GATE I PSUs

Construction Planning \& Management and Construction Materials

Text Book \& Workbook: Theory with worked out Examples and Practice Questions

Construction Material \& Management

(Solutions for Text Book Practice Questions)

03. Construction Project Scheduling

7. Ans: 13 weeks

Sol:

Total completion time of period $=13$ weeks

28. Ans: (c)

Sol:

2 dummy activities are required in AOA diagram.
29. Ans: (c)

Sol:

04. CPM Network
03. Ans: (c)

Critical Path
1-3-7-9-10
Critical path duration $=1+3+7+9+10$
$=30$ days
04. Ans: (c)

Sol:

Path
1-2-4-7-9
1-3-5-7-9
1-3-6 -8 -9
\therefore Critical path is 1-3-6-8-9

ACE	2	CIVIL-Postal Coaching Solutions

6. Ans: (b)

Sol:

\therefore Earliest start time for activity $5-6=9$ days
08. Ans: (b)

Sol:

27 days is earliest expected completion
10. Ans: (c)

Sol :

Total float $=15-9=6$
Free float $=22-12-9=1$

05. PERT Network

2. Ans: (b)

Sol: $\mathrm{t}_{0}=8 \mathrm{~min}, \quad \mathrm{t}_{\mathrm{m}}=10 \mathrm{~min}, \quad \mathrm{t}_{\mathrm{p}}=14 \mathrm{~min}$
$\mathrm{t}_{\mathrm{E}}=\frac{\mathrm{t}_{0}+4 \mathrm{t}_{\mathrm{m}}+\mathrm{t}_{\mathrm{p}}}{6}=\frac{8+4(10)+14}{6}=10.33 \mathrm{~min}$
03. Ans: (a)

Sol: Given $T_{S}=27$ days
From the network given $T_{E}=23$ days
$\sigma=\sqrt{2^{2}+2.8^{2}+2^{2}}=3.98 \simeq 4$
$\mathrm{Z}=\frac{\mathrm{T}_{\mathrm{S}}-\mathrm{T}_{\mathrm{E}}}{\sigma}=\frac{27-23}{4}=1$
For $Z=1$
$\mathrm{P}=0.841$
05. Ans: (c)

Sol: $\mathrm{t}_{\mathrm{E}}=36$ days

$$
\sigma^{2}=4 \Rightarrow \sigma=2
$$

$\mathrm{T}_{\mathrm{S}}=36$ days
$\mathrm{Z}=\frac{\mathrm{T}_{\mathrm{S}}-\mathrm{T}_{\mathrm{E}}}{\sigma}=\frac{36-36}{2}=0$;
$\mathrm{Z}=0 \Rightarrow 50 \%$ probability
06. Ans: (c)

Sol: $\sigma=\sqrt{\text { sum of variances of critical path }}$

$$
\begin{aligned}
\sigma & =\sqrt{4+16+4+1} \\
& =\sqrt{25} \\
\sigma & =5 \text { units }
\end{aligned}
$$

	Regular Live Doubt clearing Sessions \| Free Online Test Series	ASK an expert			
online	Affordable Fee \| Available 1M	3M	6M	12M	18M and 24 Months Subscription Packages

N. ACE	3	Construction Material \& Management

07. Ans: (d)

Sol: Given , $\sigma^{2}=4 \Rightarrow \sigma=2$
$\mathrm{T}_{\mathrm{S}}=24$ days
$\mathrm{T}_{\mathrm{E}}=$?
From the given network diagram, $\mathrm{T}_{\mathrm{E}}=20$
days
$\mathrm{Z}=\frac{\mathrm{T}_{\mathrm{S}}-\mathrm{T}_{\mathrm{E}}}{\sigma}=\frac{24-20}{2}=2$
For $Z=2$, probability of completion $=97.7 \%$

