GATE I PSUs

ELECTROMAGNETICS

Text Book:

Theory with worked out Examples and Practice Questions

Chapter 1 Static Fields

(Solutions for Text Book Practice Questions)

1. Ans: 1

Sol: $\vec{V}=x \cos ^{2} y \hat{i}+x^{2} e^{z} \hat{j}+z \sin ^{2} y \hat{k}$

$$
=x \cos ^{2} y \hat{a}_{x}+x^{2} e^{z} \hat{a}_{y}+z \sin ^{2} y \hat{a}_{z}
$$

From divergence theorem
$\oiint \overline{\mathrm{V}} . \hat{\mathrm{n}} \mathrm{ds}=\int_{\mathrm{v}}(\nabla . \overline{\mathrm{D}}) \mathrm{dv}$ \qquad . .1
$\nabla . \overline{\mathrm{D}}=\frac{\partial}{\partial \mathrm{x}}\left(\mathrm{x} \cos ^{2} \mathrm{y}\right)+\frac{\partial}{\partial \mathrm{y}}\left(\mathrm{x}^{2} \mathrm{e}^{\mathrm{z}}\right)+\frac{\partial}{\partial \mathrm{z}}\left(\mathrm{z} \sin ^{2} \mathrm{y}\right)$

$$
=\cos ^{2} y+\sin ^{2} y=1
$$

$d v=d x d y d z$
Putting these value in equation 1 we have

$$
\begin{aligned}
\oiint \overline{\mathrm{V}} \cdot \hat{\mathrm{n}} \mathrm{ds} & =\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} 1 \times d x d y d z \\
& =\int_{0}^{1} d x \int_{0}^{1} d y \int_{0}^{1} d z=1
\end{aligned}
$$

02. Ans: (c)

Sol: Given $\vec{A}=x$ y $\vec{a}_{x}+x^{2} \vec{a}_{y}$
Let $I=\oint \vec{A} \cdot d \vec{\ell}, I$ is evaluated over the path shown in the Fig., as follows

Fig.
$I=\oint \vec{A} \cdot d x \vec{a}_{x}, y=1, x=$ from $\frac{1}{\sqrt{3}}$ to $\frac{2}{\sqrt{3}}$

$$
\begin{aligned}
&+\int \overrightarrow{\mathrm{A}} . \mathrm{dy} \overrightarrow{\mathrm{a}}_{\mathrm{y}}, \mathrm{x}=\frac{2}{\sqrt{3}}, \mathrm{y}=\text { from } 1 \text { to } 3 \\
&-\int \overrightarrow{\mathrm{A}} \cdot \mathrm{dx} \overrightarrow{\mathrm{a}}_{\mathrm{x}}, \mathrm{y}=3, \mathrm{x}=\text { from } \frac{1}{\sqrt{3}} \text { to } \frac{2}{\sqrt{3}} \\
&-\int \overrightarrow{\mathrm{A}} \cdot \mathrm{dy} \overrightarrow{\mathrm{a}}_{\mathrm{y}}, \mathrm{x}=1 / \sqrt{3}, \mathrm{y}=\text { from } 1 \text { to } 3 \\
&= \int \mathrm{xydx}+\int \mathrm{x}^{2} \mathrm{dy}-\int \mathrm{xydx}-\int \mathrm{x}^{2} \mathrm{dy} \\
&=\left.\mathrm{y} \frac{\mathrm{x}^{2}}{2}\right|_{1 / \sqrt{3}} ^{2 / \sqrt{3}}+\left.\mathrm{x}^{2} \mathrm{y}\right|_{1} ^{3}-\left.\mathrm{y} \frac{x^{2}}{2}\right|_{1 / \sqrt{3}} ^{2 / \sqrt{3}}-\left.\mathrm{x}^{2} \mathrm{y}\right|_{1} ^{3} \\
& \text { at } \mathrm{y}=1 \quad \mathrm{x}=2 / \sqrt{3} \quad \mathrm{y}=3 \quad \mathrm{x}=1 / \sqrt{3} \\
&= \frac{1}{2}\left(\frac{4}{3}-\frac{1}{3}\right)+\frac{4}{3}(3-1)-\frac{3}{2}\left(\frac{4}{3}-\frac{1}{3}\right)-\frac{1}{3}(3-1) \\
&= \frac{1}{2}+\frac{8}{3}-\frac{3}{2}-\frac{2}{3}=-1+2=1
\end{aligned}
$$

3. Ans: (d)

Sol: $\overline{\mathrm{F}}=\rho \mathrm{a}_{\rho}+\rho \sin ^{2} \phi \mathrm{a}_{\phi}-z \mathrm{a}_{\mathrm{z}}$

$$
=\mathrm{F}_{\rho} \mathrm{a}_{\rho}+\mathrm{F}_{\phi} \mathrm{a}_{\phi}+\mathrm{F}_{\mathrm{z}} \mathrm{a}_{\mathrm{z}}
$$

$\nabla \cdot \overline{\mathrm{F}}=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \mathrm{~F}_{\rho}\right)+\frac{1}{\rho} \frac{\partial}{\partial \phi}\left(\mathrm{~F}_{\phi}\right)+\frac{\partial}{\partial \mathrm{z}}\left(\mathrm{F}_{\mathrm{z}}\right)$

$$
\begin{aligned}
& \quad=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho^{2}\right)+\frac{1}{\rho} \frac{\partial}{\partial \phi}\left(\rho \sin ^{2} \phi\right)+\frac{\partial}{\partial z}(-z) \\
&=2+2 \sin \phi \cos \phi-1 \\
&=1+2 \sin \phi \cos \phi \\
&\left.\nabla \cdot \bar{F}\right|_{\phi=\frac{\pi}{4}}=2,\left.\nabla \cdot \bar{F}\right|_{\phi=0}=1
\end{aligned} \begin{aligned}
& \left.\nabla \cdot \overline{\mathrm{F}}\right|_{\phi=\frac{\pi}{4}}=\left.2 \nabla \cdot \overline{\mathrm{~F}}\right|_{\phi=0}
\end{aligned}
$$

4. Ans: (c)

Sol: $\overline{\mathrm{D}}=2 \hat{\mathrm{a}}_{\mathrm{x}}-2 \sqrt{3} \hat{\mathrm{a}}_{\mathrm{z}} \quad \overline{\mathrm{D}}=|\overline{\mathrm{D}}| \overline{\mathrm{a}}_{\mathrm{n}}$

$$
|\overline{\mathrm{D}}|=\sqrt{16}=4 \quad=\rho_{\mathrm{s}} \hat{\mathrm{a}}_{\mathrm{n}}
$$

$$
\begin{aligned}
\therefore \overline{\mathrm{D}} & =4\left\{\frac{2 \hat{\mathrm{a}}_{\mathrm{x}}-2 \sqrt{3} \hat{\mathrm{a}}_{\mathrm{Z}}}{4}\right\} \\
& =\rho_{\mathrm{s}} \hat{\mathrm{a}}_{\mathrm{n}} \quad \therefore \rho_{\mathrm{s}}=4 \mathrm{C} / \mathrm{m}^{2}
\end{aligned}
$$

05. Ans: (d)

Sol: $V=10 y^{4}+20 x^{3}$
$E=-\nabla V=-60 x^{2} \hat{a}_{x}-40 y^{3} \hat{a}_{y}$
$\mathrm{D}=\varepsilon_{0} \mathrm{E}=-60 \mathrm{x}^{2} \varepsilon_{0} \hat{\mathrm{a}}_{\mathrm{x}}-40 \mathrm{y}^{3} \varepsilon_{0} \hat{\mathrm{a}}_{\mathrm{y}}$
$\nabla . \mathrm{D}=\rho_{v}$

$$
\begin{aligned}
\rho_{v} & =\frac{\partial}{\partial x}\left(-60 x^{2} \varepsilon_{0}\right)+\frac{\partial}{\partial y}\left(-40 y^{3} \varepsilon_{0}\right) \\
& =-120 x \varepsilon_{0}-120 y^{2} \varepsilon_{0}
\end{aligned}
$$

$$
\rho_{v}(\text { at } 2,0)=-120 \times 2 \varepsilon_{0}-120 \times 0^{2} \varepsilon_{0}
$$

$$
=-240 \varepsilon_{0}
$$

6. Ans: (d)

Sol: Given
$V(x, y, z)=50 x^{2}+50 y^{2}+50 z^{2}$
$\overrightarrow{\mathrm{E}}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ in free space $=-\operatorname{grad}(\mathrm{V})$

$$
\begin{aligned}
& =-\nabla V \\
& =-\left[\frac{\partial}{\partial x} V \overrightarrow{a_{x}}+\frac{\partial}{\partial y} V \overrightarrow{a_{y}}+\frac{\partial}{\partial z} V \overrightarrow{a_{z}}\right] \\
& =-\left\lfloor 100 x \overrightarrow{a_{x}}+100 y \overrightarrow{a_{y}}+100 z \overrightarrow{a_{z}}\right\rfloor V / m
\end{aligned}
$$

$$
\overrightarrow{\mathrm{E}}(1,-1,1)=
$$

$$
-\left\lfloor 100 \overrightarrow{\mathrm{a}_{\mathrm{x}}}-100 \overrightarrow{\mathrm{a}_{\mathrm{y}}}+100 \overrightarrow{\mathrm{a}_{\mathrm{z}}}\right\rfloor \mathrm{V} / \mathrm{m}
$$

$$
\mathrm{E}(1,-1,1)=100 \sqrt{(-1)^{2}+(1)^{2}+(-1)^{2}}
$$

$$
=100 \sqrt{3}
$$

Direction of the electric field is given by the unit vector in the direction of \vec{E}.
$\overrightarrow{\mathrm{a}}_{\mathrm{E}}=\frac{\overrightarrow{\mathrm{E}}(1,-1,1)}{|\mathrm{E}(1,-1,1)|}=\frac{1}{\sqrt{3}}\left[-\overrightarrow{\mathrm{a}_{\mathrm{x}}}+\overrightarrow{\mathrm{a}_{\mathrm{y}}}-\overrightarrow{\mathrm{a}_{z}}\right]$
or in $\mathrm{i}, \mathrm{j}, \mathrm{k}$ notation, $\quad \overrightarrow{\mathrm{a}}_{\mathrm{E}}=\frac{1}{\sqrt{3}}[-\mathrm{i}+\mathrm{j}-\mathrm{k}]$
07. Ans: (b)

Sol: For valid B, D.B $=0$

$$
\begin{aligned}
& \left(\frac{\partial}{\partial x} a_{x}+\frac{\partial}{\partial y} a_{y}+\frac{\partial}{\partial z} a_{z}\right)\left(x^{2} a_{x}-x y a_{y}-K x z a_{z}\right)=0 \\
& 2 x-x-K x=0 \\
& \Rightarrow 2-1-K=0 \\
& \therefore K=1
\end{aligned}
$$

8. Ans: (d)

Sol: The two infinitely long wires are oriented as shown in the Fig.

