

CIVIL ENGINEERING

Construction Planning & Management and Construction Materials

Text Book & Workbook: Theory with worked out Examples and Practice Questions

Construction Material & Management

(Solutions for Text Book Practice Questions)

ACE

CIVIL-Postal Coaching Solutions

06. Ans: (b)

 \therefore Earliest start time for activity 5 - 6 = 9 days

27 days is earliest expected completion

02. Ans: (b)

Sol: $t_0 = 8 \min$, $t_{\rm m} = 10$

$$= 10 \text{ mm}, \quad t_p = 14 \text{ mm}$$

$$t_{\rm E} = \frac{t_0 + 4t_m + t_p}{6} = \frac{8 + 4(10) + 14}{6} = 10.33 \text{ min}$$

03. Ans: (a)

Sol: Given $T_s = 27$ days From the network given $T_E = 23$ days $\sigma = \sqrt{2^2 + 2.8^2 + 2^2} = 3.98 \approx 4$ $Z = \frac{T_{\rm s} - T_{\rm E}}{\sigma} = \frac{27 - 23}{4} = 1$ For Z = 1P = 0.84105. Ans: (c) **Sol:** $t_E = 36$ days $\sigma^2 = 4 \Rightarrow \sigma = 2$ $T_s = 36 \text{ days}$ $Z = \frac{T_{\rm s} - T_{\rm E}}{\sigma} = \frac{36 - 36}{2} = 0;$ $Z = 0 \implies 50\%$ probability

Sol:
$$\sigma = \sqrt{\text{sum of variances of critical path}}$$

 $\sigma = \sqrt{4 + 16 + 4 + 1}$

$$=\sqrt{25}$$

 $\sigma = 5$ units

Regular Live Doubt clearing Sessions | Free Online Test Series | ASK an expert ace online Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

Engineering Publications	3	Construction Material & Management	
07. Ans: (d)		19. Ans : (b)	
Sol: Given , $\sigma^2 = 4 \Rightarrow \sigma = 2$;	Sol: $Z = 1.647$ for 95%	
$T_s = 24 \text{ days}$		$\sigma^2 = 9$ weeks $\sigma = 3$	
$T_{E} = ?$		$T_{\varepsilon} = 70$ weeks	
From the given network diagram, $T_E = 20$		$T_{s} = ?$	
days		$T_{s} - T_{e}$	
$T_{\rm s} - T_{\rm s} - T_{\rm E} = 24 - 20 = 2$		$Z = \frac{\sigma}{\sigma}$	
$\Sigma = \frac{1}{\sigma} = \frac{1}{2} = 2$		$-1.647 - T_s - 70$	
For $Z = 2$, probability of completion = 97.7%	Ď	$1.047 = \frac{3}{3}$	
		$T_s = 70 + 4.941 = 74.94$ weeks	
13. Ans: (a)	ERIA	NG A	
Sol: $t_{p} = \frac{t_{o} + 4t_{L} + t_{p}}{4t_{L} + t_{p}}$		20. Ans : (d)	
6 4		Sol: Activity $T_E \sigma$	
$=\frac{8+4\times9+13}{2}=9.5$		10 – 20 5.5 1.167	
6		20-30 0 0	
Variance, $\sigma^2 = \left(\frac{t_p - t_o}{t_p}\right)^2 = \left(\frac{13 - 8}{t_p}\right)^2$		30 - 40 6 1	
		40-50 8.5 1.167	
$\sigma^2 = \frac{25}{36}$		$(10) \xrightarrow{5.5} (20) \xrightarrow{0} (40) \xrightarrow{8.5} (50)$	
50			
18. Ans: (*)		0	
Sol: $t_0 = 9$ days	ce	6	
$t_p = 21 \text{ days}$		30	
$t_m = 15 \text{ days}$			
$T_s = 13 \text{ days}$		Total duration = $5.5 + 6 + 8.5$	
$t_0 + 4t_m + t_n = 9 + 4(15) + 21$		= 20 days	
$t_{\rm E} = \frac{6}{6} = \frac{15}{6} = 15$ days		Standard deviation = $\sqrt{1.167^2 + 1^2 + 1.167^2}$	
$t_{p} - t_{o} = 15 - 9$		= 1.93	
$6 = \frac{6}{6} = \frac{6}{6} = 1$ day		1.75	
$Z = \frac{t_{s} - t_{e}}{\sigma} = \frac{13 - 15}{1} = -2$			
For $Z = -2$, probability $\approx 2.30\%$			
India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exan			
Enjoy a smooth onlin	Enjoy a smooth online learning experience in various languages at your convenience		

