GATE I PSUs

FLUID MECHANICS

Text Book: Theory with worked out Examples and Practice Questions

Fluid Mechanics

(Solutions for Text Book Practice Questions)

Chapter
 1
 Properties of Fluids

1. Ans: (c)

Sol: For Newtonian fluid whose velocity profile is linear, the shear stress is constant. This behavior is shown in option (c).
02. Ans: 100

Sol: $\tau=\frac{\mu \mathrm{V}}{\mathrm{h}}=\frac{0.2 \times 1.5}{3 \times 10^{-3}}=100 \mathrm{~N} / \mathrm{m}^{2}$
03. Ans: 1

Sol:

$$
\begin{array}{r}
\mathrm{F}=\tau \times \mathrm{A} \\
\mathrm{~W} \sin 30=\frac{\mu \mathrm{AV}}{\mathrm{~h}} \\
\frac{100}{2}=\frac{1 \times 0.1 \times \mathrm{V}}{2 \times 10^{-3}}
\end{array}
$$

$$
\mathrm{V}=1 \mathrm{~m} / \mathrm{s}
$$

Common data Q. 04 \& 05

4. Ans: (c)

Sol: $\mathrm{D}_{1}=100 \mathrm{~mm}$,
$\mathrm{D}_{2}=106 \mathrm{~mm}$
Radial clearance, $\mathrm{h}=\frac{\mathrm{D}_{2}-\mathrm{D}_{1}}{2}$

$$
=\frac{106-100}{2}=3 \mathrm{~mm}
$$

$\mathrm{L}=150 \mathrm{~mm}=0.15 \mathrm{~m}$
$\mu=0.2$ pa.s
$\mathrm{N}=240 \mathrm{rpm}$
$\omega=\frac{2 \pi \mathrm{~N}}{60}=\frac{2 \pi \times 240}{60}$
$\omega=8 \pi$

$$
\begin{aligned}
\tau=\frac{\mu \omega \mathrm{r}}{\mathrm{~h}} & =\frac{0.2 \times 8 \pi \times 50 \times 10^{-3}}{3 \times 10^{-3}} \\
& =83.77 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

5. Ans: (b)

Sol: Power, $P=\frac{2 \pi \omega^{2} \mu \mathrm{Lr}^{3}}{\mathrm{~h}}$

$$
\begin{aligned}
& =\frac{2 \pi \times(8 \pi)^{2} \times 0.2 \times 0.15 \times(0.05)^{3}}{3 \times 10^{-3}} \\
& =4.96 \mathrm{Watt}
\end{aligned}
$$

¢ ACE	2	GATE - Text Book Solutions

6. Ans: (c)

Sol:

\therefore Newtonian fluid
07. Ans: (a)

Sol: $\tau=\mu \frac{\mathrm{du}}{\mathrm{dy}}$
$u=3 \sin (5 \pi y)$
$\frac{d u}{d y}=3 \cos (5 \pi y) \times 5 \pi=15 \pi \cos (5 \pi y)$

$$
\begin{aligned}
\left.\tau\right|_{\mathrm{y}=0.05} & =\left.\mu \frac{\mathrm{du}}{\mathrm{dy}}\right|_{\mathrm{y}=0.05} \\
& =0.5 \times 15 \pi \cos (5 \pi \times 0.05)
\end{aligned}
$$

$$
=0.5 \times 15 \pi \times \cos \left(\frac{\pi}{4}\right)=0.5 \times 15 \pi \times \frac{1}{\sqrt{2}}
$$

$$
=7.5 \times 3.14 \times 0.707 \approx 16.6 \mathrm{~N} / \mathrm{m}^{2}
$$

8. Ans: (d)

Sol:

- Ideal fluid $\rightarrow \quad$ Shear stress is zero.
- Newtonian fluid \rightarrow Shear stress varies linearly with the rate of strain.
- Non-Newtonian fluid \rightarrow Shear stress does not vary linearly with the rate of strain.
- Bingham plastic \rightarrow Fluid behaves like a solid until a minimum yield stress beyond which it exhibits a linear relationship between shear stress and the rate of strain.

9. Ans: (b)

Sol: $\mathrm{V}=0.01 \mathrm{~m}^{3}$
$\beta=0.75 \times 10^{-9} \mathrm{~m}^{2} / \mathrm{N}$
$\mathrm{dP}=2 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}$
$\mathrm{K}=\frac{1}{\beta}=\frac{1}{0.75 \times 10^{-9}}=\frac{4}{3} \times 10^{9}$
$K=\frac{-d P}{d V / V}$
$d V=\frac{-2 \times 10^{7} \times 10^{-2} \times 3}{4 \times 10^{9}}=-1.5 \times 10^{-4}$

10. Ans: 320 Pa

Sol: $\quad \Delta \mathrm{P}=\frac{8 \sigma}{\mathrm{D}}=\frac{8 \times 0.04}{1 \times 10^{-3}}=\frac{32 \times 10^{-2}}{10^{-3}}$
$\Delta \mathrm{P}=320 \mathrm{~N} / \mathrm{m}^{2}$
11. Ans: (a, d)

Sol: Given data: S.G $=0.8$ and
$v=2$ centistokes $=2 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$
Mass density, $\rho=(\mathrm{S} . \mathrm{G}) \times \rho_{\text {water at } 4^{\circ} \mathrm{C}}$

$$
=0.8 \times 10^{3}=800 \mathrm{~kg} / \mathrm{m}^{3}
$$

Dynamic viscosity, $\mu=\rho \times v$

$$
\begin{aligned}
\mu & =800 \times 2 \times 10^{-6} \mathrm{~Pa} . \mathrm{s} \\
& =16 \times 10^{-4} \mathrm{Pa.s} \\
& =1.6 \text { centipoise }
\end{aligned}
$$

ACE

1. Ans: (a)

Sol: 1 millibar $=10^{-3} \times 10^{5}=100 \mathrm{~N} / \mathrm{m}^{2}$

$$
\text { One } \begin{aligned}
\mathrm{mm} \text { of } \mathrm{Hg} & =13.6 \times 10^{3} \times 9.81 \times 1 \times 10^{-3} \\
& =133.416 \mathrm{~N} / \mathrm{m}^{2} \\
1 \mathrm{~N} / \mathrm{mm}^{2} & =1 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} \\
1 \mathrm{kgf} / \mathrm{cm}^{2} & =9.81 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

2. Ans: (b)

Sol:

Absolute pressure
03. Ans: (c)

Sol: Pressure does not depend upon the volume of liquid in the tank. Since both tanks have the same height, the pressure P_{A} and P_{B} are same.

04. Ans: (b)

Sol:

- The manometer shown in Fig. 1 is an open ended manometer for negative pressure measurement.
- The manometer shown in Fig. 2 is for measuring pressure in liquids only.
- The manometer shown in Fig. 3 is for measuring pressure in liquids or gases.
- The manometer shown in Fig. 4 is an open ended manometer for positive pressure measurement.

5. Ans: 2.2

Sol: h_{p} in terms of oil

$$
\begin{aligned}
\mathrm{s}_{\mathrm{o}} \mathrm{~h}_{\mathrm{o}} & =\mathrm{s}_{\mathrm{m}} \mathrm{~h}_{\mathrm{m}} \\
0.85 \times \mathrm{h}_{0} & =13.6 \times 0.1 \\
\mathrm{~h}_{0} & =1.6 \mathrm{~m} \\
\mathrm{~h}_{\mathrm{p}} & =0.6+1.6 \\
\Rightarrow \quad \mathrm{~h}_{\mathrm{p}} & =2.2 \mathrm{~m} \text { of oil }
\end{aligned}
$$

(or) $\mathrm{P}_{\mathrm{p}}-\gamma_{\text {oil }} \times 0.6-\gamma_{\mathrm{Hg}} \times 0.1=\mathrm{P}_{\text {atm }}$
$\frac{\mathrm{P}_{\mathrm{p}}-\mathrm{P}_{\text {atm }}}{\gamma_{\text {oil }}}=\left(\frac{\gamma_{\mathrm{Hg}}}{\gamma_{\text {oil }}} \times 0.1+0.6\right)$

$$
=\frac{13.6}{0.85} \times 0.1+0.6=2.2 \mathrm{~m} \text { of oil }
$$

Gauge pressure of P in terms of m of oil

$$
=2.2 \mathrm{~m} \text { of oil }
$$

6. Ans: (b)

Sol: $\mathrm{h}_{\mathrm{M}}-\frac{\mathrm{s}_{\mathrm{w}}}{\mathrm{s}_{0}} \mathrm{~h}_{\mathrm{w}_{1}}=\mathrm{h}_{\mathrm{N}}-\frac{\mathrm{s}_{\mathrm{w}} \mathrm{h}_{\mathrm{w}_{2}}}{\mathrm{~s}_{0}}-\mathrm{h}_{0}$

$$
\mathrm{h}_{\mathrm{M}}-\mathrm{h}_{\mathrm{N}}=\frac{9}{0.83}-\frac{18}{0.83}-3
$$

$$
\mathrm{h}_{\mathrm{M}}-\mathrm{h}_{\mathrm{N}}=-13.843 \mathrm{~cm} \text { of oil }
$$

7. Ans: 2.125

Sol: $h_{p}=\bar{h}+\frac{I}{A \bar{h}}$

$$
\begin{aligned}
& =2+\frac{\pi \mathrm{D}^{4} \times 4}{64 \times \mathrm{D}^{2} \times 2 \times \pi} \\
& =2+\frac{2^{2} \times 4}{64 \times 2}=2.125 \mathrm{~m}
\end{aligned}
$$

08. Ans: 10

Sol: $\quad F=\rho g \bar{h} A$

$$
\begin{aligned}
& =9810 \times 1.625 \times \frac{\pi}{4}\left(1.2^{2}-0.8^{2}\right) \\
\mathrm{F} & =10 \mathrm{kN}
\end{aligned}
$$

9. Ans: 1

Sol:

$$
\begin{aligned}
\mathrm{F}_{\text {bottom }}^{\mathrm{x}} & =\rho \mathrm{g} \times 2 \mathrm{x} \times 2 \mathrm{x} \times \mathrm{x} \\
\mathrm{~F}_{\mathrm{V}} & =\rho \mathrm{x} \times 2 \mathrm{x} \times 2 \mathrm{x} \\
\frac{\mathrm{~F}_{\mathrm{B}}}{\mathrm{~F}_{\mathrm{V}}} & =1
\end{aligned}
$$

10. Ans: 10

Sol: $\quad F_{V}=x \times \pi$

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{V}}=\rho \mathrm{gV}=1000 \times 10 \times \frac{\pi \times 2^{2}}{4} \\
& \mathrm{~F}_{\mathrm{V}}=10 \pi \mathrm{kN} \\
& \therefore \mathrm{x}=10
\end{aligned}
$$

11. Ans: (d)

Sol: $F_{\text {net }}=F_{H 1}-F_{H}$

$$
\begin{aligned}
\mathrm{F}_{\mathrm{H} 1} & =\gamma \times \frac{\mathrm{D}}{2} \times \mathrm{D} \times 1=\frac{\gamma \mathrm{D}^{2}}{2} \\
\mathrm{~F}_{\mathrm{H} 2} & =\gamma \times \frac{\mathrm{D}}{4} \times \frac{\mathrm{D}}{2} \times 1=\frac{\gamma \mathrm{D}^{2}}{8} \\
& =\gamma \mathrm{D}^{2}\left(\frac{1}{2}-\frac{1}{8}\right)=\frac{3 \gamma \mathrm{D}^{2}}{8}
\end{aligned}
$$

12. Ans: 2

Sol: Let P be the absolute pressure of fluid f 3 at mid-height level of the tank. Starting from the open limb of the manometer (where pressure $=\mathrm{P}_{\text {atm }}$) we write :

$$
\mathrm{P}_{\mathrm{atm}}+\gamma \times 1.2-2 \gamma \times 0.2-0.5 \gamma \times\left(0.6+\frac{\mathrm{h}}{2}\right)=\mathrm{P}
$$

or $\quad \mathrm{P}-\mathrm{P}_{\mathrm{atm}}=\mathrm{P}_{\text {gauge }}$

$$
=\gamma\left(1.2-2 \times 0.2-0.5 \times 0.6-0.5 \times \frac{\mathrm{h}}{2}\right)
$$

For $\mathrm{P}_{\text {gauge }}$ to be zero, we have,

$$
\gamma(1.2-0.4-0.3-0.25 \mathrm{~h})=0
$$

or $\quad \mathrm{h}=\frac{0.5}{0.25}=2$
13. Ans: (a, c)

Sol: The limitations of piezometer are :
It can't measure gas pressure.

- It can't measure high pressure.

ACE
Chapter 3
Buoyancy and Metacentric Height

1. Ans: (d)

Sol:

$\mathrm{F}_{\mathrm{B}}=$ weight of body

$$
\rho_{\mathrm{b}} \mathrm{~g} \mathrm{~V}_{\mathrm{b}}=\rho_{\mathrm{f}} \mathrm{~g} \mathrm{~V}_{\mathrm{f}} \mathrm{~d}
$$

$$
640 \times 4 \times 2 \times 1.25=1025 \times(4 \times 1.25 \times \mathrm{d})
$$

$$
\mathrm{d}=1.248 \mathrm{~m}
$$

$$
V_{f d}=1.248 \times 4 \times 1.25
$$

$$
\mathrm{V}_{\mathrm{fd}}=6.24 \mathrm{~m}^{3}
$$

2. Ans: (c)

Sol: Surface area of cube $=6 \mathrm{a}^{2}$
Surface area of sphere $=4 \pi r^{2}$
$4 \pi r^{2}=6 a^{2}$

$$
\begin{aligned}
\frac{2 \pi}{3} & =\left(\frac{\mathrm{a}}{\mathrm{r}}\right)^{2} \\
\mathrm{~F}_{\mathrm{b}, \mathrm{~s}} & \propto \mathrm{~V}_{\mathrm{s}} \\
& =\frac{\frac{4}{3} \pi \mathrm{r}^{3}}{\mathrm{a}^{3}}=\frac{4}{3} \frac{\pi \mathrm{r}^{3}}{\left(\mathrm{r} \sqrt{\frac{2 \pi}{3}}\right)^{3}} \\
& =\frac{4}{3} \frac{\pi \mathrm{r}^{3}}{\left(\sqrt{\frac{2 \pi}{3}} \times \sqrt{\frac{2 \pi}{3}} \mathrm{r}^{3}\right)}=\sqrt{\frac{6}{\pi}}
\end{aligned}
$$

3. Ans: 4.76

Sol: $\quad F_{B}=F_{B, H g}+F_{B, W}$

$$
W_{B}=F_{B}
$$

$$
\begin{aligned}
& \rho_{\mathrm{b}} \mathrm{~g} \forall_{\mathrm{b}}=\rho_{\mathrm{Hg}} \mathrm{~g} \forall_{\mathrm{Hg}}+\rho_{\mathrm{w}} \mathrm{~g} \forall_{\mathrm{w}} \\
& \rho_{\mathrm{b}} \forall_{\mathrm{b}}=\rho_{\mathrm{Hg}} \forall_{\mathrm{Hg}}+\rho_{\mathrm{w}} \forall_{\mathrm{w}} \\
& \mathrm{~S} \times \forall_{\mathrm{b}}=\mathrm{S}_{\mathrm{Hg}} \forall_{\mathrm{Hg}}+\mathrm{S}_{\mathrm{w}} \forall_{\mathrm{w}} \\
& 7.6 \times 10^{3}=13.6 \times 10^{2}(10-\mathrm{x})+10^{2} \times \mathrm{x} \\
& \quad-6000=-1260 \mathrm{x} \\
& \quad \mathrm{x}=4.76 \mathrm{~cm}
\end{aligned}
$$

4. Ans: 11

Sol:

$$
\begin{aligned}
& \\
& \mathrm{F}_{\mathrm{B}}=\mathrm{W}+\mathrm{T} \\
& \mathrm{~W}=\mathrm{F}_{\mathrm{B}}-\mathrm{T} \\
&= \rho_{\mathrm{f}} \mathrm{~g} \mathrm{~V}_{\mathrm{fd}}-\mathrm{T} \\
&= 10^{3} \times 9.81 \times \frac{4}{3} \pi(0.8)^{3}-\left(10 \times 10^{3}\right) \\
&= 21-10 \\
& \mathrm{~W}=11 \mathrm{kN}
\end{aligned}
$$

N. ACE	6	GATE - Text Book Solutions

5. Ans: $\mathbf{1 . 3 7 5}$

Sol: $\mathrm{W}_{\text {water }}=5 \mathrm{~N}$

$$
\begin{aligned}
\mathrm{W}_{\text {oil }} & =7 \mathrm{~N} \\
\mathrm{~S} & =0.85
\end{aligned}
$$

W - Weight in air

$$
\mathrm{F}_{\mathrm{B} 1}=\mathrm{W}-5
$$

$$
\mathrm{F}_{\mathrm{B} 2}=\mathrm{W}-7
$$

$$
\begin{equation*}
\mathrm{W}-5=\rho_{1} \mathrm{~g} V_{\mathrm{fd}} \tag{1}
\end{equation*}
$$

$\mathrm{W}-7=\rho_{2} \mathrm{gV}_{\mathrm{fd}}$
$\mathrm{V}_{\mathrm{fd}}=\mathrm{V}_{\mathrm{b}}$
$\mathrm{W}-5=\rho_{1} \mathrm{gV}_{\mathrm{b}}$
$\frac{\mathrm{W}-7=\rho_{2} g V_{\mathrm{b}}}{2=\left(\rho_{1}-\rho_{2}\right) \mathrm{gV}_{\mathrm{b}}}$
$\mathrm{V}_{\mathrm{b}}=\frac{2}{(1000-850) 9.81}$
$\mathrm{V}_{\mathrm{b}}=1.3591 \times 10^{-3} \mathrm{~m}^{3}$
$\mathrm{W}=5+\left(9810 \times 1.3591 \times 10^{-3}\right)$
$\mathrm{W}=18.33 \mathrm{~N}$
$\mathrm{W}=\rho_{\mathrm{b}} \mathrm{g} \mathrm{V}_{\mathrm{b}}$
18.33
$\overline{9.81 \times 1.3591 \times 10^{-3}}=\rho_{b}$
$\rho_{\mathrm{b}}=1375.05 \mathrm{~kg} / \mathrm{m}^{3}$
$\mathrm{S}_{\mathrm{b}}=1.375$
06. Ans: (d)

Sol: For a floating body to be stable, metacentre should be above its center of gravity. Mathematically GM >0.
07. Ans: (b)

Sol: $W=F_{B}$

$$
\begin{aligned}
& \rho_{\mathrm{b}} \mathrm{~g} \mathrm{~V}_{\mathrm{b}}=\rho_{\mathrm{f}} g \mathrm{~V}_{\mathrm{fd}} \\
& \rho_{\mathrm{b}} V_{\mathrm{b}}=\rho_{\mathrm{f}} V_{\mathrm{fd}} \\
& 0.6 \times \frac{\pi}{4} \mathrm{~d}^{2} \times 2 \mathrm{~d}=1 \times \frac{\pi}{4} \mathrm{~d}^{2} \times \mathrm{x}
\end{aligned}
$$

$$
\Rightarrow \mathrm{x}=1.2 \mathrm{~d}
$$

$\mathrm{GM}=\mathrm{BM}-\mathrm{BG}$
$B M=\frac{I}{V}=\frac{\pi d^{4}}{64 \times \frac{\pi}{4} \mathrm{~d}^{2} \times 1.2 \mathrm{~d}}=\frac{\mathrm{d}}{19.2}=0.052 \mathrm{~d}$
$\mathrm{BG}=\mathrm{d}-0.6 \mathrm{~d}=0.4 \mathrm{~d}$
Thus, $\mathrm{GM}=0.052 \mathrm{~d}-0.4 \mathrm{~d}=-0.348 \mathrm{~d}$
GM <0
\Rightarrow Hence, the cylinder is in unstable condition.
08. Ans: $\mathbf{1 2 2 . 4 7 5}$

Sol:

The thickness of the oil layer is same on either side of plate
$y=$ thickness of oil layer

$$
=\frac{23.5-1.5}{2}=11 \mathrm{~mm}
$$

Shear stress on one side of the plate

$$
\tau=\frac{\mu \mathrm{dU}}{\mathrm{dy}}
$$

$\mathrm{F}_{\mathrm{s}}=$ total shear force (considering both sides of the plate)

$$
\begin{aligned}
& =2 \mathrm{~A} \times \tau=\frac{2 \mathrm{~A} \mu \mathrm{~V}}{\mathrm{y}} \\
& =\frac{2 \times 1.5 \times 1.5 \times 2.5 \times 0.1}{11 \times 10^{-3}}=102.2727 \mathrm{~N}
\end{aligned}
$$

	Regular Live Doubt clearing Sessions \| Free Online Test Series	ASK an expert			
1 online	Affordable Fee \| Available 1M	3M	6M	12M	18M and 24 Months Subscription Packages

Weight of plate, $\mathrm{W}=50 \mathrm{~N}$
Upward force on submerged plate,

$$
\begin{aligned}
\mathrm{F}_{\mathrm{v}}=\rho \mathrm{gV} & =900 \times 9.81 \times 1.5 \times 1.5 \times 10^{-3} \\
& =29.7978 \mathrm{~N}
\end{aligned}
$$

Total force required to lift the plate

$$
\begin{aligned}
& =\mathrm{F}_{\mathrm{s}}+\mathrm{W}-\mathrm{F}_{\mathrm{v}} \\
& =102.2727+50-29.7978 \\
& =122.4749 \mathrm{~N}
\end{aligned}
$$

9. Ans: (a, b, c, d)

Sol:

- Passenger ships have less GM than war ships from comfort point of view.
- Lifting a steel ball submerged in water is easier than lifting it when unsubmerged due to buoyant force acting on the ball.
- Apparent weight of a submerged body is always lower than its actual weight due to the force of buoyancy.
- Inverted U-tube manometers are preferred if difference in pressure is small.

