D R H}$ $\left(\mathbf{S}_{\mathbf{A}}-\mathbf{S}_{\mathbf{B}}\right)$
0	0	-	
1	0.264	-	
2	0.593	0	$0.8-0.264$
3	0.8	0.264	 2

2hr UHG ordinate $=\frac{\left(\mathrm{S}_{\mathrm{A}}-\mathrm{S}_{\mathrm{B}}\right) \mathrm{D}}{\mathrm{T}}=\frac{0.536 \times 1}{2}$

$$
=0.27 \mathrm{~m}^{3} / \mathrm{sec}
$$

27. Ans: $43.33 \mathrm{~m}^{3} / \mathrm{sec}$

Sol:

Storm I	Strom II
$\mathrm{P}_{\mathrm{e} 1}=3.8 \mathrm{~cm}$	$\mathrm{P}_{\mathrm{e} 2}=4.8 \mathrm{~cm}$
$\mathrm{t}_{\mathrm{e} 1}=3 \mathrm{hr}$	$\mathrm{t}_{\mathrm{e} 2}=3 \mathrm{hr}$
$\phi=0.6$	$\phi=0.6$
$0.6=\frac{3.8-\mathrm{R}_{1}}{3}$	$0.6=\frac{4.8-\mathrm{R}_{2}}{3}$
$\mathrm{R}_{1}=2 \mathrm{~cm}$	$\mathrm{R}_{2}=3 \mathrm{~cm}$

Ond	India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups \& PSC Exams
	Enjoy a smooth online learning experience in various languages at your convenience

Time	$\mathbf{3 h r}$ $\mathbf{U H G} \mathbf{m}^{\mathbf{3}} \mathbf{s e c}$	$\mathbf{I}^{\text {st }} \mathbf{s t o r m}$ $=\mathbf{U H G} \times \mathbf{R}_{\mathbf{1}} \mathbf{m}^{\mathbf{3}} / \mathbf{s e c}$	$\mathbf{\mathbf { I n } ^ { \mathbf { s t } } \mathbf { s t o r m }}$ $=\mathbf{U H G} \times \mathbf{R}_{\mathbf{2}} \mathbf{m}^{\mathbf{3}} / \mathbf{s e c}$	$\mathbf{6 h r} \mathbf{H}$ Ordinate $\mathbf{m}^{\mathbf{3}} / \mathbf{s e c}$
0	0	0	-	0
3	5	10	0	10
6	10	20	15	35
9	6.66	13.33	30	43.33
12	3.33	6.66	20	26.66
15	0	0	10	10
	-	-	0	0

Peak discharge of resulting
DRH $=43.33 \mathrm{~m}^{3} / \mathrm{sec}$

28. Ans: $715 \mathrm{~m}^{3} / \mathrm{sec}$

Sol: I ${ }^{\text {st }}$ storm
$t_{\mathrm{e}}=6 \mathrm{hr}$
$\mathrm{P}_{\mathrm{e}}=3 \mathrm{~cm}$
$\phi_{\text {index }}=0.25 \mathrm{~cm} / \mathrm{hr}$ $\phi=\frac{\mathrm{P}_{\mathrm{e}}-\mathrm{R}_{1}}{\mathrm{t}_{\mathrm{e}}}$
$0.25=\frac{3-\mathrm{R}_{1}}{6}$
$0.25=\frac{5-\mathrm{R}_{2}}{6}$
II ${ }^{\text {nd }}$ storm
$\mathrm{t}_{\mathrm{e}}=6 \mathrm{hr}$
$\mathrm{P}_{\mathrm{e}}=5 \mathrm{~cm}$
$\phi_{\text {index }}=0.25 \mathrm{~cm} / \mathrm{hr}$

$$
\phi=\frac{\mathrm{P}_{\mathrm{e}}-\mathrm{R}_{2}}{\mathrm{t}_{\mathrm{e}}}
$$

$\mathrm{R}_{2}=3.5 \mathrm{~cm}$
Regular Live Doubt clearing Sessions | Free Online Test Series |ASK an expert Affordable Fee | Available 1M |3M |6M |12M | 18 M and 24 Months Subscription Packages

| N. ACE | 21 | Hydrology |
| :--- | :--- | :--- | :--- |

Time	6hr UHG	$\mathbf{I}^{\text {st }}$ storm $\mathbf{U H G} \times \mathbf{R}_{\mathbf{1}}$	$\mathbf{I I}^{\text {nd }}$ storm $\mathbf{U H G} \times \mathbf{R}_{\mathbf{2}}$	$\mathbf{1 2} \mathbf{h r} \mathbf{\text { DRH }}$
0	0	0	-	0
6	20	30	0	30
12	60	90	70	160
18	150	225	210	435
24	120	180	525	705
30	90	135	420	
36	66	99	315	
42	50	75	231	
48	32	48	175	
54	20	30	70	
60	10	15	35	
66	0	0	0	

$24^{\text {th }} \mathrm{hr}$

DRH ordinate $=705 \mathrm{~m}^{3} / \mathrm{sec}$
Base flow $=10 \mathrm{~m}^{3} / \mathrm{sec}$
Storm discharge $=$ DRH + Base flow

$$
=705+10=715 \mathrm{~m}^{3} / \mathrm{sec}
$$

29. Ans: (d)

Sol: 6 hr UHG peak ordinate $=30 \mathrm{~m}^{3} / \mathrm{sec}$
Peak ordinate of $12 \mathrm{hr} \mathrm{UHG}=$?

Explanation:

Storms of shorter duration produce more peak than storms of longer duration storm. Peak of $12 \mathrm{hr} \mathrm{UHG}<$ peak of 6 hr UHG
\therefore Peak ordinate of $12 \mathrm{hr} \mathrm{UHG}<30 \mathrm{~m}^{3} / \mathrm{s}$

30. Ans: (c)

Sol: Time to peak for shorter duration storms occur much faster then time to peak for longer duration storm.

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups \& PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

(1) ACE	22	CIVIL-Postal Coaching Solutions

31. Ans: (d)

Sol: The ordinate of the instantaneous unit Hydrograph (IUH) of a catchments at time t is the slope $\left(\frac{d s}{d t}\right)$ of the S-curve with effective rainfall intensity of $1 \mathrm{~cm} / \mathrm{hr}$.
32. Ans: (c)

Sol: A watershed got transformed from rural to urban over a period of time. The effect of urbanization on storm runoff hydrograph from the watershed is to decrease the time base. Due to urbanization

1. Increase the volume of runoff
2. Decrease the time to peak discharge.
3. Increase the peak discharge.
4. Ans: (b) \& (c)

Sol: Area of $\mathrm{UH}=\mathrm{C} . \mathrm{A} \times 0.01$
$\Delta \mathrm{t} \Sigma \mathrm{o}=\mathrm{C} . \mathrm{A} \times 0.01$
$3 \times 3600 \times(20+80+$ \qquad $+15+5)$
$=\mathrm{C} . \mathrm{A} \times 0.01$
$3 \times 3600 \times 699=\mathrm{C} . \mathrm{A} \times 0.01$
C. $\mathrm{A}=754920000 \mathrm{~m}^{2}$
C. $\mathrm{A}=75492$ ha
C. $A=754.92 \mathrm{~km}^{2}$

08. Maximum Flood Estimation

1. Ans: (d)

Sol: A = 90 ha
$\mathrm{I}=4.5 \mathrm{~cm} / \mathrm{h}=45 \mathrm{~mm} / \mathrm{h}$
$\mathrm{R}=0.40$
$\mathrm{Q}=\frac{\mathrm{AIR}}{360}=\frac{90 \times 45 \times 0.40}{360}$
$\mathrm{Q}=4.5 \mathrm{~m}^{3} / \mathrm{sec}$
02. Ans: (b)

Sol: 30\% $\rightarrow 0.40$
$70 \% \rightarrow 0.60$
$\mathrm{I}=\frac{\frac{30}{100} \times \mathrm{A} \times 0.40+\frac{70}{100} \times 0.60 \times \mathrm{A}}{\mathrm{A}}$
$\mathrm{I}=0.54$
03. Ans: (d)

