GATE I PSUs

Environmental Engineering

Text Book: Theory with worked out Examples and Practice Questions

Environmental Engineering

(Solutions for Text Book Practice Questions)

Water Supply Engineering

01. Population Forecasting \&
 Water Demands

1. Ans: (c)

Sol:

Year	Population	Per decade increased in Population
1970	40000	6000
1980	46000	7000
1990	53000	5000
2000	58000	

$\overline{\mathrm{x}}=\frac{6000+7000+5000}{3}=6000$
$\mathrm{P}_{2010}=\mathrm{P}_{0}+\mathrm{nx}$
$\mathrm{n}=\frac{2010-2000}{10}$
$\mathrm{n}=1$
$\mathrm{P}_{2010}=58000+1 \times 6000$
$\mathrm{P}_{2010}=64000$
02. Ans: (c)

Sol:

Time	Population	Per decade \% increased in Population
1	1	
2	1.4	$\frac{1.4-1}{1} \times 100=40$
3	1.68	$\frac{1.68-1.4}{1.4} \times 100=20$

$$
\begin{aligned}
& \overline{\mathrm{r}}=\left(\mathrm{r}_{1} \times \mathrm{r}_{2}\right)^{1 / 2} \\
& \overline{\mathrm{r}}=(40 \times 20)^{1 / 2} \\
& \overline{\mathrm{r}}=28.28 \% \\
& \mathrm{P}_{0}=1.68 \text { lakh } \\
& \mathrm{P}_{1}=\mathrm{P}_{0}\left(1+\frac{\overline{\mathrm{r}}}{100}\right)^{1} \\
& \mathrm{P}_{1}=1.68\left(1+\frac{28.28}{100}\right)^{1} \\
& \mathrm{P}_{1}=2.15 \text { lakh } \simeq 2.20 \text { lakh }
\end{aligned}
$$

3. Ans: $\mathbf{1 . 3 7}$ billion

Sol: $\mathrm{K}=1.6 \%$ per year
$\mathrm{P}_{2000}=1$ billion
$\mathrm{P}_{2020}=$?
$\mathrm{P}_{2020}=\mathrm{P}_{2000 .} \mathrm{e}^{\mathrm{k}(2020-2000)}$
$\mathrm{P}_{2020}=1 \times \mathrm{e}^{\frac{1.6}{100}(20)}$
$\mathrm{P}_{2020}=1.37$ billion
Alternative Method

$$
\begin{aligned}
\mathrm{P}_{2020} & =\mathrm{P}_{2000}\left[1+\frac{\mathrm{r}}{100}\right]^{\mathrm{n}} \\
& =1\left[1+\frac{1.6}{100}\right]^{20} \\
& =1.373 \\
& \simeq 1.37 \text { billions }
\end{aligned}
$$

A	2	CIVIL-Postal Coaching Solutions

4. Ans: 68000

Sol: $\overline{\mathrm{x}}=5000$ per decade
$\overline{\mathrm{y}}=500$ per decade

$$
\begin{aligned}
\mathrm{P}_{2020} & =? \\
\mathrm{P}_{1990} & =50000 \text { (given) } \\
\mathrm{n} & =\frac{2020-1990}{10}=3
\end{aligned}
$$

$\mathrm{P}_{2020}=\mathrm{P}_{1990}+3 \overline{\mathrm{x}}+\frac{3(3+1)}{2} \cdot \overline{\mathrm{y}}$
$\mathrm{P}_{2020}=50000+3 \times 5000+\frac{3 \times 4}{2} \times 500$
$\mathrm{P}_{2020}=68000$
05. Ans: 743900

Sol:

Year	Population	Per decade increased in Population	Incremental increase in population
1960	250000	230500	
1970	480500	69800	-160700
1980	550300	88300	+18500
1990	638600	56600	-31700
2000	695200		

$\overline{\mathrm{x}}=\frac{230500+69800+88300+56600}{4}$
$\overline{\mathrm{x}}=111300$
$\overline{\mathrm{y}}=\frac{-160700+18500-31700}{3}$
$\overline{\mathrm{y}}=-57966.67$
$P_{n}=P_{0}+n \bar{x}+\frac{n(n+1)}{2} . \bar{y}$
$\mathrm{P}_{2020}=$?

$$
\begin{gathered}
\mathrm{P}_{0}=695200, \quad \mathrm{n}=\frac{2000-1980}{10}=2 \\
P_{2020}=695200+2 \times 111300+\frac{2(2+1)}{2}(-57966.67) \mathrm{P}_{20} \\
20=743900
\end{gathered}
$$

6. Ans: 1540000

Sol:

Time	Population	Per decade increased in Population	Per decade \% increase in population
1	400000	$158500\left(\mathrm{dP}_{1}\right)$	
2	558500		$\frac{158500}{400000} \times 100=39.6 \%$ 3
	776000	$217500\left(\mathrm{dP}_{2}\right)$	$\frac{217500}{558500} \times 100=38.94 \%$ 4
5	1098500	$322500\left(\mathrm{dP}_{3}\right)$	$\frac{322500}{776000} \times 100=41.5 \%$

If $\mathrm{dP}_{1}<\mathrm{dP}_{2}<\mathrm{dP}_{3} \rightarrow$ Geometric increase used

$$
\begin{aligned}
\overline{\mathrm{r}} & =(39.6 \times 38.94 \times 41.5)^{1 / 3}=39.99 \% \\
& =40 \% \\
\mathrm{P}_{\mathrm{n}} & =\mathrm{P}_{0}\left(1+\frac{\overline{\mathrm{r}}}{100}\right)^{\mathrm{n}} \\
\mathrm{P}_{5} & =1098500\left(1+\frac{40}{100}\right)^{1} \\
= & 1537900 \\
\simeq & 1540000[\text { to the nearest } 5000]
\end{aligned}
$$

7. Ans: (c)

Sol: $\mathrm{P}_{0}=28,000$
Average increase per decade,
$\bar{x}=\frac{44,000-28,000}{2}=8,000$
$4200 \mathrm{~m}^{3} / \mathrm{d}$ required for 28,000 persons $6000 \mathrm{~m}^{3} / \mathrm{d}$ sufficient for ------- persons

$$
=\frac{28000 \times 6000}{4200}=40,000
$$

$\mathrm{P}_{\mathrm{n}}=\mathrm{P}_{0}+\mathrm{n} \bar{x}$
$40,000=28,000+\mathrm{n} \times 8000$
$\mathrm{n}=1.5$ decades $=15$ years

08. Ans: 100765

Sol:

Year	Population	Per decade Perce ntage Incre ase in Popu lation	Decrease in Perce ntage Incre ase
1960	55,500	14.77	2.84
1970	63,700	11.93	0.43
1980	71,300	11.5	-
1990	79,500	-	-

Per decade percentage increase in population

$$
\begin{gathered}
=\frac{63700-55500}{55500} \times 100=14.77 \% \\
r_{0}=11.5
\end{gathered}
$$

$$
P_{n}=P_{o}\left[1+\frac{r_{o}-\bar{D}}{100}\right]\left[1+\frac{r_{o}-2 \bar{D}}{100}\right] \ldots . .\left[1+\frac{r_{o}-n \bar{D}}{100}\right]
$$

$\mathrm{P}_{\mathrm{o}}=$ latest known population
$\mathrm{P}_{\mathrm{n}}=$ prospective population after n year
$r_{0}=$ latest per decade percentage increase in population
$\overline{\mathrm{D}}=$ average decrease in percentage increase

$$
\begin{aligned}
& \overline{\mathrm{D}}=\frac{2.84+0.43}{2} \\
& \overline{\mathrm{D}}=1.635 \\
& \mathrm{n}=\frac{2020-1990}{10}=3
\end{aligned}
$$

$$
P_{n}=P_{o}\left[1+\frac{r_{o}-\bar{D}}{100}\right]\left[1+\frac{r_{o}-2 \bar{D}}{100}\right]\left[1+\frac{r_{o}-3 \bar{D}}{100}\right]
$$

$$
\mathrm{P}_{\mathrm{n}}=79500\left[1+\frac{11.5-1.635}{100}\right]\left[1+\frac{11.5-2(1.635)}{100}\right]
$$

$$
\left[1+\frac{11.5-3(1.635)}{100}\right]
$$

$$
=79500(1.09865)(1.0823)(1.06595)
$$

$$
=100765.29 \simeq 100765
$$

\therefore Population for the year 2020 by decreasing rate of growth $=100765$
09. Ans: (c)

Sol: $\mathrm{P}=1102500$
$r=5 \%$
$\mathrm{n}=2$ years
the population of city ' 2 ' years ago is given
$\mathrm{P}=\mathrm{P}_{\mathrm{o}}\left[1+\frac{\mathrm{r}}{100}\right]^{\mathrm{n}}$
$1102500=\mathrm{P}_{\mathrm{o}}\left[1+\frac{5}{100}\right]^{2}$
$\mathrm{P}_{\mathrm{o}}=1000000$

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups \& PSC Exams

03. Quality of Water

1. Ans: (d)

Sol: $\quad \mathrm{Ca}^{2+}=160 \mathrm{mg} / \ell$
$\mathrm{Mg}^{2+}=40 \mathrm{mg} / \ell$
$\mathrm{TH}=\mathrm{Ca}^{2+} \times \frac{50}{20}+\mathrm{Mg}^{2+} \times \frac{50}{12}$
$\mathrm{TH}=160 \times \frac{50}{20}+40 \times \frac{50}{12}$
$\mathrm{TH}=567 \mathrm{mg} / l$ as CaCO_{3}
04. Ans: (c)

Sol: $\quad \mathrm{FTN}=\frac{\mathrm{A}+\mathrm{B}}{\mathrm{A}}=\frac{25+175}{25}$
$\mathrm{FTN}=8$
05. Ans: (d)

Sol: The product of H^{+}ions and OH^{-}ions in a stronger acids $=10^{-14}$
$\left[\mathrm{H}^{+}\right][\mathrm{OH}]=10^{-14} \mathrm{~mol} / \mathrm{lit}$

11. Ans: (a)

Sol: $\mathrm{TH}=200 \mathrm{mg} / \mathrm{l}$ as CaCO_{3}
$\mathrm{TA}=250 \mathrm{mg} / \mathrm{l}$ as CaCO_{3}
TH $<$ TA
$\mathrm{CH}=\mathrm{TH}=200 \mathrm{mg} / \mathrm{l}$
14. Ans: (d)

Sol: $(\mathrm{PH})_{\mathrm{I}}=7.2, \quad\left(\mathrm{H}^{+}\right)_{\mathrm{I}}=10^{-7.2} \mathrm{~mol} / \mathrm{lit}$ $(\mathrm{PH})_{0}=8.4, \quad\left(\mathrm{H}^{+}\right)_{0}=10^{-8.4} \mathrm{~mol} / \mathrm{lit}$ $\overline{\mathrm{H}}^{+}=\frac{\left(\mathrm{H}^{+}\right)_{\mathrm{I}}+\left(\mathrm{H}^{+}\right)_{0}}{2}$
$\overline{\mathrm{H}}^{+}=\frac{10^{-7.2}+10^{-8.4}}{2}=3.3 \times 10^{-8} \mathrm{~mol} / \mathrm{lit}$
$\mathrm{P} \overline{\mathrm{H}}=\log _{10} \frac{1}{\mathrm{H}^{+}}=\log _{10} \frac{1}{3.3 \times 10^{-8}}$
$\mathrm{P} \overline{\mathrm{H}}=7.47$
15. Ans: (c)

Sol: $(\mathrm{pH})_{\mathrm{A}}=4.4,\left(\mathrm{H}^{+}\right)_{\mathrm{A}}=10^{-4.4} \mathrm{~mol} / \mathrm{lit}$
$(\mathrm{pH})_{\mathrm{B}}=6.4,\left(\mathrm{H}^{+}\right)_{\mathrm{B}}=10^{-6.4} \mathrm{~mol} / \mathrm{lit}$
$\frac{\left(\mathrm{H}^{+}\right)_{\mathrm{A}}}{\left(\mathrm{H}^{+}\right)_{\mathrm{B}}}=\frac{10^{-4.4}}{10^{-6.4}}=100$

16. Ans: (a)

Sol: Sample A, $\mathrm{V}_{\mathrm{A}}=300 \mathrm{~m} \mathrm{l}$
$(\mathrm{pH})_{\mathrm{A}}=7$
$\left(\mathrm{H}^{+}\right)_{\mathrm{A}}=10^{-7} \mathrm{~mol} / \mathrm{lit}$
Sample B,
$V_{B}=700 \mathrm{~m} l$
$(\mathrm{pH})_{\mathrm{B}}=5$
$\left(\mathrm{H}^{+}\right)_{\mathrm{B}}=10^{-5} \mathrm{~mol} / \mathrm{lit}$
$C_{\text {mix }}=\frac{V_{A} C_{A}+V_{B} C_{B}+\ldots}{V_{A}+V_{B}+\ldots}$
$\left(\mathrm{H}^{+}\right)_{\text {mix }}=\frac{300 \times 10^{-7}+700 \times 10^{-5}}{300+700}$
$\left(\mathrm{H}^{+}\right)_{\text {mix }}=7.03 \times 10^{-6} \mathrm{~mol} / \mathrm{lit}$
$(\mathrm{pH})_{\text {mix }}=\log _{10} \frac{1}{\left(\mathrm{H}^{+}\right)_{\text {mix }}}=\log _{10} \frac{1}{7.03 \times 10^{-6}}$
$(\mathrm{pH})_{\text {mix }}=5.15$

A它 ACM	5	Environmental Engineering

17. Ans: (d)

Sol: $\mathrm{CO}_{3}^{--}=90 \mathrm{mg} / \mathrm{l}$
$\mathrm{HCO}_{3}^{-}=61 \mathrm{mg} / l$
$\mathrm{TA}=\mathrm{CO}_{3}^{--} \times \frac{50}{30}+\mathrm{HCO}_{3}^{-} \times \frac{50}{61}$
$\mathrm{TA}=90 \times \frac{50}{30}+61 \times \frac{50}{61}$
$\mathrm{TA}=200 \mathrm{mg} / l$ as CaCO_{3}
18. Ans: (d)

Sol: From $10-1-0.10$ (MPN) against $4-3-1$, + Ve grouping
MPN $=33$
For $1-0.1-0.01$ dilution against $4-3-1$ + ve group
MPN $=33 \times \frac{\text { Table dilution }}{\text { Test dilution }}$
$\mathrm{MPN}=33 \times 10=330 \mathrm{no} / 100 \mathrm{~m} l$
19. Ans: (a)

Sol: $\mathrm{PH}=9$
$\mathrm{H}^{+}=10^{-9} \mathrm{~mol} / \mathrm{lit}$
$\mathrm{OH}^{-}=10^{-5} \mathrm{~mol} / \mathrm{lit}$
$\mathrm{OH}^{-} \mathrm{mg} / \mathrm{lit}=\mathrm{OH}^{-} \mathrm{mol} /$ lit \times Mol. wt. of $\mathrm{OH}^{-} \times 1000$
$\mathrm{OH}^{-}=10^{-5} \times 17 \times 1000=0.17 \mathrm{mg} / \mathrm{lit}$
$\mathrm{OH}^{-}=0.17 \times \frac{50}{17}=0.50 \mathrm{mg} /$ lit $\operatorname{asCaCO} 3$
27. Ans: (d)

Sol: $\mathrm{TA}=250 \mathrm{mg} / \mathrm{l}$ as CaCO_{3}
$\mathrm{TH}=350 \mathrm{mg} / \mathrm{l}$ as CaCO_{3}
TH $>$ TA
$\mathrm{CH}=\mathrm{TA}=250 \mathrm{mg} / \mathrm{l}$
$\mathrm{NCH}=\mathrm{TH}-\mathrm{CH}=350-250$
$\mathrm{NCH}=100 \mathrm{mg} / l$ as CaCO_{3}
28. Ans: (c)

Sol: $\mathrm{TH}=\mathrm{Ca} \times \frac{50}{20}+\mathrm{Mg} \times \frac{50}{12.2}$

$$
\begin{aligned}
& \mathrm{TH}=55 \times \frac{50}{20}+10 \times \frac{50}{12.2}=178.48 \\
& \mathrm{TH} \simeq 179 \mathrm{mg} / l \text { as } \mathrm{CaCO}_{3}
\end{aligned}
$$

Common data for Q 29 \& 30
29. Ans: (a)

Sol: TH in $\mathrm{mg} /$ lit as $\mathrm{C}_{\mathrm{a}} \mathrm{CO}_{3}$

$$
\begin{aligned}
& =\mathrm{Ca}^{++} \text {in } \mathrm{mg} / \mathrm{lit} \times \frac{50}{20}+\mathrm{Mg}^{++} \text {in } \mathrm{mg} / \mathrm{lit} \times \frac{50}{12} \\
& =(12 \times 20) \times \frac{50}{20}+(18 \times 12) \times \frac{50}{12} \\
& =1500 \mathrm{mg} / \text { lit as } \mathrm{CaCO}_{3}
\end{aligned}
$$

Shortcut Method

Concentration are already given in Meq/lit
\therefore add $\mathrm{Ca}^{+2}+\mathrm{Mg}^{+2}$
$=(12+18) \times 50$
$=1500 \mathrm{mg} / \mathrm{l}$ as CaCO_{3}
30. Ans: (c)

Sol: Alkalinity in $\mathrm{mg} /$ lit CaCO_{3}
$=\mathrm{HCO}_{3}^{-}$in $\mathrm{mg} / \mathrm{lit} \times \frac{50}{61}+\mathrm{CO}_{3}$ in $\mathrm{mg} / \mathrm{lit} \times \frac{50}{30}$
$=(30 \times 61) \times \frac{50}{61}+(5 \times 30) \times \frac{50}{30}$
$=1750 \mathrm{mg} / \mathrm{lit}$ as CaCO_{3}

Shortcut Method

Concentration are already given in Meq/lit

$$
\begin{aligned}
& \therefore \text { add } \mathrm{Co}_{3}{ }^{-}+\mathrm{Ho}_{3}^{-} \\
&=(5+35) \times 50 \\
&=1750 \mathrm{mg} / l \quad \text { as } \mathrm{CACO}_{3}
\end{aligned}
$$

Common data for Question Nos. 31. \& 32
31. Ans: (c)

Sol: $\mathrm{TH}=100 \times \frac{50}{20}+6 \times \frac{50}{12}$

$$
=275 \mathrm{mg} / \mathrm{lit} \text { as } \mathrm{CaCo}_{3}
$$

32. Ans: (a)

Sol: Alkalinity $=250 \times \frac{50}{61}$

$$
=204.9 \approx 205 \mathrm{mg} / \text { lit as } \mathrm{CaCO}_{3}
$$

33. Ans: (d)

Sol: Tomoto juice $\mathrm{pH}=4.1$

$$
\begin{aligned}
\mathrm{pH} & =\log _{10} \frac{1}{\mathrm{H}^{+}} \\
4.1 & =\log _{10} \frac{1}{\mathrm{H}^{+}} \\
\mathrm{H}^{+} & =10^{-4.1} \mathrm{~mol} / \mathrm{lit} \\
\mathrm{H}^{+} & =7.94 \times 10^{-5} \mathrm{~mol} / \mathrm{lit}
\end{aligned}
$$

34. Ans: (d)

Sol: $\mathrm{OH}^{-}=10^{-5.6} \mathrm{~m} . \mathrm{mol} / \mathrm{lit}$
$\mathrm{OH}^{-}=10^{-5.6} \times 10^{-3} \mathrm{~mol} / \mathrm{lit}$
$\mathrm{OH}^{-}=10^{-8.6} \mathrm{~mol} / \mathrm{lit}$
$\mathrm{H}^{+}=\frac{10^{-14}}{10^{-8.6}}=10^{-5.4}$
$\mathrm{pH}=\log _{10}\left(\frac{1}{\mathrm{H}^{+}}\right)=\log _{10} \frac{1}{10^{-5.4}}$
$\mathrm{pH}=5.4$
36. Ans: (d)

Sol: From table 10-1-0.10 (MPN) against
$2-1-0+$ ve group
$\mathrm{MPN}=7$
For 1-0.1-0.01 dilution against
$2-1-0,+$ ve group
MPN $=7 \times \frac{\text { table dilution }}{\text { test dilution }}$
$\mathrm{MPN}=7 \times 10=70$
37. Ans: (b)

Sol: $\mathrm{Ca}+\mathrm{Co}_{3} \rightarrow \mathrm{CaCo}_{3}$
Mol. Wt of $\mathrm{CO}_{3}=12+3 \times 16=60$
Mol. Wt. of $\mathrm{Ca}=40$
60 parts of CO_{3} required $=40$ parts of Ca
1 part of CO_{3} require $=\frac{40}{60}$ part of Ca
$90 \mathrm{mg} / l$ part of CO_{3} require $=\frac{40}{60} \times 90 \mathrm{mg} / l$ of Ca

$$
=60 \mathrm{mg} / \mathrm{l} \text { of } \mathrm{Ca}
$$

D A C M	7	Environmental Engineering

38. Ans: (c)

Sol: $\mathrm{PH}=9.25$
$\mathrm{PH}=\log _{10} \frac{1}{\mathrm{H}^{+}}$
$9.25=\log _{10} \frac{1}{\mathrm{H}^{+}}$
$\mathrm{H}^{+}=10^{-9.25} \mathrm{~mol} / \mathrm{lit}$
$\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}$
$\left[\mathrm{OH}^{-}\right]=\frac{10^{-14}}{10^{-9.25}}=10^{-4.75} \mathrm{~mol} / \mathrm{lit}$
$\mathrm{OH}^{-}(\mathrm{mg} / \ell)=\mathrm{OH}^{-}(\mathrm{mg} / \mathrm{l}) \times \mathrm{Mol}$. Wt . of
$\mathrm{OH}^{-} \times 1000$
$\mathrm{OH}_{(\mathrm{mg} / \ell)}^{-}=10^{-4.75} \times 17 \times 1000$
$\mathrm{OH}^{-}=0.302 \mathrm{mg} / \mathrm{l}$ as CaCO_{3}
39. Ans: (d)

Sol: \quad TON $=\frac{A+B}{A}$
$\mathrm{TON}=\frac{187.5+12.5}{12.5}$
$\mathrm{TON}=16$
40. Ans: (b)

Sol: $\mathrm{OH}^{-}=17 \mathrm{mg} / l$
$\mathrm{OH}^{-}(\mathrm{mol} / \mathrm{l})=\frac{\left(\mathrm{OH}^{-}\right) \mathrm{mg} / 1}{\text { Mol. wt.of } \mathrm{OH}^{-} \times 1000}$
$\mathrm{OH}^{-}=\frac{17}{17 \times 1000}=10^{-3} \mathrm{~mol} / \mathrm{lit}$
$\left\lfloor\mathrm{H}^{+}\right\rfloor\left\lfloor\mathrm{OH}^{-}\right\rfloor=10^{-14} \mathrm{~mol} / \mathrm{lit}$
$\mathrm{H}^{+}=\frac{10^{-14}}{10^{-3}}=10^{-11} \mathrm{~mol} / \mathrm{lit}$
$\mathrm{pH}=\log _{10} \frac{1}{\mathrm{H}^{+}}=\log _{10} \frac{1}{10^{-11}}$
$\mathrm{pH}=11$
41. Ans: (b)

Sol: $\mathrm{Ca}^{2+}=4 \mathrm{~m} . \mathrm{eq} / \mathrm{lit}$
$\mathrm{Mg}^{2+}=1 \mathrm{meq} / \mathrm{lit}$
$\mathrm{HCO}_{3}{ }^{-}=3.5 \mathrm{~m} . \mathrm{eq} / \mathrm{lit}$
$\mathrm{TH}=\mathrm{Ca}^{2+} * 50+\mathrm{Mg}^{2+} * 50$
(where $\mathrm{Ca} \& \mathrm{Mg}$ are in m.eq/lit)

$$
=4 \times 50+1 \times 50=250 \mathrm{mg} / \mathrm{l} \text { as } \mathrm{CaCO}_{3}
$$

$\mathrm{TA}=\mathrm{CO}_{3} * 50+\mathrm{HCO}_{3} * 50$
(where $\mathrm{CO}_{3} \& \mathrm{HCO}_{3}$ in m.eq/lit)
$=0+3.5 \times 50=175 \mathrm{mg} / \mathrm{l}$ as CaCO_{3}
TH $>$ TA

$$
\begin{aligned}
\therefore \mathrm{CH} & =\mathrm{TA}=175 \mathrm{mg} / l \text { as } \mathrm{CaCO}_{3} \\
\mathrm{NCH} & =\mathrm{TH}-\mathrm{CH}=250-175 \\
& =75 \mathrm{mg} / l \text { as } \mathrm{CaCO}_{3}
\end{aligned}
$$

44. Ans: $\mathbf{6 4 0}, \mathbf{2 2 0} \& \mathbf{4 2 0} \mathbf{~ m g} /$ lit

Sol: $\mathrm{W}_{1}=98.42 \mathrm{gm}$
$\mathrm{W}_{2}=98.484 \mathrm{gm}$
$\mathrm{W}_{3}=98.462 \mathrm{gm}$
(i) Total solids $(\mathrm{TS})=\frac{\mathrm{W}_{2}-\mathrm{W}_{1}}{\mathrm{~V}}$

$$
\mathrm{TS}=\frac{98.484-98.42}{100} \times 10^{6}=640 \mathrm{mg} / \mathrm{l}
$$

(ii) Volatile solids $=\frac{\mathrm{W}_{2}-\mathrm{W}_{3}}{\mathrm{~V}}$

$$
=\frac{98.484-98.462}{100} \times 10^{6}=220 \mathrm{mg} / l
$$

(iii) Fixed solids $=\frac{W_{3}-W_{1}}{V}$

$$
\begin{aligned}
= & \frac{98.462-98.42}{100} \times 10^{6} \\
& =420 \mathrm{mg} / l
\end{aligned}
$$

45. Refer Previous GATE solutions Book

46. Refer Previous GATE solutions Book
47. Ans: (c)

Sol: The coliform bacilli are essentially lactose term enters, non-spore forming, and gram negative.
49. Ans: (c)

Sol: In DO testing the reagents are added in the following sequence
$\mathrm{MnSO}_{4} \rightarrow$ followed by alkali-Iodide $=$ Azide \rightarrow followed by $\mathrm{H}_{2} \mathrm{SO}_{4}$
50. Ans: (c)

Sol: Typhoid is caused by bacteria.
Hepatitis caused by virus. Cholera caused by bacteria,
Dysentery caused by protozoa.
\therefore Statement $3 \& 4$ only correct.

