
CIVIL ENGINEERING


FLUID MECHANICS

Text Book: Theory with worked out Examples and Practice Questions

Fluid Mechanics

(Solutions for Text Book Practice Questions)

08. Ans: (d)

Sol:

- Ideal fluid \rightarrow Shear stress is zero.
- Newtonian fluid → Shear stress varies linearly with the rate of strain.
- Non-Newtonian fluid → Shear stress does not vary linearly with the rate of strain.
- Bingham plastic → Fluid behaves like a solid until a minimum yield stress beyond which it exhibits a linear relationship between shear stress and the rate of strain.

09. Ans: (b)

2

- Sol: V = 0.01 m³ $\beta = 0.75 \times 10^{-9} \text{ m}^2/\text{N}$ $dP = 2 \times 10^7 \text{ N/m}^2$ $K = \frac{1}{\beta} = \frac{1}{0.75 \times 10^{-9}} = \frac{4}{3} \times 10^9$ $K = \frac{-dP}{dV/V}$ $dV = \frac{-2 \times 10^7 \times 10^{-2} \times 3}{4 \times 10^9} = -1.5 \times 10^{-4}$
- 10. Ans: 320 Pa Sol: $\Delta P = \frac{8\sigma}{D} = \frac{8 \times 0.04}{1 \times 10^{-3}} = \frac{32 \times 10^{-2}}{10^{-3}}$ $\Delta P = 320 \text{ N/m}^2$
- 11. Ans: (a, d) Sol: Given data: S.G = 0.8 and v = 2 centistokes = $2 \times 10^{-6} \text{ m}^2/\text{s}$ Mass density, $\rho = (S.G) \times \rho_{\text{water at } 4^{\circ}\text{C}}$ $= 0.8 \times 10^3 = 800 \text{ kg/m}^3$ Dynamic viscosity, $\mu = \rho \times v$ $\mu = 800 \times 2 \times 10^{-6} \text{ Pa.s}$
 - $= 16 \times 10^{-4}$ Pa.s
 - = 1.6 centipoise

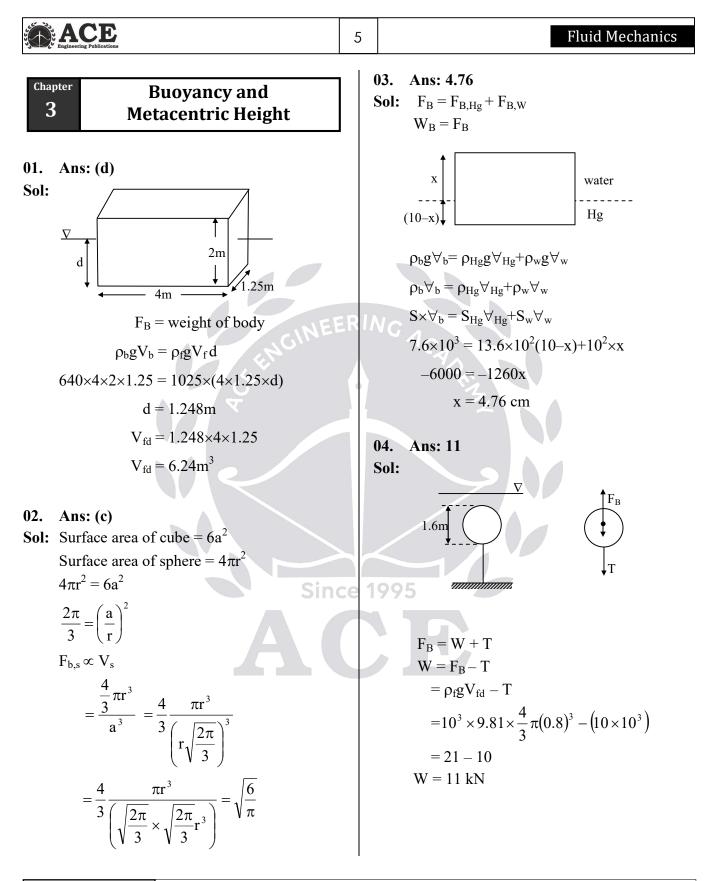
A ace online

 Regular Live Doubt clearing Sessions
 |
 Free Online Test Series | ASK an expert

 Affordable Fee
 |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

Engineering Publications	3 Fluid Mechanics
ChapterPressure Measurement2& Fluid Statics	• The manometer shown in Fig. 4 is an open ended manometer for positive pressure measurement.
01. Ans: (a)	05. Ans: 2.2
Sol: 1 millibar = $10^{-3} \times 10^{5} = 100 \text{ N/m}^{2}$	Sol: h_p in terms of oil
One mm of Hg = $13.6 \times 10^3 \times 9.81 \times 1 \times 10^{-3}$	$s_o h_o = s_m h_m$
$= 133.416 \text{ N/m}^2$	$0.85 \times h_0 = 13.6 \times 0.1$
$1 \text{ N/mm}^2 = 1 \times 10^6 \text{ N/m}^2$	$h_0 = 1.6m$
$1 \text{ kgf/cm}^2 = 9.81 \times 10^4 \text{ N/m}^2$	$h_p = 0.6 + 1.6$
	\Rightarrow h _p = 2.2m of oil
02. Ans: (b)	RING (or) $P_p - \gamma_{oil} \times 0.6 - \gamma_{Hg} \times 0.1 = P_{atm}$
Sol: Local atm.pressure	$\frac{P_{p} - P_{atm}}{\gamma_{oil}} = \left(\frac{\gamma_{Hg}}{\gamma_{oil}} \times 0.1 + 0.6\right)$
(350 mm of vaccum)	$=\frac{13.6}{0.85} \times 0.1 + 0.6 = 2.2 \text{ m of oil}$
360 mm	Gauge pressure of P in terms of m of oil
Absolute pressure	= 2.2 m of oil
03. Ans: (c)	
Sol: Pressure does not depend upon the volume	06. Ans: (b)
of liquid in the tank. Since both tanks have	Sol: $h_{M} - \frac{s_{w}}{s_{0}}h_{w_{1}} = h_{N} - \frac{s_{w}h_{w_{2}}}{s_{0}} - h_{0}$
the same height, the pressure P_A and P_B are	S ₀ S ₀ S ₀
same. Since	$h_{\rm M} - h_{\rm N} = \frac{9}{0.83} - \frac{18}{0.83} - 3$
04. Ans: (b)	$h_{\rm M} - h_{\rm N} = -13.843 {\rm cm of oil}$
Sol:	
• The manometer shown in Fig.1 is an open	07. Ans: 2.125
ended manometer for negative pressure measurement.	Sol: $h_{p} = \overline{h} + \frac{I}{A\overline{h}}$ ∇
• The manometer shown in Fig. 2 is for	$=2+\frac{\pi D^4 \times 4}{2}$
measuring pressure in liquids only.	$=2+\frac{12}{64\times D^2\times 2\times \pi}$
• The manometer shown in Fig. 3 is for	

- measurement. The manometer shown in Fig. 2 is for • measuring pressure in liquids only.
- The manometer shown in Fig. 3 is for ٠ measuring pressure in liquids or gases.


ace online

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

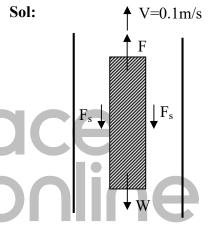
 $=2+\frac{2^2\times 4}{64\times 2}=2.125m$

Engineering Publications	4	GATE – Text Book Solutions
08. Ans: 10 Sol: $F = \rho g \bar{h} A$ $= 9810 \times 1.625 \times \frac{\pi}{4} (1.2^2 - 0.8^2)$ F = 10 kN 09. Ans: 1 Sol:		12. Ans: 2 Sol: Let P be the absolute pressure of fluid f3 at mid-height level of the tank. Starting from the open limb of the manometer (where pressure = P_{atm}) we write : $P_{atm} + \gamma \times 1.2 - 2 \gamma \times 0.2 - 0.5 \gamma \times \left(0.6 + \frac{h}{2}\right) = P$ or $P - P_{atm} = P_{gauge}$ $= \gamma(1.2 - 2 \times 0.2 - 0.5 \times 0.6 - 0.5 \times \frac{h}{2})$
$2x$ $F_{bottom} = \rho g \times 2x \times 2x \times x$ $F_{V} = \rho g x \times 2x \times 2x$ $\frac{F_{B}}{F_{V}} = 1$ 10. Ans: 10 Sol: $F_{V} = x \times \pi$ $F_{V} = \rho g V = 1000 \times 10 \times \frac{\pi \times 2^{2}}{4}$ $F_{V} = 10\pi \text{ kN}$		For P _{gauge} to be zero, we have, $\gamma(1.2 - 0.4 - 0.3 - 0.25 \text{ h}) = 0$ or $h = \frac{0.5}{0.25} = 2$ 13. Ans: (a, c) Sol: The limitations of piezometer are : • It can't measure gas pressure. • It can't measure high pressure.
$\therefore \mathbf{x} = 10$ 11. Ans: (d) Sol: $F_{net} = F_{H1} - F_{H2}$ $F_{H1} = \gamma \times \frac{D}{2} \times D \times 1 = \frac{\gamma D^2}{2}$ $F_{H2} = \gamma \times \frac{D}{4} \times \frac{D}{2} \times 1 = \frac{\gamma D^2}{8}$ $= \gamma D^2 \left(\frac{1}{2} - \frac{1}{8}\right) = \frac{3\gamma D^2}{8}$		

	SK an expert
Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription	iption Packages

A ace online India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

Ans: 1.375 05. **Sol:** $W_{water} = 5N$ $W_{oil} = 7N$ S = 0.85W – Weight in air $F_{B1} = W - 5$ $F_{B2} = W - 7$ $W - 5 = \rho_1 g V_{fd} \dots (1)$ $W - 7 = \rho_2 g V_{fd} \dots (2)$ $V_{fd} = V_b$ $W - 5 = \rho_1 g V_h$ $W-7=\rho_2 g V_{\rm b}$ $\overline{2 = (\rho_1 - \rho_2)gV_h}$ $V_{b} = \frac{2}{(1000 - 850)9.81}$ $V_b = 1.3591 \times 10^{-3} m^3$ $W = 5 + (9810 \times 1.3591 \times 10^{-3})$ W = 18.33N $W = \rho_b g V_b$ 18.33 $\frac{1}{9.81 \times 1.3591 \times 10^{-3}} = \rho_{\rm b}$ $\rho_b = 1375.05 \text{ kg/m}^3$ $S_b = 1.375$


- 06. Ans: (d)
- Sol: For a floating body to be stable, metacentre should be above its center of gravity. Mathematically GM > 0.

Sol: W = F_B

$$\rho_b g V_b = \rho_f g V_{fd}$$

 $\rho_b V_b = \rho_f V_{fd}$
 $0.6 \times \frac{\pi}{4} d^2 \times 2d = 1 \times \frac{\pi}{4} d^2 \times x$

 $\Rightarrow x = 1.2d$ GM = BM - BG BM = $\frac{I}{V} = \frac{\pi d^4}{64 \times \frac{\pi}{4} d^2 \times 1.2d} = \frac{d}{19.2} = 0.052d$ BG = d - 0.6d = 0.4d Thus, GM = 0.052d - 0.4d = -0.348 d

 \Rightarrow Hence, the cylinder is in unstable condition.

The thickness of the oil layer is same on either side of plate

y = thickness of oil layer

$$=\frac{23.5-1.5}{2}=11$$
mm

Shear stress on one side of the plate

$$\tau = \frac{\mu dU}{dy}$$

 F_s = total shear force (considering both sides of the plate)

$$= 2A \times \tau = \frac{2A\mu V}{y}$$
$$= \frac{2 \times 1.5 \times 1.5 \times 2.5 \times 0.1}{11 \times 10^{-3}} = 102.2727 \text{ N}$$

 OCE
 Regular Live Doubt clearing Sessions
 Free Online Test Series | ASK an expert

 Online
 Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

6

Weight of plate, W = 50 N Upward force on submerged plate,

$$\begin{split} F_v &= \rho g V = 900 \times 9.81 \times 1.5 \times 1.5 \times 10^{-3} \\ &= 29.7978 \; N \end{split}$$

Total force required to lift the plate

 $= F_s + W - F_v$ = 102.2727 + 50 - 29.7978 = 122.4749 N

09. Ans: (a, b, c, d)

Sol:

- Passenger ships have less GM than war ships from comfort point of view.
- Lifting a steel ball submerged in water is easier than lifting it when unsubmerged due to buoyant force acting on the ball.
- Apparent weight of a submerged body is always lower than its actual weight due to the force of buoyancy.
- Inverted U-tube manometers are preferred if difference in pressure is small.

Chapter4Fluid Kinematics

01. Ans: (b)

7

- **Sol:** Constant flow rate signifies that the flow is steady.
- For conically tapered pipe, the fluid velocity at different sections will be different. This corresponds to non-uniform flow.