ACE Engineering Publications

4

CIVIL-Postal Coaching Solutions

22. Ans: (d)

Project duration = 7 + 13 + 14.5 = 34.5

$$\sigma_{cp} = \sqrt{\left(\frac{8-6}{6}\right)^2 + \left(\frac{18-12}{6}\right)^2 + \left(\frac{18-9}{6}\right)^2}$$
$$= \sqrt{\left(\frac{1}{3}\right)^2 + 1 + \left(\frac{3}{2}\right)^2}$$
$$= \sqrt{\frac{1}{9} + 1 + \frac{9}{4}}$$
$$= \sqrt{\frac{4+36+81}{36}} = \frac{11}{6}$$

06. Project Crashing & Resource Allocation

11. Ans: (a)

Sol:

Week	Parallel	Total Resource
week	Activities	Load
9 th	А	6
11 th	A + B	6 + 4 = 10
13 th	A + B+ D	6 + 4 + 7 = 17
15 th	A + B + C + D	6+4+3+7=20

From the above, the maximum resource load per week is 20

12. Ans: (a)

From the given diagram, on the 21^{st} & 22^{nd} day three concurrent activities are there with a total resources of 6 + 7 + 9 = 22.

Minimum resource occurs when only one activity exists. In the present case it is 6 per day.

 \therefore Maximum resources is 22 and minimum is 6

A ace online

Regineering Publications	7	Construction Material & Management	
03. Ans: (d)		06. Ans: (a)	
Sol: i = 14%		Sol: i = 18%	
n = 10 years		n = 10 years	
Equal payment series sinking found factor		F = Rs. 20000	
$(A/F, i, n) = \left[\frac{i}{(1+i)^n - 1}\right]$		$P = F\left[\frac{1}{(1+i)^n}\right] = 20000\left[\frac{1}{(1.18)^{10}}\right]$	
$= \left[\frac{0.14}{(1+0.14)^{10}-1}\right]$		P = Rs. 3821	
0.14 0.051		07. Ans: (a)	
$=\frac{1}{2.707}=0.051$	ERI	Sol: P = ?	
IGINE	ENU	A = 10,00,000	
04. Ans: (a)		i = 18%	
Sol: P = Rs. 20,000		n = 20 years	
i = 14%		$\mathbf{p} = \mathbf{A} \left[(1+i)^n - 1 \right] = 1000000 \left[(1+0.18)^{20} - 1 \right]$	
n = 5 years		$\mathbf{F} = A \left[\frac{1}{\mathbf{i}(1+\mathbf{i})^n} \right] = 1000000 \left[\frac{1}{0.18(1.18)^{20}} \right]$	
$A = P\left[\frac{i(1+i)^n}{(1+i)^n - 1}\right]$		= Rs. 53,52,746 Given initial outlay of project = Rs. 5000000	
$= 20,000 \left[\frac{0.14(1.14)^5}{(1.14)^5 - 1} \right]$		Present worth of the project = $53,52,746 - 50,00,000$ = Rs 3 52 746	
A = Rs. 5825	ce 1	995	
		09. Ans: (d)	
05. Ans: (c)		Sol: 23000 36000	
Sol: P = 10,000			
n = 5 years		0	
F = 20,000		1 2	
i = ?		50000	
$\mathbf{F} = \mathbf{P}(1+\mathbf{i})^{\mathbf{n}}$		50000	
$20000 = 10000 (1 + i)^5$		Net present value	
$(2)^{1/5} = 1 + i$		= -50000 + 23000 (P/F, 16%, 1) + 36000	
i = 1.14 - 1		(P/F, 16%, 2)	
$i = 0.14 \approx 14\%$		=-50000 + 19827 + 26753 = -3420	
India's Best Online Coaching Platfor	India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams		
Enjoy a smooth online	Enjoy a smooth online learning experience in various languages at your convenience		

