GATE | PSUs

CIVIL ENGINEERING

Geotechnical Engineering
(Text Book : Theory with worked out Examples and Practice Questions)

Geotechnical Engineering

(Solutions for Text Book Practice Questions)

01. Origin of Soil

9. Ans: (b) \& (d)

Sol: Loam: It is mixture of sand, silt and clay, sometimes containing some organic matter such as humus.

Loess: It is a loose deposit of wind blown silts that has been weakly cemented with calcium carbonate and Montmorillonite.
Alluvial soil: Are soil that have been deposited from suspension in running water.
Peat: It is highly organic soil.

02. Definitions and Properties of Soil

01. Ans: (c)

Sol: Volume of solids in sample A:
Total volume $\mathrm{V}=\mathrm{V}_{\mathrm{s}}+\mathrm{V}_{\mathrm{v}}$
Void ratio, $e=\frac{V_{v}}{V_{s}}$

$$
V_{s}=V_{v}
$$

Total volume $\mathrm{V}=1 \mathrm{~m}^{3}$
$\therefore \mathrm{V}_{\mathrm{s}}=1-\mathrm{V}_{\mathrm{s}}$

$$
\mathrm{V}_{\mathrm{s}}=\frac{1}{2} \mathrm{~m}^{3}
$$

Volume of solids in sample B:
Total volume, $\mathrm{V}=\mathrm{V}_{\mathrm{s}}+\mathrm{V}_{\mathrm{v}}$

$$
\begin{aligned}
1 & =\mathrm{V}_{\mathrm{s}}+\mathrm{V}_{\mathrm{v}} \\
\mathrm{~V}_{\mathrm{v}} & =1-\mathrm{V}_{\mathrm{s}}
\end{aligned}
$$

Void ratio, $e=\frac{V_{v}}{V_{s}}$

$$
1.5 \mathrm{~V}_{\mathrm{s}}=\mathrm{V}_{\mathrm{v}}
$$

$$
\begin{aligned}
& 1.5 \mathrm{~V}_{\mathrm{s}}=1-\mathrm{V}_{\mathrm{s}} \\
& 2.5 \mathrm{~V}_{\mathrm{s}}=1 \\
& \mathrm{~V}_{\mathrm{s}}=\frac{1}{2.5}=0.4 \mathrm{~m}^{3}
\end{aligned}
$$

After compaction solids volume cannot change total volume after compaction

$$
\begin{gathered}
\mathrm{V}=1 \mathrm{~m}^{3} \\
\mathrm{~V}_{\mathrm{s}}=0.4+0.5=0.9 \mathrm{~m}^{3} \\
\text { Porosity, } \mathrm{n}=\frac{\mathrm{V}_{\mathrm{v}}}{\mathrm{~V}}=\frac{0.1}{1}=0.1
\end{gathered}
$$

2. Ans: (a)

Sol: Water content of mixed sample $=\frac{\mathrm{W}_{\mathrm{w}}}{\mathrm{W}_{\text {solids }}}$
Weight of solids cannot change weight of solids in sample of water content 50%

$$
\begin{aligned}
& \text { Water content, } \mathrm{w}=\frac{\mathrm{W}_{\mathrm{w}_{1}}}{\mathrm{~W}_{\text {solid }_{1}}} \\
& 0.5=\frac{\mathrm{W}_{\mathrm{w}}}{\mathrm{~W}_{\text {solids }_{1}}} \\
& 0.5 \mathrm{~W}_{\text {solids }_{1}}=\mathrm{W}_{\mathrm{w}}
\end{aligned}
$$

Total weight of sample, $\mathrm{W}=1 \mathrm{~kg}$

$$
\begin{aligned}
\mathrm{W}_{\mathrm{s}}+\mathrm{W}_{\mathrm{w}} & =1 \mathrm{~kg} \\
0.5 \mathrm{~W}_{\mathrm{s}} & =1-\mathrm{W}_{\mathrm{s}} \\
\mathrm{~W}_{\mathrm{s}} & =\frac{1}{1.5}=0.667 \mathrm{~kg}
\end{aligned}
$$

Weight of solids in sample of water content 80\%

$$
\begin{aligned}
\mathrm{w}=\frac{\mathrm{W}_{\mathrm{w}}}{\mathrm{~W}_{\mathrm{s}}} \Rightarrow 0.8 \mathrm{~W}_{\mathrm{s}} & =\mathrm{W}_{\mathrm{w}} \\
0.8 \mathrm{~W}_{\mathrm{s}} & =1-\mathrm{W}_{\mathrm{s}} \\
\mathrm{~W}_{\mathrm{s}} & =\frac{1}{1.8}=0.556 \mathrm{~kg}
\end{aligned}
$$

ACE	2	CIVIL-Postal Coaching Solutions

\therefore Total weight of mix $=2 \mathrm{~kg}$
Solids weight of $\mathrm{mix}=0.667+0.556$

$$
=1.223
$$

\therefore water content of mix $=\frac{\mathrm{W}_{\mathrm{w}}}{\mathrm{W}_{\mathrm{s}}}=\frac{2-1.223}{1.223}$

$$
=63.6 \%
$$

3. Ans: (d)

Sol: $\gamma=\gamma_{\mathrm{d}}(1+\mathrm{w}) \gamma_{\mathrm{d}}$ is constant $\gamma \propto 1+\mathrm{w}$
$\frac{\gamma_{2}}{\gamma_{1}}=\frac{1+\mathrm{w}_{2}}{1+\mathrm{w}_{1}} \Rightarrow \frac{\gamma_{2}}{1.8}=\frac{1.1}{1.05}$
$\gamma_{2}=1.88 \mathrm{gm} / \mathrm{cc}$

Common data for Questions 04 \& 05

04. Ans: (b)

Sol: In Borrow pit

$$
\begin{aligned}
\gamma & =1.75 \mathrm{~g} / \mathrm{cc} \\
w_{1} & =12 \% \\
\mathrm{G} & =2.7 ; \mathrm{V}_{1}=?
\end{aligned}
$$

After compaction

$$
\begin{aligned}
& w_{2}=18 \% \\
& \gamma_{\mathrm{d}_{2}}=1.65 \mathrm{~g} / \mathrm{cc} \\
& \mathrm{~V}_{2}=1000 \mathrm{~m}^{3} \\
& \frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}}=\frac{\gamma_{\mathrm{d}_{2}}}{\gamma_{\mathrm{d}_{1}}} \\
& \gamma_{\mathrm{d}_{1}}=\frac{\gamma}{1+w}=\frac{1.75}{1+0.12}=1.56 \\
& \qquad \frac{\mathrm{~V}_{1}}{1000}=\frac{1.65}{1.56}
\end{aligned}
$$

$\therefore \mathrm{V}_{1}=1056 \mathrm{~m}^{3}$

05. Ans: (c)

Sol: Amount of water to be added
$=\gamma_{\mathrm{d}_{2}} \mathrm{~V}\left[w_{2}-w_{1}\right]$
$=1.65 \times 1000[0.18-0.12]$
$=99$ tons $\quad\left(\because 1 \mathrm{~g} / \mathrm{cc}=1 \mathrm{t} / \mathrm{m}^{3}\right)$
06. Ans: (c)

Sol: $\gamma_{1}=1.66 ; w_{1}=8 \%$
$\gamma_{2}=1.15 ; w_{2}=6 \%$
$\gamma_{3}=1.82$
$w_{3}=14 \%$
$\mathrm{v}_{3}=100 \mathrm{~m}^{3}$

Borrow pit
$\frac{\mathrm{v}_{1}}{\mathrm{v}_{3}}=\frac{1+\mathrm{e}_{1}}{1+\mathrm{e}_{3}}=\frac{\gamma_{\mathrm{d}_{3}}}{\gamma_{\mathrm{d}_{1}}}$
$\gamma_{\mathrm{d}_{1}}=\frac{\gamma_{1}}{1+w_{1}}=\frac{1.66}{1+0.08}$
$\gamma_{\mathrm{d}_{2}}=\frac{1.15}{1+0.06}=1.084$
$\gamma_{\mathrm{d}_{3}}=\frac{1.82}{1+0.14}=1.59$
$\frac{\mathrm{V}_{1}}{\mathrm{~V}_{3}}=\frac{\gamma_{\mathrm{d}_{3}}}{\gamma_{\mathrm{d}_{1}}}$
$\frac{\mathrm{V}_{1}}{100}=\frac{1.59}{1.54}$
$\mathrm{V}_{1}=104.3 \mathrm{~m}^{3}$
$\mathrm{V}_{2}=\frac{1.596}{1.084} \times 100=147.2 \mathrm{~m}^{3}$
No. of truck load $=\frac{147.2}{6}=24.5=25$ nos.

| ace | Regular Live Doubt clearing Sessions \| Free Online Test Series | ASK an expert |
| :--- | :---: |
| | Affordable Fee \| Available $1 \mathrm{M}\|3 \mathrm{M}\| 6 \mathrm{M}\|12 \mathrm{M}\| 18 \mathrm{M}$ and 24 Months Subscription Packages |

N. ACE	3	Geotechnical Engineering

7. Ans: (c)

Sol:
$\mathrm{e}=0.51$
$\mathrm{S}_{\mathrm{r}}=80 \%$

$\mathrm{d}_{\mathrm{w}}=1 \mathrm{~m}$
$\mathrm{S}_{\mathrm{r}}=\frac{\mathrm{d}_{\mathrm{w}}}{\mathrm{d}_{\mathrm{v}}}=\frac{1}{\mathrm{~d}_{\mathrm{v}}}=0.80$
$\therefore \mathrm{d}_{\mathrm{v}}=1.25$

$$
\mathrm{e}=\frac{\mathrm{d}_{\mathrm{v}}}{\mathrm{~d}_{\mathrm{s}}}=\frac{1.25}{\mathrm{~d}_{\mathrm{s}}}=0.5
$$

$\mathrm{d}_{\mathrm{s}}=2.5$
\therefore Total d $=\mathrm{d}_{\mathrm{s}}+\mathrm{d}_{\mathrm{v}}=2.5+1.25$

$$
=3.75 \mathrm{~m}
$$

Common data for Questions 08 \& 09

8. Ans: 2.07

Sol: Volume of cube $=5^{3}=125 \mathrm{~cm}^{3}$
$\mathrm{W}_{\mathrm{d}}=135 \mathrm{~g} ; \mathrm{W}=195 \mathrm{~g}$
water content $=\frac{\mathrm{W}-\mathrm{W}_{\mathrm{d}}}{\mathrm{W}_{\mathrm{d}}} \times 100$
$\mathrm{e} \times \mathrm{S}_{\mathrm{r}}=w \mathrm{G}$
$\therefore \mathrm{e}=0.44 \mathrm{G}$
$\frac{\gamma_{\text {sat }}}{\gamma_{\mathrm{w}}}=\frac{\mathrm{G}+\mathrm{e}}{1+\mathrm{e}}$
$\gamma_{\text {sat }}=\frac{\text { Saturated wt of cube }}{\text { volumeof cube }}$ $=\frac{195}{5^{3}}=\frac{195}{125} \mathrm{~g} / \mathrm{cc}$
$\therefore \frac{195}{125}=\frac{G+0.44 \mathrm{G}}{1+0.44 \mathrm{G}}$
$\therefore \mathrm{G}=2.07$
09. Ans: 0.92

Sol: $\mathrm{e} \times \mathrm{S}_{\mathrm{r}}=0.44 \mathrm{G}$

$$
\begin{aligned}
\mathrm{e} & =0.44 \mathrm{G} \\
\mathrm{e} & =0.44 \times 2.07 \\
\therefore \mathrm{e} & =0.92
\end{aligned}
$$

10. Ans: 11.87\%

Sol: To find initial porosity

$$
\begin{aligned}
& \gamma_{\mathrm{d}}=\frac{\gamma_{\mathrm{w}} \cdot \mathrm{G}}{1+\mathrm{e}} \\
& 16=\frac{9.80 \times 2.67}{1+\mathrm{e}} \\
& \mathrm{e}=0.637 \\
& \mathrm{n}_{1}=\frac{\mathrm{e}}{1+\mathrm{e}}=\frac{0.637}{1+0.637}=0.388 \approx 38.8 \% \\
& \mathrm{e}=\frac{\mathrm{V}_{\mathrm{v}}}{\mathrm{~V}_{\mathrm{s}}}=0.637 \\
& \mathrm{n}=\frac{\mathrm{V}_{\mathrm{v}}}{\mathrm{~V}} \Rightarrow 0.388=\frac{\mathrm{V}_{\mathrm{v}}}{1} \Rightarrow \mathrm{~V}_{\mathrm{v}}=0.388
\end{aligned}
$$

Coarse sand

$\mathrm{V}_{\mathrm{s}}=\mathrm{V}-\mathrm{V}_{\mathrm{v}}=1-0.388=0.611 \mathrm{~m}^{3}$
Dry silty soil:

$$
\begin{aligned}
\gamma_{\mathrm{s}} & =\mathrm{G} . \gamma_{\mathrm{w}} \\
& =2.67 \times 9.80=26.16 \mathrm{kN} / \mathrm{m}^{3} \\
\mathrm{~V}_{\mathrm{s}} & =\frac{\mathrm{W}_{\mathrm{s}}}{\gamma_{\mathrm{s}}}=\frac{5.5}{26.16}=0.21 \mathrm{~m}^{3}
\end{aligned}
$$

Wet Clay:

Water content, $\mathrm{w}=\frac{\mathrm{W}_{\mathrm{w}}}{\mathrm{W}_{\mathrm{s}}}$

$$
\begin{aligned}
& 0.1=\frac{\mathrm{W}-\mathrm{W}_{\mathrm{s}}}{\mathrm{~W}_{\mathrm{s}}} \\
& \mathrm{~W}_{\mathrm{s}}=1.3636 \mathrm{kN} \\
& \mathrm{~V}_{\mathrm{s}}=\frac{1.3636}{2.55 \times 9.8}=0.0545 \mathrm{~m}^{3}
\end{aligned}
$$

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups \& PSC Exams

(\%) ACE	4	CIVIL-Postal Coaching Solutions

After compaction:

Total volume, $\mathrm{V}=1.2 \mathrm{~m}^{3}$

$$
\begin{aligned}
\mathrm{V}_{\mathrm{s}} & =0.611+0.21+0.0545=0.875 \mathrm{~m}^{3} \\
\mathrm{~V}_{\mathrm{s}} & +\mathrm{V}_{\mathrm{v}}=\mathrm{V} \\
\mathrm{~V}_{\mathrm{V}} & =\mathrm{V}-\mathrm{V}_{\mathrm{s}} \\
& =1.2-0.875 \\
& =0.325
\end{aligned}
$$

Final porosity, $n_{2}=\frac{0.325}{1.2} \times 100=27 \%$
Reduction in porosity $=38.8 \%-27 \%$

$$
=11.8 \%
$$

11. Ans: (b) \& (c)

Sol: Void ratio $(\mathrm{e})=\frac{V_{v}}{V_{s}}$
If $V_{v}>V_{s}$
Then void ratio can be greater than 1 and void ratio can be less than 1 to 0 but not zero.
$\operatorname{Porosity}(\mathrm{n})=\frac{\mathrm{V}_{\mathrm{v}}}{\mathrm{V}}$
$\mathrm{V}_{\mathrm{v}} \ngtr \mathrm{V}$
Hence n can not be greater than 1
$\%$ age air void $\left(n_{a}\right)=\frac{V_{a}}{V} \times \frac{V_{v}}{V_{v}}$
$\mathrm{n}_{\mathrm{a}}=\mathrm{a}_{\mathrm{c}} \times \mathrm{n}$
$\mathrm{V}_{\mathrm{a}} \leq \mathrm{V}_{\mathrm{v}}$
Hence n_{a} is always less than porosity.

