GATE I PSUs

CONTROL SYSTEMS

Text Book:

Theory with worked out Examples and Practice Questions

1. Ans: (c)

Sol: $2 \frac{\mathrm{~d}^{2} \mathrm{y}(\mathrm{t})}{\mathrm{dt}^{2}}+3 \frac{\mathrm{dy}(\mathrm{t})}{\mathrm{dt}}+4 \mathrm{y}(\mathrm{t})=\mathrm{r}(\mathrm{t})+2 \mathrm{r}(\mathrm{t}-1)$
Apply LT on both sides
$2 \mathrm{~s}^{2} \mathrm{Y}(\mathrm{s})+3 \mathrm{sY}(\mathrm{s})+4 \mathrm{Y}(\mathrm{s})=\mathrm{R}(\mathrm{s})+2 \mathrm{e}^{-\mathrm{s}} \mathrm{R}(\mathrm{s})$
$\mathrm{Y}(\mathrm{s})\left(2 \mathrm{~s}^{2}+3 \mathrm{~s}+4\right)=\mathrm{R}(\mathrm{s})\left(1+2 \mathrm{e}^{-\mathrm{s}}\right)$
$\frac{\mathrm{Y}(\mathrm{s})}{\mathrm{R}(\mathrm{s})}=\frac{1+2 \mathrm{e}^{-\mathrm{s}}}{2 \mathrm{~s}^{2}+3 \mathrm{~s}+4}$
02. Ans: (b)

Sol: I.R $=2 . \mathrm{e}^{-2 t} u(\mathrm{t})$
Output response $c(t)=\left(1-e^{-2 t}\right) u(t)$
Input response $\mathrm{r}(\mathrm{t})=$?
$\mathrm{T} . \mathrm{F}=\frac{\mathrm{C}(\mathrm{s})}{\mathrm{R}(\mathrm{s})}$
$\mathrm{T} \cdot \mathrm{F}=\mathrm{L}(\mathrm{I} \cdot \mathrm{R})=\frac{2}{\mathrm{~s}+2}$
$R(s)=\frac{C(s)}{T \cdot F}=\frac{\frac{1}{s}-\frac{1}{s+2}}{\frac{2}{s+2}}=\frac{1}{s}$
$R(s)=\frac{1}{s}$
$r(t)=u(t)$
03. Ans: (b)

Sol: Unit impulse response of unit-feedback control system is given

$$
\begin{aligned}
\mathrm{c}(\mathrm{t}) & =\mathrm{t} \cdot \mathrm{e}^{-\mathrm{t}} \\
\mathrm{~T} \cdot \mathrm{~F} & =\mathrm{L}(\mathrm{I} \cdot \mathrm{R}) \\
& =\frac{1}{(\mathrm{~s}+1)^{2}}
\end{aligned}
$$

Open Loop T.F $=\frac{\text { Closed Loop T.F }}{1-\text { Closed Loop T.F }}$

$$
=\frac{\frac{1}{(\mathrm{~s}+1)^{2}}}{1-\frac{1}{(\mathrm{~s}+1)^{2}}}=\frac{1}{\mathrm{~s}^{2}+2 \mathrm{~s}}
$$

4. Ans: (a)

Sol: G changes by 10%
$\Rightarrow \frac{\Delta \mathrm{G}}{\mathrm{G}} \times 100=10 \%$
$\mathrm{C}_{1}=10 \%$
[\because open loop] whose sensitivity is 100%]
$\% \mathrm{G}$ change $=10 \%$
$\frac{\% \text { of change in } \mathrm{M}}{\% \text { of change in } \mathrm{G}}=\frac{1}{1+\mathrm{GH}}$
$\%$ of change in $M=\frac{10 \%}{1+(10) 1}=1 \%$
$\%$ change in C_{2} by 1%
05.

Sol:
(i) $\mathrm{M}=\mathrm{C} / \mathrm{R}$
$\frac{\mathrm{C}}{\mathrm{R}}=\mathrm{M}=\frac{\mathrm{GK}}{1+\mathrm{GH}}$
$S_{K}^{M}=\frac{\partial M}{\partial K} \times \frac{K}{M}=1$
$[\because \mathrm{K}$ is not in the loop \Rightarrow sensitivity is 100%]
(ii) $\mathrm{S}_{\mathrm{H}}^{\mathrm{M}}=\frac{\partial \mathrm{M}}{\partial \mathrm{H}} \times \frac{\mathrm{H}}{\mathrm{M}}=\frac{\partial}{\partial \mathrm{H}}\left(\frac{\mathrm{GK}}{1+\mathrm{GH}}\right) \frac{\mathrm{H}}{\mathrm{M}}$

$$
=\left(\frac{\mathrm{GK}(-\mathrm{G})}{(1+\mathrm{GH})^{2}}\right)\left[\frac{\mathrm{H}}{\frac{\mathrm{GK}}{1+\mathrm{GH}}}\right]
$$

$$
\mathrm{S}_{\mathrm{H}}^{\mathrm{M}}=\frac{-\mathrm{GH}}{(1+\mathrm{GH})}
$$

6.

Sol: Given data
$\mathrm{G}=2 \times 10^{3}, \partial \mathrm{G}=100$
$\%$ change in $\mathrm{G}=\frac{\partial \mathrm{G}}{\mathrm{G}} \times 100=5 \%$
$\%$ change in $\mathrm{M}=0.5 \%$
$\frac{\% \text { of change in } M}{\% \text { of change in } G}=\frac{1}{1+G H}$
$\frac{0.5 \%}{5 \%}=\frac{1}{1+2 \times 10^{3} \mathrm{H}}$
$1+2 \times 10^{3} \mathrm{H}=10$
$\mathrm{H}=4.5 \times 10^{-3}$
08. Ans: (d)

Sol: Introducing negative feedback in an amplifier results, increases bandwidth.
09. Ans: (a), (b) \& (c)

Sol: Negative feedback decreases the gain, increase the bandwidth, reduce sensitivity to parameter variation and more accurate.
10. Ans: (b), (c) \& (d)

Sol: Using the transfer function response due to initial conditions [zero input response] can not be obtained.
$\mathrm{L}^{-1}[\mathrm{TF}]=\mathrm{IR}$ i.e., inverse laplace transform of the transfer function is the impulse response [IR] of the system.

07. Ans: (b)

Sol: $K=\frac{\text { output }}{\text { input }}=\frac{c(t)}{r(t)}=\frac{\mathrm{mm}}{{ }^{0} \mathrm{c}}$

Chapter
 Signal Flow Graphs \& Block Diagrams

1. Ans: (d)

Sol: No. of loops $=3$
Loop1: - $\mathrm{G}_{1} \mathrm{G}_{3} \mathrm{G}_{4} \mathrm{H}_{1} \mathrm{H}_{2} \mathrm{H}_{3}$
Loop2: - $\mathrm{G}_{3} \mathrm{G}_{4} \mathrm{H}_{1} \mathrm{H}_{2}$
Loop3: - $\mathrm{G}_{4} \mathrm{H}_{1}$
No. of Forward paths $=3$
Forward Path1: $\mathrm{G}_{1} \mathrm{G}_{3} \mathrm{G}_{4}$
Forward Path 2: $\mathrm{G}_{2} \mathrm{G}_{3} \mathrm{G}_{4}$
Forward Path 3: $\mathrm{G}_{2} \mathrm{G}_{4}$

$$
=\frac{\mathrm{G}_{1} \mathrm{G}_{3} \mathrm{G}_{4}+\mathrm{G}_{2} \mathrm{G}_{3} \mathrm{G}_{4}+\mathrm{G}_{2} \mathrm{G}_{4}}{1+\mathrm{G}_{1} \mathrm{G}_{3} \mathrm{G}_{4} \mathrm{H}_{1} \mathrm{H}_{2} \mathrm{H}_{3}+\mathrm{G}_{3} \mathrm{G}_{4} \mathrm{H}_{1} \mathrm{H}_{2}+\mathrm{G}_{4} \mathrm{H}_{1}}
$$

2. Ans: (a)

Sol: Number of forward paths $=2$
Number of loops $=3$

$$
\begin{aligned}
\frac{\mathrm{Y}(\mathrm{~s})}{\mathrm{R}(\mathrm{~s})} & \left.=\frac{\frac{1}{-\times-x-1}[1-0]+\frac{1}{\mathrm{~s}}}{1-\left[\frac{1}{-} \times(-1)\left(\frac{1}{\mathrm{~s}} \mathrm{~s}\right.\right.} \mathrm{s}\right)(-1)+\frac{1}{\mathrm{~s}} \times \frac{1}{\mathrm{~s}}(-1)+\left(\frac{1}{\left.\left.-\times-\frac{1}{\mathrm{~s}}-(-1)\right)\right]}\right. \\
& =\frac{\frac{1}{\mathrm{~s}^{3}}+\frac{1}{\mathrm{~s}}}{1-\left[\frac{1}{\mathrm{~s}^{2}}-\frac{1}{\mathrm{~s}^{2}}-\frac{1}{\mathrm{~s}^{2}}\right]}=\frac{\frac{1+\mathrm{s}^{2}}{\mathrm{~s}^{3}}}{1+\frac{1}{\mathrm{~s}^{2}}}=\frac{\frac{1+\mathrm{s}^{2}}{\mathrm{~s}^{3}}}{\frac{\mathrm{~s}^{2}+1}{\mathrm{~s}^{2}}} \\
= & \frac{1+\mathrm{s}^{2}}{\mathrm{~s}} \times \frac{1}{\mathrm{~s}^{2}+1}=\frac{1}{\mathrm{~s}}
\end{aligned}
$$

3.

Sol: Number of forward paths = 2
Number of loops $=5$
Two non touching loops $=4$

$$
\begin{aligned}
\mathrm{TF} & =\frac{24[1-(-0.5)]+10[1-(-3)]}{1-[-24-3-4+(5 \times 2 \times(-1)+(-0.5))]+[30+1.5+2]+\left(\left(\frac{1}{2}\right) \times(-24)\right)} \\
& =\frac{76}{88}=\frac{19}{22}
\end{aligned}
$$

4.

Sol: Number of forward paths $=2$
Number of loops $=5$
T.F $=\frac{\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3}+\mathrm{G}_{1} \mathrm{G}_{4}}{1+\mathrm{G}_{2} \mathrm{G}_{3} \mathrm{H}_{2}+\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{H}_{1}+\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3}+\mathrm{G}_{4} \mathrm{H}_{2}+\mathrm{G}_{1} \mathrm{G}_{4}}$
05. Ans: (c)

Sol: From the network
$\mathrm{V}_{0}(\mathrm{~s})=\frac{1}{\mathrm{sC}} \mathrm{I}(\mathrm{s})$
$-V_{i}(s)+R I(s)+V_{0}(s)=0$
$\mathrm{I}(\mathrm{s})=\frac{1}{\mathrm{R}} \mathrm{V}_{\mathrm{i}}(\mathrm{s})+\left(\frac{-1}{\mathrm{R}}\right) \mathrm{V}_{\mathrm{o}}(\mathrm{s})$.
From SFG
$\mathrm{V}_{\mathrm{o}}(\mathrm{s})=\mathrm{x} . \mathrm{I}(\mathrm{s})$ \qquad
$\mathrm{I}(\mathrm{s})=\frac{1}{\mathrm{R}} \mathrm{V}_{\mathrm{i}}(\mathrm{s})+\mathrm{y}_{\mathrm{o}}(\mathrm{s})$
From equ(1) and (3)

$$
\mathrm{x}=\frac{1}{\mathrm{sC}}
$$

From equ(2) and (4)

$$
y=-\frac{1}{R}
$$

6. Ans: (a)

Sol: Use gain formula

$$
\begin{aligned}
\text { transfer function } & =\frac{G(s)}{1-\left(G(s) \frac{1}{G(s)}+G(s)\right)} \\
& =\frac{G(s)}{1-1-G(s)}=-1
\end{aligned}
$$

7.

Sol:

08.