A ace online

Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

Engineering Publications	9	Construction Material & Management	
20. Ans: (a)		24. Ans: (c)	
Sol: Compound Quarterly		Sol: Initial cost = P	
(Interest added to principal every Quarter)		Salvage value = SV	
For 2 years = 24 months, $R = 10\%$ p.a		Annual depreciation	
R = 10% per annum		P = SV (P = 0.4P) 0.6P	
R = 2.5% per quarterly (3 months)		$=\frac{1-5}{n}=\frac{(1-5)(1-5)}{5}=\frac{5}{5}$	
Rs.1000 After 2 years.		Annual accounting rate of return	
Amount = $1000 \times (102.5\%)^8$		Amual accounting fait of fetum	
$= 1000 \times (1.025)^8$		$= \frac{\text{Annual savings} - \text{Annual depreciation}}{\text{Initial cost}}$	
= 1000 × 1.2184		initial cost	
Amount ≈ 1218.4		$50000 - \frac{0.6P}{10000}$	
GINE	EKI	$G_{0.2} = \frac{5}{2}$	
21. Ans: (c)		P-	
2 2		$0.2P = 50000 - \frac{0.6P}{5}$	
Sol: $d = \frac{2}{n} = \frac{2}{5}$		5	
$\mathbf{BV} = \mathbf{P} \left(1 - \mathbf{d} \right)^{\mathrm{m}}$		$0.2P = \frac{5 \times 50000 - 0.6P}{0.2}$	
$\mathbf{D}\mathbf{v}_{\mathrm{m}} = 1 (1 + \mathbf{u})$		5	
$= 200000 \left(1 - \frac{2}{2}\right)^{2}$		$1.6P = 5 \times 50000$	
		P = 1,56,250	
= 72,000		Cost of two machines = 2×156250	
		= 3,12,500/-	
22. Ans: (b)			
Sol: SFF = $\frac{i}{2}$ = $\frac{0.04}{5}$ Sin	ce 1	25. Ans: (c)	
$(1+i)^n - 1$ $(1+0.04)^3 - 1$		Sol: Annual depreciation = $\frac{10000 - 1000}{1000}$	
= 0.184		5	
		= 1800	
23. Ans: (c)		Book value = $10000 - (1800 \times 2)$	
Sale Annual demonistion 25000-1600		= Rs. 6400	
Sol: Annual deprectation = $\frac{8}{8}$			
= 2925			
Residual book value at beginning of 6 th year			
$= 25000 - (2925 \times 5)$			
= 10375			
India's Best Online Coaching Platfor	India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams		
Conline Enjoy a smooth onlin	Enjoy a smooth online learning experience in various languages at your convenience		

CIVIL-Postal Coaching Solutions

ACE Engineering Publications

08. Construction Contracts and Tendering

04. Ans: (a)

Sol: In cost plus fixed fee contract, the owner pays the contractor an agreed amount over and above the documented cost of work

05. Ans: (a)

Sol:

- Guaranteed maximum price contract is a cost-type contract where the contractor is compensated for actual costs incurred plus a fixed fee subject to ceiling price.
- Savings, if any, are returned to the owner.
- It is different from lump-sum contract where cost savings are retained by contractor.

07. Ans: (c)

Sol: Turn key contract:

An agreement under which a contractor completes a project, then hands it over in fully operational form to the client, which needs nothing to do but 'turn a key' to set it in motion.

Generally 'turnkey' refers to ready for immediate use.

08. Ans: (d)

Sol: When work is to be completed very quickly (or) no contractor prefers to accept the work (The tender is floated) then a notice with

short duration is again published by the client. Such a tender notice is called 'Short tender notice'. The terms and conditions remain the same as that of ordinary tender notice.

09. Ans: (b)

Sol: Limited or Closed tender:

In limited tenders, only pre-qualified bidders are allowed to participate. These tenders are not advertised in newspapers.

11. Ans: (a)

Sol: Earnest money deposit (E.M.D)

While submitting a tender the contractor is to deposit a certain amount, about 2% of the contract value, as EMD as guarantee of the tender. The amount is for a check so that the contractor may not refuse to accept the work or run away when his tender is accepted.

12. Ans: (b)

Sol: Security deposit:

On acceptance of the tender, the contractor has to deposit 10% of the tendered amount as security deposit which is inclusive of the earnest money already deposited.

It is refunded to the contractor after the satisfactory completion of the whole work after a specified time (generally after maintenance period).

 Regular Live Doubt clearing Sessions
 |
 Free Online Test Series | ASK an expert

 Affordable Fee
 |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

10