GATE I PSUs

GEOMATICS ENGINEERING

Text Book: Theory with worked out Examples and Practice Questions

Geomatics Engineering

(Solutions for Text Book Practice Questions)

01. Fundamental Concepts

01. Ans: (c)

Sol: Plan area $=9.5 \times 11.5 \mathrm{~cm}$

$$
=109.25 \mathrm{~cm}^{2}
$$

Ground area $=63500 \mathrm{~m}^{2}$

$$
\begin{aligned}
\text { Scale } & =\sqrt{\frac{\text { Maparea }}{\text { Groundarea }}} \\
& =\sqrt{\frac{109.25 \times 10^{4}}{63500}} \simeq \frac{1}{2411}
\end{aligned}
$$

2. Ans: (a)

Sol: Shrinkage factor $=[100-6 \%]$

$$
=94 \%=0.94
$$

$\mathrm{L}=? \quad \mathrm{~B}=$?
$\mathrm{L}=\frac{6}{0.94} \quad \mathrm{~B}=\frac{9}{0.9}$
$\mathrm{L}=6.38 \mathrm{~cm}$
$\mathrm{B}=9.58 \mathrm{~cm}$
Dimension $=6.38 \times 9.58 \mathrm{~cm}$

03. Ans: (c)

Sol: Least count $=\frac{S}{n}$

$$
0.01^{\circ}=\frac{\left(\frac{1}{5}\right)^{\circ}}{\mathrm{n}}
$$

Vernier dividing $\mathrm{n}=20$
Number of main scale dividing $=2 n-1$

$$
=2 \times 20-1=39
$$

04. Ans: (1 in 555.55)

Sol: Original R.F = 1:500
Shrunk factor $=0.9$
Revised R.F. $=\frac{1}{500} \times 0.9$

$$
=1 \text { in } 555.55
$$

5. Ans: (c)

Sol: Theodolite is divided into degrees and half degrees in the length of 59 MSD , LC of direct vernier?

$$
\begin{aligned}
\text { L.C. } & =\frac{S}{n} \\
S & =\frac{1}{2}=30^{\prime}
\end{aligned}
$$

In direct vernier, ' n ' div of $V=(n-1)$ div of M.S. $n-1=59$
$\mathrm{n}=60$
$\therefore \mathrm{L} . \mathrm{C}=\frac{30^{\prime}}{60}=\frac{(30 \times 60)^{\prime \prime}}{60}=30^{\prime \prime}$

06. Ans: (c)

Sol: $1 \mathrm{~cm}=100 \mathrm{~m} ; \quad$ O.L $=100 \mathrm{~cm}$;
S.L. $=95 \mathrm{~cm} ; \quad$ M.A $=810 \mathrm{~cm}^{2}$,

Correct Area = ?
Actual area in km^{2} of survey
Planimetes which is a minor instrument is used for measurement of area of a map.
C.A. $=\frac{\text { M.A. }}{(\text { S.F })^{2}}$

$$
\text { S.F. }=\frac{95}{100}=0.95
$$

¢ ACE	2	CIVIL-Postal Coaching Solutions

C.A. $=\frac{810}{(0.95)^{2}}=897.501$

$$
=897.51 \mathrm{~cm}^{2}(\text { on map })
$$

Scale:

$$
\begin{aligned}
1 \mathrm{~cm} & =100 \mathrm{~m} \\
\mathrm{C} . \mathrm{A} & =897.51(100 \times 100) \\
& =8.9751 \times 10^{6} \mathrm{~m}^{2} \\
& =8.9751 \times 10^{6} \times 10^{-6} \mathrm{~km}^{2}
\end{aligned}
$$

$$
\text { C.A. }=8.9751 \mathrm{~km}^{2}(\text { on ground })
$$

7. Ans: (a, b, c)

Sol: Surveys based on classification upon nature of field are

- Cadastral survey
- Hydrographic survey
- Astronomical survey

Geological survey is used for the study of rocks.

02. Linear Measurement Including Chain Survey

1. Ans: (c)

Sol:

$$
\begin{aligned}
\mathrm{D} & =\sqrt{(30)^{2}-0.9^{2}} \\
& =29.986 \mathrm{~cm}
\end{aligned}
$$

2. Ans: 59.992 m

Sol:

$$
=\frac{(0.5)^{2}}{30}=0.008 \mathrm{~m}(-\mathrm{ve})
$$

Correct distance $=60-0.008$

$$
=59.992 \mathrm{~m}
$$

	3	Geomatics Engineering

3. Ans: (d)

Sol: $\mathrm{C}_{\text {sag }}=\frac{\mathrm{w}^{2} \mathrm{~L}}{24 \mathrm{P}^{2}}$

$$
\begin{aligned}
& =\frac{25^{2} \times 50}{24 \times 150^{2}} \\
& =0.0579 \mathrm{~m}(-)
\end{aligned}
$$

Correct distance $=50-0.0579$

$$
=49.942 \mathrm{~m}
$$

4. Ans: (b)

Sol: $\tan 60^{\circ}=\frac{\mathrm{BD}}{\mathrm{BC}}$

$$
\mathrm{BD}=250 \tan 60^{\circ}
$$

$$
=433.012 \mathrm{~m}
$$

$$
\sin 60^{\circ}=\frac{B D}{C D}
$$

$\mathrm{CD}=500 \mathrm{~m}$ $\tan 45=\frac{\mathrm{EB}}{\mathrm{BC}}$
$\mathrm{EB}=250 \mathrm{~m}$ $\sin 45=\frac{B E}{E C}$
$\mathrm{EC}=354 \mathrm{~m}$
05. Ans: $\mathbf{2 1 3} \mathbf{~ m}$

Sol: $\sin \theta_{1}=\frac{180}{300}$
$\theta_{1}=36.86$
$\sin \theta_{2}=\frac{150}{240}$
$\theta_{2}=38.68$

$\theta=\theta_{1}+\theta_{2}=75.54$
$150+180=330$

$$
\begin{aligned}
& \tan \left(\frac{\theta}{2}\right)=\frac{330 / 2}{\mathrm{AD}} \\
& \mathrm{AD}=212.9 \mathrm{~m} \\
& \quad \simeq 213 \mathrm{~m}
\end{aligned}
$$

06. Ans: (d)

Sol: Length of chain $L=30 \mathrm{~m}$
Incorrect length of chain $L^{\prime}=29.8 \mathrm{~m}$
Measured distance $\ell^{\prime}=450 \mathrm{~m}$

$$
\begin{aligned}
\text { Actual distance } & =\ell^{\prime}\left(\frac{L^{\prime}}{\mathrm{L}}\right) \\
& =450 \times \frac{29.8}{30}=447 \mathrm{~m}
\end{aligned}
$$

7. Ans: (a)

Sol: Length of base line $=2500 \mathrm{~m}$
Elevation $=200 \mathrm{~m}$
Radius of the earth $\mathrm{R}=6370 \mathrm{~km}$

$$
\begin{aligned}
\mathrm{C}_{\mathrm{MSL}} & =\frac{\mathrm{Lh}}{\mathrm{R}} \\
& =\frac{2500 \times 200}{6370 \times 10^{3}}=-0.0785 \mathrm{~m}
\end{aligned}
$$

The correction is negative, if the measured distance is above MSL.
08. Ans: (b)

Sol:

Slope correction $=$?
Length $=60 \mathrm{~m}$

Gradient $=1$ in 25

$$
\begin{aligned}
\cos \theta & =\frac{25}{\sqrt{25^{2}+1^{2}}}=0.99 \\
& =60(1-\cos 2.29)=48 \mathrm{~mm}
\end{aligned}
$$

9. Ans: (d)

Sol: Length of tape $L=30 \mathrm{~m}$
Pull $=10 \mathrm{~kg}$
3 spans of 10 m
Area of cross section $\mathrm{A}=0.08$ sq. cm
Density of tape $=7.86 \mathrm{~g} / \mathrm{cc}$
Correction for sag $=\frac{\mathrm{w}^{2} \ell}{24 \mathrm{n}^{2} \mathrm{P}^{2}}$
$\mathrm{w}=7.86 \times 0.08 \times 30 \times 100=1.88 \mathrm{~kg}$
$\mathrm{C}_{\text {sag }}=\frac{(1.88)^{2}(30)}{24 \times 3^{2} \times 10^{2}}=-0.0049 \mathrm{~m}$
10. Ans: (a)

Sol: 30 m chain 10 cm too long measured distance $=2500 \mathrm{~m}$

15 cm too long at the end of day total distance $=4500 \mathrm{~m}$
True distance $=$?
For $2500 \mathrm{~m} ; \mathrm{L}^{\prime}=\frac{30+30.1}{2}=30.05 \mathrm{~m}$ $\ell_{1}=2500 \times \frac{30.05}{30}=2504.16 \mathrm{~m}$
For $2000 \mathrm{~m} ; \mathrm{L}^{\prime}=\frac{30.1+30.15}{2}=30.125$
$\ell_{2}=2000 \times \frac{30.125}{30}=2008.33 \mathrm{~m}$
Total $=2504.16+2008.33$ $=4512.49 \mathrm{~m}$

11. Ans: (d)

Sol: Length of tape $=50 \mathrm{~m}$
Std. temperature $=20^{\circ} \mathrm{C}$
Pull $=10 \mathrm{~kg}$
Measured temperature $=50^{\circ}$
$\alpha=1 \times 10^{-6} /{ }^{\circ} \mathrm{C}$

$$
\begin{aligned}
\mathrm{C}_{\text {Temp }} & =l \alpha \Delta \mathrm{~T} \\
& =50 \times 1 \times 10^{-6}(50-20) \\
& =1.5 \times 10^{3} \mathrm{~m}
\end{aligned}
$$