04. Index Properties of Soil

1. Ans: (a)

Sol: At L.L $w_{L}=60 \%$,
$\mathrm{e}_{1}=\frac{\mathrm{w}_{\mathrm{L}} \cdot \mathrm{G}}{\mathrm{S}}=0.6 \mathrm{G}$
$\mathrm{w}_{\mathrm{s}}=25 \%, \quad \mathrm{e}_{2}=0.25 \mathrm{G}$
$\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{1+\mathrm{e}_{1}}{1+\mathrm{e}_{2}}$
$\frac{10}{6.5}=\frac{1+0.6 \mathrm{G}}{1+0.25 \mathrm{G}}$
$\mathrm{G}=2.5$

Common data for Questions 02, 03
02. Ans: (c)

Sol: $\mathrm{G}_{\mathrm{m}}=$ Mass specific gravity $=1.88$
Water content, $w=40 \%$
On oven drying, mass specific gravity drops to $=1.74$

G of clay $=$?

$$
\begin{aligned}
\mathrm{e} & =\frac{w_{\mathrm{s}} \cdot \mathrm{G}}{\mathrm{~S}_{\mathrm{r}}}=0.40 \times \mathrm{G} \\
\gamma_{\mathrm{sat}} & =\frac{\gamma_{\mathrm{w}}(\mathrm{G}+\mathrm{e})}{1+\mathrm{e}} \\
1.88 & =\frac{\mathrm{G}+0.40 \mathrm{G}}{1+.4 \mathrm{G}} \\
1+0.4 \mathrm{G} & =\frac{\mathrm{G}(1+0.4)}{1.88} \\
\mathrm{G} & =2.90
\end{aligned}
$$

$\mathbf{A C E}$	5	Geotechnical Engineering

3. Ans: (a)

Sol: $w_{\mathrm{s}}=$?

$$
\begin{aligned}
& \mathrm{e}=0.4 \times 2.90 \\
& \mathrm{e}=1.16 \quad \Rightarrow \mathrm{e}=w_{\mathrm{S}} \mathrm{G}
\end{aligned}
$$

$$
w_{\mathrm{s}}=\left(\frac{1}{\mathrm{G}_{\mathrm{m}}}-\frac{1}{\mathrm{G}}\right) \times 100
$$

$$
=\left(\frac{1}{1.74}-\frac{1}{2.90}\right) \times 100=22.98 \%
$$

$$
w_{\mathrm{s}}=23 \%
$$

Common Data for Questions 04, 05 \& 06

04. Ans: (b)

Sol: Initial weight of saturated soil,
$\mathrm{W}_{1}=95.6 \mathrm{gm}$
Initial volume of saturated soil,
$\mathrm{V}_{1}=68.5 \mathrm{cc}$
Final dry weight $=43.5 \mathrm{gm}=\mathrm{W}_{\mathrm{d}}$
Final dry volume $=24.1 \mathrm{cc}=\mathrm{V}_{\mathrm{d}}$
$w_{\mathrm{s}}=$?

$$
\begin{aligned}
w_{\mathrm{s}} & =\left[\frac{\mathrm{W}_{1}-\mathrm{W}_{\mathrm{d}}}{\mathrm{~W}_{\mathrm{d}}}-\left(\frac{\mathrm{v}_{1}-\mathrm{v}_{\mathrm{d}}}{\mathrm{~W}_{\mathrm{d}}}\right) \gamma_{\mathrm{w}}\right] \times 100 \\
& =\left[\frac{95.6-43.5}{43.5}-\left(\frac{68.5-24.1}{43.3}\right)\right] \times 100 \\
w_{\mathrm{s}} & =17.7 \%
\end{aligned}
$$

5. Ans: (c)

Sol: $\gamma_{\mathrm{d}}=\frac{\mathrm{W}_{\mathrm{d}}}{\mathrm{V}_{\mathrm{d}}}=\frac{43.5}{24.1}=1.80 \mathrm{gm} / \mathrm{cc}$

$$
\begin{aligned}
\mathrm{G}_{\mathrm{m}} & =\frac{\gamma_{\mathrm{d}}}{\gamma_{\mathrm{w}}}=\frac{1.80}{1}=1.80 \\
\mathrm{~W}_{\mathrm{S}} & =\left(\frac{1}{\mathrm{G}_{\mathrm{m}}}-\frac{1}{\mathrm{G}}\right) \times 100 \\
17.7 & =\left(\frac{1}{1.80}-\frac{1}{\mathrm{G}}\right) \times 100 \\
\mathrm{G} & =2.65
\end{aligned}
$$

06. Ans: (c)

Sol: To find initial and final void ratio $=$?

To find e_{1} :

$$
\begin{aligned}
\gamma_{\text {sat }} & =\frac{\mathrm{w}_{1}}{\mathrm{v}_{1}}=\frac{95.6}{68.5}=1.39 \mathrm{~g} / \mathrm{cc} \\
1.39 & =\frac{2.67+\mathrm{e}_{1}}{1+\mathrm{e}_{1}} \\
\mathrm{e}_{1} & =3.28 \simeq 3.15
\end{aligned}
$$

To find e_{2} :

$$
\begin{aligned}
\mathrm{e}_{2} & =w_{\mathrm{s}} \mathrm{G} \\
& =0.17 \times 2.65 \\
& =0.47
\end{aligned}
$$

7. Ans: (c)

Sol: Given:
$\mathrm{V}_{1}=100 \mathrm{cc}$,
$w_{1}=30 \%$
$w_{\mathrm{s}}=18 \%$
$\mathrm{G}=2.72$
$\mathrm{V}_{2}=$?
$w=15 \%$

Let e_{1} be void ratio at water content of 30%
$\mathrm{e}_{1}=\frac{w_{1} \mathrm{G}}{\mathrm{S}_{\mathrm{r}}}=\frac{0.30 \times 2.72}{1}=0.816$
Let e_{2} be void ratio, at w_{s}
$\mathrm{e}_{2}=\frac{w_{\mathrm{s}} \mathrm{G}}{\mathrm{S}_{\mathrm{r}}}=\frac{0.18 \times 2.72}{1}=0.489$
$\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{1+\mathrm{e}_{1}}{1+\mathrm{e}_{2}}$
$\mathrm{V}_{2}=\frac{100 \times(1+0.489)}{1+0.816}=82 \mathrm{cc}$
08. Ans: $\mathbf{2 1 . 6 3 \%}$. $347 \mathbf{k N}$ and $\mathbf{w}=\mathbf{2 5 . 2 4 \%}$

Sol: $\mathrm{n}=36 \%$
$\mathrm{e}=\frac{\mathrm{n}}{1-\mathrm{n}}=\frac{0.36}{1-0.36}=0.563$
$\mathrm{G}=2.6$
$\mathrm{w}_{1}=11 \%$
Let w_{2} be w.c @ full saturation

$$
\begin{aligned}
e & =\frac{w_{2} \cdot G}{s}=w_{2}=0.216=21.6 \% \\
\gamma_{d} & =\gamma_{w}\left(\frac{\mathrm{G}}{1+e}\right) \\
& =9.81\left(\frac{2.6}{1+0.563}\right)=16.31 \mathrm{kN} / \mathrm{m}^{3}
\end{aligned}
$$

To rise w.c w_{1} to w_{2}
The weight of water to be added additionally

$$
\begin{aligned}
& =\mathrm{w}_{\mathrm{s}}\left(\mathrm{w}_{2}-\mathrm{w}_{1}\right) \\
& =\gamma_{\mathrm{d}} \cdot \mathrm{v}\left(\mathrm{w}_{2}-\mathrm{w}_{1}\right) \\
& =16.31 \times 200(0.216-0.11) \\
& =346 \mathrm{kN} \\
\frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}} & =\frac{1+\mathrm{e}_{2}}{1+\mathrm{e}_{1}} \Rightarrow \mathrm{~V}_{2}=1.06 \mathrm{~V}_{1} \\
\frac{1.06 \mathrm{~V}_{1}}{\mathrm{~V}_{1}} & =\frac{1+\mathrm{e}_{2}}{1+\mathrm{e}_{1}} \\
\mathrm{e}_{2} & =0.657 \\
\mathrm{e}_{2} & =\frac{\mathrm{w}_{3} \mathrm{G}}{\mathrm{~s}} \\
0.657 & =\frac{\mathrm{w}_{3} \times 2.6}{1} \\
\mathrm{w}_{3} & =0.254=25.4 \%
\end{aligned}
$$

9. Ans: (a), (b) \& (d)

Sol: Given,
$\mathrm{G}_{\mathrm{m}}=1.70$
$\mathrm{G}_{\mathrm{s}}=2.8$
$\mathrm{G}_{\mathrm{m}}=\frac{\gamma_{\mathrm{d}}}{\gamma_{\mathrm{w}}}=1.70$
$\gamma_{\mathrm{d}}=\frac{\mathrm{G} \gamma_{\mathrm{w}}}{1+\mathrm{e}}$
$\frac{\gamma_{\mathrm{d}}}{\gamma_{\mathrm{w}}}=\frac{\mathrm{G}}{1+\mathrm{e}}$
$1.7=\frac{2.8}{1+\mathrm{e}}$
$\Rightarrow 1+\mathrm{e}=\frac{2.8}{1.7}=1.647$
$\mathrm{e}=0.647$
$\operatorname{Porosity}(\mathrm{n})=1-\mathrm{n}=\frac{1}{1+\mathrm{e}}$
$1-n=\frac{1}{1.647}$
$\mathrm{n}=0.39$

Shrinkage limit (w_{s})
es $=\mathrm{wG}$
$0.647(1)=\mathrm{w}_{\mathrm{s}} \times 2.8$
$\mathrm{w}_{\mathrm{s}}=0.2310$
$\mathrm{w}_{\mathrm{s}}=23.10 \%$
Shrinkage ratio $\left(\mathrm{S}_{\mathrm{R}}\right)=\frac{\gamma_{\mathrm{d}}}{\gamma_{\mathrm{w}}}=1.7$

ACE	7	Geotechnical Engineering

05. Soil Classification

1. Ans: (c)

Sol: $w_{\mathrm{L}}=60 \%$
$w_{\mathrm{P}}=20 \%$
I_{P} of soil $=w_{\mathrm{L}}-w_{\mathrm{P}}$

$$
=60-20=40 \%
$$

I_{P} of A line $=0.73\left(w_{\mathrm{L}}-20 \%\right)$

$$
\begin{aligned}
& =0.73(60-20) \\
& =29.2
\end{aligned}
$$

As the soil lies above A line chart and its liquid limit is 60%
The given soil is CH .

02. Ans: GW - GM

Sol: $\mathrm{C}_{\mathrm{u}}=18, \quad \mathrm{C}_{\mathrm{c}}=2, \quad \mathrm{I}_{\mathrm{p}}=6$
From question it is given as gravelly soil.
For GW, $\mathrm{C}_{\mathrm{u}}>4$ and $\mathrm{C}_{\mathrm{c}}=1-3$

$$
18>4 \quad \text { and } \mathrm{C}_{\mathrm{c}}=2
$$

\therefore Soil is GW
But lines lies 5% and 12%, border line cases require dual symbol
For GM Atterberg limits fall below A line or $\mathrm{I}_{\mathrm{p}}<4$
For GC Atterberg limits above A-line and I_{p} >7
Here $\mathrm{I}_{\mathrm{p}}=6$ for GC IP must be greater \therefore Soil is GW-GM
03. Ans: (GM)

Sol: Fine fraction $=45 \%$
Coarse fraction $=100-45=55 \%$
\therefore Soil is coarse grained
$\%$ passing 4.75 mm since $=58 \%$ (out of total soil)
$\%$ retained or 4.75 mm since $=100-58 \%$

$$
=42 \%(\text { out of total })
$$

Gravel + sand = 55\%
$\%$ of Gravel $=42 \%$ (out of total soil)
$\therefore \%$ retaining on 4.75 mm sieve out of coarse fraction

$$
=\frac{42}{55} \times 100=76 \%
$$

(out of coarse fraction)
\therefore it is gravel

$$
\begin{aligned}
\mathrm{w}_{\mathrm{L}} & =40 \%, \quad \mathrm{w}_{\mathrm{p}}=30 \% \\
\text { A-line } & =0.73\left(\mathrm{w}_{\mathrm{L}}-20\right) \\
& =0.73(40-20)=14.6 \% \\
\mathrm{I}_{\mathrm{p}} & =40-30=10 \%
\end{aligned}
$$

Point plots below A-line silty gravel (GM)
04. Ans: (a) \& (d)

Sol:

Soil	Size
Boulder	$>300 \mathrm{~mm}$
Cobble	$80-300 \mathrm{~mm}$
Gravel	$4.75 \mathrm{~mm}-80 \mathrm{~mm}$
Sand	$75 \mu-4.75 \mathrm{~mm}$
Silt	$75 \mu-2 \mu$
Clay	$<2 \mu$

5. Ans: (b) \& (d)

Sol: Classification of soil is done on the basis of grain size distribution and plasticity chart.

(5) ACE	8	CIVIL-Postal Coaching Solutions

06. Permeability

01. Ans: (b)

Sol: temperature increases, γ_{w} decreases to 90% $\& \mu$ decreases to 90%
$\gamma_{\mathrm{w}_{2}}=\frac{90}{100} \gamma_{\mathrm{w}_{1}} ; \quad\left[\mathrm{K} \propto \frac{\gamma_{\mathrm{w}}}{\mu}\right]$
$\mu_{2}=\frac{75}{100} \mu_{1}$
$\frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=\frac{\gamma_{\mathrm{w}_{2}}}{\gamma_{\mathrm{w}_{1}}} \times \frac{\mu_{1}}{\mu_{2}}$
$\frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=\frac{90}{100} \times \frac{100}{75}$
$\mathrm{K}_{2}=1.2 \mathrm{~K}_{1}$
$\mathrm{K}_{2}=20 \%$ (increases by 20%)
02. Ans: $1.35 \times 10^{-4} \mathrm{~m}^{\mathbf{3}} / \mathrm{sec} / \mathrm{m}$

Sol: $\mathrm{H}=7 \mathrm{~m}, \quad \mathrm{H}_{1}=2 \mathrm{~m}, \quad \mathrm{~h}=3 \mathrm{~m}, \mathrm{~L}=40 \mathrm{~m}$

$$
\begin{aligned}
& \mathrm{i}=\frac{\mathrm{h}}{\mathrm{~L}}=\frac{3}{\mathrm{~L} / \cos \alpha}=\frac{3}{40.6170}=0.0738 \\
& \mathrm{k}=0.09 \mathrm{~cm} / \mathrm{sec}=0.09 \times 10^{-2} \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

$$
\frac{\mathrm{Q}}{1 \mathrm{~m}}=\mathrm{ki} \frac{\mathrm{~A}}{1}
$$

$$
\begin{aligned}
& =\frac{0.09 \times 10^{-2} \times 0.0738 \times\left[\frac{2}{\cos \alpha} \times 1\right]}{1 \mathrm{~m}} \\
& =0.09 \times 10^{-2} \times 0.0738 \times 2.0308 \\
& =1.35 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{sec} / \mathrm{m}
\end{aligned}
$$

Common data for Questions.Q03 \& Q04

3. Ans: (a) \& (c)

$\mathrm{i}=\frac{\mathrm{h}_{\mathrm{f}}}{\mathrm{L}}=\frac{1.2}{1.2}=1$
Loss of head for a seepage length of 0.8 m is $\mathrm{h}_{\mathrm{f}}=\mathrm{i} \times \mathrm{L}=1 \times 0.8=0.8 \mathrm{~m}$
Pressure head at R is 0.4 m
Assuming datum at d / s water surface,
Elevation head at R is zero
i.e., Datum head $=0$

Total head at $\mathrm{R}=\frac{\mathrm{P}}{\gamma_{\mathrm{w}}}+\mathrm{Z}$

$$
=0.4+0=0.4
$$

If Datum head is chosen at bottom of soil, then Datum (or) Elevation head $=0.4 \mathrm{~m}$
Pressure head $=0.4$
Total head at $\mathrm{R}=0.4+0.4=0.8$
04. Ans: (a)

Sol: Discharge velocity, $\mathrm{V}=\mathrm{k} . \mathrm{i}=\mathrm{k} \times 1=\mathrm{k}$
Seepage velocity, $\mathrm{V}_{\mathrm{s}}=\frac{\mathrm{V}}{\mathrm{n}}=\frac{\mathrm{k}}{0.50}=2 \mathrm{k}$

05. Ans: $0.183 \mathrm{~cm} / \mathrm{sec}$ and $0.094 \mathrm{~cm} / \mathrm{sec}$

Sol: Weight of water collected in 1 minute

$$
=6.18 \mathrm{~N}
$$

Weight $=$ volume \times density
$6.18=$ volume $\times 9810$
Volume $=\frac{6.18}{9810}=6.3 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{min}$
$\mathrm{Q}=1.05 \times 10^{-5} \mathrm{~m}^{3} / \mathrm{sec}$
$\mathrm{Q}=\mathrm{kiA}$
$1.05 \times 10^{-5}=\mathrm{k} \times \frac{26}{20} \times \frac{\pi}{4} \times 0.075^{2}$
$\mathrm{k}_{\mathrm{at2} 2{ }^{\circ} \mathrm{C}}=1.83 \times 10^{-3} \mathrm{~m} / \mathrm{sec}=0.183 \mathrm{~cm} / \mathrm{sec}$
$\mathrm{k} \propto\left(\frac{\mathrm{e}^{3}}{1+\mathrm{e}}\right) \times \frac{1}{\mu}$

At $25^{\circ} \mathrm{C}$

At $20^{\circ} \mathrm{C}$

$$
\mathrm{K}=0.183 \mathrm{~cm} / \mathrm{sec} \quad \mathrm{k}_{2}=?
$$

$\mathrm{n}=40 \%$
$\mathrm{n}_{2}=35 \%$
$\mathrm{e}=\frac{\mathrm{n}}{\mathrm{n}-1}$
$\mathrm{e}_{2}=\frac{0.35}{0.65}=0.5384$
$\mathrm{v}_{1}=0.9 \mathrm{v}_{20^{\circ} \mathrm{C}}$

$$
\mathrm{v}_{20^{\circ} \mathrm{C}}
$$

$$
\frac{\mathrm{k}_{2}}{\mathrm{k}_{1}}=\left(\frac{\mathrm{e}^{3}}{1+\mathrm{e}}\right)_{2}\left(\frac{1+\mathrm{e}}{\mathrm{e}^{3}}\right)_{1} \times \frac{\mu_{1}}{\mu_{2}}
$$

$$
=\frac{0.5384^{3}}{1.5384} \times \frac{1.667}{0.667^{3}} \times 0.9
$$

$\mathrm{k}_{2}=0.094 \mathrm{~cm} / \mathrm{sec}$

06. Ans: (b) \& (c)

Sol: Coarse grained soil is more permeable than fine grained soil.

Type of soil	Gravel	Sand	silt	Clay
Approx K $(\mathbf{c m} / \mathbf{s e c})$	10°	10^{-2}	10^{-4}	10^{-6}

$\rightarrow \mathrm{K} \alpha \frac{\gamma_{\mathrm{w}}}{\mu} \alpha \mathrm{T}$
As temperature increases, viscosity of liquid decreases, permeability increases.
\rightarrow Laminar flow prevails in clays, silts and fine sand.
\rightarrow Pumping out test is more accurate than the constant head laboratory permeability test.

07. Effective Stress

1. Ans: (d)

Sol:

$$
\begin{aligned}
\gamma_{\text {sat }} \text { of sand } & =\frac{\gamma_{\mathrm{w}}(\mathrm{G}+\mathrm{e})}{1+\mathrm{e}} \\
& =\frac{10(2.65+0.4)}{1+0.4}=21.785 \mathrm{kN} / \mathrm{m}^{3}
\end{aligned}
$$

γ_{d} of soil above water table $=$?
$\gamma_{\mathrm{d}}=\frac{\gamma_{\mathrm{w}} \mathrm{G}}{1+\mathrm{e}}=\frac{10 \times 2.65}{1+0.4}=18.92 \mathrm{kN} / \mathrm{m}^{3}$

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups \& PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

ACE	10	CIVIL-Postal Coaching Solutions

Effective stress below G.L $=$?

$$
\begin{aligned}
\sigma^{\prime} & =\sigma-\mathrm{u} \\
& =(1 \times 18.92)+(2 \times 21.785)+(20 \times 3)-(5 \times 10) \\
& =72.49 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

2. Ans: (d)

Sol:

Increase in effective stresses $=$ final effective stress - initial effective stress
$=$ change in effective stresses
$=\left(\gamma_{\mathrm{d}}-\gamma_{\mathrm{w}}\right)(3-2)$
$=(16-10) 1=6 \mathrm{kPa}$
03. Ans: (b)

Sol: σ^{\prime} at 9 m depth below G.L=?

$$
\begin{aligned}
\sigma^{\prime} & =\sigma-\mathrm{u} \\
& =(17 \times 3)+(20 \times 1)+(18 \times 5)-(6 \times 9.81) \\
\sigma^{\prime} & =102.14 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

4. Ans: (a)

Sol:

$\Delta \sigma^{\prime}$ at 9 m depth of soil below G.L $=$?
Effective stress after capillary rise at $9 \mathrm{~m}=\sigma^{\prime}$
$\sigma^{\prime}=\sigma-u$ $=(2 \times 17)+(2 \times 20)+(18 \times 5)-6 \times 9.81$
$\sigma^{\prime}=105.14$

Increase in effective stress $=105.14-102.14$

$$
\Delta \sigma^{\prime}=3 \mathrm{kN} / \mathrm{m}^{2}
$$

Common Data for Questions Q 05 \& Q 06

Impermeable rock
05. Ans: (d)

Sol: Effective stress at a depth of $6 \mathrm{~m}=$?

$$
\begin{aligned}
\gamma_{\mathrm{w}} & =10 \mathrm{kN} / \mathrm{m}^{2} \\
\sigma^{\prime} & =\sigma-\mathrm{u} \\
& =(19.5) \times 4+(18.5 \times 2)-(8 \times 10) \\
\sigma^{\prime} & =35 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

6. Ans: (a)

Sol: $\Delta \sigma^{\prime}=$? when artesian head in the stand is reduced by 1 m
Total stress remains same.
Pore water pressure decreases by $10 \mathrm{kN} / \mathrm{m}^{2}$
\therefore Effective stress increases by $10 \mathrm{kN} / \mathrm{m}^{2}$
$\Delta \sigma^{\prime}=10 \mathrm{kN} / \mathrm{m}^{2}$
07. Ans: (a), (b), (c) \& (d)

Sol: Pore water pressure (v) $=\sigma-\bar{\sigma}$
Effective stress do not change at sudden, but by desiccation of upper lager by surface drying, change in water table, removal of any building and desiccation due to plant life, total stress decreases, hence pore water pressure decreases, and vice-versa.

	Regular Live Doubt clearing Sessions \| Free Online Test Series	ASK an expert			
online	Affordable Fee \| Available 1M	3M	6M	12M	18 M and 24 Months Subscription Packages

A. ACE	11	Geotechnical Engineering

08. Ans: (a) \& (c)

Sol: Soil particles get closed and become more compact as effective stress increases. As effective stress increases, compressibility of soil decreases.

08. Seepage Pressure and Critical Hydraulic Gradient

1. Ans: (c)

Sol:

To find depth of safe excavation:

$$
\gamma=20 \mathrm{kN}-\mathrm{m}^{3}
$$

Downward pressure $=$ uplift pressure

$$
\begin{aligned}
\gamma(\mathrm{H}-\mathrm{y}) & =\gamma_{\mathrm{w}} \mathrm{~h}_{\mathrm{a}} \\
20(9-\mathrm{y}) & =10 \times 6 \\
\mathrm{y} & =6 \mathrm{~m}
\end{aligned}
$$

\therefore Maximum depth of trench will be excavated without failure is 6 m .
02. Ans: (c)

Sol: $20(9-7)=\gamma_{w} h_{a}$

$$
\mathrm{h}_{\mathrm{a}}=\frac{20 \times 2}{10}=4 \mathrm{~m}
$$

Water table to be lowered $=6-4=2 \mathrm{~m}$

03. Ans: 35

Sol: Given
Net head causing flow $\mathrm{h}=5 \mathrm{~m}$ Hydraulic gradient $\mathrm{i}=\frac{\mathrm{h}}{\mathrm{Z}}=\frac{5}{\mathrm{Z}}=1$

$$
\Rightarrow \quad Z=5 \mathrm{~m}
$$

Seepage length $Z=5 \mathrm{~m}$

For $100 \% \rightarrow 50 \mathrm{kPa}$
For $70 \% \rightarrow \frac{50}{100} \times 70=35 \mathrm{kPa}$
04. Ans: 1.91 m

Sol: Depth of soil layer $=1200 \mathrm{~mm}$
FOS against piping $=\frac{i_{c}}{i}$

$$
\begin{aligned}
& \mathrm{z}=\frac{(\mathrm{G}-1)(1-\mathrm{n})}{\mathrm{i}} \\
& \mathrm{i}=\frac{1.65 \times 0.7}{2} \\
& \frac{\mathrm{~h}}{\mathrm{z}}=0.5775 ; \quad \mathrm{z}=3.1168 \mathrm{~m}
\end{aligned}
$$

Additional depth of coarse sand

$$
=3.1168-1.2=1.9168 \mathrm{~m}
$$

D A A C	12	CIVIL-Postal Coaching Solutions

05. Ans: $\mathbf{3 2} \mathbf{k P a}$ \& 7.2m

Sol:

Sand
I. At bottom of silty clay

Total stress

$$
\begin{gathered}
\sigma=18 \times 2+20 \times 2+4 \times 19 \\
=152 \mathrm{kPa}
\end{gathered}
$$

Pore water pressure
$\mathrm{U}=(4+2+2+4) \times 10=120 \mathrm{kPa}$
Effective stress $\sigma^{\prime}=\sigma-u$

$$
=152-120=32 \mathrm{kPa}
$$

II. At x m of water failure occur. That is effective stress $=0$

Total stress $\sigma=152 \mathrm{kPa}$
Pore water pressure $u=10(x+2+2+$
4)
$\sigma^{\prime}=0$
$\therefore \sigma-\mathrm{u}=0$
$\Rightarrow 152=10[x+2+2+4]$
$\therefore \mathrm{x}=7.2 \mathrm{~m}$

06. Ans: $2.2 \& 10.38 \mathrm{kN} / \mathrm{m}^{3}$

Sol: $\mathrm{V}_{\mathrm{s}}=\frac{\mathrm{V}}{\mathrm{n}}$
$\mathrm{V}=\mathrm{V}_{\mathrm{s}} . \mathrm{n}=2.4 \times 10^{-4} \mathrm{~cm} / \mathrm{sec}$
$\mathrm{V}=\mathrm{k} . \mathrm{i}$
$\mathrm{V}=\mathrm{k}\left(\frac{\mathrm{h}_{\mathrm{A}}-\mathrm{h}_{\mathrm{B}}}{\mathrm{L}}\right)$
$2.4 \times 10^{-4}=1.2 \times 10^{-3}\left(\frac{5-\mathrm{h}_{\mathrm{B}}}{14}\right)$
$\mathrm{h}_{\mathrm{B}}=2.2 \mathrm{~m}$
$\mathrm{i}=0.2$

Resultant $=\sqrt{\gamma^{\prime 2}+\left(\mathrm{i} \gamma_{\mathrm{w}}\right)^{2}}=10.377 \mathrm{kN}$
07. Ans: (d)

Sol: Total stress at point A

$$
\begin{aligned}
& =0.7 \times 9.81+20.6 \times 1 \\
& =27.467 \mathrm{KPa}
\end{aligned}
$$

Neutral stress at point $\mathrm{A}=\gamma_{\mathrm{w}} \mathrm{h}$
$\mathrm{h}=$ total head at point A
$\mathrm{h}=1+0.7+0.75=2.45$
\therefore Effective stresses at point $\mathrm{A}, \sigma^{\prime}=\sigma-\mathrm{u}$

$$
\begin{aligned}
& =27.467-9.81 \times 2.45 \\
& =3.4325 \mathrm{kPa}
\end{aligned}
$$

8. Ans: (c)

Sol: Upward seepage force per unit volume

$$
\begin{aligned}
& =\frac{\gamma_{\mathrm{w}} \mathrm{~h} \times \mathrm{A}}{\text { volume }}=\frac{\gamma_{\mathrm{w}} \mathrm{~h} \times \mathrm{A}}{\mathrm{~A} \times \mathrm{z}}=\gamma_{\mathrm{w}} \mathrm{i} \\
& =9.81 \times 0.75 \\
& =7.3575 \mathrm{kN} / \mathrm{m}^{3}
\end{aligned}
$$

	Regular Live Doubt clearing Sessions \| Free Online Test Series	ASK an expert			
online	Affordable Fee \| Available 1M	3M	6M	12M	18 M and 24 Months Subscription Packages

09. Ans: (a) \& (d)

Sol: If seepage flow is upward then effective stress will get reduced by seepage force, and vice-versa.

09. Seepage Analysis

1. Ans: 0.0086

Sol: The quantity of flow into the pond per m^{2} area

$$
\begin{aligned}
& \mathrm{Q}=\mathrm{ki} \\
\mathrm{i}= & \frac{\mathrm{h}}{\mathrm{z}}=\frac{\text { head loss }}{\text { depth of clay }}=\frac{5 \mathrm{~m}}{5 \mathrm{~m}}=1 \\
\therefore \mathrm{Q}= & 10^{-5} \times 10^{-2} \times 1=10^{-7} \mathrm{~m}^{3} / \mathrm{sec} \\
= & 10^{-7} \times 3600 \times 24 \mathrm{~m}^{3} / \text { day } \\
= & 0.0086 \mathrm{~m}^{3} / \text { day }
\end{aligned}
$$

2. Ans: (d)

Sol: Equivalent permeability $\mathrm{k}=\sqrt{\mathrm{k}_{\mathrm{x}} \mathrm{k}_{\mathrm{y}}}$

$$
\begin{aligned}
& =\sqrt{6 \times 1.39 \times 1.39} \\
& =3.404 \mathrm{~m} / \mathrm{day}
\end{aligned}
$$

\therefore Seepage per unit width, $\mathrm{q}=\mathrm{kH} \frac{\mathrm{N}_{\mathrm{f}}}{\mathrm{N}_{\mathrm{d}}}$

$$
=3.404 \times 9 \times \frac{5}{8}=19.152 \mathrm{~m}^{3} / \mathrm{day} / \mathrm{m}
$$

\therefore Total seepage $=\mathrm{q} \times \mathrm{b}=19.152 \times 50$

$$
=957.6 \mathrm{~m}^{3} / \mathrm{day}
$$

3. Ans: $3.933,3.367,1.666,1.6667$, $\Delta \mathbf{Q}=2.2667 \times 10^{-5} \mathrm{~m}^{3} / \mathrm{sec} / \mathrm{m}$

Sol:

(A) Total head loss $\mathrm{h}=(4.5-1.1)=3.4$

Head loss per one flow net $=\frac{3.4}{6}=0.566 \mathrm{~m}$
\therefore Piezeometric head at point

$$
\begin{aligned}
\mathrm{a} & =4.5-0.566 \\
& =3.933 \mathrm{~m}
\end{aligned}
$$

\therefore Piezeometric head at point

$$
\begin{aligned}
\mathrm{b} & =4.5-2 \times 0.566 \\
& =3.367 \mathrm{~m}
\end{aligned}
$$

\therefore Piezeometric head at point

$$
\begin{aligned}
\mathrm{c} & =4.5-5 \times 0.566 \\
& =1.6667 \mathrm{~m}
\end{aligned}
$$

\therefore Piezeometric head at point

$$
\begin{aligned}
\mathrm{d} & =4.5-5 \times 0.566 \\
& =1.6667 \mathrm{~m}
\end{aligned}
$$

(B) The rate of seepage through channel II per unit length

$$
\begin{aligned}
& \mathrm{q}=\mathrm{kH} \frac{\mathrm{~N}_{\mathrm{f}}}{\mathrm{~N}_{\mathrm{d}}} \\
& \mathrm{~N}_{\mathrm{f}}=1, \quad \mathrm{~N}_{\mathrm{d}}=6 \\
& \mathrm{q}= 4 \times 10^{-3} \times 10^{-2} \times 3.4 \times \frac{1}{6} \\
&= 2.266 \times 10^{-5} \mathrm{~m}^{3} / \mathrm{sec} / \mathrm{m}
\end{aligned}
$$

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups \& PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

ACE	14

04. Ans: (a)

Sol: FOS against piping $=\frac{i_{c}}{i_{\text {exit }}}$

$$
\begin{aligned}
& \mathrm{i}_{\mathrm{c}}=\frac{\mathrm{G}-1}{1+\mathrm{e}}=1.083 \\
& \mathrm{i}_{\text {exit }}=\frac{\Delta \mathrm{H}}{\mathrm{~b}} \\
& \Delta \mathrm{H}=\frac{\mathrm{H}}{\mathrm{~N}_{\mathrm{d}}}=\frac{4.2}{8}=0.525 \\
& \mathrm{i}_{\text {exit }}=\frac{0.525}{1.65}=0.3181 \\
& \text { FOS }=\frac{1.083}{0.3181}=3.4
\end{aligned}
$$

5. Ans: (a) \& (c)

Sol:

$$
\mathrm{e}=0.8, \mathrm{G}=2.8
$$

2 m

Critical hydraulic gradient

$$
\mathrm{I}_{\mathrm{cr}}=\frac{\mathrm{n}-1}{1+\mathrm{e}}=\frac{2.8-1}{1+0.8}=1
$$

Exit gradient $=\frac{\mathrm{h}_{\ell}}{\ell}=\frac{0.6}{2}=0.3 \mathrm{~m}$
F.O. $\mathrm{S}=\frac{\mathrm{I}_{\mathrm{cr}}}{\mathrm{I}_{\ell}}=\frac{1}{0.3}=3.3$

10. Stress Distribution

1. Ans: (b)

Sol: At centre:
$\sigma_{\mathrm{Z}}=\mathrm{Iq}$
$\mathrm{Z}=5 \mathrm{~m}$
To Calculate I:

$\mathrm{m}=\frac{\mathrm{L}}{\mathrm{Z}} \quad \mathrm{n}=\frac{\mathrm{B}}{\mathrm{Z}}$
$\mathrm{m}=\frac{2}{5} \quad \mathrm{n}=\frac{1}{5}$
$\mathrm{m}=0.4 \mathrm{n}=0.2$
From Table, $\mathrm{I}=0.0328$
$\left.\begin{array}{rl}\sigma_{\mathrm{Z}} & =0.0328 \times 8 \\ & =0.2624\end{array}\right\}$ At corner of 1×2 rectangle
σ_{Z} at centre $=0.2624 \times 4=1.05 \mathrm{t} / \mathrm{m}^{2}$

