

CIVIL ENGINEERING

GEOMATICS ENGINEERING

Text Book: Theory with worked out Examples and Practice Questions

Geomatics Engineering

(Solutions for Text Book Practice Questions)

07. Ans: (a, b, c)

Sol: Surveys based on classification upon nature of field are

- Cadastral survey
- Hydrographic survey
- Astronomical survey

Geological survey is used for the study of rocks.

 OCE
 Regular Live Doubt clearing Sessions
 Free Online Test Series | ASK an expert

 Online
 Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

2

ACE Engineering Publications	3	Geomatics Engineering
03. Ans: (d) Sol: $C_{sag} = \frac{w^2 L}{24P^2}$ $= \frac{25^2 \times 50}{24 \times 150^2}$ = 0.0579 m (-)		$\tan\left(\frac{\theta}{2}\right) = \frac{330/2}{\text{AD}}$ $AD = 212.9 \text{ m}$ $\simeq 213 \text{ m}$ 06. Ans: (d)
Correct distance = $50 - 0.0579$ = 49.942 m		Sol: Length of chain L = 30m Incorrect length of chain L' = 29.8m Measured distance $\ell' = 450$ m
04. Ans: (b) Sol: $\tan 60^\circ = \frac{BD}{BC}$ $BD = 250 \tan 60^\circ$ = 433.012 m $\sin 60^\circ = \frac{BD}{CD}$ CD = 500 m $\tan 45 = \frac{EB}{BC}$ EB = 250 m $\sin 45 = \frac{BE}{EC}$ EC = 354 m	RI/	Actual distance = $\ell'\left(\frac{L'}{L}\right)$ = $450 \times \frac{29.8}{30} = 447 \text{ m}$ 07. Ans: (a) Sol: Length of base line = 2500 m Elevation = 200 m Radius of the earth R = 6370 km $C_{MSL} = \frac{Lh}{R}$ = $\frac{2500 \times 200}{6370 \times 10^3} = -0.0785 \text{m}$
05. Ans: 213 m Sol: $\sin \theta_1 = \frac{180}{300}$ $\theta_1 = 36.86$ $\sin \theta_2 = \frac{150}{240}$ $\theta_2 = 38.68$ $\theta = \theta_1 + \theta_2 = 75.54$ 150 + 180 = 330		The correction is negative, if the measured distance is above MSL. 08. Ans: (b) Sol: $1 \frac{\sqrt{25^2 + 1^2}}{\theta}$ Slope correction = ? Length = 60 m

Gradient = 1 in 25 $\cos \theta = \frac{25}{\sqrt{25^2 + 1^2}} = 0.99$ $= 60 (1 - \cos 2.29) = 48 \text{ mm}$

09. Ans: (d)

Sol: Length of tape L = 30 m Pull = 10 kg 3 spans of 10 m Area of cross section A = 0.08 sq. cm Density of tape = 7.86 g/cc Correction for sag = $\frac{w^2 \ell}{24n^2 P^2}$ w = 7.86 ×0.08 × 30 × 100 = 1.88 kg $C_{sag} = \frac{(1.88)^2 (30)}{24 \times 3^2 \times 10^2} = -0.0049$ m

10. Ans: (a)

Sol: 30 m chain 10 cm too long measured distance = 2500 m 15 cm too long at the end of day total distance = 4500 m True distance =? For 2500 m; L'= $\frac{30+30.1}{2}$ = 30.05 m $\ell_1 = 2500 \times \frac{30.05}{30} = 2504.16$ m For 2000 m; L'= $\frac{30.1+30.15}{2}$ = 30.125 $\ell_2 = 2000 \times \frac{30.125}{30} = 2008.33$ m Total = 2504.16 + 2008.33 = 4512.49 m Regular Live Doubt cleari Affordable Fee | Available II

11. Ans: (d) **Sol:** Length of tape = 50 mStd. temperature = 20° C Pull = 10 kgMeasured temperature $=50^{\circ}$ $\alpha = 1 \times 10^{-6} / ^{\circ} C$ $C_{\text{Temp}} = l \alpha \Delta T$ $= 50 \times 1 \times 10^{-6}$ (50–20) $= 1.5 \times 10^3 \,\mathrm{m}$ True length of a tape = 50.0015 m 12. Ans: (a, b, c) Sol: If a chain is found to be too long it may be adjusted Closing the opened joints of the rings Removing one or more circular rings Replacing worn out rings

Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert
Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages

CIVIL-Postal Coaching Solutions

Engineering Publications	6 CIVIL-Postal Coaching Sol	lutions
08. Ans: (a)	12. Ans: (b)	
Sol: $D = 6^{\circ}30' W$	Sol: True bearing = magnetic bearing \pm	
MB = ?	declination	
$TB = S32^{\circ}30'E = 147^{\circ}30'$	$= 187^{\circ}30' - 2^{\circ} = 185^{\circ}30'$	
$TB = MB \pm D$	$T.B = 185^{\circ}30' - 3^{\circ}30' = 182^{\circ}$	
$147^{\circ}30' + 6^{\circ}30' = MB$		
$MB = 154^{\circ}$	13. Ans: (b)	
	Sol: FB of PA	
09. Ans: (a) B	$= N48^{\circ}45'W (360^{\circ} - 48^{\circ}45' - 31)$	1°15′)
Sol:	BB of PA = $311^{\circ}15' - 180^{\circ} = 131^{\circ}15'$	5'
A	= FB of	AP
	Observed F.B of AP S50°30'E (129°	'30')
	\therefore Correction for L.A = +1°45′ at A	
	Corr. M F.B of $AB = 80^{\circ}50' + 1^{\circ}45'$	
$\angle BAC = 90^{\circ}$	$= 82^{\circ}35'$	
	Corr T.B of $AB = 82^{\circ}35' + 3^{\circ} = 85^{\circ}35'$	35'
10. Ans: (b) Sol:	= N85°35' E Sol:	
50°30′	Line F.B B.B	7
205°	AB 20° 201° 200° -1 at B	;
25°30′	BC 100° 280°]
	$CA 230^{\circ} 50^{\circ}$	7
$\angle CAB = 205^{\circ}$	15. Ans: (a)	_
11. Ans: (d)	Sol:	139°
Sol: Q	Bearing of a line $AB = 165^{\circ}$	N124°
	$\angle ABC = 139^{\circ}$ B	
20°15′	FB of BC = $139^{\circ} - 15^{\circ}$	
0 337°45′	= 124°	
$\angle QOP = 42^{\circ}30'$		
Regular Live Doub	clearing Sessions Free Online Test Series ASK an expert	
CCE Regular Live Doub Online Affordable Fee Avai	able 1M 3M 6M 12M 18M and 24 Months Subscription Packa	ges

16. Ans: (b)

Sol:

17. Ans: (a, b, c)

- Sol: In Centesimal System, an angle is measured in grades, minutes, and seconds.
 - Dip is an angle measured in the vertical plane.
 - Compass are graduated in centesimal system
 - Dip is not treated as natural source of error
 - Isogonic lines are lines joining points of same or equal declination angle.
 - Isoclinic lines are lines joining points of same or equal dip angle

04. Plane Table Survey

- 01. Ans: (c) Sol: PP' = e.K E = 50 cm = 500 mm; $K = \frac{1}{1000} = 500 \cdot \frac{1}{1000} = \frac{1}{2} = 0.5 \text{ mm}$
- 02. Ans: 0.125 mm

Sol:
$$PP' = e.K$$

$$K = \frac{1}{2000}$$
$$= 250. \frac{1}{2000} = 0.125 \,\mathrm{mm}$$

03. Ans: (c)

Sol: The method of plane tabling commonly used for establishing the instrument station the method of Resection

04. Ans: (d)

Sol: For locating an inaccessible point with the95 help of only a plane table, we use Intersection method.

05. Ans: (b, c)

- Sol: If the plane table lies on the great circle we do not get best fix.
 - Best fix is obtained when point lies inside great triangle near the orthocenter.
 - Trial point should always be at one side of the resectors.
 - Lehamann's is more accurate than 2 point problem.

A ace online

05. Levelling

01. Ans: 1 in 24

Sol: 0.750, 1.55, 2.25, 2.85, 3.55, 1.75, 2.45, 3.65, 0.950, 2.95, 3.15, 3.75

BS	IS	FS	Rise	Fall	RL
0.750					100.50
	1.550			-0.80	
	2.250			-0.70	
	2.850			0.60	
1.75		3.550		-0.70	
	2.450			-0.70	
0.950		3.650		-1.20	
	2.95			-2.0	
	3.15			-0.2	
		3.75		-0.6	93.00

Gradient =
$$\frac{\text{Difference in RL's}}{9 \times 20}$$

= $\frac{7.50}{9 \times 20}$ = 1 in 24

C.S.R on B = $2.735 - 0.06735 \times 1.55^{2}$ = 2.573 m T.R.L difference between A & B = 2.573 - 0.785

 $= 1.788 \text{ m} \simeq 1.8 \text{ m}$

03. Ans: (b)

8

Sol: Dip of horizon, $\theta = \frac{D}{R}$ in radians

$$d = \sqrt{\frac{h}{0.06735}} = \sqrt{\frac{45}{0.06735}}$$
$$d = 25.84 \text{ m}$$

$$\theta = \frac{25.84}{6371} = 0.004 \,\mathrm{m}$$

05. Ans: (a)

Sol: Radius of curvature of bubble tube $=\frac{n\ell D}{S}$

$$=\frac{5\times(2\times10^{-3})\times100}{0.05}=20 \text{ m}$$

06. Ans: (b)

CIVIL-Postal Coaching Solutions

ACE Engineering Publications	9 Geomatics Engineering		
$D = D_1 + D_2$	$e = \frac{-1}{2} [(h_{a} - h_{b}) - (h_{a}' - h_{b}')]$		
$=\sqrt{\frac{12}{0.06735}} + \sqrt{\frac{35}{0.06735}} = 36.144 \text{ km}$	$=\frac{-1}{2}[(1.625 - 2.545) - (0.725 - 1.405)]$		
07. Ans: (c)	= 0.12		
Sol	$\mathbf{e} = \mathbf{e}_{\rm col} + \mathbf{e}_{\rm c} + \mathbf{e}_{\rm R}$		
165.505 Roof	$0.12 = e_{col} + 0.07857(1)^2 + (-0.01122(1)^2)$		
0.745 1.450	$e_{col} = 0.05265 \text{ m}$		
$m_{(-)}^{0.745}$			
	$\theta = \tan^{-1} \left(\frac{0.05265}{1000} \right) = 10.86''$		
GINE	AC		
=HI- FS r	09. Ans: 151.90 m		
R.L of floor = $(165.505-0.745)-1.450$	Sol: \sum Rise – \sum Fall = Last R.L. – First R.L		
=163.310 m	2.645 - (1.245) = L.R.L - 150.500		
	\Rightarrow L.R.L = 151.90 m		
08. Ans: (a)	\rightarrow L.K.L = 131.90 III		
Sol: Instrument Staff reading	10. Ans: (d)		
AB	Ans: $60^2 - h$		
A 1.625 2.545	Ans: $60^2 = \frac{h}{0.06735}$		
B 0.725 1.405	\Rightarrow h = 242.46 m		
$A_1 \rightarrow A \Rightarrow h_a B_1 \rightarrow A \Rightarrow h_a'$ Since	ce 1995		
$A_1 \to B \Longrightarrow h_b \qquad B_1 \to B \Longrightarrow h_b'$	11. Ans: (a)		
	Sol: 0.680 m, 1.455 m, 2.330 m, 2.885 m,		
I-Instrument Set up:	3.380 m 1.055 m		
$N \rightarrow N \Longrightarrow h_a$	Stn. BS IS FS Rise Fall RL Remar		
\rightarrow F \Rightarrow h _b	1 0.680 81.305		
	2. 1.455 0.775		
II Instrument Sature	3. 2.330 0.875 4. 2.885 0.555 79.100		
II-Instrument Setup:	4. 2.885 0.555 79.100 5 1.055 3.380		
Near to near = h_b'			
Near to further $= h_a'$	81.305 - 0.775 = RL of 2		
	RL of 2 - 0.875 = RL of 3		
	for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams learning experience in various languages at your convenience		
	tear ming experience in various languages at your convenience		

CIVIL-Postal Coaching Solutions

12. Ans: (d)

Sol:

Difference in staff reading = 3.462 - 2.847= 0.615 m Difference in R.L. = 284.295 - 283.665 m = 0.63 m Difference of the above = 0.615 - 0.63= 0.015 m

 $e_{col} = 0.015 \text{ m of } 25 \text{ m}$

 $100 \,\mathrm{m} \rightarrow \frac{100}{25} \times 0.015 = 0.06 \,\mathrm{m}$

13. Ans: (a) Sol: $\Sigma B.S - \Sigma FS = L.R.L - F.R.L$ -6.2 - (? + 0.85) = 196.1 - 200? = -3.150 m

14. Ans: (a)
Sol:
$$H = \frac{1}{2}[(1.03 - 1.630) + (0.950 - 2.740)]$$

 $= -1.195$
R.L of Q = 450 - 1.195
 $= 448.805$ m

ace online

Sol:

BS	IS	FS
3.425		
	2.650	
2.150		0.850
2.850		1.780
	1.250	
		0.525

16. Ans: (d)
Sol: P Q
P 1.525 2.325
Q 1.545 2.265

$$e = \frac{-1}{2}[(1.525 - 2.325) - (1.545 - 2.265)]$$

= 0.04 m
17. Ans: (c)
Sol: $\alpha' = \frac{S}{nD}(206265)$
 $= \frac{1.60 - 1.55}{4 \times 100}(206265) = 25.78 \text{ sec}$

18. Ans: (a)
Sol: 74.500 + 4.685 = 79.185 m

19. Ans: (b) Sol: Error = 0.015 $e = e_{col} + e_c + e_r$ $\Rightarrow 0.015 = e_{col} + 0.06735 (1.5)^2$ $\Rightarrow e_{col} = -0.1365 \text{ m}$

 Regular Live Doubt clearing Sessions
 Free Online Test Series
 ASK an expert

 Affordable Fee
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

Engineering Publications	11 Geomatics Engineering
20. Ans: (d) Sol: n = 1, R = 1.1 m $\alpha' = \frac{\ell}{R} = \frac{1}{1.1 \times 10^3} = \frac{1}{1100}$	06. Theodolite 01. Ans: (a) Sol: Circular curve ranging is carried out by two
 21. Ans: (a, b, d) Sol: Levelling Levelling Eliminates error due to inadjustment of line of sight Levelling Eliminates error due to curvature Levelling Eliminates the combined error due to curvature and refraction completely. Levelling Eliminates the error due to refraction completely. 	 theodolite method. 02. Ans: (a) Sol: In a transit theodolite, any incidental error due to eccentricity of verniers is primarily counteracted by Reading both the verniers. 03. Ans : (a) Sol: In a transit theodolite, error due to eccentricity of vernier is eliminated by reading of both verniers. 04. Ans : (d) Sol: For minor adjustments of horizontal angles measured using a theodolite, the tangential screw is adjusted after both the plates are
 22. Ans: (a, b, c) Sol: As we observe the staff readings it indicates increasing value. That means the ground is sloping down. There is only one change in point. i.e., at 0.5 m. 	 clamped. 05. Ans : (a) Sol: Electronic theodolites of various ranges in which measured angle are displayed originally on display board are based on special optical technology. 06. Ans: (a, b, c) Sol: • Plate level axis perpendicular to vertical axis. • Horizontal axis perpendicular vertical axis. • Line of sight perpendicular to vertical axis where line of sight is horizontal. • Altitude level axis perpendicular to plate level axis
	h m for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams e learning experience in various languages at your convenience

ace online

Q′

2.5m

ACE Engineering Publications	13 Geomatics Engineering
 08. Traversing & Omitted Measurements 01. Ans: (d) Sol: Given L = - 102.65 m 	$\theta = 29.03^{\circ}$ FB at PQ = N 29.03° W WCB at PQ = $360^{\circ} - 29.03^{\circ}$ = $330.97^{\circ} = 330^{\circ} 58'$
L = $\ell \cos \theta$ -102.65 = $\ell \times \cos (55^{\circ} 30')$ $\ell = -205.82 \text{ m}$ Departure (D) = $\ell \sin \theta$ $= -205.82 \sin (55^{\circ} 30')$ = (-) 178.40 m 02. Ans: -124.22, 174.99 Sol: T.L of B = -34.5 - 128 cos 45° 30' = -124.22 m T.D of B = 83.7 + 128 sin 45° 30' = 174.99 m B = (-124.22, 174.99)	$\mathbf{r} = \frac{\mathbf{e}}{\mathbf{p}} = \frac{0.6403}{1500} = \frac{1}{2343} \mathrm{m}$ 05. Ans: (a) Sol: 200cos θ + 98cos 178° + <i>l</i> cos (270°) + 86.4 cos (1°) = 0 200 sin θ + 98sin (178°) + <i>l</i> sin270° +86.4 sin 1° = 0 <i>l</i> cos (270°) + 200 cos θ = 11.55 <i>l</i> sin (270°) + 200 sin θ = -4.92
03. Ans: (b) Sol: L = Latitude = 89 m (N) D = Departure = -49.4 [W] FB at PQ $\Rightarrow \theta = \tan^{-1} \left[\frac{D}{L} \right]$ $\theta = \tan^{-1} \left[\frac{49.4}{89} \right]$	06. Ans: (c) Sol: A B L 40 20 D -20 30 F.B = $\tan^{-1} \frac{30+20}{20-40} = 68^{\circ}11'$ = S68° 11' E
Geo	m for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams e learning experience in various languages at your convenience

ACE **CIVIL-Postal Coaching Solutions** 14 08. Ans: (b) B.B = $\tan^{-1} \frac{-20 - 30}{40 - 20}$ **Sol:** Length = $\sqrt{(1.39)^2 + (2.17)^2}$ $L_2 - L_1 = 20 - 40 = -20$ (S) = 2.577 m $D_2 - D_1 = 30 - (-20) = 50 (E)$ Closing error $AB = \sqrt{(-20)^2 + (50)^2} = 53.85 \text{ m}$ $\theta = \tan^{-1}\left(\frac{2.17}{1.39}\right) = 57^{\circ}21'$ $360^{\circ} - \tan^{-1}\left(\frac{2.17}{1.39}\right) = 302^{\circ} \, 39'$ 07. Ans: (a) Sol: 09. Ans: (c) $l_{\rm CB} = ?$ **Sol:** D = 1045°95′ $\theta = \tan^{-1} \left(\frac{10}{10} \right) = 45^{\circ}$ (1500, 1300)29°30 10. Ans: (a) **Sol:** $\theta = \tan^{-1}\left(\frac{L}{D}\right) = \tan^{-1}\left(\frac{100}{60}\right) = 59^{\circ} 2'$ (150,200) FB of AC = $N29^{\circ}30'E$ 11. Ans: (d) FB of BC = S $45^{\circ}45'W$ Sol: 120° $\sum L = 1500 - 150 = l_1 \cos 29^{\circ} 30' + l_2 \cos 45^{\circ} 45'$ $1\overline{05^{\circ}}$ $\Sigma D = 1300 - 200 = l_1 \sin 29^{\circ} 30' + l_2 \sin 45^{\circ} 45'$ $1350 = l_1 \cos 29^{\circ} 30' + l_2 \cos 45^{\circ} 45' \dots \dots \dots (1)$ 71°34′ $1100 = l_1 \sin 29^{\circ} 30' + l_2 \sin 45^{\circ} 45' \dots (2)$ 3°26 By solving 1 & 2 $l_1 = 712.714$ m В $l_2 = 1045.7 \text{ m}$ Length of AB = $\sqrt{(800-600)^2 - (600-500)^2} = 223.606 \text{ m}$

 Regular Live Doubt clearing Sessions
 Free Online Test Series | ASK an expert

 Affordable Fee |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

A ace online

ace online

$\tan \alpha = \frac{200}{100} = 2$	09. Contouring
100	
$\alpha = 63^{\circ} 26'$	01. Ans: (b)
The W.C.B of the line AB is $180^{\circ} - 63^{\circ} 26'$	Sol: 52.500 61.70 74.600
$= 116^{\circ} 34'$	A ^X X X L B
The Δ^{le} ACB,	= 50 m
$\angle CAB = 116^{\circ}34' - 45^{\circ} = 71^{\circ}34'$	61.70 - 52.500
$\angle ACB = 225^{\circ} - 120^{\circ} - 105^{\circ}$	$\mathbf{x} = \frac{61.70 - 52.500}{74.600 - 52.50} \times 50$
$\angle ABC = 180 - (71^{\circ}34' + 105^{\circ}) = 3^{\circ}26'$	x = 20.82 m
$\frac{223.606}{\sin 105^{\circ}} = \frac{BC}{\sin(71^{\circ}34')} = \frac{CA}{\sin(3^{\circ}26')}$	02. Ans: (d)
$\sin 105^{\circ} \sin (71^{\circ}34') \sin (3^{\circ}26')$	Sol: H.E = $\frac{20}{(1+50)}$ = 1000 m
BC = 219.616 m	(1750)
CA = 13.863 m	$R = \frac{1000}{25,000} = 0.04 \mathrm{m}$
Latitude of $CA = 13.863 \cos 225^\circ = -9.675$	23,000
Departure CA = $13.863 \sin 225^\circ = -9.675$	03. Ans: (c)
Independent coordinates of 'C'	Sol: Scale : 1 : 20000
East = 600 + 9.675 = 609.675 m	Gradient = $\frac{4}{100}$
North = $600 + 9.675 = 609.675$ m	Interval = 20 m
Since	1995
12. Ans: (a, b, c)	Radius $=\frac{20}{20000}=2.5$ cm
Sol: $e = \sqrt{(-3.5)^2 + (2)^2}$	04. Ans: (a, b, c, d)
Error = 4.03	Sol:
Correction = -4.03	(i) For larger area, greater contour interval is selected.
$R.E = \frac{Error of closure}{Error of closure}$	(ii) Contours always closes upon each other
Perimeter	(iii) Concavity of higher value contour lies
$R.E = \frac{4.03}{2025} = \frac{1}{502.48}$	towards lower value contour in case of
$\text{R.E} = \frac{1}{2025} = \frac{1}{502.48}$	ridges
	(iv) Contours cross valley at 90°

Engineering Publications	16 CIVIL-Postal Coaching Solutions
10. Areas & Volumes	03. Ans: (d) Sol: 10 30 -20 50 10
01. Ans: (d) Sol: A (10, 20)	Sol: $10 \times 30 \times -20 \times 50 \times 10$ $50 -40 \times 60 -20 \times 50$
B (-30, 40) C (50, -60) D (70, -80)	Area of ABCDA = $\frac{1}{2} \begin{vmatrix} (-400 - 1500) + (1800 - 800) + (400 - 3000) \\ + (2500 + 200) \end{vmatrix}$ = 400 m ²
$m_{1} = \frac{20}{2} = 10$ $m_{2} = 10 + \frac{10}{2} + \frac{20}{2} = 40$ $m_{3} = 40 + \frac{20}{2} - \frac{30}{2} = 30$	= 0.04 hectare's 04. Ans: 288000 m ³ Sol: Horizontal equivalent = $\frac{\text{Contour interval}}{\text{gradient}}$
$m_4 = 30 - 30 - 40 = -40$ $A = 10 \times 10 - 30 \times 40 + 30 \times 50 - 40 \times 70$ = 100 - 1200 + 1500 - 2800 = -4000 + 1600 $= -2400 \text{ m}^2$	$=\frac{330-210}{\frac{1}{30}} = 3600 \text{ m}$ $1V - 0.5 \text{ H}$ $4V - ? \text{ H} = 8 \text{ m}$ $Volume = \left(\frac{28+12}{2}\right) \times 3600 \times 4$
02. Ans: 2111 m ³ Sol: b = 8.8 n = 1.5 d = 20 A = [b + nh] h A ₁ = [8.8 + 1.5 × 1.8] 1.8 = 20.7 m ² A ₂ = [8.8 + 1.5 × 2.4] 2.4 = 29.76 m ² A ₃ = [8.8 + 1.5 × 3]3 = 39.9 m ² A ₄ = [8.8 + 1.5 × 3.6] 3.6 = 51.12 m ² V = 20 $\left[\frac{20.7 + 51.12}{2} + (29.76 + 39.9) \right]$ V= 2111 m ³	$= 288000 \text{ m}^{3}$ 05. Ans: (b) Sol: A ₁ = 10 × 4 = 40 m ² A ₂ = 6 × 2 = 12 m ² A _m = $\left(\frac{10+6}{2}\right)\left(\frac{4+2}{2}\right)$ = 8.2 = 24 m ² $V = \frac{h}{6}[A_1 + 4A_m + A_2]$ $= \frac{8}{6}[40 + 4(24) + 12]$ $V = 197.33 \text{ m}^{3}$

Regular Live Doubt clearing Sessions | Free Online Test Series | ASK an expert Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

A ace online

Engineering Publications	17 Geomatics Engineering
06. Ans: (b)	11. Tacheometry
Sol: $A = d \left[\frac{O_1 + O_n}{2} + O_2 + O_3 + \dots O_{n-1} \right]$	01. Ans: (b)
$A_1 = 5 \left[\frac{5+6}{2} + 4 + 5.5 + 5 \right]$	Sol:
= 95	
$A_{2} = 10 \left[\frac{6+4.5}{2} + 4 \right] = 92.5$	$\Rightarrow \text{With an allactic lens}$
$A = A_1 + A_2 = 187.5m^2$	k = 100 C = 0
07. Ans: (b)	$D_1 = ks \cos^2 \theta + C \cos \theta$
Sol: $A = M [F.R - I.R \pm 10 N + C]$	$D_1 = 100 \times 1.750 \times \cos^2 5^\circ 30'$
$A = 10,000 [2.64 - 6.356 + 10 \times 3 + 0]$	$D_1 = 173.39 \text{ m}$
A = 2,62,840 mm ²	\Rightarrow With K = 101 & C = 0.6
08. Ans: (38, 160 m ²)	$D_2 = KS \cos^2 \theta + C \cos \theta$
Sol: $A = M [FR - IR \pm 10 N + C]$	$D_2 = 101(1.75)\cos^2(5^\circ 30') + 0.6\cos(5^\circ 30')$
$= 10 \left[7284 - 3468 - 10 \times 2 + 20 \right]$	$D_2 = 175.72 \text{ m}$
$= 38,160 \text{ mm}^2 \text{ (on the plan)}$	% age of error = $\frac{D_1 - D_2}{D_1} \times 100$
Scale 1:1000 Sinc	$= \frac{1995}{175.72 - 173.39} \times 100$
1 mm = 1 m	$=\frac{17072}{173.39}\times100$
$= (38,160 \times 1 \times 1) \text{ m}^2$	% age of error = 1.35%
$= 38,160 \text{ m}^2$	
09. Ans: (b)	02. Ans: (a)
Sol: V = $\frac{h}{3}$ [first + last) + 4(even) + 2(odd)]	Sol: $L = KS + C$
$\frac{3}{3}$	50 = 0.495 K + C
$=\frac{5}{3}[(3850+450)+4(3450+800)+2(2600)]$	80 = 0.795 K + C
$= 44166.66 \text{ m}^3$	K = 100, C = 0.5

03. Ans: (d) Sol: f = 25 cm = 250 mm, i = 5 mm m.c $\Rightarrow K = \frac{f}{i} = \frac{250}{5} = 50$ A.C $\Rightarrow C = f + d = 250 + 15 cm = 40 cm$ $= 40 \times 10^{-2} m$ C = 0.40 m

04. Ans: (a)

Sol: Horizontal distance, $D = Ks \cos^2 \theta + C \cos \theta$

- K = 100; C = 0 = $100 \times (2.985 - 2.225) \cos^2 (7^{\circ}54')$ = 74.564 m
- 05. Ans: (d)

Sol: D = KS + C K = 95, S = 2.65 - 0.65D = 95(2.65 - 0.65) + 0.5 = 190.5 m

CIVIL-Postal Coaching Solutions

07. Ans: (b)
Sol: D =
$$\frac{S}{\tan \alpha_1 + \tan \alpha_2} = \frac{2}{\tan(1^{\circ}12') + \tan(1^{\circ}30')}$$

= 42.43 m
V = D tanα₂ = 42.43tan(1°30') = 1.112
R.L of A = 100 - 1.12 - 0.5 = 98.39 m
08. Ans: (a)
Sol: D = (206265) $\frac{S}{\beta}$
β = (30 × 60) + 15 = 1815
D = (206265) $\frac{1.25}{1815}$ = 142.06 m
09. Ans: (d)
Sol: D = $\frac{KS}{m} \cos^2 \theta + C \cos \theta$
= $\frac{1000 \times 2}{m} \cos^2 6^{\circ} + 0.5 \cos 6^{\circ}$
∴ m = 19.88

10. Ans: (a, b, c)
Sol: (i) D = KS + C is applicable only if line of sight is truly horizontal and staff is vertical

- (ii) When telescope is truly anallatic the additive constant becomes zero
- (iii) Tacheometry has errors seldom exceeding $\frac{1}{1000}$
- (iv) Tacheometric constants are $K(Multiplying constant) = \frac{f}{i}$ it is

diemensionless.

But
$$C = f+d$$
 it is having a dimension that is

m or cm

	Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert
ace online	Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages

12. Horizontal & Vertical Curves

61. Ans: (c)
501. Offset =
$$R - \sqrt{R^2 - x^2}$$

= $500 - \sqrt{500^2 - 20^2} = 0.4 \text{ m}$
A = 30°
 $\ell = \frac{30\Delta}{2}$
 $\ell = \frac{30\Delta}{2}$
 $\ell = \frac{30\Delta}{2}$
 $\ell = \frac{30\Delta}{2}$
 $\ell = 450 \text{ m}$
 $\ell = \frac{\pi R \Delta}{180}$
501. $O_{\circ} = R - \sqrt{R^2 - (\frac{L}{2})^2}$
 $= 80 - \sqrt{80^2 - (\frac{100}{2})^2} = 17.5 \text{ m}$
61. Ans: (c)
62. Ans: (a)
63. Ans: (b)
63. Ans: (b)
64. Ans: (c)
65. Ans: (b)
61. L = 2R sin $\frac{\Delta}{2}$
 $= 2 \times 600 \times \sin 30^{\circ} = 600 \text{ m}$
Mid ordinate $= R\left(1 - \cos \frac{\Lambda}{2}\right)$
 $= 600 (1 - \cos 30) = 80.38 \text{ m}$
66. Ans: (c)
501. Tangent length $= R \tan \frac{\Lambda}{2}$
 $= 200 \times \tan 30^{\circ} = 115.47 \text{ m}$
77. Ans: (92.82 m)
802. Ans: (a)
803. Ans: (a)
804. Ans: (a)
805. Ans: (b)
805. Ans: (c)
506. Tangent length $= R \tan \frac{\Lambda}{2}$
 $= 200 \times \tan 30^{\circ} = 115.47 \text{ m}$
107. Ans: (92.82 m)
808. Ans: (a)
809. Ans: (a)
801. Tangent length $= 600 \tan 15^{\circ}$
 $= 160.77 \text{ m}$
Length of curve $= \frac{\pi R \Lambda}{180}$
108. Ans: (a)
501. Tangent length $= 600 \tan 15^{\circ}$
 $= 160.77 \text{ m}$
Length of curve $= \frac{\pi R \Lambda}{180}$
109. a smooth miline tearming experience in various languages at your convenience

19

03. Ans: (c)

Geomatics Engineering

ACE Engineering Publications	20		CIVIL-Postal Coaching Solutions
Change of point of curve = $1650-160.77$		14.	Ans: (88.88 m)
= 1489.23 m		Sol:	V = 20 m/sec
Point of tangency = 1489.23+314.15			a = 0.3
= 1803.39 m			r = 300 m
09. Ans: (d)			$L = \frac{v^3}{R\alpha} = \frac{20^3}{300 \times 0.3} = 88.88 \text{ m}$
Sol: $\ell = \frac{30\Delta}{D} = \frac{30 \times 60}{3} = 600 \text{ m}$		15.	Ans: (a)
10. Ans: (b)		Sol:	$\frac{V^2}{Rg} = \frac{1}{8}$ $\Rightarrow R = 2 \times 78.67 = 157.34 \text{ m}$
Sol: $L = \frac{g_1 - g_2}{r} = \frac{-1.5 - (-3.7)}{\left(\frac{0.1}{2.7}\right)} = 660 \text{ m}$		16.	Ans: (61.75 kmph)
(30)			$h = \frac{GV^2}{Rg}$
11. Ans: (a)			hRg $0.100 \times 300 \times 9.61$
Sol: $L = \frac{0.80 - (-0.70)}{\left(\frac{0.05}{1}\right)} = 30$ chains	C		$\Rightarrow V = \sqrt{\frac{hRg}{G}} = \sqrt{\frac{0.100 \times 300 \times 9.61}{9.61}}$ $= 17.155 \text{ m/s}$ $Velocity = 17.155 \times \frac{18}{5} = 61.75 \text{ kmph}$
12. Ans: (c)			5
Sol: $L = nh$			
$= 200 \times 100$		17. A	Ans: (a, b, d)
= 20000 mm		Sol:	
= 20 m		(i) Transition curve should meet the straight
			line and curve tangentially
13. Ans: (c) Sol: $n = 40 \text{ mm}$		(ii) The entire super elevation should be
Sol: $h = 40 \text{ mm}$ h = 100 mm			applied within the transition curve
V = 20 m/sec		(1	iii) Ideal –transition curve for highway is
$L = \frac{hV}{L} = \frac{100 \times 20 \times 1000}{L}$			spiral or clothoid.
$L = \frac{\pi v}{x} = \frac{100 \times 20 \times 1000}{40}$		((iv) Centrifugal ratio for railways is kept as
= 50000 mm			1/8
= 50 m			2.0
Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert			
Online Affordable Fee Availa	able 1M	3M 6N	M 12M 18M and 24 Months Subscription Packages

Engineering Publications	21 Geomatics Engineering
13. Errors & Adjustments	05. Ans: (d)
	Sol: As per laws of weights, "If a quantity o
01. Ans: (48° 16′ 22.87″)	given weight is divided by a factor, the
Sol: $\angle A + \angle B + \angle C = 179^{\circ}59'50.6''$	weight of the result is obtained
d = +9.4''	multiplying its given weight by the square
$\begin{bmatrix} e^2 \end{bmatrix} \begin{bmatrix} 2^2 \end{bmatrix}$	of the factor".
$C_{c} = \left \frac{e_{c}^{2}}{e_{A}^{2} + e_{B}^{2} + e_{c}^{2}} \right d = \left \frac{2^{2}}{4^{2} + 6^{2} + 2^{2}} \right 9.4''$	$3^2 \times 5 = 45$
$C_{c} = 0.67''$	
$C_c = 0.07$ Corrected angle = [48°, 16' 22.2"] +0.67"	06. Ans: (b)
$= 48^{\circ} 16' 22.87''$	ERIASol: MPV or WAM
- 48 10 22.87	$= 40^{\circ} + \frac{20 \times 2 + 30 \times 3 + 45 \times 9}{2 + 3 + 4}$
02. Ans: (a)	2+3+4
Sol: $A \rightarrow 5$	= 40° 34′ 26.67″
wt of 3A 5/9 5	
$\frac{\text{wtors}A}{\text{wtors}A/4} = \frac{377}{80} = \frac{3}{720}$	07. Ans: (a)
	Sol: $\angle A = 47^{\circ}32'30''\pm 2'' - e_A$
03. Ans: $22500 \pm 3 \text{ m}^2$	$\angle B = 24^{\circ} \ 16' 40'' \pm 3'' - e_B$
Sol: Given, side of square (a) = 150 m	$E_{C} = \pm \sqrt{e_{A}^{2} + e_{3}^{2}}$
Error $(e_a) = \pm 0.010 \text{ m}$	
Area = $a^2 = (150)^2 = 22500 \text{ m}^2$ Sin	$=\pm\sqrt{2^2+3^2}=\pm 3.605''$
$e_A = 2a. e_a$	
$= 2 \times 150 \times 0.010$	08. Ans: (d) $\sqrt{2}$
$=\pm 3 \text{ m}^2$	Sol: $e_{\rm B} = \pm \sqrt{e_{\rm a}^2 + e_{\rm b}^2 + e_{\rm c}^2}$
Probable value = $22500 \pm 3m^2$	$=\pm\sqrt{1^2+1^2+1^2} = \pm\sqrt{3} "$
04 Amer (d)	09. Ans: (c)
04. Ans: (d) Sol: Most probable value	Sol: Radius, r = 12.25
I	$e_{r} = \pm 0.03 m$
$=\frac{42^{\circ}12'35''+84^{\circ}25'15''+168^{\circ}50'23''}{7}$	$A = \pi r^2$
= 42°12′36″	$e_A = 2\pi r e_r$
	$=\pm 2.309 \text{ m}^2$
India's Best Online Coaching Platfo	orm for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams
	ne learning experience in various languages at your convenience

LEGIENERING Publications	22 CIVIL-Postal Coaching Solutions		
10. Ans: $471.4352 \pm 2.309 \text{ m}^2$ Sol: MPV of an area = $A \pm e_A$ = $(\pi \times 12.25^2) \pm 2.309$ = $471.4352 \pm 2.309 \text{ m}^2$	14. Ans: (d) Sol: $E\alpha\sqrt{\ell}$ $\frac{E_1}{E_2} = \sqrt{\frac{\ell_1}{\ell_2}}$ (or) $\frac{0.09}{E_2}$ (or) $E_2 = \pm 0.08$ m		
11. Ans: $(\pm 1.32 \text{ m})$ Sol: C = $2\pi r$ $e_c = 2\pi e_r$ $= \pm 2 \times \pi \times 0.21$ $= \pm 1.32 \text{ m}$	15. Ans: (c) Sol: V = ab c $e_A^2 = (4 \times 3)^2 0.02^2 + (3 \times 3)^2 (0.01)^2 + (3 \times 4)^2 (0.02)^2 = \pm 0.35 \text{ m}$		
12. Ans: (d) Sol: $\angle A = 20^{\circ} 10' \pm 0.2$ $\angle B = 100^{\circ} 40' \pm 0.1$ $\angle C = 59^{\circ} 10^{\circ} \pm 0.2$ $e_s = \pm \sqrt{0.2^2 + 0.1^2 + 0.2^2}$ $= \pm 0.3$ 13. Ans: 3.162 m ² Sol: $e_a = \pm 0.02$ m $e_b = \pm 0.01$ m A = ab $e_A^2 = \left(\frac{\partial A}{\partial a}\right)^2 e_a^2 + \left(\frac{\partial A}{\partial b}\right)^2 e_b^2$ $\frac{\partial A}{\partial a} = b = 150$ $\frac{\partial A}{\partial b} = a = 100$ $e_A^2 = 150^2 (0.02)^2 + 100^2 (0.01)^2$ $\Rightarrow e_A = \pm 3.162$ m ² MPV = 15000 \pm 3.162 m ²	 16. Ans: (d) Sol: 1/(3+1)/2 = 6/5 17. Ans: (a), (b), (c) Sol: (i) weight is inversely proportional to varies routs (ii) Weight of an equation remains unchanging if all the signs of the equation are change (iii) The most probable value of observation having equal weight is the Arithmetic mean of the observations 		
Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages			

14. Total Station

01. Ans: (c)

Sol: The resolution of coarse mode for distance measurement by total station is 1-2s.

02. Ans: (d)

Sol: Control Panel of total station will be consisting of Keyboard and LCD.

03. Ans: (a)

Sol: Nickel Cadmium are used as rechargeable batteries in total station

04. Ans: (c)

Sol: Communication between Instrument and prism is the use of Geotronics unicom is used in total station.

05. Ans: (a)

Sol.: Remote elevation measurement (REM) function is used to determine the heights of inaccessible points where it is not possible to located the prism.

06. Ans: (d)

Sol: Data Recorders are the devices used for transferring data from total station to the portable computer.

07. Ans: (c)

Sol: Total station is capable to store the data pertaining to maximum points of 10000.

08. Ans: (d)

23

Since

Sol: The following are the advantage of total station (i) Resection (ii) Inversing (iii) REM

09. Ans: (c)

- Sol: The function of Electronic Note Book in total station is to store, retrieve and to calculate linear
 - measurements.

10. Ans: (d)

- Sol: Survey station Descriptors in the total station are used for
 - (i) Describing the point about any datum
 - (ii) Identifying the station
 - (iii) For attributing data

11. Ans: (b), (c) (d)

Sol: The basic measurement measurements of

- total station are
- 1995 (i) Horizontal angle
 - (ii) Vertical angle
 - (iii) Sloping distance
 - Horizontal distance is do not measure with total station.

A ace online India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

Geomatics Engineering

15. Photogrammetry

01. Ans: (d)

Sol: r = 86 mm

$$d = \frac{rh}{H} = \frac{86 \times 10^{-3} \times 600}{4500}$$

= 0.011466 m
= 11.466 mm

02. Ans: (c)

Sol:
$$S = \frac{f}{H-h}$$

= $\frac{152 \times 10^{-3}}{1800 - 300} = \frac{1}{9868}$

03. Ans: (a)

Sol: $\frac{\text{Photo scale}}{\text{Map scale}} = \frac{\text{P.D.}}{\text{M.D.}}$

$$\Rightarrow PS = \frac{188 \times 10^{-3}}{120 \times 10^{-3}} \times \frac{1}{20,000}$$
$$= \frac{1}{12766}$$

04. Ans: 406

Sol:
$$N_i = \left[\frac{L_1}{L} + 1\right]$$

 $N_2 = \left[\frac{W_1}{W} + 1\right]$
 $L = (1 - 0.6) \times \frac{230 \times 10^{-3}}{\frac{1}{10,000}} = 0.92 \text{ km}$

$$W = (1 - 0.3) \frac{230 \times 10^{-3}}{1} = 1.61 \text{ km}$$

$$N_{1} = \frac{L_{1}}{L} + 1 = \frac{25}{0.92} + 1 = 28.17$$

$$N_{2} = \frac{W_{1}}{W} + 1 = \frac{20}{1.61} + 1 = 13.42$$

$$N = N_{1} \times N_{2} = 406$$
05. Ans: (c) Sol: H = 1500 m
$$h_{1} = 250 m$$

$$d = 115.4 \times 10^{-3} m$$

$$d = \frac{r_{2}h_{2}}{H - h_{1}} = 996.05 m$$
06. Ans: (a) Sol: focal length = 21.5 cm
$$= 21.5 \times 10^{-2} m$$

$$M.D = 3 \times 10^{-2} m$$

$$h = 350 m$$

$$H = ?$$

$$S = \frac{f}{H - h}$$

$$\frac{Photo scale}{Map scale} = \frac{11 \times 10^{-2}}{3 \times 10^{-2}}$$

$$\Rightarrow \frac{21.5 \times 10^{-2}}{\frac{4 - 350}{145,000}} = \frac{11 \times 10^{-2}}{3 \times 10^{-2}} \Rightarrow H = 2988.637 \text{ m}$$

 Regular Live Doubt clearing Sessions
 Free Online Test Series | ASK an expert

 Affordable Fee
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

ACE Engineering Publications	25 Geomatics Engineering
07. Ans: (a)	10. Ans: (d)
Sol: $V = \frac{L}{t} \times 3600 = 216$ kmph	Sol: $d = r_2 - r_o$ = 112.5 -82.40= 30.1 mm $h_2 = \frac{d(H - h_1)}{r_2}$
08. Ans: 620	r_2
Sol: R =?	$=\frac{30.1}{112.5}\times(700-250)$
$h_a = 650 \text{ m}, h_b = 250 \text{ m}$ $f = 250 \times 10^{-3}$	= 120.4 m
H = 2700	11. Ans: 88.68
$X_A = 299.3 \text{ m}$	Sol: $\Delta h = \frac{\Delta P H'}{b}$
$Y_{\rm B} = 547.82$	$=\frac{3.5\times(3000-200)}{88.68}$ m
$Y_{\rm A} = +208.28 \text{ m}$	
$X_{\rm B} = -220.5 \ {\rm m}$	12 Ans: (a) (c) (d)
$\sqrt{(X_{\rm A} - X_{\rm B})^2 + (Y_{\rm A} - Y_{\rm B})^2} = 620 \text{ m}$	12. Ans: (a), (c), (d) Sol:
	(i) The scale of a photograph is not
09. Ans: (a)	constant
Sol: $S_d = \frac{f}{H} \Rightarrow \frac{1}{8000} = \frac{25 \times 10^{-3}}{H}$ Sin	(ii) Relief displacement decreases as flying
Son S _d H 8000 H Sin	ce 1995 height increases. Because relief
\therefore H = 2000 m	displacement is inversely proportional
$d = \frac{r_1 h_1}{(H - h_1)}$	to the height of flying.
	(iii) Parallax decreases with higher flying height
$=\frac{7.50\times10^{-2}\times350}{2000-350}$	(iv) Overlap is necessary for stereoscopic
= 0.015 m = 15.9 mm	vision
0.015 m 15.7 mm	Identify the correct statements

A ace online

16. Triangulation

Sol:
$$\alpha = \frac{r \cos^2 \theta / 2}{D}$$

= 206265 × $\frac{7.5 \times 10^{-2} \times \cos^2 60 / 2}{10 \times 10^3}$
= 1.16"

02. Ans: 63.85

03. Ans: (b)
Sol: D = 8560 m
$$r = \frac{140}{2} = 70 \text{ mm}$$

 $\theta = 50^{\circ}$
 $\infty = \frac{206265 \times 70 \times 10^{-3} \times \cos^2\left(\frac{50}{2}\right)}{8560}$
= 1.53"

04. Ans: (a), (b), (c), (d)

Sol:

- (i) Stations selected closer main triangulation stations to avoid obstructions are called satellite station.
- (ii) Station selected for continuity of work and not for observation are pivot stations.
- (iii) Laplace stations are triangulation stations at which astronomical azimuths are taken
- (iv) Main stations are used to carry forward the network

 Regular Live Doubt clearing Sessions
 |
 Free Online Test Series | ASK an expert

 Affordable Fee
 |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

26

CIVIL-Postal Coaching Solutions

17. Remote Sensing

02. Ans: (c)

- Sol: IRS series of satellites are
 - 1. Low orbiting satellites
 - 2. Geostationary satellites
 - 4. Resource survey satellites

03. Ans: (a)

Sol: A passive sensor uses sun as the source of energy.

04. Ans: (b)

Sol: For interpolation of satellite data used for monitoring dynamic changes that occure on the earth surface, the most suitable orbit for the satellite is sun-synchronous orbit

05. Ans: (d)

Sol: Stereoscopy is not strictly method of remote sensing?

06. Ans: (c)

Sol: Remote sensing techniques makes use of the properties of electromagnetic waves emitted, reflected or diffracted by the sensed objects

07. Ans: (a)

Sol: Scanning in Remote sensing systems employs only one detector.

08. Ans: (c)

ace online

Sol: The system that uses the sun as a source of electromagnetic energy and records the naturally radiated and reflected energy from the object is called Passive Remote sensing.

09. Ans: (c)

Sol: The interaction of the electromagnetic radiation produced with a specific wave length to illuminate a target on the terrain for studying its scattered radiance, is called active remote sensing

10. Ans: (d)

- Sol: (i) The changing electric fields induce the changing magnetic fields in the surrounding medium
 - (ii) These are produced by the motion of electric charge
 - (iii) The oscillation of charged particles sets up changing electric fields

11. Ans: (c)

Sol: Evelyn L. Pruitt, a geographer are coined the term, 'Remote sensing'.

12. Ans: (d)

- Sol: The object of photo-intepretation are (i) Identification
 - (ii) Recognition of objects
 - (iii) Judging the significance of objects

13. Ans: (b), (c) and (d)

- Sol: The components of remote sensing are (i) Non interfering atmosphere
 - (ii) Energy matter interactions
 - (ii) End user

18. Geographic Information

01. Ans: (c)

Sol: To reduce the productivity is NOT a benefit of using GIS in business applications.

02. Ans: (b)

Sol: ESRI is the leading company for GIS business applications.

03. Ans: (d)

Sol: You work for the corporate office of a popular retail company that has recently begun using a GIS system. Which of the following would NOT be a good reason to use this system is to track store credit card customers who have since closed their accounts

04. Ans: (a)

Sol: Aspects of a GIS system do NOT include Legal representation of a physical location.

05. Ans: (b)

Sol: Tables can GIS NOT be used to visualize

19. Global Positioning System

01. Ans: (c)

Sol: Three minimum number of satellites required from which signals can be recorded to enable a global positioning system receiver to determine latitude, longitude and altitude.

02. Ans: (c)

Sol: The most widely used antenna in GPS is Microstrip antenna

03. Ans: (b)

Sol: Positional accuracies~1 – 2m if rover is less than 1-2 km from the reference station parameters is accurate for DGPS

04. Ans: (a)

Sol: For air borne application and materialization of GPS receiver and easy construction, Microstrip is the most frequency used antenna?

05. Ans: (d)

Sol: To uniquely determine the position of the user using GPS, one needs to receive signals from atleast 4 satellites.

06. Ans: (c)

Sol: In GPS, receivers are used quartz clocks

07. Ans: (a)

Sol: A passive sensor uses sun as the source of energy.

 Regular Live Doubt clearing Sessions
 Free Online Test Series | ASK an expert

 Affordable Fee
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

CIVIL-Postal Coaching Solutions

29	Geomatics Engineering
	10. Ans: (a), (b) and (c)
	Sol: (i) GPS require 24 active satellites
	29

- used for
 (i) Land navigation(ii) Vehicle tracking
 - (iii) Trans movement

09. Ans: (c)

- **Sol:** The GPS space segment consists of Navigation Satellite Timing and Ranging whose number is 24
- (ii) A minimum of 4 satellite connects are required for accurate positioning
- (iii) It works on the principle of trilateration
- (iv) quartz clocks are installed in userequipments to minimise the errors.