Chapter

4

Fluid Kinematics

1. Ans: (b)

Sol: Constant flow rate signifies that the flow is steady.

- For conically tapered pipe, the fluid velocity at different sections will be different. This corresponds to non-uniform flow.

Common Data for Questions 02 \& 03

2. Ans: 0.94

Sol: $\quad a_{\text {Local }}=\frac{\partial \mathrm{V}}{\partial \mathrm{t}}$

$$
\begin{gathered}
=\frac{\partial}{\partial t}\left(2 t\left(1-\frac{x}{2 L}\right)^{2}\right) \\
=\left(1-\frac{x}{2 L}\right)^{2} \times 2
\end{gathered}
$$

$\left(\mathrm{a}_{\text {Local }}\right)_{\text {at } \mathrm{x}=0.5, \mathrm{~L}=0.8}=2\left(1-\frac{0.5}{2 \times 0.8}\right)^{2}$

$$
=2(1-0.3125)^{2}=0.945 \mathrm{~m} / \mathrm{sec}^{2}
$$

3. Ans: $\mathbf{- 1 3 . 6 8}$

Sol:

$$
\begin{aligned}
\mathrm{a}_{\text {convective }} & =\mathrm{v} \cdot \frac{\partial v}{\partial \mathrm{x}}=\left[2 t\left[1-\frac{\mathrm{x}}{2 \mathrm{~L}}\right]^{2}\right] \frac{\partial}{\partial \mathrm{x}}\left[2 t\left(1-\frac{\mathrm{x}}{2 \mathrm{~L}}\right)^{2}\right] \\
& =\left[2 t\left[1-\frac{x}{2 L}\right]^{2}\right] 2 t\left[2\left(1-\frac{x}{2 L}\right)\left(-\frac{1}{2 L}\right)\right]
\end{aligned}
$$

At $\mathrm{t}=3 \mathrm{sec} ; \mathrm{x}=0.5 \mathrm{~m} ; \mathrm{L}=0.8 \mathrm{~m}$

$$
\mathrm{a}_{\text {convective }}=2 \times 3\left[1-\frac{0.5}{2 \times 0.8}\right]^{2} \times 2 \times 3\left[2\left(1-\frac{0.5}{2 \times 0.8}\right)\right]\left[\frac{-1}{2 \times 0.8}\right]
$$

$$
a_{\text {convective }}=-14.62 \mathrm{~m} / \mathrm{sec}^{2}
$$

$$
\mathrm{a}_{\text {total }}=\mathrm{a}_{\text {local }}+\mathrm{a}_{\text {convective }}=0.94-14.62
$$

$$
=-13.68 \mathrm{~m} / \mathrm{sec}^{2}
$$

04. Ans: (d)

Sol: $u=6 x y-2 x^{2}$
Continuity equation for 2D flow

$$
\begin{aligned}
& \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \\
& \frac{\partial u}{\partial x}=6 y-4 x \\
& (6 y-4 x)+\frac{\partial v}{\partial y}=0 \\
& \frac{\partial v}{\partial y}=(4 x-6 y)=0 \\
& \partial v=(4 x-6 y) d y \\
& v=\int 4 x d y-\int 6 y d y \\
& =4 x y-3 y^{2}+c \\
& =4 x y-3 y^{2}+f(x)
\end{aligned}
$$

5. Ans: $\sqrt{2}=1.414$

Sol: $\frac{\partial \mathrm{V}}{\partial \mathrm{x}}=\frac{1}{3}(\mathrm{~m} / \mathrm{sec} / \mathrm{m})$

$$
\begin{aligned}
& a_{r}=\frac{V^{2}}{R}=\frac{(3)^{2}}{9}=\frac{9}{9}=1 \mathrm{~m} / \mathrm{s}^{2} \\
& a_{t}=V \frac{\partial V}{\partial x}=3 \times \frac{1}{3}=1 \mathrm{~m} / \mathrm{s}^{2} \\
& a=\sqrt{\left(a_{r}\right)^{2}+\left(a_{t}\right)^{2}}=\sqrt{(1)^{2}+(1)^{2}}=\sqrt{2} \mathrm{~m} / \mathrm{sec}^{2}
\end{aligned}
$$

06. Ans: 13.75

Sol: $a_{t(\text { conv })}=\mathrm{V}_{\text {avg }} \times \frac{\mathrm{dV}}{\mathrm{dx}}$

$$
\begin{aligned}
& a_{t(\text { conv })}=\left(\frac{2.5+3}{2}\right)\left(\frac{3-2.5}{0.1}\right)=2.75 \times 5 \\
& a_{t} \text { (conv) }=13.75 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

7. Ans: 0.3

Sol: $\mathrm{Q}=\mathrm{Au}$

$$
\begin{aligned}
& \mathrm{a}_{\text {Local }}=\frac{\partial \mathrm{u}}{\partial \mathrm{t}}=\frac{\partial}{\partial \mathrm{t}}\left(\frac{\mathrm{Q}}{\mathrm{~A}}\right) \\
& \mathrm{a}_{\text {local }}=\frac{1}{\mathrm{~A}} \frac{\partial \mathrm{Q}}{\partial \mathrm{t}} \\
& \mathrm{a}_{\text {Local }}=\left(\frac{1}{0.4-0.1 \mathrm{x}}\right) \frac{\partial \mathrm{Q}}{\partial \mathrm{t}} \\
& \begin{aligned}
\left(\mathrm{a}_{\text {Local }}\right)_{\mathrm{at} \mathrm{X}}=0 & =\frac{1}{0.4} \times 0.12 \quad\left(\because \frac{\partial \mathrm{Q}}{\partial \mathrm{t}}=0.12\right) \\
& =0.3 \mathrm{~m} / \mathrm{sec}^{2}
\end{aligned}
\end{aligned}
$$

8. Ans: (b)

Sol: $\psi=x^{2}-y^{2}$

$$
\begin{aligned}
& \mathrm{a}_{\text {Total }}=\left(\mathrm{a}_{\mathrm{x}}\right) \hat{\mathrm{i}}+\left(\mathrm{a}_{\mathrm{y}}\right) \hat{\mathrm{j}} \\
& \begin{aligned}
& \mathrm{u}==-\frac{\partial \psi}{\partial \mathrm{y}}=-\frac{\partial}{\partial \mathrm{y}}\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right)=2 \mathrm{y} \\
& \mathrm{v}=\frac{\partial \psi}{\partial \mathrm{x}}=\frac{\partial}{\partial \mathrm{x}}\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right)=2 \mathrm{x} \\
& \mathrm{a}_{\mathrm{x}}=\mathrm{u} \frac{\partial \mathrm{u}}{\partial \mathrm{x}}+\mathrm{v} \frac{\partial \mathrm{u}}{\partial \mathrm{y}} \\
&=(2 \mathrm{y})(0)+(2 \mathrm{x})(2) \\
& \begin{aligned}
\therefore a_{x} & =4 \mathrm{x}
\end{aligned} \\
& \mathrm{a}_{\mathrm{y}}=\mathrm{u} \frac{\partial v}{\partial \mathrm{x}}+\mathrm{v} \frac{\partial \mathrm{v}}{\partial \mathrm{y}} \\
& \quad=(2 \mathrm{y}) \times(2)+(2 \mathrm{x}) \times(0) \\
& \mathrm{a}_{\mathrm{y}}=4 \mathrm{y} \\
& \therefore \mathrm{a}=(4 \mathrm{x}) \hat{\mathrm{i}}+(4 y) \hat{j}
\end{aligned}
\end{aligned}
$$

09. Ans: (b)

Sol: Given, The stream function for a potential flow field is $\psi=x^{2}-y^{2}$
$\phi=$?
$u=\frac{-\partial \phi}{\partial x}=-\frac{\partial \psi}{\partial y}$
$u=-\frac{\partial \psi}{\partial y}=-\frac{\partial\left(x^{2}-y^{2}\right)}{\partial y}$
$\mathrm{u}=2 \mathrm{y}$
$u=-\frac{\partial \phi}{\partial x}=2 y$
$\int \partial \phi=-\int 2 y \partial x$
$\phi=-2 x y+c_{1}$
Given, ϕ is zero at $(0,0)$
$\therefore \mathrm{c}_{1}=0$
$\therefore \phi=-2 x y$

10. Ans: 4

Sol: Given, 2D - flow field
Velocity, $V=3 x i+4 x y j$

$$
u=3 x, \quad v=4 x y
$$

$\omega_{z}=\frac{1}{2}\left(\frac{d v}{d x}-\frac{d u}{d y}\right)$
$\omega_{z}=\frac{1}{2}(4 y-0)$
$\left(\omega_{\mathrm{Z}}\right)_{\mathrm{at}(2,2)}=\frac{1}{2} \times 4(2)=4 \mathrm{rad} / \mathrm{sec}$

11. Ans: (b)

Sol: Given, $\mathrm{u}=3 \mathrm{x}, \mathrm{v}=\mathrm{Cy}, \quad \mathrm{w}=2$
The shear stress, τ_{xy} is given by

$$
\begin{aligned}
\tau_{x y} & =\mu\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)=\mu\left[\frac{\partial}{\partial y}(3 x)+\frac{\partial}{\partial x}(C y)\right] \\
& =\mu(0+0)=0
\end{aligned}
$$

12. Ans: (b, c)

Sol: Given: $\vec{V}=x \hat{i}-y \hat{j}$
Thus, $\mathrm{u}=\mathrm{x}$ and $\mathrm{v}=-\mathrm{y}$
$\frac{\partial \mathrm{u}}{\partial \mathrm{x}}=1 ; \frac{\partial \mathrm{u}}{\partial \mathrm{y}}=0 ; \frac{\partial \mathrm{v}}{\partial \mathrm{x}}=0 ; \frac{\partial \mathrm{v}}{\partial \mathrm{y}}=-1$
$a_{x}=u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}=x \times 1-y \times 0=x$
$a_{y}=u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}=x \times 0+y \times 1=y$
Thus, $\vec{a}=a_{x} \hat{i}+a_{y} \hat{j}=x \hat{i}+y \hat{j}$
$\mathrm{u}=-\frac{\partial \psi}{\partial \mathrm{y}}=\mathrm{x}$; On integration, $\psi=-\mathrm{xy}+\mathrm{C}$
$u=-\frac{\partial \phi}{\partial \mathrm{x}}=\mathrm{x}$; On integration, $\phi=-\frac{\mathrm{x}^{2}}{2}+\mathrm{C}$

ACE	10	GATE - Text Book Solutions

Chapter
 5
 Energy Equation and its Applications

01. Ans: (c)

Sol: Applying Bernoulli's equation for ideal fluid
$\frac{P_{1}}{\rho g}+Z_{1}+\frac{V_{1}^{2}}{2 g}=\frac{P_{2}}{\rho g}+Z_{2}+\frac{V_{2}^{2}}{2 g}$
$\frac{P_{1}}{\rho g}+\frac{(2)^{2}}{2 g}=\frac{P_{2}}{\rho g}+\frac{(1)^{2}}{2 g}$
$\frac{P_{2}}{\rho g}-\frac{P_{1}}{\rho g}=\frac{4}{2 g}-\frac{1}{2 g}$
$\frac{P_{2}-P_{1}}{\rho g}=\frac{3}{2 g}=\frac{1.5}{g}$
02. Ans: (c)

Sol:

$\frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}}=1.27 \mathrm{~m}, \quad \frac{\mathrm{P}_{1}}{\rho \mathrm{~g}}=2.5 \mathrm{~m}$
$\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}=0.203 \mathrm{~m}, \quad \frac{\mathrm{P}_{2}}{\rho \mathrm{~g}}=5.407 \mathrm{~m}$
$\mathrm{Z}_{1}=2 \mathrm{~m}, \quad \mathrm{Z}_{2}=0 \mathrm{~m}$
Total head at (1) - (1)

$$
\begin{aligned}
& =\frac{\mathrm{V}_{1}^{2}}{2 g}+\frac{\mathrm{P}_{1}}{\rho \mathrm{~g}}+\mathrm{Z}_{1} \\
& =1.27+2.5+2=5.77 \mathrm{~m}
\end{aligned}
$$

Total head at (2) - (2)

$$
\begin{aligned}
& =\frac{V_{2}^{2}}{2 g}+\frac{P_{2}}{\rho g}+Z_{2} \\
& =0.203+5.407+0=5.61 \mathrm{~m}
\end{aligned}
$$

Loss of head $=5.77-5.61=0.16 \mathrm{~m}$
\therefore Energy at (1) - (1) > Energy at (2) - (2)
\therefore Flow takes from higher energy to lower energy
i.e. from $\left(\mathrm{S}_{1}\right)$ to $\left(\mathrm{S}_{2}\right)$

Flow takes place from top to bottom.
03. Ans: 1.5

Sol: $\quad \mathrm{A}_{1}=\frac{\pi}{4} \mathrm{~d}_{1}^{2}=\frac{\pi}{4}(0.1)^{2}=7.85 \times 10^{-3} \mathrm{~mm}^{2}$
$\mathrm{A}_{2}=\frac{\pi}{4} \mathrm{~d}_{2}^{2}=\frac{\pi}{4}(0.05)^{2}=1.96 \times 10^{-3} \mathrm{~mm}^{2}$
$\frac{P_{1}}{\rho g}+\frac{V_{1}^{2}}{2 g}+Z_{1}=\frac{P_{2}}{\rho g}+\frac{V_{2}^{2}}{2 g}+Z_{2}+h_{L}$
$Z_{1}=Z_{2}$, it is in horizontal position
Since, at outlet, pressure is atmospheric
$\mathrm{P}_{2}=0$
$\mathrm{Q}=100 \mathrm{lit} / \mathrm{sec}=0.1 \mathrm{~m}^{3} / \mathrm{sec}$
$\mathrm{V}_{1}=\frac{\mathrm{Q}}{\mathrm{A}_{1}}=\frac{0.1}{7.85 \times 10^{-3}}=12.73 \mathrm{~m} / \mathrm{sec}$
$\mathrm{V}_{2}=\frac{\mathrm{Q}}{\mathrm{A}_{2}}=\frac{0.1}{1.96 \times 10^{-3}}=51.02 \mathrm{~m} / \mathrm{sec}$
$\frac{\mathrm{P}_{1 \text { gauge }}}{\rho_{\text {air }} \times \mathrm{g}}+\frac{(12.73)^{2}}{2 \times 10}=0+\frac{(51.02)^{2}}{2 \times 10}$
$\frac{\mathrm{P}_{1}}{\rho_{\text {air }} \cdot \mathrm{g}}=121.53$

$$
\begin{aligned}
\mathrm{P}_{1} & =121.53 \times \rho_{\text {air }} \times \mathrm{g} \\
& =1.51 \mathrm{kPa}
\end{aligned}
$$

A	11	Fluid Mechanics

04. Ans: 395

Sol: $\mathrm{Q}=100$ litre $/ \mathrm{sec}=0.1 \mathrm{~m}^{3} / \mathrm{sec}$
$\mathrm{V}_{1}=100 \mathrm{~m} / \mathrm{sec} ; \quad \mathrm{P}_{1}=3 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
$\mathrm{V}_{2}=50 \mathrm{~m} / \mathrm{sec} ; \quad \mathrm{P}_{2}=1 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
Power (P) = ?
Energy equation :

$$
\begin{aligned}
& \frac{\mathrm{P}_{1}}{\rho g}+\frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}}+\mathrm{Z}_{1}=\frac{\mathrm{P}_{2}}{\rho g}+\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}+\mathrm{Z}_{2}+\mathrm{h}_{\mathrm{L}} \\
& \frac{3 \times 10^{5}}{1000 \times 10}+\frac{100^{2}}{2 \times 10}+0=\frac{1 \times 10^{5}}{1000 \times 10}+\frac{50^{2}}{2 \times 10}+0+\mathrm{h}_{\mathrm{L}} \\
& \Rightarrow \quad \mathrm{~h}_{\mathrm{L}}
\end{aligned}=395 \mathrm{~m} .
$$

05. Ans: 35

Sol:

$\mathrm{d}_{1}=300 \mathrm{~mm}, \mathrm{~d}_{2}=120 \mathrm{~mm}$

$$
\begin{aligned}
\mathrm{Q}_{\mathrm{Th}} & =\frac{\mathrm{A}_{1} \mathrm{~A}_{2}}{\sqrt{\mathrm{~A}_{1}^{2}-\mathrm{A}_{2}^{2}}} \sqrt{2 \mathrm{gh}} \\
& =\frac{\mathrm{A}_{1} \mathrm{~A}_{2}}{\sqrt{\mathrm{~A}_{1}^{2}-\mathrm{A}_{2}^{2}}} \sqrt{2 \mathrm{~g}\left(\frac{\Delta \mathrm{P}}{\mathrm{~W}}\right)}
\end{aligned}
$$

$\mathrm{A}_{1}=\frac{\pi}{4} \mathrm{~d}_{1}^{2}=\frac{\pi}{4}(0.30)^{2}=0.07 \mathrm{~m}^{2}$
$\mathrm{A}_{2}=\frac{\pi}{4} \mathrm{~d}_{2}^{2}=\frac{\pi}{4}(0.12)^{2}=0.011 \mathrm{~m}^{2}$
$\Delta \mathrm{P}=4 \mathrm{kPa}$,

$$
\begin{aligned}
\mathrm{h} & =\frac{\Delta \mathrm{P}}{\mathrm{w}}=\frac{\Delta \mathrm{P}}{\rho_{\mathrm{f}} \cdot \mathrm{~g}} \\
& =\frac{\Delta \mathrm{P}}{\mathrm{~s}_{\mathrm{f}} \rho_{\mathrm{w}} \mathrm{~g}}=\frac{4 \times 10^{3}}{0.85 \times 1000 \times 9.81} \\
\mathrm{Q}_{\mathrm{Th}} & =\frac{0.07 \times 0.011}{\sqrt{(0.07)^{2}-(0.011)^{2}}} \sqrt{\frac{2 \times 9.81 \times 4 \times 10^{3}}{0.85 \times 1000 \times 9.81}} \\
& =0.035 \mathrm{~m}^{3} / \mathrm{sec}=35.15 \mathrm{ltr} / \mathrm{sec}
\end{aligned}
$$