At corner:

From given table, $\mathrm{I}=0.0931$
$\mathrm{m}=\frac{4}{5}=0.8$
$\mathrm{n}=\frac{2}{5}=0.4$
$\sigma_{\mathrm{Z}}=0.0931 \times 8=0.744 \mathrm{t} / \mathrm{m}^{2}$
02. Ans: (d)

Sol:

Total load $=200 t$

	Regular Live Doubt clearing Sessions \| Free Online Test Series	ASK an expert			
online	Affordable Fee \| Available 1M	3M	6M	12M	18M and 24 Months Subscription Packages

Load on each column $=\frac{200}{3}=66.66 \mathrm{t}$

$\sigma_{\mathrm{Z}}=\sigma_{\mathrm{Z}_{1}}+\sigma_{\mathrm{Z}_{2}}+\sigma_{\mathrm{Z}_{3}}$
$\sigma_{Z_{1}}=\frac{Q}{Z^{2}} \frac{3}{2 \pi}=\frac{66.66}{2^{2}} \frac{3}{2 \pi}=7.95 \mathrm{t} / \mathrm{m}^{2}$
$\sigma_{Z_{2}}=\frac{\mathrm{Q}}{\mathrm{Z}^{2}} \frac{3}{2 \pi}\left(\frac{1}{1+\left(\frac{\mathrm{r}}{\mathrm{Z}}\right)^{2}}\right)^{(5 / 2)}$

$$
=\frac{66.66}{2^{2}} \frac{3}{2 \pi}\left[\frac{1}{1+\left(\frac{3}{2}\right)^{2}}\right]^{(5 / 2)}
$$

$\sigma_{\mathrm{Z}_{2}}=0.417 \mathrm{t} / \mathrm{m}^{2}=\sigma_{\mathrm{Z}_{3}}$
$\sigma_{\mathrm{z}}=7.95+0.417+0.417$
$\sigma_{\mathrm{Z}}=8.78 \mathrm{t} / \mathrm{m}^{2}$
03. Ans: (c)

Sol:

σ_{Z} at centre $=$?
$Z=10 \mathrm{~m}$
$\sigma_{Z}=20\left[1-\left(\frac{1}{1+\left(\frac{4}{10}\right)^{2}}\right)^{3 / 2}\right]-20\left[1-\left(\frac{1}{1+\left(\frac{3}{10}\right)^{2}}\right)^{3 / 2}\right]$
$\sigma_{\mathrm{Z}}=1.56 \mathrm{kPa}=1.56 \mathrm{kN} / \mathrm{m}^{2}$
04. Ans: (d)

Sol:

$$
1.5
$$

1

$$
\begin{aligned}
\sigma_{\mathrm{Z}} & =4 \times \sigma_{\mathrm{Z}} \text { of small rectangle }(1 \times 1.5) \\
& =4 \times 100=400 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

05. Ans: 7.41 m

Sol: Vertical stress due to circular loaded area

$$
\begin{aligned}
& \sigma=\mathrm{q}\left[1-\left(\frac{1}{1+(\mathrm{r} / \mathrm{z})^{2}}\right)^{3 / 2}\right] \\
& 0.1 \mathrm{q}=\mathrm{q}\left[1-\left(\frac{1}{1+(2 / \mathrm{z})^{2}}\right)^{3 / 2}\right] \\
& \mathrm{Z}=7.41 \mathrm{~m}
\end{aligned}
$$

ACE	16	CIVIL-Postal Coaching Solutions

06. Ans: $\mathbf{8 3 . 0 5} \mathbf{~ k P a}$

Sol:

Total vertical stress

$=$ stresses at $1+$ stresses at $2+$ stresses at section 3

$$
=\sigma_{v_{1}}+\sigma_{v_{2}}+\sigma_{v_{3}}
$$

$\sigma_{\mathrm{v}_{1}}=\sigma_{\mathrm{v}_{2}}=\mathrm{qI}$
$\mathrm{n}=\frac{\mathrm{L}}{\mathrm{z}}=\frac{8}{3}=2.67$
$\mathrm{m}=\frac{\mathrm{B}}{\mathrm{Z}}=\frac{1.5}{3}=0.5$
$\therefore \mathrm{m}=0.5, \mathrm{n}=2.67 \Rightarrow \mathrm{I}=0.1365$
$\sigma_{\mathrm{v}_{1}}=\sigma_{\mathrm{v}_{2}}=0.1365 \times 200=27.3$
Vertical stress in circular area

$$
\begin{aligned}
\sigma_{v_{3}} & =\mathrm{q}\left[1-\left(\frac{1}{1+(\mathrm{r} / \mathrm{z})^{2}}\right)^{3 / 2}\right] \\
& =200\left[1-\left(\frac{1}{1+\left(\frac{1.5}{3}\right)^{2}}\right)^{3 / 2}\right]=56.89 \mathrm{KPa}
\end{aligned}
$$

Vertical stress in semi-circular area

$$
=\frac{\sigma_{\mathrm{v}_{3}}}{2}=28.44 \mathrm{KPa}
$$

\therefore Total vertical stresses

$$
\begin{aligned}
& =27.3+27.3+28.44 \\
& =83.05 \mathrm{KPa}
\end{aligned}
$$

07. Ans: (a) \& (c)

Sol: Assumptions of bossinesq's theory:

i. Soil is homogenous \& isotropic
ii. Semi-infinite, elastic medium weight less and load is point load acting on ground surface.
08. Ans: (b), (c) \& (d)

Sol: Westergaard, like Boussinesq, also solved the problem of pressure distribution in soils under a point load. For solving this problem, he also made certain assumptions, as were made by Boussinesq.
He assumed the soil mass to be elastic, homogeneous and of semi-infinite extent. He , in fact, assumed that the soil mass contains numerous closely spaced horizontal sheets of negligible thickness of an infinite rigid material, which permit only the downward deformation of the mass as a whole without allowing it to undergo any lateral deformation. In other words, the soil mass would not behave in all directions in a similar fashion, as was the case with Boussinesq. Hence, Westergaard did assume a sort of non-isotropy in the soil mass; whereas, Boussinesq had assumed the soil mass to be fully isotropic.
Westergaard's assumptions are more close to the field reality, especially for overconsolidated and laminated sedimentary soils, which exhibit marked an-isotropy, satisfying Westergaard's assumption of
$\frac{\mathrm{E}_{\mathrm{h}}}{\mathrm{E}_{\mathrm{v}}}=\frac{\text { young moudlus of soil in horizontal direction }}{\text { Young mod ulus soil in vertical direction }}=\infty$
ace
Regular Live Doubt clearing Sessions | Free Online Test Series |ASK an expert
online
Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

(1) ACE	17	Geotechnical Engineering

11. Consolidation

01. Ans: $\mathbf{1 4 7 . 8 6 ~ m m ~ \& ~} 2.86$ years

Sol: $\mathrm{d}=\mathrm{H}=8 \mathrm{~m}=800 \mathrm{~cm}$
For a settlement 120 mm in 2 years
$\mathrm{C}_{\mathrm{v}}=6 \times 10^{-3} \mathrm{~cm}^{2} / \mathrm{s}$
$\mathrm{S}_{\mathrm{f}}=$?, $\quad \mathrm{t}_{90}=$?

$$
\begin{aligned}
\mathrm{T}_{\mathrm{v}} & =\frac{\mathrm{C}_{\mathrm{v}} \mathrm{t}}{\mathrm{~d}^{2}} \\
& =\frac{6 \times 10^{-3} \times 2 \times 365 \times 24 \times 60 \times 60}{800^{2}}=0.5913
\end{aligned}
$$

Since $\mathrm{T}_{\mathrm{v}}>0.282$

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{v}}=1.781-0.933 \log _{10}(100-\mathrm{U} \%) \\
& 0.5913=1.781-0.933 \log _{10}(100-\mathrm{U} \%) \\
& \mathrm{U}=81.16 \% \\
& \Rightarrow \mathrm{U}=\frac{\mathrm{s}}{\mathrm{~s}_{\mathrm{f}}} \\
& \Rightarrow 81.16=\frac{120}{\mathrm{~s}_{\mathrm{f}}} \times 100 \\
& \mathrm{~s}_{\mathrm{f}}=147.86 \mathrm{~mm}
\end{aligned}
$$

(b) $\mathrm{T}_{\mathrm{v}}=1.781-0.953 \log _{10}(100-90 \%)$

$$
=0.848
$$

$\mathrm{T}_{\mathrm{v}}=\frac{\mathrm{C}_{\mathrm{v}} \mathrm{t}}{\mathrm{d}^{2}} \Rightarrow 0.848=\frac{6 \times 10^{-3} \times \mathrm{t}}{120^{2}}$
$\Rightarrow \mathrm{t}=2.86$ years
02. Ans: (a)

Sol: $\Delta \mathrm{H}_{1}=1 \mathrm{~cm}$,
$\sigma_{\mathrm{f}_{1}}^{\prime}=2 \mathrm{~kg} / \mathrm{cm}^{2}, \quad \sigma_{0_{1}}^{\prime}=1 \mathrm{~kg} / \mathrm{cm}^{2}$,
$\Delta \mathrm{H}_{2}=$?

$$
\sigma_{\mathrm{f}_{2}}^{\prime}=4 \mathrm{~kg} / \mathrm{cm}^{2}, \sigma_{0_{2}}^{\prime}=2 \mathrm{~kg} / \mathrm{cm}^{2}
$$

$\Delta H \propto \log _{10}\left(\frac{\sigma_{f}^{\prime}}{\sigma_{0}^{\prime}}\right)$
$\frac{\Delta \mathrm{H}_{1}}{\Delta \mathrm{H}_{2}}=\frac{\log _{10}\left(\frac{\sigma_{\mathrm{f}_{1}}^{\prime}}{\sigma_{0_{1}}^{\prime}}\right)}{\log _{10}\left(\frac{\sigma_{\mathrm{f}_{2}}^{\prime}}{\sigma_{0_{2}}^{\prime}}\right)}$

$$
\frac{1}{\Delta \mathrm{H}}=\frac{\log _{10}\left(\frac{2}{1}\right)}{\log _{10}\left(\frac{4}{2}\right)} \Rightarrow \Delta \mathrm{H}=1 \mathrm{~cm}
$$

3. Ans: (c)

Sol: $\mathrm{t}_{1}=4 \mathrm{yrs}, \mathrm{S}_{1}=80 \mathrm{~mm}$
$\mathrm{t}_{2}=9 \mathrm{yrs}, \mathrm{S}_{2}=$?
For both conditions, soil is same
(Degree of consolidation).
$\mathrm{U}=\frac{\mathrm{S}}{\mathrm{S}_{\mathrm{f}}} \times 100$
$\mathrm{S}_{\mathrm{f}} \rightarrow$ same for both
$\Delta \mathrm{H}=80 \mathrm{~mm} ; \mathrm{t}_{1}=4 \mathrm{yrs}$

$$
=60 \% \text { (less than })
$$

$\mathrm{t}_{2}=9 \mathrm{yrs}$

$$
\begin{aligned}
& \mathrm{U}=\frac{\mathrm{S}}{\mathrm{~S}_{\mathrm{f}}} \times 100 \Rightarrow \mathrm{~T}_{\mathrm{v}}=\frac{\pi}{4}\left(\frac{\mathrm{U}}{100}\right)^{2} \\
& \Rightarrow \mathrm{C}_{\mathrm{v}} \frac{\mathrm{t}}{\mathrm{~d}^{2}}=\frac{\pi}{4} \mathrm{U}^{2} \\
& \Rightarrow \mathrm{t} \propto \mathrm{U}^{2} \Rightarrow \mathrm{t} \propto \mathrm{~s}^{2} \\
& \Rightarrow \frac{\mathrm{t}_{1}}{\mathrm{t}_{2}}=\left[\frac{\mathrm{S}_{1}}{\mathrm{~S}_{2}}\right]^{2} \\
& \Rightarrow \frac{4}{9}=\left[\frac{80^{2}}{\mathrm{~S}_{2}^{2}}\right]^{2} \Rightarrow \mathrm{~S}_{2}=120 \mathrm{~mm}
\end{aligned}
$$

04. Ans: $\mathbf{1 2 0} \mathbf{~ m m}$

Sol:

$\gamma_{\mathrm{w}}=10 \mathrm{kN} / \mathrm{m}^{3}, \gamma_{\mathrm{sat}}=19.3 \mathrm{kN} / \mathrm{m}^{3}$,
$\mathrm{q}=500 \mathrm{kN}$

$$
\mathrm{C}_{\mathrm{C}}=0.36, \mathrm{e}_{0}=0.92, \mathrm{~S}_{\mathrm{f}}=120
$$

$$
\mathrm{S}_{\mathrm{f}}=\mathrm{H}_{0} \frac{\mathrm{C}_{\mathrm{C}}}{1+\mathrm{e}_{0}} \log _{10}\left(\frac{\sigma_{\mathrm{f}}^{\prime}}{\sigma_{0}^{\prime}}\right)
$$

$$
\mathrm{S}_{\mathrm{f}}=4 \times \frac{0.36}{1+0.92} \log _{10}\left(\frac{\sigma_{\mathrm{f}}^{\prime}}{\sigma_{0}^{\prime}}\right)
$$

$$
\Delta \sigma^{\prime}=\frac{\mathrm{q}}{(\mathrm{~B}+\mathrm{Z})^{2}}=\frac{500}{(3.5+2)^{2}}
$$

$$
\Delta \sigma^{\prime}=16.528 \mathrm{kN} / \mathrm{m}^{2}
$$

$$
\sigma_{f}^{\prime}=\sigma_{\mathrm{o}}^{\prime}+\Delta \sigma^{\prime}
$$

$$
=37.2+16.528
$$

$$
=53.728 \mathrm{kN} / \mathrm{m}^{2}
$$

$\mathrm{S}_{\mathrm{f}}{ }^{\prime}=4 \times \frac{0.36}{1.92} \times \log _{10}\left[\frac{53.728}{16.528}\right]=120 \mathrm{~mm}$

05. Ans: (c)

Sol: $\quad t \propto \frac{d^{2} m_{v}}{K}$
$\frac{\mathrm{t}_{2}}{\mathrm{t}_{1}}=\left(\frac{\mathrm{d}_{2}}{\mathrm{~d}_{1}}\right)^{2}\left(\frac{\mathrm{~m}_{\mathrm{v} 2}}{\mathrm{~m}_{\mathrm{v} 1}}\right)\left(\frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}}\right)$
$\mathrm{t}_{1}=15 \mathrm{yrs}, \mathrm{d}_{2}=2 \mathrm{~d}_{1}, \mathrm{~K}_{2}=3 \mathrm{~K}_{1}$,
$\mathrm{m}_{\mathrm{v} 2}=4 \mathrm{~m}_{\mathrm{v} 1}$
$\mathrm{t}_{2}=15 \times\left(\frac{2}{1}\right)^{2}\left(\frac{4}{1}\right)\left(\frac{1}{3}\right)$
$\mathrm{t}_{2}=80 \mathrm{yrs}$

Common data for Questions 06 \& 07
06. Ans: (a)

Sol: $\mathrm{d}_{1}=\frac{20}{2}=10 \mathrm{~mm}, \mathrm{U}_{1}=50 \%, \mathrm{t}_{1}=45 \mathrm{~min}$ [lab]
$\mathrm{d}_{2}=5000 \mathrm{~mm}, \mathrm{U}_{2}=50 \%, \mathrm{t}_{2}=$? [field]
Same U, TV
$t \propto d^{2}$
$\frac{\mathrm{t}_{2}}{\mathrm{t}_{1}}=\frac{\mathrm{d}_{2}^{2}}{\mathrm{~d}_{1}^{2}}$
$\mathrm{t}_{2}=45\left(\frac{5000}{10}\right)^{2}=11250000 \mathrm{~min}$
$=21.4$ years
07. Ans: (b)

Sol: $\mathrm{t}_{2}=4 \times 21.4=85.6 \mathrm{yrs}$

ACE	19	Geotechnical Engineering

Common data for Questions 08 \& 09

$\mathrm{U}=\frac{80}{300}=26.6 \%$
$\mathrm{T}_{\mathrm{v}}=\frac{\mathrm{C}_{\mathrm{v}} \mathrm{t}}{\mathrm{d}^{2}}$
$\frac{\pi}{4}(26.6)^{2}=\frac{\mathrm{C}_{\mathrm{v}} \mathrm{t}}{\mathrm{d}^{2}}$
$\frac{\mathrm{C}_{\mathrm{v}}}{\mathrm{d}^{2}}=\frac{\pi}{225}$
08. Ans: (b)