Common Data for Questions 02 & 03

Sol:

Since

$$a_{\text{Local}} = \frac{\partial V}{\partial t}$$
$$= \frac{\partial}{\partial t} \left(2t \left(1 - \frac{x}{2L} \right)^2 \right)$$
$$= \left(1 - \frac{x}{2L} \right)^2 \times 2$$

$$(a_{\text{Local}})_{\text{at x}=0.5, L=0.8} = 2\left(1 - \frac{0.5}{2 \times 0.8}\right)^2$$

= 2(1 - 0.3125)² = 0.945 m/sec²

03. Ans: -13.68
Sol:
$$a_{convective} = v \cdot \frac{\partial v}{\partial x} = \left[2t \left[1 - \frac{x}{2L} \right]^2 \right] \frac{\partial}{\partial x} \left[2t \left(1 - \frac{x}{2L} \right)^2 \right]$$

 $= \left[2t \left[1 - \frac{x}{2L} \right]^2 \right] 2t \left[2 \left(1 - \frac{x}{2L} \right) \left(-\frac{1}{2L} \right) \right]$
At $t = 3 \text{ sec}$; $x = 0.5 \text{ m}$; $L = 0.8 \text{ m}$
 $a_{convective} = 2 \times 3 \left[1 - \frac{0.5}{2 \times 0.8} \right]^2 \times 2 \times 3 \left[2 \left(1 - \frac{0.5}{2 \times 0.8} \right) \right] \frac{-1}{2 \times 0.8} \right]$
 $a_{convective} = -14.62 \text{ m/sec}^2$
 $a_{total} = a_{local} + a_{convective} = 0.94 - 14.62$
 $= -13.68 \text{ m/sec}^2$

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

Fluid Mechanics

ACE **GATE - Text Book Solutions** 8 Ans: (d) **04**. 06. Ans: 13.75 **Sol:** $u = 6xy - 2x^2$ **Sol:** $a_{t (conv)} = V_{avg} \times \frac{dV}{dv}$ Continuity equation for 2D flow $a_{t (conv)} = \left(\frac{2.5+3}{2}\right) \left(\frac{3-2.5}{0.1}\right) = 2.75 \times 5$ $\frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \frac{\partial \mathbf{v}}{\partial \mathbf{y}} = \mathbf{0}$ $a_{t (conv)} = 13.75 \text{ m/s}^2$ $\frac{\partial u}{\partial x} = 6y - 4x$ 07. Ans: 0.3 $(6y-4x)+\frac{\partial v}{\partial v}=0$ Sol: O = Au $\mathbf{a}_{\text{Local}} = \frac{\partial \mathbf{u}}{\partial t} = \frac{\partial}{\partial t} \left(\frac{\mathbf{Q}}{\mathbf{A}} \right)$ $\frac{\partial v}{\partial y} = (4x - 6y) = 0$ $a_{\text{local}} = \frac{1}{\Lambda} \frac{\partial Q}{\partial t}$ $\partial v = (4x - 6y) dy$ $v = \int 4x dy - \int 6y dy$ $\mathbf{a}_{\text{Local}} = \left(\frac{1}{0.4 - 0.1\mathbf{x}}\right) \frac{\partial \mathbf{Q}}{\partial t}$ $=4xv-3v^{2}+c$ $=4xy - 3y^2 + f(x)$ $(a_{\text{Local}})_{\text{at x}=0} = \frac{1}{0.4} \times 0.12 \quad (\because \frac{\partial Q}{\partial t} = 0.12)$ 05. Ans: $\sqrt{2} = 1.414$ $= 0.3 \text{ m/sec}^2$ **Sol:** $\frac{\partial V}{\partial x} = \frac{1}{3} (m / \sec/m)$ **08.** Ans: (b) Sol: $\psi = x^2 - v^2$ = 3 m/sec $a_{\text{Total}} = (a_x)\hat{i} + (a_v)\hat{i}$ R=9 m $u = -\frac{\partial \psi}{\partial x} = -\frac{\partial}{\partial y} (x^2 - y^2) = 2y$ $\mathbf{v} = \frac{\partial \psi}{\partial \mathbf{x}} = \frac{\partial}{\partial \mathbf{x}} \left(\mathbf{x}^2 - \mathbf{y}^2 \right) = 2\mathbf{x}$ $a_x = u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y}$ =(2y)(0) + (2x)(2) $a_r = \frac{V^2}{R} = \frac{(3)^2}{\Omega} = \frac{9}{\Omega} = 1 \text{ m/s}^2$ $\therefore a_x = 4x$ $\mathbf{a}_{y} = \mathbf{u}\frac{\partial \mathbf{v}}{\partial \mathbf{x}} + \mathbf{v}\frac{\partial \mathbf{v}}{\partial \mathbf{v}}$ $a_t = V \frac{\partial V}{\partial x} = 3 \times \frac{1}{3} = 1 \text{ m/s}^2$ $=(2y)\times(2)+(2x)\times(0)$ $a = \sqrt{(a_{\perp})^2 + (a_{\perp})^2} = \sqrt{(1)^2 + (1)^2} = \sqrt{2} \text{ m/sec}^2$ $a_v = 4v$ $\therefore \mathbf{a} = (4\mathbf{x})\hat{\mathbf{i}} + (4\mathbf{y})\hat{\mathbf{j}}$ Regular Live Doubt clearing Sessions | Free Online Test Series | ASK an expert ace online Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

ACE Engineering Publications	9 Fluid Mechanics
09. Ans: (b)	12. Ans: (b, c)
Sol: Given, The stream function for a potential	Sol: Given: $\vec{V} = x \hat{i} - y \hat{j}$
flow field is $\psi = x^2 - y^2$	Thus, $u = x$ and $v = -y$
$\phi = ?$	$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} = 1$; $\frac{\partial \mathbf{u}}{\partial \mathbf{v}} = 0$; $\frac{\partial \mathbf{v}}{\partial \mathbf{x}} = 0$; $\frac{\partial \mathbf{v}}{\partial \mathbf{v}} = -1$
$u = \frac{-\partial \phi}{\partial x} = -\frac{\partial \psi}{\partial y}$	$\partial \mathbf{x}$ $\partial \mathbf{y}$ $\partial \mathbf{x}$ $\partial \mathbf{y}$
$\mathbf{u} = -\frac{\partial \Psi}{\partial \mathbf{y}} = -\frac{\partial \left(\mathbf{x}^2 - \mathbf{y}^2\right)}{\partial \mathbf{y}}$	$a_x = u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = x \times 1 - y \times 0 = x$
ey ey	$a_y = u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = x \times 0 + y \times 1 = y$
u = 2y	
$\mathbf{u} = -\frac{\partial \mathbf{\phi}}{\partial \mathbf{x}} = 2\mathbf{y}$	Thus, $\vec{a} = a_x \hat{i} + a_y \hat{j} = x \hat{i} + y \hat{j}$
$\int \partial \phi = -\int 2y \partial x$	$u = -\frac{\partial \psi}{\partial y} = x ; \text{ On integration, } \psi = -xy + C$
$\phi = -2 xy + c_1$	∂y
$\phi = -2 xy + c_1$ Given, ϕ is zero at (0,0)	$u = -\frac{\partial \phi}{\partial x} = x$; On integration, $\phi = -\frac{x^2}{2} + C$
$\therefore c_1 = 0$	∂x ∂x 2
$\therefore \phi = -2xy$	
10. Ans: 4	
Sol: Given, 2D – flow field	
Velocity, $V = 3xi + 4xyj$	
$u = 3x, \qquad v = 4xy$	
$\omega_{z} = \frac{1}{2} \left(\frac{dv}{dx} - \frac{du}{dy} \right)$ Since	ce 1995
$\omega_z = \frac{1}{2} (4y - 0)$	
2	
$(\omega_Z)_{at(2,2)} = \frac{1}{2} \times 4(2) = 4 \text{ rad/sec}$	
11. Ans: (b)	
Sol: Given, $u = 3x$, $v = Cy$, $w = 2$	
The shear stress, τ_{xy} is given by	
$\tau_{xy} = \mu \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) = \mu \left[\frac{\partial}{\partial y} (3x) + \frac{\partial}{\partial x} (Cy) \right]$	
$=\mu (0+0)=0$	
India's Best Online Coaching Platform	n for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams
	e learning experience in various languages at your convenience

ACE

Chapter **Energy Equation and** its Applications

01. Ans: (c)

5

Sol: Applying Bernoulli's equation for ideal fluid

$$\frac{P_{1}}{\rho g} + Z_{1} + \frac{V_{1}^{2}}{2g} = \frac{P_{2}}{\rho g} + Z_{2} + \frac{V_{2}^{2}}{2g}$$

$$\frac{P_{1}}{\rho g} + \frac{(2)^{2}}{2g} = \frac{P_{2}}{\rho g} + \frac{(1)^{2}}{2g}$$

$$\frac{P_{2}}{\rho g} - \frac{P_{1}}{\rho g} = \frac{4}{2g} - \frac{1}{2g}$$

$$\frac{P_{2} - P_{1}}{\rho g} = \frac{3}{2g} = \frac{1.5}{g}$$

02. Ans: (c)

Sol:

$$(1) \qquad S_1 \qquad (1) \qquad (1) \qquad (2) \qquad (2)$$

$$\frac{V_1^2}{2g} = 1.27 \text{m} , \qquad \frac{P_1}{\rho g} = 2.5 \text{m}$$

$$\frac{V_2^2}{2g} = 0.203 \text{m} , \qquad \frac{P_2}{\rho g} = 5.407 \text{m}$$

$$Z_1 = 2 \text{ m} , \qquad Z_2 = 0 \text{ m}$$

$$\text{Total head at (1) - (1)}$$

$$- \frac{V_1^2}{\rho g} + \frac{P_1}{\rho g} + 7$$

$$= \frac{1}{2g} + \frac{1}{\rho g} + \frac{2}{\rho g}$$
$$= 1.27 + 2.5 + 2 = 5.77 \text{ m}$$

Total head at (2) - (2)

$$= \frac{V_2^2}{2g} + \frac{P_2}{\rho g} + Z_2$$

= 0.203 + 5.407 + 0 = 5.61 m
Loss of head = 5.77 - 5.61 = 0.16 m
 \therefore Energy at (1) - (1) > Energy at (2) - (2)
 \therefore Flow takes from higher energy to lower
energy
i.e. from (S₁) to (S₂)
Flow takes place from top to bottom.

03. Ans: 1.5 **Sol:** $A_1 = \frac{\pi}{4} d_1^2 = \frac{\pi}{4} (0.1)^2 = 7.85 \times 10^{-3} \text{ mm}^2$ $A_2 = \frac{\pi}{4} d_2^2 = \frac{\pi}{4} (0.05)^2 = 1.96 \times 10^{-3} \text{ mm}^2$ $\frac{P_1}{\rho g} + \frac{V_1^2}{2g} + Z_1 = \frac{P_2}{\rho g} + \frac{V_2^2}{2g} + Z_2 + h_L$ $Z_1 = Z_2$, it is in horizontal position Since, at outlet, pressure is atmospheric $P_2 = \overline{0}$ $Q = 100 \text{ lit/sec} = 0.1 \text{ m}^{3/\text{sec}}$ $V_1 = \frac{Q}{A_1} = \frac{0.1}{7.85 \times 10^{-3}} = 12.73 \,\text{m/sec}$ $V_2 = \frac{Q}{A_2} = \frac{0.1}{1.96 \times 10^{-3}} = 51.02 \,\text{m/sec}$ $\frac{P_{1gauge}}{\rho_{air} \times g} + \frac{(12.73)^2}{2 \times 10} = 0 + \frac{(51.02)^2}{2 \times 10}$ $\frac{P_1}{\rho_{air} \cdot g} = 121.53$ $P_1 = 121.53 \times \rho_{air} \times g$ = 1.51 kPa

Regular Live Doubt clearing Sessions | Free Online Test Series | ASK an expert Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

Engineering Publications	11 Fluid Mechanics
04. Ans: 395 Sol: Q = 100 litre/sec = 0.1 m ³ /sec V ₁ = 100 m/sec; P ₁ = 3 × 10 ⁵ N/m ² V ₂ = 50 m/sec; P ₂ = 1 × 10 ⁵ N/m ² Power (P) = ? Energy equation : $\frac{P_1}{\rho g} + \frac{V_1^2}{2g} + Z_1 = \frac{P_2}{\rho g} + \frac{V_2^2}{2g} + Z_2 + h_L$ $\frac{3 \times 10^5}{1000 \times 10} + \frac{100^2}{2 \times 10} + 0 = \frac{1 \times 10^5}{1000 \times 10} + \frac{50^2}{2 \times 10} + 0 + h$ $\Rightarrow h_L = 395 \text{ m}$ P = $\rho gQ.h_L$ P = 1000 × 10 × 0.10 × 395 P = 395 kW 05. Ans: 35 Sol: $\int \frac{fluid, S = 0.85}{fluid, S = 0.85}$ $\int \frac{fluid, S = 0.85}{fluid, S = 0.85}$	Sol: $h_{stag} = 0.30 \text{ m}$ $h_{stat} = 0.24 \text{ m}$ $V = c\sqrt{2gh}_{dyna}$ $V = 1\sqrt{2g(h_{stag} - h_{stat})}$ $= \sqrt{2(9.81)(0.30 - 0.24)} = 1.085 \text{ m/s}$ $= 1.085 \times 60 = 65.1 \text{ m/min}$ 07. Ans: 81.5 Sol: $x = 30 \text{ mm}$, $g = 10 \text{ m/s}^2$ $\rho_{air} = 1.23 \text{ kg/m}^3$;
$d_{1} = 300 \text{ mm}, \ d_{2} = 120 \text{ mm}$ $Q_{Th} = \frac{A_{1}A_{2}}{\sqrt{A_{1}^{2} - A_{2}^{2}}} \sqrt{2gh}$ $= \frac{A_{1}A_{2}}{\sqrt{A_{1}^{2} - A_{2}^{2}}} \sqrt{2g\left(\frac{\Delta P}{W}\right)}$ $A_{1} = \frac{\pi}{4}d_{1}^{2} = \frac{\pi}{4}(0.30)^{2} = 0.07 \text{ m}^{2}$ $A_{2} = \frac{\pi}{4}d_{2}^{2} = \frac{\pi}{4}(0.12)^{2} = 0.011 \text{ m}^{2}$ $\Delta P = 4 \text{ kPa},$	$V = \sqrt{2gh_{D}}$ $h_{D} = x\left(\frac{S_{m}}{S} - 1\right)$ $h_{D} = 30 \times 10^{-3}\left(\frac{13600}{1.23} - 1\right)$ $h_{D} = 331.67 \text{ m}$ $V = 1 \times \sqrt{2 \times 10 \times 331.67} = 81.5 \text{ m/sec}$

 India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams

 Enjoy a smooth online learning experience in various languages at your convenience

ACE Engineering Publications	12	GATE – Text Book Solutions
08. Ans: 140		Let the point at the summit be denoted by
Sol: $Q_a = C_d \frac{A_1 A_2}{\sqrt{A_1^2 - A_2^2}} \sqrt{2gh}$		(3). Then,
$C_d \propto \frac{1}{\sqrt{h}}$		$\frac{P_1}{\gamma} + \frac{V_1^2}{2g} + Z_1 = \frac{P_3}{\gamma} + \frac{V_3^2}{2g} + Z_3$
$\frac{\mathrm{C_{d_{venturi}}}}{\mathrm{C_{d_{orifice}}}} = \frac{0.95}{0.65} = \sqrt{\frac{\mathrm{h_{orifice}}}{\mathrm{h_{venturi}}}}$		where, $V_3 = V_2 = 2\sqrt{g} \text{ m/s}$; $Z_3 - Z_1 = 1.4 \text{ m}$
$h_{venturi} = 140 \text{ mm}$		Thus,
09. Ans: (b, d)		$\frac{P_3}{\gamma} = -1.4 - \frac{4g}{2g} = -3.4$
Sol:		\Rightarrow P ₃ = -3.4 × 9810 Pa
1.4 m (1) ∇ 2 m (2) ∇		=-33.354 kPa
Applying Bernoulli equation	n between	
sections (1) & (2)		
$\frac{P_1}{\gamma} + \frac{V_1^2}{2g} + Z_1 = \frac{P_2}{\gamma} + \frac{V_2^2}{2g} + Z_2$ But, $P_1 = 0 = P_2$; $V_1 = 0$;		
$Z_1 - Z_2 = 2 m$		
So, $0+0+2=0+\frac{V_2^2}{2g}+0$		
\Rightarrow V ₂ = 2 \sqrt{g} m/s		
$Q = \frac{\pi}{4} d^2 V_2 = \frac{\pi}{4} \times (3 \times 10^{-2})^2 \times$	$\approx 2\sqrt{9.81}$	
$=4.428 \times 10^{-3} \text{ m}^{3}/\text{s}$		
ACE	lar Live Doubt clearing	g Sessions Free Online Test Series ASK an expert
Affordab	le Fee Available 1M	3M 6M 12M 18M and 24 Months Subscription Packages

ACE Engineering Publications	13Fluid Mechanics
ChapterMomentum equation and6its Applications	$ \begin{cases} F_x = \rho a V(V_{1x} - V_{2x}) \\ = \rho a V(V - (-V)) \\ = 2 \rho a V^2 \end{cases} $
01. Ans: 1600 Sol: $S = 0.80$	$= 2 \times 1000 \times 10^{-4} \times 5^2 = 5 \text{ N}$
$A = 0.02 \text{ m}^2$ V = 10 m/sec	05. Ans: (d) Sol: Given, $V = 20 \text{ m/s}$, u = 5 m/s
$F = \rho.A.V^{2}$ F = 0.80 × 1000 × 0.02 × 10 ² F = 1600 N	$F_1 = \rho A (V - u)^2$ Power (P ₁) = F ₁ × u = $\rho A (V - u)^2$ × u
02. Ans: 6000 Sol: $A = 0.015 \text{ m}^2$	$F_2 = \rho.A.V \times V_r$ $= \rho.A(V).(V-u)$
V = 15 m/sec (Jet velocity) U = 5 m/sec (Plate velocity)	Power (P ₂) = F ₂ ×u = $\rho AV(V-u)u$ P ₁ $\rho A(V-u)^2 × u$
$F = \rho A (V + U)^{2}$ F = 1000 × 0.015 (15 + 5) ² F = 6000 N	$\frac{P_1}{P_2} = \frac{\rho A (V - u)^2 \times u}{\rho A V (V - u) \times u}$ $= \frac{V - u}{V} = 1 - \frac{u}{V}$
03. Ans: 19.6 Sol: $V = 100$ m/sec (Jet velocity) U = 50 m/sec (Plate velocity)	$=1-\frac{5}{20}=0.75$
$F = \rho A (V - U)^2$	6. Ans: 2035 Sol: Given, $\theta = 30^{\circ}$, $\dot{m} = 14 \text{ kg/s}$
F = $1000 \times \frac{\pi}{4} \times 0.1^2 \times (100 - 50)^2$ F = 19.6 kN	$(P_i)_g = 200 \text{ kPa},$ $(P_e)_g = 0$
04. Ans: (a) Sol:	$A_i = 113 \times 10^{-4} \text{ m}^2$, $A_e = 7 \times 10^{-4} \text{ m}^2$ $a = 10^3 \ln \alpha / m^3$
V	$\rho = 10^3 \text{ kg/m}^3$, $g = 10 \text{ m/s}^2$ From the continuity equation :
V India's Best Online Coaching Platform	$\rho A_i \ V_i = 14$ rm for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams
	ne learning experience in various languages at your convenience

14

or

$$V_i = \frac{14}{10^3 \times 113 \times 10^{-4}} = 1.24 \,\mathrm{m/s}$$

Similarly, $V_e = \frac{14}{10^3 \times 7 \times 10^{-4}} = 20 \text{ m/s}$

Let F_x be the force exerted by elbow on water in the +ve x-direction. Applying the linear momentum equation to the C.V. enclosing the elbow, we write :

$$(\mathbf{P}_{i})_{g}\mathbf{A}_{i} + \mathbf{F}_{x} = \dot{\mathbf{m}} (\mathbf{V}_{e} \cos 30^{\circ} - \mathbf{V}_{i})$$
$$\mathbf{F}_{x} = \dot{\mathbf{m}} (\mathbf{V}_{e} \cos 30^{\circ} - \mathbf{V}_{i}) - (\mathbf{P}_{i})_{g}\mathbf{A}_{i}$$

- $= 14 (20 \times \cos 30^{\circ} 1.24) 200 \times 10^{3} \times 113 \times 10^{-4}$
- = 225.13 2260
- $= -2034.87 \text{ N} \approx -2035 \text{ N}$

The x-component of water force on elbow is

 $-F_x$ (as per Newton's third law), i.e., $\cong 2035 \text{ N}$

► F(x)_{on water}

(e)

 $(P_e)_g = 0$

Work done per second,

$$\dot{W} = F_x \times U$$
$$= 282.74 \times 8 = 2.262 \text{ kW}$$

Efficiency,

$$\eta = \frac{\dot{W}}{\frac{1}{2}\rho Q \times V_j^2} = \frac{2\dot{W}}{\rho A_j V_j^3} = \frac{8\dot{W}}{\rho \times \pi d_j^2 \times V_j^3}$$
$$= \frac{8 \times 2.262 \times 10^3}{10^3 \times \pi \times (0.05)^2 \times (20)^3}$$
$$= 0.288 = 28.8 \%$$

07. Ans: (a, d)

(i)

у

х

Sol: Given:

$$\begin{split} d_{j} &= 5 \text{ cm}, \\ V_{j} &= 20 \text{ m/s}, \\ U &= 8 \text{ m/s} \end{split}$$

$$F_{x} &= \rho \text{ A}_{j} (V_{j} - U) (V_{j} - U) \\ &= 10^{3} \times \frac{\pi}{4} \times 0.05^{2} \times (20 - 8)^{2} \\ &= 282.74 \text{ N} \end{split}$$

ace online

 Regular Live Doubt clearing Sessions
 Free Online Test Series
 ASK an expert

 Affordable Fee
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

EXAMPLE 15 **Fluid Mechanics**
Chapter 7 **Laminar Flow**
15
$$D = 0.5 \text{ mm}$$

 $\Delta P = 2 \text{ MPa} = 2 \times 10^6 \text{ Pa}$
 $\mu = 7$
 $\Delta P = \frac{128 \mu QL}{\pi D^4}$
 $\Delta P = \frac{128 \mu QL}{\pi D^4}$
 $\Delta P = \frac{128 \mu A800 \times (10^{-1})^3 \times 2}{\pi (0.5 \times 10^{-3})^4}$
 $\mu = 1.917 \text{ milli Pa} - \sec$
15 Ans: (d)
Sol: The equation $t = \left(-\frac{\partial P}{\partial X}\right)\left(\frac{r}{2}\right)$ is valid for
laminar as well as turbulent flow through a
circular tube.
33. Ans: (d)
Sol: $Q = \Lambda \cdot \frac{V_{max}}{2}$ $(\because V_{max} = 2 \text{ V}_{seg})$
 $Q = \frac{\pi}{4}\left(\frac{40}{1000}\right)^2 \times \frac{1.5}{2}$
 $= \frac{\pi}{4} \times (0.04)^2 \times 0.75$
 $= \frac{\pi}{4} \times \frac{40}{100} \times \frac{4}{3} = \frac{3\pi}{10000} \text{ m}^3/\text{sec}$
 $R = 1000 \text{ kg/m}^3$
 $Q = 800 \text{ mm}^3/\text{sec} = 800 \times (10^{-3})^3 \text{ m}^3/\text{sec}$
 $L = 2 \text{ m}$
15. Fluid Mechanics
 $D = 0.5 \text{ mm}$
 $\Delta P = 2 \text{ MPa} = 2 \times 10^6 \text{ Pa}$
 $\mu = 7$
 $\Delta P = \frac{128 \mu QL}{\pi D^4}$
 $2 \times 10^6 = \frac{128 \times 4800 \times (10^{-1})^3}{\pi (0.5 \times 10^{-3})^4}$
 $\mu = 1.917 \text{ milli Pa} - \sec$
56. Ans: 0.75
Sol: $U_r = U_{max} \left(1 - \left(\frac{r}{R}\right)^2\right)$
 $= 1 \left(1 - \left(\frac{50}{200}\right)^2\right)$
 $= 1 \left(1 - \frac{1}{4}\right) = \frac{3}{4} = 0.75 \text{ m/s}$
50. Constantion of the equation of the eq

Т

٦

ace online India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

ACE **GATE - Text Book Solutions** 16 07. **Ans: 16 09.** Ans: (a) **Sol:** For fully developed laminar flow, Sol: Wall shear stress for flow in a pipe is given $h_f = \frac{32\mu VL}{\alpha p^2}$ (: Q = AV) by, $\tau_{o} = -\frac{\partial P}{\partial \mathbf{v}} \times \frac{R}{2} = \frac{\Delta P}{L} \times \frac{D}{4} = \frac{\Delta P D}{4L}$ $h_{f} = \frac{32\mu \left(\frac{Q}{A}\right)L}{\rho g D^{2}} = \frac{32\mu QL}{AD^{2} \times \rho g}$ 10. Ans: 72 $h_{f} = \frac{32\mu QL}{\frac{\pi}{4}D^{2} \times D^{2} \times \rho g}$ **Sol:** Given, $\rho = 800 \text{ kg/m}^3$, $\mu = 0.1 \text{ Pa.s}$ Flow is through an inclined pipe. $d = 1 \times 10^{-2} m$. $h_f \propto \frac{l}{D^4}$ $V_{av} = 0.1 \text{ m/s}, \quad \theta = 30^{\circ}$ $h_{f_1} D_1^4 = h_f D_2^4$ $Re = \frac{\rho V_{av} d}{\mu} = \frac{800 \times 0.1 \times 1 \times 10^{-2}}{0.1} = 8$ Given, $D_2 = \frac{D_1}{2}$ \Rightarrow flow is laminar. $h_{f1} \times D_1^4 = h_{f2} \times \left(\frac{D_1}{2}\right)^4$ Applying energy equation for the two $h_{f_2} = 16h_{f_1}$ sections of the inclined pipe separated by 10 Head loss, increases by 16 times if diameter ... m along the pipe, is halved. $\frac{P_1}{\gamma} + \frac{V_1^2}{2\alpha} + Z_1 = \frac{P_2}{\gamma} + \frac{V_2^2}{2\alpha} + Z_2 + h_f$ Ans: 5.2 **08.** Sol: Oil viscosity, But $V_1 = V_2$, $\mu = 10 \text{ poise} = 10 \times 0.1 = 1 \text{ N-s/m}^2$ $(Z_2 - Z_1) = 10 \sin 30^\circ = 5 \text{ m}$ $v = 50 \times 10^{-3} m$ $L = 120 \text{ cm} = 1.20 \text{ m}, \quad \Delta P = 3 \times 10^3 \text{Pa}$ and $h_f = \frac{32\mu V_{av}L}{22\mu^2}$ Width of plate = 0.2 m, O = ? $\frac{(P_1 - P_2)}{\gamma} = (Z_2 - Z_1) + \frac{32\mu V_{av}L}{0.000}$ $Q = A.V_{avg} = (width of plate \times y)V$ $\Delta \mathbf{P} = \frac{12\mu VL}{\mathbf{R}^2}$ $(P_1 - P_2) = \rho g (Z_2 - Z_1) + \frac{32 \mu V_{av} L}{d^2}$ $3 \times 10^{3} = \frac{12 \times 1 \times V \times 1.20}{(50 \times 10^{-3})^{2}}$ $=800\times10\times5+\frac{32\times0.1\times0.1\times10}{(1\times10^{-2})^{2}}$ V = 0.52 m/sec $Q = AV_{avg} = (0.2 \times 50 \times 10^{-3}) (0.52)$ $=40 \times 10^{3} + 32 \times 10^{3} = 72$ kPa = 5.2 lit/sec Regular Live Doubt clearing Sessions | Free Online Test Series | ASK an expert

 Accentic
 Regular Live Doubt clearing Sessions
 Free Online Test Series | ASK an expert

 Affordable Fee |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

11. Ans: (a, b, c, d)

- **Sol:** The following statements regarding laminar flow through pipes are correct.
 - Velocity profile is parabolic as given by $u = U \left(1 - \frac{r^2}{R^2} \right)$

• Shear stress,
$$\tau = \mu \frac{du}{dy} = -\mu \frac{du}{dr}$$

$$\tau = -\mu \times \left(-\frac{2r U}{R^2} \right) = \frac{2\mu U}{R^2} \times r$$

- = Linear profile
- Rate of shear strain profile is also linear.
- Flow is rotational.

Flow through Pipes

01. Ans: (d)

Chapter

8

Sol:

• The Darcy-Weisbash equation for head loss in written as:

$$h_{f} = \frac{f L V^{2}}{2g d}$$

where V is the average velocity, f is frictionfactor, L is the length of pipe and d is the diameter of the pipe.

- This equation is used for laminar as well as turbulent flow through the pipe.
- The friction factor depends on the type of flow (laminar or turbulent) as well as the nature of pipe surface (smooth or rough)
- For laminar flow, friction factor is a function of Reynolds number.

02. Ans: 481

Since

Sol: Given data,

$$\dot{m} = \pi \text{ kg/s}, \qquad d = 5 \times 10^{-2} \text{ m},$$

 $\mu = 0.001 \text{ Pa.s}, \qquad \rho = 1000 \text{ kg/m}^3$
 $V_{av} = \frac{\dot{m}}{\rho A} = \frac{4\dot{m}}{\rho \pi d^2} = \frac{4 \times \pi}{\rho \pi d^2} = \frac{4}{\rho d^2}$
 $\text{Re} = \frac{\rho V_{av} d}{\mu} = \rho \times \frac{4}{\rho d^2} \times \frac{d}{\mu} = \frac{4}{\mu d}$
 $= \frac{4}{0.001 \times 5 \times 10^{-2}} = 8 \times 10^4$
 $\Rightarrow \text{Flow is turbulent}$
 $f = \frac{0.316}{\text{Re}^{0.25}} = \frac{0.316}{(8 \times 10^4)^{0.25}} = 0.0188$

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

$$\Delta P = \rho g \frac{f L V_{av}^2}{2gd} = f \rho L \times \left(\frac{4}{\rho d^2}\right)^2 \times \frac{1}{2d}$$
$$\frac{\Delta P}{L} = f \times \frac{16}{\rho d^5} \times \frac{1}{2} = \frac{8f}{\rho d^5} = \frac{8 \times 0.0188}{10^3 \times (5 \times 10^{-2})^5}$$
$$= 481.28 \text{ Pa/m}$$

03. Ans: (a)

Sol: In pipes Net work, series arrangement

$$\therefore h_{f} = \frac{f \times \ell \times V^{2}}{2gd} = \frac{f \times \ell \times Q^{2}}{12.1 \times d^{5}}$$

$$\frac{h_{f_{A}}}{h_{f_{B}}} = \frac{f_{A} \times \ell_{A} \times Q_{a}^{2}}{12.1 \times d^{5}} \times \frac{12.1 \times d^{5}_{B}}{f_{B} \times \ell_{B} \times Q_{B}^{2}}$$
Given $l_{A} = l_{B}, f_{A} = f_{B}, Q_{A} = Q_{B}$

$$\frac{h_{f_{A}}}{h_{f_{B}}} = \left(\frac{d_{B}}{d_{A}}\right)^{5} = \left(\frac{d_{B}}{1.2d_{B}}\right)^{5}$$

$$= \left(\frac{1}{1.2}\right)^{5} = 0.4018 \approx 0.402$$

04. Ans: (a) Sol: Given, $d_1 = 10 \text{ cm}; d_2 = 20 \text{ cm}$ $f_1 = f_2;$ $l_1 = l_2 = l$ $l_e = l_1 + l_2 = 2l$ $\frac{l_e}{d_e^5} = \frac{l_1}{d_1^5} + \frac{l_2}{d_2^5} \implies \frac{2l}{d_e^5} = \frac{l}{10^5} + \frac{l}{20^5}$ $\therefore d_e = 11.4 \text{ cm}$

05. Ans: (c) Sol: $V_1 \longrightarrow V_2$ $d_1 \qquad d_2$ Given $d_2 = 2d_1$

18

Losses due to sudden expansion,

$$h_{L} = \frac{(V_{1} - V_{2})^{2}}{2g}$$
$$= \frac{V_{1}^{2}}{2g} \left(1 - \frac{V_{2}}{V_{1}}\right)^{2}$$

By continuity equation,

$$Q = A_1 V_1 = A_2 V_2$$

$$\therefore \quad \frac{V_2}{V_1} = \frac{A_1}{A_2} = \left(\frac{d_1}{d_2}\right)^2 = \left(\frac{1}{2}\right)^2$$

$$h_L = \frac{V_1^2}{2g} \left(1 - \frac{1}{4}\right)^2$$

$$h_L = \frac{9}{16} \times \frac{V_1^2}{2g}$$

$$\frac{h_{L}}{\frac{V_{1}^{2}}{2g}} = \frac{9}{16}$$

Sol: Pipes are in parallel

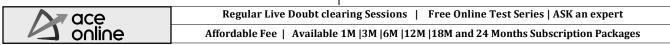
$$Q_{e} = Q_{A} + Q_{B} - \dots (i)$$

$$h_{Le} = h_{L_{A}} = h_{L_{B}}$$

$$L_{e} = 175 \text{ m}$$

$$f_{e} = 0.015$$

$$\frac{f_{e}L_{e}Q_{e}^{2}}{12.1D_{e}^{5}} = \frac{f_{A}.L_{A}Q_{A}^{2}}{12.1D_{A}^{5}} = \frac{f_{B}L_{B}Q_{B}^{2}}{12.1D_{B}^{5}}$$


$$\frac{0.020 \times 150 \times Q_{A}^{2}}{12.1 \times (0.1)^{5}} = \frac{0.015 \times 200 \times Q_{B}^{2}}{12.1 \times (0.08)^{5}}$$

$$Q_{A} = 1.747 \text{ } Q_{B} - \dots (ii)$$
From (i) $Q_{e} = 1.747 \text{ } Q_{B} + Q_{B}$

$$Q_{e} = 2.747 \text{ } Q_{B} - \dots (iii)$$

$$\frac{0.015 \times 175(2.747Q_{B})^{2}}{12.1 \times D_{e}^{5}} = \frac{0.015 \times 200 \times Q_{B}^{2}}{12.1 \times (0.08)^{5}}$$

$$D_e = 116.6 \text{ mm} \simeq 117 \text{ mm}$$

ACE Engineering Publications	19	Fluid Mechanics
07. Ans: 0.141 Sol:		Thus, discharge, $Q = \frac{\pi}{4} \times 0.3^2 \times 2$
		$= 0.1414 \text{ m}^{3}/\text{s}$ 08. Ans: (c) Sol: Given data : Fanning friction factor, $f = m \text{ Re}^{-0.2}$ For turbulent flow through a smooth pipe. $\Delta P = \frac{\rho f_{\text{Darcy}} L V^{2}}{2d} = \frac{\rho(4f)L V^{2}}{2d}$ $= \frac{2\rho m \text{ Re}^{-0.2} L V^{2}}{d}$ or $\Delta P \propto V^{-0.2} V^{2} \propto V^{1.8}$ (as all other parameters remain constant) We may thus write : $\frac{\Delta P_{2}}{\Delta P_{1}} = \left(\frac{V_{2}}{V_{1}}\right)^{1.8} = \left(\frac{2}{1}\right)^{1.8} = 3.4822$ or $\Delta P_{2} = 3.4822 \times 10 = 34.82 \text{ kPa}$ 09. Ans: (b) Sol: Given data : Rectangular duct, L = 10 m,
$=7\frac{V^2}{2g} + \frac{fLV^2}{2gd} = \frac{V^2}{2g}\left(7 + \frac{fL}{d}\right)$		X-section of duct = 15 cm \times 20 cm Material of duct-Commercial steel, $\epsilon = 0.045$ mm
or $20 = \frac{V^2}{2g} \left[7 + \frac{0.03 \times 930}{0.3} \right] = 100 \frac{V^2}{2g}$		Fluid is air ($\rho = 1.145 \text{ kg/m}^3$, $\nu = 1.655 \times 10^{-5} \text{ m}^2/\text{s}$)
or $V^2 = \frac{20 \times 2g}{100} = \frac{20 \times 2 \times 10}{100}$		$V_{av} = 7 \text{ m/s}$ $Re = \frac{V_{av} \times D_{h}}{v}$
\Rightarrow V = 2 m/s		v
		ATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams
Enjoy a smooth onlin	e learni	ing experience in various languages at your convenience

ACE

where, $D_h =$ Hydraulic diameter 4 x Cross sectional area

$$= \frac{4 \times 0.15 \times 0.2}{\text{Perimeter}}$$
$$= \frac{4 \times 0.15 \times 0.2}{2(0.15 + 0.2)} = 0.1714 \text{ m}$$
$$\text{Re} = \frac{7 \times 0.1714}{1.655 \times 10^{-5}} = 72495.5$$

 \Rightarrow Flow is turbulent.

Using Haaland equation to find friction factor,

$$\frac{1}{\sqrt{f}} \simeq -1.8 \log \left[\frac{6.9}{\text{Re}} + \left(\frac{\epsilon/D_h}{3.7} \right)^{1.11} \right]$$

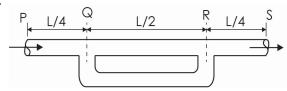
$$\frac{1}{\sqrt{f}} = -1.8 \log \left[\frac{6.9}{72495.5} + \left(\frac{0.045 \times 10^{-3}}{0.1714 \times 3.7} \right)^{1.11} \right]$$

$$= -1.8 \log[9.518 \times 10^{-5} + 2.48 \times 10^{-5}]$$

$$= -1.8 \log(11.998 \times 10^{-5})$$

$$\frac{1}{\sqrt{f}} = 7.058$$

$$f = 0.02$$


The pressure drop in the duct is,

$$\Delta P = \frac{\rho f L V^2}{2D_h}$$
$$= \frac{1.145 \times 0.02 \times 10 \times 7^2}{2 \times 0.1714} = 32.73 \text{ Pa}$$

The required pumping power will be

$$P_{pumping} = Q \Delta P = A V_{av} \times \Delta P$$
$$= (0.15 \times 0.2) \times 7 \times (32.73)$$
$$= 6.87 W \simeq 7 W$$

GATE – Text Book Solutions

Case I: Without additional pipe,

Let Q be the discharge through the pipe. Then

$$\frac{P_{P}}{\gamma} + \frac{V_{P}^{2}}{2g} + Z_{P} = \frac{P_{S}}{\gamma} + \frac{V_{S}^{2}}{2g} + Z_{S} + \frac{f L Q^{2}}{12.1 d^{5}}$$
But $V_{P} = V_{S}$
and $Z_{P} = Z_{S}$
P_P and P_S are the pressures at sections F

 P_P and P_S are the pressures at sections P and S, respectively.

$$\frac{P_{\rm p}}{\gamma} - \frac{P_{\rm s}}{\gamma} = \frac{f \, L \, Q^2}{12.1 \, d^5} \quad \text{------}(1)$$

Case II: When a pipe (L/2) is connected in parallel.