Sol: $A=1.5 \mathrm{~km}^{2}=150 \mathrm{Ha}, \mathrm{I}=0.42$
$\mathrm{R}=\frac{48}{28} \times 60=102.86 \mathrm{~mm} / \mathrm{h}$
$\mathrm{Q}_{\mathrm{P}}=\frac{\mathrm{AIR}}{360}$

$$
=\frac{150 \times 0.42 \times(48 / 28) \times 60}{360}=18 \mathrm{~m}^{3} / \mathrm{sec}
$$

04. Ans: $7.08 \mathrm{~m}^{3} / \mathrm{s}$

Sol: $I=0.30$
$\mathrm{A}=0.85 \mathrm{~km}^{2}=85 \mathrm{ha}$
25 frequency \rightarrow Culvert design for a rain of 25 year frequency
Duration of storm $=$ time of concentration $=30 \mathrm{mins}$
$\mathrm{R}=\frac{\text { depth of rainfll }}{\text { duration of rain }}=\frac{50}{30} \mathrm{~mm} / \mathrm{min}$
$\mathrm{R}=100 \mathrm{~mm} / \mathrm{h}$
$\mathrm{Q}=\frac{\mathrm{AIR}}{360}=\frac{85 \times 0.30 \times 100}{360}$
$\mathrm{Q}=7.083 \mathrm{~m}^{3} / \mathrm{sec}$.

05. Ans: (c)

Sol:An isochrone is a line on the basis map joining points having equal time of travel of surface runoff to the catchments outlet.

06. Ans: (c)

Sol: Rational method: Applicable for small size catchments $\left(<50 \mathrm{~km}^{2}\right)$ for urban drainage design, small culverts and bridges.

07. Ans: (a)

Sol : Peak flood discharge
$\mathrm{Q}_{\mathrm{P}}=\frac{\mathrm{AIR}}{360}$
There is no term of duration in the formula, so the peak discharge remains same.

09. Flood Routing

01. Ans: $17.748 \mathrm{~m}^{3} / \mathrm{sec}$

Sol: $\mathrm{t}_{1}=3 \mathrm{hr}, \mathrm{t}_{2}=4 \mathrm{hr}, \mathrm{I}_{3}=18 \mathrm{~m}^{3} / \mathrm{s}$,
$\mathrm{I}_{4}=42 \mathrm{~m}^{3} / \mathrm{s}, \mathrm{C}_{\mathrm{o}}=0.042, \mathrm{C}_{1}=0.538$,
$\mathrm{Q}_{3}=15 \mathrm{~m}^{3} / \mathrm{s}, \mathrm{Q}_{4}=$?,
$\mathrm{C}_{2}=1-\mathrm{C}_{0}-\mathrm{C}_{1}=1-0.042-0.538=0.42$
$\mathrm{Q}_{4}=\mathrm{C}_{\mathrm{o}} \mathrm{I}_{4}+\mathrm{C}_{1} \mathrm{I}_{3}+\mathrm{C}_{2} \mathrm{Q}_{3}$
$=0.042 \times 42+0.538 \times 18+0.42 \times 15$
$=17.748 \mathrm{~m}^{3} / \mathrm{s}$

02. Ans: (a)

Sol: When outflow from a storage reservoir is uncontrolled as in freely operating spillway, then the peak of outflow hydrograph will occur at the point of intersection of the inflow if outflow curves, whereas if outflow from a reservoir is controlled, the peak will occur after the intersection of the curve.

10. Well Hydraulics

01. Ans: (b)

Sol: $\mathrm{A}=150 \mathrm{Ha}, \mathrm{n}=0.4, \mathrm{~S}_{\mathrm{r}}=0.15$, $\Delta \mathrm{GW}=$?

$$
\Delta \mathrm{GW}=\mathrm{s}_{\mathrm{y}} \times \text { volume of aquifer }
$$

$\mathrm{S}_{\mathrm{y}}=\mathrm{n}-\mathrm{S}_{\mathrm{r}}=0.4-0.15=0.25$
volume of aquifer $=$ area of aquifer \times drop in level of W.T.
$\Delta \mathrm{GW}=0.25 \times 150 \times(23-20)$
$\Delta \mathrm{GW}=112.5$ На.m
$=$ volume of water extracted.

02. Ans: (a)

Sol: Volume of GW extracted $=3 \times 10^{6} \mathrm{~m}^{3}$ area $=5 \mathrm{~km}^{2}$

Drop in water table level $=102-99=3 \mathrm{~m}$ Specific yield, $\mathrm{S}_{\mathrm{y}}=$?
$S_{y}=\frac{\text { volume of G.W extracted }}{\text { volume of aquifer }}$
$=\frac{3 \times 10^{6}}{5 \times 10^{6} \times 3}=0.2$

03. Ans: (b)

Sol: $\mathrm{n}=0.3, \mathrm{~S}_{\mathrm{y}}=0.2$,
$\mathrm{A}=100 \mathrm{~km}^{2}, \Delta \mathrm{WT}=0.25 \mathrm{~m}$
Volume of GW extracted $=$?
Volume of aquifer

$$
=100 \times 10^{6} \times 0.25=25 \times 10^{6} \mathrm{~m}^{3}
$$

Volume of GW extracted $=\mathrm{S}_{\mathrm{y}} \times$ Volume of aquifer $=0.2 \times 25 \times 10^{6}=5 \times 10^{6} \mathrm{~m}^{3}=5 \mathrm{Mm}^{3}$
04. Ans: 0.105

Sol: Darcy's equation:

($\mathrm{V}=$ apparent or seepage velocity)
$\mathrm{K}=4 \times 10^{-3} \mathrm{~cm} / \mathrm{sec}$.
$\mathrm{Q}\left(\mathrm{m}^{3} / \mathrm{day} / \mathrm{m}\right)$ width of aquifer $=$?
$\mathrm{Q}=\mathrm{KiA}$

$$
=\frac{4 \times 10^{-3} \times 10^{-2}}{1} \times\left(\frac{5.6-5}{290}\right) \times 1 \times\left(\frac{14.4+15}{2}\right)_{\text {avg.ht }}
$$

$\mathrm{Q}=1.216 \times 10^{-6} \mathrm{~m}^{3} / \mathrm{s}$
$\mathrm{Q}=0.105 \mathrm{~m}^{3} / \mathrm{day} / \mathrm{m}$

(2) ACD	25	Hydrology

05. Ans: (b)

Sol:

$1500 \mathrm{~m}=$ Distance between wells.

$$
\begin{array}{ll}
\mathrm{h}_{1}=50 \mathrm{~m}, & \mathrm{~h}_{2}=25 \mathrm{~m} \\
\mathrm{~K} & =30 \mathrm{~m} / \text { day } \\
\mathrm{n} & =0.25
\end{array}
$$

Time of travel $=$?
Tracer $=$ Will not loose power $\&$ never reacts with soil or water \& it flows with water.

$$
\text { Time }=\frac{\text { Dis tan ce traveled by tracer }}{\text { seepage velocity }}
$$

$$
\begin{aligned}
\mathrm{V}_{\mathrm{a}} & =\frac{\mathrm{V}}{\mathrm{n}}, \quad \mathrm{~V}=\mathrm{Ki}, \\
\mathrm{i} & =\frac{50-25}{1500}=0.0167
\end{aligned}
$$

$$
\mathrm{K}=30 \times 0.0167=0.5 \mathrm{~m} / \text { day }
$$

$$
\mathrm{V}_{\mathrm{a}}=\frac{0.5}{0.25}=2 \mathrm{~m} / \text { day }
$$

\therefore Time $=\frac{1500}{2}=750$ days

06. Ans: $\mathbf{1 2 . 2} \mathbf{~ m} /$ day

Sol: $\mathrm{H}=14.5 \mathrm{~m}, \mathrm{r}_{1}=16 \mathrm{~m}, \mathrm{r}_{2}=34 \mathrm{~m}, \mathrm{~s}_{1}=2.2 \mathrm{~m}$,

$$
\mathrm{Q}=925 \mathrm{lit} / \mathrm{min}=925 \times 24 \times 60 \times 10^{-3}
$$