13. Ans: (a)

Sol: $\mathrm{t}_{\mathrm{E}}=\frac{\mathrm{t}_{\mathrm{o}}+4 \mathrm{t}_{\mathrm{L}}+\mathrm{t}_{\mathrm{P}}}{6}$

$$
=\frac{8+4 \times 9+13}{6}=9.5
$$

Variance, $\sigma^{2}=\left(\frac{\mathrm{t}_{\mathrm{p}}-\mathrm{t}_{\mathrm{o}}}{6}\right)^{2}=\left(\frac{13-8}{6}\right)^{2}$

$$
\sigma^{2}=\frac{25}{36}
$$

18. Ans: (*)

Sol: $\mathrm{t}_{\mathrm{o}}=9$ days
$t_{p}=21$ days
$\mathrm{t}_{\mathrm{m}}=15$ days
$\mathrm{T}_{\mathrm{S}}=13$ days
$\mathrm{t}_{\mathrm{E}}=\frac{\mathrm{t}_{0}+4 \mathrm{t}_{\mathrm{m}}+\mathrm{t}_{\mathrm{p}}}{6}=\frac{9+4(15)+21}{6}=15$ days
$\sigma=\frac{\mathrm{t}_{\mathrm{p}}-\mathrm{t}_{\mathrm{o}}}{6}=\frac{15-9}{6}=1$ day
$\mathrm{Z}=\frac{\mathrm{t}_{\mathrm{s}}-\mathrm{t}_{\mathrm{e}}}{\sigma}=\frac{13-15}{1}=-2$
For $Z=-2, \quad$ probability $\approx 2.30 \%$

19. Ans: (b)

Sol : $\quad Z=1.647$ for 95%
$\sigma^{2}=9$ weeks $\quad \sigma=3$
$\mathrm{T}_{\varepsilon}=70$ weeks
$\mathrm{T}_{\mathrm{s}}=$?
$\mathrm{Z}=\frac{\mathrm{T}_{\mathrm{s}}-\mathrm{T}_{\varepsilon}}{\sigma}$
$1.647=\frac{\mathrm{T}_{\mathrm{s}}-70}{3}$
$\mathrm{T}_{\mathrm{s}}=70+4.941=74.94$ weeks
20. Ans : (d)

Sol: Activity $\quad T_{E} \quad \sigma$

$10-20$	5.5	1.167
$20-30$	0	0
$30-40$	6	1
$40-50$	8.5	1.167

$$
\begin{aligned}
\text { Total duration } & =5.5+6+8.5 \\
& =20 \text { days }
\end{aligned}
$$

Standard deviation $=\sqrt{1.167^{2}+1^{2}+1.167^{2}}$

$$
=1.93
$$

22. Ans: (d)

$\mathrm{t}_{\mathrm{E}}=\frac{\mathrm{t}_{\mathrm{o}}+4 \mathrm{t}_{\mathrm{m}}+\mathrm{t}_{\mathrm{p}}}{6}$
$t_{E}=\frac{6+4(7)+8}{6}=7$
$\mathrm{t}_{\mathrm{E}}=\frac{12+4(12)+18}{6}=13$
$\mathrm{t}_{\mathrm{E}}=\frac{9+4(15)+18}{6}=\frac{29}{2}$
Project duration $=7+13+14.5=34.5$

$$
\begin{aligned}
& \sigma_{\mathrm{cp}}=\sqrt{\left(\frac{8-6}{6}\right)^{2}+\left(\frac{18-12}{6}\right)^{2}+\left(\frac{18-9}{6}\right)^{2}} \\
& =\sqrt{\left(\frac{1}{3}\right)^{2}+1+\left(\frac{3}{2}\right)^{2}} \\
& =\sqrt{\frac{1}{9}+1+\frac{9}{4}} \\
& =\sqrt{\frac{4+36+81}{36}}=\frac{11}{6}
\end{aligned}
$$

06. Project Crashing \& Resource Allocation

11. Ans: (a)

Sol:

Week	Parallel Activities	Total Resource Load
$9^{\text {th }}$	A	6
$11^{\text {th }}$	$\mathrm{A}+\mathrm{B}$	$6+4=10$
$13^{\text {th }}$	$\mathrm{A}+\mathrm{B}+\mathrm{D}$	$6+4+7=17$
$15^{\text {th }}$	$\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}$	$6+4+3+7=20$

From the above, the maximum resource load per week is 20
12. Ans: (a)

Sol:

From the given diagram, on the $21^{\text {st }} \& 22^{\text {nd }}$ day three concurrent activities are there with a total resources of $6+7+9=22$.