In this case, let Q' be the total discharge.

$$Q_{Q-R} = \frac{Q'}{2}$$
 and $Q_{R-S} = Q'$

Then,

$$\frac{P'_{p}}{\gamma} + \frac{{V'_{p}}^{2}}{2g} + Z'_{p} = \frac{P'_{s}}{\gamma} + \frac{{V'_{s}}^{2}}{2g} + Z'_{s} + \frac{f(L/4)Q'^{2}}{12.1 d^{5}} + \frac{f(L/2)(Q'/2)^{2}}{12.1 d^{5}} + \frac{f(L/4)Q'^{2}}{12.1 d^{5}}$$

 $P_{P'}$ and $P_{S'}$ are the pressures at sections P and S in the second case.

But
$$V_P' = V_S'$$
; $Z_P' = Z_S'$

Regular Live Doubt clearing Sessions | Free Online Test Series | ASK an expert Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

20

10.

So,
$$\frac{P'_{P}}{\gamma} - \frac{P'_{S}}{\gamma} = \frac{f L Q'^{2}}{12.1 d^{5}} \left[\frac{1}{4} + \frac{1}{8} + \frac{1}{4} \right]$$
$$= \frac{5}{8} \times \frac{f L Q'^{2}}{12.1 d^{5}} - \dots - (2)$$

Given that end conditions remain same.

i.e., $\frac{P_{p}}{\gamma} - \frac{P_{s}}{\gamma} = \frac{P'_{p}}{\gamma} - \frac{P'_{s}}{\gamma}$

Hence, equation (2) becomes,

5

$$\frac{f L Q^2}{12.1d^5} = \frac{5}{8} \frac{f L Q'^2}{12.1d^5} \text{ from eq.(1)}$$

or
$$\left(\frac{Q'}{Q}\right)^2$$

or $\frac{Q'}{Q} = 1.265$

Hence, percentage increase in discharge is

Since

$$= \frac{Q' - Q}{Q} \times 100$$

= (1.265 - 1) × 100
= 26.5 %

11. Ans: 20%

Sol: Since, discharge decrease is associated with increase in friction.

$$\frac{\mathrm{df}}{\mathrm{f}} = -2 \times \frac{\mathrm{dQ}}{\mathrm{Q}} = 2 \left[-\frac{\mathrm{dQ}}{\mathrm{Q}} \right]$$
$$= 2 \times 10 = 20\%$$

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

Fluid Mechanics

12. Ans: (c, d)
Sol: Given data:

$$H_G = 80 \text{ m}, D = 0.5 \text{ m}, L = 4 \text{ km}$$

 $f = 0.02, \eta = 0.75$
 $\eta = 0.75 = \frac{H_G - h_f}{H_G} \Rightarrow h_f = H_G (1 - \eta)$
 $h_f = 80 \times (1 - 0.75) = 20 \text{ m}$
But, $h_f = \frac{f L Q^2}{12.1 \times D^5}$
 $20 = \frac{0.02 \times 4000 \times Q^2}{12.1 \times (0.5)^5}$
 $\Rightarrow Q = 0.3075 \text{ m}^3/\text{s}$
 $\therefore P_{act} = \rho \text{ g Q H}_{nct}$
 $= 10^3 \times 9.81 \times 0.3075 \times (80 - 20)$
 $= 180.995 \text{ kW}$
Now, $V_j = V_N = \sqrt{2gH}_{net}$
 $= \sqrt{2 \times 9.81 \times 60} = 34.31 \text{ m/s}$
From discharge, we have
 $Q = A_N V_N$
 $0.3075 = \frac{\pi}{4} \times d_N^2 \times 34.31$
 $\Rightarrow d_N = 0.1068 \text{ m} = 10.68 \text{ cm}$

9 Elementary Turbulent Flow

01. Ans: (b)

Sol: The velocity distribution in laminar sublayer of the turbulent boundary layer for flow through a pipe is linear and is given by

$$\frac{u}{V^*} = \frac{yV^*}{v}$$

where V* is the shear velocity.

02. Ans: (d)

Sol: $\Delta P = \rho g h_f$

$$= \frac{\rho f L V^2}{2D} = \frac{\rho g f L Q^2}{12.1D^5}$$

For Q = constant
$$\Delta P \propto \frac{1}{D^5}$$

or
$$\frac{\Delta P_2}{\Delta P_1} = \frac{D_1^5}{D_2^5} = \left(\frac{D_1}{2D_1}\right)^5 = \frac{1}{32}$$

03. Ans: 2.4 Sol: Given: V = 2 m/sf = 0.02 $V_{max} = ?$ $V_{max} = V(1 + 1.43 \sqrt{f})$ $= 2(1 + 1.43 \sqrt{0.02})$ $= 2 \times 1.2 = 2.4 \text{ m/s}$

04. Ans: (c)

Sol: Given data:

D = 30 cm = 0.3 mRe = 10⁶ f = 0.025

Thickness of laminar sub layer, $\delta' = ?$ $\delta' = \frac{11.6\nu}{V^*}$ where $V^* =$ shear velocity = $V_{\sqrt{\frac{f}{\rho}}}$ v = Kinematic viscosity $Re = \frac{V.D}{V}$ $\therefore v = \frac{V.D}{Re}$ $\delta' = \frac{11.6 \times \frac{\text{VD}}{\text{Re}}}{\text{V}\sqrt{\frac{f}{s}}}$ $\delta' = \frac{11.6 \times D}{2}$ 11.6×0.3 $10^6 \times \sqrt{\frac{0.025}{0.025}}$ $\times 10^{-5}$ m = 0.0622 mm 05. Ans: 25 Sol: Given: L = 100 m;D = 0.1 m $h_{I} = 10 \text{ m};$ $\tau = ?$ For any type of flow, the shear stress at wall/surface $\tau = \frac{-dP}{dx} \times \frac{R}{2}$ $\tau = \frac{\rho g h_L}{L} \times \frac{R}{2}$ $\tau = \frac{\rho g h_{\rm L}}{I} \times \frac{D}{4}$ $=\frac{1000 \times 9.81 \times 10}{100} \times \frac{0.1}{4}$ $= 24.525 \text{ N/m}^2 = 25 \text{ Pa}$

Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert
Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages

22

06. Ans: 0.905

Sol: k = 0.15 mm $\tau = 4.9 \text{ N/m}^2$

v = 1 centi-stoke

 $V^* = \sqrt{\frac{\tau_o}{\rho}} = \sqrt{\frac{4.9}{1000}} = 0.07 \text{ m/sec}$

v = 1 centi-stoke

$$= \frac{1}{100} \text{ stoke} = \frac{10^{-4}}{100} = 10^{-6} \text{ m}^2 / \text{sec}$$
$$\frac{\text{k}}{\delta'} = \frac{0.15 \times 10^{-3}}{\left(\frac{11.6 \times \text{v}}{\text{V}^*}\right)}$$

10-1

$$\frac{\frac{0.15 \times 10^{-5}}{11.6 \times 10^{-6}}}{0.07} = 0.905$$

07. Ans: (a)

=

Sol: The velocity profile in the laminar sublayer is given as

 $\frac{u}{V^*} = \frac{yV^*}{v}$ or $v = \frac{y(V^*)^2}{v}$

where, V* is the shear velocity.

Thus,
$$v = \frac{0.5 \times 10^{-3} \times (0.05)^2}{1.25}$$

= 1×10⁻⁶ m²/s
= 1×10⁻² cm²/s

08. Ans: 47.74 N/m²

Sol: Given data :

d = 100 mm = 0.1 m

$$u_{r=0} = u_{max} = 2 m/s$$

Velocity at r = 30 mm = 1.5 m/s

Fluid Mechanics

Flow is turbulent.

The velocity profile in turbulent flow is

 $\frac{u_{\max} - u}{V^*} = 5.75 \log\left(\frac{R}{y}\right)$

where u is the velocity at y and V^* is the shear velocity.

pipe,
$$y = R - r$$

$$=(50-30)$$
 mm $=20$ mm

Thus,

For

23

$$\frac{2-1.5}{V^*} = 5.75 \log\left(\frac{50}{20}\right) = 2.288$$

2.288

Using the relation,

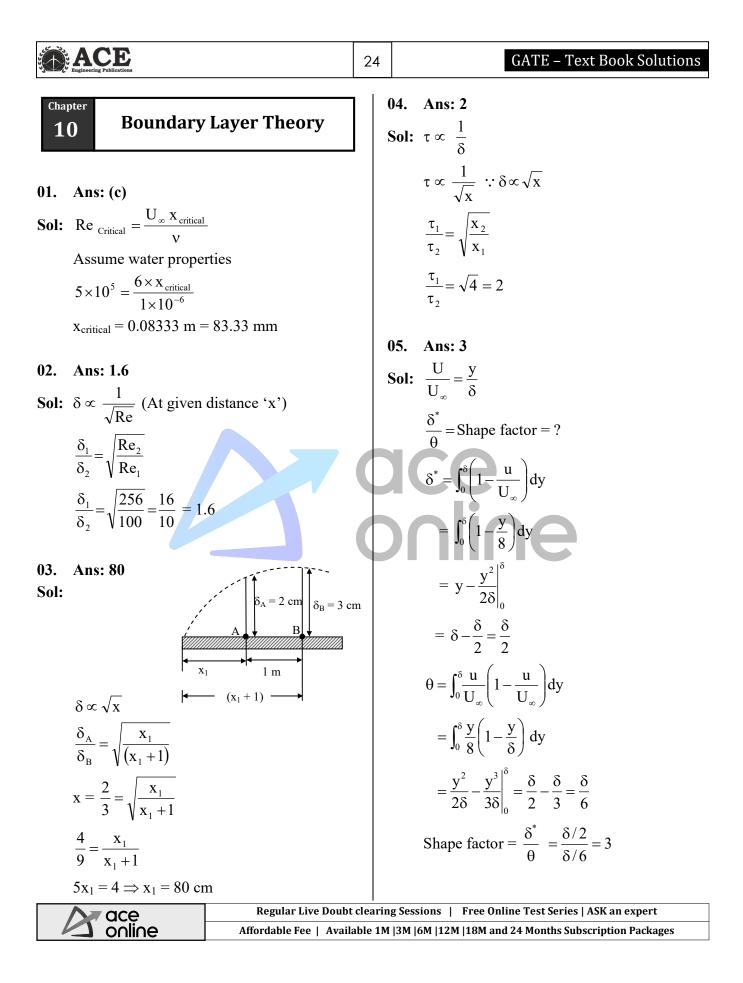
$$V^* = \sqrt{\frac{\tau_w}{\rho}} \text{ or } \tau_w = \rho (V^*)^2$$

$$\tau_w = 10^3 \times (0.2185)^2 = 47.74 \text{ N/m}^2$$

09. Ans: (a, b)

Since

Sol: The following statements are true for turbulent flow through pipes:


• Velocity profile is logarithmic (in the overlap region) expressed as

$$\frac{u}{u^*} = 2.5 \, \ell n \left(\frac{yu^*}{v} \right) + 5.0$$

• Surface roughness plays an important role in contributing towards determining head loss.

A ace online

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

06. Ans: 22.6 Sol: Drag force,

 $F_{\rm D} = \frac{1}{2} C_{\rm D}.\rho.A_{\rm Proj}.U_{\infty}^{2}$ B = 1.5 m, $\rho = 1.2 \text{ kg/m}^{3}$ L = 3.0 m, $\nu = 0.15 \text{ stokes}$ $U_{\infty} = 2 \text{ m/sec}$ Re = $\frac{U_{\infty}L}{\nu} = \frac{2 \times 3}{0.15 \times 10^{-4}} = 4 \times 10^{5}$ $C_{\rm D} = \frac{1.328}{\sqrt{\text{Re}}} = \frac{1.328}{\sqrt{4 \times 10^{5}}} = 2.09 \times 10^{-3}$

Drag force,

$$F_{\rm D} = \frac{1}{2} \times 2.09 \times 10^{-3} \times 1.2 \times (1.5 \times 3) \times 2^{2}$$

= 22.57 milli-Newton

07. Ans: 1.62

Sol: Given data,

 $U_{\infty} = 30 \text{ m/s},$

 $\rho = 1.2 \text{ kg/m}^3$

Velocity profile at a distance x from leading edge,

 $\frac{u}{U_{\infty}} = \frac{y}{\delta}$

 $\delta = 1.5 \text{ mm}$

Mass flow rate of air entering section ab, $(\dot{m}_{in})_{ab} = \rho U_{\infty} (\delta \times 1) = \rho U_{\infty} \delta \text{ kg/s}$

Mass flow rate of air leaving section cd,

$$(\dot{m}_{out})_{cd} = \rho \int_{0}^{\delta} u(dy \times 1) = \rho \int_{0}^{\delta} U_{\infty} \left(\frac{y}{\delta}\right) dy$$
$$= \frac{\rho U_{\infty}}{\delta} \left[\frac{y^{2}}{2}\right]_{0}^{\delta} = \frac{\rho U_{\infty} \delta}{2}$$

From the law of conservation of mass :

 $\left(\dot{m}_{in}\right)_{ab} = \left(\dot{m}_{out}\right)_{cd} + \left(\dot{m}_{out}\right)_{bc}$

Hence,
$$(\dot{m}_{out})_{bc} = (\dot{m}_{in})_{ab} - (\dot{m}_{out})_{cd}$$

$$= \rho U_{\infty} \delta - \frac{\rho U_{\infty} \delta}{2}$$

$$= \frac{\rho U_{\infty} \delta}{2}$$

$$= \frac{1.2 \times 30 \times 1.5 \times 10^{-3}}{2}$$

$$= 27 \times 10^{-3} \text{ kg/s}$$

$$= 27 \times 10^{-3} \times 60 \text{ kg/min}$$

08. Ans: (b)

25

Sol: For 2-D, steady, fully developed laminar boundary layer over a flat plate, there is velocity gradient in y-direction, $\frac{\partial u}{\partial y}$ only.