Sol: $\quad \mathrm{T}_{\mathrm{v}}=\frac{\mathrm{C}_{\mathrm{v}}}{\mathrm{d}^{2}} \times \mathrm{t}=\frac{\pi}{225} \times 25=0.35$

$$
\begin{aligned}
& \mathrm{U}=65 \% \\
& \begin{aligned}
\frac{\mathrm{S}}{300} \times 100 & =0.65 \\
\mathrm{~S} & =195 \mathrm{~mm}
\end{aligned}
\end{aligned}
$$

9. Ans: (d)

Sol: $\operatorname{At~U\% ~}=70 \%, T_{v}=0.403$

$$
\begin{aligned}
T_{v} & =\frac{C_{v}}{d^{2}} \times t \\
0.403 & =\frac{\pi}{225} \times t \Rightarrow t=28.8 y r s
\end{aligned}
$$

10. Ans: (c)

Sol: NOTE: The time is measured from middle of construction period

$$
\mathrm{t}=5 \mathrm{yrs},
$$

$\mathrm{S}=90 \mathrm{~mm}$,
$\mathrm{S}_{\mathrm{f}}=360$
$\mathrm{T}_{\mathrm{v}}=\frac{\mathrm{C}_{\mathrm{v}} \mathrm{t}}{\mathrm{d}^{2}}$
$\frac{t_{1}}{t_{2}}=\frac{T_{v_{1}}}{T_{v_{2}}}=\frac{(S / 360)^{2}}{(90 / 360)^{2}}$
$S^{2}=90^{2} \times \frac{9}{4}$
$\mathrm{S}=135 \mathrm{~mm}$

Common data for Questions 11 \& 12
11. Ans: (b)

Sol: $\gamma_{\text {sat }}=18 \mathrm{kN} / \mathrm{m}^{3}$
$\gamma_{\text {sat }}=20 \mathrm{kN} / \mathrm{m}^{3}$

$$
\gamma_{\mathrm{w}}=10 \mathrm{kN} / \mathrm{m}^{3}
$$

Depth $=4 \mathrm{~m} ; \gamma=19 \mathrm{kN} / \mathrm{m}^{3}$
a) Immediately after load

$$
\begin{aligned}
\sigma & =\mathrm{q}+(18 \times 5)+(20 \times 3) \\
& =226 \mathrm{kPa} \\
\mathrm{U} & =\mathrm{U}_{\text {static }}+\mathrm{U}_{\text {dynnamic }} \\
& =8 \gamma_{\mathrm{w}}+\mathrm{q}=156 \\
\sigma^{\prime} & =70 \mathrm{kPa}=70 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

12. Ans: (c)

Sol: Many years after (At the end of consolidation)

$$
\begin{aligned}
& \sigma=226 \mathrm{kPa} \\
& \mathrm{U}=80 \quad(\because \overline{\mathrm{U}}=0) \\
& \sigma^{\prime}=146 \mathrm{kPa}
\end{aligned}
$$

13. Ans: $\mathbf{4 2 2 . 7} \mathbf{~ m m}$

Sol:

Preliminary analysis	Detailed investigation
H_{1}	$\mathrm{H}_{2}=1.2 \mathrm{H}_{1}$
$\Delta \sigma_{\mathrm{C}}^{\prime}=24 \mathrm{KPa}$	$\Delta \sigma_{1}^{2}=\Delta \sigma^{\prime}+1 \times \gamma_{\mathrm{w}}$ $\mathrm{Sf}_{1}=24+9.81$

ACE	20	CIVIL-Postal Coaching Solutions

$\mathrm{S}_{\mathrm{f}}=\mathrm{m}_{\mathrm{v}} \mathrm{H} \Delta \sigma^{\prime}$
$S_{f} \propto H . \Delta \sigma^{\prime}$ assuming ' m_{v} ' remains same
$\frac{\mathrm{s}_{\mathrm{f}_{1}}}{\mathrm{~s}_{\mathrm{f}_{2}}}=\frac{\mathrm{H}_{1} \Delta \sigma^{\prime}}{\mathrm{H}_{2} \Delta \sigma^{\prime}}$
$\frac{250}{\mathrm{~S}_{\mathrm{f}_{2}}}=\frac{\mathrm{H}_{1} 24}{1.2 \mathrm{H} 33.81}=\mathrm{S}_{\mathrm{f}_{2}}=422 \mathrm{~mm}$
14. Ans: (a), (b) \& (c)

Sol: Rate of settlement is directly related to rate of dissipation of excess pore water pressure. $K=c_{v} m_{v} \gamma_{w}$
Hence rate of consolidation (i.e. flow of water) is controlled by, permeability, compressibility and excess pore water pressure.

$$
\mathrm{U}=\frac{\mathrm{u}_{\mathrm{i}}-\mathrm{u}_{\mathrm{z}}}{\mathrm{u}_{\mathrm{i}}}
$$

15. Ans: (a), (b) \& (c)

Sol: \rightarrow Correction is applied for the effect of 3 dimensional consolidation.
\rightarrow Settlement of rigid footing $=0.8$ times the settlement at center of flexible footing.
\rightarrow For foundation located at certain depth, a depth factor correction has been suggested by IS 8009 - part I-1976.

16. Ans: (a) \& (c)

Sol: Immediate settlement occurs by expulsion of pore air, so volume only change by decrease of air not by decrease of water, so volume change does not occur in idealized manner. Secondary settlement is done by plastic theory.

17. Ans: (a), (b) \& (d)

Sol: Compression index (c_{c})
For remoulded soil (given by skempton):
$\mathrm{C}_{\mathrm{c}}=0.007\left(\mathrm{w}_{\mathrm{l}}-10 \%\right)$
For undisturbed sample and filed condition (given by terzagi \& peck)
$\mathrm{C}_{\mathrm{c}}=0.009\left(\mathrm{w}_{l}-10 \%\right)$

For all clays:

$\mathrm{C}_{\mathrm{c}}=1.15\left(\mathrm{e}_{0}-0.35\right)$
18. Ans: (a), (c) \& (d)

Sol: Assumption in Terzagi theory:

i. Compression and flow are onedimensional
ii. Darcy law is valid
iii. Soil is homogenous
iv. Soil is completely saturated.
v. Soil grains and water are both incompressible
vi. Strains are small

(1) ACE	21	Geotechnical Engineering

12. Compaction

1. Ans: (c)

Sol:

Energy given by rammer per m^{3} of soil in the field

$$
=\frac{40 \times 1.5}{0.05 \times 0.3}=4000 \mathrm{kgm} / \mathrm{m}^{3}
$$

Energy given in IS light compaction test in $\mathrm{kg}-\mathrm{m} / \mathrm{m}^{3}$ of volume of soil

Standard value $595 \mathrm{~kJ} / \mathrm{m}^{3}$

$$
=60673.11 \mathrm{~kg}-\mathrm{m} / \mathrm{m}^{3}
$$

\therefore No. of purses required

$$
=\frac{60673.11}{4000}=15.16 \approx 16 \mathrm{No}^{\prime} \mathrm{s}
$$

2. Ans: (a), (b) \& (d)

Sol: Compaction reduces the compressibility of soil.
03. Ans: (a), (b) \& (d)

Sol: Coarse grained soil exhibit immediately settlement due to expulsion of pore air. Fine grained soil exhibit consolidation due to expulsion of water it is time dependent phenomena.
Settlement occurs in fine grained soil is more than coarse grained soil.

13. Shear Strength

1. Ans: (a)

Sol: Direct stress, $\sigma_{1}=5 \mathrm{Kg} / \mathrm{cm}^{2}$
All round stress, $\sigma_{3}=3.2 \mathrm{Kg} / \mathrm{cm}^{2}$
Shear on failure plane, $\tau_{f}=0.9$

$$
\phi=\text { ? }
$$

$$
\begin{aligned}
& \tau_{\max }=\frac{\sigma_{1}-\sigma_{3}}{2}=0.9 \\
& \because \tau_{f}=\tau_{\max } \Rightarrow \phi=0
\end{aligned}
$$

Another method:

$$
\begin{aligned}
& \tau_{\mathrm{f}}=\frac{\sigma_{1}-\sigma_{3}}{2} \sin 2 \alpha_{\mathrm{f}} \\
& 0.9=\frac{5-3.2}{2} \sin 2\left(45+\frac{\phi}{2}\right) \\
& 1=\sin 2\left[45+\frac{\phi}{2}\right] \\
& 1=\cos \phi \\
& \quad \phi=0
\end{aligned}
$$

Common data for Questions 02 \& 03

02 \& 03 Ans: (c) \& (b)

Sol: Given:

Unconfined compressive test $(\phi=0)$
$\mathrm{q}_{\mathrm{u}}=1.2 \mathrm{~kg} / \mathrm{cm}^{2}$
$\alpha_{\mathrm{f}}=50$
Cohesion of soil $=$?
$\alpha_{\mathrm{f}}=\left(45+\frac{\phi}{2}\right)$
$\sigma_{1}=\sigma_{3} \tan ^{2}\left(45+\frac{\phi}{2}\right)+2 C \tan \left(45+\frac{\phi}{2}\right)$
$\because \alpha_{f}=50$

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups \& PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

\mathscr{N}	22	CIVIL-Postal Coaching Solutions

$$
\begin{aligned}
& 50=45+\frac{\phi}{2} \\
& 5 \times 2=\phi \\
& \phi=10^{\circ} \\
& \mathrm{q}_{\mathrm{u}}=2 \mathrm{C}_{\mathrm{u}} \tan \left(45+\frac{\phi}{2}\right) \text { if } \phi>0 \\
& \mathrm{q}_{\mathrm{u}}=2 \mathrm{C}_{\mathrm{u}} \tan \left(45+\frac{\phi}{2}\right) \text { if } \phi=0 \\
& 1.20=2 \mathrm{C}_{\mathrm{u}} \tan \left(45+\frac{10}{2}\right) \\
& \mathrm{C}_{\mathrm{u}}=0.5 \mathrm{~kg} / \mathrm{cm}^{2}
\end{aligned}
$$

4. Ans: $\mathrm{C}_{\mathrm{u}}=\mathbf{0}, \phi_{\mathrm{u}}=15.8^{\circ}, \mathbf{C}^{\prime}=\mathbf{0}, \phi^{\prime}=22^{\circ}$

Sol: $\sigma_{3}=200 \mathrm{kN} / \mathrm{m}^{2}$

$$
\begin{aligned}
\sigma_{\mathrm{d}} & =150 \mathrm{kN} / \mathrm{m}^{2} \\
\mathrm{u}_{\mathrm{f}} & =75 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

NCC in C_{u} test $\mathrm{C}_{\mathrm{u}}=0 \& \mathrm{C}^{\prime}=0$
To find, $\phi_{u}^{1} \& \phi_{u}^{11}=$?

$$
\begin{aligned}
& \sigma_{1}=\sigma_{3}+\sigma_{d}=200+150 \\
&=350 \mathrm{kN} / \mathrm{m}^{2} \\
& 350=200 \tan ^{2}\left(45+\frac{\phi_{\mathrm{u}}}{2}\right)+2(0) \\
& \frac{350}{200}=\tan ^{2}\left(45+\frac{\phi_{\mathrm{u}}}{2}\right) \\
& \phi_{\mathrm{u}}=15.8^{\circ}
\end{aligned}
$$

To find ϕ^{\prime}

$$
\begin{aligned}
\sigma_{1}^{1} & =\sigma_{3}^{1}\left(45+\frac{\phi}{2}\right) \\
\left(\sigma_{1}-\mathrm{u}\right) & =\left(\sigma_{3}-\mathrm{u}\right) \tan ^{2}\left(45+\frac{\phi}{2}\right) \\
275 & =(125) \tan ^{2}\left(45+\frac{\phi}{2}\right) \\
\phi & =22^{\circ}
\end{aligned}
$$

5. Ans: $B=0.70 \& A=-0.228$

Sol: Change $=$ final value - Initial value
In consolidation stage:

$$
\begin{aligned}
& \Delta \mathrm{u}_{3}=10-(-60)=70 \mathrm{kN} / \mathrm{m}^{2} \\
& \Delta \sigma_{3}=100-0=100 \mathrm{kN} / \mathrm{m}^{2} \\
& \Delta \mathrm{u}_{3}=\mathrm{B} \times \Delta \sigma_{3} \Rightarrow \mathrm{~B}=0.7
\end{aligned}
$$

In shearing stage (or) failure stage
$\Delta \mathrm{u}_{\mathrm{d}}=-70-10=-80 \mathrm{kN} / \mathrm{m}^{2}$
$\because \mathrm{u}=$ Pore water pressure
$\Delta \sigma_{d}=500 \mathrm{kN} / \mathrm{m}^{2}$
$\Delta \mathrm{u}_{\mathrm{d}}=\mathrm{AB} \Delta \sigma_{\mathrm{d}}$
$-80=\mathrm{A} \times 0.7 \times 500$

$$
\Rightarrow \mathrm{A}=-0.228
$$

6. Ans: 78.20 kN/m ${ }^{2}$

Sol:

$$
\begin{aligned}
\Delta \sigma_{3} & =1 / 2 \Delta \sigma_{1} \\
\Delta \sigma_{1} & =3 \gamma=48.6 \mathrm{KPa} \\
\Delta \sigma_{3} & =1 / 2 \Delta \sigma_{1}=24.3 \\
\Delta \sigma_{\mathrm{d}} & =\left(\Delta \sigma_{1}-\Delta \sigma_{3}\right) \\
& =48.6-24.3=24.3 \\
\Delta \mathrm{u} & =\mathrm{B}\left(\Delta \sigma_{3}+\text { A } \Delta \sigma_{\mathrm{d}}\right) \\
& =31.29 \mathrm{KPa}
\end{aligned}
$$

To find $\sigma^{\prime}=\sigma-u$

$$
\begin{aligned}
& =8 \times 16.2-31.29=98.31 \mathrm{KPa} \\
\mathrm{~S} & =\mathrm{C}^{\prime}+\sigma^{\prime} \tan \\
& =50+98.31 \times \tan \left(16^{\circ}\right) \\
& =78.18 \mathrm{KPa}
\end{aligned}
$$

	Regular Live Doubt clearing Sessions \| Free Online Test Series	ASK an expert			
online	Affordable Fee \| Available 1M	3M	6M	12M	18M and 24 Months Subscription Packages

7. Ans: (a), (b), (c) \& (d)

Sol: An empirical formula has been suggested by Brinch Hansen and Lundgren (1960), which takes into account the influence of the major factors influencing ϕ^{\prime} in sands and gravels. This formula is expressed as:
$\phi^{\prime}=36^{\circ}+\phi_{1}^{o}+\phi_{2}^{o}+\phi_{3}^{o}+\phi_{4}^{o}$
Where
$\phi_{1}^{0}=$ Grain shape correction factor, with the following values;
For angular grains $=+1^{\circ}$
For sub-angular grains $=0^{\circ}$
For grounded grains $=-3^{\circ}$
For well rounded grains $=-6^{\circ}$
$\phi_{2}^{\circ}=$ Grains size correction factor with the following values:

For sand $=0^{\circ}$
For fine gravel $=+1^{\circ}$
For medium and coarse gravel $=+2^{\circ}$
$\phi_{3}^{0}=$ Correction factor for Gradation, with the following values:
For poorly graded soil $=-3^{\circ}$
For medium uniformity $=0^{\circ}$
For well graded soil $=+3^{\circ}$
$\phi_{4}^{0}=$ Correction factor for relative density, with the following values:
For loose packing $=-6^{\circ}$
For medium density $=0^{\circ}$
For densest packing $=+6^{\circ}$

Note:

1. The influence of relative density (i.e., density index) is the most important as can be seen above.
2. The value of 36° is for average conditions.
3. Typical values of ϕ^{\prime} for different types of sands and gravels may range between 20° to 48°.
4. Ans: (a), (b), (c) \& (d)

Sol: Liquefaction property in sands: Loose saturated sands, as explained above, may undergo large scale reduction in their shear strength. When subjected to a sudden shock or other dynamic loads, since such a soil mass behaves like an un drained system, where there will occur a tendency for reduction in volume of the soil, which cannot actually occur in the available short period of time. This induces sudden increases pore pressures, reducing the effective stress. If this decrease is such that the effective stress almost reduces to zero then the soil in that localized zone will be transformed into a fluid like mass with hardly any shear strength.
The soil is then said to have liquefied, and this property is known liquefaction. Once a complete loss of strength has occurred in a limited mass of soil, the stresses which were carried by the affected soil before its liquefaction, gets transferred to the adjacent soil pats, against throwing that part of soil mass into a state of liquefaction, and the process may continue, causing large scale failure of earthen sloped, etc.
09. Ans: (b), (c) \& (d)