04. Plain Sedimentation

Common data for Qs. 1, 2 \& 3

1. Ans: (b)

Sol: $B=6 \mathrm{~m}, \mathrm{~L}=15 \mathrm{~m}, \mathrm{H}=3 \mathrm{~m}$
$\mathrm{Q}=2 \mathrm{MLD}$
$\mathrm{SOR}=\frac{\mathrm{Q}}{\mathrm{LB}}$
Surface over flow rate $\mathrm{V}_{0}=\frac{2 \times 10^{6}}{6 \times 15 \times 24}$
$=926 \mathrm{lit} / \mathrm{hr} / \mathrm{m}^{2}$
02. Ans: (d)

Sol: Detention time is
Volume of setting tank $=\mathrm{Q} \times \mathrm{D} . \mathrm{T}$

$$
\mathrm{DT}=\frac{6 \times 15 \times 3}{\frac{2 \times 10^{6}}{24 \times 10^{3}}}=\frac{270}{83.33}=3.24 \mathrm{hrs}
$$

3. Ans: (a)

Sol: $\eta=70 \%, V_{0}=926 \mathrm{lit} / \mathrm{hr} / \mathrm{m}^{2}$
$\eta=\frac{\mathrm{V}_{\mathrm{S}}}{\mathrm{V}_{0}} \times 100$
Total solids removed
$=\mathrm{Q} \times$ concentration of solids $(\mathrm{MLD} \times \mathrm{mg} / \mathrm{lit})$
$=2 \times 70$
$=140 \mathrm{~kg} / \mathrm{day}$
Total amount of dry solids removed
$=$ Total amount of solids in water $\times \eta$
$=140 \times \frac{70}{100}=98 \mathrm{~kg} / \mathrm{day}$

N: AC	9	Environmental Engineering

Common data question for Q4 and Q5

4. Ans: (c)

Sol: $\mathbf{Q}=1.8 \mathrm{MLD}$
D. $\mathrm{T}=4$ hours

$$
\begin{aligned}
\mathrm{V} & =? \\
& =\frac{1.8 \times 10^{6}}{10^{3} \times 24}=75 \mathrm{~m}^{3} / \mathrm{hr}
\end{aligned}
$$

Volume of $\operatorname{tank}=\mathrm{Q} \times \mathrm{DT}$

$$
=75 \times 4=300 \mathrm{~m}^{3}
$$

05. Ans: (b)

Sol: $\mathrm{SOR}=500 \mathrm{lit} / \mathrm{hr} / \mathrm{m}, \mathrm{L}: \mathrm{B}=4: 1, \mathrm{~L}=$?
$\mathrm{V}_{0}=\frac{\mathrm{Q}}{\mathrm{A}}$
Surface area $=\frac{\mathrm{Q}}{\operatorname{SOR}}=\frac{1.8 \times 10^{6}}{24 \times 500}$
$\mathrm{L} \times \mathrm{B}=150 \mathrm{~m}^{2}$
$\mathrm{L} \times \frac{\mathrm{L}}{4}=150 \mathrm{~m}^{2}$
$L^{2}=150 \times 4$
$\mathrm{L}=24.49 \mathrm{~m}$
06. Ans: 0.0112 m/sec

Sol: $\mathrm{V}_{\mathrm{H}}=$? $\mathrm{L}=60 \mathrm{~m}, \quad \mathrm{H}=3 \mathrm{~m}$
$\frac{\mathrm{L}}{\mathrm{V}_{\mathrm{H}}}=\frac{\mathrm{H}}{\mathrm{V}_{\mathrm{S}}}$
$\mathrm{V}_{\mathrm{S}}=\frac{\mathrm{g}(\mathrm{s}-1) \mathrm{d}^{2}}{18 v}$

$$
=\frac{9.81(2.65-1) \times\left(0.025 \times 10^{-3}\right)^{2}}{18 \times \frac{0.01}{(100)^{2}}}
$$

$$
=5.62 \times 10^{-4} \mathrm{~m} / \mathrm{sec}
$$

$$
\frac{60}{\mathrm{~V}_{\mathrm{H}}}=\frac{3}{5.62 \times 10^{-4}}
$$

$$
\Rightarrow \mathrm{V}_{\mathrm{H}}=0.0112 \mathrm{~m} / \mathrm{sec}
$$

7. Ans: (c)

Sol: $\mathrm{Q}=100000 \mathrm{~m}^{3} /$ day
Settling velocity $=20 \mathrm{~m} /$ day

$$
\begin{aligned}
& \text { Area of tank }=\frac{\mathrm{Q}}{\text { Settling velocity }} \\
& \text { Area of tank }=\frac{100000}{20}=5000 \mathrm{~m}^{2}
\end{aligned}
$$

8. Ans: (a)

Sol: $\mathrm{d}=0.025 \mathrm{~mm}, \mathrm{~s}=2.65, v=0.01 \mathrm{~cm}^{2} / \mathrm{sec}$

$$
\begin{aligned}
& v_{\mathrm{s}}=\frac{\mathrm{g}(\mathrm{~s}-1) \mathrm{d}^{2}}{18 \times v} \\
& 5=\frac{9.81(2.65-1) \times\left(0.025 \times 10^{-3}\right)^{2}}{18 \times 0.01 \times 10^{-4}}
\end{aligned}
$$

$$
=0.056 \mathrm{~cm} / \mathrm{sec}
$$

9. Ans: 27.08

Sol: $\mathrm{V}_{0}=12,000 \mathrm{lit} / \mathrm{hr} / \mathrm{m}^{2}, \mathrm{~d}=0.03 \mathrm{~mm}$

$$
\begin{aligned}
& =12 \mathrm{~m}^{3} / \mathrm{hr} / \mathrm{m}^{2} \\
\mathrm{~V}_{\mathrm{S}} & =\frac{\mathrm{g}(\mathrm{~s}-1) \mathrm{d}^{2}}{18 \times \mathrm{v}} \\
& =\frac{9.81(2.65-1)\left(0.03 \times 10^{-3}\right)^{2}}{18 \times \frac{0.897}{(1000)^{2}}}
\end{aligned}
$$

D A CM	10	CIVIL-Postal Coaching Solutions

$\mathrm{V}_{\mathrm{S}}=0.922 \mathrm{~mm} / \mathrm{sec}$
$\mathrm{V}_{\mathrm{S}}=9.02 \times 10^{-4} \mathrm{~m} / \mathrm{sec}$
$\eta=\frac{\mathrm{V}_{\mathrm{S}}}{\mathrm{V}_{0}} \times 100$
$\mathrm{V}_{0}=12 \mathrm{~m}^{3} / \mathrm{hr} / \mathrm{m}^{2}=3.33 \times 10^{-3} \mathrm{~m} / \mathrm{sec}$

$$
=\frac{9.02 \times 10^{-4}}{3.33 \times 10^{-3}} \times 100=27.08 \%
$$

Common Data for Qs. 10 \& 11
10. Ans: (a)

Sol: $d=26 \mathrm{~m}$ with $\mathrm{H}=2.10 \mathrm{~m}$
$\mathrm{Q}=13000 \mathrm{~m}^{3} /$ day, D. $\mathrm{T}=$?
$\mathrm{DT}=\frac{2.10 \times\left(\frac{\pi}{4} \times 26^{2}\right)}{\frac{13000}{24}}=2.05 \mathrm{hrs}$
11. Ans: (d)

Sol: Weir loading $=\frac{\mathrm{Q}}{\text { length of weir }}$

$$
=\frac{13000}{\pi \times 26}=159 \mathrm{~m}^{3} / \mathrm{day} / \mathrm{m}
$$

12. Ans: $\mathbf{4 4 . 5}, \mathbf{1 4 . 8 3} \& 0.47$

Sol: $\mathrm{d}=50 \mu \mathrm{~m}=50 \times 10^{-3} \mathrm{~mm}=0.05 \mathrm{~mm}$,
$\mathrm{G}=2.3, \mathrm{Q}=100 \mathrm{MLD}, \mathrm{H}=3 \mathrm{~m}$
$\mathrm{L}: \mathrm{B}=3: 1, \mathrm{~d}=3 \mathrm{~m}, v=1.01 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$
$V_{S}=\frac{g(G-1) d^{2}}{18 \times v}$
$=\frac{9.81(2.3-1) \times\left(0.05 \times 10^{-3}\right)^{2}}{18 \times 1.01 \times 10^{-6}}$
$\mathrm{V}_{\mathrm{S}}=1.753 \times 10^{-3} \mathrm{~m} / \mathrm{sec}$
For 100% removal
$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{0}=1.753 \times 10^{-3} \mathrm{~m} / \mathrm{sec}$
Surface area $=\frac{\mathrm{Q}}{\mathrm{V}_{0}}=\frac{1.157}{1.753 \times 10^{-3}}$
$\mathrm{L}: 3 \mathrm{~B}=660.011$
$\mathrm{L} \times \mathrm{B}$
$3 B \times B=660.011$

$$
3 B^{2}=660.011
$$

$$
B=\sqrt{\frac{660.011}{3}}=14.83 \mathrm{~m}
$$

$$
\mathrm{L}=3 \times \mathrm{B}=3 \times 14.83=44.49 \mathrm{~m}
$$

D. $\mathrm{T}=\frac{\text { Volume of tan } \mathrm{k}}{\mathrm{Q}}=\frac{\mathrm{L} \times \mathrm{B} \times \mathrm{H}}{\mathrm{Q}}$
$\frac{44.49 \times 14.83 \times 3}{100 \times 10^{6}}=0.47 \mathrm{hr}$ 24×10^{3}
13. Ans: $20 \mathrm{~m}^{3} / \mathrm{m}^{2} /$ day

Sol: $\mathrm{L} \times \mathrm{B} \times \mathrm{h}=100 \times 50 \times 3 \mathrm{~m}$,

$$
\mathrm{Q}=1,00,000 \mathrm{~m}^{3} / \mathrm{day}
$$

Surface flow rate -- ?, $\rho=2.65 \mathrm{~g} / \mathrm{cc}$,
$v=1.02 \times 10^{-2} \mathrm{~cm}^{2} / \mathrm{sec}$
Surface flow rate $=\frac{\mathrm{Q}}{\text { surface flow area }}$

$$
=\frac{100000}{100 \times 50}=20 \mathrm{~m}^{3} / \mathrm{m}^{2} / \text { day }
$$

For 100% removal $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{0}$
$=20 \times \mathrm{m}^{3} / \mathrm{m}^{2} /$ day
$=\frac{20}{24 \times 60 \times 60}=2.31 \times 10^{-4}$

A A C	11	Environmental Engineering

$\mathrm{S}=\frac{\rho_{\mathrm{p}}}{\rho_{\mathrm{w}}}=\frac{2.65}{1}=2.65$
$\mathrm{V}_{\mathrm{S}}=\frac{\mathrm{g}(\mathrm{s}-1) \mathrm{d}^{2}}{18 \times \mathrm{v}}$
$2.31 \times 10^{-4}=\frac{9.81(2.65-1) \times \mathrm{d}^{2}}{1.836 \times 10^{-5}}$
$\mathrm{d}=1.61 \times 10^{-5} \mathrm{~mm}$
$\mathrm{d}=1.61 \times 10^{-2} \mathrm{~m}$

14. Ans: (c)

Sol: $\quad \mathrm{H}=3 \mathrm{~m}$, surface area $=900 \mathrm{~m}^{2}$,
$\mathrm{Q}=8000 \mathrm{~m}^{3} /$ day, $\mathrm{T}=20^{\circ} \mathrm{C}$,
$\mu=10^{-3} \mathrm{~kg} / \mathrm{m}-\mathrm{s}, \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
$d=0.01 \mathrm{~mm}, G=2.65, \eta=$?
$\mathrm{V}_{\mathrm{o}}=\frac{\mathrm{Q}}{\text { S.area }}=\frac{8000}{900}=8.889 \mathrm{~m}^{3} / \mathrm{day} / \mathrm{m}^{2}$

$$
\begin{aligned}
& =\frac{8.8}{24 \times 60 \times 60} \mathrm{~m} / \mathrm{sec}=1.0185 \times 10^{-4} \\
\mathrm{~V}_{\mathrm{s}} & =\frac{\mathrm{g}\left[\rho_{\mathrm{p}}-\rho_{\mathrm{w}}\right] \mathrm{d}^{2}}{18 \mu}
\end{aligned}
$$

$$
=\frac{9.81(2650-1000) \times\left(0.01 \times 10^{-3}\right)^{2}}{18 \times 10^{-3}}
$$

$\mathrm{V}_{\mathrm{S}}=8.99 \times 10^{-5} \mathrm{~m} / \mathrm{sec}$
Proportion of particle removed ' η '

$$
\begin{aligned}
& =\frac{\mathrm{V}_{\mathrm{S}}}{\mathrm{~V}_{0}} \times 100 \\
& =\frac{8.99 \times 10^{-5}}{1.018 \times 10^{-4}} \times 100=88.31 \%
\end{aligned}
$$

Common data for Question Nos. 15 \& 16

15. Ans: (a)

Sol: $L=20 \mathrm{~m}, \mathrm{~B}=10 \mathrm{~m}, \mathrm{H}=3 \mathrm{~m}, \mathrm{Q}=4 \mathrm{MLD}$,

$$
\begin{aligned}
& \mathrm{T}=20^{\circ} \mathrm{C}, \mu=1.002 \times 10^{-3} \frac{\mathrm{~N}-\mathrm{s}}{\mathrm{~m}^{2}} \text { at } 20^{\circ} \mathrm{C}, \\
& \rho_{\mathrm{w}}=998.2 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{G}=2.65
\end{aligned}
$$

Surface overflow $=\frac{\mathrm{Q}}{\text { Surface area }}$

$$
=\frac{4 \times 10^{6} \times 10^{3}}{20 \times 10}=20 \mathrm{~m}^{3} / \mathrm{m}^{2} / \text { day }
$$

16. Ans: (b)

Sol: $\eta=100 \%$

$$
\begin{aligned}
& V_{\mathrm{s}}=\frac{\mathrm{g}\left(\rho_{\mathrm{p}}-\rho_{\mathrm{w}}\right) \mathrm{d}^{2}}{18 \mu} \\
& \mathrm{G}=2.65, \rho_{\mathrm{p}}=2.65 \times \rho_{\mathrm{w}} \\
&=2.65 \times 998.2 \\
& \rho_{\mathrm{p}}=2645.23 \mathrm{~kg} / \mathrm{m}^{3} \\
& \frac{20}{24 \times 60 \times 60}=\frac{9.81(2645.23-998.2) \mathrm{d}^{2}}{18 \times 1.002 \times 10^{-3}} \\
& \mathrm{~d}=0.016 \mathrm{~mm}
\end{aligned}
$$

17. Ans: (b)

Sol: $\mathrm{V}_{\mathrm{S} 1}=0.1 \mathrm{~mm} / \mathrm{s}$,
$\mathrm{V}_{\mathrm{S} 2}=0.2 \mathrm{~mm} / \mathrm{s}$,
$\mathrm{V}_{\mathrm{S} 3}=1.0 \mathrm{~mm} / \mathrm{s}$
Surface over flow rate $=43.2 \mathrm{~m}^{3} / \mathrm{m}^{2} / \mathrm{d}$

$$
=0.5 \mathrm{~mm} / \mathrm{s}
$$

Particle	Percentage $\left(\mathrm{P}_{\mathrm{i}}\right)$	V_{S} $\mathrm{mm} / \mathrm{sec}$	$\eta=\frac{\mathrm{V}_{\mathrm{S}}}{\mathrm{V}_{0}} \times 100 \%$
1	10	0.1	$\eta_{1}=\frac{0.1}{0.5} \times 100=20$
2	60	0.2	$\eta_{2}=\frac{0.2}{0.5} \times 100=40$
3	30	1.0	$\eta_{3}=\frac{1}{0.5} \times 100=200$ $\simeq 100 \%$

Overall removal $=\Sigma \mathrm{P}_{\mathrm{i}} \eta_{\mathrm{i}}$

$$
=\frac{10}{100} \times 20+\frac{60}{100} \times 40+\frac{30}{100} \times 100=56 \%
$$

18. Ans: (b)

Sol: $\mathrm{V}_{0}=30 \mathrm{~m}^{3} / \mathrm{m}^{2} /$ day, $\mathrm{S}=2.65$

$$
\begin{aligned}
\rho & =1000 \mathrm{~kg} / \mathrm{m}^{3} \\
\mu & =0.001 \mathrm{~N}-\mathrm{s} / \mathrm{m}^{2}, 1 \text { stoke }=10^{-4} \mathrm{~m}^{2} / \mathrm{sec} \\
\rho_{\mathrm{p}} & =\mathrm{s} \times \rho_{\mathrm{w}}=2.65 \times 1000=2650 \\
\rho_{\mathrm{w}} & =1000 \mathrm{~kg} / \mathrm{m}^{3} \\
\mathrm{~V}_{\mathrm{S}} & =\frac{\mathrm{g}\left(\rho_{\mathrm{p}}-\rho_{\mathrm{w}}\right) \mathrm{d}^{2}}{18 \mu} \\
& =\frac{9.81(2650-1000) \mathrm{d}^{2}}{18 \times 0.001} \\
& =\frac{30 \times 10^{3}}{24 \times 60 \times 60}=\frac{16186.5 \mathrm{~d}^{2}}{0.018} \\
0.540 & =1.39851 \times 10^{9} \mathrm{~d}^{2} \\
\mathrm{~d} & =1.965 \times 10^{-5} \\
\mathrm{~d} & =0.02 \mathrm{~mm}
\end{aligned}
$$

19. Ans: $\mathbf{3 . 1 2 1 4}$

Sol: $d=0.06 \mathrm{~mm}=0.06 \times 10^{-3} \mathrm{~m}$
$\mathrm{g}=9.8 \mathrm{~m} / \mathrm{sec}^{2}$
$\mathrm{G}=2.65$
$v=1.0105 \times 10^{-2} \mathrm{~cm}^{2} / \mathrm{sec}$
$V_{\mathrm{s}}=\frac{\mathrm{g}(\mathrm{G}-1) \mathrm{d}^{2}}{18 \mathrm{v}}$
$\mathrm{V}_{\mathrm{s}}=\frac{9.81 \times(2.65-1) \times\left(0.06 \times 10^{-3}\right)^{2}}{18 \times 1.0105 \times 10^{-6}}$
$\mathrm{V}_{\mathrm{s}}=3.20 \times 10^{-3} \mathrm{~m} / \mathrm{sec}$
Surface area $=\frac{\mathrm{Q}}{\mathrm{V}_{\mathrm{s}}}$

$$
\mathrm{A}=\frac{0.01}{3.20 \times 10^{-3}}=3.124 \mathrm{~m}^{2}
$$

20. Ans: 22.576

$$
\text { Sol: } \begin{aligned}
& \eta=\frac{V_{s}}{V_{o}} \times 100 \\
& V_{o}=40 \mathrm{~m}^{3} / \mathrm{m}^{2} / \mathrm{day}=40 \mathrm{~m} / \mathrm{day} \\
&=4.629 \times 10^{-4} \mathrm{~m} / \mathrm{sec} \\
& \eta=\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{~V}_{\mathrm{o}}} \times 100 \\
& \Rightarrow 90=\frac{\mathrm{V}_{\mathrm{s}}}{4.629 \times 10^{-4}} \times 100 \\
& \mathrm{~V}_{\mathrm{s}}=4.166 \times 10^{-4} \mathrm{~m} / \mathrm{sec} \\
& \mathrm{~V}_{\mathrm{s}}=\frac{\mathrm{g}[\mathrm{~s}-1] \mathrm{d}^{2}}{18 \gamma} \\
& \Rightarrow 4.166 \times 10^{-4}=\frac{9.81[2.65-1]}{18 \times 1.1 \times 10^{-6}} \mathrm{~d}^{2} \\
& \quad \mathrm{~d}=22.576 \times 10^{-6} \mathrm{~m} \\
&=22.576 \mu \mathrm{~m}
\end{aligned}
$$

21. Ans: $\mathbf{1 1 2 . 6 6}$

Sol: Surface over flow rate
$\mathrm{V}_{\mathrm{o}}=32.5 \mathrm{~m}^{3} / \mathrm{day} / \mathrm{m}^{2}$
$\mathrm{L}=32.5 \mathrm{~m}, \mathrm{~B}=8.0 \mathrm{~m}, \mathrm{D}=2.25 \mathrm{~m}$
$\mathrm{L} \times \mathrm{B}=\frac{\mathrm{Q}}{\mathrm{V}_{\mathrm{o}}}$
$\Rightarrow 32.5 \times 8=\frac{\mathrm{Q}}{32.5}$

$$
\mathrm{Q}=32.5 \times 8 \times 32.5 \mathrm{~m}^{3} / \mathrm{day}
$$

$$
\begin{aligned}
\text { Weir loading rate } & =\frac{\mathrm{Q}}{\text { Length of weir }} \\
& =\frac{32.5 \times 8 \times 32.5}{75} \\
& =112.66 \mathrm{~m}^{3} / \mathrm{day} / \mathrm{m}
\end{aligned}
$$

22. Ans: (b)

Sol:

Particle	$\frac{\text { Settling velocity }}{(\mathrm{m} / \mathrm{hr})}$	Initial concentration $(\mathbf{m g} / \boldsymbol{l})$	$\mathbf{n} \times \mathbf{C}_{\mathbf{i n}} \mathbf{m g} / \boldsymbol{l}$
1	1	100	$\mathrm{n}_{1}=\frac{1}{1} \times 100=100$
2	0.5	100	$\mathrm{n}_{2}=\frac{0.5}{1} \times 100=50$
3	0.1	100	$\mathrm{n}_{3}=\frac{0.1}{1} \times 100=10$
4	0.05	100	$\mathrm{n}_{4}=\frac{0.05}{1} \times 100=5$

$=\mathrm{V}_{\mathrm{o}}=1 \mathrm{~m}^{3} / \mathrm{m}^{2} /$ hour $=\mathrm{V}_{\mathrm{o}}=1 \mathrm{~m} /$ hour
Concentration of particle removed $=165 \mathrm{mg} / l$
23. Ans: (b)

Sol:

Particles	$\mathbf{V}_{\mathbf{s}} \mathbf{m} / \mathbf{h r}$	$\mathbf{V}_{\mathbf{0}} \mathbf{m} / \mathbf{h r}$		Concentration Removed, $\mathbf{m g} / \mathbf{l}$
I	3	3	100%	200
II	1	3	33.33%	100

\therefore Concentration in settled water: $200 \mathrm{mg} / \mathrm{l}$

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups \& PSC Exams

05. Coagulation

Common Data Question 1 \& 2

1. Ans: (c)

Sol: $\mathrm{Q}=10 \mathrm{MLD}=10 \times 10^{6} \mathrm{Lit} /$ day
Alum $=20 \mathrm{mg} /$ Lit
1 mg of Alum requires 0.45 mg of
Alkalinity as CaCO_{3}
$\therefore 20 \mathrm{mg} /$ Lit of alum requires
$=20 \times 0.45=9 \mathrm{mg}$ of alkalinity as Caco_{3} per
Lt of water
\therefore Total alkalinity matching filter
Alum $=9 \mathrm{mg} / \mathrm{Lit}$

$$
=10 \times 10^{6} \mathrm{Lit} / \text { day }=90 \times 10^{6}
$$

Total alkanity requirement ($10^{6} \mathrm{mg}$ per day)

$$
=90
$$

02. Ans: (d)

Sol: Natural available alkalinity $=6 \mathrm{mg} /$ Lit
\therefore Alkalinity to be added additionally

$$
=9-6=3 \mathrm{mg} / \mathrm{Lit}
$$

\therefore Alkaline to be added to the water

$$
=3 \times 0.56=1.68 \mathrm{mg} / \mathrm{Lt}
$$

Note: Genrally quick lime(Cao, external alkali) is added to water
Total quick lime required per year

$$
=\frac{1.68 \times 10 \times 10^{6} \times 365}{10^{6}}
$$

Total quick lime required ($10^{6} \mathrm{mg}$ per year)

$$
=6132
$$

3. Ans: 168 kg/day, $5.55 \mathrm{mg} / \mathrm{l}$

Sol: Total quantity of water to be treated $=12$ MLD

Alum dose requirement $=14 \mathrm{ppm}$
Co_{2} gas $=$?
Total alum requirement/day
$=\mathrm{Q} \times$ alum dose

$$
=12 \times 14=168 \mathrm{~kg} / \mathrm{day}
$$

$\mathrm{Al}_{2}\left(\mathrm{So}_{4}\right)_{3} 18 \mathrm{H}_{2} \mathrm{O}+\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$
$\rightarrow 3 \mathrm{CaSo}_{4}+2 \mathrm{Al}(\mathrm{OH})_{3}+6 \mathrm{CO}_{2}+18 \mathrm{H}_{2} 0$
Molecular weight of alum $=666$
Molecular weight of $6 \mathrm{CO}_{2}=6\left[\mathrm{c}\left(\mathrm{O}_{2}\right)\right]$

$$
\begin{aligned}
& =6[12+2 \times 16] \\
& =264
\end{aligned}
$$

666 parts alum release $=264$ parts of CO_{2}
1 part alum release $=\frac{264}{666}$ parts of CO_{2}
$14 \mathrm{mg} / \mathrm{l}$ of alum release $=\frac{264}{666} \times 14 \mathrm{mg} / l$ of CO_{2}

$$
=5.54 \mathrm{mg} / l \text { of } \mathrm{CO}_{2}
$$

04. Ans: 120 kg/day, 24.168 kg/day

Sol: $\mathrm{Q}=12 \mathrm{MLD}$
Dosage of ferrous sulphate $10 \mathrm{mg} / \mathrm{l}$
Total quantity of ferrous sulphate and lime?

$$
=\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}
$$

Total quantity of ferrous sulphate req/day $=\mathrm{Q} \times$ dosage of ferrous sulphate

$$
=10 \times 12=120 \mathrm{~kg} / \mathrm{day}
$$

$\mathrm{FeSO}_{4} 7 \mathrm{H}_{2} \mathrm{O}+\mathrm{Ca}(\mathrm{OH})_{2}$

$$
\rightarrow \mathrm{CaSO}_{4}+\mathrm{Fe}(\mathrm{OH})_{2}+7 \mathrm{H}_{2} \mathrm{O}
$$

$\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{CaO}+\mathrm{H}_{2} \mathrm{O}$
Molecular weight of FeSO_{4}.
$7 \mathrm{H}_{2} \mathrm{O}=\mathrm{Fe}+\mathrm{S}+4(\mathrm{O})+7(2+\mathrm{H}+\mathrm{O}]$
Molecular weight of $\mathrm{CaO}=56$
278 parts of ferrous sulphate required
$=56$ parts of CaO
1 part of ferrous sulphate required

$$
=\frac{56}{278} \text { parts of } \mathrm{CaO}
$$

$10 \mathrm{mg} / \mathrm{l}$ of ferrous $=\frac{56}{278} \times 10 \mathrm{mg} / l$ as CaO

$$
=2.14 \mathrm{mg} / \mathrm{l}
$$

Total lime as CaO required/day

$$
\begin{aligned}
& =\mathrm{Q} \times \text { dose of } \mathrm{CaO} \\
& =12 \times 2.014 \\
& =24.168 \mathrm{~kg} / \text { day }
\end{aligned}
$$

05. Ans: $\mathbf{3 7 8 0} \mathbf{~ k g}$

Sol: $\mathrm{Q}=3.5 \mathrm{~m}^{3} / \mathrm{min}=5.04 \mathrm{MLD}$
Dose of alum $=25 \mathrm{mg} / l$
Total alum required in $\mathrm{kg} /$ day

$$
\begin{aligned}
& =\mathrm{Q}(\mathrm{MLD}) \times \text { dose of alum }(\mathrm{mg} / l) \\
& =5.04 \times 25=126 \mathrm{~kg} / \text { day }
\end{aligned}
$$

Monthly alum requirement $=126 \times 30$

$$
=3780 \mathrm{~kg}
$$

06. Ans: 14.36

Sol: $G=\sqrt{\frac{p}{V \mu}}$

$$
100=\sqrt{\frac{\mathrm{p}}{1800 \times 0.798 \times 10^{-3}}}
$$

$$
\begin{aligned}
\mathrm{P} & =(100)^{2} \times 1800 \times 0.798 \times 10^{-3} \\
& =14364 \mathrm{watt} \\
& =14.364 \mathrm{kw}
\end{aligned}
$$

7. Ans: (b)

Sol: $G=\sqrt{\frac{\mathrm{P}}{\mathrm{V} \mu}}$

$$
\Rightarrow 600=\sqrt{\frac{\mathrm{P}}{2 \times 1 \times 10^{-3}}}
$$

$$
P=(600)^{2} \times 2 \times 1 \times 10^{-3}
$$

$=720$ watts
08. Ans: (d)

Sol: $\mathrm{Q}=28800 \mathrm{~m}^{3} / \mathrm{d}$;

$$
\rho_{\mathrm{w}}=1000 \mathrm{~kg} / \mathrm{m}^{3}
$$

$v=10^{-6} \mathrm{~m}^{2} / \mathrm{sec} ; \quad \mathrm{G}=900 \mathrm{~s}^{-1}$
$\mathrm{DT}=2 \mathrm{~min}$
Volume of mixing basin $=\mathrm{Q} \times \mathrm{DT}$
$\mathrm{V}=\frac{28800 \times 2}{24 \times 60}=40 \mathrm{~m}^{3}$
$\mathrm{G}=\sqrt{\frac{\mathrm{P}}{\mathrm{V} \mathrm{\mu}}}$
$900=\sqrt{\frac{\mathrm{P}}{40 \times 10^{-6} \times 1000}}$
$\mathrm{P}=32400$ watts
09. Ans: 1613.92 watts

Sol: $\mathrm{Q}=3000 \mathrm{~m}^{3} / \mathrm{hr} ; \mathrm{G}=40 \mathrm{sec}^{-1}$
D.T $=20 \mathrm{~min} ; \quad \mu=1.0087 \times 10^{-3} \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}$

Volume $=\mathrm{Q} \times \mathrm{DT}=3000 \times \frac{20}{60}=1000 \mathrm{~m}^{3}$

$$
\frac{L}{B}=2
$$

$$
\mathrm{D}=0.40 \mathrm{~B}
$$

$$
\mathrm{L}=2 \mathrm{~B}
$$

AACE

Surface area $=\frac{\text { Volume }}{\text { depth }}=\frac{1000}{0.40 \mathrm{~B}}$
$L \times B=\frac{1000}{0.40 B}$
$B \times 2 B \times 0.40 B=1000$
$0.80 \mathrm{~B}^{3}=1000$
$B=10.77 \mathrm{~m}, \mathrm{~L}=21.54 \mathrm{~m}, \mathrm{D}=4.3 \mathrm{~m}$
$G=\sqrt{\frac{P}{v . \mu}}$
$40=\sqrt{\frac{\mathrm{P}}{1000 \times 1.008 \times 10^{3}}}$
$\mathrm{P}=1613.92$ watts
10. Refer Previous GATE solutions Book
11. Ans: (b)

Sol: $\mathrm{Q}=4.2 \mathrm{~m}^{3} / \mathrm{min}$
$\mathrm{V}_{0}=0.2 \mathrm{~mm} / \mathrm{sec}$;
$\mathrm{d}=3.5 \mathrm{~m}$
$\mathrm{V}_{0}=\frac{\mathrm{Q}}{\text { surface area }}$

$$
0.2 \times 10^{-3}=\frac{4.2}{60 \times \mathrm{A}}
$$

$$
\mathrm{A}=350 \mathrm{~m}^{2}
$$

12. Ans: (c)

Sol: For high turbid \& high alkaline water, predominant mechanism is sweep coagulation.
13. Ans: (b)

Sol: Sweep coagulation is dominant for high turbid \& high alkaline waters.

06. Filtration

1. Ans: $\mathbf{3 5 . 3 5} \mathbf{~ m}, \mathbf{1 7 . 6 7} \mathbf{~ m}$

Sol: $\mathrm{P}=50,000$ person
$\mathrm{ROF}=180 \mathrm{lit} / \mathrm{hr} / \mathrm{m}^{2}$
$\mathrm{Q}=$ Population \times per capita demand
$\mathrm{Q}=50,000 \times 150=7500000 \mathrm{lit} /$ day
Design discharge $\mathrm{Q}_{\text {density }}=1.8 \times \mathrm{Q}$
$=1.8 \times 7500000$
$=135 \times 10^{5} \mathrm{lit} /$ day
$\mathrm{ROF}=180 \mathrm{lit} / \mathrm{hr} / \mathrm{m}^{2}$
Total area of slow sand filter $=\frac{\mathrm{Q}_{\text {density }}}{\text { ROF }}$
$\frac{135 \times 10^{5}}{24 \times 180} \frac{\mathrm{lit} / \mathrm{hr}}{\mathrm{lit} / \mathrm{hr} / \mathrm{m}^{2}}=3125 \mathrm{~m}^{2}$
No. of filters in operations $=5$
(1 act as stand by)
Area of each filter $L \times B$

$$
\begin{aligned}
& =\frac{\text { Totalarea }}{\text { no. of filters in operation }} \\
& =\frac{3125}{5}=625 \mathrm{~m}^{2}
\end{aligned}
$$

$\mathrm{L}: \mathrm{B}=2: 1 \Rightarrow \mathrm{~L}=2 \mathrm{~B}$

$$
\begin{aligned}
2 \mathrm{~B} \times \mathrm{B} & =625 \mathrm{~m}^{2} \\
\mathrm{~B}^{2} & =625 / 2 \\
\mathrm{~B} & =\sqrt{\frac{625}{2}}=17.67 \mathrm{~m} \\
\mathrm{~L} & =35.35 \mathrm{~m}
\end{aligned}
$$

D. ACE	17	Environmental Engineering

2. Ans: 11

Sol: Treated water $\mathrm{Q}=10 \mathrm{MLD}$

$$
=10 \times 10^{3} \mathrm{~m}^{3} / \text { day }
$$

Rate of filtration RDF $=\mathbf{2 0 0} \mathbf{l i t} / \mathbf{h r} / \mathbf{m}^{2}$

$$
=200 \times 10^{-3} \times 24 \mathrm{~m}^{3} / \mathrm{day} / \mathrm{m}^{2}
$$

Total area required to treat water

$$
\begin{aligned}
& =\frac{\mathrm{Q}}{\mathrm{RDF}}=\frac{10 \times 10^{3}}{200 \times 10^{-3} \times 24} \\
& =2083.33 \mathrm{~m}^{2}
\end{aligned}
$$

Area of each filter $=20 \times 10 \mathrm{M}^{2}$
No. of filters required $=\frac{\text { Total area of filters }}{\text { area of each filter }}$

$$
=\frac{2083.33}{200}
$$

$$
=10.41 \simeq 11 \text { numbers }
$$

3. Ans: $\mathbf{2 0} \mathbf{m}, \mathbf{1 0} \mathbf{m}, \mathbf{4 . 1 9 \%}$

Sol: $\mathrm{Q}=24 \mathrm{MLD}, \mathrm{ROF}=5 \mathrm{~m}^{3} / \mathrm{hr} / \mathrm{m}^{2}$,

$$
\text { L.B = } 2: 1
$$

Total area of RSF req $=\frac{1000}{5}=200 \mathrm{~m}^{2}$
$\mathrm{Q}=\frac{24 \times 10^{6} \times 10^{-3}}{24}=1000 \mathrm{~m}^{3} / \mathrm{hr}$
No. of filters $=1$
Area of filter $=200 \mathrm{~m}^{2}$

$$
\begin{gathered}
\mathrm{L} \times \mathrm{B}=200 \quad\left\{\because \frac{\mathrm{~L}}{\mathrm{~B}}=\frac{2}{1}\right\} \\
2 \mathrm{~B}
\end{gathered} \mathrm{\times B=200} \begin{aligned}
& \mathrm{B}^{2}=\frac{200}{2}=\sqrt{\frac{200}{2}}=10 \mathrm{~m} \\
& \mathrm{~L}=2 \times 10=20 \mathrm{~m}
\end{aligned}
$$

Volume of water filter b / w back wash
$=$ ROF \times duration of filtration \times area of each filter
$=5 \times\left(24-\frac{10}{60}\right) \times 200=23833.33 \mathrm{~m}^{3}$
Volume of water used in back wash ROB \times
DOB \times area
$=6 \times 5 \times \frac{10}{60} \times 200=1000 \mathrm{~m}^{3}$
\% of filter water used in back wash
$=\frac{\text { volume of water filtered back wash }}{\text { volume of filtered } b / w \text { back }}$

$$
=\frac{1000}{23833.3} \times 100=4.19 \%
$$

4. Ans: $9.48 \mathrm{~m}, \mathbf{4 . 7 4} \mathbf{~ m}, \mathbf{0 . 2 2 5} \mathrm{~m}^{3} / \mathrm{sec}$

Sol: $\mathrm{Q}=0.25 \mathrm{~m}^{3} / \mathrm{sec}$, No. of filters $=4$,

$$
\mathrm{ROF}=5 \mathrm{~m}^{3} / \mathrm{m}^{2} / \mathrm{hr}
$$

Back wash rate, $10 \mathrm{l} / \mathrm{m}^{2} / \mathrm{sec}$,
$\mathrm{L}: \mathrm{B}=2: 1$
$\mathrm{L}=$? , $\mathrm{B}=$?

Total area of RSF $=\frac{\mathrm{Q}}{\mathrm{ROF}}=\frac{0.25}{\frac{5}{60 \times 60}}$

$$
=\frac{0.25 \times 60 \times 60}{6}=180 \mathrm{~m}^{2}
$$

Area of each filter $=\frac{180}{4}=45 \mathrm{~m}^{2}$
$\mathrm{L} \times \mathrm{B}=45$
$2 \mathrm{~B} \times \mathrm{B}=45$
$2 \mathrm{~B}^{2}=45$

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups \& PSC Exams
$B=\sqrt{\frac{45}{2}}=4.74 \mathrm{~m}$
$\mathrm{L}=2 \times 4.74=9.48 \mathrm{~m}$
$=10 \times 45=450$ liter $/ \mathrm{sec}=0.45 \mathrm{~m}^{3} / \mathrm{sec}$
Back wash water flow rate $\mathrm{ROB}=$ velocity
$\left(V_{B}\right) \times$ Area of each filter
$=10 \times 45=450 \mathrm{lit} / \mathrm{sec}$
$=0.45 \mathrm{~m}^{3} / \mathrm{sec}$
There are two troughs
Flow through each wash water $=\frac{\mathrm{Q}}{2}$

$$
=\frac{0.45}{2}=0.225 \mathrm{~m}^{3} / \mathrm{sec}
$$

5. Ans: $\mathbf{0 . 2 7} \mathbf{m}$

Sol: $\mathrm{V}_{1}=\mathrm{i}_{\mathrm{r}}=3.0 \mathrm{~m} / \mathrm{hr}$

$$
\begin{aligned}
& \mathrm{L}=0.6 \mathrm{~m} \quad \phi=0.8 \\
& \mathrm{~d}=0.5 \mathrm{~mm} \quad \mathrm{n}=0.4 \\
& \mathrm{~S}=2.68 \mathrm{v}=1 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{sec}
\end{aligned}
$$

$$
\operatorname{Re}=\frac{\left(\mathrm{V}_{\mathrm{s}} \cdot \mathrm{~d}\right) \phi}{v}
$$

$$
=\frac{3 \times\left(0.5 \times 10^{-3}\right) \times 0.8}{1 \times 10^{-6} \times 60 \times 60}=0.33
$$

$$
\mathrm{f}=\frac{150(1-\mathrm{n})}{\operatorname{Re}}+1.75
$$

$$
=\frac{150(1-0.4)}{0.33}+1.75=271.75
$$

$$
\mathrm{h}_{\mathrm{f}}=\frac{\mathrm{f} \cdot L \cdot V_{\mathrm{s}}^{2}}{\mathrm{gd}} \times \frac{(1-\mathrm{n})}{\mathrm{n}^{3} \times \phi}
$$

$$
=\frac{271.75 \times 0.6\left(\frac{3}{60 \times 60}\right)^{2}}{9.81 \times 0.5 \times 10^{-3}} \times \frac{(1-0.4)}{0.4^{3} \times 0.8}
$$

$$
=0.251 \mathrm{~m}
$$

6. Ans: $0.032 \mathrm{~m} / \mathrm{sec}, \mathbf{0 . 6 2 5 8} \mathrm{m}$

Sol: $\mathrm{d}=0.65 \mathrm{~mm}, \mathrm{G}=2.66, \mathrm{n}=0.42$,
$\mathrm{z}=65 \mathrm{~cm}=0.65 \mathrm{~m}$
$V_{s}=\frac{g(s-1) d^{2}}{18 \gamma}$
$=\frac{9.81(2.66-1) \times\left(0.65 \times 10^{-3}\right)^{2}}{18 \times 1.3 \times 10^{-2} \times 10^{-4}}$
$=0.29 \mathrm{~mm} / \mathrm{sec}$
$\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{S}}\left(\mathrm{n}_{\mathrm{e}}\right)^{4.5}$
$\frac{\mathrm{z}_{\mathrm{e}}}{\mathrm{z}}=\frac{1-\mathrm{n}}{1-\mathrm{n}_{\mathrm{e}}}$
$\frac{1.53}{\mathrm{z}}=\frac{1-0.42}{1-\mathrm{n}_{\mathrm{e}}}$
$1.5\left(1-\mathrm{n}_{\mathrm{e}}\right)-1-0.42 \Rightarrow 1.5-1.5 \mathrm{n}_{\mathrm{e}}=0.58$
$\mathrm{n}_{\mathrm{e}}=\frac{1.5-0.58}{1.5}$
$\mathrm{n}_{\mathrm{e}}=0.613$
$\mathrm{V}_{\mathrm{B}}=0.29(0.613)^{4.5}=0.032 \mathrm{~m} / \mathrm{sec}$
Head loss during back wash h_{b}

$$
\begin{aligned}
& =\mathrm{z}(1-\mathrm{n})(\mathrm{s}-1) \\
& =0.6258 \mathrm{~m}
\end{aligned}
$$

7. Ans: (a)

Sol: $\frac{1}{z} \ln \frac{100}{100-\eta_{1}}=\frac{1}{z_{2}} \ln \frac{100}{100-\eta_{2}}$
$Z_{1}=0.05 \mathrm{~m}, \eta_{1}=90 \%, \eta_{2}=99 \%$
$\mathrm{Z}_{2}=$?
$\frac{1}{0.05} \ln \frac{100}{100-90}=\frac{1}{\mathrm{z}_{2}} \ln \frac{100}{100-99}$
$46.06=\frac{1}{\mathrm{z}_{0}} \times 4.606$
$\Rightarrow \mathrm{z}_{2}=\frac{4.606}{46.06}$
$\mathrm{Z}_{2}=0.10 \mathrm{~m}$

Common data for Question Nos. 08 \& 09

08. Ans: (c)

Sol: $\mathrm{ROF}=200 \mathrm{~m}^{3} / \mathrm{m}^{2} / \mathrm{d}$,

$$
\mathrm{Q}=0.5 \mathrm{~m}^{3} / \mathrm{s}, \mathrm{~A}=50 \mathrm{~m}^{2}
$$

$$
\begin{aligned}
\text { Total area }=\frac{\mathrm{Q}}{\mathrm{ROF}} & =\frac{0.5}{\frac{200}{24 \times 60 \times 60}} \\
& =216 \mathrm{~mm}^{2}
\end{aligned}
$$

9. Ans: (c)

Sol: No. of filters $=\frac{216}{50}=4.32 \approx 5$
Total no. of filters $=6$
10. Ans: $144 \mathrm{~m}^{3} /$ day $/ \mathrm{m}^{2}$

Sol: $\mathrm{Q}=1 \mathrm{~m}^{3} / \mathrm{sec}=86400 \mathrm{~m}^{3} /$ day no.of filters $=14$ surface area of each filter $=50 \mathrm{~m}^{2}$ no. of filters in working condition

$$
=14-2=12
$$

Loading rate $=\frac{\mathrm{Q}}{\text { surface area }}=\frac{86400}{12 \times 50}$

$$
=144 \mathrm{~m}^{3} / \mathrm{day} / \mathrm{m}^{2}
$$

11. Ans: 7.53

Sol: ROF : $200 \mathrm{~m}^{3} /$ day $/ \mathrm{m}^{2}=\frac{200}{24} \mathrm{~m}^{3} / \mathrm{hr} / \mathrm{m}^{2}$
ROB : $1000 \mathrm{~m}^{3} /$ day $/ \mathrm{m}^{2}=\frac{1000}{24} \mathrm{~m}^{3} / \mathrm{hr} / \mathrm{m}^{2}$
DOB : 15 min
Filter water wasted for 30 min
DOF : $24-\frac{15}{60}-\frac{30}{60}=23.25 \mathrm{hr}$
Amount of water filtered/day

$$
=\mathrm{ROF} \times \mathrm{DOF} \times(\mathrm{L} \times \mathrm{B})
$$

$$
=\frac{200}{24} \times(23.25) \times(\mathrm{L} \times \mathrm{B})
$$

Amount of water recycled \& reused

$$
=\mathrm{ROB} \times \mathrm{DOB} \times(\mathrm{L} \times \mathrm{B})+\mathrm{ROF} \times
$$

Duration of maturation $\times(\mathrm{L} \times \mathrm{B})$
$=\frac{1000}{24} \times \frac{15}{60} \times(\mathrm{L} \times \mathrm{B})+\frac{200}{24} \times \frac{30}{60} \times(\mathrm{L} \times \mathrm{B}) \rightarrow(2)$
Percentage increase in filtered water

$$
\begin{aligned}
& =\frac{\frac{1000}{24} \times \frac{15}{60} \times(\mathrm{L} \times \mathrm{B})+\frac{200}{24} \times \frac{30}{60} \times(\mathrm{L} \times \mathrm{B})}{\frac{200}{24} \times 23.25 \times(\mathrm{L} \times \mathrm{B})} \times 100 \\
& =\frac{250+100}{4650} \times 100=7.526 \%
\end{aligned}
$$

12. Refer Previous GATE solutions Book
13. Refer Previous GATE solutions Book
14. Refer Previous GATE solutions Book
15. Ans: (a)

Sol: $\mathrm{MMF}>\mathrm{DMF}>$ RSF $>$ SSF
17. Ans: (a)

Sol:

Filter operating problem	Effect
Air binding	air and gases locked in the bed.
Mud deposition	mud balls are formed
Cracking of bed	mud penetrates deeper in side the bed.
Sand incrustation	changes effective size of sand.