= 1.62 kg/min

The correct option is (b).

09. Ans: 28.5 Sol: Given data, Flow is over a flat plate. L = 1 m, $U_{\infty} = 6 \text{ m/s}$ $v = 0.15 \text{ stoke} = 0.15 \times 10^{-4} \text{ m}^2/\text{s}$ $\rho = 1.226 \text{ kg/m}^3$ $\delta(x) = \frac{3.46x}{\sqrt{\text{Re}_x}}$

Velocity profile is linear. Using von-Karman momentum integral equation for flat plate.

$$\frac{\mathrm{d}\theta}{\mathrm{d}x} = \frac{\tau_{\mathrm{w}}}{\rho U_{\infty}^2} \quad \text{------(1)}$$

we can find out τ_w .

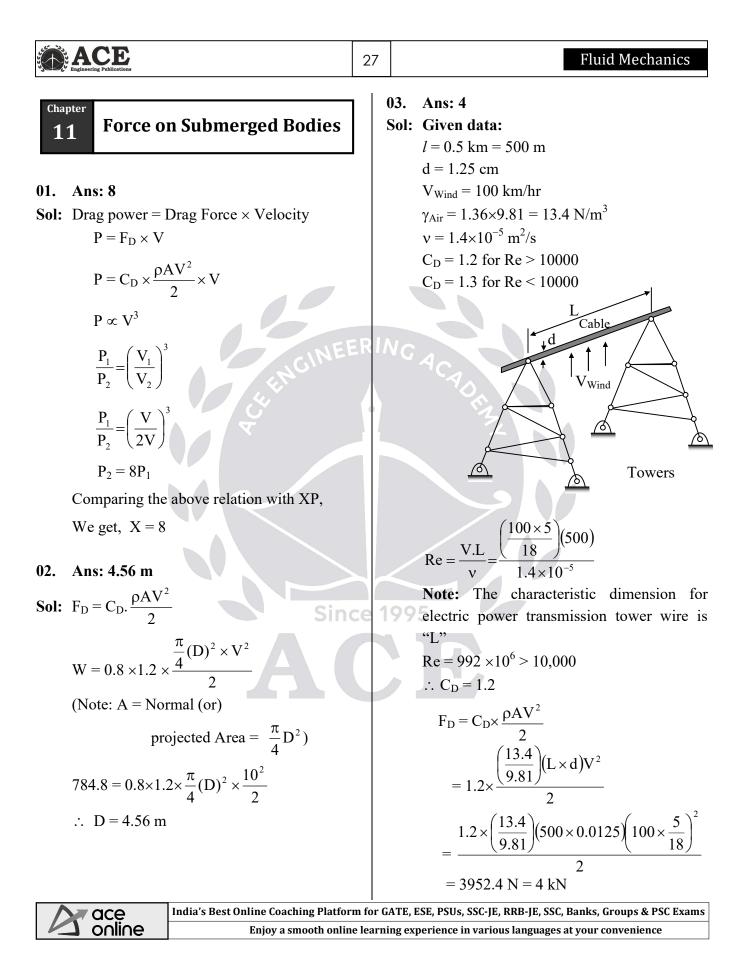
 OCE
 India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams

 ONLINE
 Enjoy a smooth online learning experience in various languages at your convenience

Since

Fluid Mechanics

26


From linear velocity profile,
$$\frac{\mathbf{u}}{\mathbf{U}_{\infty}} = \frac{\mathbf{y}}{\delta}$$
, we
evaluate first θ , momentum thickness as
 $\theta = \int_{0}^{\delta} \frac{\mathbf{u}}{\mathbf{U}_{\infty}} \left(1 - \frac{\mathbf{u}}{\mathbf{U}_{\infty}}\right) d\mathbf{y}$
 $= \int_{0}^{\delta} \frac{\mathbf{y}}{\delta} \left(1 - \frac{\mathbf{y}}{\delta}\right) d\mathbf{y} = \int_{0}^{\delta} \left(\frac{\mathbf{y}}{\delta} - \frac{\mathbf{y}^{2}}{\delta^{2}}\right) d\mathbf{y}$
 $= \left(\frac{\mathbf{y}^{2}}{2\delta} - \frac{\mathbf{y}^{3}}{3\delta^{2}}\right)_{0}^{\delta} = \frac{\delta}{2} - \frac{\delta}{3} = \frac{\delta}{6}$
 $\Rightarrow \theta = \frac{\delta}{6} = \frac{1}{6} \times \frac{3.46 \, \mathbf{x}}{\sqrt{\text{Re}_{x}}}$
 $= \frac{3.46}{6} \frac{\mathbf{x}^{1/2}}{\left(\frac{\mathbf{U}_{\infty}}{\mathbf{v}}\right)^{1/2}}$
Differentiating θ w.r.t x, we get :
 $\frac{d\theta}{dx} = \frac{3.46}{6 \times 2} \frac{\mathbf{x}^{-1/2}}{\left(\frac{\mathbf{U}_{\infty}}{\mathbf{v}}\right)^{1/2}} = 0.2883 \frac{1}{\sqrt{\frac{\mathbf{U}_{\infty} \mathbf{x}}{\mathbf{v}}}}$
 $\frac{d\theta}{dx}\Big|_{\mathbf{x}=0.5 \, \text{m}} = 0.2883 \times \frac{1}{\sqrt{\frac{6 \times 0.5}{0.15 \times 10^{-4}}}} = \frac{0.2883}{447.2}$
 $-----(2)$
From equation (1)
 $\tau_{w}\Big|_{\mathbf{x}=0.5 \, \text{m}} = \frac{d\theta}{dx}\Big|_{\mathbf{x}=0.5 \, \text{m}} \times \rho \, \mathbf{U}_{\infty}^{2}$
 $= \frac{0.2883}{447.2} \times 1.226 \times 6^{2}$
 $= 0.02845 \, \text{N/m}^{2}$

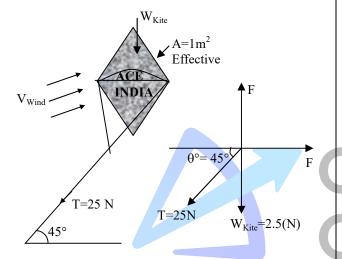
ace online

10. Ans: (a, d) Sol: Given data: $\rho = 1.25 \text{ kg/m}^3$, $\mu = 1.8 \times 10^{-5}$ Pa.s. $u_{\infty} = 3 \text{ m/s}$ Velocity profile: $\frac{u}{u} = \sin\left(\frac{\pi}{2} \times \frac{y}{\delta}\right)$ K = 4.79 $\frac{\delta}{x} = \frac{K}{\sqrt{Re_x}} = \frac{4.79}{\sqrt{Re_x}} \quad \dots \dots (1)$ At x = 0.6 m, $\operatorname{Re}_{x} = \frac{\rho u_{\infty} x}{\mu}$ $\operatorname{Re}_{x} = \frac{1.25 \times 3 \times 0.6}{1.8 \times 10^{-5}} = 1.25 \times 10^{5}$ From eq. (1), $\delta \Big|_{x=0.6m} = \frac{4.79 \times 0.6}{\sqrt{1.25 \times 10^5}} = 8.129 \text{ mm}$ $\tau_{o} = \mu \frac{du}{dy}$; From given velocity profile, $\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}\mathbf{y}} = \mathbf{u}_{\infty} \times \frac{\pi}{2\delta} \times \cos\left(\frac{\pi}{2} \times \frac{\mathbf{y}}{\delta}\right)$ $\frac{\mathrm{d}u}{\mathrm{d}y}\Big|_{y=0} = \frac{u_{\infty}\pi}{2\delta}$ Thus, $\tau_{o} = \mu \times \frac{u_{\infty}\pi}{2\delta}$ $= 1.8 \times 10^{-5} \times \frac{3\pi}{2 \times 8.129 \times 10^{-3}}$ = 0.01043 Pa = 10.43 milli Pa.

 Regular Live Doubt clearing Sessions
 |
 Free Online Test Series | ASK an expert

 Affordable Fee
 |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

ACE


04. Ans: 0.144 & 0.126 Sol: Given data: W_{Kite} = 2.5 N

 $A = 1 m^{2}$ $\theta = 45^{\circ}$

T = 25 N

$$V_{Wind} = 54 \text{ km/hr}$$

$$= 54 \times \frac{5}{18} = 15 \text{ m/s}$$

Resolving forces horizontally

$$F_{D} = T\cos 45^{\circ}$$

$$C_{D} \times \frac{\rho A V^{2}}{2} = 25 \times \cos 45^{\circ}$$

$$\frac{C_{D} \times \left(\frac{12.2}{9.81}\right) (1) (15)^{2}}{2} = 25 \times \frac{1}{\sqrt{2}}$$

$$\therefore \quad C_{D} = 0.126$$
Resolving forces vertically
$$F_{L} = W_{Kite} + T\sin 45^{\circ}$$

$$\frac{C_{L} \rho A V^{2}}{2} = 2.5 + 25\sin 45^{\circ}$$

$$\frac{C_{L}\left(\frac{12.2}{9.81}\right)(1)(15)^{2}}{2} = 2.5 + \frac{25}{\sqrt{2}}$$
$$\therefore C_{L} = 0.144$$

05. Ans: (a)

Sol: Given data:

 $C_{D_2} = 0.75 C_{D_1}$ (25% reduced)

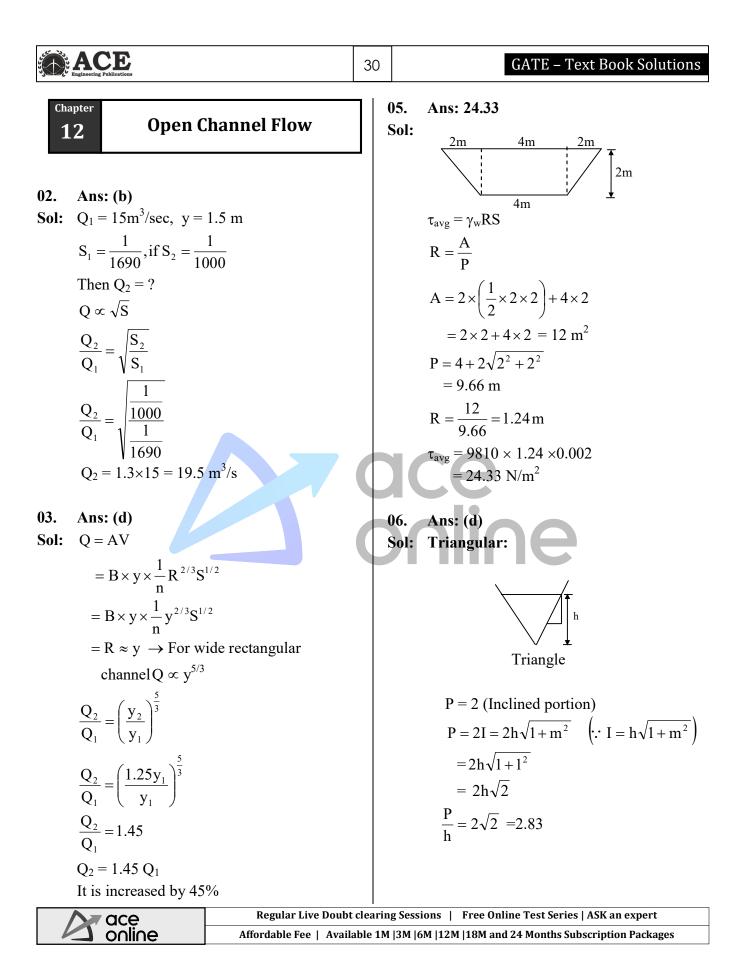
Drag power = Drag force × Velocity

$$P = F_D \times V = \frac{C_D \rho A V^2}{2} \times V$$
$$P = C_D \times \frac{\rho A V^3}{2}$$

Keeping ρ , A and power constant $C_D V^3 = constant = C$

$$\left(\frac{C_{D_1}}{C_{D_2}} = \left(\frac{V_2}{V_1}\right)^3 \\ \left(\frac{C_{D_1}}{0.75C_{D_1}}\right)^{\frac{1}{3}} = \frac{V_2}{V_1}$$