$$
=1332 \mathrm{~m}^{3} / \text { day }
$$

$\mathrm{S}_{1}=2.45$
$\mathrm{S}_{2}=1.20 \mathrm{~m}$
$\mathrm{K}=$?
$\mathrm{h}_{1}=14.5-2.45=12.05 \mathrm{~m}-2.2=9.85 \mathrm{~m}$.
$\mathrm{h}_{2}=14.5-1.20=13.3 \mathrm{~m}-2.2=11.1 \mathrm{~m}$.
$\mathrm{Q}=\frac{\pi \mathrm{k}\left[\mathrm{h}_{2}^{2}-\mathrm{h}_{1}^{2}\right]}{\ln \left[\mathrm{r}_{2} / \mathrm{r}_{1}\right]}$
$\mathrm{K}=\frac{\ln [34 / 16] \times 1332}{\pi \times\left[11.1^{2}-9.85^{2}\right]}=12.2 \mathrm{~m} /$ day

07. Ans : (b)

Sol: Radius of well,

$$
\mathrm{r}=\frac{20}{2}=10 \mathrm{~cm}=0.10 \mathrm{~m}
$$

Discharge, $\mathrm{Q}=2720 \mathrm{lit} / \mathrm{min}$

$$
=3916.8 \mathrm{~m}^{3} / \mathrm{day}
$$

At $\mathrm{r}_{1}=10 \mathrm{~m}$, draw down, $\mathrm{S}_{1}=3 \mathrm{~m}$
At $\mathrm{r}_{2}=100 \mathrm{~m}$, draw down $\mathrm{S}_{2}=0.5 \mathrm{~m}$
$\mathrm{Q}=\frac{2 \pi \mathrm{~Kb}\left(\mathrm{~S}_{1}-\mathrm{S}_{2}\right)}{\log _{\mathrm{e}}\left(\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}\right)}$
$\mathrm{Q}=\frac{2 \pi \mathrm{~T}\left(\mathrm{~S}_{1}-\mathrm{S}_{2}\right)}{\log _{\mathrm{e}}\left(\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}\right)} ; \mathrm{T}=\mathrm{K} . \mathrm{b}$
$3916.8=\frac{2 \pi \mathrm{~T}(3-0.5)}{\log _{\mathrm{e}}\left(\frac{100}{10}\right)}$
Transmissivity, $\mathrm{T}=574.4 \mathrm{~m}^{2} /$ day
08. Ans: (a) \& (c)

Sol: $\mathrm{Q}=\frac{\pi \mathrm{k}\left[\mathrm{H}^{2}-\mathrm{h}_{\mathrm{w}}{ }^{2}\right]}{\ln \left[\mathrm{R} / \gamma_{\mathrm{w}}\right]}$

$$
\mathrm{Q}=\frac{\pi \times 5\left[60^{2}-50^{2}\right]}{\ln [150 / 0.15]}
$$

$$
\mathrm{Q}=2501.36 \mathrm{~m}^{3} / \mathrm{day}
$$

$$
\mathrm{Q}=1737.05 \mathrm{l} / \mathrm{mi}
$$

11. River Gauging

1. Ans: (b)

Sol: $\mathrm{Q}_{\mathrm{T}}=4 \mathrm{lit} / \mathrm{sec}=4 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{sec}$

$$
\mathrm{C}_{\mathrm{T}}=500 \times 10^{3} \mathrm{mg} / \mathrm{lit}
$$

$$
\begin{aligned}
\mathrm{C}_{\text {mix }} & =4 \mathrm{ppm} \\
& =1 \mathrm{mg} / \mathrm{lit} \\
\mathrm{Q}_{\mathrm{s}} & =?
\end{aligned}
$$

$$
\mathrm{C}_{\text {mix }}=\frac{\mathrm{Q}_{\mathrm{S}} \mathrm{C}_{\mathrm{s}}+\mathrm{Q}_{\mathrm{T}} \mathrm{C}_{\mathrm{T}}}{\mathrm{Q}_{\mathrm{s}}+\mathrm{Q}_{\mathrm{T}}}
$$

$$
4=\frac{0+4 \times 500 \times 10^{3} \times 10^{-3}}{\mathrm{Q}_{\mathrm{S}}+4 \times 10^{-3}}
$$

$$
\mathrm{Q}_{\mathrm{S}}=500 \mathrm{~m}^{3} / \mathrm{sec}
$$