True length of a tape $=50.0015 \mathrm{~m}$

12. Ans: (a, b, c)

Sol: If a chain is found to be too long it may be adjusted

- Closing the opened joints of the rings Removing one or more circular rings Replacing worn out rings

03. Compass Survey

01. Ans: (a)

Sol: $\mathrm{M} . \mathrm{B}=\mathrm{N} 5^{\circ} 30^{\prime} \mathrm{E}\left(5^{\circ} 30^{\prime}\right)$

$$
\mathrm{T} . \mathrm{B}=\mathrm{N} 10^{\circ} 30^{\prime} \mathrm{w}\left(349^{\circ} 30^{\prime}\right)
$$

Magnetic declination $=$ T. $\mathrm{B}-\mathrm{M} . \mathrm{B}$

$$
\begin{aligned}
& =349^{\circ} \cdot 30^{\prime}-5^{\circ} 30^{\prime} \\
& =344^{\circ} \\
& =16^{\circ} \because 360^{\circ}-344^{\circ} \\
& =\mathrm{N} 16^{\circ} \mathrm{W}
\end{aligned}
$$

2. Ans: (c)

Sol:

$\angle \mathrm{B}=70^{\circ}+45^{\circ}=115^{\circ}$
03. Ans: (d)

Sol: W.C.B $=\frac{6 \pi}{3} \times \frac{180}{\pi}=360^{\circ}$

$$
=0^{\circ} \mathrm{N}
$$

04. Ans: (c)

Sol: Included angle

05. Ans: (a)

Sol: Bearing of RS

$$
\begin{aligned}
& =180^{\circ}+30^{\circ} \\
& =210^{\circ}
\end{aligned}
$$

6. Ans: (b)

Sol:

Line	F.B
PQ	50°
QR	170°
RS	230°
SP	310°

F.B of SP - F.B of SR

$$
\angle \mathrm{S}=310^{\circ}-\left(230^{\circ}-180^{\circ}\right)=260^{\circ}
$$

7. 5 Ans: (d)

Sol:

			Corrected		
Line	FB	BB	FB	BB	Correction
AB	$126^{\circ} 30^{\prime}$	$307^{\circ} 45^{\prime}$	$127^{\circ} 15^{\prime}$	$307^{\circ} 15^{\prime}$	$-0^{\circ} 30^{\prime} @$ B
BC	49°	$227^{\circ} 15^{\prime}$	$\mathbf{4 8}^{\circ} \mathbf{3 0}^{\prime}$	$228^{\circ} 30^{\prime}$	$+1^{\circ} 15^{\prime} @$ C
CD	$340^{\circ} 15^{\prime}$	$161^{\circ} 30^{\prime}$	$341^{\circ} 30^{\prime}$	$161^{\circ} 30^{\prime}$	
DE	$258^{\circ} 15^{\prime}$	$78^{\circ} 15^{\prime}$	$258^{\circ} 15^{\prime}$	$78^{\circ} 15^{\prime}$	
FA	$212^{\circ} 15^{\prime}$	$31^{\circ} 30^{\prime}$	$212^{\circ} 15^{\prime}$	$32^{\circ} 15^{\prime}$	$+0^{\circ} 45^{\prime} @$ A

8. Ans: (a)

Sol: $\mathrm{D}=6^{\circ} 30^{\prime} \mathrm{W}$
$\mathrm{MB}=$?
$\mathrm{TB}=\mathrm{S} 32^{\circ} 30^{\prime} \mathrm{E}=147^{\circ} 30^{\prime}$
$T B=M B \pm D$
$147^{\circ} 30^{\prime}+6^{\circ} 30^{\prime}=\mathrm{MB}$
$\mathrm{MB}=154^{\circ}$
09. Ans: (a)

Sol:

$\angle \mathrm{BAC}=90^{\circ}$
10. Ans: (b)

Sol:

$$
\angle \mathrm{CAB}=205^{\circ}
$$

11. Ans: (d)

$$
\angle \mathrm{QOP}=42^{\circ} 30^{\prime}
$$

12. Ans: (b)

Sol: True bearing $=$ magnetic bearing \pm declination

$$
=187^{\circ} 30^{\prime}-2^{\circ}=185^{\circ} 30^{\prime}
$$

$\mathrm{T} . \mathrm{B}=185^{\circ} 30^{\prime}-3^{\circ} 30^{\prime}=182^{\circ}$
13. Ans: (b)

Sol: FB of PA

$$
=\mathrm{N} 48^{\circ} 45^{\prime} \mathrm{W}\left(360^{\circ}-48^{\circ} 45^{\prime}-311^{\circ} 15^{\prime}\right)
$$

BB of $\mathrm{PA}=311^{\circ} 15^{\prime}-180^{\circ}=131^{\circ} 15^{\prime}$

$$
=\mathrm{FB} \text { of AP }
$$

Observed F.B of AP S50 $0^{\circ} 30^{\prime} \mathrm{E}\left(129^{\circ} 30^{\prime}\right)$
\therefore Correction for L.A $=+1^{\circ} 45^{\prime}$ at A
Corr. M F.B of $\mathrm{AB}=80^{\circ} 50^{\prime}+1^{\circ} 45^{\prime}$

$$
=82^{\circ} 35^{\prime}
$$

Corr T.B of $\mathrm{AB}=82^{\circ} 35^{\prime}+3^{\circ}=85^{\circ} 35^{\prime}$

$$
=\mathrm{N} 85^{\circ} 35^{\prime} \mathrm{E}
$$

14. Ans: (d)

Sol:

Line	F.B	B.B	
AB	20°	201°	$200^{\circ}-1$ at B
BC	100°	$\mathbf{2 8 0}^{\mathbf{o}}$	
CA	230°	50°	

15. Ans: (a)

Sol:

Bearing of a line $\mathrm{AB}=165^{\circ}$

$$
\angle \mathrm{ABC}=139^{\circ}
$$

FB of $\mathrm{BC}=139^{\circ}-15^{\circ}$

$$
=124^{\circ}
$$

	7	Geomatics Engineering

16. Ans: (b)

Sol:

$$
\Delta_{\mathrm{B}}=130^{\circ}-60^{\circ}=70^{\circ}
$$

17. Ans: (a, b, c)

Sol: In Centesimal System, an angle is measured in grades, minutes, and seconds.

- Dip is an angle measured in the vertical plane.
- Compass are graduated in centesimal system
- Dip is not treated as natural source of error
- Isogonic lines are lines joining points of same or equal declination angle.
- Isoclinic lines are lines joining points of same or equal dip angle

04. Plane Table Survey

1. Ans: (c)

Sol: $\mathrm{PP}^{\prime}=\mathrm{e} . \mathrm{K}$
$\mathrm{E}=50 \mathrm{~cm}=500 \mathrm{~mm}$;
$\mathrm{K}=\frac{1}{1000}=500 \cdot \frac{1}{1000}=\frac{1}{2}=0.5 \mathrm{~mm}$
02. Ans: $\mathbf{0 . 1 2 5} \mathbf{~ m m}$

Sol: $P P P^{\prime}=$ e.K

$$
\begin{aligned}
K & =\frac{1}{2000} \\
& =250 \cdot \frac{1}{2000}=0.125 \mathrm{~mm}
\end{aligned}
$$

3. Ans: (c)

Sol: The method of plane tabling commonly used for establishing the instrument station the method of Resection
04. Ans: (d)

Sol: For locating an inaccessible point with the help of only a plane table, we use Intersection method.
05. Ans: (b, c)

Sol: - If the plane table lies on the great circle we do not get best fix.

- Best fix is obtained when point lies inside great triangle near the orthocenter.
- Trial point should always be at one side of the resectors.
- Lehamann's is more accurate than 2 point problem.

05. Levelling

01. Ans: 1 in 24

Sol: $0.750,1.55,2.25,2.85,3.55,1.75,2.45$, 3.65, 0.950, 2.95, 3.15, 3.75

BS	IS	FS	Rise	Fall	RL
0.750					100.50
	1.550			-0.80	
	2.250			-0.70	
	2.850			0.60	
1.75		3.550		-0.70	
	2.450			-0.70	
0.950		3.650		-1.20	
	2.95			-2.0	
	3.15			-0.2	
		3.75		-0.6	93.00

$$
\begin{aligned}
\text { Gradient } & =\frac{\text { Difference in RL's }}{9 \times 20} \\
& =\frac{7.50}{9 \times 20}=1 \text { in } 24
\end{aligned}
$$

02. Ans: (a)

Sol:

C.S.R on $B=2.735-0.06735 \times 1.55^{2}$

$$
=2.573 \mathrm{~m}
$$

T.R.L difference between $\mathrm{A} \& \mathrm{~B}$

$$
\begin{aligned}
& =2.573-0.785 \\
& =1.788 \mathrm{~m} \simeq 1.8 \mathrm{~m}
\end{aligned}
$$

3. Ans: (b)

Sol: Dip of horizon, $\theta=\frac{D}{R}$ in radians

$$
\begin{aligned}
& d=\sqrt{\frac{h}{0.06735}}=\sqrt{\frac{45}{0.06735}} \\
& d=25.84 \mathrm{~m} \\
& \theta=\frac{25.84}{6371}=0.004 \mathrm{~m}
\end{aligned}
$$

4. Ans: $\mathbf{3 . 7 8 1} \mathrm{m}$

Sol: The correct reading

$$
\begin{aligned}
& =\sqrt{3.785^{2}-0.18^{2}} \\
& =3.781 \mathrm{~m}
\end{aligned}
$$

05. Ans: (a)

Sol: Radius of curvature of bubble tube $=\frac{\mathrm{n} \ell \mathrm{D}}{\mathrm{S}}$

$$
=\frac{5 \times\left(2 \times 10^{-3}\right) \times 100}{0.05}=20 \mathrm{~m}
$$

6. Ans: (b)

Sol:

NA ACM	9	Geomatics Engineering

$$
\begin{aligned}
\mathrm{D} & =\mathrm{D}_{1}+\mathrm{D}_{2} \\
& =\sqrt{\frac{12}{0.06735}}+\sqrt{\frac{35}{0.06735}}=36.144 \mathrm{~km}
\end{aligned}
$$

7. Ans: (c)

Sol:

R.L of floor $=(165.505-0.745)-1.450$

$$
=163.310 \mathrm{~m}
$$

08. Ans: (a)

Sol: Instrument

	A	B
A	1.625	2.545
B	0.725	1.405

$\mathrm{A}_{1} \rightarrow \mathrm{~A} \Rightarrow \mathrm{~h}_{\mathrm{a}} \quad \mathrm{B}_{1} \rightarrow \mathrm{~A} \Rightarrow \mathrm{ha}^{\prime}$
$\mathrm{A}_{1} \rightarrow \mathrm{~B} \Rightarrow \mathrm{~h}_{\mathrm{b}}$
$\mathrm{B}_{1} \rightarrow \mathrm{~B} \Rightarrow \mathrm{~h}_{\mathrm{b}}{ }^{\prime}$

I-Instrument Set up:

$$
\begin{aligned}
\mathrm{N} & \rightarrow \mathrm{~N} \Rightarrow \mathrm{~h}_{\mathrm{a}} \\
& \rightarrow \mathrm{~F} \Rightarrow \mathrm{~h}_{\mathrm{b}}
\end{aligned}
$$

II-Instrument Setup:

Near to near $=h_{b}{ }^{\prime}$
Near to further $=h_{a}{ }^{\prime}$

$$
\begin{aligned}
& \mathrm{e}=\frac{-1}{2}\left[\left(\mathrm{~h}_{\mathrm{a}}-\mathrm{h}_{\mathrm{b}}\right)-\left(\mathrm{h}_{\mathrm{a}}^{\prime}-\mathrm{h}_{\mathrm{b}}^{\prime}\right)\right] \\
&=\frac{-1}{2}[(1.625-2.545)-(0.725-1.405)] \\
&=0.12 \\
& \mathrm{e}=\mathrm{e}_{\mathrm{col}}+\mathrm{e}_{\mathrm{c}}+\mathrm{e}_{\mathrm{R}} \\
& 0.12=\mathrm{e}_{\mathrm{col}}+0.07857(1)^{2}+\left(-0.01122(1)^{2}\right)
\end{aligned}
$$

$\mathrm{e}_{\mathrm{col}}=0.05265 \mathrm{~m}$
$\theta=\tan ^{-1}\left(\frac{0.05265}{1000}\right)=10.86^{\prime \prime}$
09. Ans: 151.90 m

Sol: \sum Rise $-\sum$ Fall $=$ Last R.L. - First R.L

$$
\begin{aligned}
& 2.645-(1.245)=\text { L.R.L }-150.500 \\
& \quad \Rightarrow \text { L.R.L }=151.90 \mathrm{~m}
\end{aligned}
$$

10. Ans: (d)

Ans: $60^{2}=\frac{h}{0.06735}$

$$
\Rightarrow \mathrm{h}=242.46 \mathrm{~m}
$$

11. Ans: (a)

Sol: $0.680 \mathrm{~m}, 1.455 \mathrm{~m}, 2.330 \mathrm{~m}, 2.885 \mathrm{~m}$,
3.380 m 1.055 m

Stn.	BS	IS	FS	Rise	Fall	RL	Remarks
1	0.680					$\mathbf{8 1 . 3 0 5}$	
2.		1.455			0.775		
3.		2.330			0.875		
4.		2.885			0.555	79.100	
5	1.055	3.380					

$81.305-0.775=\mathrm{RL}$ of 2
RL of $2-0.875=R L$ of 3

12. Ans: (d)

Sol:

Difference in staff reading $=3.462-2.847$

$$
=0.615 \mathrm{~m}
$$

Difference in R.L. $=284.295-283.665 \mathrm{~m}$

$$
=0.63 \mathrm{~m}
$$

Difference of the above $=0.615-0.63$

$$
=0.015 \mathrm{~m}
$$

$\mathrm{e}_{\text {col }}=0.015 \mathrm{~m}$ of 25 m
$100 \mathrm{~m} \rightarrow \frac{100}{25} \times 0.015=0.06 \mathrm{~m}$

13. Ans: (a)

Sol: Σ B.S $-\Sigma$ FS $=$ L.R.L - F.R.L
$-6.2-(?+0.85)=196.1-200$
$?=-3.150 \mathrm{~m}$

14. Ans: (a)

Sol: $\mathrm{H}=\frac{1}{2}[(1.03-1.630)+(0.950-2.740)$

$$
=-1.195
$$

R.L of $\mathrm{Q}=450-1.195$

$$
=448.805 \mathrm{~m}
$$

15. Ans: (b)

Sol:

BS	IS	FS
3.425		
	2.650	
$\mathbf{2 . 1 5 0}$		$\mathbf{0 . 8 5 0}$
2.850		1.780
	1.250	
		0.525

16. Ans: (d)

Sol: $\quad \mathrm{P} \quad \mathrm{Q}$
$\begin{array}{lll}\text { P } & 1.525 & 2.325\end{array}$
Q $1.545 \quad 2.265$
$\mathrm{e}=\frac{-1}{2}[(1.525-2.325)-(1.545-2.265)]$ $=0.04 \mathrm{~m}$
17. Ans: (c)

Sol: $\alpha^{\prime}=\frac{S}{n D}(206265)$

$$
=\frac{1.60-1.55}{4 \times 100}(206265)=25.78 \mathrm{sec}
$$

18. Ans: (a)

Sol: $74.500+4.685=79.185 \mathrm{~m}$
19. Ans: (b)

Sol: Error $=0.015$

$$
\begin{aligned}
& \mathrm{e}=\mathrm{e}_{\mathrm{col}}+\mathrm{e}_{\mathrm{c}}+\mathrm{e}_{\mathrm{r}} \\
& \Rightarrow 0.015=\mathrm{e}_{\mathrm{col}}+0.06735(1.5)^{2} \\
& \Rightarrow \mathrm{e}_{\mathrm{col}}=-0.1365 \mathrm{~m}
\end{aligned}
$$

GAE	11	Geomatics Engineering

20. Ans: (d)

Sol: $\mathrm{n}=1, \mathrm{R}=1.1 \mathrm{~m}$

$$
\alpha^{\prime}=\frac{\ell}{\mathrm{R}}=\frac{1}{1.1 \times 10^{3}}=\frac{1}{1100}
$$

21. Ans: $(\mathrm{a}, \mathrm{b}, \mathrm{d})$

Sol: Levelling

- Levelling Eliminates error due to inadjustment of line of sight
- Levelling Eliminates error due to curvature
- Levelling Eliminates the combined error due to curvature and refraction completely.
- Levelling Eliminates the error due to refraction completely.

22. Ans: (a, b, c)

Sol: As we observe the staff readings it indicates increasing value. That means the ground is sloping down.

There is only one change in point. i.e., at 0.5 m .

06. Theodolite

01. Ans: (a)

Sol: Circular curve ranging is carried out by two theodolite method.
02. Ans: (a)

Sol: In a transit theodolite, any incidental error due to eccentricity of verniers is primarily counteracted by Reading both the verniers.
03. Ans: (a)

Sol: In a transit theodolite, error due to eccentricity of vernier is eliminated by reading of both verniers.

04. Ans : (d)

Sol: For minor adjustments of horizontal angles measured using a theodolite, the tangential screw is adjusted after both the plates are clamped.

05. Ans: (a)

Sol: Electronic theodolites of various ranges in which measured angle are displayed originally on display board are based on special optical technology.

06. Ans: (a, b, c)

Sol: • Plate level axis perpendicular to vertical axis.