06. Ans: 65

Sol: $\mathrm{h}_{\text {stag }}=0.30 \mathrm{~m}$

$$
\begin{aligned}
\mathrm{h}_{\text {stat }} & =0.24 \mathrm{~m} \\
\mathrm{~V} & =\mathrm{c} \sqrt{2 \mathrm{gh}_{\text {dyna }}} \\
\mathrm{V} & =1 \sqrt{2 \mathrm{~g}\left(\mathrm{~h}_{\text {stag }}-\mathrm{h}_{\text {stat }}\right)} \\
& =\sqrt{2(9.81)(0.30-0.24)}=1.085 \mathrm{~m} / \mathrm{s} \\
& =1.085 \times 60=65.1 \mathrm{~m} / \mathrm{min}
\end{aligned}
$$

7. Ans: 81.5

Sol: $x=30 \mathrm{~mm}$,

$$
g=10 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
\rho_{\mathrm{air}}=1.23 \mathrm{~kg} / \mathrm{m}^{3} ;
$$

$$
\rho_{\mathrm{Hg}}=13600 \mathrm{~kg} / \mathrm{m}^{3}
$$

$$
\mathrm{C}=1
$$

$$
\mathrm{V}=\sqrt{2 \mathrm{gh}_{\mathrm{D}}}
$$

$$
\mathrm{h}_{\mathrm{D}}=\mathrm{x}\left(\frac{\mathrm{~S}_{\mathrm{m}}}{\mathrm{~S}}-1\right)
$$

$$
\mathrm{h}_{\mathrm{D}}=30 \times 10^{-3}\left(\frac{13600}{1.23}-1\right)
$$

$$
\mathrm{h}_{\mathrm{D}}=331.67 \mathrm{~m}
$$

$$
\mathrm{V}=1 \times \sqrt{2 \times 10 \times 331.67}=81.5 \mathrm{~m} / \mathrm{sec}
$$

N. ACE	12	GATE - Text Book Solutions

8. Ans: 140

Sol: $\mathrm{Q}_{\mathrm{a}}=\mathrm{C}_{\mathrm{d}} \frac{\mathrm{A}_{1} \mathrm{~A}_{2}}{\sqrt{\mathrm{~A}_{1}^{2}-\mathrm{A}_{2}^{2}}} \sqrt{2 \mathrm{gh}}$
$\mathrm{C}_{\mathrm{d}} \propto \frac{1}{\sqrt{\mathrm{~h}}}$
$\frac{\mathrm{C}_{\mathrm{d}_{\text {ventur }}}}{\mathrm{C}_{\mathrm{d}_{\text {orifice }}}}=\frac{0.95}{0.65}=\sqrt{\frac{\mathrm{h}_{\text {orifice }}}{\mathrm{h}_{\text {venturi }}}}$
$\mathrm{h}_{\text {venturi }}=140 \mathrm{~mm}$
09. Ans: (b, d)

Sol:

Let the point at the summit be denoted by (3).

Then,

$$
\frac{\mathrm{P}_{1}}{\gamma}+\frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}}+\mathrm{Z}_{1}=\frac{\mathrm{P}_{3}}{\gamma}+\frac{\mathrm{V}_{3}^{2}}{2 \mathrm{~g}}+\mathrm{Z}_{3}
$$

where, $\mathrm{V}_{3}=\mathrm{V}_{2}=2 \sqrt{\mathrm{~g}} \mathrm{~m} / \mathrm{s}$;

$$
\mathrm{Z}_{3}-\mathrm{Z}_{1}=1.4 \mathrm{~m}
$$

Thus,

$$
\begin{aligned}
\frac{\mathrm{P}_{3}}{\gamma} & =-1.4-\frac{4 \mathrm{~g}}{2 \mathrm{~g}}=-3.4 \\
\Rightarrow \quad \mathrm{P}_{3} & =-3.4 \times 9810 \mathrm{~Pa} \\
& =-33.354 \mathrm{kPa}
\end{aligned}
$$

Applying Bernoulli equation between sections (1) \& (2)

$$
\frac{\mathrm{P}_{1}}{\gamma}+\frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}}+\mathrm{Z}_{1}=\frac{\mathrm{P}_{2}}{\gamma}+\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}+\mathrm{Z}_{2}
$$

But, $\mathrm{P}_{1}=0=\mathrm{P}_{2} ; \mathrm{V}_{1}=0$;

$$
\mathrm{Z}_{1}-\mathrm{Z}_{2}=2 \mathrm{~m}
$$

So, $0+0+2=0+\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}+0$

$$
\Rightarrow \mathrm{V}_{2}=2 \sqrt{\mathrm{~g}} \mathrm{~m} / \mathrm{s}
$$

$$
\mathrm{Q}=\frac{\pi}{4} \mathrm{~d}^{2} \mathrm{~V}_{2}=\frac{\pi}{4} \times\left(3 \times 10^{-2}\right)^{2} \times 2 \sqrt{9.81}
$$

$$
=4.428 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}
$$

$\begin{gathered} \text { ace } \\ \text { online } \end{gathered}$	Regular Live Doubt clearing Sessions \| Free Online Test Series	ASK an expert			
	Affordable Fee \| Available 1M	3M	6M	12M	18M and 24 Months Subscription Packages

ACE
 Chapter
 6
 Momentum equation and its Applications

1. Ans: 1600

Sol: $\mathrm{S}=0.80$
$\mathrm{A}=0.02 \mathrm{~m}^{2}$
$\mathrm{V}=10 \mathrm{~m} / \mathrm{sec}$
$\mathrm{F}=\rho . \mathrm{A} . \mathrm{V}^{2}$
$\mathrm{F}=0.80 \times 1000 \times 0.02 \times 10^{2}$
$\mathrm{F}=1600 \mathrm{~N}$
02. Ans: 6000

Sol: $\mathrm{A}=0.015 \mathrm{~m}^{2}$
$\mathrm{V}=15 \mathrm{~m} / \mathrm{sec}$ (Jet velocity)
$\mathrm{U}=5 \mathrm{~m} / \mathrm{sec}$ (Plate velocity)
$\mathrm{F}=\rho \mathrm{A}(\mathrm{V}+\mathrm{U})^{2}$
$F=1000 \times 0.015(15+5)^{2}$
$\mathrm{F}=6000 \mathrm{~N}$
03. Ans: 19.6

Sol: $V=100 \mathrm{~m} / \mathrm{sec}$ (Jet velocity)
$\mathrm{U}=50 \mathrm{~m} / \mathrm{sec} \quad$ (Plate velocity)
$\mathrm{d}=0.1 \mathrm{~m}$
$\mathrm{F}=\rho \mathrm{A}(\mathrm{V}-\mathrm{U})^{2}$
$\mathrm{F}=1000 \times \frac{\pi}{4} \times 0.1^{2} \times(100-50)^{2}$
$\mathrm{F}=19.6 \mathrm{kN}$
04. Ans: (a)

Sol:

$$
\begin{aligned}
\mathrm{F}_{\mathrm{x}} & =\rho \mathrm{aV}\left(\mathrm{~V}_{1 \mathrm{x}}-\mathrm{V}_{2 \mathrm{x}}\right) \\
& =\rho \mathrm{aV}(\mathrm{~V}-(-\mathrm{V})) \\
& =2 \rho a \mathrm{~V}^{2} \\
& =2 \times 1000 \times 10^{-4} \times 5^{2}=5 \mathrm{~N}
\end{aligned}
$$

5. Ans: (d)

Sol: Given, $\mathrm{V}=20 \mathrm{~m} / \mathrm{s}$,

$$
\mathrm{u}=5 \mathrm{~m} / \mathrm{s}
$$

$$
\mathrm{F}_{1}=\rho \mathrm{A}(\mathrm{~V}-\mathrm{u})^{2}
$$

Power $\left(P_{1}\right)=F_{1} \times u=\rho A(V-u)^{2} \times u$

$$
F_{2}=\rho \cdot A \cdot V \times V_{r}
$$

$$
=\rho \cdot A(V) \cdot(V-u)
$$

Power $\left(P_{2}\right)=F_{2} \times u=\rho A V(V-u) u$

$$
\begin{aligned}
\frac{P_{1}}{P_{2}} & =\frac{\rho A(V-u)^{2} \times u}{\rho A V(V-u) \times u} \\
& =\frac{V-u}{V}=1-\frac{u}{V} \\
& =1-\frac{5}{20}=0.75
\end{aligned}
$$

6. Ans: 2035

Sol: Given, $\theta=30^{\circ}$, $\dot{\mathrm{m}}=14 \mathrm{~kg} / \mathrm{s}$
$\left(\mathrm{P}_{\mathrm{i}}\right)_{\mathrm{g}}=200 \mathrm{kPa}$,
$\left(\mathrm{P}_{\mathrm{e}}\right)_{\mathrm{g}}=0$
$\mathrm{A}_{\mathrm{i}}=113 \times 10^{-4} \mathrm{~m}^{2}$,
$\mathrm{A}_{\mathrm{e}}=7 \times 10^{-4} \mathrm{~m}^{2}$
$\rho=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$,
$\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$
From the continuity equation :

$$
\rho \mathrm{A}_{\mathrm{i}} \mathrm{~V}_{\mathrm{i}}=14
$$

ace

N. ACE	14	GATE - Text Book Solutions

or $\quad \mathrm{V}_{\mathrm{i}}=\frac{14}{10^{3} \times 113 \times 10^{-4}}=1.24 \mathrm{~m} / \mathrm{s}$
Similarly, $\mathrm{V}_{\mathrm{e}}=\frac{14}{10^{3} \times 7 \times 10^{-4}}=20 \mathrm{~m} / \mathrm{s}$
Let F_{x} be the force exerted by elbow on water in the + ve x-direction. Applying the linear momentum equation to the C.V. enclosing the elbow, we write :
$\left(\mathrm{P}_{\mathrm{i}}\right)_{\mathrm{g}} \mathrm{A}_{\mathrm{i}}+\mathrm{F}_{\mathrm{x}}=\dot{\mathrm{m}}\left(\mathrm{V}_{\mathrm{e}} \cos 30^{\circ}-\mathrm{V}_{\mathrm{i}}\right)$
$\mathrm{F}_{\mathrm{x}}=\dot{\mathrm{m}}\left(\mathrm{V}_{\mathrm{e}} \cos 30^{\circ}-\mathrm{V}_{\mathrm{i}}\right)-\left(\mathrm{P}_{\mathrm{i}}\right)_{\mathrm{g}} \mathrm{A}_{\mathrm{i}}$
$=14\left(20 \times \cos 30^{\circ}-1.24\right)-200 \times 10^{3} \times 113 \times 10^{-4}$
$=225.13-2260$
$=-2034.87 \mathrm{~N} \approx-2035 \mathrm{~N}$
The x-component of water force on elbow is $-\mathrm{F}_{\mathrm{x}}$ (as per Newton's third law), i.e., $\cong 2035 \mathrm{~N}$

07. Ans: (a, d)

Sol: Given:

$$
\begin{gathered}
\mathrm{d}_{\mathrm{j}}=5 \mathrm{~cm}, \\
\mathrm{~V}_{\mathrm{j}}=20 \mathrm{~m} / \mathrm{s}, \\
\mathrm{U}=8 \mathrm{~m} / \mathrm{s} \\
\mathrm{~F}_{\mathrm{x}}=\rho \mathrm{A}_{\mathrm{j}}\left(\mathrm{~V}_{\mathrm{j}}-\mathrm{U}\right)\left(\mathrm{V}_{\mathrm{j}}-\mathrm{U}\right) \\
=10^{3} \times \frac{\pi}{4} \times 0.05^{2} \times(20-8)^{2} \\
=282.74 \mathrm{~N}
\end{gathered}
$$

Work done per second,

$$
\begin{aligned}
\dot{\mathrm{W}} & =\mathrm{F}_{\mathrm{x}} \times \mathrm{U} \\
& =282.74 \times 8=2.262 \mathrm{~kW}
\end{aligned}
$$

Efficiency,

$$
\begin{aligned}
\eta & =\frac{\dot{\mathrm{W}}}{\frac{1}{2} \rho \mathrm{Q} \times \mathrm{V}_{\mathrm{j}}^{2}}=\frac{2 \dot{\mathrm{~W}}}{\rho \mathrm{~A}_{\mathrm{j}} \mathrm{~V}_{\mathrm{j}}^{3}}=\frac{8 \dot{\mathrm{~W}}}{\rho \times \pi \mathrm{d}_{\mathrm{j}}^{2} \times \mathrm{V}_{\mathrm{j}}^{3}} \\
& =\frac{8 \times 2.262 \times 10^{3}}{10^{3} \times \pi \times(0.05)^{2} \times(20)^{3}} \\
& =0.288=28.8 \%
\end{aligned}
$$

ACE	15	Fluid Mechanics

Chapter

7

Laminar Flow

1. Ans: (d)

Sol: In a pipe, the flow changes from laminar flow to transition flow at $\mathrm{Re}=2000$. Let V be the average velocity of flow. Then

$$
2000=\frac{\mathrm{V} \times 8 \times 10^{-2}}{0.4 \times 10^{-4}} \Rightarrow \mathrm{~V}=1 \mathrm{~m} / \mathrm{s}
$$

In laminar flow through a pipe,

$$
\mathrm{V}_{\max }=2 \times \mathrm{V}=2 \mathrm{~m} / \mathrm{s}
$$

02. Ans: (d)

Sol: The equation $\tau=\left(-\frac{\partial \mathrm{P}}{\partial \mathrm{x}}\right)\left(\frac{\mathrm{r}}{2}\right)$ is valid for laminar as well as turbulent flow through a circular tube.
03. Ans: (d)

Sol: $\mathrm{Q}=\mathrm{A} . \mathrm{V}_{\text {avg }}$

$$
\begin{aligned}
\mathrm{Q} & =\mathrm{A} \cdot \frac{\mathrm{~V}_{\max }}{2} \quad\left(\because \mathrm{~V}_{\max }=2 \mathrm{~V}_{\text {avg }}\right) \\
\mathrm{Q}= & \frac{\pi}{4}\left(\frac{40}{1000}\right)^{2} \times \frac{1.5}{2} \\
& =\frac{\pi}{4} \times(0.04)^{2} \times 0.75 \\
& =\frac{\pi}{4} \times \frac{4}{100} \times \frac{4}{100} \times \frac{3}{4}=\frac{3 \pi}{10000} \mathrm{~m}^{3} / \mathrm{sec}
\end{aligned}
$$

04. Ans: 1.92

Sol: $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
$\mathrm{Q}=800 \mathrm{~mm}^{3} / \mathrm{sec}=800 \times\left(10^{-3}\right)^{3} \mathrm{~m}^{3} / \mathrm{sec}$
$\mathrm{L}=2 \mathrm{~m}$
$\mathrm{D}=0.5 \mathrm{~mm}$

$$
\begin{aligned}
& \Delta \mathrm{P}=2 \mathrm{MPa}=2 \times 10^{6} \mathrm{~Pa} \\
& \qquad \begin{array}{l}
\mu=? \\
\Delta \mathrm{P}=\frac{128 . \mu \mathrm{QL}}{\pi \mathrm{D}^{4}} \\
2 \times 10^{6}=\frac{128 \times \mu \times 800 \times\left(10^{-3}\right)^{3} \times 2}{\pi\left(0.5 \times 10^{-3}\right)^{4}} \\
\quad \mu=1.917 \mathrm{milli} \mathrm{~Pa}-\mathrm{sec}
\end{array}
\end{aligned}
$$

5. Ans: 0.75

Sol: $\quad U_{r}=U_{\max }\left(1-\left(\frac{r}{R}\right)^{2}\right)$

$$
\begin{aligned}
& \quad\left[\because \frac{\mathrm{U}}{\mathrm{U}_{\max }}=1-\left(\frac{\mathrm{r}}{\mathrm{R}}\right)^{2}\right] \\
& =1\left(1-\left(\frac{50}{200}\right)^{2}\right) \\
& =1\left(1-\frac{1}{4}\right)=\frac{3}{4}=0.75 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

6. Ans: 0.08

Sol: Given,

$$
\rho=0.8 \times 1000=800 \mathrm{~kg} / \mathrm{m}^{3}
$$

$\mu=1$ Poise $=10^{-1} \mathrm{~N}-\mathrm{s} / \mathrm{m}^{2}$
$\mathrm{d}=50 \mathrm{~mm}=0.05 \mathrm{~m}$
Velocity $=2 \mathrm{~m} / \mathrm{s}$
Reynold's Number, $\operatorname{Re}=\frac{\rho V D}{\mu}$

$$
=\frac{800 \times 2 \times 0.05}{10^{-1}}=800
$$

$$
(\because \operatorname{Re}<2000)
$$

\therefore Flow is laminar,
For laminar, Darcy friction factor

$$
\mathrm{f}=\frac{64}{\operatorname{Re}}=\frac{64}{800}=0.08
$$

7. Ans: 16

Sol: For fully developed laminar flow,
$\mathrm{h}_{\mathrm{f}}=\frac{32 \mu \mathrm{VL}}{\rho \mathrm{gD}^{2}}(\therefore \mathrm{Q}=\mathrm{AV})$
$\mathrm{h}_{\mathrm{f}}=\frac{32 \mu\left(\frac{\mathrm{Q}}{\mathrm{A}}\right) \mathrm{L}}{\rho \mathrm{gD}^{2}}=\frac{32 \mu \mathrm{QL}}{\mathrm{AD}^{2} \times \rho \mathrm{g}}$
$h_{f}=\frac{32 \mu Q L}{\frac{\pi}{4} D^{2} \times D^{2} \times \rho g}$
$h_{f} \propto \frac{1}{D^{4}}$
$\mathrm{h}_{\mathrm{f} 1} \mathrm{D}_{1}^{4}=\mathrm{h}_{\mathrm{f}_{2}} \mathrm{D}_{2}^{4}$
Given, $\quad D_{2}=\frac{D_{1}}{2}$

$$
\begin{aligned}
\mathrm{h}_{\mathrm{f} 1} \times \mathrm{D}_{1}^{4} & =\mathrm{h}_{\mathrm{f} 2} \times\left(\frac{\mathrm{D}_{1}}{2}\right)^{4} \\
\mathrm{~h}_{\mathrm{f}_{2}} & =16 \mathrm{~h}_{\mathrm{f}_{1}}
\end{aligned}
$$

$\therefore \quad$ Head loss, increases by 16 times if diameter is halved.
08. Ans: 5.2

Sol: Oil viscosity,

$$
\begin{aligned}
& \mu=10 \text { poise }=10 \times 0.1=1 \mathrm{~N}-\mathrm{s} / \mathrm{m}^{2} \\
& \mathrm{y}=50 \times 10^{-3} \mathrm{~m} \\
& \mathrm{~L}=120 \mathrm{~cm}=1.20 \mathrm{~m}, \quad \Delta \mathrm{P}=3 \times 10^{3} \mathrm{~Pa}
\end{aligned}
$$