 $\therefore V_2 = 1.10064V_1$ % Increase in speed = 10.064%


A ace online

2

28

	ACE Engineering Publications	29		Fluid Mechanics
07.	Ans: (c) When a solid sphere falls under gravity a its terminal velocity in a fluid, the following relation is valid : Weight of sphere = Buoyant force + Drag force Ans: 0.62 Given data,	ıt g	08. Sol:	Ans: (b) Since the two models M_1 and M_2 have equal volumes and are made of the same material, their weights will be equal and the buoyancy forces acting on them will also be equal. However, the drag forces acting on them will be different. From their shapes, we can say that M_2 reaches the bottom earlier than M_1 .
	Diameter of dust particle, d = 0.1 mm Density of dust particle, $\rho = 2.1 \text{ g/cm}^3 = 2100 \text{ kg/m}^3$ $\mu_{air} = 1.849 \times 10^{-5} \text{ Pa.s},$ At suspended position of the dust particle, $W_{particle} = F_D + F_B$ where F_D is the drag force on the particle and F_B is the buoyancy force. From Stokes law: $F_D = 3\pi\mu \text{ V d}$ Thus, $\frac{4}{3} \times \pi r^3 \times \rho \times g = 3\pi\mu \text{ Vd} + \frac{4}{3}\pi r^3 \rho_{air}g$ or, $\frac{4}{3}\pi r^3 g(\rho - \rho_{air}) = 3\pi\mu_{air} \text{ V}(2r)$ or $\text{V} = \frac{2}{9}r^2g\left(\frac{\rho - \rho_{air}}{\mu_{air}}\right)$ $= \frac{2}{9} \times \left(0.05 \times 10^{-3}\right)^2 \times 9.81 \times \frac{(2100 - 1.2)}{1.849 \times 10^{-5}}$ $= 0.619 \text{ m/s} \approx 0.62 \text{ m/s}$	e e	09. Sol: •	 Ans: (a) Drag of object A₁ will be less than that on A₂. There are chances of flow separation on A₂ due to which drag will increase as compared to that on A₁. Drag of object B₁ will be more than that of object B₂. Because of rough surface of B₂, the boundary layer becomes turbulent, the separation of boundary layer will be delayed that results in reduction in drag. Both the objects are streamlined but C₂ is rough as well. There will be no pressure drag on both the objects. However, the skin friction drag on C₂ will be more than that on C₁ because of flow becoming turbulent due to roughness. Hence, drag of object C₂ will be more than that of object C₁. Thus, the correct answer is option (a).

A ace online

ace online India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

Τ

10. Ans: (c)

Sol: $F_r = 5.2$ (uniform flow) The ratio of critical depth to normal

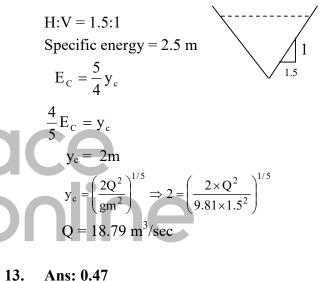
depth
$$\frac{y_c}{y_n} = ?$$

Note: The given two depths $y_c \& y_n$ are not alternate depths as they will have different specific energies.

$$F_{\rm r} = \frac{V}{\sqrt{gy}} \Longrightarrow F_{\rm r}^2 = \frac{V^2}{gy} = \frac{q^2}{gy^3} \left(\because v = \frac{q}{y} \right)$$
$$\frac{(F_{\rm m})^2}{(F_{\rm rc})^2} = \frac{q^2}{gy_{\rm n}^3} \times \frac{gy_{\rm c}^3}{q^2} = \frac{y_{\rm c}^3}{y_{\rm n}^3}$$
$$\frac{y_{\rm c}^3}{y_{\rm n}^3} = \frac{(F_{\rm m})^2}{(F_{\rm rc})^2} \Longrightarrow \frac{y_{\rm c}}{y_{\rm n}} = \frac{(F_{\rm m})^{2/3}}{(F_{\rm rc})^{2/3}}$$
$$\frac{y_{\rm c}}{y_{\rm n}} = (5.2)^{2/3} = 3$$

11. Ans: (c)

Sol: Rectangular channel Alternate depths $y_1 = 0.2$, $y_2 = 4m$

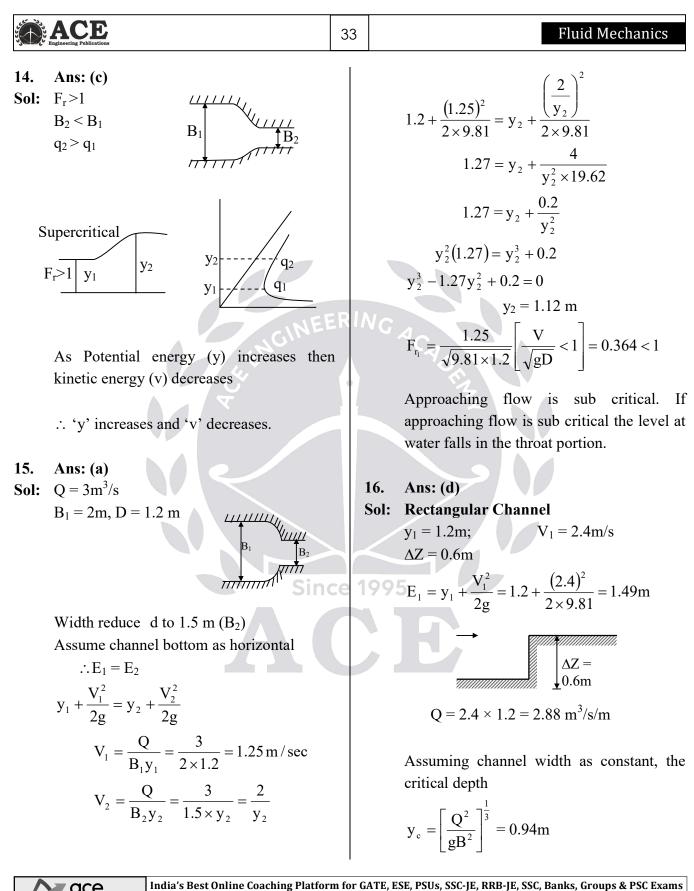

$$E_1 = E_2$$
 (: alternate depths), $F_r = \frac{V}{\sqrt{gD}}$

$$y_{1} + \frac{V_{1}^{2}}{2g} = y_{2} + \frac{V_{2}^{2}}{2g}$$
$$y_{1} \left(1 + \frac{Fr_{1}^{2}}{2}\right) = y_{2} \left[1 + \frac{Fr_{2}^{2}}{2}\right]$$
$$\frac{y_{1}}{y_{2}} = \left[\frac{1 + \frac{Fr_{2}^{2}}{2}}{1 + \frac{Fr_{1}^{2}}{2}}\right]$$

$$\frac{y_1}{y_2} = \left[\frac{1 + \frac{4^2}{2}}{1 + \frac{0.2^2}{2}}\right]$$
$$\frac{y_1}{y_2} = \left(\frac{2 + 16}{2 + 0.04}\right) = 8.8$$

12. Ans: (d)

Sol: Triangular channel


Sol: $E_1 = E_2 + (\Delta z)$ $V_1 = \frac{Q}{A_1} = \frac{12}{2.4 \times 2} = 2.5 \text{ m/sec}$ $A_2 = (b_2 + my_2)y_2 = (1.8 + 1 \times 1.6) \ 1.6$ $= 5.44 \text{ m}^2$ $V_2 = \frac{Q}{A_2} = \frac{12}{5.44} = 2.2 \text{ m/sec}$ $E_1 = y_1 + \frac{V_1^2}{2g} = 2 + \frac{(2.5)^2}{2 \times 9.81} = 2.318 \text{ m}$ $E_2 = y_2 + \frac{V_2^2}{2g} = 1.6 + \frac{2.2^2}{2 \times 9.81} = 1.846 \text{ m}$ $2.318 = 1.846 + \Delta Z \implies \Delta Z = 0.47 \text{ m}$

 OCE
 Regular Live Doubt clearing Sessions
 Free Online Test Series
 ASK an expert

 ONLINE
 Affordable Fee
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

32

GATE – Text Book Solutions

2 ace online

Enjoy a smooth online learning experience in various languages at your convenience

ACE

GATE – Text Book Solutions

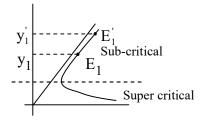
Critical specific energy for rectangular channel $E_C = \frac{3}{2}y_c$ $E_c = \frac{3}{2}(0.94) = 1.41$ We know for critical flow in the hump

we know for critical flow in the nump portion $E_1 = E_2 + (\Delta Z) = E_C + (\Delta Z)_C$

 \Rightarrow 1.49 = 1.41 + (ΔZ)_C

 $\therefore (\Delta Z)_{\rm C} = 0.08 {\rm m}$

If the hump provided is more than the critical hump height the u/s flow gets affected.


(or)
Fr₁ =
$$\frac{v_1}{\sqrt{gy_1}} = \frac{2.4}{\sqrt{9.81 \times 1.2}} = 0.69 < 1$$

 \Rightarrow Hence sub-critical.

If the approaching flow is sub-critical the level of water will fall in the hump portion. Option (b) is correct if the hump height provided is less than critical hump height.

As the hump height provided is more than critical, the u/s flow gets affected with the increase of the specific energy from E_1 to E_1^1 .

In the sub-critical region as the specific energy increases, the level of water rises from y_1 to y_1^1 in the form of a surge.

$$E_1^1 = y_1^1 + \frac{y_1^{1^1}}{2g}$$

$$E_1^1 = y_1^1 + \frac{q^2}{2gy_1^{1^2}} ... (1)$$

Also $E_1^1 = E_c + (\Delta Z)$ provided.
= 1.41 + 0.6
= 2.01m
∴ 2.01 = $y_1^1 + \frac{2.88^2}{2 \times 9.81 \times y_1^2}$
Solve by trial & error
for $y_1^1 > 1.2m$

According to continuity equation

$$Q_{1} = Q_{2}$$

$$A_{1}V_{1} = A_{2}V_{2}$$

$$A_{1} = A_{2}$$

$$B_{2}y_{1} = B_{2}y_{2}$$

$$4 \times 0.9 = 3 \times y_{2}$$

A ace online

 Regular Live Doubt clearing Sessions
 |
 Free Online Test Series | ASK an expert

 Affordable Fee
 |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

	ACE
V CA	Engineering Publications

$$y_{2} = 1.2 \text{ m}$$

$$y_{1} = y_{2} + AZ$$

$$0.9 = 1.2 + AZ$$

$$AZ = -0.3 \text{ m}$$
Negative indicates that the hump assumed is wrong infact it is a drop.

18. Ans: (a)

Sol: Given:

Top width = 2y
$$Area = \frac{1}{2} \times b \times h$$

$$= \frac{1}{2} \times 2y \times y$$

$$A = y^{2}$$
Wetted perimeter
$$1^{2} = \sqrt{y^{2}} + y^{3} = y \sqrt{2}$$
(for triangle)
$$y_{e} = \left(\frac{2 \times 0.2}{9.81}\right)^{1/5} = 0.382 \text{ m}$$

$$y_{n} > y_{e} (0.54 > 0.48)$$

$$\therefore \text{ mild slope}$$
If (actual) depth at flow = 0.4m = y
$$y_{n} > y > y_{e} (0.54 > 0.48)$$

$$\therefore \text{ mild slope}$$
If (actual) depth at flow = 0.4m = y
$$y_{n} > y > y_{e} (0.54 > 0.48)$$

$$\therefore \text{ mild slope}$$
If (actual) depth at flow = 0.4m = y
$$y_{n} > y > y_{e} (0.54 > 0.48)$$

$$\therefore \text{ mild slope}$$
If (actual) depth at flow = 0.4m = y
$$y_{n} > y > y_{e} (0.54 > 0.48)$$

$$\therefore \text{ mild slope}$$
If (actual) depth at flow = 0.4m = y
$$y_{n} > y > y_{e} (0.54 > 0.48)$$

$$\therefore \text{ mild slope}$$
If (actual) depth at flow = 0.4m = y
$$y_{n} > y > y_{e} (0.54 > 0.48)$$