Sol: Shear strength $\tau=\mathrm{C}^{\prime}+\bar{\sigma} \tan \phi^{\prime}$
Where $\bar{\sigma}$ is effective stress and $\mathrm{C}^{\prime} \& \phi^{\prime}$ are effective stress shear strength parameter. Shear strength also depends upon drainage condition wheather it is drained or untrained, by knowing the drainage condition, effective and total shear strength parameter are taken into account

ACE	24	CIVIL-Postal Coaching Solutions

14. Earth Pressure

01. Ans: 316.7 kN

Sol: Given:

Fig. (1)
$\mathrm{k}_{\mathrm{a}}=\frac{1}{3}, \quad \mathrm{k}_{\mathrm{a}_{1}}=\frac{1-\sin 20}{1+\sin 20}=0.49$
\therefore at top $\sigma_{v}=0, \mathrm{P}_{\mathrm{a}}=0$
\therefore at 3 m below, $\quad \sigma_{\mathrm{v}}=18 \times 3=54$ $\mathrm{kN} / \mathrm{m}^{2}$

$$
\mathrm{P}_{\mathrm{a}}=54 \times \frac{1}{3}=18 \mathrm{kN} / \mathrm{m}^{2}
$$

\therefore at 3 m just below $\mathrm{P}_{\mathrm{a}_{1}}=54 \times 0.49=26.46$
At $7.5 \mathrm{~m}, \quad \sigma_{v}=18 \times 3+4.5 \times 14=117$ $\mathrm{kN} / \mathrm{m}^{2}$

$$
\begin{aligned}
\mathrm{P}_{\mathrm{a}_{2}} & =0.49(117)+10 \times 4.5 \\
& =102.33 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

Total active thrust

$$
\begin{aligned}
& =\frac{1}{2} \times 18 \times 3+\left(\frac{26.46+102.33}{2}\right) 4.5 \\
& =316.77 \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

02. Ans: ($\mathbf{1 6 7} \mathbf{k N} / \mathrm{m}$)

Sol: Given:

To find: Total active thrust on the back
a) At top:

As there is water $\mathrm{K}_{\mathrm{a}_{1}}=1, \mathrm{~K}_{\mathrm{a}_{2}}=0.33$
So $\sigma_{v}^{\prime}=0$
$\sigma_{\mathrm{h}}=\mathrm{K}_{\mathrm{a}}(0)$
$\sigma_{h}=0$
$\mathrm{P}_{\mathrm{a}}=\mathrm{K}_{\mathrm{a}_{1},} \sigma_{\mathrm{v}}-2 \mathrm{C}_{1} \sqrt{\mathrm{~K}_{\mathrm{a}_{1}}}=-10 \mathrm{kPa}$
b) At 3 m depth:
a) Just above:

$$
\begin{aligned}
\sigma_{v}^{\prime} & =3 \gamma^{\prime}=3(20-10)=30 \mathrm{kPa} \\
\mathrm{P}_{\mathrm{a}} & =\mathrm{K}_{\mathrm{a}_{1}} \sigma_{\mathrm{v}}^{\prime}-2 \mathrm{C}_{1} \sqrt{\mathrm{~K}_{\mathrm{a}_{1}}}+\gamma_{\mathrm{w}} \mathrm{~h} \\
& =1(30)-2(5)(1)+10 \times 3 \\
& =50 \mathrm{kPa}
\end{aligned}
$$

b) Just below:

$$
\begin{aligned}
\mathrm{P}_{\mathrm{a}} & =\mathrm{K}_{\mathrm{a}_{2}} \sigma_{\mathrm{v}}^{\prime}-2 \mathrm{C}_{2} \sqrt{\mathrm{~K}_{\mathrm{a}_{2}}}+\gamma_{\mathrm{w}} \mathrm{~h} \\
& =0.33(30)-2(0) \sqrt{0.33}+10 \times 3 \\
& =39.9 \cong 40 \mathrm{kPa}
\end{aligned}
$$

c) At bottom:

$$
\begin{aligned}
& \sigma_{\mathrm{v}}^{\prime}=3 \gamma^{\prime}+2 \gamma^{\prime} \\
& \sigma_{\mathrm{v}}^{\prime}=3(20-10)+2(18-10)=46 \mathrm{kpa} \\
& \mathrm{P}_{\mathrm{a}}=\mathrm{K}_{\mathrm{a}_{2}} \sigma_{\mathrm{v}}^{\prime}-2 \mathrm{C}_{2} \sqrt{\mathrm{~K}_{\mathrm{a}_{2}}}+\gamma_{\mathrm{w}} \mathrm{~h}
\end{aligned}
$$

(1) ACE	25	Geotechnical Engineering

$$
\begin{aligned}
& =0.33(46)-2(0) \sqrt{\mathrm{K}_{\mathrm{a}_{2}}}+10 \times 5 \\
& =65.18 \mathrm{kPa}
\end{aligned}
$$

To compute force:

$$
\mathrm{F}=\mathrm{P}_{\mathrm{a}} \times \mathrm{A}
$$

$$
\left.\mathrm{Z}_{\mathrm{C}}=\frac{2 \mathrm{C}}{\gamma} \sqrt{\mathrm{~K}_{\mathrm{a}}}\right\} \text { where there is no water }
$$

$$
F=P_{a}=\text { area of }+ \text { ve portion of diagram }
$$

$$
=\left(\frac{1}{2} \times 50 \times 2.5\right)+\frac{1}{2}(40+65.4) \times 2
$$

$$
\mathrm{F}=167 \mathrm{kN} / \mathrm{m}
$$

03. Ans. 7.23 m

Sol:

Active Pressure distribution

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}_{1}}=\frac{1-\sin 35^{\circ}}{1+\sin 35^{\circ}}=0.27 \\
& \mathrm{~K}_{\mathrm{a}_{2}}=\frac{1-\sin 40^{\circ}}{1+\sin 40^{\circ}}=0.217 \\
& \mathrm{~K}_{\mathrm{a}_{3}}=\frac{1-\sin 30^{\circ}}{1+\sin 30^{\circ}}=\frac{1}{3}
\end{aligned}
$$

Pressure at top:

$\sigma_{\mathrm{v}}=\mathrm{q}$
$\mathrm{P}_{\mathrm{a}}=\sigma_{\mathrm{v}} \times \mathrm{K}_{\mathrm{a}_{1}}=10.8 \mathrm{kPa}$
Pressure at a depth 2 m
Case (a): Just above the $2 m$ depth

$$
\begin{aligned}
\sigma_{\mathrm{v}}= & \mathrm{q}+\gamma_{\mathrm{a}} \times 2 \\
& =40+16 \times 2=72 \mathrm{kPa}
\end{aligned}
$$

$\mathrm{P}_{\mathrm{a}}=\sigma_{\mathrm{v}} \mathrm{K}_{\mathrm{a}_{2}}=72 \times 0.27$

$$
=19.44 \mathrm{kPa}
$$

Case (b): Just below 2 m depth

$$
\begin{aligned}
\sigma_{\mathrm{v}} & =72 \mathrm{kPa} \\
\mathrm{P}_{\mathrm{a}} & =\sigma_{\mathrm{v}} \mathrm{ka}_{2}=72 \times 0.217 \\
& =15.62 \mathrm{kPa}
\end{aligned}
$$

Pressure at a depth 4 m depth
Case (a) : Just above the 4 m depth

$$
\begin{aligned}
& \sigma_{\mathrm{v}}=\mathrm{q}+\gamma_{\mathrm{d}_{1}} \times 2+\gamma_{\mathrm{d}_{2}} \times 2 \\
& \quad=40+16 \times 2+19.5 \times 2=111 \mathrm{kPa} \\
& \mathrm{P}_{\mathrm{a}}=\sigma_{\mathrm{v}} \mathrm{~K}_{\mathrm{a}_{2}}=111 \times 0.217=24.1 \mathrm{kPa}
\end{aligned}
$$

Case(b) : Just below the 4 m depth
$\sigma_{\mathrm{v}}=111 \mathrm{kPa}$
$\mathrm{P}_{\mathrm{a}}=\sigma_{\mathrm{v}} \mathrm{K}_{\mathrm{a}_{3}}=111 \times \frac{1}{3}=36.96 \mathrm{kPa}$

Pressure at base:

$$
\begin{aligned}
\sigma_{\mathrm{v}} & =\mathrm{q}+\gamma_{\mathrm{d}_{1}} \times 2+\gamma_{\mathrm{d}_{2}} \times 2+\gamma^{\prime} \times 4 \\
& =40+16 \times 2+19.5 \times 2+(20.5-9.81) \times 4 \\
& =153.76 \mathrm{kPa}
\end{aligned}
$$

$$
\mathrm{P}_{\mathrm{a}}=\sigma_{\mathrm{v}} \mathrm{~K}_{\mathrm{a}_{3}}+\gamma_{\mathrm{w}} \times 4=90.4 \mathrm{kPa}
$$

In the third layer : At $\mathrm{P}_{\mathrm{a}}=80 \mathrm{kPa}$

$$
\sigma_{v}^{\prime}=40+2[16+19.5]+[20.5-9.81] \mathrm{x}
$$

$=111+10.69 \mathrm{x}(\mathrm{x}=$ depth in the third layer at which $\mathrm{p}_{\mathrm{a}}=80 \mathrm{kPa}$)
$80=\sigma_{\mathrm{v}}^{\prime} \times \mathrm{K}_{\mathrm{a}_{3}}+\gamma_{\mathrm{w}} \times \mathrm{x}$
$80=\frac{1}{3}[111+10.69 x]+9.81 x$
$\Rightarrow \mathrm{x}=3.23 \mathrm{~m}$
From top $=2+2+x=7.23 m$
04. Ans: (c) \& (d)

Sol: Assumption
i. Soil is semi-infinite
ii. Wall back is smooth
iii. Soil is homogeneous, dry and cohesionless
iv. Plastic equilibrium developed.

14. Stability of Slopes

1. Ans: (d)

Sol: $\phi^{\prime}=35^{\circ}$,
$\gamma_{\mathrm{sat}}=19 \mathrm{kN} / \mathrm{m}^{3}$
$\mathrm{i}=28^{\circ}$,
$\gamma_{\mathrm{w}}=9.8 \mathrm{kN} / \mathrm{m}^{3}$

Against translational failure,

$$
\begin{aligned}
& \text { FOS }=\frac{\mathrm{C}+\mathrm{rztan} \phi \cos \mathrm{i}}{\mathrm{rz} \operatorname{cosisini}} \\
& \quad=\frac{0+\left(\mathrm{r} 1.5+(4-1.5) \mathrm{r}^{\prime}\right) \tan \phi \cos ^{2} \mathrm{i}}{\left(\mathrm{r} 1.5+(4.15) \mathrm{r}^{\prime}\right) \operatorname{cosi} \sin \mathrm{i}} \\
& =\frac{(19 \times 1.5+2.5 \times(19-9.8)) \tan 35 \cos ^{2} 28}{(19 \times 1.5+2.5 \times 19) \cos 28 \sin 28} \\
& =0.89
\end{aligned}
$$

2. Ans: 4.77

Sol: Infinite slope, seepage parallel to slope

$$
\begin{aligned}
& \mathrm{F}=\frac{\mathrm{C}^{\prime}+\gamma \mathrm{z} \cos ^{2} \mathrm{itan} \phi^{\prime}}{\gamma_{\text {sat }} \mathrm{Z} \operatorname{cosi\operatorname {sin}\mathrm {i}}} \\
& \mathrm{Z}=\mathrm{H}_{\mathrm{c}} \\
& 1=\frac{25+8 \times \mathrm{H}_{\mathrm{c}} \cos ^{2}\left(35^{\circ}\right) \tan \left(28^{\circ}\right)}{18 \times \mathrm{H}_{\mathrm{c}} \cos \left(35^{\circ}\right) \sin \left(35^{\circ}\right)} \\
& \mathrm{H}_{\mathrm{c}}=4.77
\end{aligned}
$$

ACE	27	Geotechnical Engineering

3. Ans: 1.184, 2.66

Sol: $\mathrm{C}=50 \mathrm{kN} / \mathrm{m}^{2}$

$$
\phi=10^{\circ} \quad \sigma^{\prime}=255 \mathrm{kN} / \mathrm{m}^{2}, \mathrm{t}=840 \mathrm{kN}
$$

$\mathrm{N}=\sigma^{\prime} \mathrm{I} .1$
$=255 \times 1.04 \times 1=265.2$
$\hat{\mathrm{L}}=\frac{(2 \pi \mathrm{r}) \times 60}{360}=10.47$
$\mathrm{F}=\frac{\mathrm{C} \cdot \hat{\mathrm{L}}+\Sigma \mathrm{N} \tan \phi}{\Sigma \mathrm{T}}=\frac{\mathrm{C} \cdot \hat{\mathrm{L}}+\mathrm{N} \tan \phi}{\mathrm{T}}$
$\mathrm{F}=\frac{50 \times 10.47+255(10.47) \tan 10}{840}$
$=1.1836$
w.r. to height

$$
\mathrm{H}_{\mathrm{C}}=\frac{4 \mathrm{C}}{\gamma \sqrt{\mathrm{k}_{\mathrm{a}}}}
$$

$=\frac{4 \mathrm{C}}{\gamma} \tan \left[45+\frac{\phi}{2}\right]=\frac{4 \times 50}{18} \tan 50=13.24 \mathrm{~m}$
$\mathrm{H}=\mathrm{R}-\mathrm{x}$
$=10-\mathrm{R} \cos 60^{\circ}=5$
$\mathrm{F}=\frac{\mathrm{H}_{\mathrm{C}}}{\mathrm{H}}=\frac{13.24}{5}=2.67$
04. Ans: $F_{c}=1.16 \& F_{\phi}=1.2$

Sol: Given:
Cutting is to be made in soil
Slope of soil $=25^{\circ}$
Depth of soil $=25 \mathrm{~m}$
Cohesion soil $\mathrm{C}=0.35 \mathrm{~kg} / \mathrm{cm}^{2}$
Angle $\phi=15^{\circ}$
Bulk density $\gamma=2 \mathrm{gm} / \mathrm{cc}$
a) FOS w.r.t cohesion, if FOS desired with respect to friction $=1.5$
As we know

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{S}}=\frac{\tan \phi}{\tan \phi_{\mathrm{m}}} \Rightarrow 1.5=\frac{\tan 15^{\circ}}{\tan \phi_{\mathrm{m}}} \\
& \tan \phi_{\mathrm{m}}=\frac{\tan 15^{\circ}}{1.5} \\
& \phi_{\mathrm{m}}=10^{\circ}, \quad \mathrm{S}_{\mathrm{n}}=0.06 \\
& \mathrm{~S}_{\mathrm{n}}=\frac{\mathrm{C}}{\mathrm{~F}_{\mathrm{C}} \gamma \mathrm{H}}
\end{aligned}
$$

$$
0.06=\frac{3500}{\mathrm{~F}_{\mathrm{C}} \times 2000 \times 25} \mathrm{~F}_{\mathrm{C}}=1.16
$$

b) If FOS with respect to cohesion is 1.5 , then what is FOS with respect to friction $=$? ($\mathrm{F}_{\phi}=$?)

$$
\begin{aligned}
\mathrm{S}_{\mathrm{n}} & =\frac{\mathrm{C}}{\mathrm{~F}_{\mathrm{C}} \gamma \mathrm{H}} \\
\mathrm{~S}_{\mathrm{n}} & =\frac{3500}{1.5 \times 2000 \times 25} \\
\mathrm{~S}_{\mathrm{n}} & =0.049 \cong 0.05 \\
\because \phi_{\mathrm{m}} & =12.5^{\circ} \\
\mathrm{F}_{\phi} & =\frac{\tan \phi}{\tan \phi_{\mathrm{m}}}=\frac{\tan 15^{\circ}}{\tan 12^{\circ} 5^{\prime}}=1.2
\end{aligned}
$$

(\%) ACE	28	CIVIL-Postal Coaching Solutions

05. Ans: $\mathbf{3 . 5 6}$ \& 1.18

Sol: Given:

A new canal is excavated with
Depth of canal $\mathrm{h}=5 \mathrm{~m}$
$\mathrm{C}=1.4 \mathrm{t} / \mathrm{m}^{2} \quad ; \quad \phi=15^{\circ}$
$\gamma_{\text {sat }}=1.945 \mathrm{t} / \mathrm{m}^{3}$
Slope of bank =1:1
To find:
a) FOS w.r.t cohesion when canal runs full $=$?
b) If it is suddenly emptied, $\mathrm{FOS}=$?
a) $\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{C}}{\mathrm{F}_{\mathrm{c}} \gamma^{1} \mathrm{H}}$
$0.083=\frac{1.4}{\mathrm{~F}_{\mathrm{C}}(1.945-1) 5} \Rightarrow \mathrm{~F}_{\mathrm{C}}=3.56$
For $\phi=15^{0} ; \mathrm{S}_{\mathrm{n}}=0.083$
For $\phi=7.5^{0} ; \mathrm{S}_{\mathrm{n}}=0.122$
b) $\phi_{\mathrm{m}}=\frac{\gamma}{\gamma_{\text {sat }}} \times 15=7.5$