N: AC	20	CIVIL-Postal Coaching Solutions

18. Ans: (b)

Sol: Flow $=1$ MLD $=\frac{10^{6}}{24} \ell / \mathrm{hr}$
Rate of filtration $=4000 \mathrm{l} / \mathrm{hr} / \mathrm{m}^{2}$
Size of filter $=\frac{\text { Flow }}{\text { R.O.P }}=\frac{24}{4000} 10.41$

$$
\approx 11 \mathrm{~m}^{2}
$$

07. Disinfection

01. Ans: $\mathbf{5 1 . 2} \mathbf{~ s e c}$

Sol: $\mathrm{N}_{\mathrm{o}}=10^{6}$
$\mathrm{N}_{\mathrm{t}}=100 \quad\left[\because \ell \mathrm{n}\left(\frac{\mathrm{N}_{\mathrm{t}}}{\mathrm{N}_{\mathrm{o}}}\right)=-\mathrm{kt}\right]$
$\ln \left(\frac{100}{10^{6}}\right)=-6 \times 10^{-3} \times 30 \times t$
$\mathrm{t}=51.16 \mathrm{sec}$

02. Ans: (c)

Sol: Population $=20,000$ at a per capita demand

$$
=150 \text { lit/day }
$$

$$
\begin{aligned}
\mathrm{Q} & =20,000 \times 150 \\
& =\frac{3000000}{10^{6}} \mathrm{lit} / \mathrm{day}=3 \mathrm{MLD}
\end{aligned}
$$

Bleaching powder $=0.2 \mathrm{mg} / l$
$\mathrm{Cl}_{2}=0.2 \mathrm{ppm}=0.2 \mathrm{mg} / l$
$\mathrm{Ca}(\mathrm{Ocl})_{2}=30 \%$ available Cl_{2}
Bleaching powder

$$
\begin{aligned}
& =\frac{\mathrm{Cl}_{2} \text { dose }}{\% \text { of } \mathrm{Cl}_{2} \text { bleaching powder }} \\
& =\frac{0.2}{\frac{30}{100}}=0.66 \mathrm{mg} / l
\end{aligned}
$$

Total bleaching powder required/day
$=3 \times 0.66=1.98=2 \mathrm{~kg} /$ day
03. Ans: (c)

Sol: $\mathrm{Cl}_{2}=20,000 \mathrm{Cum}$
8 kg . residual after $10 \mathrm{~min}=0.15 \mathrm{mg} / \mathrm{l}$
$\mathrm{Q}=20,000 \mathrm{~m}^{3} /$ day
Total Cl_{2} used $=8 \mathrm{~kg} /$ day
Residual $\mathrm{Cl}_{2}=0.15 \mathrm{mg} / l$
Dose of $\mathrm{Cl}_{2}=$?
Demand $=$?
Total $\mathrm{Cl}_{2}=\mathrm{Q} \times$ design of Cl_{2}
$8=20,000 \times$ dose of Cl_{2} MLD
Dose of $\mathrm{Cl}_{2}=\frac{8}{20}=0.4 \mathrm{mg} / l$
Cl_{2} demand $=\mathrm{Cl}_{2}$ dose - Residual Cl_{2}

$$
=0.4-0.15=0.25 \mathrm{mg} / l
$$

4. Ans: (b)

Sol:

Total residual $=0.3+0.5=0.80 \mathrm{mg} / l$
05. Ans: (b)

Sol: $\frac{\mathrm{HOCL}}{(\mathrm{HOCL}+\mathrm{OCL})} \frac{1}{1+\frac{\mathrm{K}_{\mathrm{i}}}{\mathrm{H}^{+}}}$
$0.9=\frac{1}{1+\frac{2.7 \times 10^{-8}}{\mathrm{H}^{+}}}$
$\mathrm{H}^{+}=2.43 \times 10^{-7}$
$\mathrm{P}^{\mathrm{H}}=\log _{10}\left[\frac{1}{\mathrm{H}^{+}}\right]$
$\Rightarrow \mathrm{P}^{\mathrm{H}}=6.614$
08. Ans: (d)

Sol: Cl_{2} available in Bleaching powder (B.P) $=$ $0.3 \mathrm{mg} / \mathrm{m} \mathrm{l}$
Cl_{2} dose $=0.1 \mathrm{mg} / \mathrm{l}$
Volume of water to be treated $=200 \mathrm{ml}$
Total amount of Bleaching powder required $=$?

Bleaching powder required $=\frac{\mathrm{C} \ell_{2} \text { dose }}{\mathrm{C} \ell_{2} \text { in B.P }}$

$$
=\frac{0.1}{0.3} \frac{\mathrm{mg} / \ell}{\mathrm{mg} / \mathrm{m} \ell}
$$

Total bleaching powder required
$=$ bleaching powder dose \times Volume of water

$$
=\frac{0.1}{0.3} \times \frac{200}{1000} \mathrm{~m} l
$$

9. Ans: 3.2 min

Sol: Residual $=0.6 \mathrm{mg} / \mathrm{l}, \mathrm{K}=3 \times 10^{-2}$ per sec $\mathrm{t}=$?
$\%$ of kill $=\frac{\mathrm{N}_{\mathrm{o}}-\mathrm{N}_{\mathrm{t}}}{\mathrm{N}_{\mathrm{o}}} \times 100$
$99.7=\left(1-\mathrm{e}^{-\mathrm{kt}}\right) \times 100$
$99.7=\left(1-\mathrm{e}^{-3 \times 10^{-2} \times \mathrm{t}}\right) \times 100$
Solving

$$
\begin{aligned}
\mathrm{t}=193.63 \mathrm{sec} & =\frac{193.63}{60} \\
& =3.2 \mathrm{~min}
\end{aligned}
$$

10. Ans: (c)

Sol: Percent removal (\%R)

$$
=\left(\frac{10^{6}-10^{2}}{10^{6}}\right) \times 100=99.99 \%
$$

$$
\log (\mathrm{R})=\log 10^{6}-\log 10^{2}=6-2=4
$$

11. Ans: (a)

Sol: Free residual

$$
\begin{aligned}
& =\mathrm{HOCL}+\mathrm{OCL}^{-}=2 \mathrm{mg} / \text { lit as } \mathrm{Cl}_{2} \\
& 2(\mathrm{mg} / \mathrm{lit})=\mathrm{Cl}_{2}\left(\frac{\mathrm{moles}}{\text { lit }}\right) \times \text { Mol. wt } \times 1000 \\
& \frac{2}{2 \times 35.5 \times 1000}=\mathrm{Cl}_{2}(\mathrm{moles} / \mathrm{lit}) \\
& \mathrm{Cl}_{2}=2 \mathrm{mg} / \mathrm{lit}=2.816 \times 10^{-5}(\mathrm{moles} / \mathrm{lit}) \\
& \mathrm{P}_{\mathrm{H}}=7.5 \quad \therefore \mathrm{P}_{\mathrm{H}}=\log _{10}\left(\frac{1}{\mathrm{H}^{+}}\right) \\
& \Rightarrow \mathrm{H}^{+}=10^{-7.5} \text { moles } / \mathrm{lit} \\
& \frac{\mathrm{HOCL}^{\mathrm{OCL}}}{\mathrm{OCL}^{-}}=[\mathrm{K}]\left[\mathrm{H}^{+}\right]=10^{7.5} \times 10^{-7.5} \\
& 5 \therefore \mathrm{HOCL}^{2}=\mathrm{OCL}^{-}
\end{aligned}
$$

$$
\Rightarrow \mathrm{HOCL}+\mathrm{OCL}^{-}=2 \mathrm{mg} / \mathrm{lit}
$$

$$
=2.816 \times 10^{-5}(\mathrm{moles} / \mathrm{lit})
$$

$\because 2 \mathrm{OCL}^{-}=2.816 \times 10^{-5}$
$\because \mathrm{OCL}^{-}=1.408 \times 10^{-5} \mathrm{moles} /$ lit

12. Ans: (b)

Sol: Fraction $\mathrm{HOCL}=\frac{1}{1+\frac{\mathrm{k}}{\mathrm{H}^{+}}}$
$\mathrm{pH}=7 \Rightarrow \mathrm{H}^{+}=10^{-7} \mathrm{~mole} /$ lit
ace
India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups \& PSC Exams
online
$\mathrm{k}=2.5 \times 10^{-8} \mathrm{~mol} / \mathrm{lit}$

$$
=\frac{1}{1+\frac{2.5 \times 10^{-8}}{10^{-7}}}=\frac{1}{1.25}=0.8
$$

13. Ans: (a)

Sol: $\quad \mathrm{C}^{\mathrm{n}} \mathrm{t}=$ constant $\Rightarrow \mathrm{t} \propto \frac{1}{\mathrm{C}}$
$\mathrm{C} \rightarrow$ Concentration of disinfectant
$\mathrm{t} \rightarrow$ detention time (or) contact time
$\mathrm{n} \rightarrow$ dilution factor.
Contact time " t " $=\frac{\text { Volume of contact unit }}{\text { Flow rate }}$

$$
=\frac{\mathrm{V}}{\mathrm{Q}}
$$

$\therefore \quad C^{n} t=$ constant
$\therefore \mathrm{C}_{1} \mathrm{t}_{1}=\mathrm{C}_{2}{ }^{\mathrm{n}} \mathrm{t}_{2}=$ constant

$$
\mathrm{C}_{1}^{\mathrm{n}} \frac{\mathrm{~V}}{\mathrm{Q}_{1}}=\mathrm{C}_{2}^{\mathrm{n}} \frac{\mathrm{~V}}{\mathrm{Q}_{2}}
$$

$$
\frac{\mathrm{C}_{1}^{\mathrm{n}}}{\mathrm{Q}_{1}}=\frac{\mathrm{C}_{2}^{\mathrm{n}}}{\mathrm{Q}_{2}}
$$

$$
\mathrm{C}_{1}=\frac{\text { Total chlorine }}{\mathrm{Q}}
$$

$$
\mathrm{C}_{1}=\frac{32}{16}=2 \mathrm{mg} / l
$$

$$
\frac{2^{1}}{16}=\frac{\mathrm{C}_{2}^{1}}{22}
$$

$$
\Rightarrow \mathrm{C}_{2}=2 \times \frac{22}{16}=2.75 \mathrm{mg} / l
$$

\therefore Total chlorine required for 22 MLD

$$
\begin{aligned}
& =Q_{2} \times C_{2} \\
& =22 \times 2.75=60.5 \mathrm{~kg} / \mathrm{day}
\end{aligned}
$$

14. Ans: $\mathbf{5 0 . 0 2} \mathbf{m}^{3}$

Sol: \% sewage kill ' η " $=\left(1-\mathrm{e}^{-\mathrm{kt}}\right) \times 100$
$\mathrm{K}=0.145$
$98=\left(1-\mathrm{e}^{-0.145 \times t}\right) \times 100$
$\Rightarrow \mathrm{t}=26.979 \mathrm{~min}$
Contact time " t " = detention time

$$
=7.0358 \mathrm{~min}
$$

Volume of disinfection unit $=\mathrm{Q} \times \mathrm{Dt}$
$=\frac{2670}{24 \times 60} \times 26.979=50.02 \mathrm{~m}^{3}$
18. Ans: (a)

Sol: Dose of bleaching powder $=2 \mathrm{mg} / \mathrm{l}$
$\mathrm{Q}=\frac{10000 \times 50}{10^{6}}=0.5 \mathrm{MLD}$
Total amount required $=\mathrm{Q} \times$ Dose of bleaching powder

$$
=0.5 \times 2=1 \mathrm{~kg} / \mathrm{day}
$$

19. Ans: (c)

Sol: $\mathrm{Q}=4 \mathrm{MLD}$
Residual $\mathrm{Cl}_{2}=0.25 \mathrm{mg} / l$
Cl_{2} demand $=1.25 \mathrm{mg} / l$
Cl_{2} dose $=1.25+0.25=1.5 \mathrm{mg} / l$
Bleaching Powder dose $=\frac{1.5}{0.25}=6 \mathrm{mg} / l$
Total BP required per day $=\mathrm{Q} \times$ dose of BP

$$
=4 \times 6=24 \mathrm{~kg} / \mathrm{day}
$$

20. Ans: (b)

Sol: $\mathrm{Q}=10 \mathrm{MLD}$
Dose of $\mathrm{Cl}_{2}=0.8 \mathrm{mg} / l$
$\mathrm{DT}=$ contact time $=40 \mathrm{~min}$
Capacity $=\mathrm{Q} \times \mathrm{DT}$

$$
=\frac{10 \times 10^{6}}{10^{3} \times 24 \times 60} \times 40 \simeq 280 \mathrm{~m}^{3}
$$

08. Miscellaneous Water Treatment

07. Ans: (b)

Sol: liquid -gas system absorption.
Water
 bubbles
10. Ans: 385.714

Sol:

$$
\begin{aligned}
& \mathrm{C}_{\text {in }}=420 \mathrm{mg} / \mathrm{l} \\
& C_{\text {out }}=75 \mathrm{mg} / \mathrm{l} \\
& \mathrm{Q}=4 \times 540=2160 \text { lit/day } \\
& \eta=\frac{C_{\text {in }}-C_{\text {out }}}{C_{\text {in }}} \times 100=\frac{420-75}{420} \times 100 \\
& =82.142 \% \\
& \eta=100 \% \\
& \mathrm{C}_{\text {mix }}=\frac{\left(\mathrm{Q}-\mathrm{Q}_{\mathrm{B}}\right) \mathrm{C}_{\text {out }}+\mathrm{Q}_{\mathrm{B}} \mathrm{C}_{\mathrm{B}}}{\mathrm{Q}} \\
& 75=\frac{\left(\mathrm{Q}-\mathrm{Q}_{\mathrm{B}}\right) \times 0+\mathrm{Q}_{\mathrm{B}} \times 420}{2160} \Rightarrow \mathrm{Q}_{\mathrm{B}} \\
& =385.714 \text { lit/day }
\end{aligned}
$$

Flow that can be by passed $=385.714$ Lit/day
12. Ans: (d)

Sol: Recarbonation is employed to convert insoluble precipitates in to soluble form.

09. Distribution System

3.

Sol:

$$
\begin{array}{lll}
\mathrm{Q}_{\mathrm{B}}=50 ; & \mathrm{Q}_{2}=20 ; & \mathrm{Q}_{4}=60 \\
\mathrm{Q}_{5}=10 ; & \mathrm{h}_{\mathrm{f} 5}=20 ; & \mathrm{h}_{\mathrm{f} 4}=100
\end{array}
$$

Consider junction ' D ', unknown is Q_{4}

$$
\mathrm{Q}_{4}=60 \overbrace{\mathrm{Q}=100}^{\mathrm{A}} \underset{\mathrm{Q}_{3}=40}{\mathrm{C}}
$$

Consider junction A, unknown is Q_{5}

	24	CIVIL-Postal Coaching Solutions

Consider junction C , unknown is Q_{2}

Consider junction B, unknown is Q_{B}

Consider loop ABCA, $\sum \mathrm{H}_{\mathrm{ABCA}}: 0$

$+\mathrm{h}_{\mathrm{f} 1}-\mathrm{h}_{\mathrm{f} 2}-\mathrm{h}_{\mathrm{f} 5}=0$
$+60-40-\mathrm{h}_{\mathrm{f5}}=0$
$h_{f 5}=20$

Consider loop ACDA

$\Sigma \mathrm{H}_{\mathrm{ACDA}}=0$
$+\mathrm{h}_{\mathrm{f} 5}-\mathrm{h}_{\mathrm{f}}+\mathrm{h}_{\mathrm{f} 4}=0$
$20-120+\mathrm{h}_{\mathrm{f} 4}=0$
$\mathrm{h}_{\mathrm{f} 4}=100$
06. Ans: 0.615

$\mathrm{ht}=\mathrm{r} . \mathrm{Q}^{1.8}$
$\Sigma \mathrm{H}_{\mathrm{ABCA}}=0$
$\left(\mathrm{h}_{\mathrm{f}}\right)_{\mathrm{AB}}-\left(\mathrm{h}_{\mathrm{f}}\right)_{\mathrm{BC}}-\left(\mathrm{h}_{\mathrm{f}}\right)_{\mathrm{AC}}=0$
$\mathrm{rQ}_{\mathrm{AB}}^{1.8}-\mathrm{rQ}_{\mathrm{BC}}^{1.8}-\mathrm{r}_{\mathrm{AC}} \cdot \mathrm{Q}_{\mathrm{AC}}^{1.8}=0$
$1 \times(50)^{1.8}-2 \times(20)^{1.8}-\mathrm{r}_{\mathrm{AC}} \cdot(50)^{1.8}=0$
$703=\mathrm{r}_{\mathrm{AC}} \times(50)^{1.8}$
$\mathrm{r}_{\mathrm{AC}}=0.615$
09. Ans: (d)

Sol: Balancing reservoirs absorb fluctuation between supply \& demand.
10. Ans: (b)

Sol: Grid iron system require long length of pipes more no. of valves. Designs is difficult but it is expensive.

No dead ends: flow can be diverted.

Waste Water Engineering

01. Introduction to Waste Water Engineering and Estimation of DWF \& WWF

1. Ans: (b)

Sol: Storm's which occurs over catchment, if the duration of storm is not given (while calculating storm water discharge resulting from the catchment) calculating time of concentration is assumed as duration of storm.
02. Ans: (a)

Sol: $\operatorname{Intensity}(\mathrm{I})=\frac{\sum \mathrm{A}_{\mathrm{i}} \times \mathrm{I}_{\mathrm{i}}}{\mathrm{A}}$

$$
\begin{aligned}
& =\frac{(40)(0.8)+(30)(0.2)+(30)(0.1)}{40+30+30} \\
& =0.41
\end{aligned}
$$

$\mathrm{Q}_{\mathrm{wwF}}=\frac{\text { AIR }}{360}$ Where $\mathrm{A}=16$ ha
$\mathrm{I}=0.41$
$\mathrm{R}=5 \mathrm{~cm} / \mathrm{hr}=50 \mathrm{~mm} / \mathrm{hr}$
$\therefore \mathrm{Q}_{\mathrm{wwF}}=\frac{(16)(0.41)(50)}{360}=0.911 \mathrm{~m}^{3} / \mathrm{sec}$
03. Ans: $\mathbf{0 . 1 7 3 6} \mathrm{m}^{\mathbf{3}} / \mathrm{sec}, \mathbf{2 . 0 1 5} \mathrm{m}^{3} / \mathrm{sec}$

Sol: Population $=1,00,000$
$\mathrm{Q}_{\mathrm{Dwf}}=$ Population \times percapita \times factor

$$
=1,00,000 \times 200 \times 0.75
$$

$$
\begin{aligned}
=15 \times 10^{6} \mathrm{lpcd} & =15 \mathrm{MLD} \\
& =0.1736 \mathrm{~m}^{3} / \mathrm{sec} \\
\mathrm{Q}=\frac{\mathrm{AIR}}{360} \Rightarrow \mathrm{R}=\frac{25.4 \mathrm{a}}{\mathrm{t}_{\mathrm{c}}+\mathrm{b}} & =\frac{25.4 \times 40}{50+20} \\
& =14.51 \mathrm{~mm} / \mathrm{hr} \\
=\frac{100 \times 0.5 \times 14.15}{360} & =2.015 \mathrm{~m}^{3} / \mathrm{sec}
\end{aligned}
$$

4. Ans: $2.508 \mathrm{~m}^{3} / \mathrm{sec}$

Sol: $P=40000$
$\mathrm{A}=75 \mathrm{ha}$
$\mathrm{I}=0.70$
Factor $=0.70$
$\mathrm{Q}_{\mathrm{DWF}}=$ Population \times rate of flow \times factor
$Q_{\text {DWF }}=40000 \times 120 \times 0.70$

$$
=0.0388 \mathrm{~m}^{3} / \mathrm{sec}
$$

$\mathrm{Q}_{\mathrm{WWF}}=\frac{\mathrm{AIR}}{360}=\frac{75 \times 0.70 \times 16.93}{360}$
$\mathrm{Q}_{\mathrm{wwf}}=2.47 \mathrm{~m}^{3} / \mathrm{sec}$
$\mathrm{R}=\frac{25.4 \times 40}{40+20}=16.93 \mathrm{~mm} / \mathrm{hr}$
Combined discharge $=0.0388+2.470$

$$
=2.5088 \mathrm{~m}^{3} / \mathrm{sec}
$$

5. Ans: $0.323 \mathrm{~m}^{3} / \mathrm{sec}$

Sol: $\mathrm{A}=1 \mathrm{~km}^{2}=100 \mathrm{ha}$;
$\mathrm{P}=1000 \mathrm{no} / \mathrm{ha}$
Rate of flow $=200 \mathrm{lpcd}$
Factor $=0.80$

A A C	26	CIVIL-Postal Coaching Solutions

$$
\begin{aligned}
& \mathrm{P}=100000 \\
& \mathrm{I}=\frac{1.2 \times 10}{24}=0.5 \mathrm{~mm} / \mathrm{hr} \\
& \mathrm{Q}_{\mathrm{DWF}}=\frac{100000 \times 200 \times 0.80 \times 10^{-3}}{24 \times 3600} \\
& \begin{aligned}
\mathrm{Q}_{\mathrm{DWF}}=0.185 \mathrm{~m}^{3} / \mathrm{sec}
\end{aligned} \\
& \mathrm{R}=0.5 \mathrm{~mm} / \mathrm{h}
\end{aligned} \quad \begin{aligned}
\mathrm{Q}_{\mathrm{WWF}}=\frac{\mathrm{AIR}}{360}=\frac{100 \times 1 \times 0.5}{360} \\
\begin{aligned}
\mathrm{Q}_{\mathrm{WWF}} & =0.138 \mathrm{~m}^{3} / \mathrm{sec} \\
\mathrm{Q}_{\text {Design }} & =\mathrm{Q}_{\mathrm{DWF}}+\mathrm{Q}_{\mathrm{WWF}} \\
& =0.185+0.138=0.323 \mathrm{~m}^{3} / \mathrm{sec}
\end{aligned}
\end{aligned}
$$

06. Ans: $1.61 \mathrm{~m}^{3} / \mathrm{sec}$

Sol: Given Area $(\mathrm{A})=50$ ha Impression factor $(\mathrm{I})=0.8$

$$
\begin{aligned}
\therefore \mathrm{Q} & =\frac{\mathrm{AIR}}{360}=\mathrm{m}^{3} / \mathrm{sec} \\
\mathrm{R} & =\frac{25.4 \times \mathrm{a}}{\mathrm{t}+\mathrm{b}} \\
\mathrm{t} & =(10 \mathrm{~min})+\left(\frac{2400}{1}\right) \times \frac{1}{60} \mathrm{~min} \\
\mathrm{t} & =50 \mathrm{~min}
\end{aligned}
$$

as $\mathrm{t}>20, \mathrm{a}=40, \mathrm{~b}=20$
$\therefore \mathrm{R}=\frac{25.4 \times 40}{50+20}=14.514 \mathrm{~m} / \mathrm{hr}$
$\therefore \mathrm{Q}=\frac{50 \times 0.8 \times 14.514}{360}$
$\mathrm{Q}=1.612 \mathrm{~m}^{3} / \mathrm{sec}$
08. Ans: (c)

Sol: $\mathrm{A}=3.6 \mathrm{ha}$
$\mathrm{R}=2 \mathrm{~cm} / \mathrm{hr}=20 \mathrm{~mm} / \mathrm{hr}$
$\mathrm{I}=1$ (Impervious surface)
$\mathrm{Q}=\frac{\mathrm{AIR}}{360}=\frac{3.6 \times 20 \times 1}{360}=0.2 \mathrm{~m}^{3} / \mathrm{sec}$

02. Design of Sewers

02. Ans: 1.311 m

Sol: $A=150$ ha
$\mathrm{P}=50,000$
$\mathrm{V}=3.2 \mathrm{~m} / \mathrm{sec} \quad\left[\mathrm{t}_{\mathrm{c}}=\mathrm{t}_{\mathrm{e}}+\mathrm{t}_{\mathrm{f}}=5+20=25 \mathrm{~min}\right]$
$\mathrm{t}_{\mathrm{e}}=5 \mathrm{~min}$
$\mathrm{t}_{\mathrm{f}}=20 \mathrm{~min}$
$\mathrm{Q}=270 \mathrm{lt} / \mathrm{d} / \mathrm{c}$
Impermissibility factor $=0.45$
Factor $=0.75$
$\mathrm{Q}_{\mathrm{DWF}}=50000 \times 270 \times 0.75$
$=0.117 \mathrm{~m}^{3} / \mathrm{sec}$

$$
\begin{aligned}
\mathrm{Q}_{\mathrm{WWF}} & =\frac{\mathrm{AIR}}{360} \\
& =\frac{150 \times 0.45 \times 22.57}{360}
\end{aligned}
$$

$$
\left[\begin{array}{l}
\mathrm{R}=\frac{25.4 \mathrm{a}}{\mathrm{t}_{\mathrm{c}}+\mathrm{b}} \\
=\frac{25.4(40)}{25+20}=22.57
\end{array}\right]
$$

$$
=4.23
$$

$$
\mathrm{Q}=\mathrm{Q}_{\mathrm{DWF}}+\mathrm{Q}_{\mathrm{WWF}}=0.117+4.23
$$

$$
=4.34 \mathrm{~m}^{3} / \mathrm{sec}
$$

$\mathrm{Q}=\mathrm{AV}$

	27	Environmental Engineering

$4.34=\frac{\pi}{4} \times \mathrm{D}^{2} \times 3.2$
$\mathrm{D}^{2}=\frac{4 \times 4.34}{\pi \times 3.2}=1.72$
$\mathrm{D}=\sqrt{1.72}=1.311 \mathrm{~m}$
03. Ans: (c)

Sol: $\quad \mathrm{V}=\frac{1}{\mathrm{n}} .(\mathrm{R})^{2 / 3} . \mathrm{S}^{1 / 2}$
The velocity of flowing full and flowing half will be same
$\mathrm{V}=1 \mathrm{~m} / \mathrm{sec}$

04. Ans: 1 in 449

Sol: $\operatorname{dia}=45 \mathrm{~cm}=0.45 \mathrm{~m}$
Population $=30000 ; \mathrm{Q}_{\text {design }}=3.5 \mathrm{Q}_{\text {DWF }}$
$\mathrm{S}=$?
Running full
$\mathrm{n}=0.012$
Factor $=0.80$
Rate of water supply $=150 \mathrm{lpcd}$
$Q_{\text {DWF }}=$ Population \times per capita water supply
\times factor
$Q_{\text {DWF }}=\frac{30000 \times 150 \times 0.80}{24 \times 10^{3} \times 60 \times 60}$
$\mathrm{Q}_{\text {DWF }}=0.0416 \mathrm{~m}^{3} / \mathrm{sec}$
$\mathrm{Q}_{\text {design }}=3.5 \times 0.0416$

$$
=0.1456 \mathrm{~m}^{3} / \mathrm{sec}
$$

Running full $\mathrm{A}=\frac{\pi}{4} \mathrm{D}^{2}$
$R=\frac{D}{4}$
$\mathrm{Q}_{\text {design }}=\mathrm{A} . \mathrm{V}$

$$
\begin{aligned}
& =\frac{\pi}{4} D^{2} \times \frac{1}{n} \times(\mathrm{R})^{2 / 3} \times(\mathrm{S})^{1 / 2} \\
& 0.1456=\frac{\pi}{4} \times(0.45)^{2} \times \frac{1}{0.012} \times\left(\frac{0.45}{4}\right)^{2 / 3} \times(\mathrm{S})^{1 / 2} \\
& \mathrm{~S}=0.0022 \\
& \mathrm{~S}=\frac{1}{448.5} \simeq \frac{1}{449}
\end{aligned}
$$

5. Ans: $1.353 \mathrm{~m}^{3} / \mathrm{sec}$

Sol: $\mathrm{Q}=$?

$$
\begin{aligned}
& \mathrm{d}=1.25 \mathrm{~m} \\
& \mathrm{~S}=\frac{1}{360}, \mathrm{n}=0.011
\end{aligned}
$$

Half-full

$$
\begin{aligned}
& A=\frac{\pi}{8} D^{2} \quad R=\frac{D}{4} \\
& Q=A . V=\frac{\pi}{8} D^{2} \times \frac{1}{n}(R)^{2 / 3}(S)^{1 / 2} \\
& Q=\frac{\pi}{8} \times(1.25)^{2} \times \frac{1}{0.011} \times\left(\frac{1.25}{4}\right)^{2 / 3} \times\left(\frac{1}{360}\right)^{1 / 2}
\end{aligned}
$$

$\mathrm{Q}=1.35 \mathrm{~m}^{3} / \mathrm{sec}$
06. Ans: 0.656 m/sec, $\mathbf{1}$ in 2160

Sol: $\mathrm{V}_{\text {self }}=$?
Dia of sand particles $d=1 \mathrm{~mm}$
$\mathrm{S}=2.65$
$\mathrm{K}=0.1$
$\mathrm{f}=0.03$
$\mathrm{n}=0.013$
$\mathrm{V}_{\text {self }}=\sqrt{\frac{8 \mathrm{~K}}{\mathrm{f}}(\mathrm{S}-1) \mathrm{g} \cdot \mathrm{d}}$

ACE	28	CIVIL-Postal Coaching Solutions

$$
\begin{aligned}
& \mathrm{V}_{\text {self }}=\sqrt{\frac{8 \times 0.1}{0.03}(2.65-1) \times 9.81 \times 1 \times 10^{-3}} \\
& \mathrm{~V}_{\text {self }}=0.656 \mathrm{~m}^{3} / \mathrm{sec} \\
& \mathrm{~V}_{\text {self }}=\mathrm{V}=\frac{1}{\mathrm{n}} \cdot(\mathrm{R})^{2 / 3}(\mathrm{~S})^{1 / 2} \\
& 0.656=\frac{1}{0.03} \cdot\left(\frac{1}{4}\right)^{2 / 3}(\mathrm{~S})^{1 / 2} \\
& \mathrm{~S}=4.63 \times 10^{-4}=\frac{1}{2159} \\
& \mathrm{~S}=1 \text { in } 2159 \simeq 1 \text { in } 2160
\end{aligned}
$$

7. Ans: $0.36 \mathbf{m}, \mathbf{0 . 0 2 7} \mathrm{~m}^{3} / \mathrm{sec}, \mathbf{0 . 4 3} \mathbf{~ m} / \mathbf{s e c}$

Sol: dia of sewer D = ?
$\mathrm{n}=0.013$
$\mathrm{Q}=0.05 \mathrm{~m}^{3} / \mathrm{sec}$
$\mathrm{S}=1$ in 1000
Flow full

$$
\begin{aligned}
& \mathrm{A}=\frac{\pi}{4} \mathrm{D}^{2} \\
& \mathrm{R}=\frac{\mathrm{D}}{4} \\
& \mathrm{Q}=\mathrm{A} \cdot \mathrm{~V} \\
& \mathrm{Q}=\frac{\pi}{4} \mathrm{D}^{2} \cdot \frac{1}{\mathrm{n}} \cdot(\mathrm{R})^{2 / 3} \cdot(\mathrm{~S})^{1 / 2} \\
& 0.05=\frac{\pi}{4} \mathrm{D}^{2} \cdot \frac{1}{0.013} \cdot\left(\frac{\mathrm{D}}{4}\right)^{2 / 3} \cdot\left(\frac{1}{1000}\right)^{1 / 2} \\
& \mathrm{D}=0.36 \mathrm{~m}
\end{aligned}
$$

If the flow were at 0.60 depth

$$
\begin{aligned}
\mathrm{d} & =0.60 \mathrm{D} \\
\mathrm{q} & =? \\
\mathrm{~V} & =?
\end{aligned}
$$

$\frac{\mathrm{d}}{\mathrm{D}}=\frac{0.6 \mathrm{D}}{\mathrm{D}}=0.60$

d / D	q / Q	v / V
0.60	0.54	0.88

$\frac{\mathrm{q}}{\mathrm{Q}}=0.54$
$\mathrm{q}=0.54 \times 0.05=0.027 \mathrm{~m}^{3} / \mathrm{sec}$
$\frac{\mathrm{v}}{\mathrm{V}}=0.88$
$\mathrm{V}=0.88 \times \frac{1}{\mathrm{n}} .(\mathrm{R})^{2 / 3} .(\mathrm{S})^{1 / 2}$
$\mathrm{V}=0.88 \times \frac{1}{0.014} \cdot\left(\frac{0.36}{4}\right)^{2 / 3} \cdot\left(\frac{1}{1000}\right)^{1 / 2}$
$\mathrm{V}=0.43 \mathrm{~m} / \mathrm{sec}$
08. Ans: (a)

Sol: Slope $=\frac{1}{400}$
$\mathrm{V}=0.7 \mathrm{~m} / \mathrm{s}$
dia of sewer $=600 \mathrm{~mm}$
slope $=\frac{1}{200}$
$\mathrm{V}=$?

$$
\begin{array}{rl}
\mathrm{V}=\frac{1}{\mathrm{n}}(\mathrm{R})^{2 / 3}(\mathrm{~S})^{1 / 2} & \mathrm{R}
\end{array}=\frac{\mathrm{D}}{4},
$$

$\frac{1}{n}=\frac{\mathrm{V}}{(\mathrm{R})^{2 / 3}(\mathrm{~S})^{1 / 2}}$

	29	Environmental Engineering

$$
\begin{aligned}
& \quad \frac{1}{\mathrm{n}}=\left[\frac{\mathrm{V}}{(\mathrm{R})^{2 / 3}(\mathrm{~S})^{1 / 2}}\right]_{\text {full }}=\left[\frac{\mathrm{V}}{(\mathrm{R})^{2 / 3}(\mathrm{~S})^{1 / 2}}\right]_{\text {half }} \\
& =\left[\frac{0.7}{\left(\frac{0.3}{4}\right)^{2 / 3}\left(\frac{1}{400}\right)^{1 / 2}}\right]_{\text {full }}=\left[\frac{\mathrm{V}}{\left(\frac{0.6}{4}\right)^{2 / 3}\left(\frac{1}{200}\right)^{1 / 2}}\right] \\
& \\
& \mathrm{V}=1.59 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

9. Ans: (c)

Sol: $\frac{\mathrm{Q}_{\text {full }}}{\mathrm{Q}_{\text {half }}}=\frac{\mathrm{A}_{\text {full }} \mathrm{V}}{\mathrm{A}_{\text {half }} \mathrm{V}}=\frac{\frac{\pi}{4} \mathrm{D}^{2} \times \mathrm{V}}{\frac{\pi}{8} \mathrm{D}^{2} \times \mathrm{V}}=2$
The Velocity remains same for the pipe flowing full and half full, if diameter and bed slope remains same.

10. Ans: (c)

Sol: D = 300 mm ;

$$
\begin{aligned}
& \mathrm{q}=1728 \mathrm{~m}^{3} / \text { day } ; \\
& \mathrm{n}=0.015 ; \\
& \mathrm{S}=1 / 280
\end{aligned}
$$

To find ' Q '

$$
\begin{aligned}
& \mathrm{Q}=\mathrm{A} \cdot \mathrm{~V}=\frac{\pi}{4} \cdot \mathrm{D}^{2} \times \frac{1}{\mathrm{n}} \cdot \mathrm{R}^{2 / 3} \cdot \mathrm{~S}^{1 / 2} \\
& =\frac{\pi}{4} \cdot(0.3)^{2} \times \frac{1}{0.015} \times\left(\frac{0.3}{4}\right)^{2 / 3} \times\left(\frac{1}{280}\right)^{1 / 2} \\
& =0.05 \mathrm{~m}^{3} / \mathrm{sec} \\
& \quad=4320 \mathrm{~m}^{3} / \text { day }
\end{aligned} \quad \begin{aligned}
& \therefore \frac{\mathrm{q}}{\mathrm{Q}}=\frac{1728}{4320}=0.4
\end{aligned}
$$

For $\frac{\mathrm{q}}{\mathrm{Q}}=0.4$; from the graph (given).

$$
\frac{\mathrm{d}}{\mathrm{D}}=0.5
$$

For $\frac{\mathrm{d}}{\mathrm{D}}=0.5$, the $\frac{\mathrm{v}}{\mathrm{V}}=0.8$

$$
\therefore \frac{\mathrm{d}}{\mathrm{D}}=0.5
$$

$$
\Rightarrow \quad d=0.5 \times 0.3=150 \mathrm{~mm}
$$

$$
\therefore \frac{\vartheta}{\mathrm{V}}=0.8
$$

$$
\vartheta=0.8 \times 0.708=0.57 \mathrm{~m} / \mathrm{sec}
$$

11. Ans: (c)

Sol: $\left(\frac{D}{2}\right)^{2}=\left(\frac{D}{4}\right)^{2}+x^{2}$

$$
x^{2}=\frac{D^{2}}{16}-\frac{D^{2}}{4}
$$

$$
x=\frac{\sqrt{3} D}{4}
$$

$$
\operatorname{Sin} \theta=\frac{x}{\underline{D}}
$$

$$
2
$$

$$
=\frac{\frac{\sqrt{3}}{4} \mathrm{D}}{\frac{\mathrm{D}}{2}}
$$

$$
=\frac{\sqrt{3}}{2}
$$

$$
\theta=60^{\circ}
$$

Total angle @ $\theta=120^{\circ}$
$360^{\circ} \rightarrow 2 \pi r$
$120^{\circ} \rightarrow$?
$?=\frac{2 \pi r \times 120}{360}$
$?=\frac{2 \pi r}{3}$
$=\frac{2 \pi \times \frac{\mathrm{D}}{2}}{3}$
Wetted perimeter $=\frac{\pi \mathrm{D}}{3}$
12. Ans: (a)

Sol: $\mathrm{Q}=\mathrm{AV}$

$$
\mathrm{Q}=\mathrm{A} \times \frac{1}{\mathrm{n}} \mathrm{R}^{2 / 3} \mathrm{~S}^{1 / 2}
$$

Velocity and discharge remain same $\mathrm{n} \rightarrow$ coefficient of Roughness or Rugosity $\mathrm{n} \alpha \mathrm{S}^{1 / 2}$
$\left(\frac{\mathrm{S}_{2}}{\mathrm{~S}_{1}}\right)^{1 / 2}=\frac{\mathrm{n}_{2}}{\mathrm{n}_{1}}$
$\left(\frac{\mathrm{S}_{2}}{\mathrm{~S}_{1}}\right)^{1 / 2}=\frac{0.02}{0.01}$
$\frac{\mathrm{S}_{2}}{\mathrm{~S}_{1}}=(2)^{2}$
$S_{2}=4 S_{1}$
Increased by 4 times.
15. Ans: (c)

Sol:

The continuity of sewers is maintained at the crown of the sewers to avoid back flow.
16. Ans: (a)

Sol: Man holes are provided when two are more sewers (junction) meet, change in gradient, change in direction and even provided along the straight alignment at regular interval for inspection, maintenance, repair of sewers.

03. Characteristics of Sewage

1. Ans: $212.19 \mathrm{mg} / \mathrm{lit}$

Sol: Ultimate BOD $\mathrm{L}_{\mathrm{o}}=$?

$$
6 \mathrm{ml} \rightarrow \text { Waste } \rightarrow \mathrm{D}_{\mathrm{o}}=0
$$

$$
294 \mathrm{ml} \rightarrow \text { distilled } \rightarrow \mathrm{D}_{0}=8.6 \mathrm{mg} / l
$$

$$
\left(\mathrm{D}_{0}\right)_{\text {Final }}=5.4 \mathrm{mg} / l
$$

$$
\mathrm{K}(\text { base }) \mathrm{e}=0.25 \mathrm{~d}^{-1}
$$

$$
\begin{aligned}
\left(\mathrm{D}_{0}\right)_{\text {Initial }} & =\frac{\mathrm{V}_{\mathrm{D}}\left(\mathrm{D}_{0}\right)+\mathrm{V}_{\mathrm{S}}\left(\mathrm{D}_{0}\right)_{\mathrm{S}}}{\mathrm{~V}_{0}+\mathrm{V}_{\mathrm{S}}} \\
& =\frac{294 \times 8.6+6 \times 0}{294+6}
\end{aligned}
$$

$\left(\mathrm{D}_{0}\right)_{\mathrm{I}}=8.428 \mathrm{mg} / \mathrm{l}$

$$
\left.\mathrm{y}_{5}^{20^{\circ} \mathrm{C}}=\left[\mathrm{D}_{0}\right)_{\mathrm{I}}-\left(\mathrm{D}_{0}\right)_{\mathrm{F}}\right] \times \mathrm{D} . \mathrm{F}
$$

$$
\mathrm{y}_{5}^{20^{\circ} \mathrm{C}}=[8.428-5.4] \times \frac{300}{6}
$$

$$
=151.4 \mathrm{mg} / l
$$

	31	Environmental Engineering

5 day BOD at $20^{\circ} \mathrm{C}^{\mathrm{y}} \mathrm{y}_{5}^{2{ }^{\circ} \mathrm{C}}$
$\mathrm{y}_{\mathrm{t}}^{\text {TOC }}=\mathrm{L}_{0}\left(1-\mathrm{e}^{\mathrm{K}_{\mathrm{t}} \times \mathrm{t}}\right)$
$\mathrm{y}_{\mathrm{t}}^{20^{\circ} \mathrm{C}}=151.4=\mathrm{L}_{0}\left(1-\mathrm{e}^{\mathrm{K}_{20} \times 0}\right)$
$151.4=\mathrm{L}_{0}\left(1-\mathrm{e}^{-0.25 \times 5}\right)$
$\mathrm{L}_{0}=$ Ultimate $\mathrm{BOD}^{\prime} \mathrm{L}_{0}{ }^{\prime}=212.19 \mathrm{mg} / \mathrm{l}$
02. Ans: (d)

Sol: 5% dilution of sample $=\frac{100}{5}=20$

$$
=\frac{300}{15}=20
$$

$\left(\mathrm{D}_{0}\right)_{\mathrm{F}}=3.80 \mathrm{mg} / l,\left(\mathrm{D}_{0}\right)_{\text {blank }}=8.80 \mathrm{mg} / \mathrm{l}$
$\left(\mathrm{D}_{0}\right)_{\mathrm{S}}=0.8 \mathrm{mg} / \mathrm{l}$

$$
\begin{aligned}
\left(\mathrm{D}_{0}\right)_{\mathrm{I}} & =\left(\mathrm{D}_{0}\right)_{\text {mixer }}=\frac{\mathrm{V}_{0}\left(\mathrm{D}_{0}\right)_{0}+\mathrm{V}_{\mathrm{S}}\left(\mathrm{D}_{0}\right)_{\mathrm{S}}}{\mathrm{~V}_{0}+\mathrm{V}_{\mathrm{S}}} \\
& =\frac{285 \times 8.8+0.8}{285+15}=8.4 \mathrm{mg} / l \\
\mathrm{y}_{5}^{20} & =\left[\left(\mathrm{D}_{0}\right)_{\mathrm{I}}-\left(\mathrm{D}_{0}\right)_{\mathrm{F}}\right] \mathrm{DF} \\
& =(8.4-3.80) \times 20=92 \mathrm{mg} / l
\end{aligned}
$$

03. Ans: (c)

Sol: Fail in finding the BOD of waste water

04. Ans: $\mathbf{9 0} \mathbf{~ m g} / \boldsymbol{l}$

Sol: $\mathrm{y}_{5}^{30^{\circ} \mathrm{C}}=$ sewage sample $=110 \mathrm{mg} / l$,
$K_{D(20)}=0.1 /$ day $=$ base 10

$$
\begin{aligned}
& \mathrm{y}_{5}^{30^{\circ} \mathrm{C}}=\mathrm{L}_{0}\left(1-\mathrm{e}^{-\mathrm{K}_{\mathrm{t}} \mathrm{t}}\right) \\
& \mathrm{y}_{5}^{20^{\circ} \mathrm{C}}=?
\end{aligned}
$$

$\begin{aligned} \mathrm{K}_{20}(\text { base } 10)=0.1 \mathrm{~d}^{-1} & =2.3 \times 0.1 \\ & =0.23 \mathrm{~d}^{-1}\end{aligned}$

$$
\begin{aligned}
& \mathrm{L}_{0}=\frac{\mathrm{y}_{\mathrm{t}}^{\mathrm{T}^{0} \mathrm{C}}}{\left(1-\mathrm{e}^{-\mathrm{k}_{\mathrm{t}} \mathrm{t}}\right)}=\frac{\mathrm{y}_{5}^{30^{\circ} \mathrm{C}}}{\left(1-\mathrm{e}^{-\mathrm{k}_{\mathrm{t}} \mathrm{t}}\right)} \\
& \mathrm{y}_{5}^{30}=\mathrm{L}_{0}\left(1-\mathrm{e}^{-\mathrm{K}_{30} \times \mathrm{t}}\right) \\
& \mathrm{K}_{\mathrm{T}}=\mathrm{K}_{20}(1.047)^{\mathrm{T}-20} \\
& \mathrm{~K}_{30}=0.23(1.047)^{30-20} \\
&=0.364 \mathrm{~d}^{-1} \\
& 110=\mathrm{L}_{0}\left(1-\mathrm{e}^{-0.364 \times 5}\right) \\
& \mathrm{L}_{0}=131.78 \mathrm{mg} / l \\
& \mathrm{y}_{5}^{20}=\mathrm{L}_{0}\left(1-\mathrm{e}^{-\mathrm{K}_{20} \times 5}\right) \\
& 131.78\left(1-\mathrm{e}^{-0.23 \times 5}\right)=90 \mathrm{mg} / l
\end{aligned}
$$

5. Ans: $246.36 \mathrm{mg} / \mathrm{l}$

Sol: $\mathrm{y}_{1}^{30^{\circ} \mathrm{C}}=110 \mathrm{mg} / l, \mathrm{y}_{5}^{20^{\circ} \mathrm{C}}=$?