The infinitely long wire in the $y-z$ plane carrying current along the \vec{a}_{y} direction produces the magnetic field at the origin in the direction of $\vec{a}_{y} \times-\vec{a}_{z}=-\vec{a}_{x}$.
The infinitely long wire in the $x-y$ plane carrying current along the \vec{a}_{x} direction produces the magnetic field at the origin in the direction of $\vec{a}_{x} \times-\vec{a}_{y}=-\vec{a}_{z}$.
where \vec{a}_{x}, \vec{a}_{y} and \vec{a}_{z} are unit vectors along the ' x ', ' y ' and ' z ' axes respectively.
$\therefore \mathrm{x}$ and z components of magnetic field are non-zero at the origin.
09. Ans: (a)

Sol: $\nabla \cdot \bar{B}=0$
A divergence less vector may be a curl of some other vector
$\overline{\mathrm{B}}=\nabla \times \overline{\mathrm{A}}$
$\nabla \times \overline{\mathrm{A}}=\overline{\mathrm{B}}$
$\oint_{1} \overline{\mathrm{~A}} \cdot \overline{\mathrm{dl}}=\int_{\mathrm{s}} \overline{\mathrm{B}} \cdot \overline{\mathrm{ds}}$
$\int_{\mathrm{s}} \overline{\mathrm{B}} \cdot \overline{\mathrm{ds}}$ is equal to magnetic flux ψ through a surface.
10. Ans: (c)

Sol: In general, for an infinite sheet of current density K A/m

$$
\begin{aligned}
H & =\frac{1}{2} K \times \mathrm{a}_{\mathrm{n}} \\
H & =\frac{1}{2}\left(8 \overline{\mathrm{a}}_{\mathrm{x}} \times \overline{\mathrm{a}}_{\mathrm{z}}\right) \\
& =-4 \overline{\mathrm{a}}_{\mathrm{y}}\left(\because \overline{\mathrm{a}}_{\mathrm{x}} \times \overline{\mathrm{a}}_{\mathrm{z}}=-\overline{\mathrm{a}}_{\mathrm{y}}\right)
\end{aligned}
$$

11. Ans: (b)

Sol:

$$
\varepsilon_{\mathrm{r}}=1 \quad \uparrow \quad \overline{\mathrm{E}}_{2}=\mathrm{a}_{\mathrm{x}}
$$

$$
\begin{gather*}
\varepsilon_{\mathrm{r}}=2 \uparrow \overline{\mathrm{E}}_{1}=2 \mathrm{a}_{\mathrm{x}} \\
\mathrm{D}_{\mathrm{n}_{2}}-\mathrm{D}_{\mathrm{n}_{1}}=\rho_{\mathrm{S}} \rightarrow(\mathrm{a}) \tag{a}\\
\mathrm{D}_{\mathrm{n}_{2}}=\epsilon_{\mathrm{E}_{\mathrm{n}_{2}}}=\epsilon_{0} \mathrm{a}_{\mathrm{x}} \\
\mathrm{D}_{\mathrm{n}_{1}}=\epsilon_{0} 2 \times 2 \mathrm{a}_{\mathrm{x}}=4 \epsilon_{0} \mathrm{a}_{\mathrm{x}}
\end{gather*}
$$

From (a)
$\left(\epsilon_{0}-4 \epsilon_{0}\right) a_{x}=\rho_{\mathrm{s}} \Rightarrow \rho_{\mathrm{s}}=-3 \epsilon_{0}$

12. Ans: (a)

Sol:

$$
\begin{aligned}
& \mu_{\mathrm{r}_{1}}=\left.2\right|_{\mathrm{z}=0} \mu_{\mathrm{r}_{2}}=1 \\
& \mathrm{~B}_{1}=1.2 \overline{\mathrm{a}}_{\mathrm{x}}+0.8 \overline{\mathrm{a}}_{\mathrm{y}}+0.4 \overrightarrow{\mathrm{a}}_{\mathrm{z}} \\
& \mathrm{~B}_{\mathrm{n}_{1}}=0.4 \overline{\mathrm{a}}_{\mathrm{z}}
\end{aligned}
$$

(Since $\mathrm{z}=0$ has normal component a_{x})

$$
\mathrm{B}_{\mathrm{t}_{1}}=1.2 \overline{\mathrm{a}}_{\mathrm{x}}+0.8 \overline{\mathrm{a}}_{\mathrm{y}}
$$

We know magnetic flux density is continuous

$$
\begin{aligned}
& \mathrm{B}_{\mathrm{n}_{1}}=\mathrm{B}_{\mathrm{n}_{2}} \\
& \mathrm{~B}_{\mathrm{n}_{2}}=0.4 \overline{\mathrm{a}}_{\mathrm{z}}
\end{aligned}
$$

Surface charge, $\overline{\mathrm{k}}=0$

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{t}_{2}}-\mathrm{H}_{\mathrm{t}_{1}}=0 \\
& \mathrm{H}_{\mathrm{t}_{2}}=\mathrm{H}_{\mathrm{t}_{1}} \\
& \mu_{1} \mathrm{~B}_{\mathrm{t}_{2}}=\mu_{2} \mathrm{~B}_{\mathrm{t}_{1}} \\
& \mathrm{~B}_{\mathrm{t}_{2}}=\frac{1}{2}\left(1.2 \mathrm{a}_{\mathrm{x}}+0.8 \mathrm{a}_{\mathrm{y}}\right) \\
& \mathrm{B}_{2}=\mathrm{B}_{\mathrm{t}_{2}}+\mathrm{B}_{\mathrm{n}_{2}}=0.6 \overline{\mathrm{a}}_{\mathrm{x}}+0 . \overline{4} \mathrm{a}_{\mathrm{y}}+0.4 \overline{\mathrm{a}}_{\mathrm{z}} \\
& \mu_{0} \mu_{\mathrm{r}_{2}} \mathrm{H}_{2}=0.6 \overline{\mathrm{a}}_{\mathrm{x}}+0 . \overline{4} \mathrm{a}_{\mathrm{y}}+0.4 \overline{\mathrm{a}}_{\mathrm{z}} \\
& \mathrm{H}_{2}=\frac{1}{\mu_{0}}\left[0.6 \overline{\mathrm{a}}_{\mathrm{x}}+0 . \overline{4} \mathrm{a}_{\mathrm{y}}+0.4 \overline{\mathrm{a}}_{\mathrm{z}}\right] \mathrm{A} / \mathrm{m}
\end{aligned}
$$

13. Ans: (b)

Sol: Tangential components of electric fields are continuous $\left(E_{t_{1}}=E_{t_{2}}\right)$

$$
E_{1} \sin \alpha_{1}=E_{2} \sin \alpha_{2}---(1)
$$

Normal component of electric flux densities are continuous across a charge free interface $\mathrm{D}_{\mathrm{n}_{1}}=\mathrm{D}_{\mathrm{n}_{2}}$
$3 \mathrm{E}_{1} \cos \alpha_{1}=\sqrt{3} \mathrm{E}_{2} \cos \alpha_{2}---$-(2)
$\alpha_{1}=60^{\circ}$
$\frac{(1)}{(2)} \Rightarrow \frac{\tan \alpha_{1}}{3}=\frac{\tan \alpha_{2}}{\sqrt{3}} \Rightarrow \tan \alpha_{2}=1$
$\alpha_{2}=45^{0}$

Chapter

Identify polarization of following (Page number 71 in Volume -I booklet)

1. $\overline{\mathrm{E}}=20 \sin (\omega \mathrm{t}-\beta \mathrm{x}) \hat{\mathrm{a}}_{\mathrm{y}} \mathrm{V} / \mathrm{m}$

Sol: At $\mathrm{x}=0$
$\overline{\mathrm{E}}=20 \sin (\omega \mathrm{t}) \hat{\mathrm{a}}_{\mathrm{y}} \mathrm{V} / \mathrm{m}$
Let $\theta=\omega t$
$\theta=0 \Rightarrow \overline{\mathrm{E}}=0$
$\theta=\frac{\pi}{2} \Rightarrow \overline{\mathrm{E}}=20 \hat{\mathrm{a}}_{\mathrm{y}}$
$\theta=\pi \Rightarrow \overline{\mathrm{E}}=0$
$\theta=\frac{3 \pi}{2} \Rightarrow \overline{\mathrm{E}}=-20 \hat{\mathrm{a}}_{\mathrm{y}}$
$\theta=\pi \Rightarrow \overline{\mathrm{E}}=0$
i.e., linear polarization and also vertical polarization with respect to \hat{x}-axis
02. $\overline{\mathrm{H}}=45 \cos (\omega \mathrm{t}-\beta \mathrm{z}) \hat{a}_{\mathrm{x}} \mathrm{A} / \mathrm{m}$

Sol: This is linear polarization
03. $\overline{\mathrm{E}}=20 \sin (\omega \mathrm{t}-\beta \mathrm{z}) \hat{\mathrm{a}}_{\mathrm{x}}+30 \sin (\omega \mathrm{t}-\beta \mathrm{z}) \hat{\mathrm{a}}_{\mathrm{y}}$

Sol: phase difference between $\hat{\mathrm{a}}_{\mathrm{x}}$ component and \hat{a}_{y} component is 0°
So that it is linear polarization
Note: for phase difference $0^{\circ} \& 180^{\circ}$, irrespective of their amplitudes it must be in linear polarization.
04. $\overline{\mathrm{E}}=55 \cos (\omega \mathrm{t}-\beta \mathrm{z}) \hat{\mathrm{a}}_{\mathrm{x}}+55 \sin (\omega \mathrm{t}-\beta \mathrm{z}) \hat{\mathrm{a}}_{y}$

Sol: Phase difference between $\hat{\mathrm{a}}_{\mathrm{x}}$ component and \hat{a}_{y} component is $\frac{\pi}{2}$
Amplitudes are same.
So it is circular polarization
at $\mathrm{z}=0$ and let $\theta=\omega \mathrm{t}$
$\theta=0 \Rightarrow \overline{\mathrm{E}}=55 \hat{\mathrm{a}}_{\mathrm{x}}+0 \hat{\mathrm{a}}_{\mathrm{y}}$
$\theta=\frac{\pi}{2} \Rightarrow \overline{\mathrm{E}}=0 \hat{\mathrm{a}}_{\mathrm{x}}+55 \hat{\mathrm{a}}_{\mathrm{y}}$
It is CCW direction i.e. RHCP
05. $\overline{\mathrm{E}}=40 \sin (\omega \mathrm{t}-\beta \mathrm{y}) \hat{\mathrm{a}}_{\mathrm{x}}+50 \cos (\omega \mathrm{t}-\beta \mathrm{y}) \hat{\mathrm{a}}_{\mathrm{z}}$

Sol: Phase difference $=\frac{\pi}{2}$
Amplitudes $=$ not same
So it is elliptical polarization. To decide direction of rotation follow below procedure.
At $y=0$, and Let $\theta=\omega t$
$\theta=0 \Rightarrow \overline{\mathrm{E}}=0 \hat{\mathbf{a}}_{\mathrm{x}}+50 \hat{\mathrm{a}}_{\mathrm{z}}$
$\theta=\frac{\pi}{2} \Rightarrow \overline{\mathrm{E}}=40 \hat{\mathrm{a}}_{\mathrm{x}}+0 \hat{\mathrm{a}}_{\mathrm{z}}$
$\theta=\pi \Rightarrow \overline{\mathrm{E}}=0 \hat{\mathrm{a}}_{\mathrm{x}}-50 \hat{\mathrm{a}}_{z}$
$\theta=\frac{3 \pi}{2} \Rightarrow \overline{\mathrm{E}}=-40 \hat{\mathrm{a}}_{\mathrm{x}}+0 \hat{\mathrm{a}}_{z}$
It is Anti clock wise direction i.e., Right Hand Elliptical Polarization.
06.