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{n}}=\frac{\mathrm{C}}{\mathrm{~F}_{\mathrm{C}} \gamma_{\text {sat }} \mathrm{H}} \\
& \mathrm{~F}_{\mathrm{C}}=\frac{1.4}{0.122 \times 1.945 \times 5}=1.179
\end{aligned}
$$

6. Ans: $\mathrm{F}_{\mathrm{c}}=2.4 \& \mathrm{~F}_{\phi}=2.89$

Sol: Given:
Embankment is to be made of a soil
Shear parameters of soil:
$\mathrm{C}^{\prime}=30 \mathrm{KN} / \mathrm{m}^{2} \quad ; \quad \phi^{\prime}=15^{\circ}$
To find \mathbf{F}_{ϕ} if $\mathbf{F}_{\mathbf{C}}=\mathbf{1}$

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{m}}=\frac{\mathrm{C}^{\prime}}{\mathrm{F}_{\mathrm{C}}}+\frac{\sigma^{\prime} \tan \phi}{\mathrm{F}_{\phi}} ; \quad\left(\phi^{\prime}=15^{\prime}\right) \\
& 39.25=\frac{30}{1}+\frac{100 \times \tan 15}{\mathrm{~F}_{\phi}}
\end{aligned}
$$

$\mathrm{F}_{\phi}=2.89$

To find F_{C} if $\mathbf{F}_{\phi}=1$
$\mathrm{S}_{\mathrm{m}}=\frac{\mathrm{C}^{\prime}}{\mathrm{F}_{\mathrm{C}}}+\frac{\sigma^{\prime} \tan \phi^{\prime}}{\mathrm{F}_{\phi}}$
$39.25=\frac{30}{\mathrm{~F}_{\mathrm{C}}}+\frac{26.79}{1} \Rightarrow \mathrm{~F}_{\mathrm{C}}=2.40$
07. Ans: 4.63

Sol:

Area of wedge:

$\mathrm{a}=\frac{1}{2} \times \mathrm{b} \times \mathrm{H}=\frac{1}{2} \times 3 \times 5=7.5 \mathrm{~m}^{2}$
$\mathrm{W}=\mathrm{a} \times 1 \times \gamma$
$\mathrm{N}=\mathrm{w} \cos 30^{\circ}$
$\mathrm{T}=\mathrm{w} \sin 30^{\circ}$
F.O.S $=\frac{\mathrm{C} . \mathrm{L}+\mathrm{N} \tan \phi}{\mathrm{T}}$

$\sin 30^{\circ}=\frac{5}{\mathrm{~L}} ; \mathrm{L}=\frac{5}{\sin 30^{\circ}}=10$
$\therefore \mathrm{F}=4.63$
08. Ans: (a) \& (c)

Sol: Taylor stability method is suitable for C- ϕ soil and $\phi=0$ i.e., pure clay soil, and it is valid in finite slope only. The max value is 0.261 and it occurs in soft clay having angle of internal friction is zero.

| | Regular Live Doubt clearing Sessions \| Free Online Test Series | ASK an expert | |
| :---: | :---: | :---: |
| | Affordable Fee \| Available 1M | $3 \mathrm{M}\|6 \mathrm{M}\| 12$ | \|18M and 24 Months Subscription Packages |

16. Bearing Capacity of Soil

1. Ans: 2.54, 2.03

Sol:
(a)

Net ultimate bearing capacity

$$
\begin{aligned}
& \mathrm{q}_{\mathrm{nu}}=\mathrm{CN}_{\mathrm{c}}+\left(\mathrm{N}_{\mathrm{q}}-1\right) \gamma_{\mathrm{D}}+0.4 \gamma \mathrm{BN}_{\gamma} \\
& \mathrm{C}=0, \mathrm{~N}_{\mathrm{q}}=22, \mathrm{~N}_{\gamma}=20 \\
& \mathrm{q}_{\mathrm{nu}}=21 \times 17 \times 1.2+0.4 \times 17 \times 3 \times 20 \\
&=836.4 \mathrm{KPa}
\end{aligned}
$$

Safe bearing capacity $q_{s}=\frac{q_{n u}}{F}+\gamma_{D}$

$$
\begin{aligned}
350 & =\frac{836.4}{F}+17 \times 1.2 \\
F & =2.54
\end{aligned}
$$

(b)

$$
\begin{aligned}
\mathrm{q}_{\mathrm{nu}} & =\left(\mathrm{N}_{\mathrm{q}}-1\right) \gamma \mathrm{D}+0.4 \gamma^{\prime} \mathrm{BN}_{\gamma} \\
& =21 \times 17 \times 1.2+0.4(20-9.81) 3 \times 20 \\
& =672.96
\end{aligned}
$$

Safe bearing capacity

$$
\begin{aligned}
& \mathrm{q}_{\mathrm{s}}=\frac{\mathrm{q}_{\mathrm{nu}}}{\mathrm{~F}}+\gamma \mathrm{D} \\
& 350=\frac{672.96}{\mathrm{~F}}+17 \times 1.2
\end{aligned}
$$

$$
\mathrm{F}=2.04
$$

2. Ans: (b)

Sol: Given:
Depth $=1 \mathrm{~m}$
Square plate $=30 \mathrm{~cm}^{2}$
Load $=7.2$ tones
S_{p} settlement $=25 \mathrm{~mm}$

To find:

If settlement is limited for 10 mm
Allowable bearing pressure=?

$$
\begin{aligned}
\mathrm{q}_{1} & =\frac{7.2}{(0.3)^{2}}=80 \mathrm{t} / \mathrm{m}^{2} \\
\mathrm{~S}_{2} & =10 \mathrm{~mm} \\
\mathrm{q} & =?
\end{aligned}
$$

($\mathrm{S} \propto \mathrm{q}$ in case of granular soils)

$$
\begin{aligned}
& \frac{\mathrm{S}_{2}}{\mathrm{~S}_{1}}=\frac{\mathrm{q}_{2}}{\mathrm{q}_{1}} \\
& \frac{10}{25}=\frac{\mathrm{q}_{2}}{80} \\
& \mathrm{q}_{2}=32 \mathrm{t} / \mathrm{m}^{2}
\end{aligned}
$$

3. Ans: 439.55

Sol: $B=2 \mathrm{~m}$
$\mathrm{L}=2 \mathrm{~m}$
$\mathrm{e}=1-0.85$

$$
=0.15 \mathrm{~m}
$$

$\mathrm{B}^{\prime}=\mathrm{B}-2 \mathrm{e}$

$$
=2-2 \times 0.15=1.70 \mathrm{~m}
$$

There is no effect of water table as it is located well below the base of footing.
$\mathrm{Q}_{\mathrm{nu}}=\left[\gamma \mathrm{DN}_{\mathrm{q}} \mathrm{S}_{\mathrm{q}} \mathrm{d}_{\mathrm{q}} \mathrm{i}_{\mathrm{q}}+0.5 \gamma \mathrm{~B}^{\prime} \mathrm{N}_{\gamma} \mathrm{S}_{\gamma} \mathrm{i}_{\gamma} \mathrm{d}_{\gamma}\right]$

Given:

F $=3$

$$
\gamma=18 \mathrm{kN} / \mathrm{m}^{3}
$$

$\mathrm{D}=1 \mathrm{~m}$

$$
\mathrm{N}_{\mathrm{q}}=33.3
$$

$\mathrm{N}_{\gamma}=37.16 \quad \mathrm{~B}^{\prime}=1.70 \mathrm{~m}$
Shape factors, S_{q} or $\mathrm{F}_{\mathrm{qs}}=1.314$

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups \& PSC Exams
Enjoy a smooth online learning experience in various languages at your convenience
S_{γ} or $\mathrm{F}_{\gamma \mathrm{s}}=1.314$
Depth factors d_{q} or $\mathrm{F}_{\mathrm{qd}}=1.113$

$$
\mathrm{d}_{\gamma} \text { or } \mathrm{F}_{\gamma \mathrm{d}}=1.113
$$

Inclination factors
i_{q} or $\mathrm{F}_{\mathrm{qi}}=0.444$
i_{γ} or $\mathrm{F}_{\gamma \mathrm{i}}=0.02$
Substituting in the equation,
$\mathrm{q}_{\mathrm{ns}}=\left[\begin{array}{l}(18 \times 1 \times 33.3 \times 1.314 \times 1.113 \\ \times 0.444)+(0.5 \times 18 \times 1.7 \times 37.16 \\ \times 1.314 \times 113 \times 0.02\end{array}\right]$

$$
=405.85 \mathrm{kN} / \mathrm{m}^{2}
$$

$q_{n u}=q_{u}-\gamma D=405.85-18 \times 1$

$$
=387.85 \mathrm{kN} / \mathrm{m}^{2}
$$

$\mathrm{q}_{\mathrm{ns}}=\frac{\mathrm{q}_{\mathrm{nu}}}{\mathrm{F}}=\frac{387.85}{3}=129.28 \mathrm{kN} / \mathrm{m}^{2}$
Net safe load $=\mathrm{A}^{\prime} \times \mathrm{q}_{\mathrm{ns}}$

$$
\begin{aligned}
& =\mathrm{B}^{\prime} \mathrm{L} \times \mathrm{q}_{\mathrm{ns}} \\
& =1.7 \times 2 \times 129.28=439.55 \mathrm{kN}
\end{aligned}
$$

04. Ans: 5.01 m

Sol: For design safety, $\mathrm{q}_{\mathrm{n}} \leq \mathrm{q}_{\mathrm{na}}$ (smaller of q_{ns} and q_{np})
If q_{np} is not given, then $\mathrm{q}_{\mathrm{na}}=\mathrm{q}_{\mathrm{ns}}$

$$
\mathrm{q}_{\mathrm{n}} \leq \mathrm{q}_{\mathrm{ns}}
$$

or $\mathrm{q}_{\mathrm{g}} \leq \mathrm{q}_{\mathrm{s}}$
Gross load $=$ co. load $+5 \%$ col.load

$$
\begin{aligned}
&=1962+\frac{5}{100} 1962 \\
&=2060.1 \mathrm{kN} \\
& \mathrm{q}_{\mathrm{g}}=\frac{\mathrm{Q}_{\mathrm{s}}}{\mathrm{~A}}=\frac{2060.1}{1.5^{2}} \mathrm{kN} / \mathrm{m}^{2} \\
&=915.6 \mathrm{kPa}
\end{aligned}
$$

$q_{s}=\frac{q_{n}-\gamma D_{f}}{F}+\gamma D_{f}$
$\mathrm{q}_{\mathrm{s}}=\frac{1.3 \mathrm{~N}_{\mathrm{c}}+\gamma \mathrm{D}_{\mathrm{f}}\left(\mathrm{N}_{\mathrm{q}}-1\right)+0.4 \gamma \mathrm{BN}_{\mathrm{r}}}{\mathrm{F}}+\gamma \mathrm{D}_{\mathrm{f}}$

$$
\begin{aligned}
& 915.6=\mathrm{q}_{\mathrm{s}} \\
& =\frac{0+20.6 \times \mathrm{D}_{\mathrm{f}} \times(22-1)+0.4 \times 20.60 \times 2.5 \times 20}{3}+20.6 \times 17 \\
& \quad \text { equate } \mathrm{q}_{\mathrm{g}}=\mathrm{q}_{\mathrm{s}} \\
& \mathrm{D}_{\mathrm{f}}=5.01 \mathrm{~m}
\end{aligned}
$$

05. Ans: 6.55 m

Sol: Given:

Size of foundation $=14 \mathrm{~m} \times 21 \mathrm{~m}$
Unconfined compressive strength $=15 \mathrm{kN} / \mathrm{m}^{2}$

$$
\mathrm{C}_{\mathrm{u}}=\frac{15}{2}=7.5 \mathrm{kN} / \mathrm{m}^{2}
$$

Gross pressure intensity $\mathrm{q}_{\mathrm{u}}=140 \mathrm{kN} / \mathrm{m}^{2}$

$$
\text { FOS }=3 ; \gamma_{\text {clay }}=19 \mathrm{kN} / \mathrm{m}^{3}
$$

For safety $\mathrm{q}_{\mathrm{n}} \leq \mathrm{q}_{\mathrm{na}}$
Where, $\mathrm{q}_{\mathrm{na}} \rightarrow$ net allowable bearing capacity of soil which is smaller of $\mathrm{q}_{\mathrm{ns}} \& \mathrm{q}_{\mathrm{np}}$ According to skemptons;

$$
\mathrm{q}_{\mathrm{nu}}=\mathrm{CN}_{\mathrm{c}}
$$

For Rectangular footing;

$$
\begin{aligned}
\mathrm{N}_{\mathrm{c}} & =5\left[1+0.2 \frac{\mathrm{D}}{\mathrm{~B}}\right]\left[1+0.2 \frac{\mathrm{~B}}{\mathrm{~L}}\right] \\
\mathrm{q}_{\mathrm{ns}} & =\frac{\mathrm{q}_{\mathrm{nu}}}{\mathrm{~F} \cdot \mathrm{O} \cdot \mathrm{~S}} \\
\mathrm{~N}_{\mathrm{c}} & =5\left[1+0.2 \frac{\mathrm{D}}{14}\right]\left[1+0.2 \times \frac{14}{21}\right] \\
\mathrm{N}_{\mathrm{c}} & =\frac{17}{3}\left(1+0.2 \frac{\mathrm{D}}{14}\right) \\
\mathrm{q}_{\mathrm{nu}} & =7.5 \times \frac{17}{3}\left(1+0.2 \frac{\mathrm{D}}{14}\right) \\
& =42.5\left(1+0.2 \frac{\mathrm{D}}{14}\right) \\
\mathrm{q}_{\mathrm{ns}} & =\frac{\mathrm{q}_{\mathrm{nu}}}{\mathrm{FOS}}=\frac{42.5}{3}\left(1+0.2 \frac{\mathrm{D}}{14}\right) \\
& =14.17\left(1+0.2 \frac{\mathrm{D}}{14}\right)
\end{aligned}
$$

Since there is a provision for basement floor, the footing is not back filled. Hence,

$$
\begin{aligned}
\mathrm{q}_{\mathrm{n}}=\mathrm{q}_{\mathrm{u}} & -\gamma \mathrm{D} \\
= & 140-19 \times \mathrm{D}
\end{aligned}
$$

$140-19 \times \mathrm{D}=14.17\left(1+0.2 \frac{\mathrm{D}}{14}\right)$
$140-19 \times \mathrm{D}=14.17+0.202 \mathrm{D}$
$125.83=19.202 \mathrm{D}$
$\mathrm{D}=6.55 \mathrm{~m}$
06. Ans: (a), (c) \& (d)

Sol: General Shear Failure:

1. Brittle type stress strain behavior (dense sand is characterized by
(a) well defined failure pattern.
(b) a sudden catastrophic failure accompanied by tilting of foundation and
(c) Bulging of ground surface adjacent to the foundation.

2. Punching shear failure: Occurs in soil possessing the stress - strain characteristics of a very plastic soil.
i. Poorly defined shear plane
ii. Soil zone beyond the loaded area being little affected.
iii. Significant penetration of a wedgeshaped soil zone beneath foundation accompanied by vertical shear beneath the edge of foundation.

3. Local shear failure: It has some characteristics of both GSF and PSF. Main feature of local shear failure are.
i. Well defined wedge and slip surface only beneath the foundation.
ii. Slip surface not visible beyond edge of foundation.
iii. Slight bulging of ground surface adjacent to foundation.

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups \& PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

ACE	32	CIVIL-Postal Coaching Solutions

17. Pile Foundation

1. \quad Ans: $Q_{u}=134.3 \mathrm{kN}$

Sol: Given:
Diameter of bored concrete pile $=30 \mathrm{~cm}$
Length passes through stiff fissures $=6.50 \mathrm{~m}$
Depth of shrinkage \& swelling $=1.50 \mathrm{~m}$
Average undrained stress of clay $=50 \mathrm{kPa}$ below pile $=100 \mathrm{kPa}$

$$
\alpha=0.3
$$

To find:

Ultimate load capacity $=$?

$$
\begin{aligned}
\mathrm{Q}_{\mathrm{u}} & =\mathrm{A}_{\mathrm{b}} \mathrm{C} \mathrm{~N}_{\mathrm{c}}+\mathrm{A}_{\mathrm{s}} \alpha \mathrm{C} \\
& =0.070 \times 100 \times 9+4.71 \times 0.3 \times 50 \\
& =134.3 \mathrm{kN}
\end{aligned}
$$

$$
\because \mathrm{A}_{\mathrm{S}}=\pi \mathrm{d} l
$$

$$
=3.14 \times 5 \times 0.3=4.71 \mathrm{~m}^{2}
$$

2. Ans: $\mathbf{6 6 9} \mathbf{k N}$

Sol:
Non-homogeneous

Given:

$\mathrm{L}=20 \mathrm{~m}$
$\phi=500 \mathrm{~mm}=0.05 \mathrm{~m}$
$\alpha=0.4$
$\mathrm{F}=2.5$
$\mathrm{N}_{\mathrm{c}}=9 ; \phi_{\mathrm{u}}=0$

To find:

$\mathrm{Q}_{\text {safe }}=$?
$\mathrm{Q}_{\text {safe }}=\frac{1}{\mathrm{~F}}\left[\mathrm{~A}_{\mathrm{b}} \mathrm{CN}_{\mathrm{C}}+\mathrm{A}_{\mathrm{s}} \alpha \mathrm{C}\right]$

At base:

$$
\begin{aligned}
& \mathrm{Q}_{\text {safe }}=\frac{1}{2.5}\left(\begin{array}{c}
\frac{\pi}{4} \times 0.5^{2} \times 200 \times 9+(\pi \times 0.5) \times 5 \times 0.4 \times 50 \\
+\pi \times 0.5 \times 5 \times 0.4 \times 70 \\
+\pi \times 0.5 \times 5 \times 0.4 \times 100 \\
+\pi \times 0.5 \times 5 \times 0.4 \times 20 \mathrm{~g}
\end{array}\right) \\
& =(353.25+1318) \\
& \mathrm{q}_{\mathrm{u}}=1672.26 \\
& \mathrm{q}_{\mathrm{s}}=\frac{\mathrm{q}_{\mathrm{u}}}{\mathrm{~F}}=\frac{1672.05}{2.5}=669 \mathrm{kN}
\end{aligned}
$$

3. Ans: 813.41 kN

Sol:

Critical depth $=15 \times$ diameter

$$
=15 \times 0.3=4.5 \mathrm{~m}
$$

Effective vertical pressure $\sigma_{v}^{\prime}=4.5 \times 18$

$$
=81 \mathrm{kN} / \mathrm{m}^{2}
$$

$\therefore \mathrm{Q}_{\mathrm{u}}=\mathrm{A}_{\mathrm{b}} \mathrm{f}_{\mathrm{b}}+\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{s}}$

$$
=\frac{\pi}{4} \times \mathrm{d}^{2} \times \sigma_{\mathrm{v}}^{\prime} \times \mathrm{N}_{\mathrm{q}}+\mathrm{A}_{\mathrm{s}} \cdot \sigma_{\mathrm{v}} \mathrm{k} \tan \delta
$$

$$
=\frac{\pi}{4} \times 0.3^{2} \times 81 \times 137+2 \times \tan 40\left(\frac{1}{2} \times 81 \times 4.5+81 \times 7.5\right)
$$

$$
\pi \times 0.3
$$

$=784.40+1249.12$
$\mathrm{Q}_{\mathrm{u}}=2033.52$
\therefore safe load capacity $=\frac{\mathrm{Q}_{\mathrm{u}}}{\mathrm{F}}=\frac{2033.52}{2.5}$

$$
=813.40 \mathrm{kN}
$$

ACE	33	Geotechnical Engineering

4. Ans: $\left(Q_{g}=27390.6 \mathrm{kN}\right)$

Sol: Given:

$\mathrm{n}=25$
$\mathrm{L}=12-2=10 \mathrm{~m}$
Dia $=0.5 \mathrm{~m}$
$\mathrm{S}=1 \mathrm{mc} / \mathrm{c}$
$\mathrm{C}=180 \mathrm{kPa}$
$\mathrm{C}_{\text {avg }}=110 \mathrm{kPa}$
$\alpha=0.45$
$\mathrm{B}_{0}=\mathrm{L}_{0}=4 \mathrm{~S}+\mathrm{d}$

$$
=4.5 \mathrm{~m}
$$

$\mathrm{Q}_{\mathrm{gi}}=\mathrm{n}\left[\frac{\pi}{4}(0.5)^{2} \times 180 \times 9\right.$
$+\pi \times 0.5 \times 10 \times 0.45 \times 100]$

$$
=27390.76 \mathrm{kN}
$$

$\mathrm{Q}_{\mathrm{gb}}=(4.5)^{2} \times 9 \times 180+4 \times 4.5 \times 10 \times 110$

$$
=52605 \mathrm{kN}
$$

$\mathrm{Q}_{\mathrm{g}}=27390.6 \mathrm{kN}$
$\binom{$ take minimum of two }{ i.e., $\mathrm{Q}_{\mathrm{gi}} \& \mathrm{Q}_{\mathrm{gb}}}$

05. Ans: $\mathrm{S}=\mathbf{2 . 1 8 d}$

Sol: Given:

$\mathrm{n}=16$ pile group
$\alpha=0.6$
$\mathrm{Q}_{\mathrm{gi}}=\mathrm{n}\left[\frac{\pi}{4} \mathrm{~d}^{2} \times \mathrm{C} \times 9+\pi \mathrm{d} \times \mathrm{L} \times 0.6 \mathrm{C}\right]$
(neglect end bearing)
$=\mathrm{n}[\pi \mathrm{dL} \times 0.6 \mathrm{C}]$
$\mathrm{Q}_{\mathrm{gb}}=4(3 \mathrm{~S}+\mathrm{d}) \times \mathrm{L} \times \mathrm{C}$
For optimum spacing
$\mathrm{Q}_{\mathrm{gi}}=\mathrm{Q}_{\mathrm{gb}} \quad\left(\eta_{\mathrm{g}}=100 \%\right)$
$16[\pi \mathrm{dl} \times 0.6 \mathrm{C}]=4(3 \mathrm{~S}+\mathrm{d}) \times \mathrm{L} \times \mathrm{C}$
$4 \pi \mathrm{~d} \times 0.6=3 \mathrm{~S}+\mathrm{d}$
$6.54 \mathrm{~d}=3 \mathrm{~S}$
$\mathrm{S}=2.18 \mathrm{~d}$

06. Ans. 635 kN

Sol: λ Method:
$\mathrm{Q}_{\mathrm{u}}=\mathrm{A}_{\mathrm{b}} \times \mathrm{C} \times \mathrm{N}_{\mathrm{c}}+\mathrm{A}_{\mathrm{s}} \lambda \times\left[\sigma_{\mathrm{va}}^{\prime}+2 \mathrm{c}\right]$
$\lambda=$ constant $=0.15$,
$\mathrm{Dia}=0.4 \mathrm{~m}, \gamma=18 \mathrm{kN} / \mathrm{m}^{3}$, F.O.S $=3$
Depth $(\mathrm{H})=25 \mathrm{~m}, \mathrm{~N}_{\mathrm{c}}=9$ for pile in clay $\sigma_{\mathrm{va}}^{\prime}=$ Average effective vertical pressure
along the pile length

$$
\begin{aligned}
& \sigma_{\mathrm{va}}^{\prime}=\frac{0+\gamma \mathrm{H}}{2}=\frac{0+18 \times 25}{2} \\
& \quad=225 \mathrm{kPa} \\
& \mathrm{Q}_{\mathrm{u}}=\frac{\pi}{4}\left(0.4^{2}\right) \times 80 \times 9+\pi \times 0.4 \times 25 \times
\end{aligned}
$$

$0.15 \times(225+2 \times 80)$
$=1904.74 \mathrm{kN}$

Safe load (or) Allowable load

$$
\begin{aligned}
& \mathrm{Q}_{\text {safe }}=\frac{\mathrm{Q}_{\mathrm{u}}}{\text { F.O.S }}=\frac{1904.74}{3} \\
&= 635 \mathrm{kN}
\end{aligned}
$$

7. Ans: $\mathbf{6 8 . 2 5 \%}$; $\mathbf{6 8 2 5} \mathbf{k N}$

Sol: Engineering News formula for Drop Hammer:
It is based on the assumption that kinetic energy delivered by the hammer during driving operation is equal to work done on the pile.
According to Engineering New's formula,

$$
Q_{s}=\frac{W \cdot h \cdot \eta_{h}}{F(S+C)}
$$

Where,
$\mathrm{Q}_{\mathrm{S}}=$ Safe Pile capacity
$\mathrm{W}=$ Weight of hammer
$h=$ height of drop

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups \& PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

$\mathbf{A C D}$	34	CIVIL-Postal Coaching Solutions

$\eta_{\mathrm{h}}=$ Efficiency of pile hammer
$\mathrm{S}=$ penetration of pile per hammer blow
C $=$ constant
For drop hammer, $\mathrm{C}=2.54 \mathrm{~cm}$, for steam hammer $\mathrm{C}=0.254 \mathrm{~cm}$

Factor of safety $=6$

Applications:

- This formula is more applicable to piles driven into cohesionless soil.
- If the pile is driven into saturated loose sand and silt, liquefaction might result, reducing the pile capacity. So it is not applicable to saturated loose sand.

$$
\begin{aligned}
& 4 \times 5 \text { pile group } \\
& \text { Diameter of each pile }=0.3 \mathrm{~m} \\
& \quad \text { C/C spacing }=0.9 \mathrm{~m} \\
& \text { capacity of a single pile }=500 \mathrm{kN}
\end{aligned}
$$

According to converse Labarre formula:

$$
\eta_{\mathrm{g}}=1-\frac{\theta}{90}\left[\frac{(\mathrm{n}-1) \mathrm{m}+(\mathrm{m}-1) \mathrm{n}}{\mathrm{mn}}\right] .
$$

$\mathrm{m} \rightarrow$ no. of rows of piles $=4$
$n \rightarrow$ no.of piles in each row $=5$

$$
\theta=\tan ^{-1}\left(\frac{d}{s}\right)=18.43
$$

$$
\begin{aligned}
\eta_{\mathrm{g}} & =1-\frac{18.43}{90}\left[\frac{(5-1) 4+5(4-1)}{4 \times 5}\right] \\
& =1-\frac{18.43}{90}\left[\frac{16+15}{20}\right] \\
\eta_{\mathrm{g}} & =68.25 \%
\end{aligned}
$$

Capacity of free standing pile group

$$
=\eta_{\mathrm{g}} \times \mathrm{Q}_{\mathrm{gi}} \times \mathrm{n}=0.6825 \times 500 \times 20=682.5 \mathrm{kN}
$$

8. Ans: (a), (b) \& (c)

Sol: A pile subjected to lateral loading is one of the classes of problem that involve interaction of soil and structure the main aim of project is to calculate structural parameters like slope, deflection, moment, slope and soil reaction at each joint.
09. Ans: (b)

Sol:

$\mathrm{Q}_{\mathrm{g}}=$ horizontal load
$\mathrm{M}_{\mathrm{g}}=$ moment at ground level
If pile is fixed to the pile cap, the pile cap provides fixity to pile head. The fixity provided is equivalent to moment $\mathrm{M}_{\mathrm{g}}=-$ $0.93 \mathrm{Qg}_{\mathrm{g}}$ at the ground level. The negative sign indicates that moment caused by Mg_{g} and Q_{g} are of different sign in case of free

	Regular Live Doubt clearing Sessions \| Free Online Test Series	ASK an expert			
- online	Affordable Fee \| Available 1M	3M	6M	12M	18M and 24 Months Subscription Packages

head pile, moment M_{g} due to fixity of pile head is zero while for a completely fixedhead pile. Moment m_{g} is $-0.93 \mathrm{Q}_{\mathrm{g}} \mathrm{T}$. Thus for piles with intermediate fixity, the value of moment can be interpolated.
10. Ans: (a), (b) \& (c)

Sol: Advantage of bored and cast in situ piles i.e. under reamed pile
i. Very little displacement and no risk of ground heave.
ii. Length can be readily varies
iii. Soil can be inspected and checked with soil investigation data.
iv. Piles can be installed in very great length and very large diameter and end enlargement of upto 2 or 3 shaft diameter are possible in clays and soft rock.
v. Pile can be installed without much noise and vibration and with limited had room.

Disadvantage

i. Boring method may loosen sandy or gravelly soils.
ii. Concreting under water will pore problem.
iii. Concrete cannot be subsequently inspected.
iv. Susceptible to waisting or necking in squeezing
v. Enlarged bases can not be formed in granular soil.
11. Ans: (b), (c) \& (d)

Sol: Precast concrete piles are prismatic or circular in section. These piles may be of uniform diameter or tapered. They are usually cast a central casting yard, cured and transported to the construction site. If arrangements for casting and curing are available, they may be cast at the site also.

As a precast concrete pile is usually in a state of compression, no reinforcement is required from load bearing considerations. However, piles are reinforced to take care of handling stresses. Solid sections of 0.2 m to 0.3 m side are usually used. Precast, hollow cylindrical sections are also used where large stiffness and higher bearing capacity is required, though in India, hollow sections are not popular. Precast concrete piles in lengths upto 20 m and precast hollow pipe piles upto 60 m length have been used. Shorter piles can carry loads upto 600 kN , whereas the capacity of longer piles can, in some cases, be as large as 2000 kN .

Concrete piles are considered more or less permanent. However, in exceptional Circumstances, the soil may contain deleterious substances which may affect the pile. Splicing of precast concrete piles is difficult. Further, if the pile at the site proves to be too long, chopping off the extra length is difficult and is likely to damage the pile. Handling and driving of precast concrete piles also requires heavy equipment. Heave and disturbance of surrounding soil may also cause difficulties.

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups \& PSC Exams

12. Ans: (a) \& (c)

Sol: A test pile is a pile which is used only in a load test and does not carry load of super structure. The minimum test load on such a piles should be twice the safe load or load at which the total settlement attains a value of 10% of pile diameter in case of single and 40 mm in case of pile group.

18. Soil Exploration

2. Ans: (c)

Sol: $\mathrm{N}=6+6+8+7=27$
$\mathrm{N}^{\prime}=\mathrm{C}_{\mathrm{N}} \mathrm{N}=1 \times 27=27$
$\mathrm{N}^{\prime \prime}=15+\left(\frac{\mathrm{N}^{\prime}-15}{2}\right)=21$
03. Ans: 14

Sol: Corrected value $\mathrm{N}^{\prime}=\mathrm{C}_{\mathrm{N}} \mathrm{N}$
$\mathrm{C}_{\mathrm{N}}=$ correction factor for over burden
pressure

$$
\begin{aligned}
\mathrm{C}_{\mathrm{N}} & =0.77 \log _{10}\left(\frac{1905}{\sigma_{\mathrm{o}}^{\prime}}\right) \\
\sigma_{\mathrm{o}}^{\prime} & =2 \times 18+(18-9.81) \times 3 \\
& =60.57 \mathrm{kN} / \mathrm{m}^{2} \\
\mathrm{C}_{\mathrm{N}} & =0.77 \log _{10}\left(\frac{1905}{60.57}\right)=1.153 \\
\mathrm{~N}^{\prime} & =1.153 \times 12=13.8 \simeq 14
\end{aligned}
$$

04. Ans: (b) \& (c)

Sol: Standard penetration test (SPT) is done for granular soil not for cohesive soil. SPT test represents the relative density of soil and its value increases with increase in denseness of soil. It is performed only in field.

19. Sheet Piles

01. Ans: 98.7 kN

Sol: $\mathrm{k}_{\mathrm{a}}=\frac{1-\sin \phi}{1+\sin \phi}=0.259$

$$
\begin{aligned}
\gamma & =20 \mathrm{kN} / \mathrm{m}^{3} \\
\mathrm{H} & =6.5 \mathrm{~m} \\
\phi & =36^{\circ} \\
\mathrm{C} & =0
\end{aligned}
$$

$$
\mathrm{P}^{\prime}=0.65 \mathrm{~K}_{\mathrm{a}} \mathrm{H} \gamma
$$

$\mathrm{P}^{\prime}=21.93 \mathrm{kN} / \mathrm{m}^{2}$
Total pressure acting
$\mathrm{P}=21.93 \mathrm{kN} / \mathrm{m}^{2} \times$ Height \times Width
$\mathrm{P}=21.93 \times 6.5 \times 3$
$\mathrm{P}=427.7 \mathrm{kN}$

The average load taken by the strut

$$
=\frac{427.7}{5}=85.55 \mathrm{kN}
$$

	Regular Live Doubt clearing Sessions \| Free Online Test Series	ASK an expert					
	Affordable Fee \\| Available 1M	3M	6M	12M	18M and 24 Months Subscription Packages		

ACE	37	Geotechnical Engineering

But in the problem they asked maximum load taken by the strut
struts (1) (2) (3) (4) are taken maximum loads, (5) struts are taken minimum load.
Strut (2) taken load $=1.5 \times 3 \times \mathrm{P}^{\prime}$

$$
\begin{aligned}
& =1.5 \times 3 \times 21.93 \mathrm{kN} \\
& =98.68 \mathrm{kN}
\end{aligned}
$$

2. Ans: (c) \& (d)

Sol: A number of methods are used for design of anchored bulk head. However the method commonly used are free earth support method and fixed earth support.

Fixed earth support method

When depth is small, the anchored sheet pile would be called as free-earth support.