$$
\begin{aligned}
\mathrm{K}_{(20)} & =0.1 \mathrm{~d}^{-1} \\
& =2.3 \times 0.1 \\
& =0.23 \mathrm{~d}^{-1} \\
\mathrm{y}_{1}^{30^{\circ} \mathrm{C}} & =\mathrm{L}_{0}\left(1-\mathrm{e}^{-0.364 \times 1}\right) \\
110 & =\mathrm{L}_{0}\left(1-\mathrm{e}^{-364 . \times 1}\right) \\
5 \mathrm{~L}_{0} & =360.5 \mathrm{mg} / l \\
\mathrm{~K}_{30} & =0.23(1.047)^{30-20} \\
& =0.364 \mathrm{~d}^{-1} \\
\mathrm{y}_{5}^{20} & =\mathrm{L}_{0}\left(1-\mathrm{e}^{-\mathrm{K}_{20} \times 0}\right) \\
& =360.5\left(1-\mathrm{e}^{-0.23 \times 5}\right)=246.36 \mathrm{mg} / l
\end{aligned}
$$

6. Ans: 304000

Sol: $\mathrm{Q}=80 \times 10^{6} l / \mathrm{d}, \mathrm{y}_{5}=285 \mathrm{mg} / l$, compute daily 5 day O_{2} demand

Total strength of waste $=\mathrm{Q} \times \mathrm{y}$

$$
\begin{aligned}
& =80 \times 285 \\
& =22800 \mathrm{~kg} / \mathrm{day}
\end{aligned}
$$

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups \& PSC Exams

Population equation $=\frac{\mathrm{Q} \times \mathrm{y}}{\text { per capita } \mathrm{BOD}}$
$75 \mathrm{~g}=\frac{22800}{\text { per capita BOD }}$
Per $=\frac{22800}{75 \times 10^{-3}}=\frac{\mathrm{kg} / \text { day }}{\mathrm{kg} / \text { day }}$
Population equation $=304000$ persons
07. Ans: 93.72\%

Sol: $\mathrm{Sr}=100\left(1-0.794^{\mathrm{t}}\right)$

$$
=100\left(1-0.794^{12}\right)
$$

$\mathrm{Sr}=93.72 \%$
08. Ans: 1%

Sol: $\mathrm{BOD}_{5}=600 \mathrm{mg} / l$,
$\mathrm{K}=0.23 / \mathrm{d}$ (base e); $\mathrm{K}=0.23 \mathrm{~d}^{-1}, \mathrm{~L}_{0}=$?
$\mathrm{BOD}_{\mathrm{u}}$ remain unaxidised after 20 days $=$?

$$
\begin{aligned}
& \mathrm{y}_{5}^{20^{\circ} \mathrm{C}}=\mathrm{L}_{0}\left(1-\mathrm{e}^{\mathrm{K}_{\mathrm{t}} \mathrm{t}}\right) \\
& 600=\mathrm{L}_{0}\left(1-\mathrm{e}^{-0.23 \times 5}\right) \\
& \mathrm{L}_{0}=878.01 \mathrm{mg} / l \\
& \mathrm{~L}_{20}=\mathrm{L}_{0} \mathrm{e}^{-\mathrm{Kt}} \\
&= 878.01 \times \mathrm{e}^{\mathrm{Kt}} \\
& \quad=878.01 \times \mathrm{e}^{-0.23 \times 20}=8.82 \mathrm{mg} / l
\end{aligned}
$$

$\%$ of unoxidised $=\frac{8.82}{878.01} \times 100=1 \%$
1% of BOD after 20 days
09. Ans: (a)

Sol:

Waste water Volume $\mathbf{~ m l}$	Initial $\mathbf{D}_{\mathbf{0}}$ $\mathbf{m g} / \boldsymbol{l}$	$\mathbf{D}_{\mathbf{0}}$ after $\mathbf{5 0}$ day $\mathbf{~ m g} / \boldsymbol{l}$
5	9.2	6.9
10	9.1	4.4
50	8.4	0.0

Diluted $=\frac{300}{5}=60$

$$
\begin{aligned}
\mathrm{y}_{5}^{20} & =\left[\left(\mathrm{D}_{0}\right)_{\mathrm{I}}-\left(\mathrm{D}_{0}\right)_{\mathrm{F}}\right] \times \mathrm{DF} \\
& =[9.2-6.9] \times 60=138 \mathrm{mg} / l \\
\mathrm{y}_{5}^{20} & =[9.1-4.4] \times \frac{300}{10}=141 \mathrm{mg} / l
\end{aligned}
$$

$$
\mathrm{BOD}_{\text {avg }}=\frac{138+141}{2}=139.5 \mathrm{mg} / \mathrm{l}
$$

10. Ans: (c)

Sol: $K=0.01 h^{-1}$ (base)

$$
\begin{aligned}
= & 0.01 \times 24 \mathrm{~h}^{-1} \\
= & 0.24 \mathrm{~h}^{-1} \\
\mathrm{y}_{5}^{20} & =\mathrm{L}_{0}\left(1-\mathrm{e}^{-\mathrm{Kt}}\right) \\
190 & =\mathrm{L}_{0}\left(1-\mathrm{e}^{-0.0124 \times 5}\right) \\
\mathrm{L}_{0} & =\frac{190}{\left(1-\mathrm{e}^{0.24 \times 5}\right)}=271.89 \mathrm{mg} / l
\end{aligned}
$$

11. Ans: (d)

Sol: $\mathrm{y}_{5}^{20}=180 \mathrm{mg} / l, \mathrm{~K}_{\mathrm{T}}=\mathrm{K}_{20}(1.047)^{\mathrm{T}-20}$
$\mathrm{BOD}=2.5$ day

$$
\left[\mathrm{y}_{5}^{20}=\mathrm{L}_{0}\left(1-\mathrm{e}^{-0.18 \times 5}\right)\right]
$$

$$
\begin{aligned}
& \mathrm{y}_{2.5}^{\mathrm{T}^{\mathrm{C}} \mathrm{C}}=180 \mathrm{mg} / \mathrm{l} \\
& \mathrm{y}_{5}^{20}=\mathrm{y}_{2.5}^{\mathrm{T}^{\circ} \mathrm{C}} \\
& \mathrm{~L}_{0}\left(1-\mathrm{e}^{-\mathrm{K}_{20} \times 5}\right)=\mathrm{L}_{\mathrm{o}}\left(1-\mathrm{e}^{-\mathrm{K}_{\mathrm{T}} \times 2.5}\right) \\
& \mathrm{K}_{20} \times 5=\mathrm{K}_{20}(1.047)^{\mathrm{T}-20} \times 2.5 \\
& (1.047)^{\mathrm{T}-20}=\frac{5}{2.5} \\
& (\mathrm{~T}-20) \mathrm{Ln}(1.047)=\mathrm{Ln} 2 \\
& (\mathrm{~T}-20) 0.045=0.693 \\
& \mathrm{~T}=35^{0} \mathrm{C}
\end{aligned}
$$

12. Ans: (c)

Sol: $\mathrm{BOD}_{3}=75 \mathrm{mg} / l, \mathrm{~K}=0.345 \mathrm{~d}^{-1}$ (base e)

$$
\begin{aligned}
& \mathrm{BOD}=10 \text { days }=? \\
& \mathrm{y}_{3}^{20}=\mathrm{L}_{0}\left(1-\mathrm{e}^{-0.345 \times 3}\right) \\
& \mathrm{L}_{0}=116.31 \mathrm{mg} / l \\
& \mathrm{~L}_{\mathrm{t}}=116.31\left(1-\mathrm{e}^{-0.345 \times 10}\right) \\
& \mathrm{L}_{\mathrm{t}}=112.61 \mathrm{mg} / l \\
& \mathrm{~L}_{0}-\mathrm{L}_{\mathrm{t}}=116.31-112.61=3.7 \mathrm{mg} / l
\end{aligned}
$$

14. Ans: (b)

Sol: $y_{5}^{20^{\circ} \mathrm{C}}=200 \mathrm{mg} / \mathrm{l}$
$y_{5}^{30^{\circ} \mathrm{C}}>\mathrm{y}_{5}^{20^{\circ} \mathrm{C}}$
$\therefore \mathrm{k}_{30}>\mathrm{k}_{20}$

15. Ans: (c)

Sol: Ultimate BOD is independent of time and temperature and remain same at all temperature.
16. Ans: (b)

Sol: $y_{5}^{20^{\circ} \mathrm{C}}=\left[(\mathrm{DO})_{\mathrm{I}}-(\mathrm{DO})_{\mathrm{F}}\right] \times \mathrm{DF}$

$$
=[8.5-5.5] \times \frac{100}{2}=150 \mathrm{mg} / l
$$

17. Ans: (a)

Sol: Organic matter in waste water is used as food by micro organisms in BOD test.
18. Ans: (c)

Sol: $\mathrm{y}=162 \mathrm{mg} / \mathrm{l}$

$$
\mathrm{Q}=1000 \mathrm{~m}^{3} / \mathrm{day}
$$

$$
\mathrm{Q}=1000 \times 1000 l \mathrm{pcd}=1 \mathrm{MLD}
$$

Per capita BOD $=80 \mathrm{gm} /$ capita
Population equivalent

$$
\begin{aligned}
& =\frac{\text { total } \mathrm{BOD}}{\text { per capita } \mathrm{BOD}} \\
& =\frac{\mathrm{Qy}}{80 \times 10^{-3}}=\frac{1 \times 162}{80 \times 10^{-3}}=2025
\end{aligned}
$$

19. Ans: (b)

Sol: $\left[\left(\mathrm{D}_{0}\right)\right]_{1}=8 \mathrm{mg} / l,\left(\mathrm{D}_{0}\right)_{\mathrm{f}}=2 \mathrm{mg} / l$

$$
\text { Dilution factor }=\frac{300}{2}=150 \mathrm{ml}
$$

$$
\begin{aligned}
5 \text { days BOD } & =\left[\left(\mathrm{D}_{0}\right)_{\mathrm{I}}-\left(\mathrm{D}_{\mathrm{F}}\right)\right] \times \text { D.F } \\
& =(8-2) \times 150 \\
& =900 \mathrm{mg} / l
\end{aligned}
$$

20. Ans: (a)

Sol: Ferroin is used as indicator in COD test

A A A	34	CIVIL-Postal Coaching Solutions

21. Ans: (c)

Sol: $y_{5}^{20}=250 \mathrm{mg} / l, \mathrm{~T}=30^{\circ} \mathrm{C}, \mathrm{t}=$?
$\mathrm{y}_{5}^{30}=250 \mathrm{mg} / l$
$\mathrm{L}_{0}=\frac{250}{\left(1-\mathrm{e}^{-\mathrm{K}_{\mathrm{t}} \times \mathrm{t}}\right)}$
$K_{30}=K_{20}(1.047)^{30-20}$
$y_{5}^{20}=y_{5}^{30}$
$\mathrm{L}_{0}\left(1-\mathrm{e}^{\mathrm{K}_{20} \times 5}\right)=\mathrm{L}_{0}\left(1-\mathrm{e}^{-\mathrm{K}_{30} \times \mathrm{t}}\right)$
$\mathrm{K}_{20} \times 5=\mathrm{K}_{30} \times \mathrm{t}$
$\mathrm{K}_{20} \times 5=\mathrm{K}_{20}(1.047)^{30-20} \times \mathrm{t}$
$\mathrm{t}=\frac{5}{(1.047)^{10}}=3.158=3.3$ days

22. Ans: (c)

Sol: Any waste water
$\frac{\mathrm{BOD}}{\mathrm{COD}} \geq 0.6$ is biodegradable
23. Ans: (a)

Sol: $\quad y_{5}^{20^{\circ} \mathrm{C}}=y_{3}^{27^{\circ} \mathrm{C}}$
24. Ans: (a)

Sol:

$\mathrm{T}>20^{\circ} \mathrm{C}$ curve shift to the left
25. Ans: 128.1 mg/l

Sol: $\mathrm{y}_{5}^{20^{\circ}}=$?
$\mathrm{y}_{7}^{20^{\circ}}=150 \mathrm{mg} / \ell$
$\mathrm{K}=0.23 \mathrm{~d}^{-1}$
$150=\mathrm{L}_{\mathrm{o}}\left(1-\mathrm{e}^{-23 \times 7}\right)$
$\mathrm{L}_{\mathrm{o}}=187.47 \mathrm{mg} / l$
$\mathrm{y}_{5}^{20^{\circ} \mathrm{C}}=\mathrm{L}_{0}\left(1-\mathrm{e}^{-0.23 \times 5}\right)$
$\mathrm{y}_{5}^{20^{\circ} \mathrm{C}}=187.47\left(1-\mathrm{e}^{-0.23 \times 5}\right)$
$\mathrm{y}_{5}^{20^{\circ}}=128.11 \mathrm{mg} / \ell$
26. Refer Previous GATE solutions Book
27. Refer Previous GATE solutions Book
30. Ans: (b)

Sol: COD represent oxygen demand of biodegradable \& non biodegradable organic matter.
BOD represents only oxidizable biodegradable organic matter.
Ultimate BOD represents total biodegradable organic matter.
Th.O.D represent oxidizable substance in chemical equation.
$\mathrm{COD}>$ Th.O.D $>\mathrm{BOD}_{\mathrm{u}}>\mathrm{BOD}_{5}$
$\frac{\text { 04. Treatment of Sewage }}{\text { (2) }}$
02. Ans: (d)

Sol: $12 \mathrm{~m} \times 1.50, \mathrm{H}=0.8 \mathrm{~m}, \mathrm{Q}=720 \mathrm{~m}^{3} / \mathrm{hr}$
$\mathrm{L}=12 \mathrm{~m}, \mathrm{~B}=1.50 \mathrm{~m}$
Surface loading rate $=\frac{\mathrm{Q}}{\text { surface area }}$

$$
\begin{aligned}
=\frac{720}{12 \times 1.50} & =40 \mathrm{~m}^{3} / \mathrm{hr} / \mathrm{m}^{2} \\
& =40000 \mathrm{lit} / \mathrm{hr} / \mathrm{m}^{2}
\end{aligned}
$$

D.T $=\frac{\text { Volume of G.C }}{\mathrm{Q}}=\frac{\mathrm{L} \times \mathrm{B} \times \mathrm{H}}{\mathrm{Q}}$

$$
=\frac{12 \times 1.5 \times 0.8}{\frac{720}{60}}=1.2 \mathrm{~min}
$$

4. Ans: (b)

Sol: $\mathrm{Q}=3 \mathrm{~m}^{3} / \mathrm{sec}$, cross section of grit chamber $=$?

Cross section area $(B . H)=\frac{Q}{V_{H}}$

$$
A=\frac{Q}{V_{H}}
$$

$$
\mathrm{A}=\frac{3}{0.3}=10 \mathrm{~m}^{2}
$$

05. Ans: (b)

Sol: $G=2.70$
$\mathrm{d}=0.21 \mathrm{~mm}$
$\mathrm{V}_{\mathrm{s}}=$?
$v=1 \times 10^{-2} \mathrm{~cm}^{2} / \mathrm{sec}=1 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{sec}$
For laminar flow condition
$V_{s}=\frac{g(S-1) d^{2}}{18 v}$
$\mathrm{V}_{\mathrm{s}}=\frac{9.81 \times(2.70-1) \times\left(0.21 \times 10^{-3}\right)^{2}}{18 \times 1 \times 10^{-6}}$
$\mathrm{V}_{\mathrm{s}}=0.04089 \mathrm{~m} / \mathrm{sec}$
$\mathrm{V}_{\mathrm{s}}=4.089 \mathrm{~cm} / \mathrm{sec}$
06. Ans: (b)

Sol: $\mathrm{L}=7.5 \mathrm{~m}$
$\mathrm{V}_{\mathrm{H}}=0.3 \mathrm{~m} / \mathrm{sec}$
$\mathrm{H}=0.9 \mathrm{~m}$
$\mathrm{V}=\frac{\mu}{\rho}=\frac{1.002 \times 10^{-3}}{1000}$

$$
=1.002 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{sec}
$$

For $\eta=100 \%, \frac{L}{V_{H}}=\frac{H}{V_{S}}$
$\Rightarrow \mathrm{V}_{\mathrm{S}}=0.036 \mathrm{~m} / \mathrm{sec}$
$\left.\mathrm{V}_{\mathrm{S}}=\frac{\mathrm{g}}{18}(\mathrm{~s}-1) \cdot \frac{\mathrm{d}^{2}}{\mathrm{v}}\right)$
$0.036=\frac{9.8}{18}(2.5-1) \cdot \frac{\mathrm{d}^{2}}{\left(1.002 \times 10^{-6}\right)}$

$$
\mathrm{d}=0.21 \mathrm{~mm}
$$

7. Ans: (a)

Sol: $\quad \mathrm{V}_{\mathrm{H}}=0.25 \mathrm{~m} / \mathrm{s}$
D. $\mathrm{T}=1$ minute

$$
\begin{aligned}
\mathrm{L} & =\mathrm{V}_{\mathrm{H}} \times \mathrm{D} . \mathrm{T} \\
& =0.25 \times 1 \times 60 \\
& =15 \mathrm{~m}
\end{aligned}
$$

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups \& PSC Exams
08. Ans: (d)

Sol: $\mathrm{Q}=5005 \mathrm{~m}^{3} / \mathrm{d}$
$\mathrm{V}_{0}=35 \mathrm{~m}^{3} / \mathrm{m}^{2} / \mathrm{d}$
Surface area $=\frac{\mathrm{Q}}{\mathrm{V}_{0}}=\frac{5005}{35}$
$\frac{\pi}{4} \mathrm{~d}^{2}=143$
$\mathrm{d}=13.5 \mathrm{~m}$
09. Refer Previous GATE solutions Book
10. Ans: (a)

Sol: In preliminary treatment
Screens \rightarrow Removes large floating objects
Grit chamber \rightarrow removes Grit
Skimming tank \rightarrow removes oil and grease.

11. Ans: (b)

Sol: Skimming tanks remove oil \& grease by applying compressed air from bottom.
12. Ans: (c)

Sol: Surface area $\frac{\mathrm{Q}}{\mathrm{SCR}}=\frac{40 \times 10^{6}}{100000}=400 \mathrm{~m}^{2}$

$$
=20 \mathrm{~m} \times 20 \mathrm{~m}
$$

05. Activated Sludge Process

1. Ans: (a)

Sol: $\mathrm{y}_{\mathrm{i}}=180 \mathrm{mg} / l, \mathrm{~V}_{\mathrm{L}}=550 \mathrm{gm}$ of BOD per 1 cu.m of volume
$\mathrm{Q}=50 \times 10^{6} l / \mathrm{d}=50 \mathrm{MLD}, \mathrm{V}=$?
V.L.R. $=\frac{\mathrm{Qy}_{\mathrm{i}}}{\mathrm{V}}$
$550 \times 10^{-3}=\frac{50 \times 180}{\mathrm{~V}}$
$550 \times 10^{-3} \times \mathrm{V}=9000$
$\mathrm{V}=\frac{9000}{550 \times 10^{-3}}$
$\mathrm{V}=16363 \mathrm{~m}^{3}$
02. Ans: (d)

Sol: $\mathrm{Q}=50 \times 10^{6} \mathrm{l} / \mathrm{d}=50 \mathrm{MLD}, \mathrm{y}_{\mathrm{i}}=180 \mathrm{mg} / \mathrm{l}$,

$$
\frac{\mathrm{F}}{\mathrm{M}}=0.5 \mathrm{~d}^{-1}, \mathrm{X}=1800 \mathrm{mg} / l, \mathrm{~V}=?
$$

$$
\frac{\mathrm{F}}{\mathrm{M}}=\frac{\mathrm{Qy}_{\mathrm{i}}}{\mathrm{VX}}
$$

$$
0.5=\frac{50,000 \times 180}{1800 \times V}
$$

$$
\Rightarrow \mathrm{V}=\frac{50000 \times 180}{0.5 \times 1880}
$$

$$
\mathrm{V}=10,000 \mathrm{~m}^{3}
$$

3. Ans: (a)

Sol: $\mathrm{X}=2000 \mathrm{mg} / l$

$$
\begin{aligned}
\text { SVI } & =\frac{\mathrm{V}}{\mathrm{X}}=\frac{\text { Volume occupied in } \mathrm{ml}}{\text { MLSSin gm }} \\
& =\frac{176}{\frac{2000}{10^{3}}}=\frac{176}{2}=88 \mathrm{~m} / / \mathrm{gm}
\end{aligned}
$$

D A C M	37	Environmental Engineering

Common Data for Question Nos. 4 to 7

04. Ans: (c)

Sol: $\mathrm{Q}=35,000 \mathrm{~m}^{3} / \mathrm{d}, \mathrm{V}=10900 \mathrm{~m}^{3}$,
$\mathrm{y}_{\mathrm{i}}=250 \mathrm{mg} / l, \mathrm{y}_{\mathrm{e}}=20 \mathrm{mg} / \mathrm{l}$
MLSS $=2500 \mathrm{mg} / l$
Aeration period $=\frac{\mathrm{V}}{\mathrm{Q}}=\frac{10900}{\frac{35000}{24}}=7.47 \mathrm{hrs}$

05. Ans: (b)

Sol: $\frac{F}{M}=\frac{Q\left(y_{i}\right)}{V X}$

$$
=\frac{35000(250)}{10,900 \times 2500} \frac{\mathrm{~m}^{3} / \mathrm{d} /(\mathrm{mg}) / 1}{\mathrm{~m}^{3} / \mathrm{mg} / \mathrm{l}}
$$

$$
=0.32 \mathrm{~d}^{-1}
$$

6. Ans: (c)

Sol: $\eta_{\text {BOD }}=\frac{y_{i}-y_{e}}{y_{i}} \times 100$

$$
=\frac{250-20}{250} \times 100=92 \%
$$

7. Ans: (a)

Sol: Sludge age $\theta_{c}=\frac{V X}{Q_{w} X_{U}+Q_{e} \times X_{e}}$

$$
\begin{aligned}
& =\frac{10900 \times 2500}{220 \times 9700+(35000-220) 30} \mathrm{~m}^{3} \times \frac{\mathrm{mg}}{l} \\
& =8.57 \text { days }
\end{aligned}
$$

8. Ans: (c)

Sol: $\mathrm{SVI}=88 \mathrm{ml} / \mathrm{gm}, \mathrm{X}_{\mathrm{u}}=$?

$$
X_{u}=\frac{10^{6}}{\text { SVI }}=\frac{10^{6}}{88}=11364 \mathrm{mg} / l
$$

10. Ans: (d)

Sol: $V=400 \mathrm{~m}^{3}, \mathrm{X}=1000 \mathrm{mg} / \mathrm{l}$
Total amount of MLSS in aeration

$$
\begin{aligned}
\text { Tank } & =\mathrm{VX} \\
& =\mathrm{m}^{3}(\mathrm{mg} / l) \\
& =400 \times 1000 \times\left(1000 \times 10^{-6}\right) \\
& =400 \mathrm{~kg}
\end{aligned}
$$

13. Ans: (c)

Sol: $X=2800 \mathrm{mg} / l$ carried out 1 lit sample
$\mathrm{V}=200 \mathrm{ml}$
$\mathrm{SVI}=\frac{200}{2.8}=71.4 \mathrm{ml} / \mathrm{gm}$

Common data for Q 14 \& 15

14. Ans: (c)

Sol: Given,
$\mathrm{Q}=500 \mathrm{~m}^{3} / \mathrm{h}$
$\mathrm{y}_{\mathrm{i}}=150 \mathrm{mg} / \mathrm{l}$
$\mathrm{y}_{\mathrm{e}}=10 \mathrm{mg} / \mathrm{l}$
D T $=8$ hours
$\mathrm{Q}_{\mathrm{C}}=240$ hours
$\mathrm{V}=4000 \mathrm{~m}^{3}$
$X=2000 \mathrm{mg} / \mathrm{l}$
$\frac{F}{M}=\frac{\text { Q. }_{i}}{V X}=\frac{500 \times 150}{4000 \times 2000}$
$\frac{\mathrm{F}}{\mathrm{M}}=9.375 \times 10^{-3}$ per hour
$\frac{\mathrm{F}}{\mathrm{M}}=9.377 \times 10^{-3} \times 24$ per day
$\frac{F}{M}=0.225$ per days

A它 ACM	38	CIVIL-Postal Coaching Solutions

15. Ans: (c)

Sol: $\quad Q_{C}=\frac{\text { mass of solid reactors }}{\text { mass of solid wasted per day }}$

$$
\mathrm{Q}_{\mathrm{C}}=\frac{\mathrm{VX}}{\text { mass of solid wasted per day }}
$$

Mass of solid wasted/day $=\frac{\mathrm{VX}}{\mathrm{Q}_{\mathrm{C}}}$

$$
=\frac{4000 \times 2000}{\frac{240}{24}} \times 1000 \times \frac{1}{10^{6}}
$$

16. Ans: (d)

Sol: $X=4000 \mathrm{mg} / l=4 \mathrm{gm} / l$
Volume $=200 \mathrm{~m} l$

$$
\text { SVI }=\frac{\text { Volume }}{X}=\frac{200}{4}
$$

$\mathrm{SVI}=50 \mathrm{ml} / \mathrm{gm}$

$$
\begin{aligned}
& \frac{F}{M}=\frac{\mathrm{Qy}_{i}}{V X} \\
& V X=\frac{10,000 \times 150}{0.25} \\
& V X=6 \times 10^{6}
\end{aligned}
$$

(I) Volume of aeration tank

$$
\begin{aligned}
& \mathrm{V}=\frac{6 \times 10^{6}}{3 \times 10^{3}} \quad(\because \mathrm{X}=3000 \mathrm{mg} / \text { lit }) \\
& \therefore \text { Volume }=2000 \mathrm{~m}^{3}
\end{aligned}
$$

$$
=800 \mathrm{~kg} / \mathrm{day}
$$

(II) Aeration period $=\frac{2000}{10,000} \times 24=4.8$ hours
(III) B.O.D removal efficiency

$$
\begin{aligned}
& =\frac{y_{i}-y_{E}}{y_{i}} \times 100 \\
& =\frac{150-20}{150} \times 100
\end{aligned}
$$

$\eta=86.66 \%$
(IV) Volumetric loading rate

Sol: Given:

Flow rate $(Q)=10,000 \mathrm{~m}^{3} /$ day
Inflow BOD $\left(\mathrm{y}_{\mathrm{i}}\right)=150 \mathrm{mg} / \mathrm{lit}$
Outflow BOD (y_{E}) $=20 \mathrm{mg} /$ lit
$\operatorname{MLSS}(X)=3,000 \mathrm{mg} / \mathrm{lit}$
We know
ii. (4.8 hrs)
iii. (86.66\%)
iv. $0.75 \mathrm{~kg} / \mathrm{day} / \mathrm{m}^{3}$
v. $600 \mathrm{~kg} / \mathrm{day}$
vi. $60 \mathrm{~m}^{3} /$ day
vii. 100
viii. 0.428
ix. $4285.71 \mathrm{~m}^{3} /$ day
e know

$$
\begin{aligned}
\mathrm{V}_{\mathrm{L}} & =\frac{\mathrm{Qy}_{\mathrm{i}}}{\mathrm{~V}}=\frac{10,000 \times 150}{2000} \times \frac{1000}{10^{6}} \\
& =0.75 \mathrm{~kg} / \mathrm{day} / \mathrm{m}^{3}
\end{aligned}
$$

(V) Mass of sludge wasted per day

$$
\begin{aligned}
& \operatorname{MCRT}=\theta_{\mathrm{c}}=\frac{\mathrm{VX}}{\mathrm{Q}_{\mathrm{w}} x_{u}+\mathrm{Q}_{\mathrm{e}} \mathrm{x}_{\mathrm{e}}} \\
& 10=\frac{200 \mathrm{~m}^{3} \times 300 \mathrm{mg} / \mathrm{L} \times \frac{100 \mathrm{~L}}{\mathrm{~m}^{3}} \times \frac{1 \mathrm{~kg}}{10^{9} \mathrm{mg}}}{\text { mass of sludge wasted per day }}
\end{aligned}
$$

\therefore Mass of sludge wasted per day $=600 \mathrm{~kg} /$ day
(VI) Volume of sludge wasted per day $\mathrm{Q}_{\mathrm{w}} \mathrm{x}_{\mathrm{u}}+\mathrm{Q}_{\mathrm{e}} \mathrm{x}_{\mathrm{e}}=$ mass of sludge wasted per day $\mathrm{Q}_{\mathrm{w}}(10,000)+\left(\mathrm{Q}-\mathrm{Q}_{\mathrm{w}}\right)(0)=600 \mathrm{~kg} /$ day

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{w}}=\frac{600}{10,000}=0.06 \mathrm{MLD} \\
& \mathrm{Q}_{\mathrm{w}}=0.06 \times \frac{10^{6} \mathrm{~L}}{1 \mathrm{~mL}} \times \frac{1 \mathrm{~m}^{3}}{1000 \mathrm{~L}} \\
& \mathrm{Q}_{\mathrm{w}}=60 \mathrm{~m}^{3} / \text { day }
\end{aligned}
$$

(VII) S.V.I $=\frac{10^{6}}{X_{\mathrm{w}}}=\frac{10^{6}}{10,000}=100 \mathrm{ml} / \mathrm{gm}$ S.V.I $=100$
(VIII)

$$
\begin{aligned}
& \frac{Q_{R}}{Q}=\text { Recycling ratio }=\frac{X}{X_{w}-X} \\
& \Rightarrow \frac{Q_{R}}{Q}=\frac{3000}{10000-3000}=0.4285
\end{aligned}
$$

(IX) \therefore Rate of return sludge
$\mathrm{Q}_{\mathrm{R}}=0.4285 \times 10,000$
$\mathrm{Q}_{\mathrm{R}}=4285 \mathrm{~m}^{3} /$ day

20. Ans: 7.5 days

Sol: From the data $\quad X=3000 \mathrm{mg} / \mathrm{lit}$

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{w}}=50 \mathrm{~m}^{3} / \text { day } \\
& \mathrm{X}_{\mathrm{u}}=1000 \mathrm{mg} / \mathrm{lit} \\
& \mathrm{Q}-\mathrm{Q}_{\mathrm{w}}=14950 \mathrm{~m}^{3} / \text { day } \\
\Rightarrow \quad & \mathrm{Q}-50=14950 \mathrm{~m}^{3} / \text { day } \\
& \mathrm{Q}=15,000 \mathrm{~m}^{3} / \text { day }
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{V} & =\mathrm{Q} \times \mathrm{D} . \mathrm{T} \\
& =15,000 \times 2 \mathrm{hr}
\end{aligned}
$$

$$
\begin{aligned}
& =15,000 \times \frac{2}{24}=1250 \mathrm{~m}^{3} \\
\theta_{\mathrm{c}} & =\frac{\mathrm{VX}}{\mathrm{Q}_{\mathrm{w}} \mathrm{x}_{\mathrm{u}}+\left(\mathrm{Q}-\mathrm{Q}_{\mathrm{w}}\right) \mathrm{x}_{\mathrm{e}}} \\
\theta_{\mathrm{c}} & =\frac{1250 \times 3000}{50 \times 10,000+(14950) \times 0} \\
& =7.5 \text { days }
\end{aligned}
$$

21. Refer Previous GATE solutions Book
22. Ans: (a)

Sol: Volume occupied by sludge

$$
\begin{aligned}
&=27 \mathrm{~cm}^{3}=27 \mathrm{ml} \\
& \text { S.V.I }=\frac{27}{3} \frac{\mathrm{~m} \ell}{\mathrm{gm}} \\
&=9 \frac{\mathrm{~m} \ell}{\mathrm{gm}}
\end{aligned}
$$

23. Ans: (b)

Sol: ASP converts soluble organic matter in to biological flocs \& hence remove dissolved BOD. It doesn't digest sludges.

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups \& PSC Exams

06. Trickling Filters

01. Ans: (c)

Sol: $y_{i}=200 \mathrm{mg} / \mathrm{l}$
$\mathrm{y}_{\mathrm{e}}=40 \mathrm{mg} / \mathrm{l}$
$\eta=\frac{y_{i}-y_{e}}{y_{i}} \times 100$
$\eta=\frac{200-40}{200} \times 100=80 \%$
02. Ans: (b)

Sol: $O L R=0.175 \mathrm{~kg} / \mathrm{m}^{3} /$ day
$y_{i}=150 \mathrm{mg} / \mathrm{l}$
$y_{e}=$?
$\eta=\frac{100}{1+0.0044 \sqrt{\frac{\mathrm{Q} \cdot \mathrm{y}_{\mathrm{i}}}{\mathrm{V} \cdot \mathrm{F}}}}$
1 ha. $\mathrm{m}=10^{4} \mathrm{~m}^{3}$
$1 \mathrm{~m}^{3}=10^{-4}$ ha. m
$\frac{\mathrm{Qy}_{\mathrm{i}}}{\mathrm{V}} \mathrm{kg}$ of BOD/day/ ha.m
OLR $=0.175 \times 10^{4} \mathrm{~kg} / \mathrm{ha} . \mathrm{m} /$ day
$\eta=\frac{150-y_{\mathrm{e}}}{150} \times 100$
$\frac{150-\mathrm{y}_{\mathrm{e}}}{150} \times 100=\frac{100}{1+0.0044 \sqrt{\frac{0.175 \times 10^{4}}{1}}}$
$\mathrm{y}_{\mathrm{e}}=23.31 \mathrm{mg} / l$
03. Ans: 2.14m, 5142.85m ${ }^{3}, ~ 84.45 \%, 23.3$ mg / l
Sol: $\mathrm{Q}=6 \mathrm{MLD}$
$\mathrm{y}_{\mathrm{i}}=150 \mathrm{mg} / \mathrm{l}$
OLR $=175 \mathrm{gm} / \mathrm{m}^{3} /$ day
Depth of TF = ?
Vol. of $\mathrm{TF}=$?
SLR $=2500 \mathrm{l} / \mathrm{m}^{2} /$ day
$\eta=$?
$y_{e}=$?
Surface loading rate $=\frac{\mathrm{Q}}{\text { surface area }}$
$\frac{\pi}{4} \times \mathrm{d}^{2}=\frac{6 \times 10^{6}}{2500}$
$\mathrm{d}=55.27 \mathrm{~m}$
organic loading length $=\frac{\mathrm{Q} \cdot \mathrm{y}_{\mathrm{i}}}{\mathrm{V}}$
$\mathrm{V}=\frac{150 \times 6}{175 \times 10^{-3}}$
$\mathrm{V}=5142.85 \mathrm{~m}^{3}$
Depth of TF $=\frac{\text { Vol. of TF }}{\text { surface area of TF }}$
$\mathrm{d}=\frac{5142.85}{2400}$
$\mathrm{d}=2.14 \mathrm{~m}$
$\mathrm{OLR}=175 \times 10^{-3} \times 10^{4} \mathrm{~kg} / \mathrm{ha} . \mathrm{m} /$ day
$\mathrm{OLR}=1750 \mathrm{~kg} / \mathrm{ha} . \mathrm{m} /$ day

$$
\begin{aligned}
& \eta=\frac{100}{1+0.0044 \sqrt{\frac{\mathrm{Qy}}{\mathrm{~V}}} \mathrm{VF}} \\
& \eta=\frac{100}{1+0.0044 \sqrt{175 \times 10^{-3} \times 10^{4}}}
\end{aligned}
$$

A A A	41	Environmental Engineering

$\eta=84.45 \%$
$\eta=\frac{y_{i}-y_{e}}{y_{i}} \times 100$
$84.45=\frac{150-\mathrm{y}_{\mathrm{e}}}{150} \times 100$
$\mathrm{y}_{\mathrm{e}}=23.32 \mathrm{mg} / l$
04. Ans: $633 \mathrm{~m}^{3}$

Sol: Single stage TF
$y_{\mathrm{e}}=20 \mathrm{mg} / \mathrm{l}$
$\mathrm{y}_{\mathrm{i}}=120 \mathrm{mg} / \mathrm{l}$
$\mathrm{Q}=2200 \mathrm{~m}^{3} /$ day
$\mathrm{R}=4000 \mathrm{~m}^{3} /$ day
$\mathrm{V}=$?
\because Recirculation is there it is high rate TF
$\frac{\mathrm{R}}{\mathrm{I}}=\frac{4000}{2200}=1.81$
$F=\frac{1+\frac{R}{I}}{\left(1+0.1 \frac{R}{I}\right)^{2}}$
$\mathrm{F}=2.017$
$\mathrm{Q}=2200 \mathrm{~m}^{3} /$ day
$\mathrm{Q}=2200 \times 1000$ lpcd
$\mathrm{Q}=2.2 \mathrm{MLD}$
$\eta=\frac{y_{i}-y_{e}}{y_{i}} \times 100$
$\eta=\frac{120-20}{120} \times 100=83.33 \%$
$83.33=\frac{100}{1+0.0044 \sqrt{\frac{2.2 \times 120}{\mathrm{~V} \times 2.017}}}$
$\mathrm{V}=0.0633$ ha. m
$\mathrm{V}=633 \mathrm{~m}^{3}$
05. Ans: (b)

Sol: If $\frac{R}{I}=1$ then $F>1$
$\therefore F=\frac{1+\frac{\mathrm{R}}{\mathrm{I}}}{\left(1+0.1 \frac{\mathrm{R}}{\mathrm{I}}\right)^{2}}$
06. Ans: (b)

Sol: At the interface of media as the thickness of biofilm increases it leads to endogenous decay \& anaerobic conditions.

07. Refer Previous GATE solutions Book

8. Ans: (b)

Sol: Design of trickling filters are based on hydraulic loading rate and organic loading rate.
09. Ans: (c)

Sol: The problem of ponding can be solved by raking \& chlorination

07. Sludge Digestion

01. Ans: $\mathbf{1 7 1 0 5 . 6 2} \mathbf{~ k g} / \mathrm{day}, \mathbf{1 6 . 6 8 m} \mathrm{m}^{3} / \mathrm{day}$

Sol: $\mathrm{Q}=4.5 \mathrm{MLD}$
Total dry solids $=\mathrm{Q} \times$ sewage containing

$$
=4.5 \times 275=1237.5 \mathrm{~kg}
$$

Mass of sludge produced $=\frac{100}{\left(100-\mathrm{P}_{1}\right)} \mathrm{M}$
Solids concentration in sludge

$$
\begin{aligned}
& =\frac{55}{100} \times 275 \\
= & 151.25 \mathrm{mg} / l
\end{aligned}
$$

Total mass of dry solids produced/day

$$
\begin{aligned}
& =\frac{100}{\left(100-\eta_{C}\right)} \times M \\
& =\frac{100}{(100-96)} \times 680.625 \\
& =17015.625 \mathrm{~kg} / \text { day }
\end{aligned}
$$

(ii) $\frac{\rho_{\text {sludge }}}{\rho_{\mathrm{w}}}=\mathrm{S}_{\text {sludge }}$
$1.02=\frac{\rho_{\text {Sludge }}}{\rho_{\mathrm{w}}}$
$\rho_{\text {sludge }}=1.02 \times 1000=1020 \mathrm{~kg} / \mathrm{m}^{3}$
$\rho_{\text {sludge }}=\frac{\text { mass of sludge }}{\text { Volume of sludge }}$
$1020=\frac{17015.625}{\text { Volume of sludge }}$
Volume of sludge $=\frac{17015.625}{1020}$

$$
=16.68 \mathrm{~m}^{3} / \mathrm{day}
$$

3. Ans: (c)

Sol: $\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}=\frac{100-\mathrm{P}_{1}}{100-\mathrm{P}_{2}}$

$$
=\frac{100-99}{100-96}=25 \%
$$

$\%$ of reduction is volume $=100 \mathrm{~V}_{1}-25 \mathrm{~V}_{1}$

$$
=75 \% \mathrm{~V}_{1}
$$

5. Ans: (d)

Sol: $\mathrm{V}_{2}=\frac{100-\mathrm{P}_{1}}{100-\mathrm{P}_{2}} \times \mathrm{P}=\frac{100-98}{100-96} \times \mathrm{P}$

$$
=\frac{1}{2}(\mathrm{P})=\frac{\mathrm{P}}{2}
$$

07. Ans: $1.011,1011 \mathrm{~kg} / \mathrm{m}^{3}$

Sol: Given solids content $=2 \%$
Let $\rho_{\text {solid }}$ be the mass density of solids Solids again contain 70\% volatile \& 30% of non-volatile

$$
\begin{aligned}
& \therefore \text { we know }=\frac{100}{\mathrm{~S}_{\text {solids }}}=\frac{70}{\mathrm{~S}_{\text {volatile }}}+\frac{30}{\mathrm{~S}_{\text {non-volatile }}} \\
& \Rightarrow \frac{100}{\mathrm{~S}_{\text {solids }}}=\frac{70}{2.2}+\frac{30}{2.7} \\
& \Rightarrow \mathrm{~S}_{\text {solids }}=2.329 \simeq 2.4
\end{aligned}
$$

Now let mass density of sludge as ρ_{s} and specific gravity as S_{s}

$$
\begin{aligned}
& \therefore \frac{100}{\mathrm{~S}_{\mathrm{s}}}=\frac{2}{\mathrm{~S}_{\text {solids }}}+\frac{98}{\mathrm{~S}_{\text {water }}} \Rightarrow \frac{100}{\mathrm{~S}_{\mathrm{s}}}=\frac{2}{2.4}+\frac{98}{1} \\
& \Rightarrow \mathrm{~S}_{\mathrm{s}}=1.011 ; \rho_{\mathrm{s}}=1011 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

D A CM	43	Environmental Engineering

8. Ans: (c)

$$
\text { Sol: } \begin{array}{rlrl}
\mathrm{P}_{1}=94 \% & & \text { Solid content } & =16 \% \\
\mathrm{P}_{2}=84 \% & & \text { Water content } & =100-16 \\
& & =84 \%
\end{array}
$$

$$
\begin{aligned}
\mathrm{V} & =\frac{100-\mathrm{P}_{1}}{100-\mathrm{P}_{2}} \times \mathrm{V}_{1} \\
& =\frac{100-94}{100-84} \times 14=5.25 \mathrm{~m}^{3}
\end{aligned}
$$

11. Refer Previous GATE solutions Book

12. Refer Previous GATE solutions Book

13. Refer Previous GATE solutions Book

14. Ans: (b)

Sol:
$\mathrm{V}_{2}=\left[\frac{100-\mathrm{P}_{1}}{100-\mathrm{P}_{2}}\right] \times \mathrm{V}_{1}=\left[\frac{100-95}{100-90}\right] \times 100=50 \mathrm{~m}^{3}$

08. Septic Tanks

1. Ans: $\mathbf{6 . 1 2 ~ m} \times \mathbf{3 . 1 6 ~ m}$

Sol: Discharge $=150 \times 200 \times 10^{-3}=30 \mathrm{~m}^{3} /$ day
Given detention time $=24$ hours
\therefore Volume of septic tank $(\mathrm{v})=\mathrm{t} \times \mathrm{Q}$

$$
=\frac{(24)(30)}{24}
$$

$$
=30 \mathrm{~m}^{3}
$$

\therefore Area of septic tank $=\frac{(30)}{(1.5)}=20 \mathrm{~m}^{2}$
\therefore Given $\frac{\mathrm{L}}{\mathrm{B}}=2: 1$

$$
\mathrm{L} \times \mathrm{B}=20
$$

$$
2 B \times B=20
$$

$$
\mathrm{B}=3.16 \mathrm{~m}
$$

and $L=6.12 \mathrm{~m}$
02. Ans: 0.6 m

Sol: Volume of sludge produced

$$
\begin{aligned}
= & 30 \times 10^{-3} \times 200 \times 2 \\
= & 12 \mathrm{~m}^{3}
\end{aligned}
$$

\therefore depth of sludge zone

$$
\begin{aligned}
& =\frac{\text { Volume of sludge }}{\text { Area of septic tan } \mathrm{k}} \\
& =\frac{12}{20}=0.6 \mathrm{~m}
\end{aligned}
$$

3. (a) $9.6 \mathrm{~m}^{\mathbf{3}}$ (b). $\mathbf{1 2} \mathrm{m}^{\mathbf{3}}$

Sol: Given sewage flow $=150 \mathrm{lpcd}$
Sewage discharge $=150 \times 10^{-3} \times 120 \mathrm{~m}^{3} /$ day

$$
=18 \mathrm{~m}^{3} / \mathrm{day}
$$

Detention period $=\frac{\mathrm{V}}{\mathrm{Q}}=\frac{4 \times 2 \times 1.5}{18 \mathrm{~m}^{3} / \text { day }}=16 \mathrm{hrs}$
(a) Volume of sludge $=(\mathrm{Q} \times$ detention time $)$

$$
\begin{aligned}
& =40 \times 10^{-3} \times 120 \times 2 \\
\mathrm{~V} & =9.6 \mathrm{~m}^{3}
\end{aligned}
$$

(b) Volume of soakpit

$$
\begin{aligned}
& =\frac{\mathrm{Q}}{\text { Percolation capacity }} \\
& =\frac{(150 \times 120)}{(1500)}=12 \mathrm{~m}^{3}
\end{aligned}
$$

4. Ans: (d)

Sol: $V=7 \mathrm{~m}^{3}$
No. of users $=5$
R.S.P = 70 lit/capita/year

Volume of sludge zone $=\frac{\mathrm{V}}{2}=\frac{7}{2}$
Cleaning interval = cleaning period
Volume of sludge zone $=$ RSP \times no. of user

$$
\begin{aligned}
& \times \text { C.P } \\
& \begin{aligned}
\frac{7}{2} & =70 \times 10^{-3} \times 5 \times \text { C.P } \\
\text { C.P } & =\frac{7 / 2}{70 \times 10^{-3} \times 5} \\
& =10 \text { years }
\end{aligned}
\end{aligned}
$$

5. Ans: (c)

Sol: In septic tank settling \& sludge digestion occurs in one compartments, and it occur in two separate compartments in Imhoff tanks. The rate of sludge accumulation is 40 lt/capita/yr

09. Oxidation Ponds

1. Ans: $L=\mathbf{2 8 2 . 8 4 m}, B=70.71 \mathrm{~m}$, D.T. $=50$ days

Sol: $\mathrm{Q}=$ population \times per capita, supply \times Factor

$$
\begin{aligned}
& =10,000 \times 100 \times 0.8 \\
& =\frac{1000000 \times 0.8}{10^{6}}=0.80 \mathrm{MLD} \\
& \mathrm{y}=40 \mathrm{~g} / \mathrm{day} \\
& \text { D.T }=? \\
& 80 \% \text { of BOD removal BOD loading rate } \\
& =200 \mathrm{~kg}=\mathrm{BOD} / \mathrm{hect} / \mathrm{d}
\end{aligned}
$$

Surface area of pond $=\frac{\mathrm{Q} \times \mathrm{y}_{\mathrm{i}}}{\text { BOD loading rate }}$

$$
=\frac{0.8 \times 500}{200}=2 \mathrm{ha}
$$

Total BOD $=\mathrm{Q} \times \mathrm{y}_{\mathrm{i}}$

$$
\begin{aligned}
& =\text { population } \times \text { per capita } B O D \\
& =0.8 \times \mathrm{y}_{\mathrm{i}}=10,000 \times 10040 \times 10^{-3}
\end{aligned}
$$

$y_{i}=500 \mathrm{mg} / \mathrm{li}$
Surface area $=2 \mathrm{ha}=2 \times 10^{4} \mathrm{~m}^{2}$
$\mathrm{L}=4 \mathrm{~B}$
$\mathrm{L} \times \mathrm{B}=2 \times 10^{4}$
$4 B \times B=2 \times 10^{4}$