Width of plate $=0.2 \mathrm{~m}$,
$\mathrm{Q}=$?
$\mathrm{Q}=\mathrm{A} . \mathrm{V}_{\text {avg }}=($ width of plate $\times \mathrm{y}) \mathrm{V}$
$\Delta \mathrm{P}=\frac{12 \mu \mathrm{VL}}{\mathrm{B}^{2}}$
$3 \times 10^{3}=\frac{12 \times 1 \times \mathrm{V} \times 1.20}{\left(50 \times 10^{-3}\right)^{2}}$
$\mathrm{V}=0.52 \mathrm{~m} / \mathrm{sec}$
$\mathrm{Q}=\mathrm{AV} \mathrm{V}_{\text {avg }}=\left(0.2 \times 50 \times 10^{-3}\right)(0.52)$

$$
=5.2 \mathrm{lit} / \mathrm{sec}
$$

9. Ans: (a)

Sol: Wall shear stress for flow in a pipe is given by,

$$
\tau_{\mathrm{o}}=-\frac{\partial \mathrm{P}}{\partial \mathrm{x}} \times \frac{\mathrm{R}}{2}=\frac{\Delta \mathrm{P}}{\mathrm{~L}} \times \frac{\mathrm{D}}{4}=\frac{\Delta \mathrm{PD}}{4 \mathrm{~L}}
$$

10. Ans: 72

Sol: Given, $\rho=800 \mathrm{~kg} / \mathrm{m}^{3}$,

$$
\mu=0.1 \mathrm{~Pa} . \mathrm{s}
$$

Flow is through an inclined pipe.

$$
\begin{gathered}
\mathrm{d}=1 \times 10^{-2} \mathrm{~m}, \\
\mathrm{~V}_{\mathrm{av}}=0.1 \mathrm{~m} / \mathrm{s}, \quad \theta=30^{\circ} \\
\operatorname{Re}=\frac{\rho \mathrm{V}_{\mathrm{av}} \mathrm{~d}}{\mu}=\frac{800 \times 0.1 \times 1 \times 10^{-2}}{0.1}=8
\end{gathered}
$$

\Rightarrow flow is laminar.
Applying energy equation for the two sections of the inclined pipe separated by 10 m along the pipe

$$
\frac{\mathrm{P}_{1}}{\gamma}+\frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}}+\mathrm{Z}_{1}=\frac{\mathrm{P}_{2}}{\gamma}+\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}+\mathrm{Z}_{2}+\mathrm{h}_{\mathrm{f}}
$$

But $V_{1}=V_{2}$,

$$
\left(Z_{2}-Z_{1}\right)=10 \sin 30^{\circ}=5 \mathrm{~m}
$$

and $\quad h_{f}=\frac{32 \mu \mathrm{~V}_{\mathrm{av}} \mathrm{L}}{\rho \mathrm{gd}^{2}}$

$$
\begin{aligned}
& \frac{\left(\mathrm{P}_{1}-\mathrm{P}_{2}\right)}{\gamma}=\left(\mathrm{Z}_{2}-\mathrm{Z}_{1}\right)+\frac{32 \mu \mathrm{~V}_{\mathrm{av}} \mathrm{~L}}{\rho \mathrm{dd}^{2}} \\
& \left(\mathrm{P}_{1}-\mathrm{P}_{2}\right)=\rho g\left(\mathrm{Z}_{2}-\mathrm{Z}_{1}\right)+\frac{32 \mu \mathrm{~V}_{\mathrm{av}} \mathrm{~L}}{\mathrm{~d}^{2}}
\end{aligned}
$$

$$
=800 \times 10 \times 5+\frac{32 \times 0.1 \times 0.1 \times 10}{\left(1 \times 10^{-2}\right)^{2}}
$$

$$
=40 \times 10^{3}+32 \times 10^{3}=72 \mathrm{kPa}
$$

11. Ans: (a, b, c, d)

Sol: The following statements regarding laminar flow through pipes are correct.

- Velocity profile is parabolic as given by

$$
\mathrm{u}=\mathrm{U}\left(1-\frac{\mathrm{r}^{2}}{\mathrm{R}^{2}}\right)
$$

- Shear stress, $\tau=\mu \frac{d u}{d y}=-\mu \frac{d u}{d r}$

$$
\begin{aligned}
\tau & =-\mu \times\left(-\frac{2 \mathrm{r} \mathrm{U}}{\mathrm{R}^{2}}\right)=\frac{2 \mu \mathrm{U}}{\mathrm{R}^{2}} \times \mathrm{r} \\
& =\text { Linear profile }
\end{aligned}
$$

- Rate of shear strain profile is also linear.
- Flow is rotational.

Flow through Pipes

1. Ans: (d)

Sol:

- The Darcy-Weisbash equation for head loss in written as:

$$
h_{f}=\frac{\mathrm{fLV}^{2}}{2 \mathrm{gd}}
$$

where V is the average velocity, f is friction factor, L is the length of pipe and d is the diameter of the pipe.

- This equation is used for laminar as well as turbulent flow through the pipe.
- The friction factor depends on the type of flow (laminar or turbulent) as well as the nature of pipe surface (smooth or rough)
- For laminar flow, friction factor is a function of Reynolds number.

2. Ans: 481

Sol: Given data,

$$
\begin{aligned}
& \dot{\mathrm{m}}=\pi \mathrm{kg} / \mathrm{s}, \quad \mathrm{~d}=5 \times 10^{-2} \mathrm{~m}, \\
& \mu=0.001 \mathrm{~Pa} . \mathrm{s}, \quad \rho=1000 \mathrm{~kg} / \mathrm{m}^{3} \\
& \mathrm{~V}_{\mathrm{av}}=\frac{\dot{\mathrm{m}}}{\rho \mathrm{~A}}=\frac{4 \dot{\mathrm{~m}}}{\rho \pi \mathrm{~d}^{2}}=\frac{4 \times \pi}{\rho \pi \mathrm{d}^{2}}=\frac{4}{\rho \mathrm{~d}^{2}} \\
& \operatorname{Re}=\frac{\rho \mathrm{V}_{\mathrm{av}} \mathrm{~d}}{\mu}=\rho \times \frac{4}{\rho \mathrm{~d}^{2}} \times \frac{\mathrm{d}}{\mu}=\frac{4}{\mu \mathrm{~d}} \\
&= \frac{4}{0.001 \times 5 \times 10^{-2}}=8 \times 10^{4}
\end{aligned}
$$

\Rightarrow Flow is turbulent

$$
\mathrm{f}=\frac{0.316}{\operatorname{Re}^{0.25}}=\frac{0.316}{\left(8 \times 10^{4}\right)^{0.25}}=0.0188
$$

$$
\begin{aligned}
\Delta \mathrm{P} & =\rho \mathrm{g} \frac{\mathrm{fLV}}{\mathrm{av}} \\
2 \mathrm{gd} & =\mathrm{f} \rho \mathrm{~L} \times\left(\frac{4}{\rho \mathrm{~d}^{2}}\right)^{2} \times \frac{1}{2 \mathrm{~d}} \\
\frac{\Delta \mathrm{P}}{\mathrm{~L}}=\mathrm{f} \times \frac{16}{\rho \mathrm{~d}^{5}} \times \frac{1}{2} & =\frac{8 \mathrm{f}}{\rho \mathrm{~d}^{5}}=\frac{8 \times 0.0188}{10^{3} \times\left(5 \times 10^{-2}\right)^{5}} \\
& =481.28 \mathrm{~Pa} / \mathrm{m}
\end{aligned}
$$

03. Ans: (a)

Sol: In pipes Net work, series arrangement
$\therefore \mathrm{h}_{\mathrm{f}}=\frac{\mathrm{f} \times \ell \times \mathrm{V}^{2}}{2 \mathrm{gd}}=\frac{\mathrm{f} \times \ell \times \mathrm{Q}^{2}}{12.1 \times \mathrm{d}^{5}}$
$\frac{\mathrm{h}_{\mathrm{f}_{\mathrm{A}}}}{\mathrm{h}_{\mathrm{f}_{\mathrm{B}}}}=\frac{\mathrm{f}_{\mathrm{A}} \times \ell_{\mathrm{A}} \times \mathrm{Q}_{\mathrm{a}}^{2}}{12.1 \times \mathrm{d}_{\mathrm{A}}^{5}} \times \frac{12.1 \times \mathrm{d}_{\mathrm{B}}^{5}}{\mathrm{f}_{\mathrm{B}} \times \ell_{\mathrm{B}} \times \mathrm{Q}_{\mathrm{B}}^{2}}$
Given $l_{\mathrm{A}}=l_{\mathrm{B}}, \mathrm{f}_{\mathrm{A}}=\mathrm{f}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{A}}=\mathrm{Q}_{\mathrm{B}}$

$$
\begin{aligned}
\frac{\mathrm{h}_{\mathrm{f}_{\mathrm{A}}}}{\mathrm{~h}_{\mathrm{f}_{\mathrm{B}}}} & =\left(\frac{\mathrm{d}_{\mathrm{B}}}{\mathrm{~d}_{\mathrm{A}}}\right)^{5}=\left(\frac{\mathrm{d}_{\mathrm{B}}}{1.2 \mathrm{~d}_{\mathrm{B}}}\right)^{5} \\
& =\left(\frac{1}{1.2}\right)^{5}=0.4018 \approx 0.402
\end{aligned}
$$

4. Ans: (a)

Sol: Given, $\mathrm{d}_{1}=10 \mathrm{~cm} ; \mathrm{d}_{2}=20 \mathrm{~cm}$
$\mathrm{f}_{1}=\mathrm{f}_{2}$;
$l_{1}=l_{2}=l$
$l_{\mathrm{e}}=l_{1}+l_{2}=2 l$
$\frac{l_{\mathrm{e}}}{\mathrm{d}_{\mathrm{e}}^{5}}=\frac{l_{1}}{\mathrm{~d}_{1}^{5}}+\frac{l_{2}}{\mathrm{~d}_{2}^{5}} \Rightarrow \frac{2 l}{d_{e}^{5}}=\frac{l}{10^{5}}+\frac{l}{20^{5}}$
$\therefore \mathrm{d}_{\mathrm{e}}=11.4 \mathrm{~cm}$
05. Ans: (c)

Sol:

Given $\mathrm{d}_{2}=2 \mathrm{~d}_{1}$
Losses due to sudden expansion,

$$
\begin{aligned}
\mathrm{h}_{\mathrm{L}} & =\frac{\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)^{2}}{2 \mathrm{~g}} \\
& =\frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}}\left(1-\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}\right)^{2}
\end{aligned}
$$

By continuity equation,

$$
\begin{aligned}
\mathrm{Q} & =\mathrm{A}_{1} \mathrm{~V}_{1}=\mathrm{A}_{2} \mathrm{~V}_{2} \\
\therefore \quad \frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}} & =\frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}}=\left(\frac{\mathrm{d}_{1}}{\mathrm{~d}_{2}}\right)^{2}=\left(\frac{1}{2}\right)^{2} \\
\mathrm{~h}_{\mathrm{L}} & =\frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}}\left(1-\frac{1}{4}\right)^{2} \\
\mathrm{~h}_{\mathrm{L}} & =\frac{9}{16} \times \frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}}
\end{aligned}
$$

$$
\frac{\mathrm{h}_{\mathrm{L}}}{\mathrm{~V}_{1}^{2}}=\frac{9}{16}
$$

$$
2 \mathrm{~g}
$$

6. Ans: (b)

Sol: Pipes are in parallel

$$
\begin{align*}
& \mathrm{Q}_{\mathrm{e}}=\mathrm{Q}_{\mathrm{A}}+\mathrm{Q}_{\mathrm{B}} \tag{i}\\
& \mathrm{~h}_{\mathrm{Le}}=\mathrm{h}_{\mathrm{L}_{\mathrm{A}}}=\mathrm{h}_{\mathrm{L}_{\mathrm{B}}} \\
& \mathrm{~L}_{\mathrm{e}}=175 \mathrm{~m} \\
& \mathrm{f}_{\mathrm{e}}=0.015 \\
& \frac{f_{e} L_{e} Q_{e}^{2}}{12 \cdot 1 D_{e}^{5}}=\frac{f_{A} \cdot L_{A} Q_{A}^{2}}{12 \cdot 1 D_{A}^{5}}=\frac{f_{B} L_{B} Q_{B}^{2}}{12.1 D_{B}^{5}} \\
& \frac{0.020 \times 150 \times \mathrm{Q}_{\mathrm{A}}^{2}}{12.1 \times(0.1)^{5}}=\frac{0.015 \times 200 \times \mathrm{Q}_{\mathrm{B}}^{2}}{12.1 \times(0.08)^{5}} \\
& \mathrm{Q}_{\mathrm{A}}=1.747 \mathrm{Q}_{\mathrm{B}} \tag{ii}\\
& \text { From (i) } \quad \mathrm{Q}_{\mathrm{e}}=1.747 \mathrm{Q}_{\mathrm{B}}+\mathrm{Q}_{\mathrm{B}} \\
& \mathrm{Q}_{\mathrm{e}}=2.747 \mathrm{Q}_{\mathrm{B}} \tag{iii}\\
& \frac{0.015 \times 175\left(2.747 \mathrm{Q}_{\mathrm{B}}\right)^{2}}{12.1 \times \mathrm{D}_{\mathrm{e}}^{5}}=\frac{0.015 \times 200 \times \mathrm{Q}_{\mathrm{B}}^{2}}{12.1 \times(0.08)^{5}} \\
& \mathrm{D}_{\mathrm{e}}=116.6 \mathrm{~mm} \simeq 117 \mathrm{~mm}
\end{align*}
$$

07. Ans: 0.141

Sol:

Given data,

$$
\begin{array}{ll}
\mathrm{L}=930 \mathrm{~m}, & \mathrm{k}_{\text {valve }}=5.5 \\
\mathrm{k}_{\text {entry }}=0.5, & \mathrm{~d}=0.3 \mathrm{~m} \\
\mathrm{f}=0.03, & \mathrm{~g}=10 \mathrm{~m} / \mathrm{s}^{2}
\end{array}
$$

Applying energy equation for points (1) and (2), we write :

$$
\begin{aligned}
& \frac{\mathrm{P}_{1}}{\gamma_{\mathrm{w}}}+\frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}}+\mathrm{Z}_{1}=\frac{\mathrm{P}_{2}}{\gamma_{\mathrm{w}}}+\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}+\mathrm{Z}_{2}+\mathrm{h}_{\mathrm{L}, \text { entry }} \\
&+\mathrm{h}_{\mathrm{L}, \text { valve }}+\mathrm{h}_{\mathrm{L}, \text {,exit }}+\mathrm{h}_{\mathrm{f}, \text {,pipe }}
\end{aligned}
$$

But $\mathrm{P}_{1}=\mathrm{P}_{2}=\mathrm{P}_{\text {atm }}=0$

$$
\begin{aligned}
\mathrm{V}_{1} & =0=V_{2} \\
\mathrm{Z}_{1}- & \mathrm{Z}_{2}=20 \mathrm{~m}, \quad \mathrm{k}_{\text {exit }}=1 \\
\mathrm{Z}_{1}-\mathrm{Z}_{2} & =0.5 \frac{\mathrm{~V}^{2}}{2 \mathrm{~g}}+5.5 \frac{\mathrm{~V}^{2}}{2 \mathrm{~g}}+1 \times \frac{\mathrm{V}^{2}}{2 \mathrm{~g}}+\frac{\mathrm{fLV}^{2}}{2 \mathrm{gd}} \\
& =7 \frac{\mathrm{~V}^{2}}{2 \mathrm{~g}}+\frac{\mathrm{fLV}^{2}}{2 \mathrm{gd}}=\frac{\mathrm{V}^{2}}{2 \mathrm{~g}}\left(7+\frac{\mathrm{fL}}{\mathrm{~d}}\right)
\end{aligned}
$$

$$
\text { or } \quad 20=\frac{\mathrm{V}^{2}}{2 \mathrm{~g}}\left[7+\frac{0.03 \times 930}{0.3}\right]=100 \frac{\mathrm{~V}^{2}}{2 \mathrm{~g}}
$$

$$
\text { or } \mathrm{V}^{2}=\frac{20 \times 2 \mathrm{~g}}{100}=\frac{20 \times 2 \times 10}{100}
$$

$$
\Rightarrow \mathrm{V}=2 \mathrm{~m} / \mathrm{s}
$$

Thus, discharge, $\mathrm{Q}=\frac{\pi}{4} \times 0.3^{2} \times 2$

$$
=0.1414 \mathrm{~m}^{3} / \mathrm{s}
$$

8. Ans: (c)

Sol: Given data :
Fanning friction factor, $\mathrm{f}=\mathrm{m} \mathrm{Re}^{-0.2}$
For turbulent flow through a smooth pipe.

$$
\begin{aligned}
& \Delta \mathrm{P}=\frac{\rho \mathrm{f}_{\text {Darcy }}{L V^{2}}_{2 d}^{2 d}=\frac{\rho(4 \mathrm{f}) \mathrm{LV}^{2}}{2 \mathrm{~d}}}{} \\
&=\frac{2 \rho \mathrm{mRe}^{-0.2} L V^{2}}{\mathrm{~d}}
\end{aligned}
$$

or $\quad \Delta \mathrm{P} \propto \mathrm{V}^{-0.2} \mathrm{~V}^{2} \propto \mathrm{~V}^{1.8} \quad$ (as all other parameters remain constant)

We may thus write :

$$
\frac{\Delta \mathrm{P}_{2}}{\Delta \mathrm{P}_{1}}=\left(\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}\right)^{1.8}=\left(\frac{2}{1}\right)^{1.8}=3.4822
$$

or $\quad \Delta \mathrm{P}_{2}=3.4822 \times 10=34.82 \mathrm{kPa}$
09. Ans: (b)

Sol: Given data :
Rectangular duct, $\mathrm{L}=10 \mathrm{~m}$,
X-section of duct $=15 \mathrm{~cm} \times 20 \mathrm{~cm}$
Material of duct-Commercial steel,

$$
\varepsilon=0.045 \mathrm{~mm}
$$

Fluid is air $\left(\rho=1.145 \mathrm{~kg} / \mathrm{m}^{3}\right.$,

$$
\left.v=1.655 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}\right)
$$

$$
\mathrm{V}_{\mathrm{av}}=7 \mathrm{~m} / \mathrm{s}
$$

$$
\mathrm{Re}=\frac{\mathrm{V}_{\mathrm{av}} \times \mathrm{D}_{\mathrm{h}}}{v}
$$

where, $\mathrm{D}_{\mathrm{h}}=$ Hydraulic diameter

$$
=\frac{4 \times \text { Crosssec tional area }}{\text { Perimeter }}
$$

$$
=\frac{4 \times 0.15 \times 0.2}{2(0.15+0.2)}=0.1714 \mathrm{~m}
$$

$$
\operatorname{Re}=\frac{7 \times 0.1714}{1.655 \times 10^{-5}}=72495.5
$$

\Rightarrow Flow is turbulent.