Sol: Apply Mason's Gain formula
$M=\frac{\mathrm{Y}_{\text {out }}}{\mathrm{Y}_{\text {in }}}=\frac{\sum_{\mathrm{k}=1}^{\mathrm{N}} \mathrm{M}_{\mathrm{k}} \Delta_{\mathrm{k}}}{\Delta}$
No. of forward paths $=2$
First forward path gain $=\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3} \mathrm{G}_{4}$
Second forward path gain $=\mathrm{G}_{5} \mathrm{G}_{6} \mathrm{G}_{7} \mathrm{G}_{8}$
No. of loops $=4$
First loop gain $=-\mathrm{G}_{2} \mathrm{H}_{2}$
Second loop gain $=-\mathrm{G}_{6} \mathrm{H}_{6}$
Third loop gain $=-\mathrm{G}_{3} \mathrm{H}_{3}$
Fourth loop gain $=-\mathrm{G}_{7} \mathrm{H}_{7}$

Non touching loops $=4$
Loop gains $\quad \rightarrow \mathrm{G}_{2} \mathrm{H}_{2} \mathrm{G}_{6} \mathrm{H}_{6}$
$\rightarrow \mathrm{G}_{2} \mathrm{H}_{2} \mathrm{G}_{7} \mathrm{H}_{7}$
$\rightarrow \mathrm{G}_{6} \mathrm{H}_{6} \mathrm{G}_{7} \mathrm{H}_{7}$
$\rightarrow \mathrm{G}_{2} \mathrm{H}_{2} \mathrm{G}_{3} \mathrm{H}_{3}$
Transfer function $=$

$$
\begin{gathered}
G_{1} G_{2} G_{3} G_{4}\left(1+G_{6} H_{6}+G_{7} H_{7}\right)+G_{5} G_{6} G_{7} G_{8} \\
1+G_{2} H_{2}+G_{3} \cdot H_{3}+G_{6} H_{6}+G_{7} H_{7}+G_{2} H_{2} H_{2} G_{6} H_{6}+ \\
G_{2} H_{2} G_{7} H_{7}+G_{3} H_{3} G_{6} H_{6}+G_{3} H_{3} G_{7} H_{7}
\end{gathered}
$$

9. Ans: (a), (b) \& (d)

Sol: It is a LTIS, hence $\frac{\mathrm{C}}{\mathrm{R}}$ can be found
Number of forward paths $=1$
Number of loops $=2$
Non touching pair $=1$

$$
\therefore \frac{\mathrm{C}}{\mathrm{R}}=\frac{(1)}{1-[-1-1]+(-1)(-1)}
$$

$$
\frac{\mathrm{C}}{\mathrm{R}}=\frac{1}{4}=0.25
$$

10. Ans: (a), (b) \& (d)

$$
\text { Sol: } \begin{aligned}
\Rightarrow & \frac{Y(s)}{X(s)}=\frac{\frac{1}{(s+1)(s+2)}}{1+\frac{1}{(s+1)(s+2)}}=\frac{1}{s^{2}+3 s+3} \\
& \Rightarrow \frac{Y(s)}{N(s)}=\frac{1-G_{\mathrm{ff}}(\mathrm{~s})\left(\frac{1}{(\mathrm{~s}+1)(\mathrm{s}+2)}\right)}{1+\frac{1}{(\mathrm{~s}+1)(\mathrm{s}+2)}}=0
\end{aligned}
$$

[Output due to noise is zero]

$$
\mathrm{G}_{\mathrm{ff}}(\mathrm{~s})=(\mathrm{s}+1)(\mathrm{s}+2)
$$

\Rightarrow C.E: $\mathrm{s}^{2}+3 \mathrm{~s}+3=0$
\Rightarrow Poles locations are $(-3 / 2 \pm \mathrm{j} 0.866)$
\Rightarrow System is stable

Chapter 3 Time Response Analysis

1. Ans: (a)

Sol: $\frac{\mathrm{C}(\mathrm{s})}{\mathrm{R}(\mathrm{s})}=\frac{1}{1+\mathrm{sT}}, \mathrm{R}(\mathrm{s})=\frac{8}{\mathrm{~s}}$
$\mathrm{C}(\mathrm{s})=\frac{8}{\mathrm{~s}(1+\mathrm{sT})} \Rightarrow \mathrm{c}(\mathrm{t})=8\left(1-\mathrm{e}^{-\mathrm{t} / \mathrm{T}}\right)$
$3.6=8\left(1-e^{\frac{-0.32}{\mathrm{~T}}}\right)$
$0.45=1-e^{\frac{-0.32}{T}}$
$0.55=e^{\frac{-0.32}{\mathrm{~T}}}$
$-0.59=\frac{-0.32}{\mathrm{~T}}$
$\mathrm{T}=0.535 \mathrm{sec}$
02. Ans: (c)

Sol: $\cos \phi=\xi$
$\cos 60=0.5$
$\cos 45=0.707$
Poles left side $0.5 \leq \xi \leq 0.707$
Poles right side $-0.707 \leq \xi \leq-0.5$
$\therefore 0.5 \leq|\xi| \leq 0.707$
$3 \mathrm{rad} / \mathrm{s} \leq \omega_{\mathrm{n}} \leq 5 \mathrm{rad} / \mathrm{s}$

03. Ans: (c)

Sol: For R-L-C circuit:
$\mathrm{T} . \mathrm{F}=\frac{\mathrm{V}_{\mathrm{o}}(\mathrm{s})}{\mathrm{V}_{\mathrm{i}}(\mathrm{s})}$

$$
\begin{aligned}
\mathrm{V}_{\mathrm{o}}(\mathrm{~s}) & =\frac{1}{\mathrm{Cs}} \mathrm{I}(\mathrm{~s}) \\
& =\frac{1}{\mathrm{Cs}} \frac{\mathrm{~V}_{\mathrm{i}}(\mathrm{~s})}{\mathrm{R}+\mathrm{Ls}+\frac{1}{\mathrm{Cs}}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{T} . \mathrm{F}=\frac{\mathrm{V}_{\mathrm{o}}(\mathrm{~s})}{\mathrm{V}_{\mathrm{i}}(\mathrm{~s})}=\frac{1}{\mathrm{RCs}+\mathrm{LCs}^{2}+1} \\
& =\frac{\frac{1}{\mathrm{LC}}}{\mathrm{~s}^{2}+\frac{\mathrm{R}}{\mathrm{~L}} \mathrm{~s}+\frac{1}{\mathrm{LC}}} \\
& \begin{aligned}
& \mathrm{s}^{2}+\frac{\mathrm{R}}{\mathrm{~L}} \mathrm{~s}+\frac{1}{\mathrm{LC}}=0 \\
& \mathrm{~s}^{2}+2 \xi \omega_{\mathrm{n}} \mathrm{~s}+\omega_{\mathrm{n}}^{2}=0 \\
& \begin{aligned}
\omega_{\mathrm{n}} & =\frac{1}{\sqrt{\mathrm{LC}}} \quad 2 \xi \omega_{\mathrm{n}}=\frac{\mathrm{R}}{\mathrm{~L}} \\
\xi= & \frac{\mathrm{R}}{2} \sqrt{\frac{\mathrm{C}}{\mathrm{~L}}} \\
\xi= & \frac{10}{2} \sqrt{\frac{10 \times 10^{-6}}{1 \times 10^{-3}}}=0.5
\end{aligned} \\
& \mathrm{M} . \mathrm{P}=\mathrm{e} \\
&=16.3 \% \\
& \sqrt{1-\xi^{2}}
\end{aligned} \\
& =16 \%
\end{aligned}
$$

4. Ans: (b)

Sol: $\mathrm{TF}=\frac{8 / \mathrm{s}(\mathrm{s}+2)}{1-\left(\frac{-8 \mathrm{as}}{\mathrm{s}(\mathrm{s}+2)}-\frac{8}{\mathrm{~s}(\mathrm{~s}+2)}\right)}$

$$
\begin{aligned}
& =\frac{8}{\mathrm{~s}(\mathrm{~s}+2)+8 \mathrm{as}+8} \\
& =\frac{8}{s^{2}+2 s+8 a s+8} \\
& =\frac{8}{s^{2}+(2+8 a) s+8} \\
\omega_{\mathrm{n}}^{2} & =8 \Rightarrow \omega_{\mathrm{n}}=2 \sqrt{2} \\
2 \xi \omega_{\mathrm{n}} & =2+8 \mathrm{a}
\end{aligned}
$$

$$
\begin{aligned}
& \xi=\frac{1+4 a}{2 \sqrt{2}} \\
& \frac{1}{\sqrt{2}}=\frac{1+4 a}{2 \sqrt{2}} \Rightarrow \mathrm{a}=0.25
\end{aligned}
$$

05. Ans: 4 sec

Sol: T.F $=\frac{100}{(s+1)(s+100)}=\frac{100}{s^{2}+101 s+100}$

$$
\begin{aligned}
& \omega_{\mathrm{n}}^{2}=100 \\
& \omega_{\mathrm{n}}=10 \\
& 2 \xi \omega_{\mathrm{n}}=101 \\
& \xi=\frac{101}{20}
\end{aligned}
$$

$\xi>1 \rightarrow$ system is over damped i.e., roots are real \& unequal.
Using dominate pole concept,
$T . F=\frac{100}{100(s+1)}=\frac{1}{s+1}$, Here $\tau=1 \mathrm{sec}$
\therefore Setting time for 2% criterion $=4 \tau$

$$
=4 \mathrm{sec}
$$

6.

Sol: $\mathrm{M}_{\mathrm{p}}=\frac{\mathrm{C}\left(\mathrm{t}_{\mathrm{p}}\right)-\mathrm{C}(\infty)}{\mathrm{C}(\infty)}$

$$
\begin{aligned}
& =\frac{1.254-1.04}{1.04}=0.2 \\
& \xi=\sqrt{\frac{\left(\ln \mathrm{M}_{\mathrm{P}}\right)^{2}}{\left(\ln \mathrm{M}_{\mathrm{P}}\right)^{2}+\pi^{2}}} \\
& \mathrm{M}_{\mathrm{p}}=0.2 ; \xi=0.46
\end{aligned}
$$

7. Ans: (d)

Sol: Given data: $\omega_{\mathrm{n}}=2, \zeta=0.5$
Steady state gain $=1$

OLTF $=\frac{\mathrm{K}_{1}}{\mathrm{~s}^{2}+\mathrm{as}+2}$ and $\mathrm{H}(\mathrm{s})=\mathrm{K}_{2}$
CLTF $=\frac{G(s)}{1+G(s)}$
$\frac{\mathrm{C}(\mathrm{s})}{\mathrm{R}(\mathrm{s})}=\frac{\mathrm{K}_{1}}{\mathrm{~s}^{2}+\mathrm{as}+2+\mathrm{K}_{1} \mathrm{~K}_{2}}$
DC or steady state gain from the TF
$\frac{\mathrm{K}_{1}}{2+\mathrm{K}_{1} \mathrm{~K}_{2}}=1$
$\mathrm{K}_{1}\left(1-\mathrm{K}_{2}\right)=2$
CE is s ${ }^{2}+\mathrm{as}+2+\mathrm{K}_{1} \mathrm{~K}_{2}=0$
$\omega_{\mathrm{n}}=\sqrt{2+\mathrm{K}_{1} \mathrm{~K}_{2}}=2$
$4=\left(2+K_{1} K_{2}\right)$
$\mathrm{K}_{1} \mathrm{~K}_{2}=2$
Solving equations (1) \& (2) we get
$\mathrm{K}_{1}=4, \quad \mathrm{~K}_{2}=0.5$
$2 \zeta \omega_{n}=a$
$2 \times \frac{1}{2} \times 2=a$
$\mathrm{a}=2$
08. Ans: (c)

Sol: If $\mathrm{R} \uparrow$ damping \uparrow
$\Rightarrow \xi=\frac{R}{2} \sqrt{\frac{\mathrm{C}}{\mathrm{L}}}$
(i) If $\mathrm{R} \uparrow$, steady state voltage across C will be reduced (wrong)
(Since steady state value does not depend on ξ)
If $\xi \uparrow, C(\infty)=$ remain same
(ii) If $\xi \uparrow$, $\omega_{\mathrm{d}} \downarrow\left(\omega_{\mathrm{d}}=\omega_{\mathrm{n}} \sqrt{1-\xi^{2}}\right)$
(iii) If $\xi \downarrow, \mathrm{t}_{\mathrm{s}} \uparrow \Rightarrow 3^{\text {rd }}$

Statement is false
(iv) If $\xi=0$

True

$\Rightarrow 2$ and 4 are correct
09. Ans: A-T, B-S,C-P, D-R,E-Q

Sol:
(A)If the poles are real \& left side of splane, the step response approaches a steady state value without oscillations.
(B) If the poles are complex $\&$ left side of s plane, the step response approaches a steady state value with the damped oscillations.
(C) If poles are non-repeated on the $\mathrm{j} \omega$ axis, the step response will have fixed amplitude oscillations.
(D) If the poles are complex \& right side of s-plane, response goes to ' ∞ ' with damped oscillations.
(E) If the poles are real \& right side of splane, the step response goes to ' ∞ ' without any oscillations.
10.

Sol: (i) Unstable system
\therefore error $=\infty$
(ii) $G(s)=\frac{10(s+1)}{s^{2}}$

Step $\rightarrow R(s)=\frac{1}{s}$
$\mathrm{k}_{\mathrm{p}}=\infty$
$\mathrm{e}_{\mathrm{ss}}=\frac{\mathrm{A}}{1+\mathrm{k}_{\mathrm{p}}}=\frac{1}{1+\infty}=0$
Parabolic $\Rightarrow \mathrm{k}_{\mathrm{a}}=10$
$\mathrm{e}_{\mathrm{ss}}=\frac{1}{10}=0.1$
11.

Sol: $G(s)=10 / s^{2}$ (marginally stable system)
\therefore Error can't be determined
12.

Sol: $\mathrm{e}_{\mathrm{ss}}=\frac{1}{11}, \mathrm{R}(\mathrm{s})=\frac{1}{\mathrm{~s}}$
$\mathrm{e}_{\mathrm{ss}}=\frac{\mathrm{A}}{1+\mathrm{k}_{\mathrm{p}}}=\frac{1}{1+\mathrm{k}_{\mathrm{p}}}=\frac{1}{11}=\frac{1}{1+10}$
$\mathrm{k}_{\mathrm{p}}=\operatorname{Lt}_{\mathrm{s} \rightarrow 0} \mathrm{G}(\mathrm{s})$
$10=\operatorname{LtG}_{\mathrm{s} \rightarrow 0} \mathrm{G}(\mathrm{s})$
$\mathrm{k}=10$
$R(s)=\frac{1}{s^{2}}($ ramp $)$
$\mathrm{e}_{\mathrm{ss}}=\frac{\mathrm{A}}{\mathrm{k}_{\mathrm{v}}}=\frac{1}{\mathrm{k}_{\mathrm{v}}}=\frac{1}{10}$
(System is increased by 1)
$\Rightarrow \mathrm{e}_{\text {ss }}=0.1$

13. Ans: (a)

Sol: $\mathrm{T}(\mathrm{s})=\frac{(\mathrm{s}-2)}{(\mathrm{s}-1)(\mathrm{s}+2)^{2}}$ (unstable system)
14. Ans: (b)

Sol: Given data: $r(t)=400 t u(t) r a d / s e c$
Steady state error $=10^{\circ}$
i.e., $\mathrm{e}_{\mathrm{ss}}=\frac{\pi}{180^{\circ}}\left(10^{\circ}\right)$ radians
$\mathrm{G}(\mathrm{s})=\frac{20 \mathrm{~K}}{\mathrm{~s}(1+0.1 \mathrm{~s})}$ and $\mathrm{H}(\mathrm{s})=1$
$r(t)=400 t u(t) \Rightarrow 400 / s^{2}$
$\operatorname{Error}\left(\mathrm{e}_{\mathrm{ss}}\right)=\frac{\mathrm{A}}{\mathrm{K}_{\mathrm{V}}}=\frac{400}{\mathrm{~K}_{\mathrm{V}}}$
$K_{V}=\operatorname{Lims}_{s \rightarrow 0} \mathrm{G}(\mathrm{s})$
$K_{V}=\operatorname{Lim}_{s \rightarrow 0} \frac{20 K}{s(1+0.1 s)}$
$K_{V}=20 \mathrm{~K}$
$e_{\text {ss }}=\frac{400}{20 K}$
$\mathrm{e}_{\mathrm{ss}}=\frac{20}{\mathrm{~K}}=\frac{\pi}{18}$
$K=114.5$
15. Ans: (d)

Sol: $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dt}^{2}}=-\mathrm{e}(\mathrm{t})$
$s^{2} Y(s)=-E(s)$
$\mathrm{x}(\mathrm{t})=\mathrm{tu}(\mathrm{t}) \Rightarrow \mathrm{X}(\mathrm{s})=\frac{1}{\mathrm{~s}^{2}}$

$Y(s)=\frac{-1}{s^{2}} E(s)$
$\frac{Y(s)}{E(s)}=\frac{-1}{s^{2}}$
$\frac{E(s)}{X(s)}=\frac{-1}{1+\frac{1}{s^{2}}}$
$E(s)=\frac{-s^{2}}{1+s^{2}} X(s)$
$=\frac{-\mathrm{s}^{2}}{1+\mathrm{s}^{2}} \times \frac{1}{\mathrm{~s}^{2}}=\frac{-1}{1+\mathrm{s}^{2}}$
$=L^{-1}\left[\frac{-1}{1+\mathrm{s}^{2}}\right]=-\sin \mathrm{t}$
16. Ans: (a)

Sol: $\mathrm{e}_{\mathrm{ss}}=0.1$ for step input
For pulse input $=10$
time $=1 \mathrm{sec}$
error is function of input
$\mathrm{t} \rightarrow \infty$ input $=0$
\therefore Error $=$ zero
17. Ans: (c)

Sol: $\frac{C(s)}{R(s)}=\frac{100}{(s+1)(s+5)}$ $1+\frac{100 \times 0.2}{(s+1)(s+5)}$
$=\frac{100}{(s+1)(s+5)+20}$
$=\frac{100}{s^{2}+6 s+5+20}$
$=\frac{100}{s^{2}+6 s+25}$
$\omega_{\mathrm{n}}^{2}=25, \omega_{\mathrm{n}}=5$
$2 \xi \omega_{\mathrm{n}}=6$
$\xi=\frac{6}{10}=\frac{3}{5}$
$\omega_{\mathrm{d}}=\omega_{\mathrm{n}} \sqrt{1-\xi^{2}}$
$=5 \sqrt{1-\left(\frac{3}{5}\right)^{2}}$
$=5 \times \frac{4}{5}=4 \mathrm{rad} / \mathrm{sec}$
18. Ans: (c)

Sol: $f(t)=\frac{M d^{2} x}{d t^{2}}+B \frac{d x}{d t}+K x(t)$
Applying Laplace transform on both sides, with zero initial conditions
$\mathrm{F}(\mathrm{s})=\mathrm{Ms}^{2} \mathrm{X}(\mathrm{s})+\mathrm{BsX}(\mathrm{s})+\mathrm{KX}(\mathrm{s})$
$\frac{\mathrm{X}(\mathrm{s})}{\mathrm{F}(\mathrm{s})}=\frac{1}{\mathrm{Ms}^{2}+\mathrm{Bs}+\mathrm{K}}$
Characteristic equation is $\mathrm{Ms}^{2}+\mathrm{Bs}+\mathrm{K}=0$

$$
s^{2}+\frac{B}{M} s+\frac{K}{M}=0
$$

Compare with $\mathrm{s}^{2}+2 \zeta \omega_{\mathrm{n}} \mathrm{s}+\omega_{\mathrm{n}}^{2}=0$
$2 \zeta \omega_{\mathrm{n}}=\frac{B}{M}$
$\xi=\frac{B}{2 \sqrt{\mathrm{MK}}} \quad \omega_{\mathrm{n}}=\sqrt{\frac{K}{\mathrm{M}}}$
Time constant $\mathrm{T}=\frac{1}{\zeta \omega_{\mathrm{n}}}$

$$
\begin{aligned}
& =\frac{1}{B} \times 2 \mathrm{M} \\
\mathrm{~T} & =\frac{2 \mathrm{M}}{\mathrm{~B}}
\end{aligned}
$$

Hence, statements (2 \& 3) are correct
19. Ans: (c)

Sol: type 1 system has a infinite positional error constant.
20. Ans: (a)

Sol: Given $G(s)=\frac{1}{s(1+s)(s+2)}, H(s)=1$.
It is type-I system
Positional error constant $k_{p}=\underset{s \rightarrow 0}{\operatorname{Lt}} G(s) H(s)$

$$
\begin{aligned}
\mathrm{k}_{\mathrm{p}} & =\operatorname{Lt}_{\mathrm{s} \rightarrow 0} \frac{1}{\mathrm{~s}(1+\mathrm{s})(\mathrm{s}+2)} \\
& =\infty
\end{aligned}
$$

Steady state error due to step input

$$
=\frac{1}{1+\mathrm{k}_{\mathrm{p}}}=0
$$

21.

Sol Open loop T/F G(s) $=\frac{A}{s(s+P)}$

$$
\begin{gathered}
\text { C.L } T / F=\frac{A}{\mathrm{~s}^{2}+\mathrm{sP}+\mathrm{A}} \\
\omega_{\mathrm{n}}=\sqrt{\mathrm{A}}
\end{gathered}
$$

Setting time $=4 / \xi \omega_{\mathrm{n}}=4$

$$
\begin{aligned}
& 2 \xi \omega_{\mathrm{n}}=\mathrm{P} \\
& \therefore \frac{4}{\mathrm{P} / 2}=4 \\
& \xi \omega_{\mathrm{n}}=\mathrm{P} / 2 \quad \Rightarrow \mathrm{P}=\frac{8}{4}=2 \\
& \mathrm{e}^{\frac{-\pi \xi}{\sqrt{1+\xi^{2}}}}=0.1 \Rightarrow \frac{\pi \xi}{\sqrt{1-\xi^{2}}}=\ln 10 \\
& =2.3 \\
& \Rightarrow \frac{\xi^{2}}{1-\xi^{2}}=0.5373 \\
& \Rightarrow 1.5373 \xi^{2}=0.5373 \\
& \xi=0.59 \\
& \xi \omega_{\mathrm{n}}=1 \\
& \Rightarrow \omega_{\mathrm{n}}=1.694 \Rightarrow \mathrm{~A}=\omega_{\mathrm{n}}^{2}=2.861
\end{aligned}
$$

22.

Sol:

$$
\begin{aligned}
& \begin{aligned}
\frac{C(s)}{R(s)} & =\frac{10}{s(s+0.8+10 K)+10} \\
& =\frac{10}{s^{2}+s(0.8+10 K) 10} \\
\omega_{n}= & \sqrt{10} \quad 2 \xi \omega_{n}=0.8+10 K
\end{aligned}
\end{aligned}
$$

$$
\begin{gathered}
\Rightarrow 2 \times \frac{1}{2} \times \sqrt{10}=0.8+10 \mathrm{~K} \\
\Rightarrow \mathrm{~K}=0.236 \\
\mathrm{t}_{\mathrm{r}}=\frac{\pi-\phi}{\omega_{\mathrm{d}}}=\frac{\pi-\cos ^{-1}(\xi)}{\omega_{\mathrm{n}} \sqrt{1-\xi^{2}}} \\
=\frac{\pi-\pi / 3}{2.88}=0.764 \mathrm{sec} \\
\mathrm{t}_{\mathrm{p}}=\frac{\pi}{\omega_{\mathrm{d}}}=1.147 \mathrm{sec} \\
\% \mathrm{Mp}=\mathrm{e}^{-\frac{\pi \xi}{\sqrt{1-\xi^{2}}}}=0.163 \times 100=16.3 \% \\
\mathrm{t}_{\mathrm{s}}(\text { for } 2 \%)=\frac{4}{\xi \omega_{\mathrm{n}}}=\frac{4}{0.5 \times \sqrt{10}}=2.52 \mathrm{sec}
\end{gathered}
$$

23. Ans: (a), (c) \& (d)

Sol: $\mathrm{CLTF} \Rightarrow \frac{\mathrm{C}(\mathrm{s})}{\mathrm{R}(\mathrm{s})}=\frac{3 \mathrm{k}}{2 \mathrm{~s}+1+3 \mathrm{k}}$
$\Rightarrow \mathrm{CL}$ pole $\mathrm{s}=-\left(\frac{1+3 \mathrm{k}}{2}\right)$
\Rightarrow time constant $\tau=\left(\frac{2}{1+3 \mathrm{k}}\right)$
If $\mathrm{k}=3 \Rightarrow \tau=0.2 \mathrm{sec}$
If $\mathrm{k}>3 \Rightarrow \tau<0.2 \mathrm{sec}$
If $\mathrm{k}=3 \Rightarrow \tau=0.2 \mathrm{sec} \Rightarrow B W=\frac{1}{\tau} \mathrm{rad} / \mathrm{sec}$

$$
\mathrm{BW}=\frac{1}{0.2}=5 \mathrm{rad} / \mathrm{sec}
$$

24. Ans: (a), (c) \& (d)

Sol: \Rightarrow As poles moves toward left side, the system time constant is decreases and system is more relative stable.
\Rightarrow Damping ratio increases \& percentage of peak overshoot decreases.
\Rightarrow Damped oscillations $\left(\omega_{\mathrm{d}}\right)$ is constant. Hence peak time is constant.
25. Ans: (a), (b) \& (d)

Sol: Roots are $(-2 \pm \mathrm{j} 2 \sqrt{3})$ complex
$0<\zeta<1$ - under damped system
Natural frequency $=\sqrt{16}=4 \mathrm{rad} / \mathrm{sec}$
Damping ratio $\zeta=\frac{4}{2(4)}=0.5$
Under damped system has damped oscillations .
26. Ans: (b) \& (c)

Sol: $\mathrm{OLTF}=\frac{20}{\mathrm{~s}+2}, \mathrm{H}(\mathrm{s})=1$
CLTF $=\frac{\frac{20}{\mathrm{~s}+2}}{1+\frac{20}{\mathrm{~s}+2}}=\frac{20}{\mathrm{~s}+22}$
DC gain $=\frac{20}{22}=\frac{10}{11}$
Steady state error to a unit step input $=\left(1-\frac{20}{22}\right)$ which is non zero
27. Ans: (b) \& (d)

Sol: In OLTF two poles are at the origin
\therefore It is type ' 2 '
$\mathrm{CE}=1+\frac{10(\mathrm{~s}+1)^{4}}{\mathrm{~s}^{2}(\mathrm{~s}+2)}=0,4$ roots it has
$\therefore 4^{\text {th }}$ order system
Type 2 system error to step and ramp input $\mathrm{s}=0$
$\mathrm{k}_{\mathrm{a}}=\underset{\mathrm{s} \rightarrow 0}{\operatorname{Lt}} \mathrm{~s}^{2} \mathrm{G}(\mathrm{s})=\frac{10}{2}=5$
Error $=\frac{1}{5}=0.2$ to a parabolic input

Chapter 4. Stability

1.

Sol: $\mathrm{CE}=\mathrm{s}^{5}+4 \mathrm{~s}^{4}+8 \mathrm{~s}^{3}+8 \mathrm{~s}^{2}+7 \mathrm{~s}+4=0$

No. of AE roots $=2$
No. of sign changes
Below $\mathrm{AE}=0$
No. of RHP $=0$
No. of LHP $=0$
No. of $j \omega p=2$

No. of CE roots $=5$
No. of sign changes
in $1^{\text {st }}$ column $=0$
\therefore No .of RHP $=0$
No. of $j \omega p=2$
\Rightarrow No .of LHP = 3

System is marginally stable.
(ii) $\mathrm{s}^{2}+1=0$
$s= \pm 1 j= \pm j \omega_{n}$
$\omega_{\mathrm{n}}=1 \mathrm{rad} / \mathrm{sec}$
Oscillating frequency $\omega_{\mathrm{n}}=1 \mathrm{rad} / \mathrm{sec}$
02.

Sol: (i) $\mathrm{s}^{5}+\mathrm{s}^{4}+\mathrm{s}^{3}+\mathrm{s}^{2}+\mathrm{s}+1=0$

$+s^{5}$	1	1	1
$+s^{4}$	1	1	1
$+s^{3}$	$0(2)$	$0(1)$	0
$+s^{2}$	$\frac{1}{2}$	1	
$(1)-s^{1}$	-3	0	
$(2)+s^{0}$	1		

$$
\begin{aligned}
& \operatorname{AE}(1)=s^{4}+s^{2}+1=0 \\
& \frac{d(A E)}{d s}=4 s^{3}+2 s=0 \\
& \Rightarrow 2 s^{3}+s=0
\end{aligned}
$$

AE

No. of sign changes below
$\mathrm{AE}=2$
No. of AE roots $=4$
No .of RHP $=2$
No .of LHP = 2
No. of $j \omega p=0$

CE
No. of sign changes in $1^{\text {st }}$ column $=2$
No. of CE roots $=5$
No. of RHP $=2$
No. of LHP = 3
No. of $\mathrm{j} \omega \mathrm{p}=0$

System is unstable
(ii) $s^{6}+2 s^{5}+2 s^{4}+0 s^{3}-s^{2}-2 s-2=0$

s^{6}	1	2	-1	-2
$\mathrm{~s}^{5}$	$2(1)$	0	$-2(-1)$	0
$\mathrm{~s}^{4}$	$2(1)$	+0	$-2(-1)$	0
$\mathrm{~s}^{3}$	$0(4)$	0	0	0
$\mathrm{~s}^{2}$	$0(\varepsilon)$	-1	0	0
$\mathrm{~s}^{1}$	$4 / \varepsilon$			
$-\mathrm{s}^{0}$	-1			

$$
\begin{aligned}
& \mathrm{AE}=\mathrm{s}^{4}-1=0 \\
& \frac{\mathrm{dAE}}{\mathrm{ds}}=4 \mathrm{~s}^{3}+0=0
\end{aligned}
$$

CE
No. of CE roots $=6$
No. of sign changes in the $1^{\text {st }}$ column $=1$
No of RHP = 1
No . of LHP $=3$
No. of $\mathrm{j} \omega \mathrm{p}=2$

AE
No. of AE roots $=4$
No. of sign changes below $\mathrm{AE}=1$
No. of RHP = 1
No. of $\mathrm{j} \omega \mathrm{p}=2$
No. of LHP = 1
03.

Sol: $\mathrm{CE}=\mathrm{s}^{3}+20 \mathrm{~s}^{2}+16 \mathrm{~s}+16 \mathrm{~K}=0$

(i) For stability $\frac{20(16)-16 \mathrm{~K}}{20}>0$
$\Rightarrow 20$ (16) $-16 \mathrm{~K}>0$
$\Rightarrow \mathrm{K}<20$ and $16 \mathrm{~K}>0 \Rightarrow \mathrm{~K}>0$
Range of K for stability $0<\mathrm{K}<20$
(ii) For the system to oscillate with ω_{n} it must be marginally stable
i.e., s^{1} row should be 0 s^{2} row should be AE

$$
\therefore \mathrm{A} . \mathrm{E} \text { roots }= \pm \mathrm{j} \omega_{\mathrm{n}}
$$

$\therefore \mathrm{s}^{1}$ row $\Rightarrow 20(16)-16 \mathrm{~K}=0$
$\Rightarrow \mathrm{K}=20$
AE is $20 \mathrm{~s}^{2}+16 \mathrm{~K}=0$

$$
\begin{aligned}
& 20 \mathrm{~s}^{2}+16(20)=0 \\
& \Rightarrow \mathrm{~s}= \pm \mathrm{j} 4 \\
& \omega_{\mathrm{n}}=4 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

4.

Sol: $\mathrm{CE}=1+\frac{\mathrm{K}(\mathrm{s}+1)}{\mathrm{s}^{3}+\mathrm{as}^{2}+2 \mathrm{~s}+1}=0$

$$
\begin{aligned}
& s^{3}+a s^{2}+(K+2) s+K+1=0 \\
& s^{3}+a s^{2}+(K+2) s+(K+1)=0
\end{aligned}
$$

s^{3}	1	$K+2$
s^{2}	a	$K+1$
s^{1}	$\frac{a(K+2)-(K+1)}{a}$	0
s^{0}	$K+1$	
Given,		
$\omega_{n}=2$		

$\Rightarrow \mathrm{s}^{1}$ row $=0$
s^{2} row is A.E
$a(K+2)-(K+1)=0$
$a=\frac{K+1}{K+2}$
$\mathrm{AE}=\mathrm{as}^{2}+\mathrm{K}+1=0$
$=\frac{\mathrm{K}+1}{\mathrm{~K}+2} \mathrm{~s}^{2}+\mathrm{K}+1=0$
$(k+1)\left(\frac{\mathrm{s}^{2}}{\mathrm{k}+2}+1\right)=0$
$\mathrm{s}^{2}+\mathrm{k}+2=0$
$s= \pm j \sqrt{(k+2)}$
$\omega_{\mathrm{n}}=\sqrt{\mathrm{k}+2}=2$
$\mathrm{k}=2$
$\mathrm{a}=\frac{\mathrm{k}+1}{\mathrm{k}+2}=\frac{3}{4}=0.75$
05.

Sol: $\mathrm{s}^{3}+\mathrm{ks}^{2}+9 \mathrm{~s}+18$

s^{3}	1	9
s^{2}	K	18
s^{1}	$\frac{9 \mathrm{~K}-18}{\mathrm{~K}}$	0
$\mathrm{~s}^{0}$	18	

Given that system is marginally stable,
Hence
s^{1} row $=0$

$$
\frac{9 \mathrm{~K}-18}{\mathrm{~K}}=0
$$

$9 \mathrm{~K}=18 \Rightarrow \mathrm{~K}=2$
A.E is $9 s^{2}+18=0$
$\mathrm{Ks}^{2}+18=0$,
$2 s^{2}+18=0$
$2 \mathrm{~s}^{2}=-18$
$s= \pm j 3$
$\therefore \omega_{\mathrm{n}}=3 \mathrm{rad} / \mathrm{sec}$.
06. Ans: (d)

Sol: Given transfer function $G(s)=\frac{\mathrm{k}}{\left(\mathrm{s}^{2}+1\right)^{2}}$
Characteristic equation $1-\mathrm{G}(\mathrm{s}) \cdot \mathrm{H}(\mathrm{s})=0$
$1-\frac{\mathrm{k}}{\left(\mathrm{s}^{2}+1\right)^{2}}=0$
$\mathrm{s}^{4}+2 \mathrm{~s}^{2}+1-\mathrm{k}=0$

RH criteria

s^{4}	1	2	$1-\mathrm{K}$
s^{3}	4	4	-
s^{2}	1	$1-\mathrm{K}$	
s^{1}	4 K		
$\mathrm{~s}^{\mathrm{o}}$	$1-\mathrm{K}$		

$\mathrm{AE}=\mathrm{s}^{4}+2 \mathrm{~s}^{2}+1-\mathrm{K}$
$\frac{\mathrm{d}}{\mathrm{ds}}(\mathrm{AE})=4 \mathrm{~s}^{3}+4 \mathrm{~s}$
$1-\mathrm{K}>0$ no poles are on RHS plane and LHS plane.

All poles are on $\mathrm{j} \omega$ - axis
$\therefore 0<\mathrm{K}<1$ system marginally stable

07. Ans: (d)

Sol: Assertion: FALSE

Let the $\mathrm{TF}=\mathrm{s}$. " s " is the differentiator Impulse response $\mathrm{L}^{-1}[\mathrm{TF}]=\mathrm{L}^{-1}[\mathrm{~s}]=\delta^{\prime}(\mathrm{t})$
$\operatorname{Lt}_{\mathrm{t} \rightarrow \infty} \delta^{\prime}(\mathrm{t})=0$
\therefore It is BIBO stable

Reason: True

$\mathrm{x}(\mathrm{t})=\mathrm{t} \sin \mathrm{t}$

$\operatorname{Lt}_{\mathrm{t} \rightarrow \infty} \mathrm{x}(\mathrm{t})=\underset{\mathrm{t} \rightarrow \infty}{\mathrm{Lt}} \mathrm{t} \sin \mathrm{t}$ is unbounded
08. Ans: (a)

Sol: Assertion: TRUE

If feedback is not properly utilized the closed loop system may become unstable.

Reason: True

Feedback changes the location of poles
Let $G(s)=\frac{-2}{s+1} \quad H(s)=1$
Open loop pole $\mathrm{s}=-1$ (stable)
$\mathrm{CLTF}=\frac{\frac{-2}{\mathrm{~s}+1}}{1+\frac{-2}{\mathrm{~s}+1}}=\frac{-2}{\mathrm{~s}-1}$
Closed loop pole is at $\mathrm{s}=1$ (unstable)
\therefore After applying the feedback no more system is open loop. It becomes closed loop system. Hence poles are affected.
09. Ans: (a) \& (d)

Sol: RH tabulation:

s^{5}	1	5	4
$\mathrm{~s}^{4}$	-3	-7	20
$\mathrm{~s}^{3}$	$\frac{8}{3}$	$\frac{32}{3}$	0
$\mathrm{~s}^{2}$	5	20	0
$\mathrm{~s}^{1}$	$0(10)$	0	0
$\mathrm{~s}^{0}$	20	0	0

$\mathrm{AE}=5 \mathrm{~s}^{2}+20=0$
$\frac{\mathrm{dAE}}{\mathrm{ds}}=10 \mathrm{~s}=0$
AE roots $=\mathrm{s}= \pm \mathrm{j} 2$
Two sign changes
\therefore No. of $\mathrm{j} \omega$ axis roots $=2$
No. of left hand root $=1$ (real)
10. Ans: (a), (c) \& (d)

Sol: $C . E=1+\frac{k}{s(s+4)(s+5)}=0$
$\mathrm{s}^{3}+9 \mathrm{~s}^{2}+20 \mathrm{~s}+\mathrm{k}=0$

s^{3}	1	20
s^{2}	9	k
s^{1}	$\frac{180-k}{}$	
s^{0}	k	

$180-\mathrm{k}>0$
$\mathrm{k}<180$ and
$\mathrm{k}>0$
\therefore Range of k for stability $0<\mathrm{k}<180$
$\mathrm{k}>180$; Two sign changes in the $1^{\text {st }}$ column
\therefore Number of right half of s-plane poles $=2$
$\mathrm{k}=180$ marginally stable
\therefore Two poles are on the imaginary axis
$\mathrm{k}<180$ stable
\therefore All the three poles are in the left half of s-plane

Chapter 5 Root Locus Diagram

1. Ans: (a)

Sol: $s_{1}=-1+j \sqrt{3}$
$s_{2}=-3-j \sqrt{3}$
$G(s) \cdot H(s)=\frac{K}{(s+2)^{3}}$
$s_{1}=-1+j \sqrt{3}$
$G(s) \cdot H(s)=\frac{K}{(-1+j \sqrt{3}+2)^{3}}$

$$
\begin{aligned}
& =\frac{\mathrm{K}}{(1+\mathrm{j} \sqrt{3})^{3}} \\
& =-3 \tan ^{-1}(\sqrt{3}) \\
& =-180^{\circ}
\end{aligned}
$$

It is odd multiples of 180°, Hence s_{1} lies on
Root locus
$s_{2}=-3-j \sqrt{3}$
$G(s) \cdot H(s)=\frac{K}{(-3-j \sqrt{3}+2)^{3}}$

$$
\begin{aligned}
& =\frac{\mathrm{K}}{(-1-\mathrm{j} \sqrt{3})^{3}} \\
& =-3\left[180^{\circ}+60^{\circ}\right]=-720^{\circ}
\end{aligned}
$$

It is not odd multiples of 180°, Hence s_{2} is not lies on Root locus.

02. Ans: (a)

Sol: Over damped - roots are real \& unequal $\Rightarrow 0<\mathrm{k}<4$
(b) $\mathrm{k}=4$ roots are real \& equal
\Rightarrow Critically damped $\xi=1$
(c) $\mathrm{k}>4 \Rightarrow$ roots are complex
$0<\xi<1 \Rightarrow$ under damped
03. Ans: (a)

Sol: Asymptotes meeting point is nothing but centroid

$$
\begin{aligned}
\text { centroid } \sigma & =\frac{\sum \text { poles }-\sum \text { zeros }}{\mathrm{p}-\mathrm{z}} \\
& =\frac{-3-0}{3-0}=-1 \\
\text { centroid } & =(-1,0)
\end{aligned}
$$

4. Ans: (b)

Sol: Break point $=\frac{\mathrm{dK}}{\mathrm{ds}}=0$

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{ds}}\left(\mathrm{G}_{1}(\mathrm{~s}) \cdot \mathrm{H}_{1}(\mathrm{~s})\right)=0 \\
& \frac{\mathrm{~d}}{\mathrm{ds}}[\mathrm{~s}(\mathrm{~s}+1)(\mathrm{s}+2)]=0 \\
& 3 \mathrm{~s}^{2}+6 \mathrm{~s}+2=0 \\
& \mathrm{~s}=-0.422,-1.57 \\
& \xrightarrow[-2]{*}
\end{aligned}
$$

But $\mathrm{s}=-1.57$ do not lie on root locus
So, $\mathrm{s}=-0.422$ is valid break point.
Point of intersection wrt j ω-axis

$$
s^{3}+3 s^{2}+2 s+k=0
$$

As s ${ }^{1}$ Row $=0$
$\mathrm{k}=6$
$3 \mathrm{~s}^{2}+6=0$
$\mathrm{s}^{2}=-2$
$s= \pm j \sqrt{2}$
point of inter section: $s= \pm j \sqrt{2}$

05. Ans: (b)

Sol:

substitute $\mathrm{s}=-0.423$ and apply the magnitude criteria.
$\left|\frac{\mathrm{K}}{(-0.423)(-0.423+1)(-0.423+2)}\right|=1$
$\mathrm{K}=0.354$
when the roots are complex conjugate then the system response is under damped.
From $\mathrm{K}>0.384$ to $\mathrm{K}<6$ roots are complex conjugate then system to be under damped the values of k is $0.384<\mathrm{K}<6$.