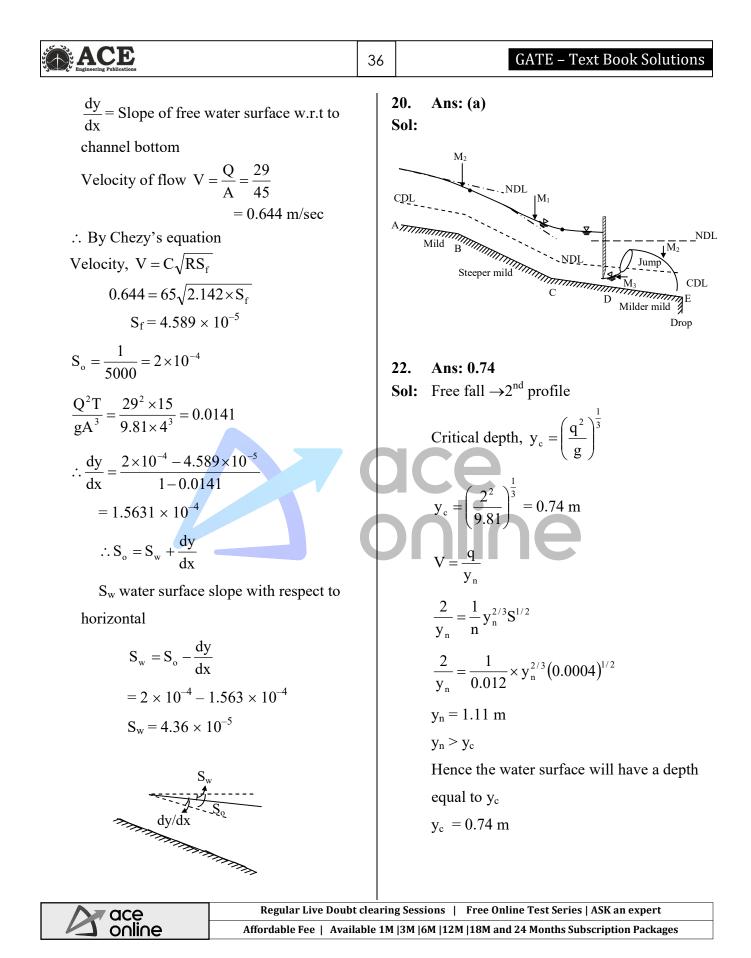
$$\therefore \text{ mild slope}$$
If (actual) depth at flow = 0.4m = y
$$y_{n} > y > y_{e} (0.54 > 0.48)$$

$$\therefore \text{ mild slope}$$
If (actual) depth at flow = 0.4m = y
$$y_{n} > y > y_{e} (0.54 > 0.48)$$

$$\therefore \text{ Discharge, } Q = 29 \text{ m}^{3}/\text{sec}$$

$$Area of roctangular channel, A = 15 \times 3 = 45 \text{ m}^{2}$$

$$Perimeter, P = 15 + 2 \times 3 = 21 \text{ m}$$


$$Hydraulic radius, R = \frac{A}{p} = \frac{45}{21} = 2.142 \text{ m}$$

$$\therefore \text{ The basic differential equation governing the gradually varied flow is$$

$$\frac{dy}{dx} = \frac{S_{n} - S_{n}}{1 - \frac{Q^{2}T}{2}}$$

 India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams

 Enjoy a smooth online learning experience in various languages at your convenience

	ACE Engineering Publications	37		Fluid Mechanics
23.	Ans: (d)			As it is not a rectangular channel, let us
Sol:	$q=2 m^2/sec$			work out from fundamentals by equating
	$y_A = 1.5 \text{ m}; y_B = 1.6 \text{ m}$			specific force at the two sections.
	$\Delta E = 0.09$			$\left[\frac{Q^2}{gA} + A\overline{z}\right] = \left[\frac{Q^2}{gA} + A\overline{z}\right]$
				$\begin{bmatrix} gA \end{bmatrix}_{1} \begin{bmatrix} gA \end{bmatrix}_{2}$
	$S_o = \frac{1}{2000}$			$\frac{1^2}{9.81 \times y_1^2} + y_1^2 \times \frac{y_1}{3} = \frac{1^2}{9.81y_2^2} + y_2^2 \times \frac{y_2}{3}$
				$9.81 \times y_1^2$ y_1^2 y_1^2 y_1^2 y_2^2
	$\overline{S}_{f} = 0.003$			$0.449 = \frac{1}{9.81 v_2^2} + \frac{y_2^3}{3}$
	$\Delta x = \frac{\Delta E}{S_o - \overline{S}_f} = \frac{0.09}{\frac{1}{2000} - 0.003} = -36 \text{ m}$			9.81 y_2^2 3
	$S_{o} - S_{f} = \frac{1}{2000} - 0.003$			$y_2 = 1.02 \text{ m}$
	ZUUU	ERII	NG	A
24.	Ans: (d)		26.	Ans: (b)
			Sol:	Given: Head = $5 \text{ m} = (\Delta \text{E})$
Sol:	Given $q_1 = Q/B = 10 \text{ m}^3/\text{s}$			Froud number = 8.5
	$v_1 = 20 \text{ m/s}$			Approximate sequent depths =?
	$\therefore y_1 = \frac{q_1}{v_1} = \frac{10}{20} = 0.5 \mathrm{m}$			
	v ₁ 20			$\frac{y_2}{y_1} = \frac{1}{2} \left[-1 + \sqrt{1 + 8F_{r1}^2} \right]$
	We know that relation between y_1 and y_2 for	r		$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1 $
	hydraulic jump is			$=\frac{1}{2}\left[-1+\sqrt{1+8(8.5)^2}\right]$
	$\frac{y_2}{y_1} = \frac{1}{2} \left[-1 + \sqrt{1 + 8Fr_1^2} \right]$			= 11.5 m
	$y_1 = 2^{1}$ Sine	ce 1	99	$y_2 = 11.5 y_1$
	$Fr_1 = \frac{V_1}{\sqrt{gy_1}} = \frac{20}{\sqrt{9.81 \times 0.5}} = 9.03$			(a) $y_2 = 11.5(0.3) = 3.45$ (b) $y_2 = 11.5(0.2) = 2.3 \text{ m}$ from options
	v. 1[[]			$(0) y_2 = 11.5 (0.2) = 2.5 \text{ m}$
	$\therefore \frac{y_2}{0.5} = \frac{1}{2} \left[-1 + \sqrt{1 + 8 \times (9.03)^2} \right]$			$y_1 = 0.2, y_2 = 2.3 m$
	$y_2 = 6.14 \text{ m}$			(or)
	<u>,</u>			$\Delta E = 5 m$
25.	Ans: (c) v.			$\Delta E = \frac{(y_2 - y_1)^3}{4y_1y_2}$
	$Q = 1 \text{ m}^3/\text{s} \qquad \frac{y_1}{3}$			
	$y_1 = 0.5 \text{ m}$			$\frac{(11.5y_1 - y_1)^3}{4(11.5y_1)y_1} = 5$
	$y_2 = ?$			$4(11.5y_1)y_1$
_	<u>}</u> {1 <u>↓</u>			
	India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams			
	Enjoy a smooth online learning experience in various languages at your convenience			

A ace	India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams		
A ace online	Enjoy a smooth online learning experience in various languages at your convenience		
	-		

ACE Engineering Publications	38 GATE – Text Book Solutions
$(10.5y_1)^3 = 230y_1^2$ 1157.625 y ₁ = 230 y ₁ = 0.2 m	Chapter13Dimensional Analysis
$y_1 = 0.2 \text{ m}$ $y_2 = 11.5(0.2)$ $y_2 = 2.3 \text{ m}$ 27. Ans: 1.43 Sol: $y_1 = 1.2 \text{ m}$	01. Ans: (c) Sol: Total number of variables, n = 8 and $m = 3$ (M, L & T) Therefore, number of π 's are $= 8 - 3 = 5$
$V_{w} + V_{1} = \sqrt{gy_{1}}$ V_{w} V_{w} $V_{1} = \sqrt{9.81 \times 1.2} - 2$ $V_{1} = 1.43 \text{ m/s}$ In this problem if the wave mov downstream the velocity of wave is $V_{w} - V_{1} = \sqrt{gy_{1}}$ $V_{w} = \sqrt{gy_{1}} + V_{1}$ $= \sqrt{9.81 \times 1.2} + 2$	02. Ans: (b) Sol: 1. $\frac{T}{\rho D^2 V^2} = \frac{MLT^2}{ML^{-3} \times L^2 \times L^2 \times T^{-2}} = 1$. \rightarrow It is a non-dimensional parameter. 2. $\frac{VD}{\mu} = \frac{LT^{-1} \times L}{ML^{-1}T^{-1}} \neq 1$. \rightarrow It is a dimensional parameter. 3. $\frac{D\omega}{V} = 1$. \rightarrow It is a non-dimensional parameter. 4. $\frac{\rho VD}{\mu} = \text{Re.}$ \rightarrow It is a non-dimensional parameter.
= 5.43 m/s	03. Ans: (b) Sol: $T = f(l, g)$ Total number of variable, n = 3, m = 2 (L & T only) Hence, no. of π terms = $3 - 2 = 1$
	 04. Ans: (c) Sol: Mach Number → Launching of rockets Thomas Number → Cavitation flow in soil Reynolds Number → Motion of a submarine Weber Number → Capillary flow in soil
	bt clearing Sessions Free Online Test Series ASK an expert ilable 1M 3M 6M 12M 18M and 24 Months Subscription Packages

05. Ans: (b)

Sol: According to Froude's law

$$T_{r} = \sqrt{L_{r}}$$
$$\frac{t_{m}}{t_{p}} = \sqrt{L_{r}}$$
$$t_{p} = \frac{t_{m}}{\sqrt{L_{r}}} = \frac{10}{\sqrt{1/25}}$$
$$t_{p} = 50 \text{ min}$$

06. Ans: (a)

Sol: L = 100 m

 $V_{\rm P}=10\,m/s\,,$

$$L_r = \frac{1}{25}$$

As viscous parameters are not discussed, follow Froude's law.

According to Froude,

$$V_{\rm r} = \sqrt{L_{\rm r}}$$
$$\frac{V_{\rm m}}{V_{\rm p}} = \sqrt{\frac{1}{25}}$$
$$V_{\rm m} = \frac{1}{5} \times 10 = 2 \text{ m/s}$$

07. Ans: (d)

Sol: Froude number = Reynolds number.

 $\nu_r = 0.0894$

If both gravity & viscous forces are important then

$$v_{\rm r} = (L_{\rm r})^{3/2}$$

$$\sqrt[3]{(v_{\rm r})^2} = L_{\rm r}$$

$$L_{\rm r} = 1:5$$

08. Ans: (c)

Sol: For distorted model according to Froude's law

 $Q_{r} = L_{H} L_{V}^{3/2}$ $L_{H} = 1:1000,$ $L_{V} = 1:100$ $Q_{m} = 0.1 \text{ m}^{3}/\text{s}$ $Q_{r} = \frac{1}{1000} \times \left(\frac{1}{100}\right)^{3/2} = \frac{0.1}{Q_{p}}$ $Q_{P} = 10^{5} \text{ m}^{3}/\text{s}$

09. Ans: (c)

0

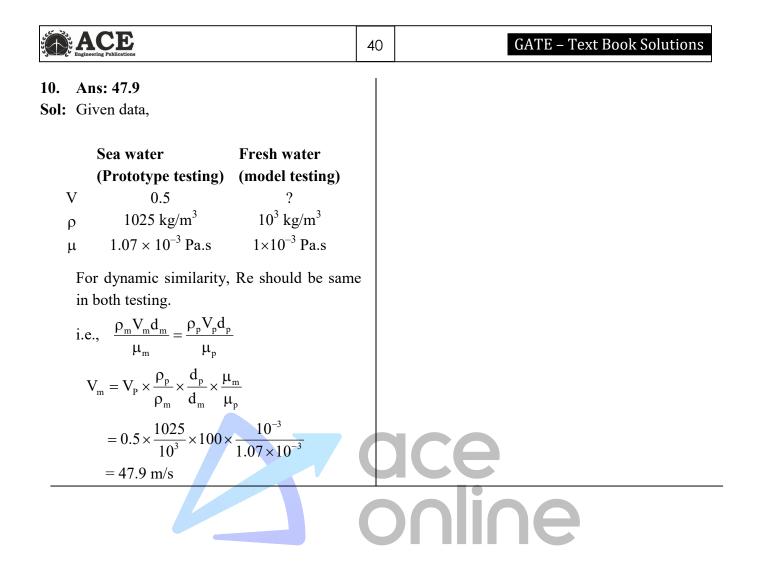
Since

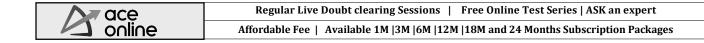
Sol: For dynamic similarity, Reynolds number should be same for model testing in water and the prototype testing in air. Thus,

$$\frac{\rho_{w} \times V_{w} \times d_{w}}{\mu_{w}} = \frac{\rho_{a} \times V_{a} \times d_{a}}{\mu_{a}}$$
$$r \quad V_{w} = \frac{\rho_{a}}{\rho_{w}} \times \frac{d_{a}}{d_{w}} \times \frac{\mu_{w}}{\mu_{a}} \times V_{a}$$

(where suffixes w and a stand for water and air respectively)

Substituting the values given, we get


$$V_{w} = \frac{1.2}{10^{3}} \times \frac{4}{0.1} \times \frac{10^{-3}}{1.8 \times 10^{-5}} \times 1 = \frac{8}{3} \text{ m/s}$$


To calculate the drag force on prototype, we equate the drag coefficient of model to that of prototype.

i.e,
$$\left(\frac{F_{D}}{\rho A V^{2}}\right)_{p} = \left(\frac{F_{D}}{\rho A V^{2}}\right)_{m}$$

Hence, $\left(F_{D}\right)_{p} = \left(F_{D}\right)_{m} \times \frac{\rho_{a}}{\rho_{w}} \times \frac{A_{a}}{A_{w}} \times \left(\frac{V_{a}}{V_{w}}\right)^{2}$
 $= 4 \times \frac{1.2}{10^{3}} \times \left(\frac{4}{0.1}\right)^{2} \times \left(\frac{1}{8/3}\right)^{2}$
 $= 1.08 \text{ N}$

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