Sol: $\overline{\mathrm{E}}=\operatorname{Re}\left\{\left\{\hat{a}_{x}+j \hat{a}_{y}\right]^{\mathrm{j}(0 \mathrm{tr}-\beta z)}\right\}$

$$
\begin{aligned}
& \bar{E}=\operatorname{Re}\left[\begin{array}{l}
(\cos (\omega t-\beta z)+j \sin (\omega t-\beta z)) \hat{a}_{x}+ \\
j\left(\cos (\omega t-\beta z)+j^{2} \sin (\omega t-\beta z) \hat{a}_{y}\right)
\end{array}\right] \\
& \bar{E}=\left(\cos (\omega t-\beta z) \hat{a}_{x}-\sin (\omega t-\beta z) \hat{a}_{y}\right)
\end{aligned}
$$

Magnitudes of amplitudes are same, phase difference is $\frac{\pi}{2}$; So it is circular polarization. Now we proceed to decide direction of rotation.

Here
$\overline{\mathrm{E}}=\cos (\omega \mathrm{t}-\beta \mathrm{z}) \hat{\mathrm{a}}_{\mathrm{x}}-\sin (\omega \mathrm{t}-\beta \mathrm{z}) \hat{\mathrm{a}}_{\mathrm{y}}$
At $\mathrm{z}=0$ \& let $\theta=\omega \mathrm{t}$

	Regular Live Doubt clearing Sessions \| Free Online Test Series	ASK an expert				
\rightarrow online	Affordable Fee \\| Available 1M	3M	6M	12M	18M and 24 Months Subscription Packages	

$\theta=0 \Rightarrow \overline{\mathrm{E}}=\hat{\mathrm{a}}_{\mathrm{x}}-0 \hat{\mathrm{a}}_{\mathrm{y}}$
$\theta=\frac{\pi}{2} \Rightarrow \overline{\mathrm{E}}=0 \hat{\mathrm{a}}_{\mathrm{x}}-\hat{\mathrm{a}}_{\mathrm{y}}$
$\theta=\pi \Rightarrow \overline{\mathrm{E}}=-\hat{\mathbf{a}}_{\mathrm{x}}+0 \hat{\mathbf{a}}_{\mathrm{y}}$
$\theta=\frac{3 \pi}{2} \Rightarrow \overline{\mathrm{E}}=0 \hat{\mathrm{a}}_{x}-\hat{\mathrm{a}}_{y}$
i.e., we get clock wise rotation i.e.,

Left Hand Circular Polarization
07. not a valid EM wave representation
08.

Sol: $\overline{\mathrm{E}}=5 \cos (\omega \mathrm{t}-\beta \mathrm{r}) \hat{\mathrm{a}}_{\theta}$
Let $\mathrm{r}=0 \& \theta=\omega \mathrm{t}$
at $\theta=0 \Rightarrow \overline{\mathrm{E}}=5 \hat{\mathrm{a}}_{\theta}$
$\theta=\frac{\pi}{2} \Rightarrow \overline{\mathrm{E}}=0 \hat{\mathrm{a}}_{\text {}}$
$\theta=\pi \Rightarrow \overline{\mathrm{E}}=-5 \hat{\mathrm{a}}_{\theta}$
$\theta=\frac{3 \pi}{2} \Rightarrow \overline{\mathrm{E}}=0 \hat{\mathrm{a}}_{\text {}}$
i.e., linear polarization
09.

Sol: $\quad \overline{\mathrm{E}}=\operatorname{Im}\left\{\left[\hat{\mathrm{a}}_{\mathrm{x}}+2 \mathrm{j} \hat{\mathrm{a}}_{\mathrm{z}}\right] \mathrm{e}^{\mathrm{j}(\mathrm{at}-\mathrm{\beta} \mathrm{y})}\right\}$

$$
\begin{aligned}
& =\operatorname{Im}\left\{\begin{array}{l}
{[\cos (\omega \mathrm{t}-\beta \mathrm{y})+\mathrm{j} \sin (\omega \mathrm{t}-\beta \mathrm{y})] \hat{a}_{\mathrm{x}}+} \\
2 j[\cos (\omega \mathrm{t}-\beta \mathrm{y})+j \sin (\omega \mathrm{t}-\beta \mathrm{y})] \hat{\mathrm{a}}_{\mathrm{z}}
\end{array}\right\} \\
& =\sin (\omega \mathrm{t}-\beta \mathrm{y}) \hat{\mathrm{a}}_{\mathrm{x}}+2 \cos (\omega \mathrm{t}-\beta \mathrm{y}) \hat{\mathrm{a}}_{z}
\end{aligned}
$$

Let $\mathrm{y}=0 \& \theta=\omega \mathrm{t}$
$\theta=0 \Rightarrow \overline{\mathrm{E}}=0 \hat{\mathrm{a}}_{\mathrm{x}}+2 \hat{\mathrm{a}}_{\mathrm{z}}$
$\theta=\frac{\pi}{2} \Rightarrow \overline{\mathrm{E}}=\hat{\mathrm{a}}_{\mathrm{x}}+0 \hat{\mathrm{a}}_{\mathrm{z}}$
$\theta=\pi \Rightarrow \overline{\mathrm{E}}=0 \hat{\mathrm{a}}_{\mathrm{x}}-2 \hat{\mathrm{a}}_{\mathrm{z}}$
$\theta=\frac{3 \pi}{2} \Rightarrow \overline{\mathrm{E}}=-\hat{\mathrm{a}}_{\mathrm{x}}+0 \hat{\mathrm{a}}_{z}$
So it is Right Hand Elliptical Polarization
10. $\overline{\mathrm{E}}=20 \sin (\omega \mathrm{t}-\beta \mathrm{y}) \hat{\mathrm{a}}_{\mathrm{x}}+30 \sin \left(\omega \mathrm{t}-\beta \mathrm{y}+45^{\circ}\right) \hat{\mathrm{a}}_{z}$

Sol: let $\mathrm{y}=0 \& \theta=\omega \mathrm{t}$
At $\theta=0$

$$
\begin{aligned}
\Rightarrow \overline{\mathrm{E}} & =0 \hat{\mathrm{a}}_{x}+30 \sin 45^{\circ} \hat{\mathrm{a}}_{z} \\
& =0 \hat{\mathrm{a}}_{x}+\frac{30}{\sqrt{2}} \hat{\mathrm{a}}_{z}
\end{aligned}
$$

$$
\text { At } \theta=\frac{\pi}{2} \Rightarrow \overline{\mathrm{E}}=20 \hat{\mathrm{a}}_{\mathrm{x}}+30 \sin \left(135^{\circ}\right) \hat{\mathrm{a}}_{\mathrm{z}}
$$

$$
=20 \hat{\mathrm{a}}_{\mathrm{x}}+\frac{30}{\sqrt{2}} \hat{\mathrm{a}}_{z}
$$

$$
\text { At } \theta=\pi \Rightarrow \overline{\mathrm{E}}=0 \hat{\mathrm{a}}_{\mathrm{x}}+30 \sin \left(225^{\circ}\right) \hat{\mathrm{a}}_{2}
$$

$$
=0 \hat{a}_{x}-\frac{30}{\sqrt{2}} \hat{\mathrm{a}}_{z}
$$

$$
\text { At } \theta=\frac{3 \pi}{2} \Rightarrow \overline{\mathrm{E}}=-20 \hat{\mathrm{a}}_{\mathrm{x}}+30 \sin \left(315^{\circ}\right) \hat{\mathrm{a}}_{z}
$$

$$
=-20 \hat{\mathrm{a}}_{x}-\frac{30}{\sqrt{2}} \hat{\mathrm{a}}_{z}
$$

Note: $\theta=62.76^{\circ}$ is the maximum values direction obtained by

$$
\begin{aligned}
& \frac{d \overline{\mathrm{E}}}{\mathrm{~d} \theta}=0 \text { at } \mathrm{y}=0 \& \omega \mathrm{t}=\theta \\
& \text { at } \theta=-\frac{\pi}{4} \Rightarrow \overline{\mathrm{E}}=\frac{-20}{\sqrt{2}} \hat{\mathrm{a}}_{\mathrm{x}}+0 \hat{\mathrm{a}}_{\mathrm{z}} \\
& \text { at } \theta=\frac{\pi}{4} \Rightarrow \overline{\mathrm{E}}=\frac{20}{\sqrt{2}} \hat{\mathrm{a}}_{\mathrm{x}}+30 \hat{\mathrm{a}}_{\mathrm{z}}
\end{aligned}
$$

So it is RHEP
11. $\overline{\mathrm{E}}=20 \sin (\omega t-\beta z) \hat{\mathrm{a}}_{\mathrm{x}}+20 \sin \left(\omega \mathrm{t}-\beta \mathrm{z}+45^{\circ}\right) \hat{\mathrm{a}}_{\mathrm{y}}$

Sol: Valid EM wave but polarization can not defined.
This is a valid EM wave representation but it is not satisfy anyone of the polarization principle

Text Book Practice Solutions

1. Ans: (c)

Sol: Given flux $\phi=\left(\mathrm{t}^{3}-2 \mathrm{t}\right) \mathrm{mWb}$
Magnitude of inducted emf $\left|e^{\prime}\right|=\left|\frac{d \phi}{d t}\right|_{t=4 \mathrm{sec}}$

$$
\begin{aligned}
\left|\mathrm{e}^{\prime}\right| & =3 \mathrm{t}^{2}-\left.2\right|_{\mathrm{t}=4 \mathrm{sec}} \\
& =3(4)^{2}-2 \\
& =46 \mathrm{mWb}
\end{aligned}
$$

This 'e' for one turn; but for 100 turns

$$
\begin{aligned}
& |e|=N\left|e^{\prime}\right|=100 \times 46 \mathrm{mWb} \\
& |e|=4.6 \text { volts }
\end{aligned}
$$

2. Ans: (d)

Sol: Given,

$$
\begin{aligned}
& E=120 \pi \cos \left(10^{6} \pi t-\beta x\right) \hat{a}_{y} V / m \\
& H=A \cos \left(10^{6} \pi t-\beta x\right) \hat{a}_{z} A / m \\
& \varepsilon_{r}=8 ; \mu_{r}=2
\end{aligned}
$$

We know that, $\frac{E_{y}}{H_{z}}=\eta=\sqrt{\frac{\mu}{\varepsilon}}$

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{z}}=\frac{\mathrm{E}_{\mathrm{y}}}{120 \pi \sqrt{\frac{2}{8}}}=\frac{2 \mathrm{E}_{\mathrm{y}}}{120 \pi}=2 \mathrm{~A} / \mathrm{m} \\
& \mathrm{H}_{\mathrm{z}}=2 \cos \left(10^{6} \pi \mathrm{t}-\beta \mathrm{x}\right) \hat{\mathrm{a}}_{\mathrm{z}} \mathrm{~A} / \mathrm{m}
\end{aligned}
$$

$$
\therefore \mathrm{A}=2
$$

$$
\beta=\omega \sqrt{\mu \varepsilon}=\frac{10^{6} \pi \times \sqrt{2 \times 8}}{3 \times 10^{8}}
$$

$$
=0.0418 \mathrm{rad} / \mathrm{m}
$$

3. Ans: (b)

Sol: This question relates to normal incidence of a UPW on the air (medium 1) to glass (medium 2) interface as shown in Fig.