06. Ans: (c)

Sol: If the roots are lies on the real axis then system exhibits the non-oscillatory response. from $\mathrm{K} \geq 0$ to $\mathrm{K} \leq 0.384$ roots lies on the real axis. Hence for $0 \leq K \leq 0.384$ system exhibits the non-oscillatory response.
07. Ans: (a)

Sol:

$\frac{\mathrm{d}}{\mathrm{ds}}[\mathrm{G}(\mathrm{s}) \cdot \mathrm{H}(\mathrm{s})]=\frac{\mathrm{d}}{\mathrm{ds}}\left[\frac{\mathrm{k}(\mathrm{s}+3)}{\mathrm{s}(\mathrm{s}+2)}\right]$
$s^{2}+6 s+6=0$
break points $-1.27,-4.73$
radius $=\frac{4.73-1.27}{2}=1.73$
center $=(-3,0)$
08. Ans: (c)

Sol: $\mathrm{G}(\mathrm{s}) \cdot \mathrm{H}(\mathrm{s})=\frac{\mathrm{K}(\mathrm{s}+3)}{\mathrm{s}(\mathrm{s}+2)}$

$$
\begin{aligned}
\left.\mathrm{k}\right|_{\mathrm{s}=-4} & =\frac{(-4)(-4+2)}{(-4+3)} \\
& =\left|\frac{(-4)(-2)}{(-1)}\right|=8
\end{aligned}
$$

9. Ans: (a)

Sol: $\mathrm{s}^{2}-4 \mathrm{~s}+8=0 \Rightarrow \mathrm{~s}=2 \pm 2 \mathrm{j}$ are two zeroes $s^{2}+4 s+8=0 \Rightarrow s=-2 \pm 2 j$ are two poles $\phi_{\mathrm{A}}=180-\left.\angle \mathrm{GH}\right|_{\mathrm{s}-2+2 \mathrm{j}}$
$\mathrm{GH}=\frac{\mathrm{k}[\mathrm{s}-(2+2 \mathrm{j})[\mathrm{s}-(2-2 \mathrm{j})]]}{\mathrm{s}-(-2+2 \mathrm{j})[\mathrm{s}-(-2-2 \mathrm{j})]}$
$\left.\angle \mathrm{GH}\right|_{\mathrm{s}=2+2 \mathrm{j}}=\frac{\angle \mathrm{k} \angle 4 \mathrm{j}}{\angle 4 \angle 4+4 \mathrm{j}}$

$$
=90^{\circ}-45^{\circ}=45^{\circ}
$$

$\phi_{\mathrm{A}}=180^{\circ}-45^{\circ}= \pm 135^{\circ}$

10. Ans: (b)

Sol: $\mathrm{s}^{2}-4 \mathrm{~s}+8=0 \Rightarrow \mathrm{~s}=2 \pm 2 \mathrm{j}$ are two zeroes
$s^{2}+4 s+8=0 \Rightarrow s=-2 \pm 2 j$ are two poles
$\phi_{\mathrm{d}}=180^{\circ}+\left.\angle \mathrm{GH}\right|_{\mathrm{s}-2+2 \mathrm{j}}$

$$
\begin{aligned}
& \begin{aligned}
\left.\angle \mathrm{GH}\right|_{\mathrm{S}=-2 \pm 2 \mathrm{j}} & =\left.\angle \frac{\mathrm{k}[\mathrm{~s}-(2+2 \mathrm{j})][\mathrm{s}-(2-2 \mathrm{j})]}{[\mathrm{s}-(-2+2 \mathrm{j})][\mathrm{s}-(-2-2 \mathrm{j})]}\right|_{\mathrm{s}=-2 \pm 2 \mathrm{j}} \\
& =\frac{\angle \mathrm{k}(-4)(-4+4 \mathrm{j})}{\angle 4 \mathrm{j}} \\
& =180^{\circ}+180^{\circ}-45^{\circ}-90^{\circ}=225^{\circ}
\end{aligned} \\
& \phi_{\mathrm{d}}=180^{\circ}+225^{\circ}=405^{\circ}
\end{aligned} \begin{aligned}
& \therefore \phi_{\mathrm{d}}= \pm 45^{\circ}
\end{aligned}
$$

11. Ans: (d)

Sol: Poles $\mathrm{s}=-2,-5 ;$ Zero $\mathrm{s}=-10$

\therefore Breakaway point exist between -2 and -5
12.

Sol: Refer Pg No: 75, Vol-1 Ex: 8
13. Ans: $(\mathbf{a}),(\mathrm{c}) \&(\mathrm{~d})$

\Rightarrow Centroid $\sigma=\frac{(-2-4)-(0)}{3}=-2$

$$
\begin{aligned}
& \Rightarrow \text { Angle of asymptotes } \theta=\frac{(2 \mathrm{q}+1) 180^{\circ}}{(\mathrm{p}-\mathrm{z})}, \\
& \mathrm{q}=0 \Rightarrow \theta=\frac{180^{\circ}}{3}=60^{\circ} \\
& \mathrm{q}=1 \Rightarrow \theta=\frac{3 \times 180^{\circ}}{3}=180^{\circ} \\
& \mathrm{q}=2 \Rightarrow \theta=\frac{5 \times 180^{\circ}}{3}=300^{\circ}
\end{aligned}
$$

14. Ans: (a) \& (b)

Sol: RLD of the system is drawn below

Consider $\sigma=\frac{-4-4-4-4}{4-0}$

$$
\sigma=-4
$$

All the root loci branches are breaking away at $s=-4$, hence it is called as a break away point.
15. Ans: (c) \& (d)

Sol: RLD of the system is given below

$\left.\mathrm{k}\right|_{\mathrm{s}=-3}=(1)(1)=1$
$s=-3$ is a break in | away point

	Regular Live Doubt clearing Sessions \| Free Online Test Series	ASK an expert				
\rightarrow onine	Affordable Fee \\| Available 1M	3M	6M	12M	18M and 24 Months Subscription Packages	

Chapter (6) Frequency Response Analysis

1. Ans: (c)

Sol: $G(s) \cdot H(s)=\frac{100}{s(s+4)(s+16)}$
Phase crossover frequency $\left(\omega_{\mathrm{pc}}\right)$:
$\angle \mathrm{G}(\mathrm{j} \omega) \cdot \mathrm{H}(\mathrm{j} \omega) / \omega=\omega_{\mathrm{pc}}=-180^{\circ}$

$$
-90^{\circ}-\tan ^{-1}\left(\omega_{\mathrm{pc}} / 4\right)-\tan ^{-1}\left(\omega_{\mathrm{pd}} / 16\right)=-180^{\circ}
$$

$$
-\tan ^{-1}\left(\omega_{\mathrm{pc}} / 4\right)-\tan ^{-1}\left(\omega_{\mathrm{pc}} / 16\right)=-90^{\circ}
$$

$$
\tan \left[\tan ^{-1}\left(\omega_{\mathrm{pd}} / 4\right)+\tan ^{-1}\left(\omega_{\mathrm{pd}} / 16\right)\right]=\tan \left(90^{\circ}\right)
$$

$\frac{\frac{\omega_{\mathrm{pc}}}{4}+\frac{\omega_{\mathrm{pc}}}{16}}{1-\frac{\omega_{\mathrm{pc}}}{4} \cdot \frac{\omega_{\mathrm{pc}}}{16}}=\frac{1}{0}$
$\omega_{\mathrm{pc}}^{2}=16 \times 4 \Rightarrow \omega_{\mathrm{pc}}=8 \mathrm{rad} / \mathrm{sec}$
02. Ans: (d)

Sol: $G(s) \cdot H(s)=\frac{100}{s(s+4)(s+16)}$

$$
\begin{aligned}
& \text { Gain margin }(\mathrm{G} \cdot \mathrm{M})=\frac{1}{\left.\mathrm{G}(\mathrm{j} \omega) \mathrm{H}(\mathrm{j} \omega)\right|_{\omega=\omega_{\mathrm{pc}}}} \\
& \begin{aligned}
|\mathrm{G}(\mathrm{j} \omega) \cdot \mathrm{H}(\mathrm{j} \omega)|_{\omega=\omega_{\mathrm{pc}}} & =\frac{100}{\omega_{\mathrm{pc}} \sqrt{\omega_{\mathrm{pc}}^{2}+4^{2}} \sqrt{\omega_{\mathrm{pc}}^{2}+16^{2}}} \\
& =\frac{5}{64} \\
\mathrm{G} \cdot \mathrm{M} & =\frac{64}{5}=12.8
\end{aligned}
\end{aligned}
$$

03. Ans: (c)

Sol: $G(\mathrm{~s}) \cdot \mathrm{H}(\mathrm{s})=\frac{2 \mathrm{e}^{-0.5 \mathrm{~s}}}{(\mathrm{~s}+1)}$
gain crossover frequency,

$$
\begin{gathered}
\omega_{\mathrm{gc}}=|\mathrm{G}(\mathrm{j} \omega) \cdot \mathrm{H}(\mathrm{j} \omega)|_{\omega=\omega_{\mathrm{gc}}}=1 \\
\frac{2}{\sqrt{\omega_{\mathrm{gc}}^{2}+1}}=1 \\
\omega_{\mathrm{gc}}^{2}+1=4 \Rightarrow \omega_{\mathrm{gc}}=\sqrt{3} \mathrm{rad} / \mathrm{sec}
\end{gathered}
$$

4. Ans: (b)

Sol: $\omega_{\mathrm{gc}}=\sqrt{3} \mathrm{rad} / \mathrm{sec}$
$P \cdot M=180^{\circ}+\angle \mathrm{G}(\mathrm{j} \omega) \cdot \mathrm{H}(\mathrm{j} \omega) / \omega=\omega_{\mathrm{gc}}$

$$
\begin{aligned}
\angle \mathrm{G}(\mathrm{j} \omega) \cdot \mathrm{H}(\mathrm{j} \omega) /{ }_{\omega==\omega_{\mathrm{gc}}} & =-0.5 \omega_{\mathrm{gc}}-\tan ^{-1}\left(\omega_{\mathrm{gc}}\right) \\
& =-109.62^{\circ} \\
\text { P.M } & =70.35^{\circ}
\end{aligned}
$$

5. Ans: (a)

Sol: $\mathrm{M}_{\mathrm{r}}=2.5=\frac{1}{2 \xi \sqrt{1-\xi^{2}}}$

$$
\begin{aligned}
& 2 \xi \sqrt{1-\xi^{2}}=\frac{1}{2.5} \\
& \xi^{4}-\xi^{2}+0.04=0 \\
& \xi^{2}=0.958 \quad \xi^{2}=0.0417 \\
& \xi=0.204 \quad\left(\mathrm{M}_{\mathrm{r}}>1\right)
\end{aligned}
$$

6. Ans: (a)

Sol: Closed loop T.F $=\frac{1}{\mathrm{~s}+2}$

$$
A=\frac{1}{\sqrt{\omega^{2}+4}}=\frac{1}{\sqrt{4+4}}=\frac{1}{\sqrt{8}}=\frac{1}{2 \sqrt{2}}
$$

$$
\begin{aligned}
\phi & =-\tan ^{-1} \omega / 2 \\
& =-\tan ^{-1} 2 / 2
\end{aligned}
$$

$$
\Rightarrow \phi=-\tan ^{-1}(1)=-45^{\circ}
$$

$$
\text { output }=\frac{1}{2 \sqrt{2}} \cos \left(2 t+20^{\circ}-45^{\circ}\right)
$$

$$
=\frac{1}{2 \sqrt{2}} \cos \left(2 t-25^{\circ}\right)
$$

07. Ans: (c)

Sol: Initial slope $=-40 \mathrm{~dB} / \mathrm{dec}$
Two integral terms $\left(\frac{1}{s^{2}}\right)$
\therefore Part of $\mathrm{TF}=\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=\frac{\mathrm{K}}{\mathrm{s}^{2}}$
at $\omega=0.1$
Change in slope $=-20-(-40)=20^{\circ}$
Part of TF $=G(s) H(s)=\frac{K\left(1+\frac{s}{0.1}\right)}{s^{2}}$
At $\omega=10$ slope changed to $-60 \mathrm{~dB} / \mathrm{dec}$

Change in slope $=-60-(-20)$

$$
=-40 \mathrm{~dB} / \mathrm{dec}
$$

$\mathrm{TF}(\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s}))=\frac{\mathrm{K}\left(1+\frac{\mathrm{s}}{0.1}\right)}{\mathrm{s}^{2}\left(\frac{\mathrm{~s}}{10}+1\right)^{2}}$
$20 \log \mathrm{~K}-2(20 \log 0.1)=20 \mathrm{~dB}$

$$
\begin{aligned}
& 20 \log K=20-40 \\
& 20 \log K=-20
\end{aligned}
$$

$\mathrm{K}=0.1$

$$
\begin{aligned}
G(s) H(s) & =\frac{(0.1)\left(1+\frac{s}{0.1}\right)}{s^{2}\left(1+\frac{s}{10}\right)^{2}} \\
& =\frac{(0.1) \times 10^{2}(s+0.1)}{(0.1) s^{2}(s+10)^{2}} \\
G(s) H(s) & =\frac{100(s+0.1)}{s^{2}(s+10)^{2}}
\end{aligned}
$$

8. Ans: (b)

Sol: $G(s) H(s)=\frac{K s}{\left(1+\frac{s}{2}\right)\left(1+\frac{\mathrm{s}}{10}\right)}$

$$
12=20 \log \mathrm{~K}+20 \log 0.5
$$

$$
12=20 \log \mathrm{~K}+(-6)
$$

$$
20 \log \mathrm{~K}=18 \mathrm{~dB}=20 \log 2^{3}
$$

$$
K=8
$$

$$
\mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})=\frac{8 \mathrm{~s} \times 2 \times 10}{(2+\mathrm{s})(10+\mathrm{s})}
$$

$$
\mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})=\frac{160 \mathrm{~s}}{(2+\mathrm{s})(10+\mathrm{s})}
$$

9. Ans: (b)

Sol:

$$
G(s) H(s)=\frac{K\left(1+\frac{s}{10}\right)^{2}\left(1+\frac{s}{20}\right)}{(1+s)^{2}}
$$

$$
\begin{aligned}
& \frac{y_{2}-y_{1}}{x_{2}-x_{1}}=-40 \mathrm{~dB} / \mathrm{dec} \\
& \frac{20-y_{1}}{\log 10-\log 1}=-40 \\
& y_{1}=+\left.60 \mathrm{~dB}\right|_{\omega \leq 1} \\
& \Rightarrow 20 \log \mathrm{~K}=60 \\
& \mathrm{~K}=10^{3} \\
& \mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})=\frac{10^{3}(\mathrm{~s}+10)^{2}(\mathrm{~s}+20)}{10^{2} \times 20 \times(\mathrm{s}+1)^{2}} \\
& \quad=\frac{(\mathrm{s}+10)^{2}(\mathrm{~s}+20)}{2(\mathrm{~s}+1)^{2}}
\end{aligned}
$$

10. Ans: (d)

Sol:

ω_{1} calculation:

$$
\frac{0-20}{\log 1-\log \omega_{1}}
$$

$=-20 \mathrm{~dB} / \mathrm{dec}$
$\omega_{1}=0.1$
ω_{2} calculation:

$$
\begin{aligned}
& \quad \frac{-20-0}{\log \omega_{2}-\log 1} \\
& =-20 \mathrm{~dB} / \mathrm{dec} \\
& \omega_{2}=10
\end{aligned}
$$

$$
G(s) H(s)=\frac{K\left(1+\frac{s}{0.1}\right)}{s^{2}\left(1+\frac{s}{10}\right)}
$$

$20 \log \mathrm{~K}-2(20 \log 0.1)=20$

$$
\begin{array}{r}
20 \log \mathrm{~K}=20-40 \\
\mathrm{~K}=0.1 \\
\mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})=\frac{0.1 \times \frac{1}{0.1}(0.1+\mathrm{s})}{\mathrm{s}^{2} \frac{1}{10}(10+\mathrm{s})} \\
=\frac{10(0.1+\mathrm{s})}{\mathrm{s}^{2}(10+\mathrm{s})}
\end{array}
$$

11.

Sol:

$$
\begin{aligned}
& \frac{200}{s(s+2)}=\frac{100}{s\left(1+\frac{s}{2}\right)} \\
& x=-K T \Rightarrow-(100) \times \frac{1}{2}=x=-50
\end{aligned}
$$

12. Ans: (c)

Sol: For stability $(-1, j 0)$ should not be enclosed by the polar plot.

For stability
$1>0.01 \mathrm{~K}$
$\Rightarrow \mathrm{K}<100$
13.

Sol: $\mathrm{GM}=-40 \mathrm{~dB}$
$20 \log \frac{1}{a}=-40 \Rightarrow \mathrm{a}=10^{2}$
$\mathrm{POI}=100$
14.

Sol: (i) $\mathrm{GM}=\frac{1}{0.1}=+10=20 \mathrm{~dB}$

$$
P M=180^{\circ}-140^{\circ}=40^{\circ}
$$

(ii) $\mathrm{PM}=180-150^{\circ}=30^{\circ}$

$$
\mathrm{GM}=\frac{1}{0}=\infty \quad \mathrm{POI}=0
$$

(iii) ω_{PC} does not exist

$$
\mathrm{GM}=\frac{1}{0}=\infty \mathrm{PM}=180^{\circ}+0^{\circ}=180^{\circ}
$$

(iv) ω_{gc} not exist

$$
\omega_{\mathrm{pc}}=\infty
$$

$$
\mathrm{GM}=\frac{1}{0}=\infty
$$

$$
P M=\infty
$$

(v) $\mathrm{GM}=\frac{1}{0.5}=2$

$$
\begin{aligned}
\mathrm{PM}= & 180-90 \\
= & 90^{\circ}
\end{aligned}
$$

15. Ans: (d)

Sol: For stability $(-1, j 0)$ should not be enclosed by the polar plot. In figures (1) \& $(2)(-1, j 0)$ is not enclosed.
\therefore Systems represented by (1) \& (2) are stable.

16. Ans: (b)

Sol: Open loop system is stable, since the open loop poles are lies in the left half of s-plane $\therefore \mathrm{P}=0$.

From the plot $\mathrm{N}=-2$.
No. of encirclements $\mathrm{N}=\mathrm{P}-\mathrm{Z}$
$\mathrm{N}=-2, \mathrm{P}=0$ (Given)
$\therefore \mathrm{N}=\mathrm{P}-\mathrm{Z}$
$-2=0-\mathrm{Z}$
Z $=2$
Two closed loop poles are lies on RH of s-plane and hence the closed loop system is unstable.

17. Ans: (c)

Sol:

$\frac{\mathrm{K}_{\mathrm{c}}}{\mathrm{K}}=0.4$
When $\mathrm{K}=1$
Now, K double, $\frac{\mathrm{K}_{\mathrm{c}}}{\mathrm{K}}=0.4$
$\mathrm{K}_{\mathrm{c}}=0.4 \times 2=0.8$

Even though the value of K is double, the system is stable (negative real axis magnitude is less than one)
Oscillations depends on ' ξ '
$\xi \propto \frac{1}{\sqrt{\mathrm{~K}}}$ as K is increased ξ reduced, then more oscillations.
18. Ans: (a)

Sol: Given system $G(s)=\frac{10(s-12)}{s(s+2)(s+3)}$
It is a non minimum phase system since $\mathrm{s}=12$ is a zero on the right half of s-plane
19.

Sol: Given that $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=\frac{10(\mathrm{~s}+3)}{\mathrm{s}(\mathrm{s}-1)}$
s-plane
Nyquist Contour

- Nyquist plot is the mapping of Nyquist contour(s-plane) into $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})$ plane.
- The Nyquist contour in the s-plane enclosing the entire right half of S-plane is shown figure.
The Nyquist Contour has four sections C_{1}, $\mathrm{C}_{2}, \mathrm{C}_{3}$ and C_{4}. These sections are mapped into $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})$ plane .

Mapping of section $\mathbf{C}_{\mathbf{1}}$: It is the positive imaginary axis, therefore sub $\mathrm{s}=\mathrm{j} \omega$, $(0 \leq \omega \leq \infty)$ in the $\mathrm{TF} \mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})$, which gives the polar plot
$\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=\frac{10(\mathrm{~s}+3)}{\mathrm{s}(\mathrm{s}-1)}$
Let $\mathrm{s}=\mathrm{j} \omega$
$G(j \omega) H(j \omega)=\frac{10(j \omega+3)}{j \omega(j \omega-1)}$
$\mathrm{G}(\mathrm{j} \omega) \mathrm{H}(\mathrm{j} \omega)=\frac{10 \sqrt{\omega^{2}+9}}{\omega \sqrt{\omega^{2}+1}} \angle\left\{\tan ^{-1}\left(\frac{\omega}{3}\right)\right.$
$\left.-\left[90^{\circ}+180^{\circ}-\tan ^{-1}(\omega)\right]\right\}$

At $\omega=0 \Rightarrow \infty \angle-270^{0}$
At $\omega=\omega_{\mathrm{pc}}=\sqrt{3} \Rightarrow 10 \angle-180^{\circ}$
At $\omega=\infty \Rightarrow 0 \angle-90^{\circ}$
point of intersection of the Nyquist plot with respect to negative real axis is calculated below
$\operatorname{ArgG}(\mathrm{j} \omega) \mathrm{H}(\mathrm{j} \omega)=\arg \frac{10(\mathrm{j} \omega+3)}{\mathrm{j} \omega(\mathrm{j} \omega-1)}$

$$
=-180^{\circ} \text { will give the ' } \omega_{\mathrm{pc}} \text { ' }
$$

Magnitude of $\mathrm{G}(\mathrm{j} \omega) \mathrm{H}(\mathrm{j} \omega)$ gives the point of intersection

$$
\angle \tan ^{-1}\left(\frac{\omega}{3}\right)-\left[90^{0}+180^{0}-\tan ^{-1}(\omega)\right)
$$

$$
=-180^{\circ} \mid \omega=\omega_{\mathrm{pc}}
$$

$$
\angle \tan ^{-1}\left(\frac{\omega_{\mathrm{pc}}}{3}\right)-\left[90^{\circ}+180^{\circ}-\tan ^{-1}\left(\omega_{\mathrm{pc}}\right)\right)=-180^{\circ}
$$

$$
\tan ^{-1}\left(\frac{\omega_{\mathrm{pc}}}{3}\right)+\tan ^{-1}\left(\omega_{\mathrm{pc}}\right)=90^{0}
$$

Taking "tan" both the sides
$\frac{\frac{\omega_{\mathrm{pc}}}{3}+\omega_{\mathrm{pc}}}{1-\frac{\left(\omega_{\mathrm{pc}}\right)^{2}}{3}}=\tan 90^{\circ}=\infty$
$1-\frac{\omega_{\mathrm{pc}}^{2}}{3}=0$
$\omega_{\mathrm{pc}}=\sqrt{3} \mathrm{rad} / \mathrm{sec}$

Therefore the point of intersection is
$|\mathrm{G}(\mathrm{j} \omega) \mathrm{H}(\mathrm{j} \omega)|$ at $\omega_{\mathrm{pc}}=\frac{10 \sqrt{\omega_{\mathrm{pc}}{ }^{2}+3^{2}}}{\omega_{\mathrm{pc}} \sqrt{1+\omega_{\mathrm{pc}}{ }^{2}}}=10$

Point of intersection

4

The mapping of the section C_{1} is shown figure.

Mapping of section \mathbf{C}_{2} : It is the radius ' R ' semicircle, therefore sub $s=\lim _{R \rightarrow \infty} \operatorname{Re}^{j \theta} \quad(\theta$ is from 90° to 0^{0} to -90°) in the $\mathrm{TF} \mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})$, which merges to the origin in $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})$ plane.

$$
\begin{aligned}
& \mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s}) \mathrm{plane} \\
& \mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})=\frac{10(\mathrm{~s}+3)}{\mathrm{s}(\mathrm{~s}-1)} \\
& \mathrm{G}\left(\mathrm{Re}^{\mathrm{j} \theta}\right) \mathrm{H}\left(\operatorname{Re}^{\mathrm{j} \theta}\right)=\frac{2\left(\operatorname{Re}^{\mathrm{j} \theta}+3\right)}{\operatorname{Re}^{\mathrm{j} \theta}\left(\operatorname{Re}^{\mathrm{j} \theta}-1\right)} \approx 0
\end{aligned}
$$

The plot is shown in figure.

Mapping of section \mathbf{C}_{3} : It is the negative imaginary axis, therefore sub $\mathrm{s}=\mathrm{j} \omega$,
$(-\infty \leq \omega \leq 0)$ in the TF $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})$, which gives the mirror image of the polar plot and is symmetrical with respect to the real axis,

The plot is shown in figure.

Mapping of section \mathbf{C}_{4} : It is the radius ' ε ' semicircle, therefore subs $=\underset{\varepsilon \rightarrow 0}{\operatorname{Lim}} \varepsilon \mathrm{e}^{\mathrm{j} \theta}$
$\left(-90^{\circ} \leq \theta \leq 90^{\circ}\right)$ in the TF $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})$, which gives clockwise infinite radius semicircle in $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})$ plane.

The plot is shown below

$$
\mathrm{G}\left(\varepsilon \mathrm{e}^{\mathrm{j} \theta}\right) \mathrm{H}\left(\varepsilon \mathrm{e}^{\mathrm{j} \theta}\right)=\frac{10\left(\varepsilon \mathrm{e}^{\mathrm{j} \theta}+3\right)}{\varepsilon \mathrm{e}^{\mathrm{j} \theta}\left(\varepsilon \mathrm{e}^{\mathrm{j} \theta}-1\right)}
$$

$$
\mathrm{G}\left(\varepsilon \mathrm{e}^{\mathrm{j} \theta}\right) \mathrm{H}\left(\varepsilon \mathrm{e}^{\mathrm{j} \theta}\right) \approx \frac{10 \times 3}{-\varepsilon \mathrm{e}^{\mathrm{j} \theta}}=\infty \angle 180^{0}-\theta
$$

When, $\quad \theta=-90^{\circ} \infty \angle 270^{\circ}$

$$
\begin{array}{ll}
\theta=-40^{\circ} & \infty \angle 220^{\circ} \\
\theta=0^{0} & \infty \angle 0^{\circ} \\
\theta=40^{\circ} & \infty \angle 140^{0} \\
\theta=90^{\circ} & \infty \angle 90^{\circ}
\end{array}
$$

It is clear that the plot is clockwise ' ∞ ' radius semicircle centred at the origin

Combining all the above four sections, the
Nyquist plot of $G(s) H(s)=\frac{10(s+3)}{s(s-1)}$
is shown in figure below
From the plot $\mathrm{N}=1$
Given that $\quad \mathrm{P}=1$
$\mathrm{N}=\mathrm{P}-\mathrm{Z}$
$\mathrm{Z}=\mathrm{P}-\mathrm{N}=1-1=0$, therefore system is stable

20.

Sol: The given bode plot is shown below.

Initial slope $=-6 \mathrm{db} /$ octave.
i.e., there is one pole at origin (or) one
integral term.
portion of transfer function
$\mathrm{G}(\mathrm{s})=\frac{\mathrm{K}}{\mathrm{s}}$
At $\omega=2 \mathrm{rad} / \mathrm{sec}$, slope is changed to 0 dB / octave.
\therefore change in slope

$$
\begin{aligned}
& =\text { present slope }- \text { previous slope } \\
& =0-(-6)=6 \mathrm{~dB} / \text { octave }
\end{aligned}
$$

\therefore There is a real zero at corner frequency
$\omega_{1}=2$.

$$
\left(1+\mathrm{sT}_{1}\right)=\left(1+\frac{\mathrm{s}}{\omega_{1}}\right)=\left(1+\frac{\mathrm{s}}{\mathrm{Z}}\right)
$$

At $\omega=10 \mathrm{rad} / \mathrm{sec}$, slope is changed to
-6dB/octave.
\therefore change in slope $=-6-0$

$$
=-6 \mathrm{~dB} / \text { octave } .
$$

\therefore There is a real pole at corner frequency $\omega_{2}=2$.
$\frac{1}{1+\mathrm{sT}_{2}}=\frac{1}{\left(1+\frac{\mathrm{s}}{\omega_{2}}\right)}=\frac{1}{\left(1+\frac{\mathrm{s}}{10}\right)}$
At $\omega=50 \mathrm{rad} / \mathrm{sec}$, slope is changed to
$-12 \mathrm{~dB} /$ octave.
\therefore change in slope $=-12-(-6)$

$$
=-6 \mathrm{~dB} / \text { octave }
$$

\therefore There is a real pole at corner frequency $\omega_{3}=50 \mathrm{rad} / \mathrm{sec}$.
$\frac{1}{1+\mathrm{ST}_{3}}=\frac{1}{\left(1+\frac{\mathrm{S}}{\omega_{3}}\right)}=\frac{1}{\left(1+\frac{\mathrm{S}}{50}\right)}$
At $\omega=100 \mathrm{rad} / \mathrm{sec}$, the slope changed to $-6 \mathrm{~dB} /$ octave.
\therefore change in slope $=-6-(-12)$

$$
=6 \mathrm{~dB} / \text { octave } .
$$

\therefore There is a real zero at corner frequency $\omega_{4}=100 \mathrm{rad} / \mathrm{sec}$.

$$
\therefore\left(1+\mathrm{sT}_{4}\right)=\left(1+\frac{\mathrm{s}}{\omega_{4}}\right)=\left(1+\frac{\mathrm{s}}{100}\right)
$$

\therefore Transfer function $=\frac{\mathrm{K}\left(1+\frac{\mathrm{s}}{2}\right)\left(1+\frac{\mathrm{s}}{100}\right)}{\mathrm{s}\left(1+\frac{\mathrm{s}}{50}\right)\left(1+\frac{\mathrm{s}}{10}\right)}$

$$
\begin{aligned}
& =\frac{\mathrm{K}(\mathrm{~s}+2)(\mathrm{s}+100)}{\mathrm{s}(\mathrm{~s}+50)(\mathrm{s}+10)} \frac{\frac{1}{2} \cdot \frac{1}{100}}{\frac{1}{50} \cdot \frac{1}{10}} \\
& =\frac{2.5 \mathrm{~K}(\mathrm{~s}+2)(\mathrm{s}+100)}{\mathrm{s}(\mathrm{~s}+10)(\mathrm{s}+50)}
\end{aligned}
$$

In the given bode plot,
at $\omega=1 \mathrm{rad} / \mathrm{sec}$, Magnitude $=-20 \mathrm{~dB}$.

$$
\begin{aligned}
& -20 \mathrm{~dB}=20 \log \mathrm{~K}-20 \log \omega+20 \sqrt{1+\left(\frac{\omega}{2}\right)^{2}}+20 \sqrt{1+\left(\frac{\omega}{100}\right)^{2}} \\
& -20 \log \sqrt{1+\left(\frac{\omega}{50}\right)^{2}}-20 \log \sqrt{1+\left(\frac{\omega}{10}\right)^{2}}
\end{aligned}
$$

At $\omega=1 \mathrm{rad} / \mathrm{sec}$,
$-20=20 \log K-20 \log \omega / \omega=1 \mathrm{rad} / \mathrm{sec}$
[\because Remaining values eliminated]
$-20=20 \log \mathrm{~K}$
$\Rightarrow \mathrm{K}=0.1$
\therefore Transfer function

$$
\frac{\mathrm{C}(\mathrm{~s})}{\mathrm{R}(\mathrm{~s})}=\frac{0.25(\mathrm{~s}+2)(\mathrm{s}+100)}{\mathrm{s}(\mathrm{~s}+10)(\mathrm{s}+50)}
$$

21. Ans: (a) \& (d)

Sol: $\mathrm{k}>1 / 2$, closed loop system is stable.

For $\mathrm{k}<1 / 2$, one closed loop pole in the right half of s-plane.

$\mathrm{N}=\mathrm{P}-\mathrm{Z} \Rightarrow 0=1-\mathrm{Z} \Rightarrow \mathrm{Z}=1 \Rightarrow$ one closed loop Pole in the right half s-plane
22. Ans: (a) \& (d)

Sol: $\Rightarrow \omega_{\mathrm{pc}}=\infty$. Hence $\mathrm{GM}=\infty$
$\Rightarrow \angle \phi\left|\omega_{\mathrm{gc}}=-150^{\circ}, \Rightarrow \mathrm{PM}=180^{\circ}+\angle \phi\right| \omega_{\mathrm{gc}}$
$\Rightarrow \mathrm{PM}=180^{\circ}-150^{\circ}=+30^{\circ}$ (finite).
23. Ans: (b) \& (d)

Sol: $G(s) H(s)=\frac{10 \times 5^{2}\left(1+\frac{s}{5}\right)^{2}}{s \times 2\left(1+\frac{s}{2}\right)(10)\left(1+\frac{\mathrm{s}}{10}\right)}$

$$
=\frac{12.5\left(1+\frac{s}{5}\right)^{2}}{s\left(1+\frac{s}{2}\right)\left(1+\frac{s}{10}\right)}
$$

$\left.\mathrm{M}\right|_{\omega=0.1}=20 \log 12.5-20 \log \omega$
$=20 \log 12.5-20 \log 0.1$
$\approx 42 \mathrm{~dB}$

	28	Control Systems

\Rightarrow Slope of the line between $5 \mathrm{rad} / \mathrm{sec}$ to $10 \mathrm{rad} / \mathrm{sec}$ is $0 \mathrm{~dB} / \mathrm{dec}$.
\Rightarrow At high frequency, slope of line is $-20 \mathrm{~dB} / \mathrm{dec}$.

24. Ans: (b) \& (c)

Sol: At any frequency magnitude of the loop transfer function is not unity,
$\therefore \mathrm{PM}=\infty$
System is always stable,

$\therefore \mathrm{GM}=\infty$
25. Ans: (b) \& (c)

Sol: $\mathrm{N}_{0,0}=$ difference between open loop polar and zero
$\mathrm{N}_{0,0}=(2-0)=2$
$\mathrm{N}_{0,0}=2$

Chapter

1. Ans: (a)

Sol: $\mathrm{G}_{\mathrm{C}}(\mathrm{s})=(-1)\left(-\frac{\mathrm{Z}_{2}}{\mathrm{Z}_{1}}\right)$

$$
\begin{aligned}
& =(-1)(-1)\left(\frac{\mathrm{R}_{2}+\frac{1}{\mathrm{sC}}}{\mathrm{R}_{1}}\right) \\
\mathrm{G}_{\mathrm{c}}(\mathrm{~s}) & =\frac{\left(100 \times 10^{3}\right)+\frac{1}{\mathrm{~s} \times 10^{-6}}}{10^{6}} \\
\mathrm{G}_{\mathrm{c}}(\mathrm{~s}) & =\frac{1+0.1 \mathrm{~s}}{\mathrm{~s}}
\end{aligned}
$$

2. Ans: (c)

Sol: $C E \Rightarrow 1+\mathrm{G}_{\mathrm{c}}(\mathrm{s}) \mathrm{G}_{\mathrm{p}}(\mathrm{s})=0$

$$
\begin{aligned}
= & 1+\frac{1+0.1 \mathrm{~s}}{\mathrm{~s}} \times \frac{1}{(\mathrm{~s}+1)(1+0.1 \mathrm{~s})} \\
= & 1+\frac{1+0.1 \mathrm{~s}}{\mathrm{~s}(\mathrm{~s}+1)(1+0.1 \mathrm{~s})}=0 \\
\Rightarrow \mathrm{~s}^{2}+\mathrm{s}+ & 1=0 \Rightarrow \omega_{\mathrm{n}}=1
\end{aligned}
$$

$$
\left.\mathrm{e}^{\left[\frac{-\xi \pi}{\sqrt{1-\xi^{2}}}\right.}\right]_{\xi=0.5}=0.163
$$

$$
M_{p}=16.3 \%
$$

3. Ans: (b)

Sol: T.F $=\frac{\mathrm{k}(1+0.3 \mathrm{~s})}{1+0.17 \mathrm{~s}}$
$\mathrm{T}=0.17, \mathrm{aT}=0.3 \Rightarrow \mathrm{a}=\frac{0.3}{0.17}$
$\mathrm{C}=1 \mu \mathrm{~F}$
$\mathrm{T}=\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \mathrm{C}, \mathrm{a}=\frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{2}}$
$\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}=\frac{0.17}{1 \times 10^{-6}}=170000$
$\frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{2}}=1.764$
$\mathrm{aT}=\mathrm{R}_{1} \mathrm{C}$
$\mathrm{R}_{1}=\frac{\mathrm{aT}}{\mathrm{C}}=\frac{0.3}{\mathrm{C}}=(0.3)\left(10^{6}\right)$

$$
=300 \mathrm{k} \Omega
$$

Bv
$300 \mathrm{k}+\mathrm{R}_{2}-1.76 \mathrm{R}_{2}=0$
$\mathrm{R}_{2}=\frac{300}{0.70}=394.736$

$$
=400 \mathrm{k} \Omega
$$

4. Ans: (d)

Sol: PD controller improves transient stability and PI controller improves steady state stability. PID controller combines the advantages of the above two controllers.

05.

Sol: For $K_{I}=0 \Rightarrow$

$$
\begin{align*}
& \frac{\mathrm{C}(\mathrm{~s})}{\mathrm{R}(\mathrm{~s})}=\frac{\left(\mathrm{K}_{\mathrm{P}}+\mathrm{K}_{\mathrm{D}} \mathrm{~s}\right)}{\mathrm{s}(\mathrm{~s}+1)+\left(\mathrm{K}_{\mathrm{P}}+\mathrm{K}_{\mathrm{D}} \mathrm{~s}\right)} \\
& =\frac{\mathrm{K}_{\mathrm{P}}+\mathrm{K}_{\mathrm{D}} \mathrm{~s}}{\mathrm{~s}^{2}+\left(1+\mathrm{K}_{\mathrm{D}}\right) \mathrm{s}+\mathrm{K}_{\mathrm{P}}} \\
& \omega_{\mathrm{n}}=\sqrt{\mathrm{K}_{\mathrm{P}}} \\
& 2 \xi \omega_{\mathrm{n}}=1+\mathrm{K}_{\mathrm{D}} \\
& \Rightarrow 2(0.9) \sqrt{\mathrm{K}_{\mathrm{P}}}=1+\mathrm{K}_{\mathrm{D}} \\
& \Rightarrow 1.8 \sqrt{\mathrm{~K}_{\mathrm{P}}}=1+\mathrm{K}_{\mathrm{D}} \tag{1}
\end{align*}
$$

Dominant time constant $\frac{1}{\xi \omega_{\mathrm{n}}}=1$

$$
\begin{aligned}
\Rightarrow \omega_{\mathrm{n}}=\frac{1}{0.9} & =1.111 \\
\mathrm{~K}_{\mathrm{P}}=\omega_{\mathrm{n}}^{2} & =1.11^{2} \\
& =1.234
\end{aligned}
$$

From eq. (1),
$\Rightarrow 1.8 \times \frac{1}{0.9}=1+\mathrm{K}_{\mathrm{D}}$
$\Rightarrow K_{D}=1$
06. Ans: (b) \& (d)

Sol: Both PD and lead controller improve transient response of the system.

Chapter 8 State Space Analysis

1. Ans: (a)

Sol: $\mathrm{TF}=\frac{1}{\mathrm{~s}^{2}+5 \mathrm{~s}+6}$

$$
\begin{aligned}
& =\frac{1}{(s+2)(s+3)} \\
& =\frac{1}{s+2}+\frac{-1}{s+3}
\end{aligned}
$$

$\therefore A=\left[\begin{array}{cc}-2 & 0 \\ 0 & -3\end{array}\right] \quad B=\left[\begin{array}{c}1 \\ -1\end{array}\right]$
$C=\left[\begin{array}{ll}1 & 1\end{array}\right]$
02. Ans: (c)

Sol: Given problem is Controllable canonical form.
(or)
$\mathrm{TF}=\mathrm{C}[\mathrm{sI}-\mathrm{A}]^{-1} \mathrm{~B}+\mathrm{D}$

$$
\begin{aligned}
& =\left[\begin{array}{lll}
6 & 5 & 1
\end{array}\right]\left[\begin{array}{ccc}
\mathrm{s} & 1 & 0 \\
0 & \mathrm{~s} & 1 \\
-5 & -3 & \mathrm{~s}+6
\end{array}\right]^{-1}\left[\begin{array}{l}
0 \\
0 \\
3
\end{array}\right] \\
& =\frac{3 \mathrm{~s}^{2}+15 \mathrm{~s}+18}{\mathrm{~s}^{3}+6 \mathrm{~s}^{2}+3 \mathrm{~s}+5}
\end{aligned}
$$

3. Ans: (d)

Sol: $\frac{d^{2} y}{d t^{2}}+\frac{3 d y}{d t}+2 y=u(t)$
$2^{\text {nd }}$ order system hence two state variables are chosen
Let $x_{1}(t), x_{2}(t)$ are the state variables
CCF - SSR
Let $x_{1}(t)=y(t)$
$\mathrm{x}_{2}(\mathrm{t})=\dot{\mathrm{y}}(\mathrm{t})$
Differentiating (1)

$$
\begin{align*}
\dot{\mathrm{x}}_{1}(\mathrm{t}) & =\dot{\mathrm{y}}(\mathrm{t})=\mathrm{x}_{2}(\mathrm{t}) \ldots \ldots \ldots . \\
\dot{\mathrm{x}}_{2}(\mathrm{t}) & =\ddot{\mathrm{y}}(\mathrm{t})=\mathrm{u}(\mathrm{t})-3 \mathrm{y}^{1}(\mathrm{t})-2 \mathrm{y}(\mathrm{t}) \\
& =\mathrm{u}(\mathrm{t})-3 \mathrm{x}_{2}(\mathrm{t})-2 \mathrm{x}_{1}(\mathrm{t}) \ldots \ldots . \tag{4}\\
{\left[\begin{array}{l}
\dot{\mathrm{x}}_{1} \\
\dot{\mathrm{x}}_{2}
\end{array}\right] } & =\left[\begin{array}{rr}
0 & 1 \\
-2 & -3
\end{array}\right]\left[\begin{array}{l}
\mathrm{x}_{1} \\
\mathrm{x}_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] \mathrm{u}(\mathrm{t})
\end{align*}
$$

A
B

From equation 1. The output equation in matrix form
$y(t)=\left[\begin{array}{ll}1 & 0\end{array}\right]\left[\begin{array}{l}X_{1} \\ X_{2}\end{array}\right], \mathrm{D}=0$
04. Ans: (b)

Sol: OCF-SSR
$\left[\begin{array}{l}\dot{x}_{1} \\ \dot{x}_{2}\end{array}\right]=\left[\begin{array}{ll}0 & -2 \\ 1 & -3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]+\left[\begin{array}{l}1 \\ 0\end{array}\right] u(t)$
$y(t)=\left[\begin{array}{ll}0 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$
05. Ans: (c)

Sol: Normal form - SSR
$\mathrm{TF}=\frac{\mathrm{Y}(\mathrm{s})}{\mathrm{G}(\mathrm{s})}=\frac{1}{\mathrm{~s}^{2}+3 \mathrm{~s}+2}=\frac{1}{(\mathrm{~s}+1)(\mathrm{s}+2)}$
\Rightarrow Diagonal canonical form
The eigen values are distinct i.e., $-1 \&-2$.
\therefore Corresponding normal form is called as diagonal canonical form
DCF - SSR
$\frac{Y(s)}{U(s)}=\frac{b_{1}}{s+1}+\frac{b_{2}}{s+2}$
$\mathrm{b}_{1}=1, \mathrm{~b}_{2}=-1$
$Y(s)=\frac{b_{1}}{\underbrace{s+1}_{x_{1}}} U(s)+\frac{b_{2}}{\underbrace{s+2}_{x_{2}}} U(s)$
Let $\mathrm{Y}(\mathrm{s})=\mathrm{X}_{1}(\mathrm{~s})+\mathrm{X}_{2}(\mathrm{~s})$
Where $\mathrm{y}(\mathrm{t})=\mathrm{x}_{1}(\mathrm{t})+\mathrm{x}_{2}(\mathrm{t})$
Where $X_{1}(s)=\frac{b_{1}}{s+1} U(s)$
$\mathrm{s} \mathrm{X}_{1}(\mathrm{~s})+\mathrm{X}_{1}(\mathrm{~s})=\mathrm{b}_{1} \mathrm{U}(\mathrm{s})$
Take Laplace Inverse

$$
\begin{equation*}
\dot{\mathrm{x}}_{1}+\mathrm{x}_{1}=\mathrm{b}_{1} \mathrm{u}(\mathrm{t}) \tag{2}
\end{equation*}
$$

$\mathrm{X}_{2}(\mathrm{~s})=\frac{\mathrm{b}_{2}}{\mathrm{~s}+2} \mathrm{U}(\mathrm{s})$
$\mathrm{s} \mathrm{X}_{2}(\mathrm{~s})+2 \mathrm{X}_{2}(\mathrm{~s})=\mathrm{b}_{2} \mathrm{U}(\mathrm{s})$
Laplace Inverse
$\dot{\mathrm{x}}_{2}+2 \mathrm{x}_{2}=\mathrm{b}_{2} \mathrm{u}(\mathrm{t})$
$\left[\begin{array}{l}\dot{x}_{1} \\ \dot{\mathrm{x}}_{2}\end{array}\right]=\left[\begin{array}{rr}-1 & 0 \\ 0 & -2\end{array}\right]\left[\begin{array}{l}\mathrm{x}_{1} \\ \mathrm{x}_{2}\end{array}\right]+\left[\begin{array}{c}1 \\ -1\end{array}\right] \mathrm{u}(\mathrm{t})$
From (1) output equation.
$y(t)=\left[\begin{array}{ll}1 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$
06. Ans: (c)

$\mathrm{O} / \mathrm{P}_{1} \Rightarrow \mathrm{y}_{1}=\mathrm{V}_{\mathrm{c}}$
$\mathrm{O} / \mathrm{P}_{2} \Rightarrow \mathrm{y}_{2}=\mathrm{R}_{2} \mathrm{i}_{2}$
$\mathrm{y}=\left[\begin{array}{l}\mathrm{y}_{1} \\ \mathrm{y}_{2}\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & \mathrm{R}_{2}\end{array}\right]\left[\begin{array}{c}\mathrm{V}_{\mathrm{c}} \\ \mathrm{i}_{1} \\ \mathrm{i}_{2}\end{array}\right]$
$y=C X$
$\mathrm{C}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & \mathrm{R}_{2}\end{array}\right]$
07. Ans: (a)

Sol: T.F $=\mathrm{C}[\mathrm{sI}-\mathrm{A}]^{-1} \mathrm{~B}+\mathrm{D}$

$$
\begin{aligned}
& =\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{cc}
\mathrm{s}+4 & 1 \\
3 & \mathrm{~s}+1
\end{array}\right]^{-1}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 0
\end{array}\right]_{\frac{1}{\mathrm{~s}^{2}+5 \mathrm{~s}+1}}\left[\begin{array}{cc}
\mathrm{s}+1 & -1 \\
-3 & \mathrm{~s}+4
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& =\frac{1}{\mathrm{~s}^{2}+5 \mathrm{~s}+1}\left[\begin{array}{ll}
1 & 0
\end{array}\right]_{1 \times 2}\left[\begin{array}{cc}
\mathrm{s}+1 & -1 \\
-3 & \mathrm{~s}+4
\end{array}\right]_{2 \times 2}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& =\frac{1}{\mathrm{~s}^{2}+5 \mathrm{~s}+1}\left[\begin{array}{ll}
\mathrm{s}+1 & -1]_{1 \times 2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]_{2 \times 1} \\
=\frac{1}{\mathrm{~s}^{2}+5 \mathrm{~s}+1}[\mathrm{~s}+1-1] \\
=\frac{\mathrm{s}}{\mathrm{~s}^{2}+5 \mathrm{~s}+1}
\end{array}\right. \text { (1)}
\end{aligned}
$$

8. Ans: (c)

Sol: State transition matrix $\phi(\mathrm{t})=\mathrm{L}^{-1}\left[(\mathrm{sI}-\mathrm{A})^{-1}\right]$

$$
\begin{aligned}
& s I-A=\left[\begin{array}{cc}
s+3 & -1 \\
0 & s+2
\end{array}\right] \\
& {[\mathrm{sI}-\mathrm{A}]^{-1}=\frac{1}{(\mathrm{~s}+2)(\mathrm{s}+3)}\left[\begin{array}{cc}
\mathrm{s}+2 & 1 \\
0 & \mathrm{~s}+3
\end{array}\right]} \\
& =\left[\begin{array}{cc}
\frac{1}{s+3} & \frac{1}{(s+2)(s+3)} \\
0 & \frac{1}{s+2}
\end{array}\right] \\
& L^{-1}\left[[s I-A]^{-1}\right]=\left[\begin{array}{cc}
e^{-3 t} & e^{-2 t}-e^{-3 t} \\
0 & e^{-2 t}
\end{array}\right]
\end{aligned}
$$

9. Ans: (b)

Sol: Controllability
$[M]=\left[\begin{array}{llll}B & A B & A^{2} B . . & A^{n-1} B\end{array}\right]$
$\mathrm{AB}=\left[\begin{array}{cc}0 & 1 \\ -2 & -3\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{c}1 \\ -3\end{array}\right]$
$\mathrm{M}=\left[\begin{array}{cc}0 & 1 \\ 1 & -3\end{array}\right]$
$|\mathrm{M}|=-1 \neq 0$ (Controllable)

Observability

$[N]=\left[C^{T} \quad A^{T} C^{T} \ldots\left(A^{T}\right)^{n-1} C^{T}\right]$
$A^{T} C^{T}=\left[\begin{array}{ll}0 & -2 \\ 1 & -3\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}-2 \\ -2\end{array}\right]$
$\mathrm{N}=\left[\begin{array}{ll}1 & -2 \\ 1 & -2\end{array}\right]$
$|\mathrm{N}|=0$ (Not observable)
10. Ans: (c)

Sol: According to Gilberts test the system is controllable and observable.
11. Ans: (c)

Sol: $\frac{Y(s)}{U(s)}=\frac{b_{1} s^{2}+b_{2} s+b_{3}}{s^{3}+a_{1} s^{2}+a_{2} s+a_{3}}$
at node $\dot{\mathrm{x}}_{1}$
$\dot{\mathrm{x}}_{1}=-\mathrm{a}_{1} \mathrm{x}_{1}-\mathrm{a}_{2} \mathrm{x}_{2}-\mathrm{a}_{3} \mathrm{x}_{3}$
at $\dot{x}_{2}=x_{1} \& \dot{x}_{3}=x_{2}$
$\therefore\left[\begin{array}{l}\dot{\mathrm{x}}_{1} \\ \dot{\mathrm{x}}_{2} \\ \dot{\mathrm{x}}_{3}\end{array}\right]=\left[\begin{array}{ccc}-\mathrm{a}_{1} & -\mathrm{a}_{2} & -\mathrm{a}_{3} \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]=\left[\begin{array}{l}\mathrm{x}_{1} \\ \mathrm{x}_{2} \\ \mathrm{x}_{3}\end{array}\right]$
$\therefore A=\left[\begin{array}{ccc}-\mathrm{a}_{1} & -\mathrm{a}_{2} & -\mathrm{a}_{3} \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$
12.

Sol: The given state space equations:
$\dot{\mathrm{X}}=\mathrm{X}_{2}$
$\dot{\mathrm{X}}_{2}=\mathrm{X}_{3}-\mathrm{u}_{1}$
$\dot{X}_{3}=-2 \mathrm{X}_{2}-3 \mathrm{X}_{3}+\mathrm{u}_{2}$
and output equations are :
$\mathrm{Y}_{1}=\mathrm{X}_{1}+3 \mathrm{X}_{2}+2 \mathrm{u}_{1}$

The given state space equations in matrix for

$$
\begin{aligned}
& {\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{\mathrm{X}}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -2 & -3
\end{array}\right]_{332}\left[\begin{array}{l}
\mathrm{X}_{1} \\
\mathrm{X}_{2} \\
\mathrm{X}_{3}
\end{array}\right]_{3121}+\left[\begin{array}{cc}
0 & 0 \\
-1 & 0 \\
0 & 1
\end{array}\right]_{332}\left[\begin{array}{l}
\mathrm{u}_{1} \\
\mathrm{u}_{2}
\end{array}\right]_{24}} \\
& {\left[\begin{array}{l}
\mathrm{Y}_{1} \\
\mathrm{Y}_{2}
\end{array}\right]\left[\begin{array}{lll}
1 & 3 & 0 \\
0 & 1 & 0
\end{array}\right]_{2 \times 3}\left[\begin{array}{l}
\mathrm{X}_{1} \\
\mathrm{X}_{2} \\
\mathrm{X}_{3}
\end{array}\right]_{31}+\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right]_{222}\left[\begin{array}{l}
\mathrm{u}_{1} \\
\mathrm{u}_{2}
\end{array}\right]_{21}}
\end{aligned}
$$

Where A: State matrix
B: Input matrix
C: Output matrix
D: Transition matrix
Characteristic equation
$|\mathrm{sI}-\mathrm{A}|=0$
$\left[\begin{array}{ccc}\mathrm{s} & 0 & 0 \\ 0 & \mathrm{~s} & 0 \\ 0 & 0 & \mathrm{~s}\end{array}\right]-\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3\end{array}\right]$
$\Rightarrow\left|\begin{array}{ccc}\mathrm{S} & -1 & 0 \\ 0 & \mathrm{~S} & -1=0 \\ 0 & 2 & \mathrm{~S}+3\end{array}\right|$
$\Rightarrow \mathrm{s}[\mathrm{s}(\mathrm{s}+3)+2]+1(0)=0$
$\Rightarrow \mathrm{s}\left(\mathrm{s}^{2}+3 \mathrm{~s}+2\right)=0$
$\Rightarrow \mathrm{s}(\mathrm{s}+1)(\mathrm{s}+2)=0$
The roots are $0,-1,-2$.
13. Ans: (a) \& (b)

Sol: (a) \rightarrow state model is in controllable canonical form
(b) \rightarrow state model is in observable canonical form