Minimum resource occurs when only one activity exists. In the present case it is 6 per day.
\therefore Maximum resources is 22 and minimum is 6

| ace | Regular Live Doubt clearing Sessions \| Free Online Test Series | ASK an expert |
| :--- | :---: |
| | Online |

15. Ans: (b)

Sol:

$$
\mathrm{A}-\mathrm{D}-\mathrm{F}
$$

Activities E \& D should be crashed by one day to reduce project duration by one day.
\therefore Minimum amount to be spent to reduce the project duration by 1 day $=40+20$

$$
=\text { Rs. } 60
$$

19. Ans: (c)

Sol:

Number of activities that need to be crashed to reduce project duration by one day is 3
21. Ans: (d)

Sol:

Day	Parallel Activities	Total resource load
$1^{\text {st }}$	$\mathrm{A}+\mathrm{C}+\mathrm{D}$	$6+4+8=18$
$5^{\text {th }}$	$\mathrm{B}+\mathrm{C}+\mathrm{D}$	$5+4+8=17$
$6^{\text {th }}$	$\mathrm{B}+\mathrm{C}+\mathrm{E}$	$5+4+2=11$
$11^{\text {th }}$	E	
Maximum resource in a day $=18$ units.		

Maximum resource in a day $=18$ units.
22. Ans: (a)

Sol: On $11^{\text {th }}$ day, activities
$\mathrm{B}-\mathrm{E}, \mathrm{B}-\mathrm{F} \& \mathrm{D}-\mathrm{E}$ are under execution.
Total resources $=6+5+10=21$
On $16^{\text {th }}$ day, activities
$\mathrm{C}-\mathrm{F} \& \mathrm{E}-\mathrm{F}$ are in progress.
Total resources $=4+6=10$
23. Ans: (c)

Sol:

The time corresponding to the minimum direct cost for each activity is shown in the above network. The total optimum duration is $9+7+4$ $=20$ days

25. Ans: (c)

Sol: Task involved of fixing timber formwork $=$ 160 sq.m

Time required for completion $=4$ days $(8$ hrs/day)

$$
\Rightarrow 4 \times 8=32 \mathrm{hrs}
$$

Team consists of 2 skilled \& 1 unskilled worker

Rate of work $=1.25$ sq.m/team $/ \mathrm{hr}$
Number of workers required $=\frac{160}{32 \times 1.25}=4$
26. Ans: (a)

Sol: Quantity of excavation work $=3000 \mathrm{~m}^{3}$
Output of a man $=100 \mathrm{~m}^{3} /$ day
6 men are employed

ACE	6	CIVIL-Postal Coaching Solutions

$$
\begin{aligned}
\text { Duration of excavation activity } & =\frac{3000}{100 \times 6} \\
& =5 \text { days }
\end{aligned}
$$

27. Ans: (a)

Sol:

Average number of workers/day
$=\frac{1}{2} \times 0.2 \times 40+0.7 \times 40+\frac{1}{2} \times 0.1 \times 40$

$$
=34
$$

Working time/week $=$ over time \times number of
working days $=1.5 \times 5=6.5$ days
No. of man days available $=6.5 \times 34=221$
No. of man days required $=1200$
No. of weeks required $=\frac{1200}{221}$

$$
=5.42 \simeq 5.5 \text { weeks }
$$

28. Ans: (c)

Sol: Labour cost $=100 \times \frac{20}{100}=20 \mathrm{Cr}$
Non-productive cost $=\frac{60}{100} \times 20=12 \mathrm{cr}$
Productive cost $=\frac{40}{100} \times 20=8 \mathrm{cr}$
15% of wastage resulting from Nonproductive time is eliminated

$$
=\frac{15}{100} \times 12=1.8 \mathrm{cr}
$$

$\%$ of saving $=\frac{1.8}{8} \times 100=22.5 \%$
29. Ans: (b)