Medium, 1 Ai $\mathrm{n}_{1}=1$	Medium, 2 Glass slab
$\mu_{1}=\mu_{0}$	$\mathrm{n}_{2}=1.5$
$\epsilon_{1}=\epsilon_{0}$	$\mu_{2}=\mu_{0}$
	$\epsilon_{2}=\epsilon_{0} \epsilon_{\mathrm{r}}$

Fig.
If n_{1} and n_{2} are the refractive indices and v_{1} and v_{2} are the velocities

$$
\frac{n_{1}}{n_{2}}=\frac{v_{2}}{v_{1}}=\frac{\sqrt{\mu_{1} \in_{1}}}{\sqrt{\mu_{2} \in_{2}}}
$$

$$
=\sqrt{\frac{\epsilon_{1}}{\epsilon_{2}}} \text { for } \mu_{1}=\mu_{2}=\mu_{0}
$$

For $\mathrm{n}_{1}=1, \mathrm{n}_{2}=1.5$

$$
\sqrt{\frac{\epsilon_{1}}{\epsilon_{2}}}=\frac{1}{1.5}=\frac{2}{3}
$$

Reflection coefficient,

$$
\begin{aligned}
& \frac{\mathrm{E}_{\mathrm{r}}}{\mathrm{E}_{\mathrm{i}}}=\frac{\sqrt{\frac{\epsilon_{1}}{\epsilon_{2}}}-1}{\sqrt{\frac{\epsilon_{1}}{\epsilon_{2}}}+1}=\frac{\frac{2}{3}-1}{\frac{2}{3}+1}=-\frac{1}{5} \\
& \therefore \frac{\mathrm{P}_{\mathrm{r}}}{\mathrm{P}_{\mathrm{i}}}=\frac{\left|\mathrm{E}_{\mathrm{r}}\right|^{2}}{\left|\mathrm{E}_{\mathrm{i}}\right|^{2}}=\frac{1}{25}=4 \%
\end{aligned}
$$

4. Ans: (d)

Sol: Normal incidence is shown in Fig.

Fig.

Given: $\mathrm{E}_{\max }=5 \mathrm{E}_{\text {min }}$ in medium 1.
\therefore VSWR, $\mathrm{S}=\frac{\mathrm{E}_{\text {max }}}{\mathrm{E}_{\text {min }}}=5$

$$
|K|=\frac{S-1}{S+1}=\frac{5-1}{5+1}=\frac{2}{3}
$$

Reflection coefficient,

$$
\begin{aligned}
& K=\frac{E_{r}}{E_{i}}=\frac{\frac{\eta_{2}}{\eta_{1}}-1}{\frac{\eta_{2}}{\eta_{1}}+1}=\frac{-2}{3} \\
& -3 \frac{\eta_{2}}{\eta_{1}}+3=2 \frac{\eta_{2}}{\eta_{1}}+2 \\
& \therefore \frac{\eta_{2}}{\eta_{1}}=\frac{1}{5}, \quad \eta_{2}=\frac{1}{5} \eta_{1} \\
& \begin{aligned}
& \eta_{1}=\sqrt{\frac{\mu_{0}}{\epsilon_{0}}} \\
& \quad=\sqrt{4 \pi \times 10^{-7} \times 36 \pi \times 10^{9}} \\
&=(120 \pi) \Omega
\end{aligned}
\end{aligned}
$$

\therefore Intrinsic impedance of the dielectric medium, $\eta_{2}=\frac{1}{5} \times 120 \pi=24 \pi$
05. Ans: (a)

Sol: Given:
$\vec{E}=10\left(\hat{a}_{y}+j \hat{a}_{z}\right) e^{-\mathrm{j} 25 x}$ in free space.
$\vec{E}=\left(E_{y} \vec{a}_{y}+E_{z} \vec{a}_{z}\right) e^{-j \beta x}$
$\beta=25=\frac{\omega}{\mathrm{c}} \Rightarrow$
$\omega=25 \mathrm{c}=25 \times 3 \times 10^{8} \mathrm{rad} / \mathrm{s}$
$\mathrm{f}=1.19 \mathrm{GHz} \approx 1.2 \mathrm{GHz}$

$E_{y}=10, E_{z}=j 10$
E_{z} leads E_{y} by 90°
At $x=0$
Let $\mathrm{E}_{\mathrm{y}}=10 \cos (\omega \mathrm{t})$
then $E_{z}=10 \cos \left(\omega t+90^{\circ}\right)$
A Left Hand screw is to be turned in the direction along the circle as time increases so that the screw moves in the direction of propagation, ' x '.
\therefore The wave is left circularly polarized.
06. Ans: (b)

Sol: $\overline{\mathrm{H}}=0.2 \cos (\omega \mathrm{t}-\beta \mathrm{x}) \hat{\mathrm{a}}_{\mathrm{z}}$
Wave is progressing along +X direction

$$
\begin{aligned}
& \rightarrow(+\mathrm{X}) \\
& \frac{\mathrm{E}_{\mathrm{y}}}{\mathrm{H}_{\mathrm{z}}}=\eta=-\frac{\mathrm{E}_{z}}{\mathrm{H}_{\mathrm{y}}} \\
& \therefore \overline{\mathrm{E}}
\end{aligned}=0.2 \eta \cos (\omega \mathrm{t}-\beta \mathrm{x}) \hat{\mathrm{a}}_{\mathrm{y}} .
$$

$$
\begin{aligned}
& =\frac{1}{2}(0.2)^{2}(120 \pi) \hat{\mathrm{a}}_{\mathrm{x}} \mathrm{w} / \mathrm{m}^{2} \\
\mathrm{x} & =1 \text { plane } \Rightarrow \overline{\mathrm{ds}}=\mathrm{dydz} \hat{\mathrm{a}}_{\mathrm{x}} \\
\mathrm{~W}_{\mathrm{avg}} & =\int_{\mathrm{S}} \overline{\mathrm{P}}_{\mathrm{avg}} \overline{\mathrm{ds}} \text { watts } \\
& =\frac{1}{2}(0.2)^{2}(120 \pi) \iint \mathrm{dydz} \\
& =\left[\frac{1}{2}\left((0.2)^{2}(120 \pi)\right)\right]\left[\pi(5)^{2}\right] \times 10^{-4} \\
& =0.0592 \mathrm{Watts} \\
& =59.2 \mathrm{~mW} \simeq 60 \mathrm{~mW}
\end{aligned}
$$

07. Ans: (a)

Sol: $\mathrm{P} \propto \frac{1}{\mathrm{r}^{2}}$
$\frac{\mathrm{P}_{\mathrm{Q}}}{\mathrm{P}_{\mathrm{p}}}=\frac{\mathrm{r}_{\mathrm{p}}^{2}}{\mathrm{r}_{\mathrm{Q}}^{2}}=\frac{(\mathrm{R})^{2}}{\left(\frac{\mathrm{R}}{2}\right)^{2}}$
$\frac{\mathrm{P}_{\mathrm{Q}}}{\mathrm{P}_{\mathrm{P}}}=\frac{4}{1}=4: 1$
08. Ans: (b)

Sol: $\delta=\sqrt{\frac{2}{\omega \mu \sigma}}=\sqrt{\frac{1}{\pi f \mu \sigma}}$
$\delta \alpha \sqrt{\frac{1}{\mathrm{f}}} \Rightarrow \frac{\delta_{1}}{\delta_{2}}=\sqrt{\frac{\mathrm{f}_{2}}{\mathrm{f}_{1}}}$
$\frac{1.5}{\delta}=\sqrt{\frac{8 \times 10^{9}}{2 \times 10^{9}}}$
$\delta=\frac{1.5}{2}=0.75 \mu \mathrm{~m}$
Similarly
$\frac{1.5}{\delta}=\sqrt{\frac{18 \times 10^{9}}{2 \times 10^{9}}}=3$
$\delta=\frac{1.5}{3}=0.5 \mu \mathrm{~m}$
09. Ans: (b)

Sol: $\begin{aligned} \frac{\sigma}{\omega \varepsilon} & =\frac{5}{2 \times \pi \times 25 \times 10^{3} \times 80 \times 8.854 \times 10^{-12}} \\ & =44938.7\end{aligned}$
Since $\frac{\sigma}{\omega \varepsilon} \gg 1$ hence sea water is a good conductor
Where attenuation is 90%, transmission is 10%, then $\mathrm{e}^{-\alpha \mathrm{x}}=0.1$
Where α is attenuation constant

$$
\begin{aligned}
& \alpha=\sqrt{\frac{\omega \mu \sigma}{2}} \\
&=\sqrt{\frac{2 \times \pi \times 25 \times 10^{3} \times 4 \pi \times 10^{-7} \times 5}{2}} \\
& \alpha=0.7025 \\
&-\alpha x=\ln (0.1) \\
&-0.7025 \mathrm{x}=-2.3 \\
& x=3.27 \mathrm{~m}
\end{aligned}
$$

10. Ans: (b)

Sol: $\delta=\frac{1}{\alpha}=\frac{1}{2 \pi}=0.159$

11. Ans: (c)

Sol: E is minimum
H is maximum
i.e., ' c ' is the option
$\mathrm{E}_{\mathrm{Tan}_{1}}=\mathrm{E}_{\mathrm{Tan}_{2}}=0$
[perfect conductor $\mathrm{E}_{\mathrm{Tan}_{2}}=0$]
$\mathrm{H}_{\mathrm{Tan}_{1}}=\mathrm{J}_{\mathrm{S}} \times \mathrm{a}_{\mathrm{n}}+\mathrm{H}_{\mathrm{Tan}_{2}}$
$\mathrm{H}_{\text {Tan } 1_{1}}=\mathrm{J}_{\mathrm{S}} \times \mathrm{a}_{\mathrm{n}}$
[perfect conductor $\mathrm{H}_{\mathrm{Tan}_{2}}=0$]
12. Ans: (d)

Sol: $\overrightarrow{\mathrm{H}}=0.5 \mathrm{e}^{-0.1 \mathrm{x}} \cos \left(10^{6} \mathrm{t}-2 \mathrm{x}\right) \hat{\mathrm{a}}_{\mathrm{z}} \mathrm{A} / \mathrm{m} \rightarrow(+\mathrm{X})$
$\frac{E_{y}}{H_{z}}=\eta=-\frac{E_{z}}{H_{y}}$
Wave frequency $=10^{6}$ radians $/ \mathrm{s}$
Phase constant $\beta=2 \mathrm{rad} / \mathrm{m}$

$$
\begin{aligned}
& \beta=\frac{2 \pi}{\lambda}=2 \mathrm{rad} / \mathrm{m} \\
& \lambda=\pi=3.14 \mathrm{~m} .
\end{aligned}
$$

The wave is traveling along +X direction, Given wave is polarized along Y.
\because It has Y-component of electric field

13. Ans: (a)

Sol: The normal incidence of a plane wave traveling in positive y - direction is shown at the interface $y=0$ in Fig.

Fig.