	45	Environmental Engineering

$B=\sqrt{\frac{2 \times 10^{4}}{4}}=70.71 \mathrm{~m}$
$\mathrm{L}=4 \times 70.71=282.84 \mathrm{~m}$
D.T $=\frac{\text { Volume of pond }}{\mathrm{Q}}=\frac{\mathrm{L} \times \mathrm{B} \times \mathrm{H}}{\mathrm{Q}}$
$=\frac{282.84 \times 70.71 \times 2}{\frac{0.8 \times 10^{6}}{10^{3}}}=50$ days
$\eta=80: \frac{y_{i}-y_{e}}{y_{i}} \times 100$
$80=\frac{500-\mathrm{y}_{\mathrm{e}}}{500} \times 100$
$0.8=\frac{500 . \mathrm{y}_{\mathrm{e}}}{500} \Rightarrow 400=500-\mathrm{y}_{\mathrm{e}}$
$\mathrm{y}_{\mathrm{e}}=500-400=100 \mathrm{mg} / \mathrm{l}$
02. Ans: $L=244.9 \mathrm{~m}, \mathrm{~B}=\mathbf{6 1 . 2 3 m}, \mathrm{D}=1$

Sol: $P=10,000$ sewage flow $=150 \mathrm{lpcd}$
$\mathrm{Q}=\frac{10000 \times 150}{10^{6}}=1.5 \mathrm{MLD}$
$\mathbf{y}_{\mathrm{i}}=300 \mathrm{mg} / l, \mathrm{y}_{\mathrm{e}}=30 \mathrm{mg} / l$,
OLR $=300 \mathrm{~kg} / \mathrm{ha} / \mathrm{d}$
$\mathrm{k}_{\mathrm{D}}=0.23 \mathrm{~d}^{-1}, \mathrm{~L}: B=4: 1$
\therefore D.T. $=\frac{1}{0.23} \times \ell_{\mathrm{n}} \frac{300}{30}=10$ days
\therefore Surface area $=\frac{\mathrm{Qy}_{\mathrm{i}}}{\mathrm{OLR}}=\frac{1.5 \times 300}{300}=1.5 \mathrm{ha}$
$\mathrm{L} \times \mathrm{B}=1.5 \times 10^{4} \mathrm{~m}^{2}$
$4 \mathrm{~B} \times \mathrm{B}=1.5 \times 10^{4}$
$B=61.23 \mathrm{~m}$
$\therefore \mathrm{L}=4 \times 61.23=244.92 \mathrm{~m}$
Vol of oxidation pond $=\mathrm{Q} \times \mathrm{DT}$

$$
=\frac{1.5 \times 10^{6}}{10^{3}} \times 10=15000 \mathrm{~m}^{3}
$$

Depth of pond, $H=\frac{\text { Vol. of pond }}{\text { Surface area of pond }}$

$$
=\frac{15000}{15000}=1 \mathrm{~m}
$$

5. Ans: (c)

Sol: $Q=10000 \times 200, y=300 \mathrm{mg} / \mathrm{l}$
Organic loading $=310 \mathrm{~kg} / \mathrm{day} / \mathrm{m}$
$\mathrm{Q}=2$ MLD
Surface area of pond $=\frac{\mathrm{Qy}_{\mathrm{i}}}{\text { BODloading rate }}$

$$
=\frac{2 \times 300}{310}=1.93 \simeq 2 \mathrm{ha}
$$

A A C	46	CIVIL-Postal Coaching Solutions

10. Disposal of Sewage Effluents

01. Ans: (b)

Sol: $\mathrm{y}_{\mathrm{R}}=200 \mathrm{mg} / l, \mathrm{Q}_{\mathrm{R}}=50 \mathrm{~m}^{3} / \mathrm{s}$
$\mathrm{y}_{\mathrm{w}}=8 \mathrm{mg} / l, \mathrm{Q}_{\mathrm{w}}=500 \mathrm{~m}^{3} / \mathrm{s}$
$y_{\text {mix }}=\frac{Q_{R} y_{R}+Q_{w} y_{w}}{Q_{R}+Q_{w}}$
$=\frac{50 \times 200+500 \times 8}{50+500}$
$\mathrm{y}_{\text {mix }}=25.45 \mathrm{mg} / l$

03. Ans: (c)

Sol: Waste water $(D O)_{w}=2 \mathrm{mg} / l$
$\mathrm{Q}_{\mathrm{W}}=1.10 \mathrm{~m}^{3} / \mathrm{sec}$
$(\mathrm{DO})_{\mathrm{R}}=8.3 \mathrm{mg} / \mathrm{l}$
$\mathrm{Q}_{\mathrm{R}}=8.70 \mathrm{~m}^{3} / \mathrm{sec}$

$$
(\mathrm{DO})_{\text {mix }}=\frac{(\mathrm{DO})_{\mathrm{w}} \cdot \mathrm{Q}_{\mathrm{w}}+(\mathrm{DO})_{\mathrm{R}} \cdot \mathrm{Q}_{\mathrm{R}}}{\mathrm{Q}_{\mathrm{w}}+\mathrm{Q}_{\mathrm{R}}}
$$

$(\mathrm{DO})_{\text {mix }}=\frac{2 \times 1.10+8.3 \times 8.70}{1.10+8.70}$
$(\mathrm{DO})_{\text {mix }}=7.6 \mathrm{mg} / \mathrm{l}$
04. Ans: $\mathbf{1 3 . 8 5} \mathbf{~ m g} / l, 20.27 \mathrm{mg} / l, 5.85 \mathrm{mg} / l$

Sol: $\mathrm{Q}_{\mathrm{Rw}}=12000 \mathrm{~m}^{3} / \mathrm{d}$, temp $=20^{\circ} \mathrm{C}$,

$$
\mathrm{y}_{\mathrm{w}}=50 \mathrm{mg} / \mathrm{l}
$$

D. $\mathrm{O}=$ concentration $=2 \mathrm{mg} / l$
$\mathrm{Q}_{\mathrm{R}}=40,000 \mathrm{~m}^{3} / \mathrm{d}, \mathrm{y}_{\mathrm{R}}=3 \mathrm{mg} / l$,
D. $\mathrm{O}=7 \mathrm{mg} / \mathrm{l}$, temp $=20^{\circ} \mathrm{C}$
$\mathrm{K}=0.23$ (to the base in decay curve)
$y_{\text {mix }}=\frac{Q_{R} y_{R}+Q_{w} y_{w}}{Q_{R}+Q_{w}}$

$$
\begin{aligned}
& =\frac{12000 \times 50+40,000 \times 3}{12,000+40,000}=13.84 \mathrm{mg} / \mathrm{lit} \\
& \begin{aligned}
(\mathrm{DO})_{\text {mix }} & =\frac{\mathrm{Q}_{\mathrm{R}}(\mathrm{DO})_{\mathrm{R}}+\mathrm{Q}_{\mathrm{w}}(\mathrm{DO})_{\mathrm{w}}}{\mathrm{Q}_{\mathrm{R}}+\mathrm{Q}_{\mathrm{w}}} \\
& =\frac{12,000 \times 2+40,000 \times 7}{12,000+40,000} \\
& =5.85 \mathrm{mg} / l
\end{aligned} \\
& \mathrm{y}_{\text {mix }}
\end{aligned}=\mathrm{L}_{0}\left(1-\mathrm{e}^{-\mathrm{k} \times \mathrm{t}}\right) .
$$

05. Ans: (c)

Sol:

River	Waste water stream
$\mathrm{Q}_{\mathrm{R}}=12 \mathrm{~m}^{3} / \mathrm{sec}$	$\mathrm{Q}_{\mathrm{w}}=2 \mathrm{~m}^{3} / \mathrm{sec}$
$\left(\mathrm{L}_{0}\right)_{\mathrm{R}}=5 \mathrm{mg} / \mathrm{l}$	$\left(\mathrm{L}_{0}\right)_{\mathrm{w}}=90 \mathrm{mg} / \mathrm{l}$

$$
\begin{aligned}
\left(\mathrm{L}_{0}\right)_{\text {mix }} & =\frac{\mathrm{Q}_{\mathrm{R}}\left(\mathrm{~L}_{\mathrm{o}}\right)_{\mathrm{R}}+\mathrm{Q}_{\mathrm{W}}\left(\mathrm{~L}_{\mathrm{o}}\right)_{\mathrm{W}}}{\mathrm{Q}_{\mathrm{R}}+\mathrm{Q}_{\mathrm{w}}} \\
& =\frac{12 \times 5+2 \times 90}{12+2}=17.142 \mathrm{mg} / l \\
\mathrm{Q}_{\text {mix }} & =\mathrm{Q}_{\mathrm{R}}+\mathrm{Q}_{\mathrm{W}}=12+2=14 \mathrm{~m}^{3} / \mathrm{sec}
\end{aligned}
$$

$$
\text { Velocity }=\frac{\mathrm{Q}_{\min }}{\mathrm{c} / \mathrm{s} \text { area }}=\frac{14}{50}=0.28 \mathrm{~m} / \mathrm{sec}
$$

Time taken by the river to travel 10 km

$$
\begin{gathered}
=\frac{10 \times 1000}{0.28} \times \frac{1}{24 \times 50 \times 60} \\
\mathrm{~T}=0.413 \text { days }
\end{gathered}
$$

$$
\text { Ultimate BOD at } 10 \mathrm{~km} \mathrm{~d} / \mathrm{s}=\mathrm{L}_{\mathrm{t}}=\mathrm{L}_{0} \mathrm{e}^{-\mathrm{kt}}
$$

$$
\mathrm{k}=0.251 / \text { day }
$$

$$
\mathrm{L}_{0.413}=17.142 \mathrm{e}^{-0.25 \times 0.413}=15.459
$$

$$
\simeq 15.46 \mathrm{mg} / \mathrm{l}
$$

6. Refer Previous GATE solutions Book

07. Refer Previous GATE solutions Book

11. Ans: (b)

Sol: $\mathrm{Q}_{\mathrm{w}}=8640 \mathrm{~m}^{3} /$ day
$\mathrm{Q}_{\mathrm{R}}=1.2 \mathrm{~m}^{3} / \mathrm{sec}$
$\mathrm{Q}_{\mathrm{w}}=0.1 \mathrm{~m}^{3} / \mathrm{sec}$
$\mathrm{T}_{\mathrm{w}}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{R}}=15^{\circ} \mathrm{C}$
$T_{\text {mix }}=\frac{Q_{R} T_{R}+Q_{w} T_{w}}{Q_{R}+Q_{w}}$
$=\frac{1.2 \times 15+0.1 \times 25}{1.2+0.1}=\frac{20.5}{1.3}$
$=15.77^{\circ} \mathrm{C}$
14. Ans: (d)

Sol: Sewage may be disposed in to any water course without treatment if dilution factor is ≥ 500.

15. Ans: (c)

Sol: DO sag curve is a function of both depletion of oxygen and addition of oxygen. Combined rates of deoxygenation \& recreation gives rise to oxygen sag curve.

11. Solid Waste Management

1. Ans: 14740 kJ/kg, 18658.2 kJ/kg, 19918.9 kJ/kg

Sol:
(i) Total energy content as discarded

$$
\begin{aligned}
& \quad=\sum \frac{\mathrm{P}_{\mathrm{i}} \mathrm{E}_{\mathrm{i}}}{100} \\
& =\frac{\begin{array}{l}
15 \times 4650+45 \times 16750+10 \times 16300+10 \times 32600 \\
+10 \times 6500+5 \times 18600+5 \times 700
\end{array}}{100} \\
& =14740 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

(ii) Energy on dry basis = Energy as discarded

$$
\begin{aligned}
& \times \frac{100}{100-\% \mathrm{~m} \cdot \mathrm{c}} \\
& =14740 \times \frac{100}{100-21} \\
& =18658.22 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

2. Ans: (b)

$$
\text { Sol: } \begin{aligned}
\frac{100}{\rho \mathrm{Msw}}= & \frac{\% \mathrm{~F} . \mathrm{w}}{\rho \mathrm{Fw}}+\frac{\% \mathrm{DA}}{\rho \mathrm{DA}}+\frac{\% \mathrm{pla}}{\rho \mathrm{p}}+\frac{\% \mathrm{WS}}{\rho \mathrm{WS}} \\
= & \frac{50}{300}+\frac{30}{500}+\frac{10}{65}+\frac{10}{125} \\
= & \frac{100}{\rho \mathrm{Msw}}=0.46 \Rightarrow \frac{100}{0.46} \\
& \rho \mathrm{Msw}=217.1 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

4. Ans: (d)

Sol: 50 g of $\mathrm{Co}_{2}, 25 \mathrm{~g}=\mathrm{CH}_{4}, 1$ million people, rate of 500 ton/day

120 parts of MSW release 50 parts of Co_{2} and 25 parts $\mathrm{CH}_{4} 1$ part of MSW release $=\frac{75}{120}=0.625$ parts of green house

500 t of Msw release $=0.625 \times 500$
Total green house $=321.5$ of green house Per capita green house gas contribution

$$
\begin{aligned}
& =\frac{\text { house gas }}{\text { population of community }} \\
& =\frac{312.5}{10,00,000} \times 1000 \times 1000 \\
& =312.5 \mathrm{mg} / l
\end{aligned}
$$

7. Ans: (d)

Sol: Indore method is aerobic method \& Bangalore method is anaerobic method of composting.
08. Ans: (c)

Sol: Plastic \& rubber waste is disposed by pyrolysis. (burning in the absence of air) to recover by products.
09. Ans: (d)

Sol: $40 \mathrm{t}+35 \mathrm{t}=75 \mathrm{t}$

10. Ans: (b)

Sol: Except human excreta all forms of solid waste is treated as refuse.
12. Ans: $\mathbf{1 . 4 6}$ ha

Sol: Population $=65000$
Rate of solid waste $=2 \mathrm{~kg} /$ capita $/$ day
Solid waste generated $=65000 \times 2$

$$
=130000 \mathrm{~kg} / \mathrm{day}
$$

Solid waste generator per annum

$$
=130000 \times 365=47450000
$$

Volume $=\frac{\text { mass }}{\text { density }}$
$\mathrm{V}=\frac{47450000}{650}=73000 \mathrm{~m}^{3}$
Area $=\frac{\text { Volume }}{\text { depth }}=\frac{73000}{5}$
$\mathrm{A}=14600 \mathrm{~m}^{2}=1.46 \mathrm{ha}$
13. Ans: (a)

Sol: $\frac{100}{\rho_{\text {sludge }}}=\frac{c_{1}}{\rho_{1}}+\frac{c_{2}}{\rho_{2}}$

$$
\Rightarrow \rho_{\text {sludge }}=\frac{100}{\frac{c_{1}}{\rho_{1}}+\frac{c_{2}}{\rho_{2}}}
$$

14. Ans: $\mathbf{1 3 . 6 8 7 5}$

Sol: Solid waste generated $=2 \times 10^{5} \times 25 \times 365 \times 2$

$$
=3.65 \times 10^{9} \mathrm{~kg}
$$

Volume of un-compacted

$$
\mathrm{S}_{\mathrm{w}}=\frac{3.65 \times 10^{9}}{100}=36.5 \times 10^{6} \mathrm{~m}^{3}
$$

Volume of compacted solid waste

$$
=\frac{36.5 \times 10^{6}}{4}=9.125 \times 10^{6} \mathrm{~m}^{3}
$$

$\frac{\text { Compacted fill }}{\text { Compacted solid waste }}=1.5$
Volume of land fill (compacted fill)

$$
\begin{aligned}
& =9.125 \times 10^{6} \times 1.5 \\
& =13.6875 \times 10^{6} \text { million } \mathrm{m}^{3}
\end{aligned}
$$

15. Refer Previous GATE solutions Book

16. Refer Previous GATE solutions Book

17. Ans: (d)

Sol: For routine characterization of solid waste moisture content, density \& particle size etc are found to known its physical composition.

12. Air Pollution and Control

6. Ans: (d)

Sol: $\mathrm{CHCl}_{3}=12+1+3 \times 35.5$

$$
=119.5 \mathrm{gm} \text { molecular. }
$$

Concentration $=0.4 \mu \mathrm{~g} / \mathrm{m}^{3}$
(a) $273^{0} \mathrm{k}$

$$
\begin{gathered}
\mathrm{T}_{1}=273^{0} \mathrm{k} \quad \mathrm{~T}_{2}=293^{0} \mathrm{k} \\
\mathrm{P}_{1}=1 \quad \mathrm{P}_{\mathrm{e}}=1 \\
\mathrm{~V}_{1}=22.4 \text { lit } / \mathrm{mol} \quad \mathrm{~V}_{2}=? \\
\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}} \\
\frac{22.4}{273}=\frac{\mathrm{V}_{2}}{293} \Rightarrow \mathrm{~V}_{2}=24.04 \mathrm{lit} / \mathrm{mol}
\end{gathered}
$$

$$
\begin{aligned}
\mu \mathrm{g} / \mathrm{m}^{3} & =\frac{\mathrm{PPm} \times \text { gm.mole } \times 10^{3}}{\text { lit } / \mathrm{mol}} \\
0.4 & =\frac{\operatorname{PPm} \times 119.5 \times 10^{3}}{24.04} \\
\mathrm{PPM} & =8.047 \times 10^{-5} \times 10^{3} \quad\left[\because \text { billion }=10^{9}\right] \\
& =0.08
\end{aligned}
$$

Parts per billion $=8.047 \times 10^{-5} \times 10^{3}=0.08$
09. Ans: (a)

Sol: Dry air cools at 9.8^{0} per km
$\approx 10^{0} \mathrm{~km}$
For $\frac{1}{2} \mathrm{~km} \rightarrow 5^{0}$ fall
Final temperature at 500 m elevation
$=40^{\circ}-5^{0}=35^{\circ} \mathrm{c}$
10. Ans: (c)

Sol: Initial dry cot $=9.787 \mathrm{~g}$, rate

$$
\begin{gathered}
=1.5 \mathrm{~m}^{3} / \mathrm{min} \text { for } 24 \mathrm{~m}^{3} \\
\text { Final }=10.283 \mathrm{~g} \\
=\frac{\left(\mathrm{w}_{\text {Intitial }}-\mathrm{w}_{\text {final }}\right)}{\text { Volume of air sample }} \text { filter paper }
\end{gathered}
$$

Volume of are sample $=$ rate of rate simplify x duration

$$
=145 \times 24 \times 60=2088 \mathrm{~m}^{3}
$$

Total suspended particulate

$$
\begin{aligned}
& =\frac{(10.283-9.787)}{2088} \\
& =2.375 \times 10^{-4} \mathrm{gm} / \mathrm{m}^{3} \\
& =2.375 \times 10^{-4} \times 10^{6} \\
& =237.5 \mu \mathrm{~g} / \mathrm{m}^{3}
\end{aligned}
$$

16. Ans: (c)

Sol: 20000 km , No. $=50,000$, rate
$=2 \mathrm{gm} / \mathrm{km} /$ vehicle

$$
\begin{aligned}
& =2 \times 50,000 \times 20000 \times \frac{1}{10^{6}} \\
& =2000 \mathrm{t}
\end{aligned}
$$

17. Ans: (b)

Sol: A \rightarrow Inversion
B \rightarrow Sub adiabatic
$\mathrm{C} \rightarrow$ Dry adiabatic
D \rightarrow Super adiabatic

18. Ans: (a)

Sol: Looping \rightarrow Unstable atmospheric plume behaviour conditions
19. Ans: (b)

Sol: during winter nights severe inversion occur.
20. Ans: (c)

Sol: (A) Acid rain $\rightarrow \mathrm{SO}_{2}$
(B) Acute toxicity $\quad \rightarrow \mathrm{CO}$
(C) Ozone liberation $\rightarrow \mathrm{NO}_{\mathrm{X}}$
(D) Green house effect $\rightarrow \mathrm{CO}_{2}$
21. Ans: (a)

Sol: Lapse rate

$$
=\frac{\mathrm{dT}}{\mathrm{dt}}=\frac{21.25-15.70}{444-4}=1.42 / 100
$$

Lapse rate > ALR $\left(-1^{\circ} \mathrm{C} / 100 \mathrm{~m}\right)$
(-1.42 /100 m)
\therefore it is super adiabatic lapse rate.
22. Ans: (c)

Sol: ESP and fabric filters remove very fine
23. Ans: $\mathbf{0 . 0 1 1 2 6 8}$

Sol: $\frac{\mathrm{P}}{\mathrm{RT}}=41.6 \mathrm{mo} \ell / \mathrm{m}^{3}$
$\frac{\mathrm{RT}}{\mathrm{P}} \times 10^{3}=$ constant $=24.038$
$1 \mu \mathrm{~g} / \mathrm{m}^{3}=\frac{24.038}{\mathrm{M} \times 10^{3}} \mathrm{ppm}$
$30 \mu \mathrm{~g} / \mathrm{m}^{3}$ of $\mathrm{SO}_{2}=\frac{24.038}{64 \times 10^{3}} \times 30$
$=0.011268 \mathrm{ppm}$
24. Ans: (b)

Sol: $v=\frac{2}{60} m / \mathrm{sec}$
Total surface area of bags required $=\frac{\mathrm{Q}}{\mathrm{v}}$

$$
\frac{10}{2 / 60}=300 \mathrm{~m}^{2}
$$

Surface area of each bag $=\pi \mathrm{dH}$

$$
=\pi \times 0.45 \times 7.5
$$

Number of bags required $=\frac{300}{\pi \times 0.45 \times 7.5}$

$$
=28.29 \simeq 29
$$

25. Ans: 8012.38

Sol: η of ESP is given by

$$
\eta=1-e^{\frac{-A W}{Q}}
$$

when $\eta=96 \%$

$$
\mathrm{A}=5600 \mathrm{~m}^{2}
$$

	Regular Live Doubt clearing Sessions	Free Online Test Series \| ASK an expert					
	Affordable Fee \\| Available 1M	3M	6M	12M	18M and 24 Months Subscription Packages		

(2) ACE	51

$$
\begin{array}{lr}
\eta=97 \% & A=6100 \mathrm{~m}^{2} \\
\eta=99 \% & A=?
\end{array}
$$

$$
0.96=1-\mathrm{e}^{\frac{-5600 \times \mathrm{w}}{185}} \Rightarrow \mathrm{~W}=0.1063 \mathrm{~m} / \mathrm{sec}
$$

$$
0.99=1-\mathrm{e}^{\frac{-\mathrm{A} \times 0.1063}{185}} \Rightarrow \mathrm{~A}=8012.38 \mathrm{~m}^{2}
$$

plate area of collector $A=8012.38 \mathrm{~m}^{2}$

26. Ans: 592.88

Sol: \% sulphur in coal = 2
Rate of coal consumption $=30 \mathrm{~kg} / \mathrm{min}$
$\%$ sulphur in ash $=6$
SO_{2} emission $=\left(\frac{\mathrm{t}}{\text { year }}\right)=$?
Total sulphur produced $=$ Rate of Coal consumption $\times \%$ sulphur in Coal
$30 \times \frac{2}{100} \mathrm{~kg} / \min \times \frac{365 \times 24 \times 60}{1000} \times \mathrm{t} /$ year
(Convert in to tonn/year)
SO_{2} emission of gas
$=30 \times \frac{2}{100} \times \frac{365 \times 24 \times 60}{1000}\left(\frac{100-6}{100}\right)$
$=296.45 /$ year

$$
\begin{array}{r}
\mathrm{S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2} \\
\mathrm{~S}=32 \\
\mathrm{SO}_{2}=64
\end{array}
$$

32 Parts of sulphur $=64$ parts of SO_{2}
1 Part of $\mathrm{SO}_{2}=\frac{64}{32}$ parts of SO_{2}
$296.4 \mathrm{t} /$ year of sulphur produce

$$
=\frac{64}{32} \times 296.4 \mathrm{t} / \text { year of } \mathrm{SO}_{2}
$$

$$
\begin{gathered}
\mathrm{SO}_{2} \text { emission }=\frac{64}{32} \times 296.4 \\
=529.8
\end{gathered}
$$

27. Refer Previous GATE solutions Book
28. Refer Previous GATE solutions Book
29. Ans: (b)

Sol: Air required to maintain 50 ppm of CO

$$
=\frac{0.03 \mathrm{~m}^{3}}{\min } \times\left(\frac{10^{6}}{50}\right)=600 \mathrm{~m}^{3} / \mathrm{min}
$$

30. Ans: (c)

Sol: Electrostatic precipitators(ESP) widely used in thermal power stations