- Horizontal axis perpendicular vertical axis.
- Line of sight perpendicular to vertical axis where line of sight is horizontal.
- Altitude level axis perpendicular to plate level axis

$\because \stackrel{A}{4}$	12	CIVIL-Postal Coaching Solutions

07. Trigonometrical Levelling

1. Ans: (b)

Sol:

$$
\begin{aligned}
\mathrm{V} & =1000 \tan 30^{\circ} \\
& =577.35 \mathrm{~m}
\end{aligned}
$$

$$
\text { R.L of } \mathrm{T}=180+2.225+577.35
$$

$$
=759.575 \mathrm{~m}
$$

2. Ans: (c)

Sol:
$\mathrm{V}_{1}+\mathrm{V}_{2}=\mathrm{V}_{3}+\mathrm{V}_{4}$
$\mathrm{D}\left(\tan 6^{\circ}+\tan 0.6^{\circ}\right)=(\mathrm{D}+250)\left(\operatorname{Tan} 4^{\circ}+\tan 0.4^{\circ}\right)$
$\therefore \mathrm{D}=496.77 \mathrm{~m}$
Height of tower, $\mathrm{V}_{1}+\mathrm{V}_{2}=57.4266$
03. Ans: (509.198 m)

Sol:

Corr. S.R $=2.5-0.06735 \times 2.5=20.79 \mathrm{~m}$

$$
\mathrm{Q}^{\prime} \mathrm{Q}^{\prime \prime}=2500 \tan 5^{\circ} 30^{\prime}=240.723 \mathrm{~m}
$$

R.L of $\mathrm{Q}=750.500+1.5-240.723-2.072$

$$
=509.198 \mathrm{~m}
$$

4. Ans: (a)

Sol: $2.650-0.750=\mathrm{V}_{2}-\mathrm{V}_{1}$
$=(\mathrm{D}+100) \tan 14^{\circ} 30^{\prime}-\mathrm{D} \tan 20^{\circ} 30^{\prime}$
$\therefore \mathrm{D}=207.806 \mathrm{~m}$
$\mathrm{V}_{1}=207.806 \tan 20^{\circ} 30^{\prime}=77.69 \mathrm{~m}$
R.L. of $\mathrm{C}=500+2.65+77.695=580.345 \mathrm{~m}$
08. Traversing \& Omitted Measurements

01. Ans: (d)

Sol: Given $L=-102.65 \mathrm{~m}$

$\mathrm{L}=\ell \cos \theta$
-102.65 $=\ell \times \cos \left(55^{\circ} 30^{\prime}\right)$
$\ell=-205.82 \mathrm{~m}$
Departure (D) $=\ell \sin \theta$

$$
\begin{aligned}
& =-205.82 \sin \left(55^{\circ} 30^{\prime}\right) \\
& =(-) 178.40 \mathrm{~m}
\end{aligned}
$$

2. Ans: - 124.22, 174.99

Sol: T.L of B $=-34.5-128 \cos 45^{\circ} 30^{\prime}$

$$
=-124.22 \mathrm{~m}
$$

T.D of $\mathrm{B}=83.7+128 \sin 45^{\circ} 30^{\prime}$

$$
=174.99 \mathrm{~m}
$$

$B=(-124.22,174.99)$

03. Ans: (b)

Sol: L = Latitude $=89 \mathrm{~m}(\mathrm{~N})$
$\mathrm{D}=$ Departure $=-49.4[\mathrm{~W}]$
FB at $\mathrm{PQ} \Rightarrow \theta=\tan ^{-1}\left[\frac{\mathrm{D}}{\mathrm{L}}\right]$

$$
\theta=\tan ^{-1}\left[\frac{49.4}{89}\right]
$$

$$
\theta=29.03^{\circ}
$$

FB at $\mathrm{PQ}=\mathrm{N} 29.03^{\circ} \mathrm{W}$
WCB at $\mathrm{PQ}=360^{\circ}-29.03^{\circ}$

$$
=330.97^{\circ}=330^{\circ} 58^{\prime}
$$

4. Ans: (d)

Sol: $P=1500 \mathrm{~m}$

$$
\begin{aligned}
& \text { Relative error }=\frac{1}{\mathrm{P} / \mathrm{e}}=\frac{1}{2343} \\
& \mathrm{e}=\sqrt{0.5^{2}+0.4^{2}}=0.6403 \mathrm{~m} \\
& \mathrm{r}=\frac{\mathrm{e}}{\mathrm{p}}=\frac{0.6403}{1500}=\frac{1}{2343} \mathrm{~m}
\end{aligned}
$$

5. Ans: (a)

Sol: $200 \cos \theta+98 \cos 178^{\circ}+l \cos \left(270^{\circ}\right)+86.4$

$$
\cos \left(1^{\circ}\right)=0
$$

$200 \sin \theta+98 \sin \left(178^{\circ}\right)+l \sin 270^{\circ}+86.4$

$$
\sin 1^{\circ}=0
$$

$l \cos \left(270^{\circ}\right)+200 \cos \theta=11.55$
$l \sin \left(270^{\circ}\right)+200 \sin \theta=-4.92$
$200 \cos \theta=11.55$
$\Rightarrow \theta=\cos ^{-1}\left(\frac{1.55}{200}\right)=86.7^{\circ}$
$\Rightarrow l=204.588 \mathrm{~m}$
06. Ans: (c)

Sol:

A B
L $40 \quad 20$
D $\quad-20 \quad 30$
F.B $=\tan ^{-1} \frac{30+20}{20-40}=68^{\circ} 11^{\prime}$
$=\mathrm{S} 68^{\circ} 11^{\prime} \mathrm{E}$

A ACE	14	CIVIL-Postal Coaching Solutions

B. $B=\tan ^{-1} \frac{-20-30}{40-20}$
$\mathrm{L}_{2}-\mathrm{L}_{1}=20-40=-20$
(S)
$\mathrm{D}_{2}-\mathrm{D}_{1}=30-(-20)=50(\mathrm{E})$
$\mathrm{AB}=\sqrt{(-20)^{2}+(50)^{2}}=53.85 \mathrm{~m}$
07. Ans: (a)

Sol:

FB of $\mathrm{AC}=\mathrm{N} 29^{\circ} 30^{\prime} \mathrm{E}$
FB of $\mathrm{BC}=\mathrm{S} 45^{\circ} 45^{\prime} \mathrm{W}$
$\sum \mathrm{L}=1500-150=l_{1} \cos 29^{\circ} 30^{\prime}+l_{2} \cos 45^{\circ} 45^{\prime}$
$\Sigma \mathrm{D}=1300-200=l_{1} \sin 29^{\circ} 30^{\prime}+l_{2} \sin 45^{\circ} 45^{\prime}$
$1350=l_{1} \cos 29^{\circ} 30^{\prime}+l_{2} \cos 45^{\circ} 45^{\prime}$
$1100=l_{1} \sin 29^{\circ} 30^{\prime}+l_{2} \sin 45^{\circ} 45^{\prime}$
By solving $1 \& 2 l_{1}=712.714 \mathrm{~m}$

$$
l_{2}=1045.7 \mathrm{~m}
$$

8. Ans: (b)

Sol: Length $=\sqrt{(1.39)^{2}+(2.17)^{2}}$

$$
=2.577 \mathrm{~m}
$$

Closing error

$$
\begin{aligned}
& \theta=\tan ^{-1}\left(\frac{2.17}{1.39}\right)=57^{\circ} 21^{\prime} \\
& 360^{\circ}-\tan ^{-1}\left(\frac{2.17}{1.39}\right)=302^{\circ} 39^{\prime}
\end{aligned}
$$

9. Ans: (c)

Sol: D = 10

$$
\theta=\tan ^{-1}\left(\frac{10}{10}\right)=45^{\circ}
$$

10. Ans: (a)

Sol: $\theta=\tan ^{-1}\left(\frac{\mathrm{~L}}{\mathrm{D}}\right)=\tan ^{-1}\left(\frac{100}{60}\right)=59^{\circ} 2^{\prime}$
11. Ans: (d)

$$
\sqrt{(800-600)^{2}-(600-500)^{2}}=223.606 \mathrm{~m}
$$

ACE	15	Geomatics Engineering

$$
\begin{aligned}
\tan \alpha & =\frac{200}{100}=2 \\
\alpha & =63^{\circ} 26^{\prime}
\end{aligned}
$$

The W.C.B of the line AB is $180^{\circ}-63^{\circ} 26^{\prime}$

$$
=116^{\circ} 34^{\prime}
$$

The Δ^{le} ACB,

$$
\begin{aligned}
& \angle \mathrm{CAB}=116^{\circ} 34^{\prime}-45^{\circ}=71^{\circ} 34^{\prime} \\
& \angle \mathrm{ACB}=225^{\circ}-120^{\circ}-105^{\circ} \\
& \angle \mathrm{ABC}=180-\left(71^{\circ} 34^{\prime}+105^{\circ}\right)=3^{\circ} 26^{\prime} \\
& \frac{223.606}{\sin 105^{\circ}}=\frac{\mathrm{BC}}{\sin \left(71^{\circ} 34^{\prime}\right)}=\frac{\mathrm{CA}}{\sin \left(3^{\circ} 26^{\prime}\right)} \\
& \mathrm{BC}=219.616 \mathrm{~m} \\
& \mathrm{CA}=13.863 \mathrm{~m}
\end{aligned}
$$

Latitude of $\mathrm{CA}=13.863 \cos 225^{\circ}=-9.675$
Departure CA $=13.863 \sin 225^{\circ}=-9.675$
Independent coordinates of ' C '

$$
\begin{aligned}
\text { East } & =600+9.675=609.675 \mathrm{~m} \\
\text { North } & =600+9.675=609.675 \mathrm{~m}
\end{aligned}
$$

12. Ans: (a, b, c)

Sol: $\mathrm{e}=\sqrt{(-3.5)^{2}+(2)^{2}}$
Error $=4.03$
Correction $=-4.03$
R.E $=\frac{\text { Error of closure }}{\text { Perimeter }}$
$R . E=\frac{4.03}{2025}=\frac{1}{502.48}$

09. Contouring

1. Ans: (b)

Sol:

$x=\frac{61.70-52.500}{74.600-52.50} \times 50$
$\mathrm{x}=20.82 \mathrm{~m}$
02. Ans: (d)

Sol: $\mathrm{H} . \mathrm{E}=\frac{20}{(1 / 50)}=1000 \mathrm{~m}$

$$
\mathrm{R}=\frac{1000}{25,000}=0.04 \mathrm{~m}
$$

3. Ans: (c)

Sol: Scale : 1:20000
Gradient $=\frac{4}{100}$
Interval $=20 \mathrm{~m}$
Radius $=\frac{20}{20000}=2.5 \mathrm{~cm}$
04. Ans: (a, b, c, d)

Sol:
(i) For larger area, greater contour interval is selected.
(ii) Contours always closes upon each other
(iii) Concavity of higher value contour lies towards lower value contour in case of ridges
(iv) Contours cross valley at 90°

10. Areas \& Volumes

01. Ans: (d)

Sol: A $(10,20)$
B $(-30,40)$
C $(50,-60)$
D (70, -80)
$\mathrm{m}_{1}=\frac{20}{2}=10$
$\mathrm{m}_{2}=10+\frac{10}{2}+\frac{20}{2}=40$
$\mathrm{m}_{3}=40+\frac{20}{2}-\frac{30}{2}=30$
$\mathrm{m}_{4}=30-30-40=-40$
$\mathrm{A}=10 \times 10-30 \times 40+30 \times 50-40 \times 70$
$=100-1200+1500-2800$
$=-4000+1600$
$=-2400 \mathrm{~m}^{2}$

02. Ans: $2111 \mathrm{~m}^{\mathbf{3}}$

Sol: $b=8.8 \quad n=1.5 \quad d=20$
$\mathrm{A}=[\mathrm{b}+\mathrm{nh}] \mathrm{h}$
$\mathrm{A}_{1}=[8.8+1.5 \times 1.8] 1.8=20.7 \mathrm{~m}^{2}$
$\mathrm{A}_{2}=[8.8+1.5 \times 2.4] 2.4=29.76 \mathrm{~m}^{2}$
$\mathrm{A}_{3}=[8.8+1.5 \times 3] 3=39.9 \mathrm{~m}^{2}$
$\mathrm{A}_{4}=[8.8+1.5 \times 3.6] 3.6=51.12 \mathrm{~m}^{2}$
$\mathrm{V}=20\left[\frac{20.7+51.12}{2}+(29.76+39.9)\right]$
$\mathrm{V}=2111 \mathrm{~m}^{3}$
03. Ans: (d)

Sol:

Area of ABCDA

$$
\begin{aligned}
&=\frac{1}{2}\left|\begin{array}{r}
(-400-1500)+(1800-800)+(400-3000) \\
\\
+(2500+200)
\end{array}\right| \\
&= 400 \mathrm{~m}^{2} \\
&= 0.04 \text { hectare's }
\end{aligned}
$$

04. Ans: $288000 \mathrm{~m}^{3}$

Sol: Horizontal equivalent $=\frac{\text { Contour interva } 1}{\text { gradient }}$

$$
=\frac{330-210}{\frac{1}{30}}=3600 \mathrm{~m}
$$

$1 \mathrm{~V}-0.5 \mathrm{H}$
$4 \mathrm{~V}-? \mathrm{H}=8 \mathrm{~m}$
Volume $=\left(\frac{28+12}{2}\right) \times 3600 \times 4$

$$
=288000 \mathrm{~m}^{3}
$$

5. Ans: (b)

Sol: $\mathrm{A}_{1}=10 \times 4=40 \mathrm{~m}^{2}$
$\mathrm{A}_{2}=6 \times 2=12 \mathrm{~m}^{2}$
$\mathrm{A}_{\mathrm{m}}=\left(\frac{10+6}{2}\right)\left(\frac{4+2}{2}\right)$

$$
=8.2=24 \mathrm{~m}^{2}
$$

$$
\mathrm{V}=\frac{\mathrm{h}}{6}\left[\mathrm{~A}_{1}+4 \mathrm{~A}_{\mathrm{m}}+\mathrm{A}_{2}\right]
$$

$$
=\frac{8}{6}[40+4(24)+12]
$$

$$
\mathrm{V}=197.33 \mathrm{~m}^{3}
$$

A ACE	17	Geomatics Engineering

6. Ans: (b)

Sol: $\mathrm{A}=\mathrm{d}\left[\frac{\mathrm{O}_{1}+\mathrm{O}_{\mathrm{n}}}{2}+\mathrm{O}_{2}+\mathrm{O}_{3}+\ldots \ldots . \mathrm{O}_{\mathrm{n}-1}\right]$

$$
\begin{aligned}
\mathrm{A}_{1} & =5\left[\frac{5+6}{2}+4+5.5+5\right] \\
& =95
\end{aligned}
$$

$\mathrm{A}_{2}=10\left[\frac{6+4.5}{2}+4\right]=92.5$
$\mathrm{A}=\mathrm{A}_{1}+\mathrm{A}_{2}=187.5 \mathrm{~m}^{2}$
07. Ans: (b)

Sol: $\quad A=M[F . R-I . R \pm 10 N+C]$
$\mathrm{A}=10,000[2.64-6.356+10 \times 3+0]$
$\mathrm{A}=2,62,840 \mathrm{~mm}^{2}$
08. Ans: $\left(\mathbf{3 8}, \mathbf{1 6 0} \mathrm{m}^{2}\right)$

Sol: $A=M[F R-I R \pm 10 N+C]$

$$
=10[7284-3468-10 \times 2+20]
$$

$=38,160 \mathrm{~mm}^{2}$ (on the plan)
Scale 1:1000

$$
\begin{aligned}
1 \mathrm{~mm} & =1 \mathrm{~m} \\
& =(38,160 \times 1 \times 1) \mathrm{m}^{2} \\
& =38,160 \mathrm{~m}^{2}
\end{aligned}
$$

9. Ans: (b)

Sol: $V=\frac{h}{3}[$ first + last $)+4($ even $)+2($ odd $\left.)\right]$
$=\frac{5}{3}[(3850+450)+4(3450+800)+2(2600)]$
$=44166.66 \mathrm{~m}^{3}$

11. Tacheometry

1. Ans: (b)

Sol:

\Rightarrow With an allactic lens

$$
\begin{aligned}
& \mathrm{k}=100 \mathrm{C}=0 \\
& \mathrm{D}_{1}=\mathrm{ks} \cos ^{2} \theta+\mathrm{C} \cos \theta \\
& \mathrm{D}_{1}=100 \times 1.750 \times \cos ^{2} 5^{\circ} 30^{\prime} \\
& \mathrm{D}_{1}=173.39 \mathrm{~m} \\
& \Rightarrow \text { With } \mathrm{K}=101 \& \mathrm{C}=0.6 \\
& \mathrm{D}_{2}=K S \cos ^{2} \theta+\mathrm{C} \cos \theta \\
& \mathrm{D}_{2}=101(1.75) \cos ^{2}\left(5^{\circ} 30^{\prime}\right)+0.6 \cos \left(5^{\circ} 30^{\prime}\right) \\
& \mathrm{D}_{2}=175.72 \mathrm{~m}
\end{aligned}
$$

$$
\% \text { age of error }=\frac{D_{1}-D_{2}}{D_{1}} \times 100
$$

$$
=\frac{175.72-173.39}{173.39} \times 100
$$

$\%$ age of error $=1.35 \%$
02. Ans: (a)

Sol: $\mathrm{L}=\mathrm{KS}+\mathrm{C}$

$$
\begin{aligned}
& 50=0.495 \mathrm{~K}+\mathrm{C} \\
& 80=0.795 \mathrm{~K}+\mathrm{C} \\
& \mathrm{~K}=100, \mathrm{C}=0.5
\end{aligned}
$$

3. Ans: (d)

Sol: $\mathrm{f}=25 \mathrm{~cm}=250 \mathrm{~mm}, \mathrm{i}=5 \mathrm{~mm}$
$\mathrm{m} . \mathrm{c} \Rightarrow \mathrm{K}=\frac{\mathrm{f}}{\mathrm{i}}=\frac{250}{5}=50$

$$
\begin{aligned}
\text { A.C } \Rightarrow \mathrm{C}=\mathrm{f}+\mathrm{d} & =250+15 \mathrm{~cm}=40 \mathrm{~cm} \\
& =40 \times 10^{-2} \mathrm{~m} \\
\mathrm{C} & =0.40 \mathrm{~m}
\end{aligned}
$$

04. Ans: (a)

Sol: Horizontal distance, $\mathrm{D}=\mathrm{Ks} \cos ^{2} \theta+\mathrm{C} \cos \theta$

$$
\begin{aligned}
\mathrm{K} & =100 ; \mathrm{C}=0 \\
& =100 \times(2.985-2.225) \cos ^{2}\left(7^{\circ} 54^{\prime}\right) \\
& =74.564 \mathrm{~m}
\end{aligned}
$$

05. Ans: (d)

Sol: D = KS + C
$\mathrm{K}=95, \mathrm{~S}=2.65-0.65$
$\mathrm{D}=95(2.65-0.65)+0.5=190.5 \mathrm{~m}$

07. Ans: (b)

Sol: $\mathrm{D}=\frac{\mathrm{S}}{\tan \alpha_{1}+\tan \alpha_{2}}=\frac{2}{\tan \left(1^{\circ} 12^{\prime}\right)+\tan \left(1^{\circ} 30^{\prime}\right)}$

$$
=42.43 \mathrm{~m}
$$

$\mathrm{V}=\mathrm{D} \tan \alpha_{2}=42.43 \tan \left(1^{\circ} 30^{\prime}\right)=1.112$
R.L of A = 100-1.12-0.5=98.39 m

08. Ans: (a)

Sol: $D=(206265) \frac{S}{\beta}$

$$
\beta=(30 \times 60)+15=1815
$$

$$
\mathrm{D}=(206265) \frac{1.25}{1815}=142.06 \mathrm{~m}
$$

9. Ans: (d)

Sol: $\mathrm{D}=\frac{\mathrm{KS}}{\mathrm{m}} \cos ^{2} \theta+\mathrm{C} \cos \theta$

$$
\frac{1000 \times 2}{m} \cos ^{2} 6^{\circ}+0.5 \cos 6^{\circ}
$$

$$
\therefore \mathrm{m}=19.88
$$

10. Ans: (a, b, c)

Sol: (i) $\mathrm{D}=\mathrm{KS}+\mathrm{C}$ is applicable only if line of sight is truly horizontal and staff is vertical
(ii) When telescope is truly anallatic the additive constant becomes zero
(iii) Tacheometry has errors seldom exceeding $\frac{1}{1000}$
(iv) Tacheometric constants are

$$
\mathrm{K}(\text { Multiplying constant })=\frac{\mathrm{f}}{\mathrm{i}} \text { it is }
$$

diemensionless.
But $C=f+d$ it is having a dimension that is m or cm

$$
\begin{aligned}
& \mathrm{AB}=100 \times 0.35+0.2=35.2 \mathrm{~m} \\
& \mathrm{AC}=100 \times 0.25+0.2=25.2 \mathrm{~m} \\
& \cos 51^{\circ} 30^{\prime} 30^{\prime \prime}=\frac{\mathrm{AB}^{2}+\mathrm{AC}^{2}-\mathrm{BC}^{2}}{2 \mathrm{AB} \times \mathrm{AC}} \\
& \mathrm{BC}=27.746 \mathrm{~m}
\end{aligned}
$$

12. Horizontal \& Vertical Curves

01. Ans: (c)

Sol: $\mathrm{D}=2^{\circ}$
Chord length $=30 \mathrm{~m}$
$\Delta=30^{\circ}$
$\ell=\frac{30 \Delta}{2}$
$\ell=\frac{30 \times 30}{2}$
$\ell=450 \mathrm{~m}$
$\ell=\frac{\pi \mathrm{R} \Delta}{180}$
$\frac{450 \times 180}{\pi \times 30}=\mathrm{R}$
$\mathrm{R}=859.44 \mathrm{~m}$
Apex distance $=\mathrm{R}[\sec \Delta / 2-1]$

$$
\begin{aligned}
& =859.44\left[\sec \frac{30}{2}-1\right] \\
& =30.32 \mathrm{~m}
\end{aligned}
$$

2. Ans: (a)

Sol: $l=2 \mathrm{R} \sin \Delta / 2$
$341.6=2 \times \mathrm{R} \sin \left(\frac{42}{2}\right)$

$$
\begin{aligned}
& \mathrm{R}=476.61 \mathrm{~m} \\
\ell & =\frac{\pi \times \mathrm{R} \Delta}{180} \\
\ell & =\frac{\pi \times 476.61 \times 42}{180} \\
\ell= & 349.4 \mathrm{~m}
\end{aligned}
$$

3. Ans: (c)

Sol: Offset $=R-\sqrt{R^{2}-x^{2}}$

$$
=500-\sqrt{500^{2}-20^{2}}=0.4 \mathrm{~m}
$$

04. Ans: (c)

Sol: $\mathrm{O}_{\mathrm{o}}=\mathrm{R}-\sqrt{\mathrm{R}^{2}-\left(\frac{\mathrm{L}}{2}\right)^{2}}$

$$
=80-\sqrt{80^{2}-\left(\frac{100}{2}\right)^{2}}=17.5 \mathrm{~m}
$$

5. Ans: (b)

Sol: $\quad L=2 R \sin \frac{\Delta}{2}$

$$
=2 \times 600 \times \sin 30^{\circ}=600 \mathrm{~m}
$$

$$
\text { Mid ordinate }=\mathrm{R}\left(1-\cos \frac{\Delta}{2}\right)
$$

$$
=600(1-\cos 30)=80.38 \mathrm{~m}
$$

6. Ans: (c)

Sol: Tangent length $=\mathrm{R} \tan \frac{\Delta}{2}$

$$
=200 \times \tan 30^{\circ}=115.47 \mathrm{~m}
$$

07. Ans: ($\mathbf{9 2 . 8 2} \mathbf{~ m}$)

Sol: Apex distance $=R\left(\sec \frac{\Delta}{2}-1\right)=92.82 \mathrm{~m}$
08. Ans: (a)

Sol: Tangent length $=600 \tan 15^{\circ}$

$$
\begin{gathered}
=160.77 \mathrm{~m} \\
\text { Length of curve }=\frac{\pi \mathrm{R} \Delta}{180}=314.15 \mathrm{~m}
\end{gathered}
$$

Change of point of curve $=1650-160.77$

$$
=1489.23 \mathrm{~m}
$$

Point of tangency $=1489.23+314.15$

$$
=1803.39 \mathrm{~m}
$$

9. Ans: (d)

Sol: $\ell=\frac{30 \Delta}{\mathrm{D}}=\frac{30 \times 60}{3}=600 \mathrm{~m}$
10. Ans: (b)

Sol: $L=\frac{\mathrm{g}_{1}-\mathrm{g}_{2}}{\mathrm{r}}=\frac{-1.5-(-3.7)}{\left(\frac{0.1}{30}\right)}=660 \mathrm{~m}$
11. Ans: (a)

Sol: $\mathrm{L}=\frac{0.80-(-0.70)}{\left(\frac{0.05}{1}\right)}=30$ chains

12. Ans: (c)

Sol: $\mathrm{L}=\mathrm{nh}$

$$
\begin{aligned}
& =200 \times 100 \\
& =20000 \mathrm{~mm} \\
& =20 \mathrm{~m}
\end{aligned}
$$

13. Ans: (c)

Sol: $\mathrm{n}=40 \mathrm{~mm}$
$\mathrm{h}=100 \mathrm{~mm}$
$\mathrm{V}=20 \mathrm{~m} / \mathrm{sec}$

$$
\begin{aligned}
\mathrm{L}=\frac{\mathrm{hV}}{\mathrm{x}} & =\frac{100 \times 20 \times 1000}{40} \\
& =50000 \mathrm{~mm} \\
& =50 \mathrm{~m}
\end{aligned}
$$

14. Ans: (88.88 m)

Sol: $V=20 \mathrm{~m} / \mathrm{sec}$
$\mathrm{a}=0.3$
$\mathrm{r}=300 \mathrm{~m}$
$\mathrm{L}=\frac{\mathrm{v}^{3}}{\mathrm{R} \alpha}=\frac{20^{3}}{300 \times 0.3}=88.88 \mathrm{~m}$
15. Ans: (a)

Sol: $\frac{\mathrm{V}^{2}}{\mathrm{Rg}}=\frac{1}{8}$

$$
\Rightarrow \mathrm{R}=2 \times 78.67=157.34 \mathrm{~m}
$$

16. Ans: (61.75 kmph)

Sol: $\mathrm{h}=\frac{\mathrm{GV}^{2}}{\mathrm{Rg}}$

$$
\begin{aligned}
& \begin{aligned}
\Rightarrow V=\sqrt{\frac{\mathrm{hRg}}{\mathrm{G}}} & =\sqrt{\frac{0.100 \times 300 \times 9.61}{}} \\
& =17.155 \mathrm{~m} / \mathrm{s}
\end{aligned} \\
& \text { Velocity }=17.155 \times \frac{18}{5}=61.75 \mathrm{kmph}
\end{aligned}
$$

17. Ans: (a, b, d)

Sol:

(i) Transition curve should meet the straight line and curve tangentially
(ii) The entire super elevation should be applied within the transition curve
(iii) Ideal -transition curve for highway is spiral or clothoid.
(iv) Centrifugal ratio for railways is kept as 1/8

13. Errors \& Adjustments

01. Ans: ($48^{\circ} 16^{\prime} \mathbf{2 2 . 8 7}{ }^{\prime \prime}$)

Sol: $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=179^{\circ} 59^{\prime} 50.6^{\prime \prime}$
$\mathrm{d}=+9.4^{\prime \prime}$
$C_{c}=\left[\frac{e_{c}^{2}}{e_{A}^{2}+e_{B}^{2}+e_{c}^{2}}\right] d=\left[\frac{2^{2}}{4^{2}+6^{2}+2^{2}}\right] 9.4^{\prime \prime}$
$\mathrm{C}_{\mathrm{c}}=0.67^{\prime \prime}$
Corrected angle $=\left[48^{\circ}, 16^{\prime} 22.2^{\prime \prime}\right]+0.67^{\prime \prime}$

$$
=48^{\circ} 16^{\prime} 22.87^{\prime \prime}
$$

2. Ans: (a)

Sol: A $\rightarrow 5$
$\frac{w t \text { of } 3 \mathrm{~A}}{\mathrm{wt} \text { of } \mathrm{A} / 4}=\frac{5 / 9}{80}=\frac{5}{720}$
03. Ans: $22500 \pm \mathbf{3} \mathbf{m}^{2}$

Sol: Given, side of square $(\mathrm{a})=150 \mathrm{~m}$
Error $\left(e_{a}\right)= \pm 0.010 \mathrm{~m}$
Area $=\mathrm{a}^{2}=(150)^{2}=22500 \mathrm{~m}^{2}$
$\mathrm{e}_{\mathrm{A}}=2 \mathrm{a} . \mathrm{e}_{\mathrm{a}}$

$$
\begin{aligned}
& =2 \times 150 \times 0.010 \\
& = \pm 3 \mathrm{~m}^{2}
\end{aligned}
$$

Probable value $=22500 \pm 3 \mathrm{~m}^{2}$

04. Ans: (d)

Sol: Most probable value

$$
\begin{aligned}
& =\frac{42^{\circ} 12^{\prime} 35^{\prime \prime}+84^{\circ} 25^{\prime} 15^{\prime \prime}+168^{\circ} 50^{\prime} 23^{\prime \prime}}{7} \\
& =42^{\circ} 12^{\prime} 36^{\prime \prime}
\end{aligned}
$$

5. Ans: (d)

Sol: As per laws of weights, "If a quantity of given weight is divided by a factor, the weight of the result is obtained multiplying its given weight by the square of the factor".

$$
3^{2} \times 5=45
$$

06. Ans: (b)

Sol: MPV or WAM

$$
\begin{aligned}
& =40^{\circ}+\frac{20 \times 2+30 \times 3+45 \times 9}{2+3+4} \\
& =40^{\circ} 34^{\prime} 26.67^{\prime \prime}
\end{aligned}
$$

7. Ans: (a)

Sol: $\angle \mathrm{A}=47^{\circ} 32^{\prime} 30^{\prime \prime} \pm 2^{\prime \prime}-\mathrm{e}_{\mathrm{A}}$

$$
\angle \mathrm{B}=24^{\circ} 16^{\prime} 40^{\prime \prime} \pm 3^{\prime \prime}-\mathrm{e}_{\mathrm{B}}
$$

$$
\mathrm{E}_{\mathrm{C}}= \pm \sqrt{\mathrm{e}_{\mathrm{A}}^{2}+\mathrm{e}_{3}^{2}}
$$

$$
= \pm \sqrt{2^{2}+3^{2}}= \pm 3.605^{\prime \prime}
$$

8. Ans: (d)

Sol: $\mathrm{e}_{\mathrm{B}}= \pm \sqrt{\mathrm{e}_{\mathrm{a}}^{2}+\mathrm{e}_{\mathrm{b}}^{2}+\mathrm{e}_{\mathrm{c}}^{2}}$

$$
= \pm \sqrt{1^{2}+1^{2}+1^{2}}= \pm \sqrt{3} \prime \prime
$$

9. Ans: (c)

Sol: Radius, r $=12.25$

$$
\begin{aligned}
\mathrm{e}_{\mathrm{r}} & = \pm 0.03 \mathrm{~m} \\
\mathrm{~A} & =\pi \mathrm{r}^{2} \\
\mathrm{e}_{\mathrm{A}} & =2 \pi \mathrm{r} \mathrm{e}_{\mathrm{r}} \\
& = \pm 2.309 \mathrm{~m}^{2}
\end{aligned}
$$

10. Ans: $\mathbf{4 7 1 . 4 3 5 2} \pm \mathbf{2 . 3 0 9} \mathbf{m}^{\mathbf{2}}$

Sol: MPV of an area

$$
\begin{aligned}
& =\mathrm{A} \pm \mathrm{e}_{\mathrm{A}} \\
& =\left(\pi \times 12.25^{2}\right) \pm 2.309 \\
& =471.4352 \pm 2.309 \mathrm{~m}^{2}
\end{aligned}
$$

11. Ans: $(\pm \mathbf{1 . 3 2} \mathbf{~ m})$

Sol: $C=2 \pi r$

$$
\begin{aligned}
\mathrm{e}_{\mathrm{c}} & =2 \pi \mathrm{e}_{\mathrm{r}} \\
& = \pm 2 \times \pi \times 0.21 \\
& = \pm 1.32 \mathrm{~m}
\end{aligned}
$$

12. Ans: (d)

Sol: $\angle \mathrm{A}=20^{\circ} 10^{\prime} \pm 0.2$
$\angle \mathrm{B}=100^{\circ} 40^{\prime} \pm 0.1$
$\angle \mathrm{C}=59^{\circ} 10^{\circ} \pm 0.2$

$$
\begin{aligned}
\mathrm{e}_{\mathrm{s}} & = \pm \sqrt{0.2^{2}+0.1^{2}+0.2^{2}} \\
& = \pm 0.3
\end{aligned}
$$

14. Ans: (d)

Sol: $\mathrm{E} \alpha \sqrt{\ell}$

$$
\begin{aligned}
& \frac{\mathrm{E}_{1}}{\mathrm{E}_{2}}=\sqrt{\frac{\ell_{1}}{\ell_{2}}} \quad \text { (or) } \quad \frac{0.09}{\mathrm{E}_{2}} \\
& \text { (or) } \mathrm{E}_{2}= \pm 0.08 \mathrm{~m}
\end{aligned}
$$

15. Ans: (c)

Sol: V = ab c
$\mathrm{e}_{\mathrm{A}}^{2}=(4 \times 3)^{2} 0.02^{2}+(3 \times 3)^{2}(0.01)^{2}+(3 \times$
$4)^{2}(0.02)^{2}= \pm 0.35 \mathrm{~m}$
16. Ans: (d)

Sol: $\frac{1}{\frac{1}{3}+\frac{1}{2}}=\frac{6}{5}$
17. Ans: (a), (b), (c)

Sol:
(i) weight is inversely proportional to varies routs
(ii) Weight of an equation remains unchanging if all the signs of the equation are change
(iii) The most probable value of observation having equal weight is the Arithmetic mean of the observations
$\frac{\partial \mathrm{A}}{\partial \mathrm{b}}=\mathrm{a}=100$
$\mathrm{e}_{\mathrm{A}}^{2}=150^{2}(0.02)^{2}+100^{2}(0.01)^{2}$
$\Rightarrow \mathrm{e}_{\mathrm{A}}= \pm 3.162 \mathrm{~m}^{2}$
$M P V=15000 \pm 3.162 \mathrm{~m}^{2}$

\% ACE
14. Total Station

01. Ans: (c)

Sol: The resolution of coarse mode for distance measurement by total station is $1-2 \mathrm{~s}$.
02. Ans: (d)

Sol: Control Panel of total station will be consisting of Keyboard and LCD.
03. Ans: (a)

Sol: Nickel Cadmium are used as rechargeable batteries in total station
04. Ans: (c)

Sol: Communication between Instrument and prism is the use of Geotronics unicom is used in total station.

05. Ans: (a)

Sol.: Remote elevation measurement (REM) function is used to determine the heights of inaccessible points where it is not possible to located the prism.
06. Ans: (d)

Sol: Data Recorders are the devices used for transferring data from total station to the portable computer.
07. Ans: (c)

Sol: Total station is capable to store the data pertaining to maximum points of 10000 .
08. Ans: (d)

Sol: The following are the advantage of total station
(i) Resection
(ii) Inversing
(iii) REM

09. Ans: (c)

Sol: The function of Electronic Note Book in total station is to store, retrieve and to calculate linear measurements.
10. Ans: (d)

Sol: Survey station Descriptors in the total station are used for
(i) Describing the point about any datum
(ii) Identifying the station
(iii) For attributing data
11. Ans: (b), (c) (d)

Sol: The basic measurement measurements of total station are
(i) Horizontal angle
(ii) Vertical angle
(iii) Sloping distance

Horizontal distance is do not measure with total station.

15. Photogrammetry

01. Ans: (d)

Sol: $\mathrm{r}=86 \mathrm{~mm}$

$$
\begin{aligned}
\mathrm{d}=\frac{\mathrm{rh}}{\mathrm{H}} & =\frac{86 \times 10^{-3} \times 600}{4500} \\
& =0.011466 \mathrm{~m} \\
& =11.466 \mathrm{~mm}
\end{aligned}
$$

2. Ans: (c)

Sol: $S=\frac{f}{H-h}$

$$
=\frac{152 \times 10^{-3}}{1800-300}=\frac{1}{9868}
$$

3. Ans: (a)

Sol: $\frac{\text { Photoscale }}{\text { Mapscale }}=\frac{\text { P.D. }}{\text { M.D. }}$

$$
\begin{aligned}
\Rightarrow \mathrm{PS} & =\frac{188 \times 10^{-3}}{120 \times 10^{-3}} \times \frac{1}{20,000} \\
& =\frac{1}{12766}
\end{aligned}
$$

4. Ans: 406

Sol: $\quad \mathrm{N}_{\mathrm{i}}=\left[\frac{\mathrm{L}_{1}}{\mathrm{~L}}+1\right]$
$\mathrm{N}_{2}=\left[\frac{\mathrm{W}_{1}}{\mathrm{~W}}+1\right]$
$\mathrm{L}=(1-0.6) \times \frac{230 \times 10^{-3}}{\frac{1}{10,000}}=0.92 \mathrm{~km}$
$\mathrm{W}=(1-0.3) \frac{230 \times 10^{-3}}{\frac{1}{10,000}}=1.61 \mathrm{~km}$
$\mathrm{N}_{1}=\frac{\mathrm{L}_{1}}{\mathrm{~L}}+1=\frac{25}{0.92}+1=28.17$
$\mathrm{N}_{2}=\frac{\mathrm{W}_{1}}{\mathrm{~W}}+1=\frac{20}{1.61}+1=13.42$
$\mathrm{N}=\mathrm{N}_{1} \times \mathrm{N}_{2}=406$
05. Ans: (c)

Sol: $\mathrm{H}=1500 \mathrm{~m}$
$\mathrm{h}_{1}=250 \mathrm{~m}$
$\mathrm{d}=115.4 \times 10^{-3}$
$\mathrm{r}=190 \times 10^{-3} \mathrm{~m}$

$$
\mathrm{d}=\frac{\mathrm{r}_{2} \mathrm{~h}_{2}}{\mathrm{H}-\mathrm{h}_{1}}=996.05 \mathrm{~m}
$$

06. Ans: (a)

Sol: focal length $=21.5 \mathrm{~cm}$

$$
S=\frac{1}{45,000}
$$

$$
\text { P.D }=11 \times 10^{-2} \mathrm{~m}
$$

$$
\mathrm{M} \cdot \mathrm{D}=3 \times 10^{-2} \mathrm{~m}
$$

$\mathrm{h}=350 \mathrm{~m}$
$\mathrm{H}=$?
$S=\frac{f}{H-h}$
$\frac{\text { Photo scale }}{\text { Mapscale }}=\frac{11 \times 10^{-2}}{3 \times 10^{-2}}$
$\Rightarrow \frac{21.5 \times 10^{-2}}{\frac{\frac{4-350}{1}}{45,000}}=\frac{11 \times 10^{-2}}{3 \times 10^{-2}} \Rightarrow \mathrm{H}=2988.637 \mathrm{~m}$

A A C	25	Geomatics Engineering

7. Ans: (a)

Sol: $V=\frac{L}{t} \times 3600=216 \mathrm{kmph}$

08. Ans: 620

Sol: $\mathrm{R}=$?
$\mathrm{h}_{\mathrm{a}}=650 \mathrm{~m}, \mathrm{~h}_{\mathrm{b}}=250 \mathrm{~m}$
$\mathrm{f}=250 \times 10^{-3}$
$\mathrm{H}=2700$
$\mathrm{X}_{\mathrm{A}}=299.3 \mathrm{~m}$
$\mathrm{Y}_{\mathrm{B}}=547.82$
$\mathrm{Y}_{\mathrm{A}}=+208.28 \mathrm{~m}$
$X_{B}=-220.5 \mathrm{~m}$

$$
\sqrt{\left(\mathrm{X}_{\mathrm{A}}-\mathrm{X}_{\mathrm{B}}\right)^{2}+\left(\mathrm{Y}_{\mathrm{A}}-\mathrm{Y}_{\mathrm{B}}\right)^{2}}=620 \mathrm{~m}
$$

9. Ans: (a)

Sol: $\quad \mathrm{S}_{\mathrm{d}}=\frac{\mathrm{f}}{\mathrm{H}} \Rightarrow \frac{1}{8000}=\frac{25 \times 10^{-3}}{\mathrm{H}}$

$$
\therefore \mathrm{H}=2000 \mathrm{~m}
$$

$$
\mathrm{d}=\frac{\mathrm{r}_{1} \mathrm{~h}_{1}}{\left(\mathrm{H}-\mathrm{h}_{1}\right)}
$$

$$
=\frac{7.50 \times 10^{-2} \times 350}{2000-350}
$$

$$
=0.015 \mathrm{~m}=15.9 \mathrm{~mm}
$$

10. Ans: (d)

Sol: $d=r_{2}-r_{0}$

$$
\begin{aligned}
& =112.5-82.40=30.1 \mathrm{~mm} \\
\mathrm{~h}_{2} & =\frac{\mathrm{d}\left(\mathrm{H}-\mathrm{h}_{1}\right)}{\mathrm{r}_{2}} \\
& =\frac{30.1}{112.5} \times(700-250) \\
& =120.4 \mathrm{~m}
\end{aligned}
$$

11. Ans: 88.68

Sol: $\Delta \mathrm{h}=\frac{\Delta \mathrm{PH}^{\prime}}{\mathrm{b}}$

$$
=\frac{3.5 \times(3000-200)}{110.5}=88.68 \mathrm{~m}
$$

12. Ans: (a), (c), (d)

Sol:
(i) The scale of a photograph is not constant
(ii) Relief displacement decreases as flying height increases. Because relief displacement is inversely proportional to the height of flying.
(iii) Parallax decreases with higher flying height
(iv) Overlap is necessary for stereoscopic vision

Identify the correct statements

16. Triangulation

01. Ans: (c)

Sol: $\alpha=\frac{r \cos ^{2} \theta / 2}{D}$

$$
\begin{aligned}
& =206265 \times \frac{7.5 \times 10^{-2} \times \cos ^{2} 60 / 2}{10 \times 10^{3}} \\
& =1.16^{\prime \prime}
\end{aligned}
$$

02. Ans: 63.85

Sol:

Minimum elevation of line of light

$$
=328+3=331 \mathrm{~m}
$$

(Take as a reference)
Height of $A=372-331=41 \mathrm{~m}$
If line of right from A strike the ground at D_{1}
$\mathrm{D}_{1}=\sqrt{\frac{\mathrm{h}_{1}}{0.06735}}=24.673 \mathrm{~km}$
$\therefore \mathrm{D}_{2}=47.327 \mathrm{~km}$
$\mathrm{h}_{2}=0.06735 \mathrm{D}_{2}{ }^{2}=150.85 \mathrm{~m}$
Elevation of signal at B
$331+150.85=481.85 \mathrm{~m}$
\therefore Signal $@ \mathrm{~B}$ to be required to elevate

$$
=481.85 \mathrm{~m}-418=63.85
$$

3. Ans: (b)

Sol: $\mathrm{D}=8560 \mathrm{~m}$

$$
\begin{aligned}
& r=\frac{140}{2}=70 \mathrm{~mm} \\
& \theta=50^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
\propto & =\frac{206265 \times 70 \times 10^{-3} \times \cos ^{2}\left(\frac{50}{2}\right)}{8560} \\
& =1.53^{\prime \prime}
\end{aligned}
$$

04. Ans: (a), (b), (c), (d)

Sol:
(i) Stations selected closer main triangulation stations to avoid obstructions are called satellite station.
(ii) Station selected for continuity of work and not for observation are pivot stations.
(iii) Laplace stations are triangulation stations at which astronomical azimuths are taken
(iv) Main stations are used to carry forward the network

17. Remote Sensing

02. Ans: (c)

Sol: IRS series of satellites are

1. Low orbiting satellites
2. Geostationary satellites
3. Resource survey satellites

03. Ans: (a)

Sol: A passive sensor uses sun as the source of energy.
04. Ans: (b)

Sol: For interpolation of satellite data used for monitoring dynamic changes that occure on the earth surface, the most suitable orbit for the satellite is sun-synchronous orbit
05. Ans: (d)

Sol: Stereoscopy is not strictly method of remote sensing?
06. Ans: (c)

Sol: Remote sensing techniques makes use of the properties of electromagnetic waves emitted, reflected or diffracted by the sensed objects

07. Ans: (a)

Sol: Scanning in Remote sensing systems employs only one detector.
08. Ans: (c)

Sol: The system that uses the sun as a source of electromagnetic energy and records the naturally radiated and reflected energy from the object is called Passive Remote sensing.
09. Ans: (c)

Sol: The interaction of the electromagnetic radiation produced with a specific wave length to illuminate a target on the terrain for studying its scattered radiance, is called active remote sensing
10. Ans: (d)

Sol: (i) The changing electric fields induce the changing magnetic fields in the surrounding medium
(ii) These are produced by the motion of electric charge
(iii) The oscillation of charged particles sets up changing electric fields

11. Ans: (c)

Sol: Evelyn L. Pruitt, a geographer are coined the term, 'Remote sensing'.
12. Ans: (d)

Sol: The object of photo-intepretation are
(i) Identification
(ii) Recognition of objects
(iii) Judging the significance of objects

13. Ans: (b), (c) and (d)

Sol: The components of remote sensing are
(i) Non interfering atmosphere
(ii) Energy matter interactions
(ii) End user

18. Geographic Information

01. Ans: (c)

Sol: To reduce the productivity is NOT a benefit of using GIS in business applications.
02. Ans: (b)

Sol: ESRI is the leading company for GIS business applications.

03. Ans: (d)

Sol: You work for the corporate office of a popular retail company that has recently begun using a GIS system. Which of the following would NOT be a good reason to use this system is to track store credit card customers who have since closed their accounts
04. Ans: (a)

Sol: Aspects of a GIS system do NOT include Legal representation of a physical location.

05. Ans: (b)

Sol: Tables can GIS NOT be used to visualize

19. Global Positioning System

01. Ans: (c)

Sol: Three minimum number of satellites required from which signals can be recorded to enable a global positioning system receiver to determine latitude, longitude and altitude.
02. Ans: (c)

Sol: The most widely used antenna in GPS is
Microstrip antenna
03. Ans: (b)

Sol: Positional accuracies~1 -2 m if rover is less than $1-2 \mathrm{~km}$ from the reference station parameters is accurate for DGPS
04. Ans: (a)

Sol: For air borne application and materialization of GPS receiver and easy construction, Microstrip is the most frequency used antenna?
05. Ans: (d)

Sol: To uniquely determine the position of the user using GPS, one needs to receive signals from atleast 4 satellites.
06. Ans: (c)

Sol: In GPS, receivers are used quartz clocks
07. Ans: (a)

Sol: A passive sensor uses sun as the source of energy.

ACE	29	Geomatics Engineering

8. Ans: (d)

Sol: The code based GPS receivers are generally used for
(i) Land navigation(ii) Vehicle tracking
(iii) Trans movement
09. Ans: (c)

Sol: The GPS space segment consists of Navigation Satellite Timing and Ranging whose number is 24
10. Ans: (a), (b) and (c)

Sol: (i) GPS require 24 active satellites
(ii) A minimum of 4 satellite connects are required for accurate positioning
(iii) It works on the principle of trilateration
(iv) quartz clocks are installed in user equipments to minimise the errors.