Given: $\overrightarrow{\mathrm{E}}_{\mathrm{i}}=\mathrm{E}_{\mathrm{i} z} \overrightarrow{\mathrm{a}}_{\mathrm{z}}$
where $E_{i z}=24 \cos \left(3 \times 10^{8} t-\beta y\right) V / m$
$\omega=3 \times 10^{8} \mathrm{rad} / \mathrm{s}, \beta=\frac{\omega}{\mathrm{v}}$,
For free space, $v=v_{0}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$\therefore \beta=1 \mathrm{rad} / \mathrm{m}$
$\eta_{1}=\eta_{0}=\frac{E_{i z}}{H_{i x}}$
$\therefore \mathrm{H}_{\mathrm{i} \mathrm{x}}=\frac{\mathrm{E}_{\mathrm{i} z \mathrm{z}}}{\eta_{0}}=\frac{24 \cos \left(3 \times 10^{8} \mathrm{t}-\beta \mathrm{y}\right)}{120 \pi}$
$\overrightarrow{\mathrm{H}}_{\mathrm{i}}=\mathrm{H}_{\mathrm{ix}} \overrightarrow{\mathrm{a}}_{\mathrm{x}}$

$$
\frac{\mathrm{H}_{\mathrm{r}}}{\mathrm{H}_{\mathrm{i}}}=\frac{\eta_{1}-\eta_{2}}{\eta_{1}+\eta_{2}}=\frac{\frac{\eta_{1}}{\eta_{2}}-1}{\frac{\eta_{1}}{\eta_{2}}+1},
$$

Where $\frac{\eta_{1}}{\eta_{2}}=\frac{\sqrt{\mu_{1} \epsilon_{2}}}{\sqrt{\epsilon_{1} \mu_{2}}}=\sqrt{\frac{\epsilon_{2}}{\epsilon_{1}}}=\sqrt{\frac{9 \epsilon_{0}}{\epsilon_{0}}}=3$
$\therefore \frac{\mathrm{H}_{\mathrm{r}}}{\mathrm{H}_{\mathrm{i}}}=\frac{3-1}{3+1}=\frac{1}{2}$
$\therefore \overrightarrow{\mathrm{H}}_{\mathrm{r}}=\frac{1}{2} \frac{24}{120 \pi} \cos \left(3 \times 10^{8} \mathrm{t}+1 \mathrm{y}\right) \overrightarrow{\mathrm{a}}_{\mathrm{x}}$

$$
=\frac{1}{10 \pi} \cos \left(3 \times 10^{8} \mathrm{t}+1 \mathrm{y}\right) \overrightarrow{\mathrm{a}}_{\mathrm{x}} \mathrm{~A} / \mathrm{m}
$$

Note that $\overrightarrow{\mathrm{H}}_{\mathrm{r}}$ is reflected wave which travels in negative y direction, which corresponds to $+\beta y$ term with $\beta=1$ in the expression for \vec{H}_{r}.

14. Ans: (b)

Sol: Brewster's angle $\theta_{\mathrm{B}}=\tan ^{-1} \sqrt{\frac{\varepsilon_{2}}{\varepsilon_{1}}}$

$$
\theta_{\mathrm{B}}=\tan ^{-1} \sqrt{\frac{1}{3}}=30^{\circ}
$$

At this angle there is no reflected wave when wave is parallel polarized.

$$
\begin{gathered}
\mathrm{n}_{1} \sin \theta_{\mathrm{i}}=\mathrm{n}_{2} \sin \theta_{\mathrm{t}} \\
\sqrt{\epsilon_{1}} \sin \theta_{\mathrm{i}}=\sqrt{\epsilon_{2}} \sin \theta_{\mathrm{t}} \\
\sin \theta_{\mathrm{t}}=\sqrt{\frac{\epsilon_{1}}{\epsilon_{2}}} \sin \theta_{\mathrm{i}} \\
\sin \theta_{\mathrm{t}}=\sqrt{3} \frac{1}{2}\left(\theta_{\mathrm{i}}=30^{\circ}\right) \\
\theta_{\mathrm{t}}=60^{\circ}
\end{gathered}
$$

15. Ans: (d)

Sol: Given that
$E_{t}=-2 E_{r}$
Where
E_{t} is electric field of transmitted wave
E_{r} is electric field of reflected wave

$$
\frac{E_{t}}{E_{r}}=-2
$$

If E_{i} is electric field of incident wave.
But $-\frac{2 E_{r}}{E_{i}}=\frac{2 \eta_{2}}{\eta_{2}+\eta_{1}}$
and $\frac{E_{r}}{E_{i}}=\frac{-\eta_{2}}{\eta_{1}+\eta_{2}}$
and also $\frac{E_{r}}{E_{i}}=\frac{\eta_{2}-\eta_{1}}{\eta_{2}+\eta_{1}}$
so $\frac{\eta_{2}-\eta_{1}}{\eta_{2}+\eta_{1}}=\frac{-\eta_{2}}{\eta_{2}+\eta_{1}}$

$$
\eta_{1}=2 \eta_{2}
$$

$\frac{\eta_{1}}{\eta_{2}}=2 \Rightarrow \sqrt{\frac{\varepsilon_{2}}{\varepsilon_{1}}}=2 \Rightarrow \frac{\varepsilon_{2}}{\varepsilon_{1}}=4$
16. Ans: (a, b, c)

Sol: Given that, $\sigma=5 \mathrm{~S} / \mathrm{m}$
$\varepsilon_{\mathrm{r}}=1$
$\mathrm{E}=250 \sin \left(10^{10} \mathrm{t}\right) \mathrm{V} / \mathrm{m}$.
We know that conduction current density, $\mathrm{J}_{\mathrm{c}}=\sigma \mathrm{E}$
Putting the values we get,
$\mathrm{J}_{\mathrm{C}}=5 \times 250 \sin \left(10^{10} \mathrm{t}\right)$
$\mathrm{J}_{\mathrm{C}}=1250 \sin \left(10^{10} \mathrm{t}\right) \mathrm{A} / \mathrm{m}^{2}$
Displacement current density, $\mathrm{J}_{\mathrm{D}}=\frac{\partial \mathrm{D}}{\partial \mathrm{t}}$

$$
\begin{aligned}
\mathrm{J}_{\mathrm{D}} & =\frac{\partial(\varepsilon \mathrm{E})}{\partial \mathrm{t}}=\varepsilon \frac{\partial \mathrm{E}}{\partial \mathrm{t}} \\
\mathrm{~J}_{\mathrm{D}} & =\varepsilon_{0} \varepsilon_{\mathrm{r}} \frac{\partial}{\partial \mathrm{t}}\left(250 \sin \left(10^{10} \mathrm{t}\right)\right) \\
& =\varepsilon_{0} \times 250 \times 10^{10} \cos \left(10^{10} \mathrm{t}\right) \\
\mathrm{J}_{\mathrm{D}} & =22.125 \cos \left(10^{10} \mathrm{t}\right) \mathrm{A} / \mathrm{m}^{2}
\end{aligned}
$$

Since given that
$\left|J_{\mathrm{c}}\right|=\left|\mathrm{J}_{\mathrm{D}}\right|$, we have to find the frequency
$|\sigma \mathrm{E}|=|\mathrm{j} \omega \varepsilon \mathrm{E}|$
$\omega=\frac{\sigma}{\varepsilon}$
$\mathrm{f}=\frac{\sigma}{2 \pi \varepsilon_{0} \varepsilon_{\mathrm{r}}}=\frac{5}{2 \pi \times \frac{1}{36 \pi} \times 10^{-9}}=90 \mathrm{GHz}$

Chapter 3 Transmission Lines

1. Ans: (b)

Sol: $Z_{\text {in }}=Z_{0} \frac{Z_{R}+j Z_{0} \tan \beta \ell}{Z_{0}+j Z_{R} \tan \beta \ell}$
Phase velocity

$$
\begin{aligned}
v_{\mathrm{p}} & =\frac{\omega}{\beta} \\
v_{\mathrm{p}} & =\frac{2 \pi \mathrm{f}}{\beta} \\
\beta & =\frac{2 \pi \mathrm{f}}{\mathrm{v}_{\mathrm{p}}}=\frac{2 \times \pi \times 10^{8}}{2 \times 10^{8}}=\pi \\
\beta \ell & =\pi \cdot l \Rightarrow \pi(\text { Given } l=1 \mathrm{~m}) \\
\tan \beta \ell & =0 \\
\mathrm{Z}_{\mathrm{in}} & =\mathrm{Z}_{\mathrm{R}} \\
& =(30-\mathrm{j} 40) \Omega
\end{aligned}
$$

2. Ans: (a)

Sol:

$K_{x}=\frac{C_{2}}{C_{1}} e^{2 j \beta X}$
$K_{A}=\frac{C_{2}}{C_{1}} e^{j 4 \beta}$ at $(x=2)$
$\mathrm{K}_{\mathrm{B}}=\frac{\mathrm{C}_{2}}{\mathrm{C}_{1}} \mathrm{e}^{2 \mathrm{j} \beta(0)}$ at $(\mathrm{x}=0)$
$\frac{\mathrm{K}_{\mathrm{B}}}{\mathrm{K}_{\mathrm{A}}}=\frac{\frac{\mathrm{C}_{2}}{\mathrm{C}_{1}} \mathrm{e}^{2 j \beta(0)}}{\frac{\mathrm{C}_{2}}{\mathrm{C}_{1}} e^{j 4 \beta}}=\mathrm{e}^{-\mathrm{j} \psi \beta}$
$v_{P}=\frac{\omega}{\beta} \Rightarrow \beta=\frac{\pi}{2}$

Given $\mathrm{f}=50 \mathrm{MHz}$

$$
v_{\mathrm{p}}=2 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

$$
\frac{\mathrm{K}_{\mathrm{B}}}{\mathrm{~K}_{\mathrm{A}}}=\mathrm{e}^{-\mathrm{j} 4\left(\frac{\pi}{2}\right)}=\mathrm{e}^{-\mathrm{j} 2 \pi}=1 \text { (or) } \frac{\Gamma_{\mathrm{i}}}{\Gamma_{\mathrm{R}}}=1
$$

3. Ans: (b)

Sol:

Note: In the options $0.3 \mathrm{e}^{\mathrm{j} 102^{0}}$ is given.
But correct answer is $0.3 \mathrm{e}^{-\mathrm{j} 102^{0}}$
04. Ans: (c)

Sol: From the voltage SW pattern,

$$
\begin{aligned}
\mathrm{V}_{\min } & =1, \mathrm{~V}_{\max }=4, \mathrm{VSWR}=\mathrm{S}=4 \\
\mathrm{Z}_{0} & =\mathrm{R}_{0}=50 \Omega
\end{aligned}
$$

Let the resistive load be R_{L}
For Resistive loads

$$
\begin{aligned}
S & =\frac{R_{L}}{R_{0}} \quad \text { for } R_{L}>R_{0} \\
& =\frac{R_{0}}{R_{L}} \quad \text { for } R_{0}>R_{L}
\end{aligned}
$$

$\therefore \mathrm{R}_{\mathrm{L}}=\mathrm{S} \mathrm{R}_{0}=4 \times 50=200 \Omega$ for $\mathrm{R}_{\mathrm{L}}>\mathrm{R}_{0}$
$\mathrm{R}_{\mathrm{L}}=\mathrm{R}_{0} / \mathrm{S}=50 / 4=12.5 \Omega$ for $\mathrm{R}_{0}>\mathrm{R}_{\mathrm{L}}$
As voltage minimum is occurring at the load point, $\mathrm{R}_{\mathrm{L}}=12.5 \Omega$.