Sol: Crew : 2 carpenters
1 helper
Hourly rate of crew $=(2 \times 85+69.5)=239.5$
Average hourly rate per worker $=\frac{239.5}{3}$

$$
=79.83 \simeq 80
$$

07. Engineering Economics and Depreciation

1. Ans: (a)

Sol: $\mathrm{P}=$ Rs. 1000
$\mathrm{i}=12 \%$
$\mathrm{n}=5$ years
$\mathrm{F}=\mathrm{P}(1+\mathrm{i})^{\mathrm{n}}=1000(1+0.12)^{5}$
$=$ Rs. 1762.34

02. Ans: (b)

Sol: i = 18\%
$\mathrm{n}=10$ years
Equal payment series compound amount factor (F/A, i, n)

$$
\begin{aligned}
& =\left[\frac{(1+\mathrm{i})^{\mathrm{n}}-1}{\mathrm{i}}\right] \\
& =\left[\frac{(1+0.18)^{10}-1}{0.18}\right]=\frac{4.23}{0.18}=23.52
\end{aligned}
$$

N. ACE	7	Construction Material \& Management

03. Ans: (d)

Sol: $\mathrm{i}=14 \%$
$\mathrm{n}=10$ years
Equal payment series sinking found factor

$$
\begin{aligned}
(\mathrm{A} / \mathrm{F}, \mathrm{i}, \mathrm{n}) & =\left[\frac{\mathrm{i}}{(1+\mathrm{i})^{\mathrm{n}}-1}\right] \\
& =\left[\frac{0.14}{(1+0.14)^{10}-1}\right] \\
& =\frac{0.14}{2.707}=0.051
\end{aligned}
$$

04. Ans: (a)

Sol: P = Rs. 20,000
$\mathrm{i}=14 \%$
$\mathrm{n}=5$ years
$A=P\left[\frac{i(1+i)^{n}}{(1+i)^{n}-1}\right]$
$=20,000\left[\frac{0.14(1.14)^{5}}{(1.14)^{5}-1}\right]$
$\mathrm{A}=$ Rs. 5825
05. Ans: (c)

Sol: $\mathrm{P}=10,000$
$\mathrm{n}=5$ years
$\mathrm{F}=20,000$
$\mathrm{i}=$?
$\mathrm{F}=\mathrm{P}(1+\mathrm{i})^{\mathrm{n}}$
$20000=10000(1+i)^{5}$
(2) ${ }^{1 / 5}=1+\mathrm{i}$
$\mathrm{i}=1.14-1$
$\mathrm{i}=0.14 \approx 14 \%$

06. Ans: (a)

Sol: $\mathrm{i}=18 \%$
$\mathrm{n}=10$ years
F = Rs. 20000
$\mathrm{P}=\mathrm{F}\left[\frac{1}{(1+\mathrm{i})^{\mathrm{n}}}\right]=20000\left[\frac{1}{(1.18)^{10}}\right]$
$\mathrm{P}=$ Rs. 3821
07. Ans: (a)

Sol: $\mathrm{P}=$?

$$
\begin{aligned}
& A=10,00,000 \\
& i=18 \% \\
& n=20 \text { years }
\end{aligned}
$$

$\mathrm{P}=\mathrm{A}\left[\frac{(1+\mathrm{i})^{\mathrm{n}}-1}{\mathrm{i}(1+\mathrm{i})^{\mathrm{n}}}\right]=1000000\left[\frac{(1+0.18)^{20}-1}{0.18(1.18)^{20}}\right]$

$$
=\text { Rs. } 53,52,746
$$

Given initial outlay of project $=$ Rs. 5000000
Present worth of the project

$$
\begin{aligned}
& =53,52,746-50,00,000 \\
& =\text { Rs. } 3,52,746
\end{aligned}
$$

09. Ans: (d)

Sol:

Net present value
$=-50000+23000(\mathrm{P} / \mathrm{F}, 16 \%, 1)+36000$
(P/F, 16\%, 2)
$=-50000+19827+26753=-3420$

(1) ACE	8	CIVIL-Postal Coaching Solutions

11. Ans: (B should be selected)

Sol: Present worth of A at $\boldsymbol{i}=\mathbf{1 8 \%}$. The cash flow diagram of proposal A is shown in Fig

Present worth of 'A' $\left(\mathrm{PW}_{\mathrm{A}}\right)$

$$
\begin{aligned}
& \text { PWA }(18 \%)=-10,000+3,000(\mathrm{P} / \mathrm{F}, 18 \%, 1) \\
& \quad+3,0000(\mathrm{P} / \mathrm{F}, 18 \%, 2)+7,000(\mathrm{P} / \mathrm{F}, 18 \%, 3) \\
& \quad+6,000(\mathrm{P} / \mathrm{F}, 18 \%, 4) \\
& =-10,000+3,000(0.8475)+3,000(0.7182) \\
& \quad+7.000(0.6086)+6,000(0.5158) \\
& =\text { Rs. } 2,052.10
\end{aligned}
$$

Present worth of B at $\boldsymbol{i}=\mathbf{1 8 \%}$. The cash flow diagram of proposal B is shown in Fig

Present worth of ' B ' $\left(\mathrm{PW}_{\mathrm{B}}\right)$
$\operatorname{PWB}(18 \%)=-10,000+6,000(\mathrm{P} / \mathrm{F}, 18 \%, 1)$
$+6,0000(\mathrm{P} / \mathrm{F}, 18 \%, 2)+3,000(\mathrm{P} / \mathrm{F}, 18 \%, 3)$
$+3,000(\mathrm{P} / \mathrm{F}, 18 \%, 4)$
$=-10,000+6,000(0.8475)+6,000(0.7182)$
$+3.000(0.6086)+3,000(0.5158)$
= Rs. 2,767.40
The present worth of B is greater than the present worth of A. Hence, B is the best choice.

14. Ans: (a)

Sol:

$$
\begin{aligned}
& \mathrm{P}= \frac{5000}{(1+0.1)}+\frac{5000}{(1+0.1)^{2}}+\frac{5000}{(1+0.1)^{2}} \\
&=5000 \times 0.909+5000 \times 0.826+5000 \times \\
& \quad 0.7511 \\
&=12431 /-
\end{aligned}
$$

19. Ans: (b)

Sol:

$\mathrm{R}=12 \%$ р. a
$\mathrm{R}=12 \%$ per annum (12 months)
$\mathrm{R}=3 \%$ per Quarterly (3 months)
Effective rate of interest when compounded Quarterly is

3	3 mon ths	mon ths	mon ths	mon ths
3%	3%	3%	3%	

$103 \% \times 103 \% \times 103 \% \times 103 \%$
$=\frac{10609}{10000} \times \frac{10609}{10000} \approx \frac{112550}{100} \approx 112.6 \%=12.6 \%$

Regular Live Doubt clearing Sessions | Free Online Test Series | ASK an expert
Affordable Fee \| Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

(1) ACE	9	Construction Material \& Management

20. Ans: (a)

Sol: Compound Quarterly
(Interest added to principal every Quarter)
For 2 years $=24$ months, $\mathrm{R}=10 \%$ p.a
$\mathrm{R}=10 \%$ per annum
$\mathrm{R}=2.5 \%$ per quarterly (3 months)
Rs. 1000 After 2 years.

$$
\begin{aligned}
\text { Amount } & =1000 \times(102.5 \%)^{8} \\
& =1000 \times(1.025)^{8} \\
& =1000 \times 1.2184
\end{aligned}
$$

Amount ≈ 1218.4
21. Ans: (c)

Sol: $\mathrm{d}=\frac{2}{\mathrm{n}}=\frac{2}{5}$

$$
\begin{aligned}
B V_{\mathrm{m}} & =P(1-d)^{\mathrm{m}} \\
& =200000\left(1-\frac{2}{5}\right)^{2} \\
& =72,000
\end{aligned}
$$

22. Ans: (b)

Sol: $\mathrm{SFF}=\frac{\mathrm{i}}{(1+\mathrm{i})^{\mathrm{n}}-1}=\frac{0.04}{(1+0.04)^{5}-1}$

$$
=0.184
$$

23. Ans: (c)

Sol: Annual depreciation $=\frac{25000-1600}{8}$

$$
=2925
$$

Residual book value at beginning of $6^{\text {th }}$ year

$$
\begin{aligned}
& =25000-(2925 \times 5) \\
& =10375
\end{aligned}
$$

24. Ans: (c)

Sol: Initial cost $=\mathrm{P}$
Salvage value $=$ SV
Annual depreciation
$=\frac{\mathrm{P}-\mathrm{SV}}{\mathrm{n}}=\frac{(\mathrm{P}-0.4 \mathrm{P})}{5}=\frac{0.6 \mathrm{P}}{5}$
Annual accounting rate of return
$=\frac{\text { Annual savings }- \text { Annual depreciation }}{\text { Initial cost }}$
$0.2=\frac{50000-\frac{0.6 \mathrm{P}}{5}}{\mathrm{P}}$
$0.2 \mathrm{P}=50000-\frac{0.6 \mathrm{P}}{5}$
$0.2 \mathrm{P}=\frac{5 \times 50000-0.6 \mathrm{P}}{5}$
$1.6 \mathrm{P}=5 \times 50000$
$\mathrm{P}=1,56,250$
Cost of two machines $=2 \times 156250$

$$
=3,12,500 /-
$$

25. Ans: (c)

Sol: Annual depreciation $=\frac{10000-1000}{5}$

$$
=1800
$$

Book value $=10000-(1800 \times 2)$

$$
=\text { Rs. } 6400
$$

08. Construction Contracts and Tendering

04. Ans: (a)

Sol: In cost plus fixed fee contract, the owner pays the contractor an agreed amount over and above the documented cost of work
05. Ans: (a)

Sol:

- Guaranteed maximum price contract is a cost-type contract where the contractor is compensated for actual costs incurred plus a fixed fee subject to ceiling price.
- Savings, if any, are returned to the owner.
- It is different from lump-sum contract where cost savings are retained by contractor.

7. Ans: (c)

Sol: Turn key contract:
An agreement under which a contractor completes a project, then hands it over in fully operational form to the client, which needs nothing to do but 'turn a key' to set it in motion.
Generally 'turnkey' refers to ready for immediate use.
08. Ans: (d)

Sol: When work is to be completed very quickly (or) no contractor prefers to accept the work (The tender is floated) then a notice with
short duration is again published by the client. Such a tender notice is called 'Short tender notice'. The terms and conditions remain the same as that of ordinary tender notice.
09. Ans: (b)

Sol: Limited or Closed tender:

In limited tenders, only pre-qualified bidders are allowed to participate. These tenders are not advertised in newspapers.

11. Ans: (a)

Sol: Earnest money deposit (E.M.D)
While submitting a tender the contractor is to deposit a certain amount, about 2% of the contract value, as EMD as guarantee of the tender. The amount is for a check so that the contractor may not refuse to accept the work or run away when his tender is accepted.

12. Ans: (b)

Sol: Security deposit:
On acceptance of the tender, the contractor has to deposit 10% of the tendered amount as security deposit which is inclusive of the earnest money already deposited.

It is refunded to the contractor after the satisfactory completion of the whole work after a specified time (generally after maintenance period).

Regular Live Doubt clearing Sessions | Free Online Test Series |ASK an expert
Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