Using Haaland equation to find friction factor,

$$
\begin{aligned}
\frac{1}{\sqrt{\mathrm{f}}} & \simeq-1.8 \log \left[\frac{6.9}{\operatorname{Re}}+\left(\frac{\varepsilon / \mathrm{D}_{\mathrm{h}}}{3.7}\right)^{1.11}\right] \\
\frac{1}{\sqrt{\mathrm{f}}} & =-1.8 \log \left[\frac{6.9}{72495.5}+\left(\frac{0.045 \times 10^{-3}}{0.1714 \times 3.7}\right)^{1.11}\right] \\
& =-1.8 \log \left[9.518 \times 10^{-5}+2.48 \times 10^{-5}\right] \\
& =-1.8 \log \left(11.998 \times 10^{-5}\right) \\
\frac{1}{\sqrt{\mathrm{f}}} & =7.058 \\
\mathrm{f} & =0.02
\end{aligned}
$$

The pressure drop in the duct is,

$$
\begin{aligned}
\Delta \mathrm{P} & =\frac{\rho f \mathrm{LV}^{2}}{2 \mathrm{D}_{\mathrm{h}}} \\
& =\frac{1.145 \times 0.02 \times 10 \times 7^{2}}{2 \times 0.1714}=32.73 \mathrm{~Pa}
\end{aligned}
$$

The required pumping power will be

$$
\begin{aligned}
\mathrm{P}_{\text {pumping }} & =\mathrm{Q} \Delta \mathrm{P}=\mathrm{A} \mathrm{~V}_{\mathrm{av}} \times \Delta \mathrm{P} \\
& =(0.15 \times 0.2) \times 7 \times(32.73) \\
& =6.87 \mathrm{~W} \simeq 7 \mathrm{~W}
\end{aligned}
$$

10. Ans: 26.5

Sol:

Case I: Without additional pipe,
Let Q be the discharge through the pipe.
Then
$\frac{P_{P}}{\gamma}+\frac{V_{P}^{2}}{2 g}+Z_{P}=\frac{P_{S}}{\gamma}+\frac{\mathrm{V}_{\mathrm{S}}^{2}}{2 g}+Z_{S}+\frac{\mathrm{fLQ}^{2}}{12.1 d^{5}}$
But $\quad V_{P}=V_{S}$
and $\quad Z_{P}=Z_{S}$
P_{P} and P_{S} are the pressures at sections P and S , respectively.

Thus,

$$
\begin{equation*}
\frac{\mathrm{P}_{\mathrm{P}}}{\gamma}-\frac{\mathrm{P}_{\mathrm{S}}}{\gamma}=\frac{\mathrm{fLQ}^{2}}{12.1 \mathrm{~d}^{5}} \tag{1}
\end{equation*}
$$

Case II: When a pipe ($\mathrm{L} / 2$) is connected in parallel.
In this case, let Q^{\prime} be the total discharge.
$\mathrm{Q}_{\mathrm{Q}-\mathrm{R}}=\frac{\mathrm{Q}^{\prime}}{2}$ and $\mathrm{Q}_{\mathrm{R}-\mathrm{S}}=\mathrm{Q}^{\prime}$
Then,

$$
\begin{aligned}
\frac{\mathrm{P}_{\mathrm{P}}^{\prime}}{\gamma}+\frac{\mathrm{V}_{\mathrm{P}}^{\prime 2}}{2 \mathrm{~g}}+\mathrm{Z}_{\mathrm{P}}^{\prime} & =\frac{\mathrm{P}_{\mathrm{S}}^{\prime}}{\gamma}+\frac{\mathrm{V}_{\mathrm{S}}^{\prime 2}}{2 \mathrm{~g}}+\mathrm{Z}_{\mathrm{S}}^{\prime}+\frac{\mathrm{f}(\mathrm{~L} / 4) \mathrm{Q}^{\prime 2}}{12.1 \mathrm{~d}^{5}} \\
& +\frac{\mathrm{f}(\mathrm{~L} / 2)\left(\mathrm{Q}^{\prime} / 2\right)^{2}}{12.1 \mathrm{~d}^{5}}+\frac{\mathrm{f}(\mathrm{~L} / 4) \mathrm{Q}^{\prime 2}}{12.1 \mathrm{~d}^{5}}
\end{aligned}
$$

$\mathrm{P}_{\mathrm{P}}{ }^{\prime}$ and $\mathrm{P}_{\mathrm{S}^{\prime}}$ are the pressures at sections P and S in the second case.

But $\mathrm{V}_{\mathrm{P}}{ }^{\prime}=\mathrm{V}_{\mathrm{S}}{ }^{\prime} ; \mathrm{Z}_{\mathrm{P}}{ }^{\prime}=\mathrm{Z}_{\mathrm{S}}{ }^{\prime}$

So, $\frac{\mathrm{P}_{\mathrm{P}}^{\prime}}{\gamma}-\frac{\mathrm{P}_{\mathrm{S}}^{\prime}}{\gamma}=\frac{\mathrm{fLQ}^{\prime 2}}{12.1 \mathrm{~d}^{5}}\left[\frac{1}{4}+\frac{1}{8}+\frac{1}{4}\right]$

$$
\begin{equation*}
=\frac{5}{8} \times \frac{\mathrm{fLQ}^{\prime 2}}{12.1 \mathrm{~d}^{5}} \tag{2}
\end{equation*}
$$

Given that end conditions remain same.
i.e., $\frac{\mathrm{P}_{\mathrm{P}}}{\gamma}-\frac{\mathrm{P}_{\mathrm{S}}}{\gamma}=\frac{\mathrm{P}_{\mathrm{P}}^{\prime}}{\gamma}-\frac{\mathrm{P}_{\mathrm{S}}^{\prime}}{\gamma}$

Hence, equation (2) becomes,

$$
\frac{\mathrm{fLQ}^{2}}{12.1 \mathrm{~d}^{5}}=\frac{5}{8} \frac{\mathrm{fLQ}^{\prime 2}}{12.1 \mathrm{~d}^{5}} \text { from eq.(1) }
$$

or $\left(\frac{\mathrm{Q}^{\prime}}{\mathrm{Q}}\right)^{2}=\frac{8}{5}$
or $\quad \frac{\mathrm{Q}^{\prime}}{\mathrm{Q}}=1.265$
Hence, percentage increase in discharge is

$$
\begin{aligned}
& =\frac{Q^{\prime}-Q}{Q} \times 100 \\
& =(1.265-1) \times 100 \\
& =26.5 \%
\end{aligned}
$$

11. Ans: 20\%

Sol: Since, discharge decrease is associated with increase in friction.

$$
\begin{aligned}
\frac{\mathrm{df}}{\mathrm{f}} & =-2 \times \frac{\mathrm{dQ}}{\mathrm{Q}}=2\left[-\frac{\mathrm{dQ}}{\mathrm{Q}}\right] \\
& =2 \times 10=20 \%
\end{aligned}
$$

12. Ans: (c, d)

Sol: Given data:

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{G}}=80 \mathrm{~m}, \mathrm{D}=0.5 \mathrm{~m}, \mathrm{~L}=4 \mathrm{~km} \\
& \mathrm{f}=0.02, \quad \eta=0.75 \\
& \eta=0.75=\frac{\mathrm{H}_{\mathrm{G}}-h_{f}}{\mathrm{H}_{\mathrm{G}}} \Rightarrow \mathrm{~h}_{\mathrm{f}}=\mathrm{H}_{\mathrm{G}}(1-\eta) \\
& \mathrm{h}_{\mathrm{f}}=80 \times(1-0.75)=20 \mathrm{~m}
\end{aligned}
$$

$$
\text { But, } \mathrm{h}_{\mathrm{f}}=\frac{\mathrm{fLQ}^{2}}{12.1 \times \mathrm{D}^{5}}
$$

$$
20=\frac{0.02 \times 4000 \times \mathrm{Q}^{2}}{12.1 \times(0.5)^{5}}
$$

$$
\Rightarrow \quad \mathrm{Q}=0.3075 \mathrm{~m}^{3} / \mathrm{s}
$$

$$
\therefore \mathrm{P}_{\mathrm{act}}=\rho \mathrm{g} \mathrm{QH}_{\mathrm{net}}
$$

$$
=10^{3} \times 9.81 \times 0.3075 \times(80-20)
$$

$$
=180.995 \mathrm{~kW}
$$

Now, $\mathrm{V}_{\mathrm{j}}=\mathrm{V}_{\mathrm{N}}=\sqrt{2 \mathrm{gH}_{\text {net }}}$

$$
=\sqrt{2 \times 9.81 \times 60}=34.31 \mathrm{~m} / \mathrm{s}
$$

From discharge, we have

$$
\begin{aligned}
\mathrm{Q} & =\mathrm{A}_{\mathrm{N}} \mathrm{~V}_{\mathrm{N}} \\
0.3075 & =\frac{\pi}{4} \times \mathrm{d}_{\mathrm{N}}^{2} \times 34.31 \\
\Rightarrow \mathrm{~d}_{\mathrm{N}} & =0.1068 \mathrm{~m}=10.68 \mathrm{~cm}
\end{aligned}
$$

Chapter
 9

Elementary Turbulent Flow

01. Ans: (b)

Sol: The velocity distribution in laminar sublayer of the turbulent boundary layer for flow through a pipe is linear and is given by

$$
\frac{\mathrm{u}}{\mathrm{~V}^{*}}=\frac{\mathrm{y} \mathrm{~V}^{*}}{\mathrm{v}}
$$

where V^{*} is the shear velocity.
02. Ans: (d)

Sol: $\Delta \mathrm{P}=\rho \mathrm{gh}_{\mathrm{f}}$

$$
=\frac{\rho \mathrm{fLV}^{2}}{2 \mathrm{D}}=\frac{\rho \mathrm{gfLQ}^{2}}{12.1 \mathrm{D}^{5}}
$$

For $\mathrm{Q}=$ constant

$$
\begin{aligned}
& \Delta \mathrm{P} \propto \frac{1}{\mathrm{D}^{5}} \\
& \text { or } \frac{\Delta \mathrm{P}_{2}}{\Delta \mathrm{P}_{1}}=\frac{\mathrm{D}_{1}^{5}}{\mathrm{D}_{2}^{5}}=\left(\frac{\mathrm{D}_{1}}{2 \mathrm{D}_{1}}\right)^{5}=\frac{1}{32}
\end{aligned}
$$

3. Ans: 2.4

Sol: Given: $V=2 \mathrm{~m} / \mathrm{s}$

$$
\begin{gathered}
\mathrm{f}=0.02 \\
\mathrm{~V}_{\max }=? \\
\mathrm{~V}_{\max }=\mathrm{V}(1+1.43 \sqrt{\mathrm{f}}) \\
=2(1+1.43 \sqrt{0.02}) \\
=2 \times 1.2=2.4 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

4. Ans: (c)

Sol: Given data:

$$
\begin{aligned}
& \mathrm{D}=30 \mathrm{~cm}=0.3 \mathrm{~m} \\
& \operatorname{Re}=10^{6} \\
& \mathrm{f}=0.025
\end{aligned}
$$

Thickness of laminar sub layer, $\delta^{\prime}=$?

$$
\delta^{\prime}=\frac{11.6 \mathrm{v}}{\mathrm{~V}^{*}}
$$

where $\mathrm{V}^{*}=$ shear velocity $=\mathrm{V} \sqrt{\frac{\mathrm{f}}{8}}$
$v=$ Kinematic viscosity
$\operatorname{Re}=\frac{\mathrm{V} . \mathrm{D}}{v}$
$\therefore v=\frac{\mathrm{V} . \mathrm{D}}{\operatorname{Re}}$
$\delta^{\prime}=\frac{11.6 \times \frac{\mathrm{VD}}{\mathrm{Re}}}{\mathrm{V} \sqrt{\frac{\mathrm{f}}{8}}}$
$\delta^{\prime}=\frac{11.6 \times \mathrm{D}}{\operatorname{Re} \sqrt{\frac{\mathrm{f}}{8}}}$
$=\frac{11.6 \times 0.3}{10^{6} \times \sqrt{\frac{0.025}{8}}}$
$=6.22 \times 10^{-5} \mathrm{~m}=0.0622 \mathrm{~mm}$
05. Ans: 25

Sol: Given:

$$
\begin{array}{ll}
\mathrm{L}=100 \mathrm{~m} ; & \mathrm{D}=0.1 \mathrm{~m} \\
\mathrm{~h}_{\mathrm{L}}=10 \mathrm{~m} ; & \tau=?
\end{array}
$$

For any type of flow, the shear stress at wall/surface $\tau=\frac{-d P}{d x} \times \frac{R}{2}$

$$
\begin{aligned}
\tau & =\frac{\rho \mathrm{gh}_{\mathrm{L}}}{\mathrm{~L}} \times \frac{\mathrm{R}}{2} \\
\tau & =\frac{\rho \mathrm{gh}_{\mathrm{L}}}{\mathrm{~L}} \times \frac{\mathrm{D}}{4} \\
& =\frac{1000 \times 9.81 \times 10}{100} \times \frac{0.1}{4} \\
& =24.525 \mathrm{~N} / \mathrm{m}^{2}=25 \mathrm{~Pa}
\end{aligned}
$$

6. Ans: 0.905

Sol: $\mathrm{k}=0.15 \mathrm{~mm}$
$\tau=4.9 \mathrm{~N} / \mathrm{m}^{2}$
$v=1$ centi-stoke

$$
\mathrm{V}^{*}=\sqrt{\frac{\tau_{0}}{\rho}}=\sqrt{\frac{4.9}{1000}}=0.07 \mathrm{~m} / \mathrm{sec}
$$

$v=1$ centi-stoke

$$
=\frac{1}{100} \text { stoke }=\frac{10^{-4}}{100}=10^{-6} \mathrm{~m}^{2} / \mathrm{sec}
$$

$$
\begin{aligned}
\frac{\mathrm{k}}{\delta^{\prime}} & =\frac{0.15 \times 10^{-3}}{\left(\frac{11.6 \times v}{\mathrm{~V}^{*}}\right)} \\
& =\frac{0.15 \times 10^{-3}}{\frac{11.6 \times 10^{-6}}{0.07}}=0.905
\end{aligned}
$$

07. Ans: (a)

Sol: The velocity profile in the laminar sublayer is given as

$$
\frac{\mathrm{u}}{\mathrm{~V}^{*}}=\frac{\mathrm{yV} *}{\mathrm{v}}
$$

or $\quad v=\frac{y\left(V^{*}\right)^{2}}{u}$
where, V^{*} is the shear velocity.
Thus, $v=\frac{0.5 \times 10^{-3} \times(0.05)^{2}}{1.25}$

$$
\begin{aligned}
& =1 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s} \\
& =1 \times 10^{-2} \mathrm{~cm}^{2} / \mathrm{s}
\end{aligned}
$$

8. Ans: $47.74 \mathrm{~N} / \mathrm{m}^{2}$

Sol: Given data :

$$
\begin{aligned}
\mathrm{d} & =100 \mathrm{~mm}=0.1 \mathrm{~m} \\
\mathrm{u}_{\mathrm{r}=0} & =\mathrm{u}_{\max }=2 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Velocity at $\mathrm{r}=30 \mathrm{~mm}=1.5 \mathrm{~m} / \mathrm{s}$

Flow is turbulent.
The velocity profile in turbulent flow is

$$
\frac{\mathrm{u}_{\max }-\mathrm{u}}{\mathrm{~V} *}=5.75 \log \left(\frac{\mathrm{R}}{\mathrm{y}}\right)
$$

where u is the velocity at y and V^{*} is the shear velocity.
For pipe, $\mathrm{y}=\mathrm{R}-\mathrm{r}$

$$
=(50-30) \mathrm{mm}=20 \mathrm{~mm}
$$

Thus,
$\frac{2-1.5}{\mathrm{~V} *}=5.75 \log \left(\frac{50}{20}\right)=2.288$
or $\mathrm{V}^{*}=\frac{0.5}{2.288}=0.2185 \mathrm{~m} / \mathrm{s}$
Using the relation,

$$
\begin{aligned}
& \mathrm{V}^{*}=\sqrt{\frac{\tau_{\mathrm{w}}}{\rho}} \text { or } \tau_{\mathrm{w}}=\rho\left(\mathrm{V}^{*}\right)^{2} \\
& \tau_{\mathrm{w}}=10^{3} \times(0.2185)^{2}=47.74 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

9. Ans: (\mathbf{a}, b)

Sol: The following statements are true for turbulent flow through pipes:

- Velocity profile is logarithmic (in the overlap region) expressed as

$$
\frac{\mathrm{u}}{\mathrm{u}^{*}}=2.5 \ln \left(\frac{\mathrm{yu}^{*}}{\mathrm{v}}\right)+5.0
$$

- Surface roughness plays an important role in contributing towards determining head loss.

Chapter
 10
 Boundary Layer Theory

1. Ans: (c)

Sol: $\operatorname{Re}_{\text {Critical }}=\frac{U_{\infty} X_{\text {critical }}}{v}$
Assume water properties
$5 \times 10^{5}=\frac{6 \times \mathrm{x}_{\text {critical }}}{1 \times 10^{-6}}$
$\mathrm{X}_{\text {critical }}=0.08333 \mathrm{~m}=83.33 \mathrm{~mm}$
02. Ans: $\mathbf{1 . 6}$

Sol: $\delta \propto \frac{1}{\sqrt{\mathrm{Re}}}($ At given distance ' x ')
$\frac{\delta_{1}}{\delta_{2}}=\sqrt{\frac{\mathrm{Re}_{2}}{\mathrm{Re}_{1}}}$
$\frac{\delta_{1}}{\delta_{2}}=\sqrt{\frac{256}{100}}=\frac{16}{10}=1.6$
03. Ans: 80

Sol:
$\delta \propto \sqrt{\mathrm{x}}$
$\longleftarrow\left(\mathrm{x}_{1}+1\right)$
$\frac{\delta_{\mathrm{A}}}{\delta_{\mathrm{B}}}=\sqrt{\frac{\mathrm{x}_{1}}{\left(\mathrm{x}_{1}+1\right)}}$
$\mathrm{x}=\frac{2}{3}=\sqrt{\frac{\mathrm{x}_{1}}{\mathrm{x}_{1}+1}}$
$\frac{4}{9}=\frac{x_{1}}{x_{1}+1}$
$5 \mathrm{x}_{1}=4 \Rightarrow \mathrm{x}_{1}=80 \mathrm{~cm}$
04. Ans: 2

Sol: $\tau \propto \frac{1}{\delta}$
$\tau \propto \frac{1}{\sqrt{\mathrm{x}}} \because \delta \propto \sqrt{\mathrm{X}}$
$\frac{\tau_{1}}{\tau_{2}}=\sqrt{\frac{\mathrm{X}_{2}}{\mathrm{X}_{1}}}$
$\frac{\tau_{1}}{\tau_{2}}=\sqrt{4}=2$
05. Ans: 3

Sol: $\frac{U}{U_{\infty}}=\frac{y}{\delta}$
$\frac{\delta^{*}}{\theta}=$ Shape factor $=$?
$\delta^{*}=\int_{0}^{\delta}\left(1-\frac{u}{U_{\infty}}\right) d y$

$$
\begin{aligned}
& =\int_{0}^{\delta}\left(1-\frac{\mathrm{y}}{8}\right) \mathrm{dy} \\
& =\mathrm{y}-\left.\frac{\mathrm{y}^{2}}{2 \delta}\right|_{0} ^{\delta} \\
& =\delta-\frac{\delta}{2}=\frac{\delta}{2} \\
\theta & =\int_{0}^{\delta} \frac{\mathrm{u}}{\mathrm{U}_{\infty}}\left(1-\frac{\mathrm{u}}{\mathrm{U}_{\infty}}\right) \mathrm{dy} \\
& =\int_{0}^{\delta} \frac{\mathrm{y}}{8}\left(1-\frac{\mathrm{y}}{\delta}\right) \mathrm{dy} \\
& =\frac{\mathrm{y}^{2}}{2 \delta}-\left.\frac{\mathrm{y}^{3}}{3 \delta}\right|_{0} ^{\delta}=\frac{\delta}{2}-\frac{\delta}{3}=\frac{\delta}{6}
\end{aligned}
$$

Shape factor $=\frac{\delta^{*}}{\theta}=\frac{\delta / 2}{\delta / 6}=3$
06. Ans: 22.6

Sol: Drag force,

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{D}}=\frac{1}{2} \mathrm{C}_{\mathrm{D}} \cdot \rho \cdot \mathrm{~A}_{\text {Proj. }} \cdot \mathrm{U}_{\infty}^{2} \\
& \mathrm{~B}=1.5 \mathrm{~m}, \quad \rho=1.2 \mathrm{~kg} / \mathrm{m}^{3} \\
& \mathrm{~L}=3.0 \mathrm{~m}, \quad \mathrm{~V}=0.15 \mathrm{stokes} \\
& \mathrm{U}_{\infty}=2 \mathrm{~m} / \mathrm{sec} \\
& \mathrm{Re}=\frac{\mathrm{U}_{\infty} \mathrm{L}}{v}=\frac{2 \times 3}{0.15 \times 10^{-4}}=4 \times 10^{5} \\
& C_{D}=\frac{1.328}{\sqrt{\operatorname{Re}}}=\frac{1.328}{\sqrt{4 \times 10^{5}}}=2.09 \times 10^{-3}
\end{aligned}
$$

Drag force,

$$
\begin{aligned}
\mathrm{F}_{\mathrm{D}} & =\frac{1}{2} \times 2.09 \times 10^{-3} \times 1.2 \times(1.5 \times 3) \times 2^{2} \\
& =22.57 \text { milli-Newton }
\end{aligned}
$$

7. Ans: 1.62

Sol: Given data,

$$
\begin{aligned}
\mathrm{U}_{\infty} & =30 \mathrm{~m} / \mathrm{s}, \\
\rho & =1.2 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

Velocity profile at a distance x from leading edge,

$$
\begin{aligned}
\frac{\mathrm{u}}{\mathrm{U}_{\infty}} & =\frac{\mathrm{y}}{\delta} \\
\delta & =1.5 \mathrm{~mm}
\end{aligned}
$$

Mass flow rate of air entering section ab ,
$\left(\dot{\mathrm{m}}_{\text {in }}\right)_{\mathrm{ab}}=\rho \mathrm{U}_{\infty}(\delta \times 1)=\rho \mathrm{U}_{\infty} \delta \mathrm{kg} / \mathrm{s}$
Mass flow rate of air leaving section cd,

$$
\begin{aligned}
\left(\dot{\mathrm{m}}_{\text {out }}\right)_{\mathrm{cd}} & =\rho \int_{0}^{\delta} \mathrm{u}(\mathrm{dy} \times 1)=\rho \int_{0}^{\delta} \mathrm{U}_{\infty}\left(\frac{\mathrm{y}}{\delta}\right) \mathrm{dy} \\
& =\frac{\rho \mathrm{U}_{\infty}}{\delta}\left[\frac{\mathrm{y}^{2}}{2}\right]_{0}^{\delta}=\frac{\rho \mathrm{U}_{\infty} \delta}{2}
\end{aligned}
$$

From the law of conservation of mass :

$$
\left(\dot{\mathrm{m}}_{\mathrm{in}}\right)_{\mathrm{ab}}=\left(\dot{\mathrm{m}}_{\mathrm{out}}\right)_{\mathrm{cd}}+\left(\dot{\mathrm{m}}_{\mathrm{out}}\right)_{\mathrm{bc}}
$$

Hence, $\left(\dot{\mathrm{m}}_{\text {out }}\right)_{\mathrm{bc}}=\left(\dot{\mathrm{m}}_{\text {in }}\right)_{\mathrm{ab}}-\left(\dot{\mathrm{m}}_{\text {out }}\right)_{\mathrm{cd}}$

$$
\begin{aligned}
& =\rho U_{\infty} \delta-\frac{\rho U_{\infty} \delta}{2} \\
& =\frac{\rho U_{\infty} \delta}{2}
\end{aligned}
$$

$$
=\frac{1.2 \times 30 \times 1.5 \times 10^{-3}}{2}
$$

$$
=27 \times 10^{-3} \mathrm{~kg} / \mathrm{s}
$$

$$
=27 \times 10^{-3} \times 60 \mathrm{~kg} / \mathrm{min}
$$

$$
=1.62 \mathrm{~kg} / \mathrm{min}
$$

8. Ans: (b)

Sol: For 2-D, steady, fully developed laminar boundary layer over a flat plate, there is velocity gradient in y-direction, $\frac{\partial u}{\partial y}$ only.
The correct option is (b).
09. Ans: 28.5

Sol: Given data,
Flow is over a flat plate.
$\mathrm{L}=1 \mathrm{~m}$,
$\mathrm{U}_{\infty}=6 \mathrm{~m} / \mathrm{s}$
$v=0.15$ stoke $=0.15 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}$
$\rho=1.226 \mathrm{~kg} / \mathrm{m}^{3}$
$\delta(x)=\frac{3.46 \mathrm{x}}{\sqrt{\operatorname{Re}_{\mathrm{x}}}}$
Velocity profile is linear.
Using von-Karman momentum integral equation for flat plate.

$$
\begin{equation*}
\frac{\mathrm{d} \theta}{\mathrm{dx}}=\frac{\tau_{\mathrm{w}}}{\rho \mathrm{U}_{\infty}^{2}} \tag{1}
\end{equation*}
$$

we can find out τ_{w}.

From linear velocity profile, $\frac{u}{U_{\infty}}=\frac{y}{\delta}$, we evaluate first θ, momentum thickness as

$$
\begin{align*}
\theta & =\int_{0}^{\delta} \frac{\mathrm{u}}{\mathrm{U}_{\infty}}\left(1-\frac{\mathrm{u}}{\mathrm{U}_{\infty}}\right) \mathrm{dy} \\
& =\int_{0}^{\delta} \frac{\mathrm{y}}{\delta}\left(1-\frac{\mathrm{y}}{\delta}\right) \mathrm{dy}=\int_{0}^{\delta}\left(\frac{\mathrm{y}}{\delta}-\frac{\mathrm{y}^{2}}{\delta^{2}}\right) \mathrm{dy} \\
& =\left(\frac{\mathrm{y}^{2}}{2 \delta}-\frac{\mathrm{y}^{3}}{3 \delta^{2}}\right)_{0}^{\delta}=\frac{\delta}{2}-\frac{\delta}{3}=\frac{\delta}{6} \tag{1}\\
\Rightarrow \theta & =\frac{\delta}{6}=\frac{1}{6} \times \frac{3.46 \mathrm{x}}{\sqrt{\operatorname{Re}_{\mathrm{x}}}} \\
& =\frac{3.46}{6} \frac{\mathrm{x}^{1 / 2}}{\left(\frac{\mathrm{U}_{\infty}}{v}\right)^{1 / 2}}
\end{align*}
$$

10. Ans: (a, d)

Sol: Given data:

$$
\begin{aligned}
& \rho=1.25 \mathrm{~kg} / \mathrm{m}^{3} \\
& \mu=1.8 \times 10^{-5} \text { Pa.s, } \\
& \mathrm{u}_{\infty}=3 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Velocity profile: $\frac{\mathrm{u}}{\mathrm{u}_{\infty}}=\sin \left(\frac{\pi}{2} \times \frac{\mathrm{y}}{\delta}\right)$

$$
\begin{aligned}
& \mathrm{K}=4.79 \\
& \frac{\delta}{\mathrm{x}}=\frac{\mathrm{K}}{\sqrt{\operatorname{Re}_{\mathrm{x}}}}=\frac{4.79}{\sqrt{\operatorname{Re}_{\mathrm{x}}}}
\end{aligned}
$$

At $x=0.6 \mathrm{~m}$,

$$
\begin{aligned}
& \operatorname{Re}_{x}=\frac{\rho u_{\infty} x}{\mu} \\
& \operatorname{Re}_{x}=\frac{1.25 \times 3 \times 0.6}{1.8 \times 10^{-5}}=1.25 \times 10^{5}
\end{aligned}
$$

From eq. (1),

$\delta_{x=0.6 \mathrm{~m}}=\frac{4.79 \times 0.6}{\sqrt{1.25 \times 10^{5}}}=8.129 \mathrm{~mm}$
$\tau_{\mathrm{o}}=\left.\mu \frac{\mathrm{du}}{\mathrm{dy}}\right|_{\mathrm{y}=0} ;$ From given velocity profile,

$$
\begin{align*}
& \frac{d u}{d y}=u_{\infty} \times \frac{\pi}{2 \delta} \times \cos \left(\frac{\pi}{2} \times \frac{y}{\delta}\right) \\
& \left.\frac{d u}{d y}\right|_{y=0}=\frac{u_{\infty} \pi}{2 \delta} \tag{2}
\end{align*}
$$

Thus,

$$
\begin{aligned}
\tau_{o} & =\mu \times \frac{\mathrm{u}_{\infty} \pi}{2 \delta} \\
& =1.8 \times 10^{-5} \times \frac{3 \pi}{2 \times 8.129 \times 10^{-3}} \\
& =0.01043 \mathrm{~Pa}=10.43 \mathrm{milli} \mathrm{~Pa} .
\end{aligned}
$$

$$
\begin{aligned}
\left.\tau_{\mathrm{w}}\right|_{\mathrm{x}=0.5 \mathrm{~m}} & =\left.\frac{\mathrm{d} \theta}{\mathrm{dx}}\right|_{\mathrm{x}=0.5 \mathrm{~m}} \times \rho \mathrm{U}_{\infty}^{2} \\
& =\frac{0.2883}{447.2} \times 1.226 \times 6^{2} \\
& =0.02845 \mathrm{~N} / \mathrm{m}^{2} \\
& \simeq 28.5 \mathrm{mN} / \mathrm{m}^{2}
\end{aligned}
$$

Differentiating θ w.r.t x , we get :

$$
\begin{aligned}
& \frac{d \theta}{d x}=\frac{3.46}{6 \times 2} \frac{x^{-1 / 2}}{\left(\frac{U_{\infty}}{v}\right)^{1 / 2}}=0.2883 \frac{1}{\sqrt{\frac{U_{\infty} x}{v}}} \\
& \left.\frac{d \theta}{d x}\right|_{x=0.5 \mathrm{~m}}=0.2883 \times \frac{1}{\sqrt{\frac{6 \times 0.5}{0.15 \times 10^{-4}}}}=\frac{0.2883}{447.2}
\end{aligned}
$$

From equation (1)

Chapter

11

Force on Submerged Bodies

01. Ans: 8

Sol: \quad Drag power $=$ Drag Force \times Velocity

$$
\begin{aligned}
& \mathrm{P}=\mathrm{F}_{\mathrm{D}} \times \mathrm{V} \\
& \mathrm{P}=\mathrm{C}_{\mathrm{D}} \times \frac{\rho A \mathrm{~V}^{2}}{2} \times \mathrm{V} \\
& \mathrm{P} \propto \mathrm{~V}^{3} \\
& \frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=\left(\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}\right)^{3} \\
& \frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=\left(\frac{\mathrm{V}}{2 \mathrm{~V}}\right)^{3} \\
& \mathrm{P}_{2}=8 \mathrm{P}_{1}
\end{aligned}
$$

Comparing the above relation with XP ,
We get, $\mathrm{X}=8$
02. Ans: $\mathbf{4 . 5 6} \mathbf{~ m}$

Sol: $F_{D}=C_{D} \cdot \frac{\rho A V^{2}}{2}$
$\mathrm{W}=0.8 \times 1.2 \times \frac{\frac{\pi}{4}(\mathrm{D})^{2} \times \mathrm{V}^{2}}{2}$
(Note: A = Normal (or)

$$
\text { projected Area } \left.=\frac{\pi}{4} D^{2}\right)
$$

$784.8=0.8 \times 1.2 \times \frac{\pi}{4}(D)^{2} \times \frac{10^{2}}{2}$
$\therefore \mathrm{D}=4.56 \mathrm{~m}$
03. Ans: 4

Sol: Given data:
$l=0.5 \mathrm{~km}=500 \mathrm{~m}$
$\mathrm{d}=1.25 \mathrm{~cm}$
$\mathrm{V}_{\text {Wind }}=100 \mathrm{~km} / \mathrm{hr}$
$\gamma_{\text {Air }}=1.36 \times 9.81=13.4 \mathrm{~N} / \mathrm{m}^{3}$
$v=1.4 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
$\mathrm{C}_{\mathrm{D}}=1.2$ for $\mathrm{Re}>10000$
$C_{D}=1.3$ for $\mathrm{Re}<10000$

Towers
$\operatorname{Re}=\frac{\mathrm{V} . \mathrm{L}}{v}=\frac{\left(\frac{100 \times 5}{18}\right)(500)}{1.4 \times 10^{-5}}$
Note: The characteristic dimension for electric power transmission tower wire is "L"

$$
\begin{aligned}
& \operatorname{Re}=992 \times 10^{6}>10,000 \\
& \therefore C_{D}=1.2
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{F}_{\mathrm{D}} & =\mathrm{C}_{\mathrm{D}} \times \frac{\rho \mathrm{AV}^{2}}{2} \\
& =1.2 \times \frac{\left(\frac{13.4}{9.81}\right)(\mathrm{L} \times \mathrm{d}) \mathrm{V}^{2}}{2}
\end{aligned}
$$

$$
=\frac{1.2 \times\left(\frac{13.4}{9.81}\right)(500 \times 0.0125)\left(100 \times \frac{5}{18}\right)^{2}}{2}
$$

$$
=3952.4 \mathrm{~N}=4 \mathrm{kN}
$$

04. Ans: 0.144 \& 0.126

Sol: Given data:

$$
\begin{aligned}
\mathrm{W}_{\text {Kite }} & =2.5 \mathrm{~N} \\
\mathrm{~A} & =1 \mathrm{~m}^{2} \\
\theta & =45^{\circ} \\
\mathrm{T} & =25 \mathrm{~N}
\end{aligned}
$$

$$
\mathrm{V}_{\mathrm{Wind}}=54 \mathrm{~km} / \mathrm{hr}
$$

$$
=54 \times \frac{5}{18}=15 \mathrm{~m} / \mathrm{s}
$$

Resolving forces horizontally

$$
\begin{gathered}
\mathrm{F}_{\mathrm{D}}=\mathrm{T} \cos 45^{\circ} \\
\mathrm{C}_{\mathrm{D}} \times \frac{\rho A V^{2}}{2}=25 \times \cos 45^{\circ} \\
\frac{\mathrm{C}_{\mathrm{D}} \times\left(\frac{12.2}{9.81}\right)(1)(15)^{2}}{2}=25 \times \frac{1}{\sqrt{2}}
\end{gathered}
$$

$$
\therefore \quad \mathrm{C}_{\mathrm{D}}=0.126
$$

Resolving forces vertically

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{L}}=\mathrm{W}_{\mathrm{Kite}}+\mathrm{T} \sin 45^{\circ} \\
& \frac{\mathrm{C}_{\mathrm{L}} \rho A V^{2}}{2}=2.5+25 \sin 45^{\circ}
\end{aligned}
$$

$$
\begin{gathered}
\frac{\mathrm{C}_{\mathrm{L}}\left(\frac{12.2}{9.81}\right)(1)(15)^{2}}{2}=2.5+\frac{25}{\sqrt{2}} \\
\therefore \mathrm{C}_{\mathrm{L}}=0.144
\end{gathered}
$$

5. Ans: (a)

Sol: Given data:
$C_{D_{2}}=0.75 C_{D_{1}}(25 \%$ reduced $)$
Drag power $=$ Drag force \times Velocity

$$
\begin{aligned}
& P=F_{D} \times V=\frac{C_{D} \rho A V^{2}}{2} \times V \\
& P=C_{D} \times \frac{\rho A V^{3}}{2}
\end{aligned}
$$

Keeping ρ, A and power constant

$$
\mathrm{C}_{\mathrm{D}} \mathrm{~V}^{3}=\text { constant }=\mathrm{C}
$$

$\%$ Increase in speed $=10.064 \%$

06. Ans: (c)

Sol: When a solid sphere falls under gravity at its terminal velocity in a fluid, the following relation is valid :
Weight of sphere $=$ Buoyant force + Drag force
07. Ans: 0.62

Sol: Given data,
Diameter of dust particle, $\mathrm{d}=0.1 \mathrm{~mm}$
Density of dust particle,

$$
\begin{aligned}
& \rho=2.1 \mathrm{~g} / \mathrm{cm}^{3}=2100 \mathrm{~kg} / \mathrm{m}^{3} \\
& \mu_{\text {air }}=1.849 \times 10^{-5} \mathrm{~Pa} . \mathrm{s},
\end{aligned}
$$

At suspended position of the dust particle,

$$
\mathrm{W}_{\text {particle }}=\mathrm{F}_{\mathrm{D}}+\mathrm{F}_{\mathrm{B}}
$$

where F_{D} is the drag force on the particle and F_{B} is the buoyancy force.

From Stokes law:

$$
\mathrm{F}_{\mathrm{D}}=3 \pi \mu \mathrm{Vd}
$$

Thus,

$$
\frac{4}{3} \times \pi r^{3} \times \rho \times g=3 \pi \mu \mathrm{Vd}+\frac{4}{3} \pi \mathrm{r}^{3} \rho_{\text {air }} g
$$

or, $\frac{4}{3} \pi r^{3} g\left(\rho-\rho_{\text {air }}\right)=3 \pi \mu_{\text {air }} V(2 r)$
or $\mathrm{V}=\frac{2}{9} \mathrm{r}^{2} \mathrm{~g}\left(\frac{\rho-\rho_{\text {air }}}{\mu_{\text {air }}}\right)$
$=\frac{2}{9} \times\left(0.05 \times 10^{-3}\right)^{2} \times 9.81 \times \frac{(2100-1.2)}{1.849 \times 10^{-5}}$
$=0.619 \mathrm{~m} / \mathrm{s} \approx 0.62 \mathrm{~m} / \mathrm{s}$

08. Ans: (b)

Sol: Since the two models M_{1} and M_{2} have equal volumes and are made of the same material, their weights will be equal and the buoyancy forces acting on them will also be equal. However, the drag forces acting on them will be different.
From their shapes, we can say that M_{2} reaches the bottom earlier than M_{1}.
09. Ans: (a)

Sol:

- Drag of object A_{1} will be less than that on A_{2}. There are chances of flow separation on A_{2} due to which drag will increase as compared to that on A_{1}.
- Drag of object B_{1} will be more than that of object B_{2}. Because of rough surface of B_{2}, the boundary layer becomes turbulent, the separation of boundary layer will be delayed that results in reduction in drag.
- Both the objects are streamlined but C_{2} is rough as well. There will be no pressure drag on both the objects. However, the skin friction drag on C_{2} will be more than that on C_{1} because of flow becoming turbulent due to roughness. Hence, drag of object C_{2} will be more than that of object C_{1}.
- Thus, the correct answer is option (a).

ACE	30	GATE - Text Book Solutions

Chapter
 12

Open Channel Flow

2. Ans: (b)

Sol: $\mathrm{Q}_{1}=15 \mathrm{~m}^{3} / \mathrm{sec}, \mathrm{y}=1.5 \mathrm{~m}$
$\mathrm{S}_{1}=\frac{1}{1690}$, if $\mathrm{S}_{2}=\frac{1}{1000}$
Then $\mathrm{Q}_{2}=$?
$\mathrm{Q} \propto \sqrt{\mathrm{S}}$
$\frac{\mathrm{Q}_{2}}{\mathrm{Q}_{1}}=\sqrt{\frac{\mathrm{S}_{2}}{\mathrm{~S}_{1}}}$
$\frac{\mathrm{Q}_{2}}{\mathrm{Q}_{1}}=\sqrt{\frac{\frac{1}{\frac{1000}{1690}}}{16}}$
$\mathrm{Q}_{2}=1.3 \times 15=19.5 \mathrm{~m}^{3} / \mathrm{s}$
03. Ans: (d)

Sol: $\quad \mathrm{Q}=\mathrm{AV}$

$$
\begin{aligned}
& =\mathrm{B} \times \mathrm{y} \times \frac{1}{\mathrm{n}} \mathrm{R}^{2 / 3} \mathrm{~S}^{1 / 2} \\
& =\mathrm{B} \times \mathrm{y} \times \frac{1}{\mathrm{n}} \mathrm{y}^{2 / 3} S^{1 / 2}
\end{aligned}
$$

$=\mathrm{R} \approx \mathrm{y} \rightarrow$ For wide rectangular channelQ $\propto y^{5 / 3}$
$\frac{\mathrm{Q}_{2}}{\mathrm{Q}_{1}}=\left(\frac{\mathrm{y}_{2}}{\mathrm{y}_{1}}\right)^{\frac{5}{3}}$
$\frac{\mathrm{Q}_{2}}{\mathrm{Q}_{1}}=\left(\frac{1.25 \mathrm{y}_{1}}{\mathrm{y}_{1}}\right)^{\frac{5}{3}}$
$\frac{\mathrm{Q}_{2}}{\mathrm{Q}_{1}}=1.45$
$\mathrm{Q}_{2}=1.45 \mathrm{Q}_{1}$
It is increased by 45%
05. Ans: 24.33

Sol:

$$
\tau_{\mathrm{avg}}=\gamma_{\mathrm{w}} \mathrm{RS}
$$

$\mathrm{R}=\frac{\mathrm{A}}{\mathrm{P}}$

$$
\begin{aligned}
\mathrm{A} & =2 \times\left(\frac{1}{2} \times 2 \times 2\right)+4 \times 2 \\
& =2 \times 2+4 \times 2=12 \mathrm{~m}^{2} \\
\mathrm{P} & =4+2 \sqrt{2^{2}+2^{2}} \\
& =9.66 \mathrm{~m}
\end{aligned}
$$

$$
\mathrm{R}=\frac{12}{9.66}=1.24 \mathrm{~m}
$$

$$
\tau_{\text {avg }}=9810 \times 1.24 \times 0.002
$$

$$
=24.33 \mathrm{~N} / \mathrm{m}^{2}
$$

6. Ans: (d)

Sol: Triangular:

Triangle

$$
\begin{aligned}
\mathrm{P} & =2 \text { (Inclined portion) } \\
\mathrm{P} & =2 \mathrm{I}=2 \mathrm{~h} \sqrt{1+\mathrm{m}^{2}} \quad\left(\because \mathrm{I}=\mathrm{h} \sqrt{1+\mathrm{m}^{2}}\right) \\
& =2 \mathrm{~h} \sqrt{1+1^{2}} \\
& =2 \mathrm{~h} \sqrt{2} \\
\frac{\mathrm{P}}{\mathrm{~h}} & =2 \sqrt{2}=2.83
\end{aligned}
$$

Trapezoidal: Efficient trapezoidal section is half of the Hexagon for which all sides are equal
$\mathrm{I}=\mathrm{h} \sqrt{1+\mathrm{m}^{2}}$

Trapezoidal
$\mathrm{P}=\mathrm{I}=\mathrm{h} \sqrt{(1)+\left(\frac{1}{\sqrt{3}}\right)^{2}}=\mathrm{h}(1.15)$
$\frac{\mathrm{P}}{\mathrm{h}}=1.15 \times 3=3.46 \quad(3$ sides are equal)

Rectangular:

$$
\mathrm{P}=\mathrm{b}+2 \mathrm{~h}=2 \mathrm{~h}+2 \mathrm{~h}=4 \mathrm{~h}(\mathrm{~b}=2 \mathrm{y})
$$

$$
\frac{\mathrm{P}}{\mathrm{~h}}=4
$$

7. Ans: 0.37

Sol: $\quad A=y(b+m y)$

$$
\begin{aligned}
& A=\frac{Q}{V}=4 \mathrm{~m}^{2} \\
& 4=\left(\mathrm{b}+\frac{\mathrm{y}}{\sqrt{3}}\right) \mathrm{y} \ldots \ldots . \text { (I) } \quad\left(\because \mathrm{m}=\frac{1}{\sqrt{3}}\right)
\end{aligned}
$$

But $\mathrm{b}=\mathrm{I}(\because$ Efficient trapezoidal section $)$
$b=y \sqrt{1+\mathrm{m}^{2}}$
$\mathrm{b}=\frac{2 \mathrm{y}}{\sqrt{3}}$
From (I) \& (II)
$\mathrm{y}=1.519 \mathrm{~m}$
$\therefore D=\frac{(b+m y) y}{b+2 m y}=1.14 \mathrm{~m}$
$\therefore \mathrm{F}_{\mathrm{r}}=\frac{\mathrm{V}}{\sqrt{\mathrm{gD}}}$
$\mathrm{F}_{\mathrm{r}}=0.37$
08. Ans: (a)

Sol: Alternate depths
$\mathrm{y}_{1}=0.4 \mathrm{~m}$
$\mathrm{y}_{2}=1.6 \mathrm{~m}$
Specific energy at section $=$?

$$
\begin{aligned}
& \mathrm{y}_{1}+\frac{\mathrm{q}^{2}}{2 \mathrm{gy}_{1}^{2}}=\mathrm{y}_{2}+\frac{\mathrm{q}^{2}}{2 \mathrm{~g} \mathrm{y}}{ }_{2}^{2} \\
& 0.4+\frac{\mathrm{q}^{2}}{2 \times 9.81 \times 0.4^{2}}=1.6+\frac{\mathrm{q}^{2}}{2 \times 9.81 \times 1.6^{2}} \\
& \mathrm{q}^{2}\left(\frac{1}{3.1392}-\frac{1}{50.22}\right)=1.6-0.4 \\
& \mathrm{q}^{2}(0.298)=1.2 \\
& \mathrm{q}^{2}=4.02 \\
& \quad \mathrm{q}=2 \mathrm{~m}^{3} / \mathrm{s} / \mathrm{m} \\
& \mathrm{E}_{1}=\mathrm{y}_{1}+\frac{\mathrm{q}^{2}}{2 \mathrm{gy}_{1}^{2}} \\
& \mathrm{E}_{1}=0.4+\frac{2^{2}}{2 \times 9.81 \times 0.4^{2}}=1.68 \mathrm{~m}
\end{aligned}
$$

9. Ans: (b)

Sol: Depth $=1.6 \mathrm{~m}$
Specific energy $=2.8 \mathrm{~m}$
$\mathrm{E}_{1}=\left[\mathrm{y}_{1}+\frac{\mathrm{v}^{2}}{2 \mathrm{~g}}\right] \Rightarrow 2.8=1.6+\frac{\mathrm{V}^{2}}{2 \times 9.81}$
$\mathrm{V}=4.85 \mathrm{~m} / \mathrm{s}$
$\mathrm{F}_{\mathrm{r}}=\frac{\mathrm{V}}{\sqrt{\mathrm{gy}}}$
$\mathrm{F}_{\mathrm{r}}=\frac{4.85}{\sqrt{9.81 \times 1.6}}=1.22>1$ (Supercritical)

10. Ans: (c)

Sol: $\mathrm{F}_{\mathrm{r}}=5.2$ (uniform flow)
The ratio of critical depth to normal $\operatorname{depth} \frac{\mathrm{y}_{\mathrm{c}}}{\mathrm{y}_{\mathrm{n}}}=$?
Note: The given two depths $y_{c} \& y_{n}$ are not alternate depths as they will have different specific energies.

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{r}}=\frac{\mathrm{V}}{\sqrt{\mathrm{gy}}} \Rightarrow \mathrm{~F}_{\mathrm{r}}^{2}=\frac{\mathrm{V}^{2}}{\mathrm{gy}}=\frac{\mathrm{q}^{2}}{\mathrm{gy}^{3}}\left(\because \mathrm{v}=\frac{\mathrm{q}}{\mathrm{y}}\right) \\
& \frac{\left(\mathrm{F}_{\mathrm{rn}}\right)^{2}}{\left(\mathrm{~F}_{\mathrm{rc}}\right)^{2}}=\frac{\mathrm{q}^{2}}{\mathrm{gy}_{\mathrm{n}}^{3}} \times \frac{\mathrm{gy}_{\mathrm{c}}^{3}}{\mathrm{q}^{2}}=\frac{\mathrm{y}_{\mathrm{c}}^{3}}{\mathrm{y}_{\mathrm{n}}^{3}} \\
& \frac{\mathrm{y}_{\mathrm{c}}^{3}}{\mathrm{y}_{\mathrm{n}}^{3}}=\frac{\left(\mathrm{F}_{\mathrm{rn}}\right)^{2}}{\left(\mathrm{~F}_{\mathrm{rc}}\right)^{2}} \Rightarrow \frac{\mathrm{y}_{\mathrm{c}}}{\mathrm{y}_{\mathrm{n}}}=\frac{\left(\mathrm{F}_{\mathrm{rn}}\right)^{2 / 3}}{\left(\mathrm{~F}_{\mathrm{rc}}\right)^{2 / 3}} \\
& \frac{\mathrm{y}_{\mathrm{c}}}{\mathrm{v}}=(5.2)^{2 / 3}=3
\end{aligned}
$$

11. Ans: (c)

Sol: Rectangular channel
Alternate depths $y_{1}=0.2, y_{2}=4 \mathrm{~m}$
$\mathrm{E}_{1}=\mathrm{E}_{2}(\because$ alternate depths $), \mathrm{F}_{\mathrm{r}}=\frac{\mathrm{V}}{\sqrt{\mathrm{gD}}}$
$y_{1}+\frac{V_{1}^{2}}{2 g}=y_{2}+\frac{V_{2}^{2}}{2 g}$
$\mathrm{y}_{1}\left(1+\frac{\mathrm{Fr}_{1}^{2}}{2}\right)=\mathrm{y}_{2}\left[1+\frac{\mathrm{Fr}_{2}^{2}}{2}\right]$

$$
\frac{\mathrm{y}_{1}}{\mathrm{y}_{2}}=\left[\frac{1+\frac{\mathrm{Fr}_{2}^{2}}{2}}{1+\frac{\mathrm{Fr}_{1}^{2}}{2}}\right]
$$

$$
\begin{aligned}
& \frac{y_{1}}{y_{2}}=\left[\frac{1+\frac{4^{2}}{2}}{1+\frac{0.2^{2}}{2}}\right] \\
& \frac{y_{1}}{y_{2}}=\left(\frac{2+16}{2+0.04}\right)=8.8
\end{aligned}
$$

12. Ans: (d)

Sol: Triangular channel
$\mathrm{H}: \mathrm{V}=1.5: 1$
Specific energy $=2.5 \mathrm{~m}$

$$
\mathrm{E}_{\mathrm{C}}=\frac{5}{4} \mathrm{y}_{\mathrm{c}}
$$

$$
\begin{aligned}
\frac{4}{5} \mathrm{E}_{\mathrm{c}} & =\mathrm{y}_{\mathrm{c}} \\
\mathrm{y}_{\mathrm{c}} & =2 \mathrm{~m}
\end{aligned}
$$

$$
\mathrm{y}_{\mathrm{c}}=\left(\frac{2 \mathrm{Q}^{2}}{\mathrm{gm}^{2}}\right)^{1 / 5} \Rightarrow 2=\left(\frac{2 \times \mathrm{Q}^{2}}{9.81 \times 1.5^{2}}\right)^{1 / 5}
$$

$$
\mathrm{Q}=18.79 \mathrm{~m}^{3} / \mathrm{sec}
$$

13. Ans: 0.47

Sol: $\quad E_{1}=E_{2}+(\Delta z)$

$$
\begin{aligned}
\mathrm{V}_{1} & =\frac{\mathrm{Q}}{\mathrm{~A}_{1}}=\frac{12}{2.4 \times 2}=2.5 \mathrm{~m} / \mathrm{sec} \\
\mathrm{~A}_{2} & =\left(\mathrm{b}_{2}+\mathrm{my}_{2}\right) \mathrm{y}_{2}=(1.8+1 \times 1.6) 1.6 \\
& =5.44 \mathrm{~m}^{2}
\end{aligned}
$$

$\mathrm{V}_{2}=\frac{\mathrm{Q}}{\mathrm{A}_{2}}=\frac{12}{5.44}=2.2 \mathrm{~m} / \mathrm{sec}$
$E_{1}=y_{1}+\frac{V_{1}^{2}}{2 g}=2+\frac{(2.5)^{2}}{2 \times 9.81}=2.318 \mathrm{~m}$
$\mathrm{E}_{2}=\mathrm{y}_{2}+\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}=1.6+\frac{2.2^{2}}{2 \times 9.81}=1.846 \mathrm{~m}$
$2.318=1.846+\Delta \mathrm{Z} \Rightarrow \Delta \mathrm{Z}=0.47 \mathrm{~m}$

14. Ans: (c)

Sol: $\mathrm{F}_{\mathrm{r}}>1$
$\mathrm{B}_{2}<\mathrm{B}_{1}$
$\mathrm{q}_{2}>\mathrm{q}_{1}$

As Potential energy (y) increases then kinetic energy (v) decreases
\therefore ' y ' increases and ' v ' decreases.

15. Ans: (a)

Sol: $\quad \mathrm{Q}=3 \mathrm{~m}^{3} / \mathrm{s}$
$\mathrm{B}_{1}=2 \mathrm{~m}, \mathrm{D}=1.2 \mathrm{~m}$

Width reduce d to $1.5 \mathrm{~m}\left(\mathrm{~B}_{2}\right)$
Assume channel bottom as horizontal

$$
\begin{aligned}
\therefore \mathrm{E}_{1} & =\mathrm{E}_{2} \\
\mathrm{y}_{1}+\frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}} & =\mathrm{y}_{2}+\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}} \\
\mathrm{~V}_{1} & =\frac{\mathrm{Q}}{\mathrm{~B}_{1} \mathrm{y}_{1}}=\frac{3}{2 \times 1.2}=1.25 \mathrm{~m} / \mathrm{sec} \\
\mathrm{~V}_{2} & =\frac{\mathrm{Q}}{\mathrm{~B}_{2} \mathrm{y}_{2}}=\frac{3}{1.5 \times \mathrm{y}_{2}}=\frac{2}{\mathrm{y}_{2}}
\end{aligned}
$$

$1.2+\frac{(1.25)^{2}}{2 \times 9.81}=y_{2}+\frac{\left(\frac{2}{y_{2}}\right)^{2}}{2 \times 9.81}$
$1.27=y_{2}+\frac{4}{y_{2}^{2} \times 19.62}$
$1.27=\mathrm{y}_{2}+\frac{0.2}{\mathrm{y}_{2}^{2}}$
$y_{2}^{2}(1.27)=y_{2}^{3}+0.2$
$\mathrm{y}_{2}^{3}-1.27 \mathrm{y}_{2}^{2}+0.2=0$
$\mathrm{y}_{2}=1.12 \mathrm{~m}$

$$
\mathrm{F}_{\mathrm{r}_{1}}=\frac{1.25}{\sqrt{9.81 \times 1.2}}\left[\frac{\mathrm{~V}}{\sqrt{\mathrm{gD}}}<1\right]=0.364<1
$$

Approaching flow is sub critical. If approaching flow is sub critical the level at water falls in the throat portion.
16. Ans: (d)

Sol: Rectangular Channel

$$
\begin{aligned}
& \mathrm{y}_{1}=1.2 \mathrm{~m} ; \quad \mathrm{V}_{1}=2.4 \mathrm{~m} / \mathrm{s} \\
& \Delta \mathrm{Z}=0.6 \mathrm{~m} \\
& E_{1}=y_{1}+\frac{V_{1}^{2}}{2 g}=1.2+\frac{(2.4)^{2}}{2 \times 9.81}=1.49 \mathrm{~m} \\
& \mathrm{Q}=2.4 \times 1.2=2.88 \mathrm{~m}^{3} / \mathrm{s} / \mathrm{m}
\end{aligned}
$$

Assuming channel width as constant, the critical depth

$$
\mathrm{y}_{\mathrm{c}}=\left[\frac{\mathrm{Q}^{2}}{\mathrm{gB}^{2}}\right]^{\frac{1}{3}}=0.94 \mathrm{~m}
$$

Critical specific energy for rectangular channel $E_{C}=\frac{3}{2} y_{c}$
$\mathrm{E}_{\mathrm{c}}=\frac{3}{2}(0.94)=1.41$
We know for critical flow in the hump portion $\mathrm{E}_{1}=\mathrm{E}_{2}+(\Delta \mathrm{Z})=\mathrm{E}_{\mathrm{C}}+(\Delta \mathrm{Z})_{\mathrm{C}}$

$$
\Rightarrow 1.49=1.41+(\Delta \mathrm{Z})_{\mathrm{C}}
$$

$\therefore(\Delta \mathrm{Z})_{\mathrm{C}}=0.08 \mathrm{~m}$
If the hump provided is more than the critical hump height the u / s flow gets affected.
(or)
$\mathrm{Fr}_{1}=\frac{\mathrm{v}_{1}}{\sqrt{\mathrm{gy}_{1}}}=\frac{2.4}{\sqrt{9.81 \times 1.2}}=0.69<1$
\Rightarrow Hence sub-critical.
If the approaching flow is sub-critical the level of water will fall in the hump portion. Option (b) is correct if the hump height provided is less than critical hump height.

As the hump height provided is more than critical, the u / s flow gets affected with the increase of the specific energy from E_{1} to E_{1}^{1}.
In the sub-critical region as the specific energy increases, the level of water rises from y_{1} to y_{1}^{1} in the form of a surge.

$\mathrm{E}_{1}^{1}=\mathrm{y}_{1}^{1}+\frac{\mathrm{v}^{1^{1}}}{2 \mathrm{~g}}$
$E_{1}^{1}=y_{1}^{1}+\frac{q^{2}}{2 \mathrm{gy}_{1}^{1^{12}}} \ldots$
Also $\mathrm{E}_{1}^{1}=\mathrm{E}_{\mathrm{c}}+(\Delta \mathrm{Z})$ provided.

$$
\begin{aligned}
& =1.41+0.6 \\
& =2.01 \mathrm{~m}
\end{aligned}
$$

$\therefore 2.01=\mathrm{y}_{1}^{1}+\frac{2.88^{2}}{2 \times 9.81 \times \mathrm{y}_{1}^{2}}$
Solve by trial \& error
for $y_{1}^{1}>1.2 \mathrm{~m}$
17. Ans: (c)

Sol: $B_{1}=4 \mathrm{~m}$

$$
\begin{aligned}
& \mathrm{B}_{2}=3 \mathrm{~m} \\
& (\mathrm{U} / \mathrm{S}) \mathrm{y}_{1}=0.9 \mathrm{~m} \\
& \mathrm{E}_{1}=\mathrm{E}_{2}+\Delta \mathrm{Z}
\end{aligned}
$$

$$
\mathrm{V}_{1}=\mathrm{V}_{2}
$$

According to continuity equation

$$
\begin{gathered}
\mathrm{Q}_{1}=\mathrm{Q}_{2} \\
\mathrm{~A}_{1} \mathrm{~V}_{1}=\mathrm{A}_{2} \mathrm{~V}_{2} \\
\mathrm{~A}_{1}=\mathrm{A}_{2} \\
\mathrm{~B}_{2} \mathrm{y}_{1}=\mathrm{B}_{2} \mathrm{y}_{2} \\
4 \times 0.9=3 \times \mathrm{y}_{2}
\end{gathered}
$$

$$
\begin{aligned}
\mathrm{y}_{2} & =1.2 \mathrm{~m} \\
\mathrm{y}_{1} & =\mathrm{y}_{2}+\Delta \mathrm{Z} \\
0.9 & =1.2+\Delta \mathrm{Z} \\
\Delta \mathrm{Z} & =-0.3 \mathrm{~m}
\end{aligned}
$$

Negative indicates that the hump assumed is wrong infact it is a drop.

18. Ans: (a)

Sol: Given :

Top width $=2 \mathrm{y}$

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \times b \times h \\
& =\frac{1}{2} \times 2 y \times y \\
A & =y^{2}
\end{aligned}
$$

Wetted perimeter

$$
I^{2}=\sqrt{y^{2}+y^{2}}=y \sqrt{2}
$$

(Both sides) total wetted perimeter
$(P)=\sqrt{2} \cdot y+\sqrt{2} \cdot y=2 \sqrt{2} \cdot y$

Hydraulic mean depth
$(R)=\frac{A}{P}=\frac{y^{2}}{2 \sqrt{2} y}=\frac{y}{2 \sqrt{2}}$

$$
y=y_{n}(\text { say })
$$

Using Mannings formula
$\mathrm{Q}=\mathrm{A} \cdot \frac{1}{\mathrm{n}} .(\mathrm{R})^{2 / 3} .(\mathrm{S})^{1 / 2}$
$0.2=\mathrm{y}_{\mathrm{n}}^{2} \frac{1}{0.015}\left[\frac{\mathrm{y}_{\mathrm{n}}}{2 \sqrt{2}}\right]^{2 / 3}(0.001)^{1 / 2}$
$\frac{1}{\mathrm{y}_{\mathrm{n}}^{8 / 3}}=\frac{1}{0.015 \times 0.2} \times\left[\frac{1}{2 \sqrt{2}}\right]^{2 / 3}(0.001)^{1 / 2}$
$\mathrm{y}_{\mathrm{n}}^{8 / 3}=0.2 \times 0.015 \times(2 \sqrt{2})^{2 / 3}\left[\frac{1}{0.001}\right]^{1 / 2}$
$\left(y_{n}\right)^{8 / 3}=0.189$

$$
\mathrm{y}_{\mathrm{n}}=(0.189)^{3 / 8}
$$

$$
\mathrm{y}_{\mathrm{n}}=0.54 \mathrm{~m}
$$

critical depth $\left(y_{c}\right)=\left[\frac{2 Q^{2}}{g}\right]^{1 / 5}$
(for triangle)

$$
\begin{aligned}
& \mathrm{y}_{\mathrm{c}}=\left[\frac{2 \times 0.2^{2}}{9.81}\right]^{1 / 5}=0.382 \mathrm{~m} \\
& \mathrm{y}_{\mathrm{n}}>\mathrm{y}_{\mathrm{c}} \quad(0.54>0.38) \\
& \therefore \text { mild slope } \\
& \text { If (actual) depth at flow }=0.4 \mathrm{~m}=\mathrm{y} \\
& \mathrm{Y}_{\mathrm{n}}>\mathrm{y}>\mathrm{y}_{\mathrm{c}}[0.54>0.4>0.38]
\end{aligned}
$$

\therefore Profile is M_{2}
19. Ans: $\mathbf{4 . 3 6} \times 10^{-5}$

Sol:

\therefore Discharge, $\mathrm{Q}=29 \mathrm{~m}^{3} / \mathrm{sec}$
Area of rectangular channel, $\mathrm{A}=15 \times 3=$ $45 \mathrm{~m}^{2}$
Perimeter, $\mathrm{P}=15+2 \times 3=21 \mathrm{~m}$
Hydraulic radius, $\mathrm{R}=\frac{\mathrm{A}}{\mathrm{P}}=\frac{45}{21}=2.142 \mathrm{~m}$
\therefore The basic differential equation governing the gradually varied flow is

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{S}_{\mathrm{o}}-\mathrm{S}_{\mathrm{f}}}{1-\frac{\mathrm{Q}^{2} \mathrm{~T}}{\mathrm{gA}^{3}}}
$$

ACE	36	GATE - Text Book Solutions

$\frac{d y}{d x}=$ Slope of free water surface w.r.t to channel bottom
Velocity of flow $\mathrm{V}=\frac{\mathrm{Q}}{\mathrm{A}}=\frac{29}{45}$

$$
=0.644 \mathrm{~m} / \mathrm{sec}
$$

\therefore By Chezy's equation
Velocity, $V=C \sqrt{R S_{f}}$

$$
\begin{aligned}
0.644 & =65 \sqrt{2.142 \times \mathrm{S}_{\mathrm{f}}} \\
\mathrm{~S}_{\mathrm{f}} & =4.589 \times 10^{-5}
\end{aligned}
$$

$S_{o}=\frac{1}{5000}=2 \times 10^{-4}$
$\frac{\mathrm{Q}^{2} \mathrm{~T}}{\mathrm{gA}^{3}}=\frac{29^{2} \times 15}{9.81 \times 4^{3}}=0.0141$
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{2 \times 10^{-4}-4.589 \times 10^{-5}}{1-0.0141}$
$=1.5631 \times 10^{-4}$
$\therefore \mathrm{S}_{\mathrm{o}}=\mathrm{S}_{\mathrm{w}}+\frac{\mathrm{dy}}{\mathrm{dx}}$
S_{w} water surface slope with respect to horizontal

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{w}}=\mathrm{S}_{\mathrm{o}}-\frac{\mathrm{dy}}{\mathrm{dx}} \\
& =2 \times 10^{-4}-1.563 \times 10^{-4} \\
& \mathrm{~S}_{\mathrm{w}}=4.36 \times 10^{-5}
\end{aligned}
$$

20. Ans: (a)

Sol:

22. Ans: 0.74

Sol: Free fall $\rightarrow 2^{\text {nd }}$ profile
Critical depth, $\mathrm{y}_{\mathrm{c}}=\left(\frac{\mathrm{q}^{2}}{\mathrm{~g}}\right)^{\frac{1}{3}}$
$\mathrm{y}_{\mathrm{c}}=\left(\frac{2^{2}}{9.81}\right)^{\frac{1}{3}}=0.74 \mathrm{~m}$
$\mathrm{~V}=\frac{\mathrm{q}}{\mathrm{y}_{\mathrm{n}}}$
$\frac{2}{y_{n}}=\frac{1}{n} y_{n}^{2 / 3} S^{1 / 2}$
$\frac{2}{\mathrm{y}_{\mathrm{n}}}=\frac{1}{0.012} \times \mathrm{y}_{\mathrm{n}}^{2 / 3}(0.0004)^{1 / 2}$
$\mathrm{y}_{\mathrm{n}}=1.11 \mathrm{~m}$
$y_{n}>y_{c}$
Hence the water surface will have a depth equal to y_{c}
$y_{c}=0.74 \mathrm{~m}$
23. Ans: (d)

Sol: $q=2 \mathrm{~m}^{2} / \mathrm{sec}$
$y_{A}=1.5 \mathrm{~m} ; \mathrm{y}_{\mathrm{B}}=1.6 \mathrm{~m}$
$\Delta \mathrm{E}=0.09$
$S_{o}=\frac{1}{2000}$
$\overline{\mathrm{S}}_{\mathrm{f}}=0.003$
$\Delta x=\frac{\Delta E}{S_{o}-\bar{S}_{f}}=\frac{0.09}{\frac{1}{2000}-0.003}=-36 \mathrm{~m}$
24. Ans: (d)

Sol: Given $\mathrm{q}_{1}=\mathrm{Q} / \mathrm{B}=10 \mathrm{~m}^{3} / \mathrm{s}$

$$
\begin{aligned}
\mathrm{v}_{1} & =20 \mathrm{~m} / \mathrm{s} \\
\therefore \mathrm{y}_{1} & =\frac{\mathrm{q}_{1}}{\mathrm{v}_{1}}=\frac{10}{20}=0.5 \mathrm{~m}
\end{aligned}
$$

We know that relation between y_{1} and y_{2} for hydraulic jump is

$$
\begin{aligned}
& \frac{\mathrm{y}_{2}}{\mathrm{y}_{1}}=\frac{1}{2}\left[-1+\sqrt{1+8 \mathrm{Fr}_{1}^{2}}\right] \\
& \mathrm{Fr}_{1}=\frac{\mathrm{V}_{1}}{\sqrt{\mathrm{gy}_{1}}}=\frac{20}{\sqrt{9.81 \times 0.5}}=9.03 \\
& \therefore \frac{\mathrm{y}_{2}}{0.5}=\frac{1}{2}\left[-1+\sqrt{1+8 \times(9.03)^{2}}\right] \\
& \quad \mathrm{y}_{2}=6.14 \mathrm{~m}
\end{aligned}
$$

25. Ans: (c)

Sol: $\mathrm{Q}=1 \mathrm{~m}^{3} / \mathrm{s}$
$\mathrm{y}_{1}=0.5 \mathrm{~m}$
$\mathrm{y}_{2}=$?

As it is not a rectangular channel, let us work out from fundamentals by equating specific force at the two sections.
$\left[\frac{\mathrm{Q}^{2}}{\mathrm{gA}}+\mathrm{Az}\right]_{1}=\left[\frac{\mathrm{Q}^{2}}{\mathrm{gA}}+\mathrm{Az}\right]_{2}$
$\frac{1^{2}}{9.81 \times y_{1}^{2}}+y_{1}^{2} \times \frac{y_{1}}{3}=\frac{1^{2}}{9.81 \mathrm{y}_{2}^{2}}+\mathrm{y}_{2}^{2} \times \frac{\mathrm{y}_{2}}{3}$
$0.449=\frac{1}{9.81 \mathrm{y}_{2}^{2}}+\frac{\mathrm{y}_{2}^{3}}{3}$
$\mathrm{y}_{2}=1.02 \mathrm{~m}$
26. Ans: (b)

Sol: Given:
Head $=5 \mathrm{~m}=(\Delta \mathrm{E})$
Froud number $=8.5$
Approximate sequent depths $=$?

$$
\begin{aligned}
\frac{\mathrm{y}_{2}}{\mathrm{y}_{1}} & =\frac{1}{2}\left[-1+\sqrt{1+8 \mathrm{~F}_{\mathrm{r} 1}^{2}}\right] \\
& =\frac{1}{2}\left[-1+\sqrt{1+8(8.5)^{2}}\right] \\
& =11.5 \mathrm{~m} \\
\mathrm{y}_{2} & =11.5 \mathrm{y}_{1}
\end{aligned}
$$

$\left.\begin{array}{l}\text { (a) } y_{2}=11.5(0.3)=3.45 \\ \text { (b) } y_{2}=11.5(0.2)=2.3 \mathrm{~m}\end{array}\right\}$ fromoptions

$$
\begin{aligned}
\mathrm{y}_{1}=0.2, & \mathrm{y}_{2}=2.3 \mathrm{~m} \\
& (\text { or })
\end{aligned}
$$

$\Delta \mathrm{E}=5 \mathrm{~m}$
$\Delta \mathrm{E}=\frac{\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{3}}{4 \mathrm{y}_{1} \mathrm{y}_{2}}$

$$
\frac{\left(11.5 y_{1}-y_{1}\right)^{3}}{4\left(11.5 y_{1}\right) y_{1}}=5
$$

38
$\left(10.5 y_{1}\right)^{3}=230 y_{1}^{2}$
$1157.625 \mathrm{y}_{1}=230$
$\mathrm{y}_{1}=0.2 \mathrm{~m}$
$\mathrm{y}_{2}=11.5(0.2)$
$\mathrm{y}_{2}=2.3 \mathrm{~m}$
27. Ans: 1.43

Sol: $\mathrm{y}_{1}=1.2 \mathrm{~m}$

$$
\mathrm{V}_{\mathrm{w}}+\mathrm{V}_{1}=\sqrt{\mathrm{gy}_{1}}
$$

$$
\longrightarrow \mathrm{V}_{1}
$$

$\quad \overline{\mathrm{U} / \mathrm{s}} \quad \mathrm{D} / \mathrm{s}$
$\mathrm{V}_{1}=\sqrt{9.81 \times 1.2}-2$
$\mathrm{~V}_{1}=1.43 \mathrm{~m} / \mathrm{s}$
In this problem if the wave moves downstream the velocity of wave is

$$
\begin{aligned}
\mathrm{V}_{\mathrm{w}}-\mathrm{V}_{1} & =\sqrt{\mathrm{gy}} \\
\mathrm{~V}_{\mathrm{w}} & =\sqrt{\mathrm{gy}_{1}}+\mathrm{V}_{1} \\
& =\sqrt{9.81 \times 1.2}+2 \\
& =5.43 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Chapter
13

Dimensional Analysis

1. Ans: (c)

Sol: Total number of variables,
$\mathrm{n}=8$ and $\mathrm{m}=3(\mathrm{M}, \mathrm{L} \& \mathrm{~T})$
Therefore, number of π 's are $=8-3=5$
02. Ans: (b)

Sol: 1. $\frac{\mathrm{T}}{\rho \mathrm{D}^{2} \mathrm{~V}^{2}}=\frac{\mathrm{MLT}^{2}}{\mathrm{ML}^{-3} \times \mathrm{L}^{2} \times \mathrm{L}^{2} \times \mathrm{T}^{-2}}=1$.
\rightarrow It is a non-dimensional parameter.
2. $\frac{\mathrm{VD}}{\mu}=\frac{\mathrm{LT}^{-1} \times \mathrm{L}}{\mathrm{ML}^{-1} \mathrm{~T}^{-1}} \neq 1$.
\rightarrow It is a dimensional parameter.
3. $\frac{\mathrm{D} \omega}{\mathrm{V}}=1$.
\rightarrow It is a non-dimensional parameter.
4. $\frac{\rho V D}{\mu}=\operatorname{Re}$.
\rightarrow It is a non-dimensional parameter.
03. Ans: (b)

Sol: $\mathrm{T}=\mathrm{f}(l, \mathrm{~g})$
Total number of variable,

$$
\mathrm{n}=3, \mathrm{~m}=2 \text { (L \& T only) }
$$

Hence, no. of π terms $=3-2=1$
04. Ans: (c)

Sol:

- Mach Number \rightarrow Launching of rockets
- Thomas Number \rightarrow Cavitation flow in soil
- Reynolds Number \rightarrow Motion of a submarine
- Weber Number \rightarrow Capillary flow in soil

05. Ans: (b)

Sol: According to Froude's law

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{r}}=\sqrt{\mathrm{L}_{\mathrm{r}}} \\
& \frac{\mathrm{t}_{\mathrm{m}}}{\mathrm{t}_{\mathrm{p}}}=\sqrt{\mathrm{L}_{\mathrm{r}}} \\
& \mathrm{t}_{\mathrm{p}}=\frac{\mathrm{t}_{\mathrm{m}}}{\sqrt{\mathrm{~L}_{\mathrm{r}}}}=\frac{10}{\sqrt{1 / 25}} \\
& \mathrm{t}_{\mathrm{p}}=50 \mathrm{~min}
\end{aligned}
$$

6. Ans: (a)

Sol: $\mathrm{L}=100 \mathrm{~m}$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{P}}=10 \mathrm{~m} / \mathrm{s}, \\
& \mathrm{~L}_{\mathrm{r}}=\frac{1}{25}
\end{aligned}
$$

As viscous parameters are not discussed, follow Froude's law.
According to Froude,
$V_{r}=\sqrt{L_{r}}$
$\frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{V}_{\mathrm{p}}}=\sqrt{\frac{1}{25}}$
$\mathrm{V}_{\mathrm{m}}=\frac{1}{5} \times 10=2 \mathrm{~m} / \mathrm{s}$

07. Ans: (d)

Sol: Froude number $=$ Reynolds number.

$$
v_{\mathrm{r}}=0.0894
$$

If both gravity \& viscous forces are important then

$$
\begin{aligned}
v_{\mathrm{r}} & =\left(\mathrm{L}_{\mathrm{r}}\right)^{3 / 2} \\
\sqrt[3]{\left(v_{\mathrm{r}}\right)^{2}} & =\mathrm{L}_{\mathrm{r}} \\
\mathrm{~L}_{\mathrm{r}} & =1: 5
\end{aligned}
$$

08. Ans: (c)

Sol: For distorted model according to Froude's law
$\mathrm{Q}_{\mathrm{r}}=\mathrm{L}_{\mathrm{H}} \mathrm{L}_{\mathrm{V}}^{3 / 2}$
$\mathrm{L}_{\mathrm{H}}=1: 1000$,
$\mathrm{L}_{\mathrm{V}}=1: 100$
$\mathrm{Q}_{\mathrm{m}}=0.1 \mathrm{~m}^{3} / \mathrm{s}$
$\mathrm{Q}_{\mathrm{r}}=\frac{1}{1000} \times\left(\frac{1}{100}\right)^{3 / 2}=\frac{0.1}{\mathrm{Q}_{\mathrm{p}}}$
$\mathrm{Q}_{\mathrm{P}}=10^{5} \mathrm{~m}^{3} / \mathrm{s}$
09. Ans: (c)

Sol: For dynamic similarity, Reynolds number should be same for model testing in water and the prototype testing in air. Thus,

$$
\begin{array}{r}
\quad \frac{\rho_{w} \times V_{w} \times d_{w}}{\mu_{w}}=\frac{\rho_{a} \times V_{a} \times d_{a}}{\mu_{a}} \\
\text { or } \quad V_{w}=\frac{\rho_{a}}{\rho_{w}} \times \frac{d_{a}}{d_{w}} \times \frac{\mu_{w}}{\mu_{a}} \times V_{a}
\end{array}
$$

(where suffixes w and a stand for water and air respectively)
Substituting the values given, we get
$\mathrm{V}_{\mathrm{w}}=\frac{1.2}{10^{3}} \times \frac{4}{0.1} \times \frac{10^{-3}}{1.8 \times 10^{-5}} \times 1=\frac{8}{3} \mathrm{~m} / \mathrm{s}$
To calculate the drag force on prototype, we equate the drag coefficient of model to that of prototype.
i.e, $\left(\frac{F_{D}}{\rho A V^{2}}\right)_{P}=\left(\frac{F_{D}}{\rho A V^{2}}\right)_{m}$

Hence, $\left(F_{D}\right)_{p}=\left(F_{D}\right)_{m} \times \frac{\rho_{a}}{\rho_{w}} \times \frac{A_{a}}{A_{w}} \times\left(\frac{V_{a}}{V_{w}}\right)^{2}$
$=4 \times \frac{1.2}{10^{3}} \times\left(\frac{4}{0.1}\right)^{2} \times\left(\frac{1}{8 / 3}\right)^{2}$
$=1.08 \mathrm{~N}$

A范 ACB	40	GATE - Text Book Solutions

10. Ans: 47.9

Sol: Given data,

	Sea water (Prototype testing)	Fresh water (model testing)
V	0.5	$?$
ρ	$1025 \mathrm{~kg} / \mathrm{m}^{3}$	$10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
μ	$1.07 \times 10^{-3} \mathrm{~Pa} . \mathrm{s}$	$1 \times 10^{-3} \mathrm{~Pa} . \mathrm{s}$

For dynamic similarity, Re should be same in both testing.

$$
\text { i.e., } \frac{\rho_{\mathrm{m}} \mathrm{~V}_{\mathrm{m}} \mathrm{~d}_{\mathrm{m}}}{\mu_{\mathrm{m}}}=\frac{\rho_{\mathrm{p}} \mathrm{~V}_{\mathrm{p}} \mathrm{~d}_{\mathrm{p}}}{\mu_{\mathrm{p}}}
$$

$$
\mathrm{V}_{\mathrm{m}}=\mathrm{V}_{\mathrm{P}} \times \frac{\rho_{\mathrm{p}}}{\rho_{\mathrm{m}}} \times \frac{\mathrm{d}_{\mathrm{p}}}{\mathrm{~d}_{\mathrm{m}}} \times \frac{\mu_{\mathrm{m}}}{\mu_{\mathrm{p}}}
$$

$$
=0.5 \times \frac{1025}{10^{3}} \times 100 \times \frac{10^{-3}}{1.07 \times 10^{-3}}
$$

$$
=47.9 \mathrm{~m} / \mathrm{s}
$$

ace
online