05. Ans: (a)

Sol: Reflection coefficient:

$$
\Gamma=\frac{\mathrm{R}_{\mathrm{L}}-\mathrm{R}_{0}}{\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{0}}=\frac{12.5-50}{12.5+50}=-0.6
$$

6. Ans: (d)

Sol: The interconnection of TL's is shown in Fig.

$$
\begin{aligned}
\mathrm{Z}_{\mathrm{i} 1} & =\frac{(50)^{2}}{100}=25 \Omega \\
\mathrm{Z}_{\mathrm{i} 2} & =\frac{(50)^{2}}{200}=12.5 \Omega \\
\mathrm{Z}_{\mathrm{L}}=25 & \| 12.5=\frac{25}{3} \Omega
\end{aligned}
$$

Reflection coefficient at $\mathrm{PQ}=\frac{\mathrm{Z}_{\mathrm{L}}-\mathrm{Z}_{0}}{\mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{0}}$

$$
=\frac{\frac{25}{3}-50}{\frac{25}{3}+50}=-\frac{125}{175}=-\frac{5}{7}
$$

\therefore At the input RS,
Reflection coefficient, $\Gamma=-\frac{5}{7} \mathrm{e}^{-\mathrm{j} 2 \beta \ell}$

$$
\begin{aligned}
\text { As } \beta \ell & =\frac{2 \pi}{\lambda} \frac{\lambda}{4}=\frac{\pi}{2} \\
\Gamma & =-\frac{5}{7} \mathrm{e}^{-\mathrm{j} \pi}=\frac{5}{7}
\end{aligned}
$$

7. Ans: (d)

Sol: $Z_{\text {in }}=Z_{0}\left[\frac{Z_{L}+j Z_{0} \tan \beta \ell}{Z_{0}+j Z_{L} \tan \beta \ell}\right]$
i) For a shorted line,

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{L}}=0 \\
& \ell=\lambda / 8 \\
& \beta \ell=\frac{2 \pi}{\lambda} \times \frac{\lambda}{8}=\frac{\pi}{4} \\
& \mathrm{Z}_{\text {in }}=\mathrm{Z}_{0}\left[\frac{0+\mathrm{jZ}_{0}}{\mathrm{Z}_{0}+0}\right] \\
& \mathrm{Z}_{\text {in }}=\mathrm{j} \mathrm{Z}_{0}
\end{aligned}
$$

ii) For a shorted line means $\mathrm{Z}_{\mathrm{L}}=0$

Given that $\ell=\frac{\lambda}{4}$
$\beta \ell=\frac{2 \pi}{\lambda} \times \frac{\lambda}{4}=\frac{\pi}{2}$
$\mathrm{Z}_{\text {in }}=\frac{\mathrm{Z}_{0}{ }^{2}}{\mathrm{Z}_{\mathrm{L}}}=\frac{\mathrm{Z}_{0}{ }^{2}}{0}$
$Z_{\text {in }}=\infty$
iii) Open line means $\mathrm{Z}_{\mathrm{L}}=\infty$,

$$
\begin{aligned}
& \text { Given that } \ell=\frac{\lambda}{2} \\
& \therefore \beta \ell=\frac{2 \pi}{\lambda} \cdot \frac{\lambda}{2}=\pi \Rightarrow \tan \pi=0 \\
& \mathrm{Z}_{\text {in }}=\mathrm{Z}_{0}\left[\frac{\mathrm{Z}_{\mathrm{L}}+\mathrm{j} \mathrm{Z}_{0} \tan \pi}{\mathrm{Z}_{0}+\mathrm{j} \mathrm{Z}_{\mathrm{L}} \tan \pi}\right] \\
& \mathrm{Z}_{\text {in }}=\mathrm{Z}_{\mathrm{L}}
\end{aligned}
$$

iv) For a matched line of any length

$$
\begin{aligned}
& Z_{L}=Z_{0} \\
& Z_{\text {in }}=Z_{0}\left[\frac{Z_{0}+j Z_{0} \tan \beta \ell}{Z_{0}+j Z_{0} \tan \beta \ell}\right]=Z_{0}
\end{aligned}
$$

8. Ans: (c)

Sol: The line is matched as $\mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{0}=50 \Omega$ and hence reflected wave is absent.

For the traveling wave, given:
Phase difference for a length of $2 \mathrm{~mm}=\pi / 4 \mathrm{rad}$
Frequency of excitation $=10 \mathrm{GHz}$
Phase velocity, $\mathrm{v}_{\mathrm{p}}=\frac{\omega}{\beta}$
$\omega=2 \pi \times 10 \times 10^{9} \mathrm{rad} / \mathrm{sec}$
$\beta=$ Phase-shift per unit length

$$
\begin{aligned}
& =\frac{\pi}{4 \times 2 \times 10^{-3}} \mathrm{rad} / \mathrm{m} \\
\mathrm{v}_{\mathrm{p}} & =\frac{2 \pi \times 10^{10} \times 8}{\pi \times 10^{3}}=1.6 \times 10^{8} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

9. Ans: (b)

Sol: $[\mathrm{S}]=\left[\begin{array}{cc}0.3 \angle 0^{0} & 0.9 \angle 90^{0} \\ 0.9 \angle 90^{0} & 0.2 \angle 0^{0}\end{array}\right]$
For reciprocal; $\quad \mathrm{S}_{12}=\mathrm{S}_{21}$
It is satisfied.
For lossless line $\left|\mathrm{S}_{11}\right|^{2}+\left|\mathrm{S}_{12}\right|^{2}=1$

$$
(0.3)^{2}+(0.9)^{2}=0.9 \neq 1
$$

\therefore It is a lossy line
10. Ans: (b, c)

Sol: Given:

$$
\begin{aligned}
& \ell=2 \mathrm{~m} \\
& Z_{\mathrm{oc}}=-j 50 \Omega \\
& Z_{\mathrm{SC}}=j 200 \Omega \\
& Z_{\mathrm{O}}=\sqrt{Z_{\mathrm{oc}} Z_{\mathrm{sc}}}=\sqrt{10000} \\
& Z_{0}=100 \Omega
\end{aligned}
$$

Reflection coefficient, $\Gamma=\frac{Z_{L}-Z_{O}}{Z_{L}+Z_{O}}$
When open circuited $\left(Z_{L}=\infty\right)$

$$
\begin{aligned}
& \Gamma=\frac{1-\frac{Z_{0}}{Z_{L}}}{1+\frac{Z_{0}}{Z_{L}}} \\
& \Gamma=1 \\
& \text { When short circuit }\left(Z_{L}=0\right)
\end{aligned}
$$

$$
\Gamma=\frac{-\mathrm{Z}_{0}}{\mathrm{Z}_{0}}=-1
$$

Chapter (4) Waveguides

01. Ans: (b)

Sol: Evanescent modes means no wave propagation.
Dominant mode means, the guide has lowest cut-off frequency.
TM_{01} and TM_{10} not possible, the minimum values of m, n for TM are at least 1,1 respectively.
02. Ans: (a)

Sol: The mode which has lowest cutoff frequency is called dominant mode TE_{10}.
At 4 GHz all modes are evanescent.
At 7 GHz degenerate modes are possible
TE_{11} and TM_{11} are degenerate.
$\mathrm{f}_{\mathrm{c} \mathrm{TE}_{10}}=\frac{\mathrm{c}}{2 \mathrm{a}}=\frac{3 \times 10^{8}}{2 \times 3 \times 10^{-2}}=5 \mathrm{GHz}$.
At 6 GHz dominant mode will propagate.
At 11 GHz higher order modes are possible
03. Ans: (a)

Sol: Given: In a rectangular WG of cross-section $:(\mathrm{a} \times \mathrm{b})$
$\overrightarrow{\mathrm{E}}=\frac{\omega \mu}{\mathrm{h}^{2}}\left(\frac{\pi}{\mathrm{a}}\right) \mathrm{H}_{0} \sin \left(\frac{2 \pi}{\mathrm{a}} \mathrm{x}\right) \sin (\omega \mathrm{t}-\beta \mathrm{z}) \hat{\mathrm{y}}$
The wave is traveling in the z-direction having E_{y} component only as function of ' x '. As there is no component of \vec{E} in the direction of propagation, \vec{a}_{z} the wave is Transverse Electric (TE). Comparing the 'sin' term in $\overrightarrow{\mathrm{E}}$ with the general expression: $\sin \left(\frac{m \pi}{a} x\right)$

$$
\mathrm{m}=2
$$

As there is no function of ' y ' in $\vec{E}, n=0$
\therefore The mode of propagation in the WG is TE_{20}
04. Ans: (d)

Sol: Given

$$
\begin{aligned}
& \mathrm{a}=4.755, \mathrm{~b}=2.215 \\
& \mathrm{f}=12 \mathrm{GHz}, \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Cut off frequency

$$
\mathrm{f}_{\mathrm{c}}=\frac{\mathrm{c}}{2} \sqrt{\left(\frac{\mathrm{~m}}{\mathrm{a}}\right)^{2}+\left(\frac{\mathrm{n}}{\mathrm{~b}}\right)^{2}}
$$

For TE_{10}, mode

$$
\mathrm{f}_{\mathrm{c}}=\frac{\mathrm{c}}{2 \mathrm{a}}=3.15 \mathrm{GHz}
$$

$\mathrm{f}>\mathrm{f}_{\mathrm{c}}\left(\mathrm{TE}_{10}\right.$ mode $)$ so it propagates
For TE_{20} mode

$$
\begin{aligned}
\mathrm{f}_{\mathrm{C}}\left(\mathrm{TE}_{20}\right) & =\frac{\mathrm{c}}{2} \sqrt{\left(\frac{2}{a}\right)^{2}} \\
& =2\left[\mathrm{f}_{\mathrm{c}}\left(\mathrm{TE}_{10}\right)\right]=6.30 \mathrm{GHz}
\end{aligned}
$$

$\mathrm{f}>\mathrm{f}_{\mathrm{c}}\left[\mathrm{TE}_{20}\right]$ so it propagates
For TE_{01} mode

$$
\begin{aligned}
\mathrm{f}_{\mathrm{C}(\mathrm{TE} 01)} & =\frac{\mathrm{c}}{2} \sqrt{\frac{1}{\mathrm{~b}^{2}}} \\
& =\frac{\mathrm{c}}{2 \mathrm{~b}}=6.77 \mathrm{GHz}
\end{aligned}
$$

$\therefore \mathrm{f}>\mathrm{f}_{\mathrm{c}}\left(\mathrm{TE}_{01}\right]$ so it propagate
For TE_{11} mode

$$
\mathrm{f}_{\mathrm{c}[\mathrm{TE} 11]}=\frac{\mathrm{c}}{2} \sqrt{\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}}=7.47 \mathrm{GHz}
$$

$\mathrm{f}>\mathrm{f}_{\mathrm{c}}\left(\mathrm{TE}_{11}\right)$ so it propagate
So, all modes are possible to propagate.
05. Ans: (a)

Sol: Given $\mathrm{a}=6 \mathrm{~cm}, \mathrm{~b}=4 \mathrm{~cm} \mathrm{f}=3 \mathrm{GHz}$
Cut off frequency
$\mathrm{f}_{\mathrm{c}}=\frac{\mathrm{c}}{2} \sqrt{\left(\frac{\mathrm{~m}}{\mathrm{a}}\right)^{2}+\left(\frac{\mathrm{n}}{\mathrm{b}}\right)^{2}}$
$\mathrm{TE}_{10}: \mathrm{f}_{\mathrm{c}}=\frac{\mathrm{c}}{2 \mathrm{a}}=2.5 \mathrm{GHz}$
$\mathrm{TE}_{01}: \mathrm{f}_{\mathrm{c}}=\frac{\mathrm{c}}{2 \mathrm{~b}}=3.75 \mathrm{GHz}$
$\mathrm{TE}_{11}: \mathrm{f}_{\mathrm{c}}=\frac{\mathrm{c}}{2} \sqrt{\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}}=4.50 \mathrm{GHz}$
$\mathrm{TM}_{11}: \mathrm{f}_{\mathrm{c}}=\frac{\mathrm{c}}{2} \sqrt{\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}}=4.50 \mathrm{GHz}$

06. Ans: (a)

Sol: $\frac{\mathrm{m} \pi}{\mathrm{a}}=\frac{2 \pi}{\mathrm{a}} \Rightarrow \mathrm{m}=2$
$\frac{\mathrm{n} \pi}{\mathrm{b}}=\frac{3 \pi}{\mathrm{~b}} \Rightarrow \mathrm{n}=3$
For TM wave propagating along z -direction
$\mathrm{E}_{\mathrm{z}} \neq 0$ and $\mathrm{H}_{\mathrm{z}}=0$
TM_{23}
$\mathrm{TM}_{23} \Rightarrow \mathrm{f}_{\mathrm{c}}=\frac{\mathrm{c}}{2} \sqrt{\left(\frac{\mathrm{~m}}{\mathrm{a}}\right)^{2}+\left(\frac{\mathrm{n}}{\mathrm{b}}\right)^{2}}$
Substitute $\mathrm{c}=3 \times 10^{10} \mathrm{~cm} / \mathrm{sec}$

$$
\mathrm{m}=2, \quad \mathrm{a}=6 \mathrm{~cm}
$$

$$
\mathrm{n}=3, \quad \mathrm{~b}=3 \mathrm{~cm}
$$

we get $f_{c}=15.811 \mathrm{GHz}$
$\eta_{\text {тМ }}=\eta \sqrt{1-\left(\frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}}\right)^{2}}$
$\omega=10^{12} \Rightarrow \mathrm{f}=\frac{10^{12}}{2 \pi}=\frac{10^{3}}{2 \pi} \mathrm{GHz}$
and $\eta=120 \pi$. \& $\mathrm{f}_{\mathrm{c}}=15.811 \mathrm{GHz}$
Substitute all the above values and we get $\eta_{\text {тM }}=375 \Omega$
07. Ans: (c)

Sol: $\quad \mathrm{W}_{\mathrm{avg}}=\frac{1}{4} \frac{\mathrm{E}_{\mathrm{yo}}^{2}}{\eta_{\mathrm{TE}_{10}}}$ a.b; $\eta_{\mathrm{TE}_{10}}=\frac{\eta}{\sqrt{1-\left(\lambda / \lambda_{\mathrm{c}}\right)^{2}}}$
$\eta=120 \pi, \lambda=\frac{\mathrm{c}}{\mathrm{f}}=\frac{3 \times 10^{10}}{11 \times 10^{9}}=2.72 \mathrm{~cm}$
$\lambda_{\mathrm{c}}=2 \mathrm{a}=2 \times 2.29=4.58 \mathrm{~cm}$

So we get $\eta_{\mathrm{TE}_{10}}=469.52 \Omega$
Putting all the values
$\therefore \mathrm{W}_{\text {avg }}=31.32 \mathrm{~kW}$
08. Ans: (a)

Sol: $\quad f_{c_{10}}=\frac{c}{2 a}=\frac{3 \times 10^{10}}{2 \times 2}=7.5 \mathrm{GHz}$
For $b=a / 2$, the next high order mode is
TE_{01} or TE_{20}.
$\therefore \mathrm{f}_{\mathrm{c}_{01}}=\mathrm{f}_{\mathrm{c}_{20}}=\frac{3 \times 10^{10}}{2}=15 \mathrm{GHz}$.
So the range of single mode (dominant mode propagation) is
$7.5<\mathrm{f}<15 \mathrm{GHz}$
09. Ans: (a)

Sol: $\frac{1}{\lambda^{2}}=\frac{1}{\lambda_{\mathrm{g}}^{2}}+\frac{1}{\lambda_{\mathrm{c}}^{2}}$
$\mathrm{f}_{\mathrm{c}}=0.908 \mathrm{GHz}$
$\Rightarrow \lambda_{\mathrm{c}}=\frac{3 \times 10^{10}}{0.908 \times 10^{9}}=33.03 \mathrm{~cm}$
Substitute $\lambda_{\mathrm{g}}=40 \mathrm{~cm}, \lambda_{\mathrm{c}}=33.03 \mathrm{~cm}$
We get, $\lambda=25.47 \mathrm{~cm}$

$$
\begin{aligned}
\Rightarrow \mathrm{f} & =\frac{3 \times 10^{10}}{25.47} \\
& =1.18 \mathrm{GHz}
\end{aligned}
$$

10. Ans: (a)

Sol: $\frac{\mathrm{c}}{2 \mathrm{a}}=0.908 \mathrm{GHz}$
$\Rightarrow \mathrm{a}=\frac{3 \times 10^{10}}{2 \times(0.908) \times 10^{9}}$
$=16.51 \mathrm{~cm}$
$\Rightarrow \mathrm{b}=\frac{\mathrm{a}}{2}=8.26 \mathrm{~cm}$

D2: $\mathbf{A C E}$	17	Postal Coaching Solutions

11. Ans: (a)

Sol: $\bar{\beta}=\beta \sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}}$

$$
\begin{aligned}
& =\frac{2 \pi}{25.47} \sqrt{1-\left(\frac{0.908}{1.18}\right)^{2}} \\
& =0.157 \mathrm{rad} / \mathrm{cm} \\
& =15.7 \mathrm{rad} / \mathrm{m}
\end{aligned}
$$

12. Ans: (a, b, c)

Sol: $f_{c}=\frac{c}{2 a}=\frac{3 \times 10^{8}}{2 \times 7 \times 10^{-2}}=2.14 \mathrm{GHz}$
Phase velocity,

$$
\begin{aligned}
\mathrm{v}_{\mathrm{p}} & =\frac{\mathrm{c}}{\sqrt{1-\left(\frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}}\right)^{2}}}=\frac{3 \times 10^{8}}{\sqrt{1-\left(\frac{2.14}{3.5}\right)^{2}}} \\
& =3.79 \times 10^{8} \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

$$
\begin{aligned}
& \lambda_{\mathrm{g}}=\frac{\mathrm{v}_{\mathrm{p}}}{\mathrm{f}}=\frac{3.79 \times 10^{8}}{3.5 \times 10^{9}}=0.1 \mathrm{~m} \\
& Z_{T E}=\frac{\eta_{0}}{\sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}}}=\frac{377}{\sqrt{1-\left(\frac{2.14}{3.5}\right)^{2}}}=476 \Omega
\end{aligned}
$$

Chapter 5 Antennas

1. Ans: (c)

Sol: Antenna receives $2 \mu \mathrm{~W}$ of power: $\mathrm{P}_{\mathrm{r}}=2 \mu \mathrm{~W}$ RMS value of incident E field $=20 \mathrm{mV} / \mathrm{m}$
Power density, P_{d}

$$
=\frac{E^{2}}{\eta}=\frac{\left(20 \times 10^{-3}\right)^{2}}{377} W / \mathrm{m}^{2}
$$

Effective aperture area, $A_{e}=\frac{P_{r}}{P_{d}}$

$$
=\frac{2 \times 10^{-6}}{\frac{\left(20 \times 10^{-3}\right)^{2}}{377}}=\frac{377 \times 2}{400}=1.885 \mathrm{~m}^{2}
$$

2. Ans: (b)

Sol: Lossless antenna directive gain $=6 \mathrm{~dB}=4$ Input power to the antenna $=1 \mathrm{~mW}$ for lossless we get 100% efficiency

$$
\begin{aligned}
& \frac{\mathrm{W}_{\mathrm{rad}}}{\mathrm{~W}_{\mathrm{in}}}=\frac{\mathrm{G}_{\mathrm{o}}}{\mathrm{D}_{\mathrm{o}}}=1 \\
& \mathrm{~W}_{\mathrm{rad}}=\mathrm{W}_{\mathrm{in}} \\
& \mathrm{~W}_{\mathrm{rad}}=1 \mathrm{~mW}
\end{aligned}
$$

03. Ans: (c)

Sol: $\mathrm{P}_{\mathrm{rad}}=\frac{\mathrm{A}_{0} \sin ^{2} \theta}{\mathrm{r}^{2}} \hat{\mathrm{a}}_{\mathrm{r}} \quad \mathrm{W} / \mathrm{m}^{2}$

$$
\begin{aligned}
\mathrm{W}_{\mathrm{rad}} & =\int_{\phi=0}^{2 \pi} \int_{\theta=0}^{\pi} \frac{\mathrm{A}_{0} \sin ^{2} \theta}{\mathrm{r}^{2}} \mathrm{r}^{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi \\
& =\mathrm{A}_{0} 2 \pi \int_{\theta=0}^{\pi} \sin ^{3} \theta \mathrm{~d} \theta \\
& =\mathrm{A}_{0} 2 \pi \frac{4}{3} \\
\mathrm{~W}_{\mathrm{rad}} & =\mathrm{A}_{0} \frac{8 \pi}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{U}=\mathrm{r}^{2} \mathrm{P}_{\mathrm{rad}}=\mathrm{r}^{2} \frac{\mathrm{~A}_{0} \sin ^{2} \theta}{\mathrm{r}^{2}}=\mathrm{A}_{0} \sin ^{2} \theta \\
& \begin{aligned}
\mathrm{D}_{\max } & =\frac{U_{\max }}{\mathrm{W}_{\mathrm{rad}}} 4 \pi=\frac{\left|\mathrm{A}_{0} \sin ^{2} \theta\right|}{\left.\frac{8 \pi}{3}\right|_{\max }} \times 4 \pi \\
& =\frac{4 \pi \mathrm{~A}_{0}}{8 \pi \mathrm{~A}_{0}} \times 3 \\
& =\frac{3}{2}=\mathrm{D}_{\max }=1.5
\end{aligned}
\end{aligned}
$$

4. Ans: (d)

Sol: Where $\mathrm{W}_{\text {rad }}=\oiint \overline{\mathrm{P}}_{\mathrm{rad}} \cdot \mathrm{ds}$

$$
\overline{\mathrm{P}}_{\mathrm{rad}}=\frac{\mathrm{W}_{\mathrm{rad}}}{2 \pi \mathrm{r}^{2}} \cdot \hat{\mathrm{a}}_{\mathrm{r}}=\frac{40}{\pi} \hat{\mathrm{a}}_{\mathrm{r}} \mu \mathrm{~W} / \mathrm{m}^{2}
$$

5. Ans: (b)

Sol: $\mathrm{R}_{\mathrm{rad}}=30 \Omega, \mathrm{R}_{l}=10 \Omega$

$$
\mathrm{G}_{\mathrm{D}}=4, \mathrm{G}_{\mathrm{p}}=?
$$

$$
\begin{aligned}
& \eta=\frac{R_{\mathrm{rad}}}{\mathrm{R}_{\mathrm{rad}}+\mathrm{R}_{\ell}}=\frac{30}{40}=0.75 \\
& \mathrm{G}_{\mathrm{p}}=\eta \mathrm{G}_{\mathrm{D}} \\
& \\
& \quad=0.75 \times 4=3
\end{aligned}
$$

6. Ans: (c)

Sol: $\quad \mathrm{D}_{\mathrm{g}}=30 \mathrm{~dB}=1000$

$$
\mathrm{P}_{\mathrm{T}}=7.5 \mathrm{~kW}
$$

$$
\mathrm{D}_{\mathrm{g}}=\frac{4 \pi \times \text { Radiation intensity }}{\text { Radiated Power }}
$$

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{g}}=4 \pi \frac{\mathrm{U}}{\mathrm{~W}_{\mathrm{rad}}} \\
& \therefore \mathrm{U}=\frac{7.5 \times 10^{3} \times 1000}{4 \pi} \\
& \Rightarrow \mathrm{U}=\mathrm{r}^{2} \mathrm{P}_{\mathrm{rad}}
\end{aligned}
$$

$\mathrm{P}_{\mathrm{rad}}$: Power density we have to find
$P_{r a d}$ at $\mathrm{r}=40 \times 10^{3} \mathrm{~m}$

$$
\begin{aligned}
\mathrm{P}_{\mathrm{rad}} & =\frac{\mathrm{U}}{\mathrm{r}^{2}} \\
& =\frac{7.5 \times 10^{3} \times 1000}{4 \pi \times\left(40 \times 10^{3}\right)^{2}} \mathrm{~W} / \mathrm{m}^{2}
\end{aligned}
$$

7. Ans: (d)

Sol: $\quad \mathrm{W}_{\mathrm{rad}}=10 \mathrm{~kW}$
$\mathrm{E}_{\text {max }}=120 \mathrm{mV} / \mathrm{m}$
$\mathrm{R}=20 \mathrm{~km}$
$\eta=98 \%$
$P_{\mathrm{rad}}=\frac{\mathrm{E}_{0}^{2}}{2 \eta_{0}}$
$=\frac{\left(120 \times 10^{-3}\right)^{2}}{2 \times 120 \pi}$

$$
=1.909 \times 10^{-5}
$$

$$
\mathrm{U}_{\max }=\left(20 \times 10^{3}\right)^{2} \times 1.909 \times 10^{-5}
$$

$$
=7636
$$

$$
\mathrm{D}_{0}=4 \pi \frac{\mathrm{U}_{\mathrm{max}}}{\mathrm{~W}_{\mathrm{rad}}}
$$

$$
\mathrm{D}_{0}=4 \pi \frac{7639.43}{10 \times 10^{3}}=9.59
$$

$$
\eta=\frac{G_{0}}{D_{0}}=0.98
$$

$\mathrm{G}_{0}=0.98 \times 9.59$
$=9.407$

08. Ans: 0.21

Sol: Given:

Antenna length, $l=1 \mathrm{~cm}$
Frequency, $\mathrm{f}=1 \mathrm{GHz}$
Distance, $r=100 \lambda$
Wave length, $\lambda=\frac{\mathrm{C}}{\mathrm{f}}$

$$
\begin{aligned}
& =\frac{3 \times 10^{8}}{10^{9}} \\
& =30 \mathrm{~cm}
\end{aligned}
$$

$\frac{\mathrm{d} \ell}{\lambda}=\frac{1}{30}$, hence the given antenna is
Hertzian dipole.
In the far field, the tangential electric field
is given by, $\mathrm{E}_{\theta}=\frac{\mathrm{j} \eta \mathrm{I} \mathrm{I} \ell \sin \theta}{4 \pi} \frac{\beta}{\mathrm{r}}$

$$
\begin{aligned}
& =\frac{\mathrm{j} 377 \times 100 \times 10^{-3} \times 2 \pi \times 10^{-2} \times 1}{30 \times 10^{-2} \times 4 \pi \times 100 \times 30 \times 10^{-2}} \\
& \therefore\left|\mathrm{E}_{\theta}\right|=0.21 \mathrm{~V} / \mathrm{cm}
\end{aligned}
$$

9. Ans: (c)

Sol: Given:

Length of dipole, $\ell=0.01 \lambda$
As it is very small, compared with wavelength, hence it can be approximated to Hertzian dipole

$$
\begin{aligned}
\mathrm{R}_{\mathrm{rad}} & =80 \pi^{2}\left(\frac{\mathrm{~d} \ell}{\lambda}\right)^{2} \\
& =80 \pi^{2}(0.01)^{2} \\
\mathrm{R}_{\mathrm{rad}} & =0.08 \Omega
\end{aligned}
$$

10. Ans: (d)

Sol: $\mathrm{AF}=\frac{\sin \frac{\mathrm{n} \phi}{2}}{\sin \frac{\phi}{2}}$
take limit

$$
\frac{\underset{\frac{\mathrm{n} \phi}{2} \rightarrow 0}{\mathrm{Lt}} \frac{\sin \frac{\mathrm{n} \phi}{2}}{\frac{\mathrm{n} \phi}{2}} \cdot \frac{\mathrm{n} \phi}{2}}{\underset{\frac{\phi}{2} \rightarrow 0}{\operatorname{Lt} \frac{\phi}{2}} \frac{\operatorname{s}}{2}} \cdot \frac{\phi}{2}, n
$$

11. Ans: (b)

Sol: In broad side array the BWFN is given by
$\mathrm{BWFN}=\frac{2 \lambda}{\mathrm{~L}}(\mathrm{rad})$
Where, $L=$ length of the array

$$
\mathrm{L}=(\mathrm{n}-1) \mathrm{d}
$$

Given: $\mathrm{n}=9$
Spacing, $d=\frac{\lambda}{4}$
$\mathrm{BWFN}=\frac{2 \lambda}{(9-1) \frac{\lambda}{4}}$

$$
=\frac{2 \lambda}{2 \lambda} \times \frac{180}{\pi}
$$

$\therefore \mathrm{BWFN}=57.29^{\circ}$
12. Ans: (d)

Sol: The directivity of n-element end fire array is given by
$D=\frac{4 L}{\lambda}$
Where, $\mathrm{L}=(\mathrm{n}-1) \mathrm{d}$
$\mathrm{L} \cong \mathrm{nd}(\because \mathrm{n}=1000$, very large)

$$
\begin{aligned}
\mathrm{D} & =\frac{4 \times \mathrm{nd}}{\lambda} \\
& =\frac{4 \times 1000 \lambda}{\lambda \times 4}
\end{aligned}
$$

$\therefore \mathrm{D} \simeq 1000$
Directivity, $($ in $d B)=30$
13. Ans: 7.78

Sol: Directivity, $D=4 \pi \frac{U_{\text {max }}}{P_{\text {rad }}}$
Given: $\mathrm{U}(\theta, \phi)=2 \sin \theta \sin ^{3} \phi ; 0 \leq \theta \leq \pi$,

$$
0 \leq \phi \leq \pi
$$

$\mathrm{U}_{\text {max }}=2$
$P_{\mathrm{rad}}=\int_{\theta=0}^{\pi} \int_{\phi=0}^{\pi} 2 \sin \theta \sin ^{3} \phi \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi$ $=2 \int_{\theta=0}^{\pi} \int_{\phi=0}^{\pi} \sin ^{2} \theta \sin ^{3} \phi \mathrm{~d} \theta \mathrm{~d} \phi$

$$
=2\left(\frac{\pi}{2}\right)\left(\frac{4}{3}\right)
$$

$$
=\frac{4 \pi}{3}
$$

D $=4 \pi \times \frac{2}{\left(\frac{4 \pi}{3}\right)}$
$\mathrm{D}=6$
Directivity, $($ in dB $)=10 \log 6=7.7815$
14. Ans: 2793

Sol: For Hertzian dipole the directivity, D is given by $\mathrm{D}=1.5$

$$
\mathrm{D}=\left(\frac{4 \pi}{\lambda^{2}}\right) \mathrm{A}_{\mathrm{e}}
$$

$\mathrm{A}_{\mathrm{e}}=1.5 \times \frac{\lambda^{2}}{4 \pi}$
$\mathrm{A}_{\mathrm{e}}=0.119 \lambda^{2}$
Wavelength, $\lambda=\frac{3 \times 10^{8}}{10^{8}}=3 \mathrm{~m}$
$\therefore \mathrm{A}_{\mathrm{e}}=0.119 \times 9$
$\mathrm{A}_{\mathrm{e}}=1.074 \mathrm{~m}^{2}$
Aperture area of antenna is given by
$A_{e}=\frac{P_{r}}{P}$
Where, $\mathrm{P}_{\mathrm{r}}=$ power received at the antenna load terminals.
$\mathrm{P}=$ power density of incident wave

$$
\begin{aligned}
\mathrm{P} & =\frac{\mathrm{P}_{\mathrm{r}}}{\mathrm{~A}_{\mathrm{e}}} \\
& =\frac{3 \times 10^{-6}}{1.074}
\end{aligned}
$$

$\therefore \mathrm{P}=2.793 \mu \mathrm{~W} / \mathrm{m}^{2}$ (or) $2793 \mathrm{nW} / \mathrm{m}^{2}$

15. Ans: (c)

Sol:

Given: No. of elements, $\mathrm{n}=4$
Spacing, $d=\frac{\lambda}{4}$
Direction of main beam (or) principal lobe,
$\theta_{\text {max }}=60^{\circ}$
Array phase function, ψ is given by
$\psi=\beta \mathrm{d} \cos \theta+\alpha$
To form a major lobe. $\psi=0$
$\alpha=-\beta \mathrm{d} \cos \theta_{\max }$
$\alpha=-\frac{2 \pi}{\lambda} \times \frac{\lambda}{4} \cos 60$
$\alpha=-\frac{\pi^{\mathrm{C}}}{4}$
The phase shaft between the elements required is $\alpha=-\frac{\pi^{\mathrm{c}}}{4}$.
16. Ans: (a, b, c)

Sol:
(a) The wavelength, $\lambda=\frac{\mathrm{c}}{\mathrm{f}}=\frac{3 \times 10^{8}}{50 \times 10^{6}}=6 \mathrm{~m}$

Hence, the length of half wave dipole is $\ell=\frac{\lambda}{2}=\frac{6}{2}=3 \mathrm{~m}$ $\frac{\eta_{0} I_{0} \cos \left(\frac{\pi}{2} \cos \theta\right)}{2 \pi r \sin \theta}$

$$
\begin{aligned}
\mathrm{I}_{0} & =\frac{\left|\mathrm{E}_{\phi s}\right| 2 \pi \mathrm{r} \sin \theta}{\eta_{0} \cos \left(\frac{\pi}{2} \cos \theta\right)} \\
& =\frac{10 \times 10^{-6} \times 2 \pi \times 500 \times 10^{3} \times 1}{120 \pi \times 1}=83.33 \mathrm{~mA}
\end{aligned}
$$

(c) For half wave dipole antenna, $\mathrm{R}_{\mathrm{rad}}=73 \Omega$

$$
\begin{aligned}
\mathrm{P}_{\mathrm{rad}} & =\frac{1}{2} \mathrm{I}_{0}^{2} \mathrm{R}_{\mathrm{rad}}=\frac{1}{2}(83.33)^{2} \times 10^{-6} \times 73 \\
& =253.5 \mathrm{~mW}
\end{aligned}
$$

So $\mathrm{a}, \mathrm{b}, \mathrm{c}$ is correct

| | Regular Live Doubt clearing Sessions \\| Free Online Test Series | ASK an expert | | | |
|---|---|---|---|---|---|---|
| online | Affordable Fee \\| Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages |

