

G٩

H.

╋

C(S)

Electronics & Communication Engineering

CONTROL SYSTEMS

Text Book: Theory with worked out Examples and Practice Questions

R(S)

Chapter

Basics of Control Systems

(Solutions for Text Book Practice Questions)

01. Ans: (c) Sol: $2\frac{d^2y(t)}{dt^2} + 3\frac{dy(t)}{dt} + 4y(t) = r(t) + 2r(t-1)$ Apply LT on both sides $2s^2 Y(s) + 3sY(s) + 4Y(s) = R(s) + 2e^{-s}R(s)$ $Y(s)(2s^2 + 3s+4) = R(s)(1+2e^{-s})$ $\frac{Y(s)}{R(s)} = \frac{1+2e^{-s}}{2s^2 + 3s + 4}$

02. Ans: (b)

Sol: I.R = $2.e^{-2t}u(t)$

Output response $c(t) = (1-e^{-2t}) u(t)$ Input response r(t) = ?

$$T.F = \frac{C(s)}{R(s)}$$

$$T.F = L(I.R) = \frac{2}{s+2}$$

$$R(s) = \frac{C(s)}{T.F} = \frac{\frac{1}{s} - \frac{1}{s+2}}{\frac{2}{s+2}} = \frac{1}{s}$$
$$R(s) = \frac{1}{s}$$
$$r(t) = u(t)$$

03. Ans: (b)

Sol: Unit impulse response of unit-feedback control system is given

$$c(t) = t.e^{-t}$$
$$T.F = L(I.R)$$
$$= \frac{1}{(s+1)^2}$$

Open Loop T.F = $\frac{\text{Closed Loop T.F}}{1 - \text{Closed Loop T.F}}$ $= \frac{\frac{1}{(s+1)^2}}{1 - \frac{1}{(s+1)^2}} = \frac{1}{s^2 + 2s}$ **04.** Ans: (a) Sol: G changes by 10%

$$\Rightarrow \frac{\Delta G}{G} \times 100 = 10\%$$

$$C_1 = 10\%$$

[∵ open loop] whose sensitivity is 100%] %G change = 10%

$$\frac{\% \text{ of change in } M}{\% \text{ of change in } G} = \frac{1}{1 + GH}$$

% of change in M =
$$\frac{10\%}{1+(10)1} = 1\%$$

% change in C_2 by 1%

05.

Sol: (i) M = C/R $\frac{C}{R} = M = \frac{GK}{1 + GH}$ $S_{K}^{M} = \frac{\partial M}{\partial K} \times \frac{K}{M} = 1$

[: K is not in the loop \Rightarrow sensitivity is 100%]

(ii)
$$S_{H}^{M} = \frac{\partial M}{\partial H} \times \frac{H}{M} = \frac{\partial}{\partial H} \left(\frac{GK}{1 + GH} \right) \frac{H}{M}$$

Engineering Publications	3 Postal Coaching Solutions
$= \left(\frac{GK(-G)}{(1+GH)^2}\right) \left[\frac{H}{\frac{GK}{1+GH}}\right]$	08. Ans: (d)Sol: Introducing negative feedback in an amplifier results, increases bandwidth.
$S_{H}^{M} = \frac{-GH}{(1+GH)}$	09. Ans: (a), (b) & (c)
	Sol: Negative feedback decreases the gain,
06.	increase the bandwidth, reduce sensitivity to
Sol: Given data	parameter variation and more accurate.
$G = 2 \times 10^3$, $\partial G = 100$	
% change in G = $\frac{\partial G}{G} \times 100 = 5\%$	10. Ans: (b), (c) & (d)
% change in $M = 0.5\%$	Sol: Using the transfer function response due to
% of change in M 1	initial conditions [zero input response] can
$\frac{1}{\%}$ of change in G $=$ $1 + GH$	not be obtained.
0.5% _ 1	$L^{-1}[TF] = IR$ i.e., inverse laplace transform
$\frac{0.5\%}{5\%} = \frac{1}{1 + 2 \times 10^3 \mathrm{H}}$	of the transfer function is the impulse
$1 + 2 \times 10^3 \mathrm{H} = 10$	response [IR] of the system.
$H = 4.5 \times 10^{-3}$	
07. Ans: (b)	
Sol: $K = \frac{\text{output}}{\text{input}} = \frac{c(t)}{r(t)} = \frac{\text{mm}}{{}^{0}c}$	ce 1995
A	CE

Signal Flow Graphs & Block Diagrams

01. Ans: (d)

Sol: No. of loops = 3 $Loop1: -G_1G_3G_4H_1H_2H_3$ $Loop2: -G_3G_4H_1H_2$ $Loop3: -G_4H_1$

No. of Forward paths = 3

Forward Path1: G₁G₃G₄

Forward Path 2: G₂G₃G₄

Forward Path 3: G₂G₄

 $-\frac{G_{1}G_{3}G_{4}+G_{2}G_{3}G_{4}+G_{2}G_{4}}{1+G_{1}G_{3}G_{4}H_{1}H_{2}H_{3}+G_{3}G_{4}H_{1}H_{2}+G_{4}H_{1}}$

02. Ans: (a)

Sol: Number of forward paths = 2 Number of loops = 3

$$\frac{Y(s)}{R(s)} = \frac{\frac{1}{s} \cdot \frac{1}{s} \cdot \frac{1}{s} - \frac{1}{s} [1-0] + \frac{1}{s}}{1 - \left[\frac{1}{s} \cdot \left(-1\right) \left(\frac{1}{s}\right) (-1) + \frac{1}{s} \cdot \frac{1}{s} (-1) + \left(\frac{1}{s} \cdot \frac{1}{s} (-1)\right)\right]}$$
$$= \frac{\frac{1}{s} \cdot \frac{1}{s} + \frac{1}{s}}{1 - \left[\frac{1}{s^2} - \frac{1}{s^2} - \frac{1}{s^2}\right]} = \frac{\frac{1+s^2}{s^3}}{1 + \frac{1}{s^2}} = \frac{\frac{1+s^2}{s^3}}{\frac{s^2+1}{s^2}}$$
$$= \frac{1+s^2}{s} \times \frac{1}{s^2+1} = \frac{1}{s}$$

03.

Sol: Number of forward paths = 2

Number of loops = 5

Two non touching loops = 4

$$TF = \frac{24[1 - (-0.5)] + 10[1 - (-3)]}{1 - [-24 - 3 - 4 + (5 \times 2 \times (-1) + (-0.5))] + [30 + 1.5 + 2] + \left(\left(\frac{-1}{2}\right) \times (-24)\right)}$$
$$= \frac{76}{88} = \frac{19}{22}$$

04.

Sol: Number of forward paths = 2 Number of loops = 5

$$T.F = \frac{G_1G_2G_3 + G_1G_4}{1 + G_2G_3H_2 + G_1G_2H_1 + G_1G_2G_3 + G_4H_2 + G_1G_4}$$

05. Ans: (c)

Sol: From the network

$$V_{o}(s) = \frac{1}{sC} I(s) \dots (1)$$

- V_i(s) + RI (s) + V_o(s) = 0
$$I(s) = \frac{1}{R} V_{i}(s) + \left(\frac{-1}{R}\right) V_{o}(s) \dots (2)$$

From SFG

$$V_o(s) = x.I(s)$$
(3)
 $I(s) = \frac{1}{R}V_i(s) + yV_o(s)$ (4)
From equ(1) and (3)
 $x = \frac{1}{sC}$

From equ(2) and (4)

$$y = -\frac{1}{R}$$

06. Ans: (a)Sol: Use gain formula

ACE Engineering Publications

Non touching loops = 4

Loop gains $\rightarrow G_2H_2G_6H_6$ $\rightarrow G_2H_2G_7H_7$ $\rightarrow G_6H_6G_7H_7$ $\rightarrow G_2H_2G_3H_3$

Transfer function =

 $\frac{G_{1}G_{2}G_{3}G_{4}\left(1+G_{6}H_{6}+G_{7}H_{7}\right)+G_{5}G_{6}G_{7}G_{8}}{\left(1+G_{2}H_{2}+G_{3}H_{3}\right)}{1+G_{2}H_{2}+G_{3}H_{3}+G_{6}H_{6}+G_{7}H_{7}+G_{2}H_{2}G_{6}H_{6}+}\\G_{2}H_{2}G_{7}H_{7}+G_{3}H_{3}G_{6}H_{6}+G_{3}H_{3}G_{7}H_{7}}$

09. Ans: (a), (b) & (d)

Sol: It is a LTIS, hence $\frac{C}{R}$ can be found Number of forward paths = 1 Number of loops = 2 Non touching pair = 1 $\therefore \frac{C}{R} = \frac{(1)}{1 - [-1 - 1] + (-1)(-1)}$ $\frac{C}{R} = \frac{1}{4} = 0.25$ 10. Ans: (a), (b) & (d)

Sol:
$$\Rightarrow \frac{Y(s)}{X(s)} = \frac{\frac{1}{(s+1)(s+2)}}{1+\frac{1}{(s+1)(s+2)}} = \frac{1}{s^2+3s+3}$$

 $\Rightarrow \frac{Y(s)}{N(s)} = \frac{1-G_{ff}(s)\left(\frac{1}{(s+1)(s+2)}\right)}{1+\frac{1}{(s+1)(s+2)}} = 0$

[Output due to noise is zero]

$$G_{\rm ff}(s) = (s+1)(s+2)$$

 \Rightarrow C.E: $s^2 + 3s + 3 = 0$

- \Rightarrow Poles locations are (-3/2 ± j0.866)
- \Rightarrow System is stable

Chapter **3** Time Response Analysis

01. Ans: (a) Sol: $\frac{C(s)}{R(s)} = \frac{1}{1+sT}$, $R(s) = \frac{8}{s}$ $C(s) = \frac{8}{s(1+sT)} \Rightarrow c(t) = 8(1-e^{-t/T})$ $3.6 = 8\left(1-e^{\frac{-0.32}{T}}\right)$ $0.45 = 1 - e^{\frac{-0.32}{T}}$ $0.55 = e^{\frac{-0.32}{T}}$ $-0.59 = \frac{-0.32}{T}$ T = 0.535 sec 02. Ans: (c) Sol: $\cos \phi = \xi$ $\cos 60 = 0.5$ $\cos 45 = 0.707$ Poles left side $0.5 \le \xi \le 0.707$	$T.F = \frac{V_o(s)}{V_i(s)} = \frac{1}{RCs + LCs^2 + 1}$ $= \frac{\frac{1}{LC}}{\frac{LC}{s^2 + \frac{R}{L}s + \frac{1}{LC}}}$ $s^2 + \frac{R}{L}s + \frac{1}{LC} = 0$ $s^2 + 2\xi\omega_n s + \omega_n^2 = 0$ $\omega_n = \frac{1}{\sqrt{LC}} - 2\xi\omega_n = \frac{R}{L}$ $\xi = \frac{R}{2}\sqrt{\frac{C}{L}}$ $\xi = \frac{10}{2}\sqrt{\frac{10 \times 10^{-6}}{1 \times 10^{-3}}} = 0.5$ $M.P = e^{-\frac{\xi\pi}{\sqrt{1-\xi^2}}}$ $= 16.3\% \approx 16\%$
Poles right side $-0.707 \le \xi \le -0.5$ Since $\therefore 0.5 \le \xi \le 0.707$ $3 \text{ rad/s} \le \omega_n \le 5 \text{ rad/s}$	04. Ans: (b) Sol: TF = $\frac{8/s(s+2)}{1-(\frac{-8 \text{ as}}{s(s+2)}-\frac{8}{s(s+2)})}$
03. Ans: (c) Sol: For R-L-C circuit: $T.F = \frac{V_o(s)}{V_i(s)}$ $V_o(s) = \frac{1}{Cs}I(s)$ $= \frac{1}{Cs}\frac{V_i(s)}{R + Ls + \frac{1}{Cs}}$	$= \frac{8}{s(s+2)+8as+8}$ $= \frac{8}{s^2+2s+8as+8}$ $= \frac{8}{s^2+(2+8a)s+8}$ $\omega_n^2 = 8 \implies \omega_n = 2 \sqrt{2}$ $2\xi\omega_n = 2+8a$
	r GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams arning experience in various languages at your convenience

ACE Engineering Publications

Control Systems

$$\xi = \frac{1+4a}{2\sqrt{2}}$$
$$\frac{1}{\sqrt{2}} = \frac{1+4a}{2\sqrt{2}} \implies a = 0.25$$

05. Ans: 4 sec

Sol: T.F =
$$\frac{100}{(s+1)(s+100)} = \frac{100}{s^2 + 101s + 100}$$

 $\omega_n^2 = 100$
 $\omega_n = 10$
 $2\xi\omega_n = 101$
 $\xi = \frac{101}{20}$

 $\xi > 1 \rightarrow$ system is over damped i.e., roots are real & unequal.

Using dominate pole concept,

T.F =
$$\frac{100}{100(s+1)} = \frac{1}{s+1}$$
, Here $\tau = 1$ sec

 \therefore Setting time for 2% criterion = 4τ

=4 sec

06.

Sol:
$$M_p = \frac{C(t_p) - C(\infty)}{C(\infty)}$$

= $\frac{1.254 - 1.04}{1.04} = 0.2$
 $\xi = \sqrt{\frac{(\ln M_p)^2}{(\ln M_p)^2 + \pi^2}}$
 $M_p = 0.2; \xi = 0.46$

07. Ans: (d)

Sol: Given data: $\omega_n = 2$, $\zeta = 0.5$ Steady state gain = 1

$$OLTF = \frac{K_1}{s^2 + as + 2} \text{ and } H(s) = K_2$$

$$CLTF = \frac{G(s)}{1 + G(s)}$$

$$\frac{C(s)}{R(s)} = \frac{K_1}{s^2 + as + 2 + K_1 K_2}$$
DC or steady state gain from the TF
$$\frac{K_1}{2 + K_1 K_2} = 1$$

$$K_1(1 - K_2) = 2$$
(1)

$$K_{1}(1 - K_{2}) = 2 \qquad \dots \qquad (1)$$

CE is s² + as + 2 + K₁K₂ = 0
 $\omega_{n} = \sqrt{2 + K_{1}K_{2}} = 2$
4 = (2+K₁K₂)
K₁K₂ = 2 \qquad \dots \qquad (2)
Solving equations (1) & (2) we get
K₁ = 4, K₂ = 0.5
2\zeta ω_{n} = a
 $2 \times \frac{1}{2} \times 2$ = a
a = 2

08. Ans: (c)

Sol: If $R \uparrow damping \uparrow$

$$\Rightarrow \xi = \frac{R}{2} \sqrt{\frac{C}{L}}$$

(i) If R↑, steady state voltage across C will be reduced (wrong)
(Since steady state value does not depend on ξ)

If
$$\xi \uparrow$$
, C (∞) = remain same

(ii) If
$$\xi \uparrow$$
, $\omega_d \downarrow \left(\omega_d = \omega_n \sqrt{1 - \xi^2} \right)$
(iii) If $\xi \downarrow$, $t_s \uparrow \Rightarrow 3^{rd}$

Statement is false

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

Engineering Publications

(iv) If $\xi = 0$ True $\Rightarrow 2 \text{ and } 4 \text{ are correct}$

09. Ans: A – T, B – S, C- P, D – R, E – Q Sol:

- (A)If the poles are real & left side of splane, the step response approaches a steady state value without oscillations.
- (B) If the poles are complex & left side of splane, the step response approaches a steady state value with the damped oscillations.
- (C) If poles are non-repeated on the $j\omega$ axis, the step response will have fixed amplitude oscillations.
- (D) If the poles are complex & right side of s-plane, response goes to '∞' with damped oscillations.
- (E) If the poles are real & right side of splane, the step response goes to '∞' without any oscillations.

10.

Sol: (i) Unstable system

$$\therefore$$
 error = ∞

(ii) G(s) =
$$\frac{10(s+1)}{s^2}$$

Step
$$\rightarrow$$
 R (s) = $\frac{1}{s}$

$$k_p = \infty$$

ace online

$$e_{ss} = \frac{A}{1+k_{s}} = \frac{1}{1+\infty} = 0$$

Parabolic $\Rightarrow k_a = 10$ $e_{ss} = \frac{1}{10} = 0.1$

11.

Sol: $G(s) = 10/s^2$ (marginally stable system) \therefore Error can't be determined

12.

Sol:
$$e_{ss} = \frac{1}{11}$$
, $R(s) = \frac{1}{s}$
 $e_{ss} = \frac{A}{1+k_p} = \frac{1}{1+k_p} = \frac{1}{11} = \frac{1}{1+10}$
 $k_p = \lim_{s \to 0} G(s)$
 $10 = \lim_{s \to 0} G(s)$
 $k = 10$
 $R(s) = \frac{1}{s^2}$ (ramp)
 $e_{ss} = \frac{A}{k_v} = \frac{1}{k_v} = \frac{1}{10}$
(System is increased by 1)

 $\Rightarrow e_{ss} = 0.1$

13. Ans: (a)

Since

Sol: T(s) =
$$\frac{(s-2)}{(s-1)(s+2)^2}$$
 (unstable system)

14. Ans: (b)Sol: Given data: r(t) = 400tu(t) rad/sec

Steady state error $=10^{\circ}$

i.e.,
$$e_{ss} = \frac{\pi}{180^{\circ}} (10^{\circ})$$
 radians
 $G(s) = \frac{20K}{s(1+0.1s)}$ and $H(s) = 1$
 $r(t) = 400tu(t) \implies 400/s^2$
Error $(e_{ss}) = \frac{A}{K_y} = \frac{400}{K_y}$

 Regular Live Doubt clearing Sessions
 Free Online Test Series | ASK an expert

 Affordable Fee
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

Engineering Publications		10		Control Systems
$K_{\rm V} = \lim_{s \to 0} s G(s)$	3)			Ans: (a)
$K_{\rm V} = \lim_{s \to 0} s \frac{1}{s(1-s)}$	$\frac{20K}{+0.1s}$	5	Sol:	$e_{ss} = 0.1$ for step input For pulse input = 10
$K_V = 20K$				time = 1 sec error is function of input
$e_{ss} = \frac{400}{20K}$				$t \rightarrow \infty$ input = 0 \therefore Error = zero
$e_{ss} = \frac{20}{K} = \frac{\pi}{18}$		1	7	Ans: (c)
K = 114.5				$\frac{C(s)}{R(s)} = \frac{100}{(s+1)(s+5)}$
15. Ans: (d) Sol: $\frac{d^2y}{dt^2} = -e(t)$				$\frac{1}{1 + \frac{100 \times 0.2}{(s+1)(s+5)}}$
$s^2 Y(s) = -E(s)$				$=\frac{100}{(s+1)(s+5)+20}$
$\mathbf{x}(t) = t \ \mathbf{u}(t) \Longrightarrow \mathbf{x}(t)$	$X(s) = \frac{1}{s^2}$			$=\frac{100}{s^2+6s+5+20}$
	$(s) \xrightarrow{-1} Y(s)$	C		$= \frac{100}{s^{2} + 6s + 25}$ $\omega_{n}^{2} = 25, \omega_{n} = 5$ $2\xi\omega_{n} = 6$
$Y(s) = \frac{-1}{s^2} E(s)$	•			$\xi = \frac{6}{10} = \frac{3}{5}$
$\frac{\mathrm{Y}(\mathrm{s})}{\mathrm{E}(\mathrm{s})} = \frac{-1}{\mathrm{s}^2}$				$\omega_{\rm d} = \omega_{\rm n} \sqrt{1 - \xi^2}$
$\frac{E(s)}{X(s)} = \frac{-1}{1 + \frac{1}{s^2}}$				$=5\sqrt{1-\left(\frac{3}{5}\right)^2}$
5				$=5\times\frac{4}{5}=4$ rad/sec
$E(s) = \frac{-s^2}{1+s^2} X$				Ans: (c) $f(t) = \frac{Md^2x}{dt^2} + B\frac{dx}{dt} + Kx(t)$
	$\frac{1}{s^2} = \frac{-1}{1+s^2}$,01.	$\frac{dt^{2}}{dt^{2}} + \frac{B}{dt} + KX(t)$ Applying Laplace transform on both sides,
$= L^{-1} \left\lfloor \frac{-1}{1+1} \right\rfloor$	$\left[\frac{1}{s^2}\right] = -\sin t$			with zero initial conditions $F(s) = Ms^{2}X(s)+BsX(s) + KX(s)$
A ace online				ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams perience in various languages at your convenience

Engineering Publications	Postal Coaching Solutions
$\frac{X(s)}{F(s)} = \frac{1}{Ms^2 + Bs + K}$ Characteristic equation is $Ms^2 + Bs + K = 0$	21. Sol Open loop T/F G(s) = $\frac{A}{s(s+P)}$
$s^2 + \frac{B}{M}s + \frac{K}{M} = 0$	C.L T/F = $\frac{A}{s^2 + sP + A}$
Compare with $s^2 + 2\zeta \omega_n s + \omega_n^2 = 0$ $2\zeta\omega_n = \frac{B}{M}$ $\xi = \frac{B}{2\sqrt{MK}}$ $\omega_n = \sqrt{\frac{K}{M}}$	$\omega_{n} = \sqrt{A}$ Setting time = $4/\xi \omega_{n} = 4$ $2\xi \omega_{n} = P$ $\therefore \frac{4}{P/2} = 4$
Time constant T = $\frac{1}{\zeta \omega_n}$ GINER	$\xi \omega_n = P/2 \implies P = \frac{8}{4} = 2$ $e^{\frac{-\pi\xi}{\sqrt{1+\xi^2}}} = 0.1 \implies \frac{\pi\xi}{\sqrt{1-\xi^2}} = \ell n 10$
$= \frac{1}{B} \times 2M$ $T = \frac{2M}{B}$ Hence, statements (2 & 3) are correct	$\Rightarrow \frac{\xi^2}{1-\xi^2} = 0.5373$
19. Ans: (c)Sol: type 1 system has a infinite positional error	$\Rightarrow 1.5373 \ \xi^2 = 0.5373$ $\xi = 0.59$ $\xi \omega_n = 1$ $\Rightarrow \omega_n = 1.694 \Rightarrow A = \omega_n^2 = 2.861$
constant. Since 20. Ans: (a)	
Sol: Given $G(s) = \frac{1}{s(1+s)(s+2)}$, $H(s) = 1$. It is type-I system Positional error constant $k_p = Lt_{s>0}$ $G(s)H(s)$	$\begin{array}{c} \text{Sol.} \\ \text{R(s)} \\ \text{S} \\ S$
$k_{p} = \underset{s \to 0}{\text{Lt}} \frac{1}{s(1+s)(s+2)}$ $= \infty$	$\frac{C(s)}{R(s)} = \frac{10}{s(s+0.8+10K)+10}$ 10
Steady state error due to step input = $\frac{1}{1+k_p} = 0$	$= \frac{10}{s^{2} + s(0.8 + 10K)10}$ $\omega_{n} = \sqrt{10} \qquad 2\xi\omega_{n} = 0.8 + 10 K$
	clearing Sessions Free Online Test Series ASK an expert ble 1M 3M 6M 12M 18M and 24 Months Subscription Packages

,	ACE
	Engineering Publications

$$\Rightarrow 2 \times \frac{1}{2} \times \sqrt{10} = 0.8 + 10K$$
$$\Rightarrow K = 0.236$$
$$t_r = \frac{\pi - \phi}{\omega_d} = \frac{\pi - \cos^{-1}(\xi)}{\omega_n \sqrt{1 - \xi^2}}$$
$$= \frac{\pi - \pi/3}{2.88} = 0.764 \text{ sec}$$

$$t_{p} = \frac{\pi}{\omega_{d}} = 1.147 \text{ sec}$$

%Mp = $e^{-\frac{\pi\xi}{\sqrt{1-\xi^{2}}}} = 0.163 \times 100 = 16.3\%$
 $t_{s} \text{ (for 2\%)} = \frac{4}{\xi\omega_{p}} = \frac{4}{0.5 \times \sqrt{10}} = 2.52 \text{ sec}$

23. Ans: (a), (c) & (d)
Sol: CLTF
$$\Rightarrow \frac{C(s)}{R(s)} = \frac{3k}{2s+1+3k}$$

 \Rightarrow CL pole $s = -\left(\frac{1+3k}{2}\right)$
 \Rightarrow time constant $\tau = \left(\frac{2}{1+3k}\right)$
If $k = 3 \Rightarrow \tau = 0.2$ sec
If $k > 3 \Rightarrow \tau < 0.2$ sec
If $k = 3 \Rightarrow \tau = 0.2$ sec \Rightarrow BW $= \frac{1}{\tau}$ rad/sec
BW $= \frac{1}{0.2} = 5$ rad/sec

24. Ans: (a), (c) & (d)

Sol: \Rightarrow As poles moves toward left side, the system time constant is decreases and system is more relative stable.

 \Rightarrow Damping ratio increases & percentage of peak overshoot decreases.

 \Rightarrow Damped oscillations (ω_d) is constant. Hence peak time is constant.

- 25. Ans: (a), (b) & (d)
- Sol: Roots are $(-2 \pm j2\sqrt{3})$ complex $0 < \zeta < 1$ – under damped system Natural frequency = $\sqrt{16} = 4$ rad/sec Damping ratio $\zeta = \frac{4}{2(4)} = 0.5$ Under damped system has damped oscillations.

26. Ans: (b) & (c)
Sol: OLTF =
$$\frac{20}{s+2}$$
, H(s) = 1
 $CLTF = \frac{\frac{20}{s+2}}{1+\frac{20}{s+2}} = \frac{20}{s+22}$
DC gain = $\frac{20}{22} = \frac{10}{11}$
Steady state error to a unit step input
= $\left(1 - \frac{20}{22}\right)$ which is non zero

27. Ans: (b) & (d)
Sol: In OLTF two poles are at the origin ∴ It is type '2'

$$CE = 1 + \frac{10(s+1)^4}{s^2(s+2)} = 0$$
, 4 roots it has

:. 4^{th} order system Type 2 system error to step and ramp input s = 0

$$k_a = \lim_{s \to 0} s^2 G(s) = \frac{10}{2} = 5$$

Error
$$=$$
 $\frac{1}{5}$ $=$ 0.2 to a parabolic input

 India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams

 Enjoy a smooth online learning experience in various languages at your convenience

12

Control Systems

Stability

01. Sol: $CE = s^5$	$+4s^{4}+$	$-8s^3+8$	$3s^2 + 7s + 4 = 0$		-	$+ s^5$ $+ s^4$	1	1 1	
s^5	1	8	7			$+ s^{3}$	0(2)	0(1) 0	
s^4	4(1)	8(2)	4(1)			$+s^{2}$ (1) - s ¹	$\frac{1}{2}$	1 0	
s^3	6(1)	6(1)	0			$(2) + s^0$	1		
s^2	1	1	$0 \rightarrow \text{Row of AE}$	EERI	AC AC	$(1) = s^4 + s^4$	$s^{2} + 1 =$	= 0	
s^1	0(2)	0	$0 \rightarrow \text{Row of zero}$			$\frac{AE}{s} = 4s^3$			
s^0	1					$2s^3 + s =$	0		
No. of A No. of si Below A No. of R No. of L No. of jo	ign chan AE = 0 HP = 0 HP = 0 op = 2	ges	No. of CE roots = 5 No. of sign changes in 1 st column = 0 \therefore No .of RHP = 0 No. of j ω p = 2 \Rightarrow No .of LHP = 3 sinally stable.	nce	A No. of sign AE = 2 No. of AE f No .of RHP No .of LHP No. of jωp =	changes b poots = 4 p = 2 p = 2 p = 2 p = 0		1 st colum	E roots = 5 $HP = 2$ $HP = 3$
					(ii) $s^6 + 2s^2$	$5 + 2s^4 + 6$	$0s^3-s^2$	- 2s - 2 =	= 0
(ii) $s^2 +$					s ⁶	1	2	-1	-2
	$\pm 1 \mathbf{j} = $				s^5 s^4	2(1)	0	-2(-1)	
$\omega_n = 1 \text{ rad/ sec}$				s^{3}	2(1) 0(4)	+0	-2(-1) 0	0 0	
Oscillating frequency $\omega_n = 1 \text{ rad/sec}$			s^2 s^1	0(ε)	-1	0	0		
02.					$-s^0$	4/ε -1			
Sol: (i) $s^5 + s^{-1}$	$s^4 + s^3 -$	$+s^2+s$	+1 = 0			1			
	2	India's	Best Online Coaching Plat	form for	GATE, ESE, PSU	s, SSC-JE. RR	B-JE, SSC	, Banks, Grou	ips & PSC Exams
	ine		Enjoy a smooth or						

Engineering Publications	Control Systems
$AE = s^4 - 1 = 0$	$20s^2 + 16(20) = 0$
$\frac{dAE}{ds} = 4s^3 + 0 = 0$	\Rightarrow s = \pm j4
ds	$\omega_n = 4 \text{ rad/sec}$
CEAENo. of CE roots = 6No. of AE roots = 4No. of sign changesNo. of sign changesin the 1 st column=1below AE = 1No. of RHP = 1No. of RHP = 1No . of LHP = 3No. of j ω p = 2No. of j ω p = 2No. of LHP = 1	04. Sol: CE = 1 + $\frac{K(s+1)}{s^3 + as^2 + 2s + 1} = 0$ $s^3 + as^2 + (K+2)s + K + 1 = 0$ $s^3 + as^2 + (K+2)s + (K+1) = 0$
03.	
Sol: $CE = s^3 + 20 s^2 + 16s + 16 K = 0$	s^3 1 K+2
s^{3} 1 16	s^2 a K+1
s ² 20 16K	$s^1 = \frac{a(K+2)-(K+1)}{a} = 0$
$ \begin{array}{c c} s^{1} \\ s^{0} \\ s^{0} \\ \end{array} \\ \begin{array}{c} 20(16) - 16K \\ 16K \\ \end{array} \\ (i) For stability \\ \begin{array}{c} 20(16) - 16K \\ 20 \\ \end{array} > 0 \end{array} $	a $K + 1$ Given, $\omega_n = 2$
$\Rightarrow 20 (16) - 16 \text{ K} > 0$	\Rightarrow s ¹ row = 0
\Rightarrow K < 20 and 16 K > 0 \Rightarrow K > 0	s ² row is A.E
Range of K for stability $0 < K < 20$	a (K+2) – (K+1) = 0
(ii) For the system to oscillate with ω_n is must be marginally stable i.e., s ¹ row should be 0 s ² row should be AE	t $a = \frac{K+1}{K+2}$ $AE = as^{2} + K + 1 = 0$ $= \frac{K+1}{K+2}s^{2} + K + 1 = 0$
$\therefore A.E \text{ roots} = \pm j\omega_n$ $\therefore s^1 \text{ row} \Rightarrow 20 (16) - 16 \text{ K} = 0$	$(k+1)\left(\frac{s^{2}}{k+2}+1\right) = 0$
\Rightarrow K = 20	$s^{2} + k + 2 = 0$
AE is $20s^2 + 16 \text{ K} = 0$	$s = \pm j\sqrt{(k+2)}$
India's Best Online Coaching Platfor	m for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams

A ace online

Enjoy a smooth online learning experience in various languages at your convenience

Engineering Publications

 $\omega_n = \sqrt{k+2} = 2$ k = 2 $a = \frac{k+1}{k+2} = \frac{3}{4} = 0.75$

05.

Sol: $s^3 + ks^2 + 9s + 18$

Given that system is marginally stable,

Hence

s¹ row = 0

$$\frac{9K-18}{K} = 0$$
9K = 18 ⇒ K = 2
A.E is 9s² + 18 = 0
Ks² + 18 = 0,
2s² + 18 = 0
2s² = -18
s = ± j3
∴ $\omega_n = 3$ rad/sec.

06. Ans: (d)

Sol: Given transfer function $G(s) = \frac{k}{(s^2 + 1)^2}$

Characteristic equation 1 - G(s). H(s) = 0

$$1 - \frac{k}{(s^2 + 1)^2} = 0$$

$$s^4 + 2s^2 + 1 - k = 0 \dots (1)$$

RH criteria

15

s ⁴	1	2	1-K
s^3	4	4	-
s^2	1	1-K	
s^1	4K		
s°	1-K		

$$AE = s^4 + 2s^2 + 1 - K$$

$$\frac{d}{ds}(AE) = 4s^3 + 4s$$

1-K > 0 no poles are on RHS plane and LHS plane.

All poles are on $j\omega$ - axis

 $\therefore 0 < K < 1$ system marginally stable

07. Ans: (d)

Sol: Assertion: FALSE

Let the TF= s. "s" is the differentiator Impulse response $L^{-1}[TF] = L^{-1}[s] = \delta'(t)$

$$\lim_{t\to\infty} \delta'(t) = 0$$

: It is BIBO stable

Reason: True

 $\mathbf{x}(\mathbf{t}) = \mathbf{t} \operatorname{sint}$

 $\underset{t\to\infty}{\text{Lt}} x(t) = \underset{t\to\infty}{\text{Lt}tsint is unbounded}$

	Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert
A ace online	Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages

Since

ACE
Engineering Publications

08. Ans: (a)

Sol: Assertion: TRUE

If feedback is not properly utilized the closed loop system may become unstable.

Reason: True

Feedback changes the location of poles

Let
$$G(s) = \frac{-2}{s+1}$$
 $H(s) = 1$

Open loop pole s = -1 (stable)

$$CLTF = \frac{\frac{-2}{s+1}}{1 + \frac{-2}{s+1}} = \frac{-2}{s-1}$$

Closed loop pole is at s = 1 (unstable)

 \therefore After applying the feedback no more system is open loop. It becomes closed loop system. Hence poles are affected.

09. Ans: (a) & (d)

Sol: RH tabulation:

s^5	1	5	4
s^4	-3	-7	20
s ³	$\frac{8}{3}$	$\frac{32}{3}$	0
s^2	5	20	0
\mathbf{s}^1	0(10)	0	0
s^0	20	0	0

$$AE = 5s^2 + 20 = 0$$
$$\frac{dAE}{ds} = 10s = 0$$

AE roots = $s = \pm j2$

Two sign changes

ace online \therefore No. of j ω axis roots = 2 No. of left hand root = 1 (real)

10. Ans: (a), (c) & (d)

Sol: C.E =
$$1 + \frac{k}{s(s+4)(s+5)} = 0$$

 $s^{3} + 9s^{2} + 20s + k = 0$
 $s^{3} \begin{vmatrix} 1 & 20 \\ s^{2} \\ 9 & k \\ \frac{180 - k}{9} \\ k \end{vmatrix}$
 $180 - k > 0$
 $k < 180$ and
 $k > 0$
 \therefore Range of k for stability $0 < k < 180$
 $k > 180$; Two sign changes in the 1^{st} column
 \therefore Number of right half of s-plane poles = 2
 $k = 180$ marginally stable
 \therefore Two poles are on the imaginary axis

k < 180 stable

 \therefore All the three poles are in the left half of s-plane

Root Locus Diagram

01. Ans: (a)
Sol:
$$s_1 = -1 + j\sqrt{3}$$

 $s_2 = -3 - j\sqrt{3}$
 $G(s).H(s) = \frac{K}{(s+2)^3}$
 $s_1 = -1 + j\sqrt{3}$
 $G(s).H(s) = \frac{K}{(-1 + j\sqrt{3} + 2)^3}$
 $= \frac{K}{(1 + j\sqrt{3})^3}$
 $= -3tan^{-1}(\sqrt{3})$
 $= -180^\circ$
It is odd multiples of 180° , Hence s_1 lies
Root locus
 $s_2 = -3 - j\sqrt{3}$
 $G(s).H(s) = \frac{K}{(-3 - j\sqrt{3} + 2)^3}$
 $= \frac{K}{(-1 - j\sqrt{3})^3}$
 $= -3 [180^\circ + 60^\circ] = -720^\circ$
It is not odd multiples of 180° , Hence s_2
not lies on Root locus.

02. Ans: (a)

Sol: Over damped - roots are real & unequal $\implies 0 < k < 4$

(b) k = 4 roots are real & equal

 \Rightarrow Critically damped $\xi = 1$

(c) $k > 4 \Rightarrow$ roots are complex $0 < \xi < 1 \Rightarrow$ under damped

03. Ans: (a)

0

S

on

is

Sol: Asymptotes meeting point is nothing but centroid

But s = -1.57 do not lie on root locus So, s = -0.422 is valid break point. Point of intersection wrt j ω -axis

$$s^3 + 3s^2 + 2s + k = 0$$

$$\begin{array}{c|c} s^{3} & 1 & 2\\ s^{2} \\ s^{2} \\ s^{0} \\ s^{0} \\ s^{0} \\ k \end{array} \right| \begin{array}{c} 1 & 2\\ k \\ k \\ \frac{6-k}{3} \\ k \end{array} \right)$$

Engineering Publications

As s¹ Row = 0 k = 6 3s² + 6 = 0 s² = -2 s = $\pm i \sqrt{2}$

point of inter section: $s = \pm j\sqrt{2}$

05. Ans: (b)

Sol:

break point -2 -1s = 0.423 0k = 0.384

 $\frac{K}{s(s+1)(s+2)}$

substitute s = -0.423 and apply the magnitude criteria.

$$\left| \frac{K}{(-0.423)(-0.423+1)(-0.423+2)} \right| = 1$$

K = 0.354

when the roots are complex conjugate then the system response is under damped.

From K > 0.384 to K < 6 roots are complex conjugate then system to be under damped the values of k is 0.384 < K < 6.

06. Ans: (c)

Sol: If the roots are lies on the real axis then system exhibits the non-oscillatory response. from $K \ge 0$ to $K \le 0.384$ roots lies on the real axis. Hence for $0 \le K \le 0.384$ system exhibits the non-oscillatory response.

 India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams

 Enjoy a smooth online learning experience in various languages at your convenience

07. Ans: (a)
Sol:
$$\frac{d}{ds}[G(s).H(s)] = \frac{d}{ds}\left[\frac{k(s+3)}{s(s+2)}\right]$$
$$s^{2} + 6s + 6 = 0$$
break points - 1.27, - 4.73
radius = $\frac{4.73 - 1.27}{2} = 1.73$ center = (-3, 0)

Sol: G(s).H(s) =
$$\frac{K(s+3)}{s(s+2)}$$

 $|k|_{s=-4} = \left|\frac{(-4)(-4+2)}{(-4+3)}\right|$
 $= \left|\frac{(-4)(-2)}{(-1)}\right| = 8$

Sol:
$$s^2-4s+8 = 0 \Rightarrow s = 2\pm 2j$$
 are two zeroes
 $s^2+4s+8 = 0 \Rightarrow s = -2\pm 2j$ are two poles
 $\phi_A = 180 - \angle GH|_{s=2\pm 2j}$
 $GH = \frac{k[s - (2+2j)[s - (2-2j)]]}{[s - (-2+2j)[s - (-2-2j)]]}$
 $\angle GH|_{s=2\pm 2j} = \frac{\angle k \angle 4j}{\angle 4 \angle 4 + 4j}$
 $= 90^\circ - 45^\circ = 45^\circ$
 $\phi_A = 180^\circ - 45^\circ = +135^\circ$

) Frequency Response Analysis

01. Ans: (c) $\omega_{gc} = |G(j\omega)H(j\omega)|_{\omega=\omega} = 1$ **Sol:** G(s).H(s) = $\frac{100}{s(s+4)(s+16)}$ $\frac{2}{\sqrt{\omega_{\rm sc}^2 + 1}} = 1$ Phase crossover frequency (ω_{pc}): $\omega_{\rm gc}^2 + 1 = 4 \implies \omega_{\rm gc} = \sqrt{3} \text{ rad / sec}$ $\angle G(j\omega).H(j\omega)/\omega = \omega_{pc} = -180^{\circ}$ $-90^{\circ} - \tan^{-1}(\omega_{nc}/4) - \tan^{-1}(\omega_{nc}/16) = -180^{\circ}$ 04. Ans: (b) $-\tan^{-1}(\omega_{nc}/4) - \tan^{-1}(\omega_{nc}/16) = -90^{\circ}$ **Sol:** $\omega_{\rm gc} = \sqrt{3} \text{rad}/\text{sec}$ $\tan[\tan^{-1}(\omega_{nc}/4) + \tan^{-1}(\omega_{nc}/16)] = \tan(90^{\circ})$ $P.M = 180^{\circ} + \angle G(j\omega).H(j\omega) / \omega = \omega_{ac}$ $\frac{\frac{\omega_{\rm pc}}{4} + \frac{\omega_{\rm pc}}{16}}{1 - \frac{\omega_{\rm pc}}{4} \cdot \frac{\omega_{\rm pc}}{16}} = \frac{1}{0}$ $\angle G(j\omega).H(j\omega)/_{\omega=\omega_{ec}} = -0.5 \omega_{gc} - \tan^{-1}(\omega_{gc})$ $= -109.62^{\circ}$ $P.M = 70.35^{\circ}$ $\omega_{pc}^2 = 16 \times 4 \Longrightarrow \omega_{pc} = 8 \text{ rad/sec}$ 05. Ans: (a) 02. Ans: (d) **Sol:** $M_r = 2.5 = \frac{1}{2\xi\sqrt{1-\xi^2}}$ **Sol:** $G(s).H(s) = \frac{100}{s(s+4)(s+16)}$ $2\xi\sqrt{1-\xi^2} = \frac{1}{25}$ Gain margin (G.M) = $\frac{1}{|G(j\omega)H(j\omega)|_{\alpha=\alpha}}$ $\xi^4 - \xi^2 + 0.04 = 0$ $\left| G(j\omega) \cdot H(j\omega) \right|_{\omega = \omega_{pc}} = \frac{100}{\omega_{pc} \sqrt{\omega_{pc}^2 + 4^2} \sqrt{\omega_{pc}^2 + 16^2}}$ $\xi^2 = 0.958$ $\xi^2 = 0.0417$ $\xi = 0.204$ (M_r >1) $=\frac{5}{64}$ 06. Ans: (a) $G.M = \frac{64}{5} = 12.8$ **Sol:** Closed loop T.F = $\frac{1}{\alpha + 2}$ 03. Ans: (c) Input \sim 1 $\cos(2t+20^\circ)$ $\frac{1}{s+2}$ **Sol:** $G(s).H(s) = \frac{2e^{-0.5s}}{(s+1)}$ Output $Acos(2t+20^{\circ}+\theta)$ $A = \frac{1}{\sqrt{\omega^2 + 4}} = \frac{1}{\sqrt{4 + 4}} = \frac{1}{\sqrt{8}} = \frac{1}{2\sqrt{2}}$ gain crossover frequency, India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams ace online Enjoy a smooth online learning experience in various languages at your convenience

Chapter

ACE

22

Control Systems

$$\frac{y_2 - y_1}{x_2 - x_1} = -40 \, dB / dec$$

$$\frac{20 - y_1}{\log 10 - \log 1} = -40$$

$$y_1 = +60 \, dB \Big|_{\omega \le 1}$$

$$\Rightarrow 20 \, \log K = 60$$

$$K = 10^3$$

$$G(s)H(s) = \frac{10^3 (s + 10)^2 (s + 20)}{10^2 \times 20 \times (s + 1)^2}$$

$$= \frac{(s + 10)^2 (s + 20)}{2(s + 1)^2}$$

10. Ans: (d) Sol: |G(s)H(s)|40 dB/dec 20 20 dB/dec ω ω_1 ω_2 -2040 dB/dec ω_1 calculation: 0-20 $\overline{\log 1 - \log \omega_1}$ = -20 dB/dec $\omega_1 = 0.1$ ω_2 calculation: $\frac{-20-0}{\log \omega_2 - \log 1}$ = -20 dB/dec $\omega_2 = 10$

$$G(s)H(s) = \frac{K\left(1 + \frac{s}{0.1}\right)}{s^2\left(1 + \frac{s}{10}\right)}$$

20logK-2 (20 log 0.1) = 20
20 logK = 20 - 40
$$K = 0.1$$

$$G(s)H(s) = \frac{0.1 \times \frac{1}{0.1}(0.1 + s)}{s^2 \frac{1}{10}(10 + s)}$$
$$= \frac{10(0.1 + s)}{s^2(10 + s)}$$

11.

Sol:
$$\frac{200}{s(s+2)} = \frac{100}{s(1+\frac{s}{2})}$$

 $x = -KT \Rightarrow -(100) \times \frac{1}{2} = x = -50$

12. Ans: (c)

Sol: For stability (-1, j0) should not be enclosed by the polar plot.

For stability 1 > 0.01 K $\Rightarrow K < 100$

13.

Sol: GM = -40 dB $20\log\frac{1}{a} = -40 \implies a = 10^2$ POI = 100

Engineering Publications	23 Postal Coaching Solutions	
14.	N = -2, P = 0 (Given) $\therefore N = P - Z$	
Sol: (i) $GM = \frac{1}{0.1} = +10 = 20 dB$ PM = 180°	-2 = 0 - Z $Z = 2$	
(ii) $PM = 180 - 150^\circ = 30^\circ$	Two closed loop poles are lies on RH o s-plane and hence the closed loop system i unstable.	
$GM = \frac{1}{0} = \infty$ POI = 0 (iii) ω_{PC} does not exist	17. Ans: (c)	
$GM = \frac{1}{0} = \infty PM = 180^\circ + 0^\circ = 180^\circ$ (iv) ω not exist	Sol: GH plane $\omega = \infty$	
$\omega_{\rm pc} = \infty$	(-1,0)	
$GM = \frac{1}{0} = \infty$ $PM = \infty$		
(v) $GM = \frac{1}{0.5} = 2$ PM = 180 - 90	$\frac{K_{c}}{K} = 0.4 \qquad \text{When } K = 1$ Now, K double, $\frac{K_{c}}{K} = 0.4$	
$=90^{0}$	$K_{c} = 0.4 \times 2 = 0.8$	
 15. Ans: (d) Sol: For stability (-1, j0) should not be enclosed by the polar plot. In figures (1) & (2) (-1, j0) 		
is not enclosed. ∴Systems represented by (1) & (2) are		
stable.	Even though the value of K is double, th system is stable (negative real axi	
16. Ans: (b)Sol: Open loop system is stable, since the oper loop poles are lies in the left half of s-plane	magnitude is less than one)	3
$\therefore \mathbf{P} = 0.$	1	

 $\xi \propto \frac{1}{\sqrt{K}}$ as K is increased ξ reduced, then

more oscillations.

From the plot N = -2.

No. of encirclements N = P - Z

ACE Engineering Publications

Control Systems

18. Ans: (a)

Sol: Given system $G(s) = \frac{10(s-12)}{s(s+2)(s+3)}$

It is a non minimum phase system since s = 12 is a zero on the right half of s-plane

19.

Sol: Given that
$$G(s)H(s) = \frac{10(s+3)}{s(s-1)}$$

s-plane Nyquist Contour

- Nyquist plot is the mapping of Nyquist contour(s-plane) into G(s)H(s) plane.
- The Nyquist contour in the s-plane enclosing the entire right half of S-plane is shown figure.

The Nyquist Contour has four sections C_1 , C_2 , C_3 and C_4 . These sections are mapped into G(s)H(s) plane .

Mapping of section C₁: It is the positive imaginary axis, therefore sub $s = j\omega$, $(0 \le \omega \le \infty)$ in the TF G(s) H(s), which gives the polar plot

$$G(s)H(s) = \frac{10(s+3)}{s(s-1)}$$

Let $s = j\omega$

 $G(j\omega)H(j\omega) = \frac{10(j\omega+3)}{j\omega(j\omega-1)}$ $G(j\omega)H(j\omega) = \frac{10\sqrt{\omega^2+9}}{\omega\sqrt{\omega^2+1}} \angle \{\tan^{-1}\left(\frac{\omega}{3}\right) - [90^0 + 180^0 - \tan^{-1}(\omega)]\}$

At
$$\omega = 0 \implies \infty \angle -270^{\circ}$$

At $\omega = \omega_{pc} = \sqrt{3} \implies 10 \angle -180^{\circ}$
At $\omega = \infty \implies 0 \angle -90^{\circ}$

point of intersection of the Nyquist plot with respect to negative real axis is calculated below

$$\operatorname{ArgG}(j\omega)H(j\omega) = \operatorname{arg}\frac{10(j\omega+3)}{j\omega(j\omega-1)}$$

 $= -180^{\circ}$ will give the ' ω_{pc} '

Magnitude of $G(j\omega)H(j\omega)$ gives the point of intersection

$$\angle \tan^{-1}(\frac{\omega}{3}) - [90^{\circ} + 180^{\circ} - \tan^{-1}(\omega))$$

$$=-180^{\circ}|\omega = \omega_{pc}$$

$$\angle \tan^{-1}(\frac{\omega_{\rm pc}}{3}) - [90^0 + 180^0 - \tan^{-1}(\omega_{\rm pc})) = -180^0$$

$$\tan^{-1}(\frac{\omega_{\rm pc}}{3}) + \tan^{-1}(\omega_{\rm pc}) = 90^{\circ}$$

Taking "tan" both the sides

$$\frac{\frac{\omega_{pc}}{3} + \omega_{pc}}{1 - \frac{(\omega_{pc})^2}{3}} = \tan 90^\circ = \infty$$
$$1 - \frac{\omega_{pc}^2}{3} = 0$$
$$\omega_{pc} = \sqrt{3} \text{ rad/sec}$$

Therefore the point of intersection is

$$|G(j\omega)H(j\omega)| \text{ at } \omega_{pc} = \frac{10\sqrt{\omega_{pc}^{2}+3^{2}}}{\omega_{pc}\sqrt{1+\omega_{pc}^{2}}} = 10$$

P inte

The mapping of the section C_1 is shown figure.

Mapping of section C₂: It is the radius 'R' semicircle, therefore sub $s = \lim_{R \to \infty} Re^{j\theta}$ (θ is from 90[°] to 0° to -90°) in the TF G(s)H(s), which merges to the origin in G(s)H(s)plane. Img

real

Since

G(s)H(s) plane

$$G(s)H(s) = \frac{10(s+3)}{s(s-1)}$$

$$G(\operatorname{Re}^{j\theta})H(\operatorname{Re}^{j\theta}) = \frac{2(\operatorname{Re}^{j\theta}+3)}{\operatorname{Re}^{j\theta}(\operatorname{Re}^{j\theta}-1)} \approx 0$$

The plot is shown in figure.

Mapping of section C₃: It is the negative imaginary axis, therefore sub $s = j\omega$,

 $(-\infty \le \omega \le 0)$ in the TF G(s)H(s), which gives the mirror image of the polar plot and is symmetrical with respect to the real axis,

The plot is shown in figure.

Mapping of section C₄: It is the radius 'ε' semicircle, therefore sub $s = \text{Lim} \, \epsilon e^{j\theta}$

 $(-90^{\circ} \le \theta \le 90^{\circ})$ in the TF G(s)H(s), which gives clockwise infinite radius semicircle in G(s)H(s) plane.

The plot is shown below

$$G(\varepsilon e^{j\theta})H(\varepsilon e^{j\theta}) = \frac{10(\varepsilon e^{j\theta} + 3)}{\varepsilon e^{j\theta}(\varepsilon e^{j\theta} - 1)}$$

$$G(\varepsilon e^{j\theta})H(\varepsilon e^{j\theta}) \approx \frac{10 \times 3}{-\varepsilon e^{j\theta}} = \infty \angle 180^{0} - \theta$$
When, $\theta = -90^{0} \quad \infty \angle 270^{0}$
 $\theta = -40^{0} \quad \infty \angle 220^{0}$
 $\theta = 0^{0} \quad \infty \angle 0^{0}$
 $\theta = 40^{0} \quad \infty \angle 140^{0}$
 $\theta = 90^{0} \quad \infty \angle 90^{0}$

It is clear that the plot is clockwise ' ∞ ' radius semicircle centred at the origin

Engineering Publications

Combining all the above four sections, the

Nyquist plot of $G(s)H(s) = \frac{10(s+3)}{s(s-1)}$

is shown in figure below

From the plot N = 1

Given that P = 1

$$N = P - Z$$

Z = P - N = 1 - 1 = 0, therefore system is stable

20.

Sol: The given bode plot is shown below.

Initial slope = -6 db/octave.

i.e., there is one pole at origin (or) one integral term.

portion of transfer function

$$G(s) = \frac{K}{s}$$

At $\omega = 2$ rad/sec, slope is changed to 0dB/ octave.

∴ change in slope

= present slope – previous slope = 0 - (-6) = 6 dB/octave

 \therefore There is a real zero at corner frequency $\omega_1 = 2$.

$$(1+sT_1)=\left(1+\frac{s}{\omega_1}\right)=\left(1+\frac{s}{Z}\right)$$

At $\omega = 10$ rad/sec, slope is changed to -6dB/octave.

 \therefore change in slope = -6 - 0

$$= -6 \text{ dB/octave}.$$

 \therefore There is a real pole at corner frequency $\omega_2 = 2$.

$$\frac{1}{1+sT_2} = \frac{1}{\left(1+\frac{s}{\omega_2}\right)} = \frac{1}{\left(1+\frac{s}{10}\right)}$$

At $\omega = 50$ rad/sec, slope is changed to -12dB/octave.

:. change in slope = -12 - (-6)= -6 dB/octave

 \therefore There is a real pole at corner frequency $\omega_3 = 50$ rad/sec.

$$\frac{1}{1+ST_3} = \frac{1}{\left(1+\frac{S}{\omega_3}\right)} = \frac{1}{\left(1+\frac{S}{50}\right)}$$

At $\omega=100$ rad/sec, the slope changed to -6~dB/octave.

: change in slope = -6 - (-12)= 6 dB/octave.

 \therefore There is a real zero at corner frequency $\omega_4 = 100 \text{ rad/sec.}$

$$\therefore (1 + sT_4) = \left(1 + \frac{s}{\omega_4}\right) = \left(1 + \frac{s}{100}\right)$$

Engineering Publications	27 Postal Coaching Solutions
$\therefore \text{ Transfer function} = \frac{K\left(1+\frac{s}{2}\right)\left(1+\frac{s}{100}\right)}{s\left(1+\frac{s}{50}\right)\left(1+\frac{s}{10}\right)}$ $= \frac{K(s+2)(s+100)}{s(s+50)(s+10)}\frac{\frac{1}{2}\cdot\frac{1}{100}}{\frac{1}{2}\cdot\frac{1}{10}}$	For k < 1/2, one closed loop pole in the right half of s-plane.
$50 \ 10$ $= \frac{2.5K(s+2)(s+100)}{s(s+10)(s+50)}$ In the given bode plot, at $\omega = 1$ rad/sec, Magnitude = -20dB.	N = 0 P = 1 CL is unstable, $2k < 1 \Rightarrow k < 1/2$ N =P-Z \Rightarrow 0 = 1 - Z \Rightarrow Z = 1 \Rightarrow one closed loop Pole in the right half s-plane
$-20 \text{dB} = 20 \log \text{K} - 20 \log \omega + 20 \sqrt{1 + \left(\frac{\omega}{2}\right)^2} + 20 \sqrt{1 + \left(\frac{\omega}{100}\right)^2}$ $-20 \log \sqrt{1 + \left(\frac{\omega}{50}\right)^2} - 20 \log \sqrt{1 + \left(\frac{\omega}{10}\right)^2}$ At $\omega = 1$ rad/sec,	Sol: $\Rightarrow \omega_{pc} = \infty$. Hence $GM = \infty$ $\Rightarrow \angle \phi \omega_{gc} = -150^{\circ}, \Rightarrow PM = 180^{\circ} + \angle \phi \omega_{gc}$ $\Rightarrow PM = 180^{\circ} - 150^{\circ} = +30^{\circ}$ (finite).
$-20 = 20\log K - 20 \log \omega / \omega = 1 \text{ rad/sec}$ [:: Remaining values eliminated] $-20 = 20\log K$ $\Rightarrow K = 0.1$ $\therefore \text{ Transfer function}$ $\frac{C(s)}{R(s)} = \frac{0.25(s+2)(s+100)}{s(s+10)(s+50)}$	23. Ans: (b) & (d) Sol: G(s)H(s) = $\frac{10 \times 5^2 (1 + \frac{s}{5})^2}{s \times 2(1 + \frac{s}{2})(10)(1 + \frac{s}{10})}$ $\frac{12.5(1 + \frac{s}{5})^2}{s \times 2(1 + \frac{s}{5})^2}$
R(s) $s(s+10)(s+50)$ Since 21. Ans: (a) & (d) Sol: $k > 1/2$, closed loop system is stable.	$= \frac{5}{s(1 + \frac{s}{2})(1 + \frac{s}{10})}$ $M _{\omega=0.1} = 20\log 12.5 - 20\log \omega$ $= 20\log 12.5 - 20\log 0.1$ $\approx 42 \text{ dB}$
-2k > 1i' -1 $N = 1$ $P = 1$ CL system is stable	$dB = 42 - 20 dB/dec \text{ (Initial slope)} - 40 dB/dec = 0 - 40 dB/dec = 5 - 10 - 36 - \omega(rad/s) = 0 dB/dec = -20 dB/dec = -$
	0 dB/dec clearing Sessions Free Online Test Series ASK an expert able 1M 3M 6M 12M 18M and 24 Months Subscription Packages

Chapter 7

Compensators & Controllers

01. Ans: (a)
Sol:
$$G_{C}(s) = (-1)\left(-\frac{Z_{2}}{Z_{1}}\right)$$

 $= (-1)(-1)\left(\frac{R_{2} + \frac{1}{sC}}{R_{1}}\right)$
 $G_{c}(s) = \frac{(100 \times 10^{3}) + \frac{1}{s \times 10^{-6}}}{10^{6}}$
 $G_{c}(s) = \frac{1 + 0.1s}{s}$
02. Ans: (c)
Sol: CE $\Rightarrow 1 + G_{c}(s) G_{p}(s) = 0$
 $= 1 + \frac{1 + 0.1s}{s} \times \frac{1}{(s + 1)(1 + 0.1s)}$
 $= 1 + \frac{1 + 0.1s}{s(s + 1)(1 + 0.1s)} = 0$
 $\Rightarrow s^{2} + s + 1 = 0 \Rightarrow \omega_{n} = 1,$
 $\left[\frac{-\frac{5\pi}{\sqrt{1-\xi^{2}}}\right]_{\xi=0.5} = 0.163$
 $M_{p} = 16.3\%$
03. Ans: (b)
Sol: T.F = $\frac{k(1 + 0.3s)}{1 + 0.17s}$
T = 0.17, aT = 0.3 $\Rightarrow a = \frac{0.3}{0.17}$
C = 1 μ F
T = $\frac{R_{1}R_{2}}{R_{1} + R_{2}}$ C, $a = \frac{R_{1} + R_{2}}{R_{2}}$
 $\frac{R_{1}R_{2}}{R_{1} + R_{2}} = \frac{0.17}{1 \times 10^{-6}} = 170000$
 $\frac{R_{1} + R_{2}}{R_{2}} = 1.764$
aT = R_{1} C
 $R_{1} = \frac{aT}{C} = \frac{0.3}{C} = (0.3)(10^{6})$
India's Best Online Coaching Platform for GAT

 $= 300 \text{ k}\Omega$ Bv $300 \text{ k} + \text{R}_2 - 1.76 \text{ R}_2 = 0$ $R_2 = \frac{300}{0.70} = 394.736$ $=400 \text{ k}\Omega$

Ans: (d)

I: PD controller improves transient stability and PI controller improves steady state stability. PID controller combines the advantages of the above two controllers.

fol: For
$$K_I = 0 \Rightarrow$$

$$\frac{C(s)}{R(s)} = \frac{(K_P + K_D s)}{s(s+1) + (K_P + K_D s)}$$

$$= \frac{K_P + K_D s}{s^2 + (1 + K_D)s + K_P}$$

$$\omega_n = \sqrt{K_P}$$

$$2\xi\omega_n = 1 + K_D$$

$$\Rightarrow 2(0.9) \sqrt{K_P} = 1 + K_D$$

$$\Rightarrow 1.8 \sqrt{K_P} = 1 + K_D \qquad \dots \dots (1)$$
Dominant time constant $\frac{1}{\xi\omega_n} = 1$

$$\Rightarrow \omega_{n} = \frac{1}{0.9} = 1.111$$
$$K_{P} = \omega_{n}^{2} = 1.11^{2}$$
$$= 1.234$$

From eq. (1),

$$\Rightarrow 1.8 \times \frac{1}{0.9} = 1 + K_{D}$$

$$\Rightarrow K_{D} = 1$$

Ans: (b) & (d) • I: Both PD and lead controller improve transient response of the system.

E, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams C online Enjoy a smooth online learning experience in various languages at your convenience

State Space Analysis

01. Ans: (a)

Sol: TF =
$$\frac{1}{s^2 + 5s + 6}$$

= $\frac{1}{(s+2)(s+3)}$
= $\frac{1}{s+2} + \frac{-1}{s+3}$
 $\therefore A = \begin{bmatrix} -2 & 0 \\ 0 & -3 \end{bmatrix} \quad B = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$
C = $\begin{bmatrix} 1 & 1 \end{bmatrix}$

02. Ans: (c)

Sol: Given problem is Controllable canonical form.

(or)

$$TF = C[sI - A]^{-1}B + D$$

= [6 5 1] $\begin{bmatrix} s & 1 & 0 \\ 0 & s & 1 \\ -5 & -3 & s+6 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix}$
= $\frac{3s^2 + 15s + 18}{s^3 + 6s^2 + 3s + 5}$

03. Ans: (d)

Sol: $\frac{d^{2}y}{dt^{2}} + \frac{3dy}{dt} + 2y = u(t)$ $2^{nd} \text{ order system hence two state variables}$ are chosen $\text{Let } x_{1}(t), x_{2}(t) \text{ are the state variables}$ CCF - SSR $\text{Let } x_{1}(t) = y(t) \dots \dots \dots (1)$ $x_{2}(t) = \dot{y}(t) \dots \dots (2)$ Differentiating (1)

$$\dot{x}_{1}(t) = \dot{y}(t) = x_{2}(t) \dots (3)$$

$$\dot{x}_{2}(t) = \ddot{y}(t) = u(t) - 3y^{1}(t) - 2y(t)$$

$$= u(t) - 3x_{2}(t) - 2x_{1}(t) \dots (4)$$

$$\begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$

$$A \qquad B$$

From equation 1. The output equation in matrix form

$$\mathbf{y}(\mathbf{t}) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{bmatrix}, \mathbf{D} = \mathbf{0}$$

04. Ans: (b)
Sol: OCF - SSR
$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & -2 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

05. Ans: (c)

Sol: Normal form - SSR

$$TF = \frac{Y(s)}{G(s)} = \frac{1}{s^2 + 3s + 2} = \frac{1}{(s+1)(s+2)}$$

⇒ Diagonal canonical form
The eigen values are distinct i.e., -1 & -2.
∴ Corresponding normal form is called as
diagonal canonical form
DCF - SSR

$$\frac{Y(s)}{U(s)} = \frac{b_1}{s+1} + \frac{b_2}{s+2}$$

$$b_1 = 1, b_2 = -1$$

Engineering Publications		32	Control Systems
controllable and 11. Ans: (c) Sol: $\frac{Y(s)}{U(s)} = \frac{b_1 s^2 + b_1 s^2}{s^3 + a_1 s}$ at node \dot{x}_1 $\dot{x}_1 = -a_1 x_1 - a_2 x_1$ at $\dot{x}_2 = x_1 \& \dot{x}_1$ $\therefore \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -a_1 \\ 1 \\ 0 \end{bmatrix}$ 12. Sol: The given state $\dot{X} = X_2$ $\dot{X}_2 = X_3 - u_1$ $\dot{X}_3 = -2X_2 - 3$ and output equ $Y_1 = X_1 + 3X_2$ $Y_2 = X_2$ $\dot{x}_2 = X_2$	Servable) Gilberts test the system is d observable. $\frac{-b_2s + b_3}{2^2 + a_2s + a_3}$ $x_2 - a_3 x_3$ $a_3 = x_2$ $-a_2 - a_3$ $0 0$ $1 0$ $a_2 - a_3$ $0 0$ $1 0$ $a_3 + u_2$ $a_4 = a_4$ $a_5 = a_5$	C	The given state space equations in matrix for $\begin{bmatrix} \dot{x} \\ \dot{x} \\ \dot{x} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix}_{s_{s}} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}_{s_{s}} + \begin{bmatrix} 0 & 0 \\ -1 & 0 \\ 0 & 1 \end{bmatrix}_{s_{s}} \begin{bmatrix} u_{1} \\ u_{2} \end{bmatrix}_{s_{s}}$ $\begin{bmatrix} Y \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \end{bmatrix}_{s_{s}} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}_{s_{s}} + \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}_{s_{s}} \begin{bmatrix} u_{1} \\ u_{2} \end{bmatrix}_{s_{s}}$ Where A: State matrix B: Input matrix C: Output matrix D: Transition matrix Characteristic equation $ sI - A = 0$ $\begin{bmatrix} s & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & s \end{bmatrix} - \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix}$ $\Rightarrow s[s(s+3)+2]+1(0) = 0$ $\Rightarrow s[s(s+3)+2]+1(0) = 0$ $\Rightarrow s[s^{2}+3s+2] = 0$ $\Rightarrow s(s+1)(s+2) = 0$ The roots are 0, -1, -2. 13. Ans: (a) & (b) Sol: (a) \rightarrow state model is in controllable canonical form (b) \rightarrow state model is in observable canonical form
A ace online	India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience		