## GATE PSUs

## THERMAL ENGINEERING

## Text Book :

Theory with worked out Examples and Practice Questions

## Thermal Engineering

(Solutions for Text Book Practice Questions)

## Chapter

1

## Basic Concepts

1. Ans: (d)

Sol: $\frac{d T}{T}-\frac{V}{T} d P$

$$
\begin{aligned}
& =\frac{1}{\mathrm{~T}} \mathrm{dT}-\frac{\mathrm{V}}{\mathrm{~T}} \mathrm{dP} \quad\left(\mathrm{PV}=\mathrm{RT}, \frac{\mathrm{~V}}{\mathrm{~T}}=\frac{\mathrm{R}}{\mathrm{P}}\right) \\
& =\frac{1}{\mathrm{~T}} \mathrm{dT}-\frac{\mathrm{R}}{\mathrm{P}} \mathrm{dP} \\
& =\mathrm{MdT}+\mathrm{NdP} \\
\mathrm{M}= & \frac{1}{\mathrm{~T}} ; \mathrm{N}=-\frac{\mathrm{R}}{\mathrm{P}} \\
\frac{\partial \mathrm{M}}{\partial \mathrm{P}}= & 0 ; \frac{\partial \mathrm{N}}{\partial \mathrm{~T}}=0 \\
\therefore \frac{\partial \mathrm{M}}{\partial \mathrm{P}} & =\frac{\partial \mathrm{N}}{\partial \mathrm{~T}} \text { hence it is a property }
\end{aligned}
$$

2. Ans: (a)

Sol: Volume $\rightarrow$ Extensive property
Density $\rightarrow$ Intensive Property
Pressure $\rightarrow$ Point function
Work $\quad \rightarrow$ Path function
Energy $\rightarrow$ Point function
03. Ans: (b)

Sol: A real gas obeys perfect gas law at very high temperature and low pressure.
04. Ans: (b)

Sol: $\mathrm{F}+\mathrm{P}=\mathrm{C}+2$
No. of components, $\mathrm{C}=2$
No. of phases, $\mathrm{P}=2$
$\therefore \mathrm{F}+2=2+2$
$\Rightarrow \mathrm{F}=2$
05. Ans: (d)

Sol: When molecular momentum of system becomes zero, the pressure reaches its absolute zero values.
06. Ans: (b)

Sol: Final equilibrium temperature can be calculated by using conservation of energy i.e., first law of thermodynamics.
07. Ans: (b)

Sol: Mole fraction of $\mathrm{N}_{2}=\frac{\mathrm{n}_{\mathrm{N}_{2}}}{\text { Total no. of moles }}$

$$
\begin{aligned}
0.3 & =\frac{\mathrm{n}_{\mathrm{N}_{2}}}{1} \\
\mathrm{n}_{\mathrm{N}_{2}} & =0.3 \\
\mathrm{~m}_{\mathrm{N}_{2}} & =\mathrm{n}_{\mathrm{N}_{2}} \times \text { molecular weight } \\
& =0.3 \times 28=8.4 \mathrm{~kg}
\end{aligned}
$$

Mass fraction of $\mathrm{N}_{2}=\frac{\mathrm{m}_{\mathrm{N}_{2}}}{\text { Totalmass }}$

$$
=\frac{8.4}{36}=0.233
$$

## 08. Ans: (d)

Sol: $\mathrm{m}_{\mathrm{N}_{2}}=\mathrm{n}_{\mathrm{N}_{2}} \times($ molar weight $)=2 \times 28$

$$
=56 \mathrm{~kg}
$$

$\mathrm{m}_{\mathrm{Co}_{2}}=\mathrm{n}_{\mathrm{Co}_{2}} \times($ molecular weight $)=6 \times 44$
$=264 \mathrm{~kg}$
$\mathrm{m}_{\mathrm{N}_{2}}+\mathrm{m}_{\mathrm{Co}_{2}}=320 \mathrm{~kg}$
Mass fraction $=\frac{m_{\mathrm{Co}_{2}}}{\mathrm{~m}_{\mathrm{Co}_{2}}+\mathrm{m}_{\mathrm{N}_{2}}}$

$$
=\frac{264}{320}=0.825
$$

9. Ans: (a)

Sol: $\mathrm{m}_{\mathrm{N}_{2}}=\mathrm{n}_{\mathrm{N}_{2}} \times$ (molar weight)

$$
=2 \times 28=56 \mathrm{~kg}
$$

$$
m_{\mathrm{CO}_{2}}=\mathrm{n}_{\mathrm{Co}_{2}} \times(\text { molecular weight })
$$

$$
=4 \times 44=176 \mathrm{~kg}
$$

$$
\mathrm{R}_{\mathrm{N}_{2}}=\frac{\overline{\mathrm{R}}}{\text { Molecular weight }}=\frac{8.314}{28}
$$

$=0.2969 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$

$$
R_{\mathrm{CO}_{2}}=\frac{\overline{\mathrm{R}}}{\text { molecular weight }}=\frac{8.31}{44}
$$

$$
=0.1889 \mathrm{Kj} / \mathrm{kg} . \mathrm{K}
$$

$$
\begin{aligned}
\mathrm{R}_{\text {mixure }}= & \frac{\mathrm{m}_{\mathrm{N}_{2}} \times \mathrm{R}_{\mathrm{N}_{2}}+\mathrm{m}_{\mathrm{CO}_{2}} \times \mathrm{R}_{\mathrm{CO}_{2}}}{\mathrm{~m}_{\mathrm{N}_{2}}+\mathrm{m}_{\mathrm{CO}_{2}}} \\
& =\frac{56 \times 0.2969+176 \times 0.1889}{56+176}
\end{aligned}
$$

$$
=0.215 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}
$$

## 10. Ans: (b)

Sol: For $\mathbf{N}_{\mathbf{2}}$
$\begin{array}{ll}\mathrm{n}_{1}=3 & \mathrm{n}_{2}=7 \\ \mathrm{P}_{1}=600 \mathrm{kPa} & \mathrm{P}_{2}=200 \mathrm{kPa}\end{array}$
$\mathrm{n}=\mathrm{n}_{1}+\mathrm{n}_{2}=10$
$\mathrm{P}_{\mathrm{f}}=300 \mathrm{kPa}$

$$
\begin{aligned}
\mathrm{P}_{\mathrm{N}_{2}} & =\left(\frac{\mathrm{n}_{1}}{\mathrm{n}_{1}+\mathrm{n}_{2}}\right) \mathrm{P}_{\mathrm{f}}=\left(\frac{3}{10}\right) \times 300 \\
& =90 \mathrm{kPa}
\end{aligned}
$$

11. Ans: (d)

Sol: $V=80 \mathrm{~L}$

$$
\mathrm{n}=\mathrm{n}_{\mathrm{N}_{2}}+\mathrm{n}_{\mathrm{CO}_{2}}
$$

$$
=\frac{5}{28}+\frac{5}{44}
$$

$\mathrm{PV}=\mathrm{n} \overline{\mathrm{R}} \mathrm{T}$
$\frac{P}{\overline{\mathrm{R}} \mathrm{T}}=\frac{\mathrm{n}}{\mathrm{V}}=\frac{\left(\frac{5}{28}+\frac{5}{44}\right)}{80}$
$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{n}_{1} \overline{\mathrm{R}} \mathrm{T}$

$$
\begin{aligned}
& \frac{\mathrm{P}}{\overline{\mathrm{R}} \mathrm{~T}}=\frac{\mathrm{n}_{1}}{\mathrm{~V}_{1}}=\frac{\left(\frac{5}{28}\right)}{\mathrm{V}_{1}}=\frac{\left(\frac{5}{28}+\frac{5}{44}\right)}{80} \\
& \Rightarrow \mathrm{~V}_{1}=48.88 \mathrm{~L}
\end{aligned}
$$

12. Ans: (b)

Sol: For Argon:

$$
\mathrm{m}=3 \mathrm{kgs}
$$

Molar weight $=40$

$$
\gamma=\frac{5}{3}(\text { monoatomic })
$$

$$
\begin{aligned}
\left(\mathrm{C}_{\mathrm{V}}\right)_{\mathrm{Ar}} & =\frac{\overline{\mathrm{R}}}{\mathrm{M}(\gamma-1)}=\frac{8.314}{40\left(\frac{5}{3}-1\right)} \\
& =0.311 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
\end{aligned}
$$

## For $\mathrm{CO}_{2}$ :

$\mathrm{m}=6 \mathrm{kgs}$, Molar weight $=44, \gamma=\frac{4}{3}$

$$
\begin{aligned}
\left(\mathrm{C}_{\mathrm{V}}\right)_{\mathrm{CO}_{2}} & =\frac{\overline{\mathrm{R}}}{\mathrm{M}(\gamma-1)}=\frac{8.314}{44\left(\frac{4}{3}-1\right)} \\
& =0.566 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \\
\left(\mathrm{C}_{\mathrm{V}}\right)_{\text {mix }} & =\frac{\mathrm{m}_{\mathrm{Ar}} \times\left(\mathrm{C}_{\mathrm{V}}\right)_{\mathrm{Ar}}+\mathrm{m}_{\mathrm{CO}_{2}} \times\left(\mathrm{C}_{\mathrm{V}}\right)_{\mathrm{CO}_{2}}}{\mathrm{~m}_{\mathrm{Ar}}+\mathrm{m}_{\mathrm{CO}_{2}}} \\
& =\frac{(3 \times 0.31)+(6 \times 0.566)}{3+6} \\
& =0.4806 \mathrm{~kJ} / \mathrm{kgK} \\
\mathrm{Q}_{\mathrm{S}} & =\mathrm{m} \times\left(\mathrm{C}_{\mathrm{V}}\right)_{\text {mix }} \times(\Delta \mathrm{T}) \\
& =(3+6) \times 0.4806 \times(350-250) \\
& =432.6 \mathrm{~kJ}
\end{aligned}
$$

## 13. Ans: (b)

Sol: $\mathrm{P}_{1}=1.2 \mathrm{MPa}, \mathrm{P}_{2}=0.2 \mathrm{MPa}$
$\mathrm{He}=30 \%, \quad \mathrm{Ar}=70 \%$
Adiabatic process, $\gamma=\frac{5}{3}$ (monatomic)
$\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)^{\frac{\gamma-1}{\gamma}}$
$\mathrm{T}_{2}=673 \times\left(\frac{0.2}{1.2}\right)^{\frac{\frac{5}{3}-1}{\frac{5}{3}}}=328.7 \mathrm{~K}=55.7^{0} \mathrm{C}$

## 14. Ans: (d)

Sol: For He: $\quad \mathrm{n}_{1}=3, \quad \gamma=\frac{5}{3}$
$\left(\mathrm{C}_{\mathrm{P}}\right)_{\mathrm{He}}=\frac{\gamma \overline{\mathrm{R}}}{(\gamma-1)}=\frac{\frac{5}{3} \times 8.314}{\left(\frac{5}{3}-1\right)}=20.78 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$

## For Ar:

$$
\begin{aligned}
& \mathrm{n}_{2}=7, \gamma=\frac{5}{3} \\
&\left(\mathrm{C}_{\mathrm{P}}\right)_{\mathrm{Ar}}=\frac{\gamma \overline{\mathrm{R}}}{(\gamma-1)}=\frac{\frac{5}{3} \times 8.314}{\left(\frac{5}{3}-1\right)}=20.78 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \\
& \begin{aligned}
\left(\mathrm{C}_{\mathrm{P}}\right)_{\mathrm{Mix}} & =\frac{\mathrm{n}_{\mathrm{He}}\left(\mathrm{C}_{\mathrm{P}}\right)_{\mathrm{He}}+\mathrm{m}_{\mathrm{Ar}}\left(\mathrm{C}_{\mathrm{P}}\right)_{\mathrm{Ar}}}{\mathrm{n}_{\mathrm{He}}+\mathrm{n}_{\mathrm{Ar}}} \\
& =\frac{3 \times 20.79+7 \times 20.79}{3+7} \\
& =20.79 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}} \\
& \mathrm{~T}_{2}=\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}} \times \mathrm{T}_{1}
\end{aligned} \mathrm{~V}_{2}^{\mathrm{P}} \mathrm{~V}_{2} \quad \mathrm{~V}
$$

$$
=2 \times 323=646 \mathrm{~K}
$$

$$
\mathrm{Q}_{\mathrm{S}}=\mathrm{n} \times\left(\mathrm{C}_{\mathrm{P}}\right)_{\text {mix }} \times(\Delta \mathrm{T})
$$

$$
=(3+7) \times 20.79 \times(646-323)=67 \mathrm{MJ}
$$

15. Ans: 2.67 cm of $\mathbf{H g}$

Sol: At ground
Balloon volume, $\mathrm{V}_{1}=\frac{4}{3} \pi \mathrm{r}^{3}$
$\mathrm{P}_{1}=72 \mathrm{~cm}$ of Hg.

In the air, $\mathrm{R}=3 \mathrm{r}$
Balloon volume, $\mathrm{V}_{2}=27 \times \frac{4}{3} \pi \mathrm{r}^{3}$
Temperature constant $\Rightarrow$ Isothermal
$\Rightarrow$ Process $\mathbf{P}_{\mathbf{1}} \mathbf{V}_{\mathbf{1}}=\mathbf{P}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}}$
$\Rightarrow \mathrm{P}_{2}=72 \mathrm{r}^{3} / 27 \mathrm{r}^{3}=2.67 \mathrm{~cm}$ of Hg
16. Ans: $P_{1}>P_{2}$

Sol: For isothermal process: $\mathrm{T}=\mathrm{c}$

$$
\begin{aligned}
\Rightarrow P_{1} V_{1} & =P_{2} V_{2} \\
P_{2} & =P_{1}\left(\frac{V_{1}}{V_{2}}\right)
\end{aligned}
$$

As per fig we can say $\mathrm{T}_{1}>\mathrm{T}_{2}$
$\Rightarrow \mathrm{P}_{1}>\mathrm{P}_{2} \ldots \ldots . .\left(\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}<1\right)$

(2) For isochoric : V = C


$$
\begin{aligned}
& \frac{\mathrm{P}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}} \\
& \mathrm{~T}_{1}>\mathrm{T}_{2} \\
& \therefore \mathrm{P}_{2}=\left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right) \mathrm{P}_{1} \\
& \therefore \mathrm{P}_{2}<\mathrm{P}_{1}
\end{aligned}
$$

17. Ans: (d)

Sol: LFP = Lower fixed point
UFP = upper fixed point
$\frac{\mathrm{C}-\mathrm{LFP}}{\mathrm{UFP}-\mathrm{LFP}}=\frac{0-300}{100-300}$
$\frac{\mathrm{C}-0}{100-0}=\frac{0-300}{100-300}$
$\mathrm{C}=150^{\circ} \mathrm{C}$
18. Ans: $26.77^{\circ} \mathrm{C}$

Sol: $\mathrm{t}_{\mathrm{A}}=\mathrm{a}+\mathrm{bt}_{\mathrm{B}}+\mathrm{ct}_{\mathrm{B}}{ }^{2}$
$t_{A}=0^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{B}}=0^{\circ} \mathrm{C}$
$t_{A}=100^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{B}}=100^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{A}}=51^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{B}}=50^{\circ} \mathrm{C}$
$0=\mathrm{a}+\mathrm{b} \times 0+\mathrm{c} \times 0$
$\therefore \mathrm{a}=0$

$$
\begin{gathered}
100=100 b+10^{4} \mathrm{c} \times 1 \\
51=50 \mathrm{~b}+2500 \mathrm{c} \times 2 \\
\hline 102=100 \mathrm{~b}+5000 \mathrm{c} \\
100=100 \mathrm{~b}+10000 \mathrm{c} \\
\hline-5000 \mathrm{c}=2 \\
\mathrm{c}=\frac{-2}{5000}=-4 \times 10^{-4}
\end{gathered}
$$

$50 \mathrm{~b}+2500 \mathrm{c}=51$
$50 \mathrm{~b}+2500 \times\left(-4 \times 10^{-4}\right)=51$
$50 \mathrm{~b}=51+1$
$\mathrm{b}=\frac{52}{50}=1.04$
$\therefore \mathrm{t}_{\mathrm{A}}=1.04 \mathrm{t}_{\mathrm{B}}-4 \times 10^{-4} \mathrm{t}_{\mathrm{B}}{ }^{2}$
$t_{B}=26^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{A}}=1.04 \times 26-4 \times 10^{-4} \times 26^{2}$
$=27.04-0.2704$
$=26.77^{\circ} \mathrm{C}$
Unless the constructional features of thermometer are given it is difficult to say which thermometer is correct.
19. Ans: $21.6^{\circ} \mathrm{C}$

Sol: Given relation $t=a \ln (\mathrm{~K})+b$
$K$ is 1.83 at ice point $\Rightarrow t=0^{\circ} \mathrm{C}$
$K$ is 6.78 at steam point $\Rightarrow t=100^{\circ} \mathrm{C}$
As per given relation, $t=a \ln (\mathrm{~K})+\mathrm{b}$
By condition $1 \Rightarrow 0=\mathrm{a} \ln (1.83)+\mathrm{b}$

$$
0=0.60 \mathrm{a}+\mathrm{b}
$$

By condition $2 \Rightarrow 100=a \ln (6.78)+b$

$$
\begin{aligned}
100=\mathrm{a} 1.914+b \Rightarrow a & =76.10 \\
b & =-45.66
\end{aligned}
$$

$\Rightarrow$ By putting value of $\mathrm{a} \& \mathrm{~b}$

$$
\mathrm{t}=76.10 \ln \mathrm{~K}-45.66
$$

$$
(\mathrm{K}=2.42 \text { given })
$$

$\Rightarrow \mathrm{t}=21.6^{\circ} \mathrm{C}$
20. Ans: $550^{\circ} \mathrm{N},-\mathbf{5 0}^{\circ} \mathrm{C}$

Sol: Freezing point of ice $=0^{\circ} \mathrm{C}=100^{\circ} \mathrm{N}$
Boiling point $=100^{\circ} \mathrm{C}=400^{\circ} \mathrm{N}$
Let new scale be given as

$$
\begin{aligned}
\mathrm{N} & =\mathrm{at}+\mathrm{b} \\
100 & =\mathrm{a}(0)+\mathrm{b} \\
\therefore \mathrm{~b} & =100 \\
400 & =100 \mathrm{a}+\mathrm{b} \\
\therefore \mathrm{a} & =3
\end{aligned}
$$

when $\mathrm{t}=150^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \mathrm{N}=3(150)+100 \\
& \mathrm{~N}=550^{\circ} \mathrm{N}
\end{aligned}
$$

The new scale N and Celsius will be same if

$$
\begin{aligned}
t & =3 t+100 \\
-2 t & =100 \\
\therefore \quad t & =-50^{\circ} C
\end{aligned}
$$

## 21. Ans: (b, d)

Sol: Any gas can have like ideal gas under low pressure and high temperature.
22. Ans: $(\mathbf{a}, \mathrm{b}, \mathrm{d})$

Sol: $\mathrm{Mdx}+\mathrm{Ndy}$
If $\frac{\partial \mathrm{M}}{\partial \mathrm{y}}=\frac{\partial \mathrm{N}}{\partial \mathrm{x}}$ then the function is property
(a) $\mathrm{M}=\frac{1}{\mathrm{~T}}, \quad \mathrm{~N}=\frac{\mathrm{P}}{\mathrm{T}}=\frac{\mathrm{R}}{\mathrm{v}}$

$$
\frac{\partial \mathrm{M}}{\partial \mathrm{v}}=\frac{\partial \mathrm{N}}{\partial \mathrm{~T}}=0 \text { hence it is property. }
$$

(b) $\quad \mathrm{M}=\frac{1}{\mathrm{~T}}, \quad \mathrm{~N}=\frac{\mathrm{T}}{\mathrm{P}}=\frac{\mathrm{v}}{\mathrm{R}}$

$$
\frac{\partial \mathrm{M}}{\partial \mathrm{v}}=\frac{\partial \mathrm{N}}{\partial \mathrm{~T}}=0 \text { hence it is property. }
$$

(c) $\quad \mathrm{M}=\frac{1}{\mathrm{P}}, \quad \mathrm{N}=\frac{\mathrm{v}}{\mathrm{T}}=\frac{\mathrm{R}}{\mathrm{P}}$

$$
\frac{\partial \mathrm{M}}{\partial \mathrm{v}} \neq \frac{\partial \mathrm{N}}{\partial \mathrm{P}} \text { hence it is not property. }
$$

(d) $\mathrm{M}=\frac{1}{\mathrm{P}}, \quad \mathrm{N}=\frac{\mathrm{R}}{\mathrm{v}}$

$$
\frac{\partial \mathrm{M}}{\partial \mathrm{v}}=\frac{\partial \mathrm{N}}{\partial \mathrm{P}}=0 \text { hence it is property. }
$$

23. Ans: (b, c, d)

Sol: Specific enthalpy, pressure and density are independent of mass hence they are intensive properties.

## 24. Ans: (b, c)

Sol: Mass fraction of $\mathrm{O}_{2}=\frac{3}{3+5+12}=0.15$
Moles of $\mathrm{O}_{2}=\frac{3000}{32}=93.75$
Moles of $\mathrm{N}_{2}=\frac{5000}{28}=178.57$
Moles of $\mathrm{CH}_{4}=\frac{12000}{16}=750$
$\therefore$ Mole fraction of $\mathrm{O}_{2}$

$$
\begin{aligned}
& =\frac{93.75}{93.75+178.57+750} \\
& =0.092
\end{aligned}
$$

## 25. Ans: $(\mathbf{a}, \mathrm{b}, \mathrm{d})$

Sol: The correct statement for concept of continuum

- A continuum is a body that can be continually subdivided into infinitesimal elements with properties being those of the bulk material.
- concept of continuum losses its validity when mean free path of molecules approaches dimension of vessels
- In high rarefied gases, concept of continuum losses its validity.
- For gases continuum is not always valid

26. Ans: (a, b, c)

Sol: The classification of pressure thermometers are

- vapour pressure thermometer
- liquid filled thermometer
- gas filled thermometer

27. Ans: (a, b, d)

Sol: Boiling temperature, Molality and Refractive index are independent of mass hence they are intensive properties.

| ) ACE | 7 | Thermal Engineering |
| :---: | :---: | :---: |

## Chapter <br> 2 <br> Work and Heat

1. Ans: (c)

Sol: Heat engine cycles as shown in fig
$\mathrm{VQ}=\mathrm{QR}, \quad \mathrm{PQ}=\mathrm{QS}$,
$\mathrm{UP}=\mathrm{PR}=\mathrm{RT}$


Work interaction for 'WVUR' $=48 \mathrm{Nm}$
Area WVUR $=2 \mathrm{x} \times 2 \mathrm{y}=48$

$$
\Rightarrow x y=12
$$

From similar $\Delta^{\text {les }} \mathrm{PQR}$ and PST

$$
\frac{\mathrm{QR}}{\mathrm{PR}}=\frac{\mathrm{ST}}{\mathrm{PT}}
$$

$$
\frac{y}{x}=\frac{y^{1}}{2 x} \Rightarrow y^{1}=2 y
$$

Work interaction for $\Delta^{\mathrm{le}}$ ' PST '

$$
\begin{aligned}
\frac{1}{2}(2 \mathrm{x}) \mathrm{y}^{1} & =\frac{1}{2}(2 \mathrm{x})(2 \mathrm{y})=2 \mathrm{xy} \\
& =2 \times 12=24 \mathrm{Nm}
\end{aligned}
$$

2. Ans: (d)

Sol:

03. Ans: (b)

Sol: Process $1 \quad 2 \quad 3 \quad 4$

| $\mathrm{dQ}(\mathrm{kJ})$ | 300 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{dW}(\mathrm{kJ})$ | 300 |$\quad$| 0 | -100 | 0 |
| :--- | :--- | :---: | :---: |
| 250 | -100 | -250 |

Heat supplied $\mathrm{Q}_{\mathrm{S}}=300 \mathrm{~kJ}$
Work of expansion, $\mathrm{W}_{\mathrm{E}}=300+250=550 \mathrm{~kJ}$
Work of compression, $\mathrm{W}_{\mathrm{C}}=100+250=350 \mathrm{~kJ}$

$$
\mathrm{W}_{\mathrm{net}}=\mathrm{W}_{\mathrm{E}}-\mathrm{W}_{\mathrm{C}}=550-350=200 \mathrm{~kJ}
$$

$$
\eta_{\text {thermal }}=\frac{\mathrm{W}_{\text {net }}}{\text { Heat supplied }}=0.67
$$

Work ratio $=\frac{\mathrm{W}_{\text {net }}}{\mathrm{W}_{\mathrm{E}}}=\frac{200}{550}=0.36$
04. Ans: (c)

Sol: (a) W.D in polytropic process

$$
=\frac{\left(\mathrm{P}_{1} \mathrm{~V}_{1}-\mathrm{P}_{2} \mathrm{~V}_{2}\right)}{(\mathrm{n}-1)}
$$

(b) W.D in steady flow process $=-\int \mathrm{vdP}$
(c) Heat transfer in reversible adiabatic process $=$ zero
(d) W.D in an isentropic process

$$
=\frac{\mathrm{P}_{1} \mathrm{~V}_{1}-\mathrm{P}_{2} \mathrm{~V}_{2}}{(\gamma-1)}
$$

5. Ans: (d)

## Sol: Given

For isothermal process

$$
\begin{aligned}
\mathrm{P}_{1} \mathrm{~V}_{1} & =\mathrm{P}_{2} \mathrm{~V}_{2} \\
\Rightarrow \mathrm{P}_{1} \mathrm{~V}_{1} & =\frac{\mathrm{P}_{1}}{10} \times 0.55 \\
\Rightarrow \mathrm{~V}_{1} & =0.055 \mathrm{~m}^{3}
\end{aligned}
$$

For adiabatic process

$$
\begin{aligned}
& P_{1} V_{1}^{\gamma}=P_{2} V_{2}^{\gamma} \\
\Rightarrow & P_{1} V_{1}^{1.4}=\frac{P_{1}}{10} \times V_{2}^{1.4} \\
\Rightarrow & V_{2}^{1.4}=10 \times(0.055)^{1.4} \Rightarrow V_{2}=0.284 \mathrm{~m}^{3}
\end{aligned}
$$

## 06. Ans: (b)

Sol:

- Adiabatic $\rightarrow \mathrm{n}=\frac{\mathrm{c}_{\mathrm{p}}}{\mathrm{c}_{\mathrm{v}}}$
- Isothermal $\rightarrow \mathrm{n}=1$
- Constant pressure $\rightarrow \mathrm{n}=0$
- Constant volume $\rightarrow \mathrm{n}=\infty$


## 07. Ans: (d)

Sol: No. of degrees of freedom in diatomic molecule $=5$

No. of degrees of freedom in monoatomic molecule $=3$

No. of degrees of freedom in Triatomic molecule $=6$ or 7
08. Ans: (a)

Sol: The slope of $\log \mathrm{P}-\log \mathrm{V}$ graph for a gas for isothermal change is $\mathrm{m}_{1} \&$ for adiabatic changes are $\mathrm{m}_{2}$ if gas is diatomic gas

For isothermal process, $\mathrm{PV}=\mathrm{C}$

$$
\begin{aligned}
& \log (\mathrm{P})+\log (\mathrm{V})=\log (\mathrm{C}) \\
& \log (\mathrm{P})=\log (\mathrm{C})-\log (\mathrm{V})
\end{aligned}
$$

Compare it with $\mathrm{y}=\mathrm{C}+\mathrm{mx}$

$$
\mathrm{m}_{1}=-1
$$

For adiabatic process

$$
\begin{aligned}
& \mathrm{PV}^{\gamma}=\mathrm{C} \\
\Rightarrow & \log \mathrm{P}+\gamma \log \mathrm{V}=\log \mathrm{C} \\
\Rightarrow & \log (\mathrm{~V})=\log \mathrm{C}-\gamma \log \mathrm{V}
\end{aligned}
$$

Compare with $\mathrm{y}=\mathrm{C}+\mathrm{mx}$

$$
\begin{aligned}
& \mathrm{m}_{2}=-\gamma \\
\Rightarrow & \mathrm{m}_{1}<\mathrm{m}_{2}
\end{aligned}
$$

9. Ans: (d)

Sol: The ratio of $\mathrm{C}_{\mathrm{p}} / \mathrm{C}_{\mathrm{v}}$ for a gas with n degrees of freedom is equal to $1+\frac{2}{n}$
10. Ans: (c)

Sol: $\mathrm{C}_{\mathrm{p}} ; \mathrm{C}_{\mathrm{V}} ; \gamma ;$ values are constant for ideal gases
$\mathrm{C}_{\mathrm{p}} ; \mathrm{C}_{\mathrm{v}}$ values increase with temperature for Real gases.


Where as " $\gamma$ " value decreases with temperature.

|  | Regular Live Doubt clearing Sessions \| Free Online Test Series | ASK an expert |  |
| :---: | :---: | :---: |
|  | Affordable Fee \| Available 1M |3M |6M | 12 | 18M and 24 Months Subscription Packages |

## 11. Ans: (b)

Sol: $\mathrm{P}=320 \mathrm{~W}$
In 30 days the refrigeration runs is

$$
=30 \times \frac{1}{4}=7.5 \mathrm{days}
$$

So total consumption of a month in Watt-hr is

$$
\begin{aligned}
=320 \times 7.5 \times 24 & =57600 \mathrm{~W}-\mathrm{hr} \\
& =57.6 \mathrm{kWhr}
\end{aligned}
$$

So the electricity cost per month

$$
=57.6 \times 0.09=\text { Rs. } 5.184
$$

12. Ans: (d)

Sol: Work done = Area enclosed in Pv diagram
$\mathrm{W}=$ Area of $\triangle \mathrm{ADC}+$ Area of $\triangle \mathrm{ABC}$

$$
\text { Area of } \begin{aligned}
\triangle \mathrm{ADC} & =\frac{1}{2} \times(6-2) \times(4-1) \\
& =6 \text { bar }-\mathrm{m}^{3}=600 \mathrm{kN}-\mathrm{m}
\end{aligned}
$$

$$
\text { Area of } \begin{aligned}
\triangle \mathrm{ABC} & =\frac{1}{2} \times(6-2) \times(6-4) \\
& =400 \mathrm{kN}-\mathrm{m}
\end{aligned}
$$

$\therefore \mathrm{W}=(600+400) \mathrm{kN}-\mathrm{m}=1000 \mathrm{kN}-\mathrm{m}$
13. Ans: (d) \&
14. Ans: (c)

Sol: $\mathrm{P}_{1}=100+101.325=201.325 \mathrm{kPa}$
$\mathrm{T}_{1}=288 \mathrm{~K}$,
$\mathrm{V}_{1}=2500 \mathrm{C} . \mathrm{C}$

$$
\begin{aligned}
\mathrm{m}=\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{RT}_{1}} & =\frac{201.325 \times 10^{3} \times 2500 \times 10^{-6}}{287 \times 288} \\
& =6.089 \times 10^{-3} \mathrm{~kg}
\end{aligned}
$$

As volume is constant, $\mathrm{dW}=0$
$\therefore \mathrm{dQ}=\mathrm{dU}=\mathrm{m} \mathrm{C}_{\mathrm{V}} \mathrm{dT}$

$$
\begin{aligned}
& =6.089 \times 10^{-3} \times 0.718 \times 10^{3}(15-5) \\
& =43.7 \mathrm{~J}
\end{aligned}
$$

$\frac{\mathrm{P}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}}$
$P_{2}=$ Pressure on day of play $=P_{1} \times \frac{T_{2}}{T_{1}}$

$$
\begin{aligned}
& =201.325 \times \frac{278}{288} \\
& =194.33 \mathrm{kPa} \text { (absolute })
\end{aligned}
$$

Gauge pressure on day of play

$$
\begin{aligned}
& =194.33-101.325 \\
& =93 \mathrm{kPa}=0.93 \mathrm{bar}
\end{aligned}
$$

$\mathrm{P}_{1}=$ Pressure to which it must be inflated

$$
\begin{aligned}
& \frac{\mathrm{P}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}} \\
& \frac{\mathrm{P}_{1}}{288}=\frac{201.325}{278}
\end{aligned}
$$

$$
\mathrm{P}_{1}=201.325 \times \frac{288}{278}=208.56 \mathrm{kPa} .
$$

Gauge pressure to which it must be inflated on previous day

$$
\begin{aligned}
& =208.56-101.3 \\
& =107.24 \mathrm{kPa}=1.07 \mathrm{bar}
\end{aligned}
$$

15. Ans: (a)

Sol: Work done in isothermal process

$$
\begin{aligned}
& =P_{1} V_{1} \ln \frac{V_{2}}{V_{1}} \\
& =500 \times 0.8 \times \ln \left(\frac{0.1}{0.8}\right)=-831.77 \mathrm{~kJ}
\end{aligned}
$$

| ACE | 10 | GATE - Text Book Solutions |
| :--- | :--- | :--- |

## 16. Ans: 251.62 kJ

Sol: $\mathrm{m}=1.5 \mathrm{~kg}, \quad \mathrm{P}_{1}=0.1 \mathrm{MPa}$,

$$
\begin{aligned}
& \rho_{1}=1.16 \mathrm{~kg} / \mathrm{m}^{3}, \quad \mathrm{P}_{2}=0.7 \mathrm{MPa} \\
& \mathrm{~W}=\mathrm{P}_{1} \mathrm{~V}_{1} \ln \left(\frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}}\right)=\mathrm{P}_{1} \mathrm{~V}_{1} \ln \left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)
\end{aligned}
$$

$$
\mathrm{V}_{1}=\frac{\mathrm{m}}{\rho_{1}}=1.293 \mathrm{~m}^{3}
$$

$$
\mathrm{W}=0.1 \times 1000 \times 1.293 \times \ln \left(\frac{0.1}{0.7}\right)
$$

$$
=-251.62 \mathrm{~kJ}
$$

$\therefore$ Work done by piston is 251.62 kJ
17. Ans: $130.16 \mathrm{~kJ} / \mathrm{kg}$

Sol:


1-2 Process
$\mathrm{T}_{1}=350 \mathrm{~K}$
$\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=3=\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}$
$\mathrm{T}_{2}=3 \times 350=1050 \mathrm{~K}$
${ }_{1} W_{2}=0$

## 2-3 Process

$$
\begin{gathered}
{ }_{2} \mathrm{Q}_{3}={ }_{2} \mathrm{~W}_{3}=\mathrm{RT}_{2} \ln \frac{\mathrm{P}_{2}}{\mathrm{P}_{3}} \\
=\mathrm{RT}_{2} \ln 3
\end{gathered}
$$

$$
=\mathrm{R}(1050 \ell \mathrm{n} 3)=1153.54 \mathrm{R} \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

## 1 - 3 Process

$\mathrm{P}=\mathrm{C}$

$$
\frac{\mathrm{V}_{3}}{\mathrm{~T}_{3}}=\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}} ; \frac{\mathrm{V}_{3}}{\mathrm{~V}_{1}}=\frac{\mathrm{T}_{3}}{\mathrm{~T}_{1}}=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=3
$$

$$
\text { As } \mathrm{T}_{3}=\mathrm{T}_{2}
$$

$$
{ }_{3} \mathrm{~W}_{3}=\mathrm{P}\left(\mathrm{~V}_{1}-\mathrm{V}_{3}\right)=\mathrm{RT}_{3}\left(\frac{\mathrm{~T}_{1}}{\mathrm{~T}_{3}}-1\right)
$$

$$
=1050 \mathrm{R}\left(\frac{1}{3}-1\right)
$$

$$
=-700 \mathrm{R} \mathrm{~kJ} / \mathrm{kg}
$$

$$
\mathrm{W}_{\mathrm{net}}={ }_{1} \mathrm{~W}_{2}+{ }_{2} \mathrm{~W}_{3}+{ }_{3} \mathrm{~W}_{1}
$$

$$
=0+1153.54 \mathrm{R}-700 \mathrm{R}
$$

$$
=453.54 \mathrm{R} \mathrm{~kJ} / \mathrm{kg}
$$

$$
=453.54 \times 0.287=130.16 \mathrm{~kJ} / \mathrm{kg}
$$

18. Ans: 2356.2 kJ/kg

Sol: $(1 \mathrm{~cm})_{\mathrm{x}}=300 \mathrm{kPa}$

$$
(1 \mathrm{~cm})_{\mathrm{y}}=0.1 \mathrm{~m}^{3} / \mathrm{kg}
$$

$$
1 \mathrm{~cm}^{2} \text { Area }=(1 \mathrm{~cm})_{x} \times(1 \mathrm{~cm})_{\mathrm{y}}
$$

$$
=300 \times 0.1=30 \mathrm{~kJ} / \mathrm{kg}
$$

Area on $\mathrm{P}-\mathrm{V}$ diagram $=\mathrm{A}=\frac{\pi}{4} \mathrm{D}^{2}$

$$
\begin{aligned}
& =\frac{\pi}{4} \times 10^{2} \\
& =78.5 \mathrm{~cm}^{2}
\end{aligned}
$$

Net work $=78.5 \mathrm{~cm}^{2}$

$$
=78.5 \times 30=2355 \mathrm{~kJ} / \mathrm{kg}
$$

## 19. Ans: 29.7 kJ

Sol: $A=0.12 \mathrm{~m}^{2}$

$$
\begin{aligned}
\mathrm{P}_{1} & =1.5 \mathrm{MPa}=1500 \mathrm{kPa} \\
\mathrm{P}_{2} & =0.15 \mathrm{MPa}=150 \mathrm{kPa} \\
l & =0.3 \mathrm{~m}
\end{aligned}
$$


${ }_{1} \mathrm{~W}_{2}=\frac{1}{2}\left(\mathrm{P}_{1}+\mathrm{P}_{2}\right) \mathrm{V}_{\mathrm{s}}, \mathrm{V}_{\mathrm{s}}=\mathrm{V}_{2}-\mathrm{V}_{1}$
$\Rightarrow{ }_{1} \mathrm{~W}_{2}=\frac{1}{2} \times(1500+150) \times(0.036)$

$$
\left(\because \mathrm{V}_{\mathrm{s}}=\mathrm{Al}=0.12 \times 0.3=0.036 \mathrm{~m}^{3}\right)
$$

$\Rightarrow{ }_{1} \mathrm{~W}_{2}=29.7 \mathrm{~kJ}$

## 20. Ans: $\mathbf{1 7 4 2}$ kJ

Sol: Given $\left[P+\frac{a}{V^{2}}\right](V-b)=m R T$

$$
\begin{aligned}
& \mathrm{P}+\frac{\mathrm{a}}{\mathrm{~V}^{2}}=\frac{\mathrm{mRT}}{(\mathrm{~V}-\mathrm{b})} \\
& \mathrm{P}=\frac{\mathrm{mRT}}{(\mathrm{~V}-\mathrm{b})}-\frac{\mathrm{a}}{\mathrm{~V}^{2}}
\end{aligned}
$$

$W \cdot D=\int_{V_{1}}^{V_{2}} P d V=\int_{V_{1}}^{V_{2}}\left[\frac{m R T}{(V-b)}-\frac{a}{V^{2}}\right] d V$
$\mathrm{W} . \mathrm{D}=\mathrm{mRT} \ln [\mathrm{V}-\mathrm{b}]_{\mathrm{V}_{1}}^{\mathrm{V}_{2}}-\mathrm{a}\left[\frac{\mathrm{V}^{-2+1}}{-2+1}\right]_{\mathrm{v}_{1}}^{\mathrm{v}_{2}}$
$\mathrm{W} . \mathrm{D}=\mathrm{mRT} \ln \left(\frac{\mathrm{V}_{2}-\mathrm{b}}{\mathrm{V}_{1}-\mathrm{b}}\right)+\mathrm{a}\left[\frac{1}{\mathrm{~V}_{2}}-\frac{1}{\mathrm{~V}_{1}}\right]$

$$
\begin{aligned}
& \mathrm{m}=10 \mathrm{~kg}, \quad \mathrm{~V}_{1}=1 \mathrm{~m}^{3}, \\
& \mathrm{~V}_{2}=10 \mathrm{~m}^{3}, \quad \mathrm{~T}=293 \mathrm{~K}, \\
& \mathrm{a}=15.7 \times 10^{4} \mathrm{Nm}^{4}=157 \mathrm{kNm}^{4} \\
& \mathrm{~b}=1.07 \times 10^{-2}, \quad \mathrm{R}=0.278 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \\
& \text { W.D }=(10)(0.278)(293) \\
& \quad \ln \left(\frac{10-\left(1.07 \times 10^{-2}\right)}{1-\left(1.07 \times 10^{-2}\right)}\right)+157\left[\frac{1}{10}-1\right]
\end{aligned}
$$

$W . D=1742.14 \mathrm{~kJ}$

## 21. Ans: 686.62 kJ

Sol: $\mathrm{P} \propto \mathrm{D}^{2}$

$$
\begin{aligned}
& \mathrm{P}_{1}=\mathrm{KD}_{1}{ }^{2} \\
& \mathrm{P}_{2}=\mathrm{KD}_{2}^{2} \\
& \mathrm{P}_{1}=100 \mathrm{kPa}, \mathrm{D}_{1}=1 \mathrm{~m} \\
& \therefore \mathrm{~K}=100 \mathrm{kPa} / \mathrm{m}^{2} \\
& \mathrm{P}_{2}=350 \mathrm{kPa}, \\
& \mathrm{D}_{2}=? \\
& \frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=\frac{\mathrm{D}_{1}^{2}}{\mathrm{D}_{2}^{2}} \\
& 5 \mathrm{D}_{2}=\mathrm{D}_{1} \sqrt{\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}} \\
& \quad=1 \sqrt{\frac{350}{100}}=1.8708 \mathrm{~m}
\end{aligned}
$$

Volume of balloon

$$
\begin{aligned}
\mathrm{V}=\frac{4}{3} \pi \mathrm{R}^{3} & =\frac{4}{3} \pi \times\left(\frac{\mathrm{D}}{2}\right)^{3} \\
& =\frac{4}{3} \times \pi \times \frac{\mathrm{D}^{3}}{8}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{V}=\frac{\pi}{6} \mathrm{D}^{3} \\
& \mathrm{dV}= \\
& =3 \times \frac{\pi}{6} \mathrm{D}^{2} \mathrm{dD} \\
& \\
& =\frac{\pi}{2} \mathrm{D}^{2} \mathrm{dD} \\
& \begin{aligned}
\mathrm{W}_{2}=\int_{\mathrm{D}_{1}}^{\mathrm{D}_{2}} \mathrm{PdV} & =\int_{\mathrm{D}_{1}}^{\mathrm{D}_{2}} \mathrm{KD} \\
& =\int_{\mathrm{D}_{1}}^{\mathrm{D}_{2}} \mathrm{~K} \times \frac{\pi}{2} \pi \mathrm{D}^{4} \mathrm{D} \mathrm{dD} \\
& =\int_{1}^{1.8788} \frac{100}{2} \times \pi \times \mathrm{D}^{4} \mathrm{dD} \\
& =\left.50 \pi \frac{\mathrm{D}^{5}}{5}\right|_{1} ^{1.878}
\end{aligned} \\
& \begin{aligned}
\mathrm{W}_{2}=10 \pi\left[1.8708^{5}-1^{5}\right] \\
=10 \pi[22.9159-1]=688.16 \mathrm{~kJ}
\end{aligned}
\end{aligned}
$$

22. Ans: $\mathbf{1 1 6 . 6 7} \mathbf{~ k P a}, \mathbf{5 4 . 4 2} \mathbf{~ k J}$

Sol: Given, $\mathrm{m}_{\mathrm{w}}=500 \mathrm{~kg}$
Total tank volume, $\mathrm{V}=4 \mathrm{~m}^{3}$

$\mathrm{P}_{1}=100 \mathrm{kPa}$
$\mathrm{m}_{\mathrm{w}}=500 \mathrm{~kg}, \rho_{\mathrm{w}}=1000 \mathrm{~kg} / \mathrm{m}^{3}$
For state-1, $V=\frac{500}{1000}=0.5 \mathrm{~m}^{3}$
For state-2, $\mathrm{m}_{\mathrm{w}}=1000 \mathrm{~kg}, \mathrm{~V}=1 \mathrm{~m}^{3}$

## For state 1 ' $\mathrm{N}_{2}$ ':

$$
\begin{aligned}
\mathrm{P}_{1} & =100 \mathrm{kPa} \\
\mathrm{~V}_{1} & =\text { Total volume }- \text { vol. of water } \\
& =4-0.5=3.5 \mathrm{~m}^{3}
\end{aligned}
$$

For state 2 (' $\mathrm{N}_{2}$ '):

$$
\begin{aligned}
\mathrm{V}_{2} & =\text { Total volume }- \text { vol. of water } \\
& =4-1=3 \mathrm{~m}^{3}
\end{aligned}
$$

## Condition: Isothermal process

$\Rightarrow$ From eq ${ }^{\mathrm{n}} \quad \mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$
$\Rightarrow P_{2}=\frac{P_{1} V_{1}}{V_{2}}=\frac{100 \times 3.5}{3}$
$\Rightarrow \mathrm{P}_{2}=116.67 \mathrm{kPa}$
${ }_{1} \mathrm{~W}_{2}=\mathrm{P}_{1} \mathrm{~V}_{1} \ln \left(\frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}}\right)=100 \times 3.53 \times \ln \left(\frac{3}{3.5}\right)$

## $\Rightarrow \mathrm{W}=-54.42 \mathrm{~kJ}$

Here '-ve' sign indicates compression of $\mathrm{N}_{2}$
so system volume decreases
23. Ans: $320 \mathrm{kPa}, 13 \mathrm{~kJ}$

Sol:

$\mathrm{V}_{1}=0.05 \mathrm{~m}^{3}$,
$\mathrm{P}_{1}=200 \mathrm{kPa}$,

$$
\mathrm{A}_{\mathrm{p}}=0.25 \mathrm{~m}^{2}
$$

Spring constant, $\mathrm{k}=150 \mathrm{kN} / \mathrm{m}$
$\mathrm{V}_{2}=2 \mathrm{~V}_{1}=2 \times 0.05=0.1 \mathrm{~m}^{3}$

| ACE | 13 | Thermal Engineering |
| :--- | :--- | :--- |

$\mathrm{dx}=\frac{\mathrm{V}_{2}-\mathrm{V}_{1}}{\mathrm{~A}}=\frac{0.1-0.05}{0.25}=0.2 \mathrm{~m}$
$\mathrm{P}_{1} \mathrm{~A}=\mathrm{P}_{\mathrm{atm}} \mathrm{A}$
$\mathrm{P}_{1}=\mathrm{P}_{\mathrm{atm}}$


Final force $=$ Initial force + spring force
$\mathrm{P}_{2} \mathrm{~A}=\mathrm{P}_{1} \mathrm{~A}+\mathrm{kdx}$
$P_{2}=P_{1}+k \cdot \frac{d x}{A}$
$=200+150 \times \frac{(0.2)}{0.25}$
$=200+120=320 \mathrm{kPa}$


Work done $=\frac{1}{2}(320+200) \times 0.05=13 \mathrm{~kJ}$
24. Ans: 2.5 kJ

Sol: Given $\mathrm{P}_{\mathrm{a}}=0.1 \mathrm{MPa}=100 \mathrm{kPa}$

$$
\begin{aligned}
& \quad \mathrm{V}_{1}=0.01 \mathrm{~m}^{3} ; \\
& \mathrm{A}_{1}=0.05 \mathrm{~m}^{3} \\
& \Rightarrow l_{1}=\frac{\mathrm{V}_{1}}{\mathrm{~A}_{1}}=\frac{0.01}{0.05} \\
& \Rightarrow l_{1}=0.2 \mathrm{~m} \\
& \mathrm{~V}_{2}=3 \mathrm{~V}_{1}
\end{aligned}
$$



## Find: Total W.D

Here rigid cylinder so area will be same

$$
\begin{aligned}
\mathrm{A} l_{2} & =3 \mathrm{~A} l_{1} \\
l_{2} & =3 l_{1} \\
\Rightarrow \quad l_{2} & =0.6 \mathrm{~m} \\
\Rightarrow \quad \mathrm{~V}_{2} & =0.03 \mathrm{~m}^{3}
\end{aligned}
$$

Total work $=$ [work of gas + (work of spring due to expansion by heating)]
(Due to expansion of piston, spring is compressed)

$$
\begin{aligned}
& =\mathrm{PdV}+\frac{1}{2} \mathrm{Kx}^{2} \\
& =\mathrm{P}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)+\frac{1}{2}(25)(0.2)^{2}
\end{aligned}
$$

[ $\because$ constant pressure process]

$$
=100(0.03-0.01)+\frac{1}{2}(0.2)^{2}(25)
$$

Total work $=2.5 \mathrm{~kJ}$
25. Ans: $0.079 \mathrm{~N}-\mathrm{m}, \mathbf{6 . 9 5} \mathrm{W}$

Sol:


Now, $\mathrm{P}_{\mathrm{S}}=\frac{2 \pi \mathrm{NT}}{60}$
$\Rightarrow \mathrm{T}=\frac{60 \mathrm{P}_{\mathrm{S}}}{2 \pi \mathrm{~N}}=\frac{60(6.95)}{2 \times 3.14 \times 840}=0.079 \mathrm{Nm}$
26. Ans: (a, c)

Sol: Work done $=\mathrm{nRT} \ln \left(\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}\right)$

$$
\begin{aligned}
& =3 \times 8.314 \times 300 \ln \left(\frac{1}{2}\right) \\
& =-5186.54 \approx-5188 \mathrm{~kJ}
\end{aligned}
$$

For isothermal process,

$$
\begin{aligned}
& \mathrm{Q}=\mathrm{W} \\
& \mathrm{Q}=-5188 \mathrm{~kJ}
\end{aligned}
$$

## Chapter <br> 3 <br> First Law of Thermodynamics

1. Ans: (c)

Sol:


Along $\mathbf{A}-\mathbf{B}-\mathbf{C}$ :
$\mathrm{Q}_{\mathrm{A}-\mathrm{B}}-\mathrm{W}_{\mathrm{A}-\mathrm{B}}=\mathrm{U}_{\mathrm{A}-\mathrm{B}}$
$180-130=\mathrm{U}_{\mathrm{B}}-\mathrm{U}_{\mathrm{A}}$
$\mathrm{U}_{\mathrm{B}}-\mathrm{U}_{\mathrm{A}}=50 \mathrm{~kJ}$
Along $\mathbf{A}-\mathrm{D}-\mathrm{B}$ :
$\mathrm{Q}_{\mathrm{A}-\mathrm{B}}-\mathrm{W}_{\mathrm{A}-\mathrm{B}}=\mathrm{U}_{\mathrm{A}-\mathrm{B}}$

$$
\mathrm{Q}_{\mathrm{A}-\mathrm{B}}=50+40=90 \mathrm{~kJ}
$$

2. Ans: $\mathbf{- 2 0 0} \mathrm{kJ}$

Sol: For 1-2 process

$$
\begin{aligned}
& { }_{1} \mathrm{Q}_{2}-{ }_{1} \mathrm{~W}_{2}={ }_{1} \mathrm{U}_{2} \\
& \Rightarrow 100-100=\mathrm{U}_{2}-\mathrm{U}_{1} \\
& \Rightarrow \mathrm{U}_{2}=\mathrm{U}_{1}
\end{aligned}
$$

For 2-3 process

$$
\begin{aligned}
{ }_{2} \mathrm{Q}_{3}-{ }_{2} \mathrm{~W}_{3} & ={ }_{2} \mathrm{U}_{3} \\
\Rightarrow-150-{ }_{2} \mathrm{~W}_{3} & =\mathrm{U}_{3}-\mathrm{U}_{2}=\mathrm{U}_{3}-\mathrm{U}_{1}=200 \\
{ }_{2} \mathrm{~W}_{3} & =-350 \mathrm{~kJ}
\end{aligned}
$$

For 3-4 process

$$
\begin{align*}
{ }_{3} \mathrm{Q}_{4} & -{ }_{3} \mathrm{~W}_{4}={ }_{3} \mathrm{U}_{4} \\
{ }_{3} \mathrm{U}_{4} & =\left(\mathrm{U}_{4}-\mathrm{U}_{3}\right)=\left(\mathrm{U}_{4}-\mathrm{U}_{1}\right)-\left(\mathrm{U}_{3}-\mathrm{U}_{1}\right) \\
& =-\left(\mathrm{U}_{1}-\mathrm{U}_{4}\right)-\left(\mathrm{U}_{3}-\mathrm{U}_{1}\right) \\
& =-50-200=-250 \\
{ }_{3} \mathrm{Q}_{4} & ={ }_{3} \mathrm{U}_{4}-250 \ldots \ldots \ldots .(1) \tag{1}
\end{align*}
$$

## For 4-1 Process

$$
\begin{aligned}
& { }_{4} \mathrm{Q}_{1}-{ }_{4} \mathrm{~W}_{1}={ }_{4} \mathrm{U}_{1}=\mathrm{U}_{1}-\mathrm{U}_{4} \\
& { }_{4} \mathrm{Q}_{1}-300=50 \\
& { }_{4} \mathrm{Q}_{1}=350 \mathrm{~kJ} \\
& \begin{array}{l}
\sum \mathrm{Q}
\end{array}={ }_{1} \mathrm{Q}_{2}+{ }_{2} \mathrm{Q}_{3}-{ }_{3} \mathrm{Q}_{4}+{ }_{4} \mathrm{Q}_{1} \\
& \quad=100-150-500+350=-200 \mathrm{~kJ} \\
& \left(\because \sum \mathrm{Q}=\sum \mathrm{W}\right) \\
& \sum \mathrm{W}=100-350-250+300=-200 \mathrm{~kJ}
\end{aligned}
$$

3. Ans: (c)

Sol: (a) $\mathrm{dW}=0$ (Rigid)
$d Q=-v e$
$\mathrm{dU}=-\mathrm{ve}$
$\mathrm{dQ}-\mathrm{dW}=\mathrm{dU}$
$\mathrm{dU}=-\mathrm{ve}$
(b) $\mathrm{dQ}=0$ (Insulated)
$\mathrm{dW}=+\mathrm{ve}$ (Expansion)
$\therefore \mathrm{dQ}-\mathrm{dW}=\mathrm{dU}$
$0-\mathrm{dW}=\mathrm{dU}$
$\mathrm{dU}=-\mathrm{ve}$
(c) $\mathrm{dW}=0$ (Free expansion)
$\mathrm{dQ}=0$ (Insulated)

$$
\Rightarrow \mathrm{dU}=0
$$

(d) $\mathrm{dW}=-\mathrm{ve}$
$\mathrm{dQ}=0$ (Adiabatic)
$\mathrm{dU}=+\mathrm{ve}$
04. Ans: (e)

Sol: $\mathrm{m}=60 \mathrm{~kg}, \quad \mathrm{P}=200 \mathrm{kPa}$

$$
\begin{aligned}
& \mathrm{T}=25^{\circ} \mathrm{C}, \quad \frac{\mathrm{dQ}}{\mathrm{dt}}=0.8 \mathrm{~kW} \\
& \mathrm{t}=30 \mathrm{~min}=1800 \mathrm{sec}
\end{aligned}
$$

Well sealed = control mass
(Non flow process)

$$
\begin{aligned}
& \mathrm{dQ}-\mathrm{dW}=\mathrm{dU} \\
& \frac{\mathrm{dQ}}{\mathrm{dt}} \times \mathrm{t}-\frac{\mathrm{dW}}{\mathrm{dt}} \times \mathrm{t}=\mathrm{mC}_{\mathrm{v}} \mathrm{dT} \\
& 1800[0.8-(-0.12)]=60(0.718)(\mathrm{T}-25) \\
& \mathrm{T}=63.4^{\circ} \mathrm{C}
\end{aligned}
$$

5. Ans (d)

Sol: $\quad Q=2000 \mathrm{~W}$

$$
\begin{aligned}
& \mathrm{t}=15 \mathrm{~min}=900 \mathrm{sec} \\
& \mathrm{~m}=75 \mathrm{~kg}
\end{aligned}
$$

Well sealed $=$ control mass (Non flow process)

$$
\mathrm{dQ}-\mathrm{dW}=\mathrm{dU}
$$

$$
\frac{\mathrm{dQ}}{\mathrm{dt}} \times \mathrm{t}-\frac{\mathrm{dW}}{\mathrm{dt}} \times \mathrm{t}=\mathrm{mC}_{\mathrm{v}} \mathrm{dT}
$$

$$
\mathrm{t}\left(\frac{\mathrm{dQ}}{\mathrm{dt}}-\frac{\mathrm{dW}}{\mathrm{dt}}\right)=\mathrm{mC}_{\mathrm{v}} \mathrm{dT}
$$

$$
900[0-(-2)]=75(0.718) \mathrm{dT}
$$

$$
\mathrm{dT}=33.42^{\circ} \mathrm{C}
$$

| ACE | 16 | GATE - Text Book Solutions |
| :--- | :--- | :--- |

6. Ans: (c)

Sol: $\mathrm{P}_{1}=-0.25 \mathrm{~kW}$ ( - ve sign indicates it is a power consuming device)
$\mathrm{P}_{2}=-0.12 \mathrm{~kW}$
$P_{3}=-1 \mathrm{~kW}$
$\mathrm{P}_{4}=-0.05 \mathrm{~kW}$
Temperature $=$ constant
(Isothermal process)

$$
\begin{aligned}
\mathrm{dQ} & =\mathrm{dW} \quad(\because \mathrm{dU}=0) \\
\mathrm{dQ} & =-(0.25+0.12+1+0.05) \times 3600 \\
& =-5112 \mathrm{~kJ} / \mathrm{hr}
\end{aligned}
$$

## 07. (i) Ans: (b), (ii) Ans: (c)

## Sol:

(ii) Ideal gas stored in Rigid insulated Tank. Total volume of Tank $V_{f}=3 \mathrm{~m}^{3}$

State : 1
Tank has two compartments.
State : 2
Partition between two compartments
Ruptured


By equation $\mathrm{PV}=\mathrm{n} \overline{\mathrm{R}} \mathrm{T}$

$$
\begin{aligned}
& =\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{n}_{1} \overline{\mathrm{R}} \mathrm{~T}_{1} \\
\Rightarrow \mathrm{n}_{1}= & \frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\overline{\mathrm{R}} \mathrm{~T}_{1}}=\frac{0.1 \mathrm{MPa} \times 1 \mathrm{~m}^{3}}{8.314 \times 300 \mathrm{~K}} \\
= & \frac{0.1 \times 10^{3} \mathrm{kPa} \times 1 \mathrm{~m}^{3}}{8.314 \times 300} \\
\Rightarrow \mathrm{n}_{1}= & 0.040 \text { moles }
\end{aligned}
$$

For $\mathrm{n}_{2}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\overline{\mathrm{R}} \mathrm{T}_{2}}=\frac{1 \times 10^{3} \times 2}{8.314 \times 1000}$

$$
=0.24 \text { Moles }
$$

$$
\mathrm{n}_{\mathrm{f}}=\mathrm{n}_{1}+\mathrm{n}_{2}=0.04+0.24=0.28 \text { Moles }
$$

$$
\mathrm{V}_{\mathrm{f}}=\mathrm{V}_{1}+\mathrm{V}_{2}=3 \mathrm{~m}^{3}
$$

Here rigid \& Insulated tank given

$$
\begin{aligned}
& \Rightarrow \mathrm{dQ}=0, \quad \mathrm{dW}=0 \\
& (\because \text { Rigid } \Rightarrow \mathrm{V}=\mathrm{C} \Rightarrow \mathrm{dW}=0) \\
& \Rightarrow \quad \text { By } 1^{\text {st }} \text { law } \\
& \quad \mathrm{dQ}-\mathrm{dW}=\mathrm{dU}=\mathrm{C}_{\mathrm{v}} \mathrm{dT}=0 \\
& \quad \text { Here } \mathrm{dU} \mathrm{U}_{1}+\mathrm{dU}_{2}=0 \\
& \Rightarrow \\
& \mathrm{n}_{1} \mathrm{C}_{\mathrm{v}} \mathrm{dT}+\mathrm{n}_{2} \mathrm{C}_{\mathrm{v}} \mathrm{dT}=0 \\
& \Rightarrow \mathrm{n}_{1} \mathrm{C}_{\mathrm{v}}\left(\mathrm{~T}_{\mathrm{f}}-\mathrm{T}_{1}\right)+\mathrm{n}_{2} \mathrm{C}_{\mathrm{v}}\left(\mathrm{~T}_{\mathrm{f}}-\mathrm{T}_{2}\right)=0 \\
& 0.040 \mathrm{C}_{\mathrm{v}}\left(\mathrm{~T}_{\mathrm{f}}-300\right)+0.24 \mathrm{C}_{\mathrm{v}}\left(\mathrm{~T}_{\mathrm{f}}-1000\right)=0 \\
& \Rightarrow \mathrm{C}_{\mathrm{v}}\left(0.28 \mathrm{~T}_{\mathrm{f}}-241.2\right)=0 \\
& \Rightarrow \mathrm{~T}_{\mathrm{f}} \approx 900 \mathrm{~K}
\end{aligned}
$$

Again
$\Rightarrow \mathrm{P}_{\mathrm{f}} \mathrm{V}_{\mathrm{f}}=\mathrm{n}_{\mathrm{f}} \overline{\mathrm{R}} \mathrm{T}_{\mathrm{f}}$

$$
\begin{aligned}
\Rightarrow \mathrm{P}_{\mathrm{f}}=\frac{\mathrm{n}_{\mathrm{f}} \overline{\mathrm{R}} \mathrm{~T}_{\mathrm{f}}}{\mathrm{~V}_{\mathrm{f}}} & =\frac{0.28(8.314)(900)}{3} \\
& =700 \mathrm{kPa}
\end{aligned}
$$

$$
\Rightarrow \quad \mathrm{P}_{\mathrm{f}}=0.7 \mathrm{MPa}
$$

8. (i) Ans: (c), (ii) Ans: (b), (iii) Ans: (b)

Sol:


Given
Process 1 $\rightarrow$ 2: $(\mathrm{P}=\mathrm{C})$,

$$
\begin{aligned}
\mathrm{P}_{1} & =1.4 \mathrm{bar}, \\
\mathrm{~V}_{1} & =0.028 \mathrm{~m}^{3}, \\
\mathrm{~W}_{1-2} & =10.5 \mathrm{~kJ}
\end{aligned}
$$

Process 2-3: $(\mathbf{P V}=\mathbf{C})$,

$$
\mathrm{U}_{3}=\mathrm{U}_{2}
$$

Process 3-1: $(\mathrm{V}=\mathrm{C})$,

$$
\mathrm{U}_{1}-\mathrm{U}_{3}=-26.4 \mathrm{~kJ}
$$

## Process 1-2: (Constant pressure)

$\Rightarrow \mathrm{Q}_{1-2}-\mathrm{W}_{1-2}=\mathrm{U}_{1-2}$
Given ${ }_{1} \mathrm{~W}_{2}=10.5 \mathrm{~kJ}=\mathrm{P}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)$
$\mathrm{W}_{1-2}=\mathrm{P}_{1}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)$
$\Rightarrow \quad 10.5=140\left(\mathrm{~V}_{2}-0.028\right)$
$\Rightarrow \mathrm{V}_{2}=0.103 \mathrm{~m}^{3}$
$\mathrm{U}_{3}=\mathrm{U}_{2} \& \mathrm{U}_{1}-\mathrm{U}_{3}=-26.4 \mathrm{~kJ}$
$\Rightarrow \mathrm{U}_{1}-\mathrm{U}_{2}=-26.4 \mathrm{~kJ}$
$\Rightarrow \mathrm{U}_{2}-\mathrm{U}_{1}=26.4 \mathrm{~kJ}$.
$\Rightarrow \quad{ }_{1} \mathrm{Q}_{2}={ }_{1} \mathrm{U}_{2}+{ }_{1} \mathrm{~W}_{2}$
$\Rightarrow{ }_{1} \mathrm{Q}_{2}=26.4+10.5$
$\Rightarrow \quad{ }_{1} \mathrm{Q}_{2}=36.9 \mathrm{~kJ}$

Process 2-3:(Isothermal Process)

$$
\begin{aligned}
& \Rightarrow \mathrm{Q}_{2-3}-\mathrm{W}_{2-3}=\mathrm{U}_{2-3} \\
& \text { Hence } \mathrm{T}=\mathrm{C} \Rightarrow{ }_{2} \mathrm{U}_{3}=0 \\
& \Rightarrow \mathrm{Q}_{2-3}=\mathrm{W}_{2-3}=\mathrm{P}_{2} \mathrm{~V}_{2} \ln \frac{\mathrm{~V}_{3}}{\mathrm{~V}_{2}} \\
& \quad=140 \times 0.103 \ln \left(\frac{0.028}{0.103}\right) \\
& \Rightarrow \quad{ }_{2} \mathrm{~W}_{3}=-18.79 \mathrm{~kJ}
\end{aligned}
$$

## Process 3 - 1:(constant volume)

$$
\begin{aligned}
& { }_{3} \mathrm{~W}_{1}=0 \\
\Rightarrow & \mathrm{dQ}-\mathrm{dW}=\mathrm{dU} \\
\Rightarrow & { }_{3} \mathrm{Q}_{1}={ }_{3} \mathrm{U}_{1}=-26.4 \\
\Rightarrow & { }_{3} \mathrm{Q}_{1}=-26.4 \mathrm{~kJ}
\end{aligned}
$$

For checking answer

$$
\begin{aligned}
& \Sigma \mathrm{Q}={ }_{1} \mathrm{Q}_{2}+{ }_{2} \mathrm{Q}_{2}+{ }_{3} \mathrm{Q}_{1} \\
& \Sigma \mathrm{Q}=-8.28 \mathrm{~kJ} \\
& \Sigma \mathrm{~W}={ }_{1} \mathrm{~W}_{2}+{ }_{2} \mathrm{~W}_{3}+{ }_{3} \mathrm{~W}_{1} \\
& \Rightarrow \quad \Sigma \mathrm{~W}=-8.28 \mathrm{~kJ} \\
& \Rightarrow \quad \Sigma \mathrm{Q}=\Sigma \mathrm{W} \text { (First law proved) }
\end{aligned}
$$

9. Ans: 69.3 kJ, 131.831 kJ

Sol:


Air :
$\mathrm{P}_{1}=100 \mathrm{kPa}$
$\mathrm{T}_{1}=300 \mathrm{~K}$
$\mathrm{V}_{1}=0.75 \mathrm{~m}^{3}$
$\mathrm{T}_{2}=400 \mathrm{~K}$
1-2 Process V = C
$\frac{\mathrm{P}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}}$
$\mathrm{P}_{2}=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}} \times \mathrm{P}_{1}=\frac{400}{300} \times 100=133.33 \mathrm{kPa}$
$\mathrm{T}_{3}=400 \mathrm{~K}=\mathrm{T}_{2}$
$\mathrm{V}_{3}=1.5 \mathrm{~m}^{3}$

$$
{ }_{1} \mathrm{~W}_{2}=0(\because \mathrm{~V}=\mathrm{C})
$$

$$
\mathrm{m}=\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{RT}_{1}}=\frac{100 \times 0.75}{0.287 \times 300}=0.871 \mathrm{~kg}
$$

$$
{ }_{1} \mathrm{Q}_{2}=\mathrm{mc}_{\mathrm{v}}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)
$$

$$
=0.871 \times 0.718(400-300)=62.54 \mathrm{~kJ}
$$

2-3 Process T = C
$\mathrm{P}_{2} \mathrm{~V}_{2}=\mathrm{P}_{3} \mathrm{~V}_{3}$

$$
P_{3}=P_{2} \times \frac{V_{2}}{V_{3}}=133.33 \times \frac{0.75}{1.5}=66.67 \mathrm{kPa}
$$

$$
{ }_{2} \mathrm{~W}_{3}={ }_{2} \mathrm{Q}_{3}=\mathrm{P}_{2} \mathrm{~V}_{2} \ln \frac{\mathrm{~V}_{3}}{\mathrm{~V}_{2}}
$$

$$
=133.33 \times 0.75 \ln \frac{1.5}{0.75}=69.313 \mathrm{~kJ}
$$

$$
{ }_{1} \mathrm{~W}_{3}={ }_{1} \mathrm{~W}_{2}+{ }_{2} \mathrm{~W}_{3}=0+69.313=69.313 \mathrm{~kJ}
$$

$$
{ }_{1} \mathrm{Q}_{3}={ }_{1} \mathrm{Q}_{2}+{ }_{2} \mathrm{Q}_{3}
$$

$$
=62.54+69.313=131.853 \mathrm{~kJ}
$$

## 10. Ans: 516 kJ, 2454.6 kJ

Sol: $\mathrm{m}_{\text {air }}=3 \mathrm{~kg}$, $\mathrm{P}_{1}=200 \mathrm{kPa}$,

$$
\mathrm{T}_{1}=27^{\circ} \mathrm{C}=300 \mathrm{~K}, \mathrm{P}_{2}=400 \mathrm{kPa}
$$


$1-2(V=C)$

$$
\frac{200}{300}=\frac{400}{\mathrm{~T}_{2}}
$$

$$
\mathrm{T}_{2}=600 \mathrm{~K}
$$

$$
\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{mRT}_{1}
$$

$$
\mathrm{V}_{1}=\frac{3 \times 0.287 \times 300}{200}=1.2915 \mathrm{~m}^{3}
$$

$$
\mathrm{V}_{1}=\mathrm{V}_{2}=1.2915 \mathrm{~m}^{3}
$$

$$
\mathrm{V}_{3}=2 \mathrm{~V}_{2}=2.583 \mathrm{~m}^{3}
$$

$$
\begin{aligned}
2-\mathbf{3}(\mathbf{P} & =\mathbf{C}) \\
\frac{\mathrm{V}_{3}}{\mathrm{~V}_{2}} & =\frac{\mathrm{T}_{3}}{\mathrm{~T}_{2}}
\end{aligned}
$$

$$
2=\frac{\mathrm{T}_{3}}{600}
$$

$$
\mathrm{T}_{3}=1200 \mathrm{~K}
$$

Work done $=0+\mathrm{P} \times\left(\mathrm{V}_{3}-\mathrm{V}_{2}\right)$

$$
\begin{aligned}
& =400 \times 1.2915=516.6 \mathrm{~kJ} \\
& { }_{1} \mathrm{Q}_{2}=\mathrm{mc}_{\mathrm{v}}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right) \\
& =3 \times 0.717 \times(600-30) \\
& =645.3 \mathrm{~kJ} \\
& { }_{2} \mathrm{Q}_{3}={ }_{2} \mathrm{~W}_{3}+{ }_{2} \mathrm{U}_{3}=\mathrm{m} \mathrm{c}_{\mathrm{p}}\left(\mathrm{~T}_{3}-\mathrm{T}_{2}\right) \\
& =3 \times 1.005(1200-600) \\
& =1809 \mathrm{~kJ}
\end{aligned}
$$

Total heat transfer $=645.3+1809=2454.3$

|  | Regular Live Doubt clearing Sessions \\| Free Online Test Series | ASK an expert |
| :---: | :---: |
| 1 online | Affordable Fee \| Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages |

11. (i) Ans: (d), (ii) Ans: (a), (iii) Ans: (d)

Sol:


Process 1-2: $(\mathrm{P}=\mathrm{C})$

$$
\begin{aligned}
& \frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}} \\
& \therefore \frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}}=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=\frac{\frac{3}{4} \mathrm{~T}_{1}}{\mathrm{~T}_{1}}=\frac{3}{4}=0.75 \\
& \mathrm{Q}_{2}-{ }_{1} \mathrm{~W}_{2}={ }_{1} \mathrm{U}_{2} \\
&{ }_{1} \mathrm{Q}_{2}- \mathrm{P}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)=\left(\mathrm{U}_{2}-\mathrm{U}_{1}\right) \\
& \therefore{ }_{1} \mathrm{Q}_{2}= C_{V}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)+\mathrm{P}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right) \\
&= \mathrm{C}_{\mathrm{V}} \mathrm{~T}_{1}\left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}-1\right)+\mathrm{PV}_{1}\left(\frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}}-1\right) \\
&= \mathrm{C}_{\mathrm{V}} \mathrm{~T}_{1}\left(\frac{3}{4}-1\right)+\mathrm{PV}\left(\frac{3}{4}-1\right) \\
&=-\frac{1}{4}\left(\mathrm{C}_{\mathrm{V}} \mathrm{~T}_{1}+\mathrm{PV}_{1}\right) \\
&=-\frac{1}{4}\left(\mathrm{C}_{\mathrm{V}} \mathrm{~T}_{1}+\mathrm{RT}_{1}\right) \\
&= \frac{-1}{4} \mathrm{~T}_{1}\left(\mathrm{R}+\mathrm{C}_{\mathrm{V}}\right)=\frac{-1}{4} \mathrm{~T}_{1} \mathrm{C}_{\mathrm{P}}=\frac{\mathrm{C}_{\mathrm{P}} \mathrm{~T}_{1}}{4}
\end{aligned}
$$

## Process 1-2:

$$
\begin{aligned}
{ }_{1} \mathrm{~W}_{2} & =\mathrm{P}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right) \\
& =\mathrm{PV}\left(\frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}}-1\right)=\frac{-\mathrm{RT}_{1}}{4}
\end{aligned}
$$

Process 2-3: $(\mathrm{V}=\mathrm{Constant})$

$$
\begin{aligned}
{ }_{2} \mathrm{~W}_{3} & =0 \\
{ }_{2} \mathrm{Q}_{3} & ={ }_{2} \mathrm{U}_{3}=\mathrm{U}_{3}-\mathrm{U}_{2} \\
& =\mathrm{C}_{\mathrm{V}}\left(\mathrm{~T}_{3}-\mathrm{T}_{2}\right) \\
& =\mathrm{C}_{\mathrm{V}}\left(\frac{\mathrm{~T}_{1}}{2}-\frac{3 \mathrm{~T}_{1}}{4}\right) \\
& =-\mathrm{C}_{\mathrm{V}} \mathrm{~T}_{1}\left(\frac{1}{4}\right) \\
& =\frac{-\mathrm{C}_{\mathrm{V}} \mathrm{~T}_{1}}{4} \\
{ }_{1} \mathrm{Q}_{3} & ={ }_{1} \mathrm{Q}_{2}+{ }_{2} \mathrm{Q}_{3} \\
& =\frac{-\mathrm{C}_{\mathrm{P}} \mathrm{~T}_{1}}{4}+\frac{-\mathrm{C}_{\mathrm{V}} \mathrm{~T}_{1}}{4} \\
& =\frac{-\mathrm{T}_{1}}{4}\left(\mathrm{C}_{\mathrm{P}}+\mathrm{C}_{\mathrm{V}}\right)=\left(\mathrm{C}_{\mathrm{V}}+\mathrm{C}_{\mathrm{P}}\right) \frac{\mathrm{T}_{1}}{4}
\end{aligned}
$$

12. (i) Ans: (c), (ii) Ans: (c), (iii) Ans: (b)

Sol:

$$
\begin{align*}
& \mathrm{m}=1.5 \mathrm{~kg} \\
& \mathrm{P}_{1}=1000 \mathrm{kPa} \\
& \mathrm{P}_{2}=200 \mathrm{kPa} \\
& \mathrm{~V}_{1}=0.2 \mathrm{~m}^{3} \\
& \mathrm{~V}_{2}=1.2 \mathrm{~m}^{3} \\
& \mathrm{P}=\mathrm{a}+\mathrm{bV} \\
& \mathrm{u}=1.5 \mathrm{Pv}-85 \\
& 1000=\mathrm{a}+0.2 \mathrm{~b} \ldots \ldots .  \tag{i}\\
& 200=\mathrm{a}+1.2 \mathrm{~b} \ldots \ldots .  \tag{ii}\\
& \text { By solving } \\
& \mathrm{b}=-800 \\
& \mathrm{a}=1160 \\
& \mathrm{P}=1160-800 \mathrm{~V}
\end{align*}
$$

| ACE | 20 | GATE - Text Book Solutions |
| :--- | :--- | :--- |

(ii) ${ }_{1} W_{2}=\int_{V_{1}}^{V_{2}} P d V=\int_{v_{1}}^{v_{2}}(1160-800 V) d V$

$$
\begin{aligned}
& =\int_{0.2}^{1.2}(1160-800 \mathrm{~V}) \mathrm{dV} \\
& =1160(1.2-0.2)-400\left(1.2^{2}-0.2^{2}\right) \\
& =600 \mathrm{~kJ}
\end{aligned}
$$

(iii) $\mathrm{u}=(1.5 \mathrm{Pv}-85) \mathrm{kJ} / \mathrm{kg}$

$$
\begin{gathered}
=\left(1.5 \mathrm{P} \frac{\mathrm{~V}}{\mathrm{~m}}-85\right) \mathrm{kJ} / \mathrm{kg} \\
=1.5 \mathrm{P} \frac{\mathrm{~V}}{\mathrm{~m}}-85 \\
=1.5 \mathrm{P} \frac{\mathrm{~V}}{1.5}-85 \\
=(\mathrm{Pv}-85) \mathrm{kJ} / \mathrm{kg} \\
\mathrm{u}_{1}=\mathrm{P}_{1} \mathrm{~V}_{1}-85=1000 \times 0.2-85 \\
\\
\mathrm{u}_{2}=\mathrm{P}_{2} \mathrm{~V}_{2}-85 \quad \begin{aligned}
& =200 \times 115 \mathrm{~kJ} / \mathrm{kg} \\
& =155 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
\end{gathered}
$$

$$
\mathrm{u}_{2}-\mathrm{u}_{1}=40 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\begin{aligned}
\mathrm{dU} & =\mathrm{m}\left(\mathrm{u}_{2}-\mathrm{u}_{1}\right) \\
& =1.5 \times 40=60 \mathrm{~kJ}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{dQ} & -\mathrm{dW}=\mathrm{dU} \\
\mathrm{dQ} & =60+600=660 \mathrm{~kJ} \\
\mathrm{u} & =\mathrm{Pv}-85 \\
& =(\mathrm{a}+\mathrm{bv}) \mathrm{v}-85 \\
& =\mathrm{av}+\mathrm{bv}^{2}-85=\mathrm{f}(\mathrm{v})
\end{aligned}
$$

For Maximum internal energy

$$
\begin{aligned}
\frac{\mathrm{du}}{\mathrm{dv}} & =0 \\
\Rightarrow \mathrm{a} & +2 \mathrm{bV}=0 \\
\Rightarrow \mathrm{~V} & =\frac{-\mathrm{a}}{2 \mathrm{~b}}=\frac{-1160}{-2 \times 800} \mathrm{~m}^{3}=0.725 \mathrm{~m}^{3} \\
\mathrm{u}_{\max } & =(1160 \times 0.725)-\left(800 \times 0.725^{2}\right)-85 \\
& =335.5 \mathrm{~kJ} / \mathrm{kg} \\
\mathrm{U}_{\max } & =\dot{\mathrm{m}} \times \mathrm{u}_{\max } \\
& =1.5 \times 335.5 \\
& =503.25 \mathrm{~kJ}
\end{aligned}
$$

## 13. Ans: (b)

Sol: For process 1-2: $(\mathbf{P}=\mathbf{C})$

$$
\begin{aligned}
& \Rightarrow{ }_{1} \mathrm{~W}_{2}=\mathrm{P}_{1}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right) \\
& \Rightarrow{ }_{1} \mathrm{~W}_{2}=100 \times(0.3-0.003) \\
& \Rightarrow{ }_{1} \mathrm{~W}_{2}=29.7 \mathrm{~kJ}
\end{aligned}
$$

By Ist law

$$
\begin{aligned}
&{ }_{1} \mathrm{Q}_{2}-{ }^{1} \mathrm{~W}_{2}=\mathrm{E}_{2}-\mathrm{E}_{1} \\
& \Rightarrow \quad 0-29.7=\mathrm{E}_{2}-\mathrm{E}_{1} \\
& \quad\left(\because \quad \mathrm{Q}_{2}=0\right) \\
&-29.7=\mathrm{E}_{2}-0 \\
& \mathrm{E}_{2}=-29.7 \mathrm{~kJ}
\end{aligned}
$$

By Process 2-3

$$
\begin{aligned}
& { }_{2} \mathrm{Q}_{3}-{ }_{2} \mathrm{~W}_{3}={ }_{2} \mathrm{E}_{3}=\mathrm{E}_{3}-\mathrm{E}_{2} \\
& { }_{2} \mathrm{Q}_{3}-\mathrm{P}\left(\mathrm{~V}_{3}-\mathrm{V}_{2}\right)=\mathrm{E}_{3}-\mathrm{E}_{2} \\
& -105-100(0.06-0.3)=\mathrm{E}_{3}-(-29.7) \\
& \quad \mathrm{E}_{3}=-110.7 \mathrm{~kJ}
\end{aligned}
$$

14. (i) Ans: (a), (ii) Ans: (b)

Sol: $C_{P}=2.093+\frac{41.87}{t+100} \mathrm{~J} /{ }^{0} \mathrm{C}$
$\mathrm{P}=1 \mathrm{~atm}$
$\mathrm{V}_{1}=2000 \mathrm{~cm}^{3} \quad ; \quad \mathrm{T}_{1}=0^{\circ} \mathrm{C}$
$\mathrm{V}_{2}=2400 \mathrm{~cm}^{3} \quad ; \quad \mathrm{T}_{2}=100^{\circ} \mathrm{C}$
Here, $\mathrm{C}_{\mathrm{P}}=\mathrm{J} /{ }^{\circ} \mathrm{C}$ form it should always in $\mathrm{J} / \mathrm{kg}{ }^{\circ} \mathrm{C}$ form

So $\quad \mathrm{C}_{\mathrm{P}} \times \mathrm{kg}=\mathrm{J} /{ }^{\circ} \mathrm{C}$
$\Rightarrow \mathrm{Sp}$. Heat $\times$ mass $=$ Heat capacity

$$
\begin{aligned}
\mathrm{dQ} & =\int_{\mathrm{T} 1}^{\mathrm{T} 2} \mathrm{C}_{\mathrm{P}} \mathrm{dt}=\int_{0^{\circ} \mathrm{C}}^{100^{\circ} \mathrm{C}}\left[2.093+\frac{41.87}{\mathrm{t}+100}\right] \mathrm{dt} \\
= & {[2.093 \mathrm{t}]_{0}^{100}+41.87 \ln [\mathrm{t}+100]_{0}^{100} } \\
= & {[2.093(100)]+[41.87 \ln (200)-41.87} \\
& \quad \ln (100)] \\
= & 209.3+[2218-192.81]
\end{aligned}
$$

(i) $\mathrm{dQ}=238.32 \mathrm{~J}$

Here constant pressure is given

$$
\begin{aligned}
\Rightarrow{ }_{1} \mathrm{~W}_{2} & =\mathrm{P}_{1}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)=\mathrm{P}_{\mathrm{atm}}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right) \\
& =101325(2400-2000) \times 10^{-6} \\
& { }_{1} \mathrm{~W}_{2}=40.53 \mathrm{~J} \\
\Rightarrow \quad \mathrm{dQ} & -\mathrm{dW}=\mathrm{dU} \\
\Rightarrow \quad \mathrm{dU} & =238.32-40.53 \\
\mathrm{dU} & =197.79 \mathrm{~J}
\end{aligned}
$$

15. (i) Ans: (a), (ii) Ans: (b), (iii) Ans: (a)

Sol: $\quad h_{1}=3000 \mathrm{~kJ} / \mathrm{kg}$,
$\mathrm{h}_{2}=2762 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{V}_{1}=60 \mathrm{~m} / \mathrm{s}$,

$$
\begin{aligned}
& \quad \mathrm{V}_{2}=? \\
& \begin{array}{l}
\mathrm{A}_{1}=0.1 \mathrm{~m}^{2}, \\
\mathrm{v}_{2}=0.498 \mathrm{~m}^{3} / \mathrm{kg} \\
\mathrm{v}_{1}=0.187 \mathrm{~m}^{3} / \mathrm{kg}
\end{array} \rightarrow \rightarrow \rightarrow
\end{aligned}
$$

Applying steady flow energy equation

$$
\begin{aligned}
& \mathrm{h}_{1}+\frac{\mathrm{V}_{1}^{2}}{2000}+\frac{\mathrm{dQ}}{\mathrm{dt}}=\mathrm{h}_{2}+\frac{\mathrm{V}_{2}^{2}}{2000}+\frac{\mathrm{dW}}{\mathrm{dt}} \\
\Rightarrow & 3000+\frac{(60)^{2}}{2000}=(2762)+\frac{\mathrm{V}_{2}^{2}}{2000} \\
\Rightarrow & \mathrm{~V}_{2}=692.5 \mathrm{~m} . / \mathrm{s} \\
\Rightarrow & \dot{\mathrm{~m}}=\frac{\mathrm{A}_{1} \mathrm{~V}_{1}}{\mathrm{v}_{1}}=\frac{\mathrm{A}_{2} \mathrm{~V}_{2}}{\mathrm{v}_{2}} \\
\Rightarrow & \dot{\mathrm{~m}}=\frac{(0.1)(60)}{0.187} \Rightarrow \mathrm{~m}=32.08 \frac{\mathrm{~kg}}{\mathrm{sec}}
\end{aligned}
$$

Find, $\mathrm{A}_{2}=$ ?

$$
\begin{aligned}
& \Rightarrow \dot{\mathrm{m}}=\frac{\mathrm{A}_{2} \mathrm{~V}_{2}}{\mathrm{v}_{2}} \Rightarrow \mathrm{~A}_{2}=\frac{\mathrm{mV}}{\mathrm{v}_{2}} \\
& \Rightarrow \mathrm{~A}_{2}=\frac{32.08 \times(0.498)}{692.5} \\
& \Rightarrow \mathrm{~A}_{2}=0.023 \mathrm{~m}^{2}
\end{aligned}
$$

16. Ans: (a)

Sol: Given:
$\mathrm{P}_{1}=1.2 \mathrm{MPa}, \quad \mathrm{P}_{2}=20 \mathrm{kPa}, \mathrm{T}_{1}=188^{\circ} \mathrm{C}$,
$\mathrm{h}_{1}=2785 \mathrm{~kJ} / \mathrm{kg}$,
$\mathrm{h}_{2}=2512 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{V}_{1}=33.33 \mathrm{~m} / \mathrm{s}$,
$\mathrm{V}_{2}=100 \mathrm{~m} / \mathrm{sec}$.
$\mathrm{Z}_{2}=0 \mathrm{~m}, \quad \mathrm{Z}_{1}=3 \mathrm{~m}$,
$\dot{\mathrm{m}}=0.42 \mathrm{~kg} / \mathrm{sec}$


Applying steady flow energy equations

$$
\begin{aligned}
& \dot{\mathrm{m}}\left[\mathrm{~h}_{1}+\frac{\mathrm{Z}_{1} \mathrm{~g}}{1000}+\frac{\mathrm{V}_{1}^{2}}{2000}\right]+\frac{\mathrm{dQ}}{\mathrm{dt}} \\
& \quad=\dot{\mathrm{m}}\left[\mathrm{~h}_{2}+\frac{\mathrm{V}_{2}^{2}}{2000}+\frac{\mathrm{Z}_{2} \mathrm{~g}}{1000}\right]+\frac{\mathrm{dW}}{\mathrm{dt}} \\
& \begin{aligned}
\Rightarrow 0.42[2785 & \left.+\frac{3(9.81)}{1000}+\frac{(33.33)^{2}}{2000}\right]-0.29 \\
\quad= & 0.42\left[2512+\frac{(100)^{2}}{2000}+0\right]+\frac{\mathrm{dW}}{\mathrm{dt}}
\end{aligned} \\
& \Rightarrow \frac{\mathrm{dW}}{\mathrm{dt}}=112.51 \mathrm{~kW}
\end{aligned}
$$

## 17. Ans: (a)

Sol:


$$
\begin{aligned}
\mathrm{dW} & =-90 \mathrm{kN} \cdot \mathrm{~m} / \mathrm{kg}=-90 \mathrm{~kJ} / \mathrm{kg} \\
\left(\mathrm{~h}_{2}-\mathrm{h}_{1}\right) & =30 \mathrm{~kJ} / \mathrm{kg} . \\
\frac{\mathrm{dQ}}{\mathrm{dm}} & =-40 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Heat rejected $\Rightarrow d Q={ }^{`}-\mathrm{Ve}^{\prime}$
According to Steady flow energy equation,

$$
\begin{aligned}
\mathrm{h}_{1}+\left(\frac{\mathrm{dQ}}{\mathrm{dm}}\right)_{\text {air }} & +\left(\frac{\mathrm{dQ}}{\mathrm{dm}}\right)_{\mathrm{w}}=\mathrm{h}_{2}+\left(\frac{\mathrm{dW}}{\mathrm{dm}}\right) \\
\left(\frac{\mathrm{dQ}}{\mathrm{dm}}\right)_{\text {air }} & =\left(\mathrm{h}_{2}-\mathrm{h}_{1}\right)+\frac{\mathrm{dW}}{\mathrm{dm}}-\left(\frac{\mathrm{dQ}}{\mathrm{dm}}\right)_{\mathrm{w}} \\
& =30-90-(-40) \\
& =-20 \mathrm{~kJ}
\end{aligned}
$$

(-ve sign indicates heat is rejected from the system)
18. Ans: (b)

Sol:

$\left(\frac{\mathrm{dW}}{\mathrm{dt}}\right)_{\text {fans }}=0.18 \times 2=-0.36 \mathrm{~kW}$
$\left(\frac{\mathrm{dW}}{\mathrm{dt}}\right)_{\text {Bulb }}=3 \times 0.1=-0.3 \mathrm{~kW}$
$\left(\frac{\mathrm{dW}}{\mathrm{dt}}\right)_{\text {Total }}=-0.36+(-0.3)=-0.66 \mathrm{~kW}$
$\dot{\mathrm{m}}_{\text {airenter }}=80 \mathrm{~kg} / \mathrm{hr}$.
$\mathrm{h}_{1}=84 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{2}=59 \mathrm{~kJ} / \mathrm{kg}$
$\left(\frac{\mathrm{dQ}}{\mathrm{dt}}\right)_{\text {person }}=630 \times 4=2520 \mathrm{~kJ} / \mathrm{hr}$
$\left(\frac{\mathrm{dQ}}{\mathrm{dT}}\right)_{\text {Rcooler }}=?$

By steady flow energy equation

$$
\begin{aligned}
& \begin{aligned}
\dot{\mathrm{m}}_{1} \mathrm{~h}_{1}+\left(\frac{\mathrm{dQ}}{\mathrm{dt}}\right)_{\text {person }} & +\left(\frac{\mathrm{dQ}}{\mathrm{dt}}\right)_{\text {RCooler }} \\
& =\dot{\mathrm{m}}_{2} \mathrm{~h}_{2}+\left(\frac{\mathrm{dW}}{\mathrm{dt}}\right)_{\text {fan }}+\left(\frac{\mathrm{dW}}{\mathrm{dt}}\right)_{\text {bulb }}
\end{aligned} \\
& \begin{aligned}
\frac{80 \times 84}{3600}+\frac{2520}{3600}+\left(\frac{\mathrm{dQ}}{\mathrm{dt}}\right)_{\text {RCooler }}
\end{aligned} \\
& \quad=\frac{80 \times 59}{3600}+(-0.66) \\
& \Rightarrow\left(\frac{\mathrm{dQ}}{\mathrm{dt}}\right)_{\mathrm{RC}}=
\end{aligned}
$$

Heat is removed from a cooler is 1.91 kW
19. (i) Ans: (a), (ii) Ans: (a)

$$
\begin{array}{cc}
\text { Sol: } \dot{\mathrm{m}}_{1}=0.01 \mathrm{~kg} / \mathrm{sec} & \mathrm{~h}_{1}=2952 \mathrm{~kJ} / \mathrm{kg} \\
\dot{\mathrm{~m}}_{2}=0.1 \mathrm{~kg} / \mathrm{sec} & \mathrm{~h}_{2}=2569 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \\
\dot{\mathrm{~m}}_{3}=0.001 \mathrm{~kg} / \mathrm{sec} & \mathrm{~h}_{3}=420 \mathrm{~kJ} / \mathrm{kg} \\
\mathrm{~V}_{1}=20 \mathrm{~m} / \mathrm{sec} & \mathrm{~V}_{2}=120 \mathrm{~m} / \mathrm{sec}
\end{array}
$$


(1) Mass balance

Mass entering $/ \mathrm{sec}=$ mass leaving $/ \mathrm{sec}$

$$
\begin{aligned}
& \dot{\mathrm{m}}_{1}+\dot{\mathrm{m}}_{2}=\dot{\mathrm{m}}_{3}+\dot{\mathrm{m}}_{4} \\
& \Rightarrow \quad \dot{\mathrm{~m}}_{4}=0.109 \mathrm{~kg} / \mathrm{sec}
\end{aligned}
$$

(2) Energy balance

$$
\begin{aligned}
\dot{\mathrm{m}}_{1}\left[\mathrm{~h}_{1}+\frac{\mathrm{V}_{1}^{2}}{2000}\right] & +\dot{\mathrm{m}}_{2}\left[\mathrm{~h}_{2}+\frac{\mathrm{V}_{2}^{2}}{2000}\right]+\frac{\mathrm{dQ}}{\mathrm{dt}} \\
& =\dot{\mathrm{m}}_{3} \mathrm{~h}_{3}+\dot{\mathrm{m}}_{4} \mathrm{~h}_{4}+\frac{\mathrm{dW}}{\mathrm{dt}}
\end{aligned}
$$

Here $\frac{\mathrm{dQ}}{\mathrm{dt}}=0$

$$
\begin{gathered}
0.01\left[2952+\frac{(20)^{2}}{2000}\right]+0.1\left[2569+\frac{(120)^{2}}{2000}\right] \\
=(0.001 \times 420)+\left(0.109 \times \mathrm{h}_{4}\right)+25 \\
\Rightarrow \mathrm{~h}_{4}=2401 \mathrm{~kJ} / \mathrm{kg}
\end{gathered}
$$

20. Ans: (c)

Sol:


$$
\dot{\mathrm{m}}_{\mathrm{a}}=3 \mathrm{~kg} / \mathrm{sec}, \quad \mathrm{c}_{\mathrm{p}_{\mathrm{a}}}=1.005 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}
$$

Heat lost to surrounding $=\mathrm{Q}_{1}=40 \mathrm{~kW}$
Heat lost by air $=$ Heat gained by water + heat lost to surroundings

$$
\dot{\mathrm{m}}_{\mathrm{a}} \mathrm{c}_{\mathrm{p}_{\mathrm{a}}}\left(\theta_{1}-\theta_{2}\right)=\dot{\mathrm{m}}_{\mathrm{w}} \mathrm{c}_{\mathrm{p}_{\mathrm{w}}}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)+\theta_{1}
$$

$$
3 \times 1.005[100-20]=2 \times 4.187\left(\mathrm{~T}_{2}-15\right)+40
$$

$$
\mathrm{T}_{2}=15+\frac{241.2-40}{2 \times 4.187}=39.02^{\circ} \mathrm{C}
$$

## 21. Ans: (d)

Sol:


$$
\mathrm{T}_{1}=1023 \mathrm{~K}
$$

Argon is a monoatomic gas, $\gamma_{\mathrm{Ar}}=\frac{5}{3}$
Molecular weight of Argon, $\mathrm{M}=40$

$$
\begin{aligned}
\mathrm{C}_{\mathrm{P}_{A r}} & =\frac{\gamma \overline{\mathrm{R}}}{\mathrm{M}(\gamma-1)} \\
& =\frac{\frac{5}{3} \times(8.314)}{40 \times\left(\frac{5}{3}-1\right)}=0.5196 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \\
\mathrm{~T}_{2} & =\mathrm{T}_{1}\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)^{\frac{\gamma-1}{\gamma}}=1023\left(\frac{0.2}{3}\right)^{0.4} \\
& =346.28 \mathrm{~K}=73.28^{\circ} \mathrm{C}
\end{aligned}
$$

Power $(\mathrm{kW})=\dot{\mathrm{m}}_{\mathrm{P}_{\mathrm{Ar}}}\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)$

$$
\begin{aligned}
& =5 \times 0.5196 \times(1023-346.28) \\
& =\frac{1758.1}{1000}=1.758 \mathrm{MW}
\end{aligned}
$$

22. Ans: (b)

Sol: ' He ' is monoatomic gas, $\gamma=\frac{5}{3}, \mathrm{M}=4$,
$\left(C_{P}\right)_{A r}=\frac{\gamma \bar{R}}{M(\gamma-1)}=\frac{\frac{5}{3} \times(8.314)}{40 \times\left(\frac{5}{3}-1\right)}=0.5196 \mathrm{~kJ} / \mathrm{kgK}$
$\left(\mathrm{C}_{\mathrm{P}}\right)_{\mathrm{He}}=\frac{\gamma \overline{\mathrm{R}}}{\mathrm{M}(\gamma-1)}=\frac{\frac{5}{3} \times(8.314)}{4 \times\left(\frac{5}{3}-1\right)}=5.196 \mathrm{~kJ} / \mathrm{kgK}$
$\gamma_{\text {mixture }}=\frac{5}{3}$
$\mathrm{C}_{\mathrm{P} \text { mix }}=0.5\left(\mathrm{C}_{\mathrm{P}}\right)_{\mathrm{He}}+0.5\left(\mathrm{C}_{\mathrm{P}}\right)_{\mathrm{Ar}}$ $=0.5 \times 0.519+0.5 \times 5.19=2.857 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$
$\mathrm{T}_{2}=\mathrm{T}_{1}\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)^{\frac{\gamma-1}{\gamma}}$
$=1200\left(\frac{100}{1000}\right)^{0.4}=477.72 \mathrm{~K}$
Power $(\mathrm{kW})=\dot{\mathrm{m}}_{\mathrm{a}} \times \mathrm{C}_{\mathrm{P} \text { mix }} \times\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)$

$$
=0.3 \times 2.857 \times(1200-477.72)
$$

$$
=619.05 \mathrm{~kW}
$$

23. Ans: (a)

Sol: $\quad V_{c}=V_{1}=15 \mathrm{~cm}^{3}$

$$
\begin{aligned}
\mathrm{V}_{\mathrm{CO}} & =\mathrm{V}_{2}=1500 \mathrm{~cm}^{3} \\
\mathrm{P}_{1} & =\mathrm{P}_{\mathrm{He}}=20 \mathrm{~atm} \\
\mathrm{~T}_{1} & =40^{\circ} \mathrm{C}
\end{aligned}
$$


$\Rightarrow \mathrm{dW}=0$ (Free expansion) $\mathrm{dQ}=0$ (due to insulation)
By $1^{\text {st }}$ law $d U=d Q-d W$
$\Rightarrow \mathrm{dU}=0=\mathrm{C}_{\mathrm{v}} \mathrm{dT}=0$
$\Rightarrow \mathrm{dT}=0 \Rightarrow \mathrm{~T}=$ constant

Temperature $=$ constant $($ Isothermal $)$

$$
\begin{aligned}
& \Rightarrow P_{1} V_{1}=P_{2} V_{2} \\
& \Rightarrow 20 \times 15=P_{2} \times 1500 \\
& \Rightarrow P_{2}=0.2 \mathrm{~atm}
\end{aligned}
$$

24. 

Sol:


Insulated $\quad \mathrm{Q}=0$
Evacuated $\quad \mathrm{m}_{1}=0$

$$
\begin{aligned}
\mathrm{Q} & =\mathrm{m}_{2} \mathrm{u}_{2}-\mathrm{m}_{1} \mathrm{u}_{1}-\left(\mathrm{m}_{2}-\mathrm{m}_{1}\right) \mathrm{h} \\
\mathrm{~m}_{2} \mathbf{u}_{2} & =\mathrm{m}_{2} \mathrm{~h}_{\mathrm{i}}
\end{aligned}
$$

Final internal energy $=\mathrm{u}_{2}=\mathrm{h}_{\mathrm{i}}$

$$
\mathrm{c}_{\mathrm{v}} \mathrm{~T}_{2}=\mathrm{c}_{\mathrm{p}} \mathrm{~T}_{\mathrm{i}}
$$

Final temperature $=T_{2}=\frac{c_{p}}{c_{v}} T_{i}=\gamma T_{i}$
25. Ans: (a, b, c)

Sol: Steady flow occurs when

- Behaviour of the system are unchanging with time.
- For a properties 'P' of the system, $\partial \mathrm{P} / \partial \mathrm{t}$ $=0$.
- The first difference in each property is zero $\left(\mathrm{P}_{\mathrm{t}}-\mathrm{P}_{\mathrm{t}-1}=0\right)$


## Chapter <br> 4 <br> Second Law of Thermodynamics

1. Ans: (b)
2. Ans: (c)

Sol: Given: H.E

$$
\begin{aligned}
& \eta_{\text {H.E }}=\frac{T_{1}-T_{2}}{T_{1}}=\frac{Q_{1}-Q_{2}}{Q_{1}} \\
& \Rightarrow \frac{1200-300}{1200}=\frac{40-Q_{2}}{40} \\
& \Rightarrow Q_{2}=10 \mathrm{~kW}
\end{aligned}\left\{\begin{array}{l}
\mathrm{T} \\
\mathrm{Q}_{2}=?
\end{array}\right.
$$

## 03. Ans: (c)

Sol: Given: Electric power generating station means H.E

$$
\begin{aligned}
& \text { means H.E } \\
& \Rightarrow \mathrm{Q}_{2}=\mathrm{Q}_{1}-\mathrm{W} \\
& \mathrm{Q}_{2}=36 \times 10^{8} \frac{\mathrm{KJ}}{\mathrm{~h}}-400 \mathrm{MW} \\
&=\frac{36 \times 10^{8}}{1000 \times 3600}(\mathrm{MW})-400 \mathrm{MW} \\
&=1000 \mathrm{MW}-400 \mathrm{MW} \\
& \mathrm{Q}_{2}=36 \times 10^{8} \mathrm{~kJ} / \mathrm{h} \\
&=600 \mathrm{MW}
\end{aligned}
$$

4. Ans: (b)
Sol:

$\eta=\frac{\operatorname{Power}(\mathrm{kW})}{\mathrm{Q}_{\mathrm{s}}(\mathrm{kW})}=\frac{\mathrm{W}(\mathrm{kW})}{\dot{\mathrm{m}}_{\mathrm{f}}\left(\frac{\mathrm{kg}}{\mathrm{sec}}\right) \times \operatorname{C.V}\left(\frac{\mathrm{kJ}}{\mathrm{kg}}\right)}$

$$
=\frac{50}{\frac{3}{3600} \times 75000}=0.8
$$

$\eta_{C}=\frac{T_{1}-T_{2}}{T_{1}}=\frac{627-27}{900}=0.67$
$\eta>\eta_{c} \Rightarrow$ Not possible
05. Ans: (b)

Sol: $\quad(\mathrm{COP})_{R}=\frac{1-\eta_{\mathrm{E}}}{\eta_{\mathrm{E}}}=\frac{1-0.75}{0.75}=0.33$

## 06. Ans: (a)

Sol: Assertion is true
Reason is true and reason is the correct explanation.
07. Ans: (a)

Sol: PMM I $\rightarrow$ A machine which can supply mechanical work continuously without consumption of any energy. So, statement (2) is wrong.

After eliminating statement (2) only one option is available i.e., option (a).
08. Ans: (c)

Sol: ${ }_{1} \mathrm{Q}_{2}={ }_{1} \mathrm{~W}_{2}+{ }_{1} \mathrm{U}_{2}$

$$
\begin{aligned}
& =\frac{P_{1} V_{1}-P_{2} V_{2}}{n-1}+C_{V}\left[T_{2}-T_{1}\right] \\
& =\frac{R}{n-1}\left[T_{1}-T_{2}\right]+\frac{R}{\gamma-1}\left[T_{2}-T_{1}\right] \\
& =\frac{R}{n-1}\left[T_{1}-T_{2}\right]-\frac{R}{\gamma-1}\left[T_{1}-T_{2}\right] \\
& =R\left[T_{1}-T_{2}\right]\left[\frac{1}{\mathrm{n}-1}-\frac{1}{\gamma-1}\right] \\
& =R\left[T_{1}-T_{2}\right]\left[\frac{(\gamma-1)-(n-1)}{(n-1)(\gamma-1)}\right] \\
& =\frac{\gamma-n}{(n-1)(\gamma-1)}\left[R\left(T_{1}-T_{2}\right)\right] \\
& =\frac{(\gamma-n)}{(\gamma-1)} \times \frac{R\left(T_{1}-T_{2}\right)}{(n-1)} \\
& =\left(\frac{\gamma-n}{(\gamma-1)}\right)(W)
\end{aligned}
$$

$=$ Heat transfer for polytropic process
09. Ans: (a)

Sol: $\mathrm{COP}=\frac{\mathrm{NRE}(\mathrm{kW})}{\mathrm{W}_{\mathrm{C}}(\mathrm{kW})}$

$$
\begin{aligned}
& 3.1=\frac{10}{3600} \times \frac{4.187 \times 10^{3} \times(23-6)}{\mathrm{W}_{\mathrm{C}}} \\
& \mathrm{~W}_{\mathrm{C}}=197 \mathrm{~W}
\end{aligned}
$$

10. Ans: (a)

Sol: $\mathrm{COP}=3.2$,
$\mathrm{m}=1200 \mathrm{~kg}$,
$\mathrm{P}=5 \mathrm{~kW}$

$$
\begin{aligned}
\mathrm{COP} & =\frac{\operatorname{NRE}(\mathrm{kW})}{\mathrm{W}_{\mathrm{C}}(\mathrm{~kW})} \\
& =\frac{\mathrm{m}_{\mathrm{a}} \times \mathrm{C}_{\mathrm{va}} \times(\Delta \mathrm{T})_{\mathrm{a}}}{\mathrm{~W}_{\mathrm{C}}(\mathrm{~kJ})}
\end{aligned}
$$

$$
\Rightarrow 3.2=\frac{1200(0.718)(22-7)}{\mathrm{W}_{\mathrm{C}}}
$$

$$
\mathrm{W}_{\mathrm{C}}=4169 \mathrm{~kJ}
$$

$\Rightarrow$ Time $=\frac{\mathrm{W}_{\mathrm{C}}(\mathrm{kJ})}{\mathrm{W}_{\mathrm{C}}(\mathrm{kW})}$

$$
=\frac{4169(\mathrm{~kJ})}{5(\mathrm{~kJ} / \mathrm{sec})}=\frac{834}{60}=13.5 \mathrm{~min}
$$

## 11. Ans: (d)

Sol: $\mathrm{COP}=\frac{\mathrm{NRE}}{\mathrm{W}_{\mathrm{C}}}=\frac{\mathrm{NRE}}{680 \mathrm{kWhr}}=\frac{\mathrm{NRE}}{680 \times 3600}$

$$
\Rightarrow \mathrm{NRE}=680 \times 3600 \times 1.4=3427 \mathrm{MJ} / \mathrm{yr}
$$

## 12. Ans: (d)

Sol:


$$
\mathrm{Q}_{2}=\mathrm{Q}_{1}-\mathrm{W}=1 \mathrm{~kW}
$$

Net effect $=\mathrm{Q}_{1}-\mathrm{Q}_{2}$

$$
=5-4=1 \mathrm{~kW} \text { (heating) }
$$

## 13. Ans: (d)

Sol: Given

$$
\begin{aligned}
& \eta_{\mathrm{E}}=0.4 \\
& \mathrm{\eta}_{\mathrm{E}}=\frac{\mathrm{Q}_{1}-\mathrm{Q}_{2}}{\mathrm{Q}_{1}}=3 \mathrm{Q}_{1} \\
& \Rightarrow 0.4 \mathrm{Q}_{1}=\mathrm{Q}_{1}-\mathrm{Q}_{2}=\mathrm{W} \\
& \Rightarrow \mathrm{Q}_{2}=0.6 \mathrm{Q}_{1} \\
& \Rightarrow \mathrm{Q}_{2}+\mathrm{Q}_{4}=3 \mathrm{Q}_{1} \\
& \Rightarrow 0.6 \mathrm{Q}_{1}+\mathrm{Q}_{4}=3 \mathrm{Q}_{1} \\
& \Rightarrow \mathrm{Q}_{4}=2.4 \mathrm{Q}_{1} \\
& \quad \mathrm{Q}_{3}=\mathrm{Q}_{4}-\mathrm{W}=2.4 \mathrm{Q}_{1}-0.4 \mathrm{Q}_{1}=2 \mathrm{Q}_{1} \\
& (\mathrm{COP})_{\mathrm{R}}=\frac{\mathrm{Q}_{3}}{\mathrm{~W}}=\frac{2 \mathrm{Q}_{1}}{0.4 \mathrm{Q}_{1}}=5
\end{aligned}
$$

14. Ans: 0.667 MJ

Sol:

$$
\begin{aligned}
& \eta=\frac{\mathrm{W}}{\mathrm{Q}_{1}} \\
& 0.3=\frac{\mathrm{W}}{\mathrm{Q}_{1}} \\
& \mathrm{~W}=0.3 \mathrm{Q}_{1} \\
& (\mathrm{COP})_{\mathrm{R}}=5=\frac{\mathrm{Q}_{2}}{\mathrm{~W}} \\
& \Rightarrow \mathrm{Q}_{1}=\frac{1 \mathrm{MJ}}{5 \times 0.3}=0.667 \mathrm{MJ}
\end{aligned}
$$

## 28

## 15. Ans: 0.68



$$
\begin{aligned}
& \eta_{\mathrm{E}}=\frac{\mathrm{T}_{1}-\mathrm{T}_{2}}{\mathrm{~T}_{1}}=\frac{\mathrm{W}}{\mathrm{Q}_{1}} \\
& \frac{473-303}{473}=\frac{W}{\mathrm{Q}_{1}} \Rightarrow \mathrm{~W}=0.359 \mathrm{Q}_{1}
\end{aligned}
$$

$$
(\mathrm{COP})_{\mathrm{R}}=\frac{\mathrm{T}_{3}}{\mathrm{~T}_{2}-\mathrm{T}_{3}}=\frac{\mathrm{Q}_{3}}{\mathrm{~W}}
$$

$$
\frac{243}{303-243}=\frac{\mathrm{Q}_{3}}{0.359 \mathrm{Q}_{1}}
$$

$$
\Rightarrow \frac{\mathrm{Q}_{3}}{\mathrm{Q}_{1}}=1.45
$$

$$
\frac{\mathrm{Q}_{1}}{\mathrm{Q}_{3}}=0.68
$$

## 16. Ans: 86 kW



$$
\begin{aligned}
& \eta_{\mathrm{E}}=0.4 \times \eta_{\text {Carnot }} \\
& 0.4 \times \frac{\mathrm{T}_{1}-\mathrm{T}_{2}}{\mathrm{~T}_{1}}=\frac{\mathrm{W}}{\mathrm{Q}_{1}} \\
& 0.4 \times \frac{(1000-300)}{1000}=\frac{\mathrm{W}}{\mathrm{Q}_{1}} \\
& \begin{aligned}
& \therefore \mathrm{W}=0.28 \mathrm{Q}_{1} \\
& \mathrm{Q}_{2}=\mathrm{Q}_{1}-\mathrm{W} \\
&=\mathrm{Q}_{1}-0.28 \mathrm{Q}_{1}=0.72 \mathrm{Q}_{1} \\
& \mathrm{Q}_{2}=0.72 \mathrm{Q}_{1} \\
& \mathrm{Q}_{3}=2 \mathrm{Q}_{2}+\mathrm{W} \\
&=1.44 \mathrm{Q}_{1}+0.28 \mathrm{Q}_{1} \\
& \mathrm{Q}_{3}=1.72 \mathrm{Q}_{1} \\
& \begin{aligned}
& 1.72 \mathrm{Q}_{1} \\
& 0.28 \mathrm{Q}_{1}=0.5\left(\frac{\mathrm{~T}_{3}}{\mathrm{~T}_{3}-300}\right) \\
& \mathrm{T}_{3}=326 \mathrm{~K}
\end{aligned} \\
& \text { If } \mathrm{Q}_{1}=50 \mathrm{~kW} \\
& \mathrm{Q}_{3}=2 \mathrm{Q}_{2}+\mathrm{W} \\
&=2 \times 0.72 \mathrm{Q}_{1}+0.28 \mathrm{Q}_{1} \\
&=1.72 \times 50=86 \mathrm{~kW}
\end{aligned}
\end{aligned}
$$

17. Ans: 15.168

Sol:

$\mathrm{Q}_{2}=20 \times 420=8400 \mathrm{~kJ} /$ day
$(\mathrm{COP})_{\text {actual }}=0.15(\mathrm{COP})_{\max }$

| $\mathbf{A C E}$ | 29 | Thermal Engineering |
| :--- | :--- | :--- |

$$
\begin{aligned}
& =0.15 \times \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}-\mathrm{T}_{2}}=\frac{\mathrm{Q}_{2}}{\mathrm{~W}} \\
\Rightarrow & 0.15 \times \frac{275}{303-275}=\frac{8400}{\mathrm{~W}} \\
\Rightarrow \mathrm{~W} & =5701 \mathrm{~kJ}
\end{aligned}
$$

$1 \mathrm{~kW} \mathrm{hr}=3600 \mathrm{~kJ}=\frac{5701}{3600}=1.58 \mathrm{~kW} \mathrm{hr} /$ day
Electricity bill
$=$ No. of unit/day $\times$ No. of days $\times \operatorname{cost} / \mathrm{kWhr}$
$=1.58 \times 30 \times 0.32=15.168 /-$
18. Ans: $6326.5 \mathrm{~kJ} / \mathrm{hr}$

Sol:


$$
\begin{aligned}
(\mathrm{COP})_{\mathrm{H} . \mathrm{P}} & =\frac{\mathrm{Q}_{1}}{\mathrm{~W}}=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{1}-\mathrm{T}_{2}} \\
\Rightarrow \frac{60,000}{\mathrm{~W}} & =\frac{294}{294-263} \\
\mathrm{~W} & =6326.5 \mathrm{~kJ} / \mathrm{hr} \\
\frac{\mathrm{~W}_{\mathrm{HP}}}{\mathrm{~W}_{\mathrm{EH}}} & =\frac{6326.5}{60,000}=0.1054
\end{aligned}
$$

With heat pump, initial investment is high but running cost is less. With electrical heater the initial investment is less but running cost is high.
19.

Sol: (a)

$\dot{\mathrm{m}}=\frac{1000}{3600}=0.277 \mathrm{~kg} / \mathrm{s}$
$\mathrm{Q}_{3}=\dot{\mathrm{m}} \times$ latent heat $=0.277 \times 333.43$
$=92.36 \mathrm{~kW}$
$\eta_{\mathrm{E}}=\frac{\mathrm{W}}{\mathrm{Q}_{1}}=\frac{\mathrm{T}_{1}-\mathrm{T}_{2}}{\mathrm{~T}_{1}}$
$\because \mathrm{W}=\left(\frac{343-310}{343}\right) \mathrm{Q}_{1}$
$\therefore \mathrm{W}=0.096 \mathrm{Q}_{1}----(1)$
$(\mathrm{COP})_{\mathrm{R}}=\frac{\mathrm{Q}_{3}}{\mathrm{~W}}=\frac{\mathrm{T}_{3}}{\mathrm{~T}_{2}-\mathrm{T}_{3}}$

$$
\frac{333.43 \times 10^{3}}{W}=\frac{273}{310-273}
$$

$\therefore \mathrm{W}=45190.147 \mathrm{~kJ}$

$$
\dot{\mathrm{W}}=\frac{45190.147}{3600}=12.55 \mathrm{~kW}
$$

From (1)
$\mathrm{Q}_{1}=130.759 \mathrm{~kW}$
$\mathrm{Q}_{2}=\mathrm{Q}_{1}-\mathrm{W}$
$\mathrm{Q}_{2}=118.20 \mathrm{~kW}$

$$
\begin{aligned}
\mathrm{Q}_{4} & =\mathrm{Q}_{3}+\mathrm{W}=\frac{333.43 \times 10^{3}}{3600}+\mathrm{W} \\
& =92.62+12.55=105.17 \mathrm{~kW}
\end{aligned}
$$

| NCE | 30 | GATE - Text Book Solutions |
| :--- | :--- | :--- |

$$
\frac{\mathrm{Q}_{3}}{\mathrm{Q}_{1}}=\frac{92.62}{130.75}=0.708
$$

Total heat rejected to lower temperature reservoir $=\mathrm{Q}_{2}+\mathrm{Q}_{\text {ref }}$

$$
=118.2+105.17=223.37 \mathrm{~kW}
$$

$\frac{\text { Energy of freezing water }}{\text { Energy of heat engine }}=\frac{92.62}{130.759}=0.706$
20. Ans: $2 \mathrm{~kW}, \mathbf{5 0}^{\circ} \mathrm{C}$

Sol:
(a)

$\mathrm{Q}_{1}=0.65\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)=0.65(293-263)$

$$
=19.5 \mathrm{~kW}
$$

$(\mathrm{COP})_{\mathrm{HP}}=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{1}-\mathrm{T}_{2}}=\frac{\mathrm{Q}_{1}}{\mathrm{~W}}$

$$
=\frac{293}{293-263}=\frac{19.5}{W}
$$

$$
\dot{\mathrm{W}}=1.99 \approx 2 \mathrm{~kW}
$$

(b)


$$
\mathrm{Q}_{2}=0.65\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)=0.65\left(\mathrm{~T}_{1}-293\right)
$$

$$
\begin{aligned}
(\mathrm{COP})_{R} & =\frac{\mathrm{Q}_{2}}{W}=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}-\mathrm{T}_{2}} \\
& =\Rightarrow \frac{0.65\left(\mathrm{~T}_{1}-293\right)}{1.99}=\frac{293}{\mathrm{~T}_{1}-293}
\end{aligned}
$$

$$
\mathrm{T}_{1}=323 \mathrm{~K}=50^{\circ} \mathrm{C}
$$

Up to $50^{\circ} \mathrm{C}$ outside temperature, the temperature of room can be maintained $20^{\circ} \mathrm{C}$.
21.

Sol: Initial diagram:


For reversible heat engine,
$\oint \frac{d Q}{T}=0$
$\frac{5000}{400}+\frac{\mathrm{Q}_{2}}{300}+\frac{\mathrm{Q}_{3}}{200}=0$
$\Rightarrow \frac{\mathrm{Q}_{2}}{300}+\frac{\mathrm{Q}_{3}}{200}=-\frac{50}{4}$
$\frac{2 \mathrm{Q}_{2}+3 \mathrm{Q}_{3}}{600}=-\frac{50}{4}$
$2 \mathrm{Q}_{2}+3 \mathrm{Q}_{3}=-\frac{50}{4} \times 600$
$2 \mathrm{Q}_{2}+3 \mathrm{Q}_{3}=-7500$

Energy balance
$5000+\mathrm{Q}_{2}+\mathrm{Q}_{3}=\mathrm{W}$
$\mathrm{Q}_{2}+\mathrm{Q}_{3}=840-5000$
$\mathrm{Q}_{2}+\mathrm{Q}_{3}=-4160$
from eq.(i)

$$
\begin{aligned}
& \mathrm{Q}_{2}=-4980 \mathrm{~kJ}, \\
& \mathrm{Q}_{3}=820 \mathrm{~kJ}
\end{aligned}
$$

Final diagram

22. Ans: (d)

Sol:


For reversible engine,

$$
\mathrm{s}_{\mathrm{gen}}=0
$$

$\mathrm{dS}($ reservoir at 800 K$)+\mathrm{dS}($ reservoir at 600 K$)+$ $\mathrm{dS}($ reservoir at 100 K$)+\mathrm{dS}($ working fluid $)=0$

$$
\begin{aligned}
& -\frac{6}{800}-\frac{8}{600}+\frac{\mathrm{Q}}{100}+0=0 \\
& \Rightarrow \mathrm{Q}=2.083 \mathrm{~kJ} \\
& \mathrm{~W}_{\text {net }}=8+6-2.083=11.917 \\
& \eta_{\text {th }}=\frac{11.917}{8+6}=85 \%
\end{aligned}
$$

## Chapter <br> 5 <br> Entropy

1. Ans: (c)

Sol: $\mathrm{C}_{\mathrm{p}}=\left(\frac{\mathrm{dh}}{\mathrm{dT}}\right)_{\mathrm{p}}$
Tds $=\mathrm{dh}-\mathrm{vdp}$
As $\mathrm{P}=\mathrm{c}, \mathrm{dp}=0$
So, Tds $=\mathrm{dh}$

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{p}}=\left(\frac{\mathrm{Tds}}{\mathrm{dT}}\right)_{\mathrm{p}} \\
& \mathrm{C}_{\mathrm{p}}=\mathrm{T} \cdot\left(\frac{\partial \mathrm{~s}}{\partial \mathrm{~T}}\right)_{\mathrm{p}}
\end{aligned}
$$

2. Ans: (b)
3. Ans: (a)

Sol:

04. Ans: (b)

Sol:


| ACE | 32 | GATE - Text Book Solutions |
| :--- | :--- | :--- |


$1-2,1^{\prime}-2^{\prime} \rightarrow$ constant temperature
$2-3 \rightarrow$ constant volume
$2^{1}-3^{1} \rightarrow$ constant pressure
$3-1,3^{1}-1^{1} \rightarrow$ Entropy constant

## 05. Ans: (c)

6. Ans: (c)

Sol:i) Temperature measurement is due to Zeroth law of thermodynamics.
ii) Entropy is due to Second law of thermodynamics
iii) Internal Energy is due to first law of thermodynamics

## 07. Ans: (b)




Slope of constant volume curve is more than that of constant pressure curve in T-S diagram. Similarly slope of adiabatic curve is more than that of isothermal curve in $\mathrm{P}-\mathrm{V}$ diagram.
08. Ans: (c)

Sol: $(\mathrm{dS})_{\text {system }}=0$
$(\mathrm{dS})_{\text {surr }}=0$
$(\mathrm{dS})_{\text {univ }}=0$
09. Ans: (c)

Sol: $\mathrm{Tds}=\mathrm{du}+\mathrm{Pdv}$.
This process is valid for any process, reversible (or) irreversible, undergone by a closed system.
10. Ans: (c)

Sol: Area on T-S graph gives amount of heat supplied.
11. Ans: (b)

Sol: Clausius inequality $\oint \frac{\mathrm{dQ}}{\mathrm{T}} \leq 0$

$$
\begin{aligned}
\Rightarrow \oint \frac{d Q}{T} & =\frac{Q_{1}}{T_{1}}-\frac{Q_{2}}{T_{2}}=\frac{600}{1000}-\frac{450}{300} \\
\oint \frac{\mathrm{dQ}}{\mathrm{~T}} & =-0.9 \mathrm{~kJ} / \mathrm{K}<0
\end{aligned}
$$

$\Rightarrow$ Irreversible cycle
$\Rightarrow \eta=\frac{Q_{1}-Q_{2}}{Q_{1}}=\frac{600-450}{600}=0.25=25 \%$

## 12. Ans: (d)

Sol: Find the cycle of thermodynamic.

$$
\begin{aligned}
& \mathrm{T}_{1}=285+273=558 \mathrm{~K} \\
& \mathrm{~T}_{2}=5+273=278 \mathrm{~K} \\
& \oint \frac{\mathrm{dQ}}{\mathrm{~T}}=\frac{\mathrm{Q}_{1}}{\mathrm{~T}_{1}}-\frac{\mathrm{Q}_{2}}{\mathrm{~T}_{2}}
\end{aligned}
$$

$$
=\frac{1000}{558}-\frac{492}{278}=1.79-1.76
$$

$\oint \frac{\mathrm{dQ}}{\mathrm{T}}=0.022>0$
$\therefore$ It is an impossible cycle.

## 13. Ans: (c)

Sol: Motor power $=5 \mathrm{~kW}$.
$\mathrm{T}=20^{\circ} \mathrm{C}=293 \mathrm{~K}$
Due to friction, there is heat between brake and shoe and heat is transferred to surroundings.

$$
\begin{aligned}
(\mathrm{dS})_{\text {sur }} & =\frac{\mathrm{Q}}{\mathrm{~T}}=\frac{\text { Power } \times \text { Time }}{\mathrm{T}}=\frac{5 \times 3600}{293} \\
\mathrm{dS} & =61.4 \mathrm{~kJ} / \mathrm{K}
\end{aligned}
$$

## 14. Ans: (c)

Sol: $\mathrm{S}_{\mathrm{gen}}=\left(\mathrm{S}_{2}-\mathrm{S}_{1}\right)-\int \frac{\mathrm{dQ}}{\mathrm{T}}$

$$
\begin{aligned}
=\frac{\mathrm{Q}}{\mathrm{~T}_{2}}-\frac{\mathrm{Q}}{\mathrm{~T}_{1}} & =\left(\frac{1600}{400}-\frac{1600}{800}\right) \quad 1600 \mathrm{~kJ} \\
& =2 \mathrm{~kJ} / \mathrm{K}
\end{aligned} 400 \mathrm{~K},
$$

16. Ans: (b)

## 15. Ans: (b)

Sol: $\mathrm{m}_{\mathrm{s}}=100 \mathrm{~kg}$

$$
\begin{aligned}
& (\mathrm{dS})_{\text {system }}=\mathrm{m}\left(\mathrm{~s}_{2}-\mathrm{s}_{1}\right)=100(0.1)=10 \frac{\mathrm{~kJ}}{\mathrm{~K}} \\
& (\mathrm{dS})_{\text {surrounding }}=\left(\mathrm{S}_{2}-\mathrm{S}_{1}\right)=-5 \frac{\mathrm{~kJ}}{\mathrm{~K}} \\
& (\mathrm{dS})_{\text {universe }}=(\mathrm{dS})_{\text {sys }}-(\mathrm{dS})_{\text {surr }}=10-5
\end{aligned}
$$

$$
(\mathrm{dS})_{\mathrm{uni}}=5 \mathrm{~kJ} / \mathrm{K}>0 \Rightarrow \text { irreversible process }
$$

Sol:


$$
\begin{aligned}
& \mathrm{s}_{\mathrm{g}}-\mathrm{s}_{\mathrm{f}}=\frac{\mathrm{h}_{\mathrm{fg}}}{\mathrm{~T}_{\mathrm{sat}}} \\
& \mathrm{~s}_{\mathrm{g}}-2.6=\frac{1800}{500} \\
& \mathrm{~s}_{\mathrm{g}}=6.2 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
\end{aligned}
$$

17. Ans: (b)

Sol: $\quad T=273+30=303 \mathrm{~K}$
$\mathrm{d} \dot{\mathrm{Q}}=-55 \times 10^{6} \mathrm{~W}$
As heat is removed at constant temperature,

$$
\mathrm{dS}=\frac{\mathrm{d} \dot{\mathrm{Q}}}{\mathrm{~T}}=\frac{-55}{303}=-0.18 \mathrm{MW} / \mathrm{K}
$$

18. Ans: (c)
Son -

$$
\mathrm{d} \dot{\mathrm{Q}}=-55 \times 10^{6} \mathrm{~W}
$$

19. Ans: (c)

Sol: $(\mathrm{dS})_{\text {Isothermal }}=\mathrm{mR} \ln \left(\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}\right)$

$$
=\mathrm{mR} \ln \left(\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}\right)
$$

20. Ans: (d)

## 21. Ans: (d)

Sol: $\mathrm{Q}=\alpha \mathrm{T}+\beta \mathrm{T}^{2}$

$$
\begin{aligned}
\mathrm{dS} & =\int \frac{\delta \mathrm{Q}}{\mathrm{~T}}=\int \frac{\delta\left(\alpha \mathrm{T}+\beta \mathrm{T}^{2}\right)}{\mathrm{T}} \\
& =\alpha \ln \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}+2 \beta\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)
\end{aligned}
$$

## 22. Ans: (a)

Sol: $\mathrm{S}_{\text {gen }}=\left(\mathrm{S}_{2}-\mathrm{S}_{1}\right)-\int \frac{\mathrm{dQ}}{\mathrm{T}}=\frac{\mathrm{Q}}{\mathrm{T}_{2}}-\frac{\mathrm{Q}}{\mathrm{T}_{1}}$

$$
=\frac{600}{278}-\frac{600}{293}=0.11 \mathrm{~W} / \mathrm{K}
$$

## 23. Ans: (a)

Sol: $\mathrm{T}_{1}=273+15=288 \mathrm{~K}$,
$\mathrm{T}_{2}=288.2 \mathrm{~K}$
$\left(\mathrm{S}_{2}-\mathrm{S}_{1}\right)-\int \frac{\mathrm{dQ}}{\mathrm{T}}=\mathrm{S}_{\text {gen }}$
Here $d Q=0$

$$
\begin{aligned}
\therefore \mathrm{S}_{2}-\mathrm{S} 1 & =\mathrm{dS}=\mathrm{mC}_{\mathrm{p}} \ln \left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right) \\
& =8 \times 4200 \times \ln \left(\frac{288.2}{288}\right)=23 \mathrm{~W} / \mathrm{K}
\end{aligned}
$$

## 24. Ans: 6.68 kJ/K

Sol: $\mathrm{H}_{2} \mathrm{O} \quad \mathrm{T}_{1}=0^{\circ} \mathrm{C}=273 \mathrm{~K}$

$$
\begin{array}{cl}
\downarrow & \\
\mathrm{H}_{2} \mathrm{O} & \mathrm{~T}_{2}=164.97^{\circ} \mathrm{C}=437.97 \mathrm{~K} \\
\downarrow & \\
\text { Steam } & \mathrm{T}_{3}=164.97^{\circ} \mathrm{C}=437.97 \mathrm{~K}
\end{array}
$$

$$
\begin{aligned}
& \begin{aligned}
&(\mathrm{dS})_{1}=\int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \frac{\mathrm{dQ}}{\mathrm{~T}}=\mathrm{mC}_{\mathrm{pw}} \ln \left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right) \\
&=1 \times(4.187) \ln \left(\frac{437.97}{273}\right) \\
&(\mathrm{dS})_{1}=1.97 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \\
&(\mathrm{dS})_{2}=\frac{\mathrm{Q}}{\mathrm{~T}}=\frac{\mathrm{m} \times \mathrm{L} \cdot \mathrm{H}}{\mathrm{~T}}=\frac{1 \times(2066.3)}{437.97} \\
& \Rightarrow(\mathrm{dS})_{2}=4.71 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \\
&(\mathrm{dS})_{\text {Universe }}=(\mathrm{dS})_{1}+(\mathrm{dS})_{2} \\
& \Rightarrow(\mathrm{dS})_{\text {Universe }}=6.68 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
\end{aligned}
\end{aligned}
$$

25. 

Sol:
(a): Given Carnot cycle

$$
\mathrm{ds}=1.44 \mathrm{~kJ} / \mathrm{kgK}
$$

$$
\begin{aligned}
& \mathrm{T}_{1}=623 \mathrm{~K} \\
& \eta_{\text {Carnot }}=\frac{\mathrm{T}_{1}-\mathrm{T}_{2}}{\mathrm{~T}_{1}}=\frac{623-300}{623}=0.518 \\
& \eta=\frac{\mathrm{W}}{\mathrm{Q}_{1}} \\
& \mathrm{~W}=\mathrm{Q}_{1} \times \eta=\mathrm{T}_{1} \mathrm{dS} \times \eta \\
& \mathrm{W}=623 \times 1.44 \times 0.518=464.7 \mathrm{~kJ}
\end{aligned}
$$

(b) Given

Power $=20 \mathrm{~kW}$

| ACE | 35 | Thermal Engineering |
| :--- | :--- | :--- | :--- |

$$
\begin{aligned}
\operatorname{Power}(\mathrm{kW}) & =\dot{\mathrm{m}}_{\mathrm{s}}\left(\frac{\mathrm{~kg}}{\mathrm{sec}}\right) \times \mathrm{W}\left(\frac{\mathrm{~kJ}}{\mathrm{~kg}}\right) \\
\Rightarrow \dot{\mathrm{m}}_{\mathrm{s}} & =0.043 \mathrm{~kg} / \mathrm{sec} \\
& =0.043 \times 3600 \mathrm{~kg} / \mathrm{hr} \\
\dot{\mathrm{~m}}_{\mathrm{s}} & =154.8 \mathrm{~kg} / \mathrm{hr}
\end{aligned}
$$

## 26. Ans: $\mathbf{- 1 6 . 0 1} \mathrm{J} / \mathrm{K}$

Sol: Water $\quad \mathrm{T}_{1}=20^{\circ} \mathrm{C}=293 \mathrm{~K}$ $\downarrow$

Water $\quad \mathrm{T}_{2}=0^{\circ} \mathrm{C}=273 \mathrm{~K}$ $\downarrow$
Ice $\mathrm{T}_{2}=0^{\circ} \mathrm{C}=273 \mathrm{~K}$


Ice $\mathrm{T}_{3}=-10^{\circ} \mathrm{C}=263 \mathrm{~K}$
$\mathrm{m}=10 \mathrm{~g}, \mathrm{C}_{\mathrm{P}}=4.2 \mathrm{~J} / \mathrm{gK}$
$d S_{1}=m C_{P} \ln \frac{T_{2}}{T_{1}}=10 \times 4.2 \times \ln \left(\frac{273}{293}\right)$

$$
=-2.96 \mathrm{~J} / \mathrm{K}
$$

$$
\mathrm{dS}_{2}=\frac{-\mathrm{m}_{\mathrm{i}} \mathrm{~L}_{\text {ice }}}{\mathrm{T}_{2}}=\frac{-10 \times 335}{273}=-12.27 \mathrm{~J} / \mathrm{K}
$$

$$
\mathrm{dS}_{3}=\mathrm{mC}_{\mathrm{P}_{\text {ice }}} \ln \frac{\mathrm{T}_{3}}{\mathrm{~T}_{2}}=10 \times 2.1 \ln \left(\frac{263}{273}\right)
$$

$$
=-0.78 \mathrm{~J}
$$

$(\mathrm{dS})_{\text {system }}=\mathrm{dS}_{1}+\mathrm{dS}_{2}+\mathrm{dS}_{3}$

$$
\begin{aligned}
& =-2.96-12.27-0.78 \\
& =-16.01 \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

27. 

Sol:

$\mathrm{m}_{\mathrm{w}}=10 \mathrm{gm}, \quad \mathrm{C}_{\mathrm{pw}}=0.9 \times 10^{3}$
With work transfer there is no entropy change so entropy change of resistor is equal to zero.
$(\mathrm{dS})_{\text {Resister }}=0$
$(\mathrm{ds})_{\text {surroundirg }}=\frac{\mathrm{Q}}{\mathrm{T}_{\mathrm{atm}}}=\frac{\mathrm{I}^{2} \mathrm{Rt}}{\mathrm{T}_{\mathrm{atm}}}=\frac{10^{2} \times 30 \times 1}{300}=10 \mathrm{~J} / \mathrm{K}$
$(\mathrm{dS})_{\text {universe }}=(\mathrm{dS})_{\text {resistor }}+(\mathrm{dS})_{\text {surrounding }}$

$$
=10 \mathrm{~J} / \mathrm{K}
$$

When it is insulated:


Heat gained by wire $=$ work done $=I^{2} R t$
$\mathrm{m}_{\mathrm{w}} \times \mathrm{C}_{\mathrm{pw}} \times\left(\mathrm{T}_{2}-\mathrm{T}_{\mathrm{atm}}\right)=\mathrm{I}^{2} \mathrm{Rt}$
$10 \times 10^{-3}\left(0.9 \times 10^{3}\right)\left(\mathrm{T}_{2}-300\right)=10^{2} \times 30 \times 1$
$\mathrm{T}_{2}=633 \mathrm{~K}$
$(d S)_{\text {wire }}=\frac{d Q}{T}=m_{\text {wire }} \times C_{\text {Pwire }} \times \ln \frac{T_{2}}{T_{1}}$
$=\left(10 \times 10^{-3}\right) \times\left(0.9 \times 10^{3}\right) \times \ln \left(\frac{633}{300}\right)$

$$
=6.720 \mathrm{~J} / \mathrm{K}
$$

$(\mathrm{dS})_{\text {surrounding }}=0$
$(\mathrm{dS})_{\text {universe }}=6.720+0=6.72 \mathrm{~J} / \mathrm{K}$
28.

## Sol: Case - 1:

Copper block

$$
\mathrm{m}=600 \mathrm{~g}, \quad \mathrm{C}_{\mathrm{P}}=150 \mathrm{~J} / \mathrm{k}, \quad \mathrm{~T}_{1}=100^{\circ} \mathrm{C}
$$

Lake Temperature $=8^{\circ} \mathrm{C}=\mathrm{T}_{2}$

Find: $(d S)_{\text {Universe }}$
If $C_{P}$ is in $J / K$ means mass is included and it is known as heat capacity.)
$(\mathrm{dS})_{\text {Cu block }}=\mathrm{mC}_{\mathrm{P}} \ln \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=150 \ln \left(\frac{281}{373}\right)$
$\Rightarrow(\mathrm{dS})_{\text {Cu block }}=-42.48 \mathrm{~J} / \mathrm{K}$

$$
(\mathrm{dS})_{\mathrm{H}_{2} \mathrm{O}}=\frac{\mathrm{mC}_{\mathrm{P}}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)}{\mathrm{T}_{2}}
$$

$$
=150 \frac{(373-281)}{281}=49.11 \mathrm{~J} / \mathrm{K}
$$

$$
\Rightarrow(\mathrm{dS})_{\text {Universe }}=(\mathrm{dS})_{\text {Cu block }}+(\mathrm{dS})_{\mathrm{H}_{2} 0}
$$

$$
=-42.48+49.11
$$

$(\mathrm{dS})_{\text {Universe }}=6.626 \mathrm{~J} / \mathrm{K}$

Case-2 :
Same block, $\mathrm{T}_{2}=8^{\circ} \mathrm{C}=281 \mathrm{~K}$
As it is dropped from certain height, so there is change in potential energy. Work is done by the block
Change in entropy due to work interaction $=0$

$$
\begin{aligned}
& \Rightarrow(\mathrm{dS})_{\text {block }}=0 \\
& \begin{aligned}
(\mathrm{dS})_{\mathrm{H}_{2} \mathrm{O}}=\frac{\mathrm{Q}}{\mathrm{~T}_{2}}=\frac{\mathrm{mgh}}{\mathrm{~T}_{2}} & =\frac{0.6 \times 9.81 \times 100}{281} \\
& =2.09 \mathrm{~J} / \mathrm{K}
\end{aligned}
\end{aligned}
$$

$\Rightarrow(\mathrm{dS})_{\mathrm{Uni}}=2.09 \mathrm{~J} / \mathrm{K}$

## Case - 3

Now by joining two blocks find (dS $)_{\text {uni }}$
$\mathrm{T}_{1}=100^{\circ} \mathrm{C}, \mathrm{T}_{2}=0^{\circ} \mathrm{C}$
Heat lost by block $-1=$ Heat gained by
block -2

$$
\mathrm{C}\left(\mathrm{~T}_{1}-\mathrm{T}_{\mathrm{f}}\right)=\mathrm{C}\left(\mathrm{~T}_{\mathrm{f}}-\mathrm{T}_{2}\right)
$$

$$
\mathrm{T}_{\mathrm{f}}=\frac{\mathrm{T}_{1}+\mathrm{T}_{2}}{2}=50^{\circ} \mathrm{C}
$$

$$
\Rightarrow(\mathrm{dS})_{\text {block } 1}=\mathrm{C} \ln \left(\frac{\mathrm{~T}_{\mathrm{f}}}{\mathrm{~T}_{1}}\right)
$$

$$
=150 \ln \left(\frac{50+273}{373}\right)=-21.58 \mathrm{~J} / \mathrm{K}
$$

$$
\Rightarrow(\mathrm{dS})_{\mathrm{Block} 2}=\mathrm{C} \ell \mathrm{n}\left(\frac{\mathrm{~T}_{\mathrm{f}}}{\mathrm{~T}_{2}}\right)
$$

$$
=150 \ln \left(\frac{50+273}{273}\right)=+25.22 \mathrm{~J} / \mathrm{K}
$$

$$
\Rightarrow(\mathrm{dS})_{\mathrm{Uni}}=-21.58+25.22
$$

$$
\Rightarrow(\mathrm{dS})_{\mathrm{Uni}}=3.64 \mathrm{~J} / \mathrm{K}
$$

$$
(\mathrm{dS})_{\text {Universe }}>0
$$

So it is an irreversible process.
29.

Sol:
(a)

$\mathrm{m}=1 \mathrm{~kg}$ water

$$
\begin{aligned}
(\mathrm{dS})_{\mathrm{H}_{2} \mathrm{O}} & =\int_{\mathrm{T}_{2}}^{\mathrm{T}_{1}} \frac{\mathrm{dQ}}{\mathrm{~T}}=\int_{\mathrm{T}_{2}}^{\mathrm{T}_{1}} \mathrm{~m}_{\mathrm{w}} \mathrm{C}_{\mathrm{P}_{\mathrm{w}}} \frac{\mathrm{dT}}{\mathrm{~T}} \\
& =\mathrm{mC}_{\mathrm{P}} \ln \left(\frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}\right)
\end{aligned}
$$

$$
(\mathrm{dS})_{\text {Reservoir }}=-\frac{\mathrm{Q}}{\mathrm{~T}_{1}}=\frac{-\mathrm{m}_{\mathrm{w}} \mathrm{C}_{\mathrm{Pw}} \times\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)}{\mathrm{T}_{1}}
$$


$(\mathrm{dS})_{\text {Universe }}=(\mathrm{dS})_{\mathrm{H}_{2} \mathrm{O}}+(\mathrm{dS})_{\text {surr }}$

$$
=\mathrm{m}_{\mathrm{w}} \mathrm{C}_{\mathrm{Pw}}\left[\ln \left(\frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}\right)-\left(\frac{\mathrm{T}_{1}-\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)\right]
$$

$$
=1(4.187) \times\left[\ln \left(\frac{373}{273}\right)-\left(\frac{373-273}{373}\right)\right]
$$

$(\mathrm{dS})_{\text {universe }}=0.183 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$
(b)


By providing one more reservoir at 323 K $1^{\text {st }}$ stage, (dS $)_{\text {universe, }}$, st

$$
\begin{aligned}
\Rightarrow(\mathrm{ds})_{\text {universel }} & =\mathrm{m}_{\mathrm{w}} \mathrm{C}_{\mathrm{Pw}}\left[\ln \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}-\left(\frac{\mathrm{T}_{1}-\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)\right] \\
(\mathrm{dS})_{\text {univ,lststage }} & =1 \times 4.18\left[\ln \left(\frac{323}{273}\right)-\left(\frac{323-273}{323}\right)\right] \\
& =0.056 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}
\end{aligned}
$$

$$
\Rightarrow(\mathrm{ds})_{\text {univ, } 2 \text { nd stage }}
$$

$$
=1 \times 4187\left[\ln \left(\frac{373}{323}\right)-\left(\frac{373-323}{373}\right)\right]
$$

$$
=0.041 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}
$$

$$
(\mathrm{dS})_{\text {universe }}=(\mathrm{dS})_{\text {univ, 2nd stage }}+(\mathrm{dS})_{\text {univ, 1ststage }}
$$

$$
=0.041+0.056=0.097 \mathrm{~kJ} / \mathrm{kgK}
$$

$$
(\mathrm{dS})_{\text {uni }}=0.097 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}
$$

(c) From above problem, when compared to singe stage heating in a two stage heating entropy is
halved. As the no. of stages of heating goes on increasing, entropy change of universe are decreasing. This way we can heat the fluid with almost no change in entropy of universe.
30.

Sol: Given $\mathrm{C}_{\mathrm{P}}=\mathrm{a}+\mathrm{bT}$.

$$
\begin{aligned}
\mathrm{Q}= & \int_{1}^{2} \mathrm{dQ}=\int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \mathrm{mC}_{\mathrm{p}} \mathrm{dT}=\int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \mathrm{~m}(\mathrm{a}+\mathrm{bT}) \mathrm{dT} \\
= & \int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \mathrm{madT}+\mathrm{mbTdT} \\
\mathrm{Q}= & \mathrm{a}\left\{\mathrm{~T}_{2}-\mathrm{T}_{1}\right\}+\frac{\mathrm{b}}{2}\left[\mathrm{~T}_{2}^{2}-\mathrm{T}_{1}^{2}\right] \\
& \int_{\mathrm{S}_{1}}^{\mathrm{S}_{2}} \mathrm{dS}=\int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \mathrm{mC}_{\mathrm{P}} \frac{\mathrm{dT}}{\mathrm{~T}} \\
\Rightarrow & \mathrm{dS}=\left(\mathrm{S}_{2}-\mathrm{S}_{1}\right)=\int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \mathrm{~m}(\mathrm{a}+\mathrm{bT}) \frac{\mathrm{dT}}{\mathrm{~T}} \\
\Rightarrow & \left(\mathrm{~S}_{2}-\mathrm{S}_{1}\right)=\mathrm{am} \ln \left[\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right]+\mathrm{bm}\left[\mathrm{~T}_{2}-\mathrm{T}_{1}\right]
\end{aligned}
$$

$$
\mathrm{C}_{\mathrm{P}}=\mathrm{a}+\mathrm{bT}
$$

$$
\begin{align*}
& 25.2 \times 10^{3}=a+b \times 500  \tag{1}\\
& 30.1 \times 10^{3}=a+b \times 1200 \tag{2}
\end{align*}
$$

By solving

$$
\begin{aligned}
\mathrm{a} & =21700, \quad \mathrm{~b}=7 \\
\mathrm{Q} & =21,700(1200-500)+\frac{7}{2}\left(1200^{2}-500^{2}\right) \\
& =19355 \mathrm{~J} \\
\mathrm{dS} & =21700\left(\frac{1200}{500}\right)+7(1200-500) \\
& =2897.6716 \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

| ACE | 38 | GATE - Text Book Solutions |
| :--- | :--- | :--- |

31. 

Sol:


For maximum work done condition the engine has to be reversible and for the condition of reversibility entropy change of universe is zero.

$$
\begin{aligned}
& (\mathrm{dS})_{\text {system }}=\int_{\mathrm{T}_{1}}^{\mathrm{T}_{0}} \frac{\mathrm{dQ}}{\mathrm{~T}} \\
& \int_{\mathrm{T}_{1}}^{\mathrm{T}_{0}} \frac{\mathrm{C}_{\mathrm{v}} \mathrm{dT}}{\mathrm{~T}}=\mathrm{C}_{\mathrm{v}} \ln \left(\frac{\mathrm{~T}_{0}}{\mathrm{~T}_{1}}\right) \\
& (\mathrm{dS})_{\text {surrounding }}=\frac{\mathrm{Q}_{1}-\mathrm{W}}{\mathrm{~T}_{0}}=\frac{\mathrm{C}_{\mathrm{v}}\left(\mathrm{~T}_{1}-\mathrm{T}_{0}\right)-\mathrm{W}}{\mathrm{~T}_{0}} \\
& (\mathrm{dS})_{\text {univ }}=(\mathrm{dS})_{\text {system }}+(\mathrm{dS})_{\text {sink }}=0 \\
& \mathrm{C}_{\mathrm{v}} \ln \left(\frac{\mathrm{~T}_{0}}{\mathrm{~T}_{1}}\right)+\frac{\mathrm{C}_{\mathrm{v}}\left(\mathrm{~T}_{1}-\mathrm{T}_{0}\right)-\mathrm{W}}{\mathrm{~T}_{0}}=0 \\
& \mathrm{~W}=\mathrm{C}_{\mathrm{v}}\left(\mathrm{~T}_{1}-\mathrm{T}_{0}\right)+\mathrm{T}_{0} \mathrm{C}_{\mathrm{v}} \ln \left(\frac{\mathrm{~T}_{0}}{\mathrm{~T}_{1}}\right) \\
& \quad=\mathrm{C}_{\mathrm{v}}\left(\left(\mathrm{~T}_{1}-\mathrm{T}_{0}\right)+\mathrm{T}_{0} \ln \left(\frac{\mathrm{~T}_{0}}{\mathrm{~T}_{1}}\right)\right)
\end{aligned}
$$

32. Ans: (c)

Sol:

$W_{\text {output }}=\left(\frac{T_{H}-T_{L}}{T_{H}}\right) \times Q_{H}$
$\left(\frac{2000-300}{2000}\right) \times Q_{H}=600$
$\mathrm{Q}_{\mathrm{H}}=705.89$
Entropy change of working fluid during heat addition process $=\frac{705.89}{2000}=0.353 \mathrm{~kW} / \mathrm{K}$
33. Ans: (b)

Sol:


Heat supplied,
$\mathrm{Q}_{\mathrm{s}}=$ Area of semicircle $\mathrm{OAB}+$ Area of rectangle OBQP
$=\frac{\frac{\pi}{4} \times 300 \times \mathrm{d}}{2}+450 \times \mathrm{d}$

$$
=(37.5 \pi+450) \mathrm{d}
$$

$$
\eta_{\mathrm{th}}=\frac{\mathrm{W}_{\mathrm{net}}}{\mathrm{Q}_{\mathrm{s}}}
$$

$$
=\frac{75 \pi \mathrm{~d}}{(37.5 \pi+450) \mathrm{d}}=41.5 \%
$$

34. Ans: 25\%

Sol: Net work, $W_{\text {net }}=$ Area of $\Delta A B C$

$$
\begin{aligned}
& =\frac{1}{2} \times(400) \times(5-1) \\
& =800 \mathrm{~kJ}
\end{aligned}
$$

Heat supplied,
$\mathrm{Q}_{\mathrm{s}}=$ Area of rectangle enclosed by line BC
$=800 \times(5-1)=3200 \mathrm{~kJ}$
$\eta=\frac{W_{\text {net }}}{Q_{s}}=\frac{800}{3200}=25 \%$

## 35. Ans: $(\mathbf{a}, \mathrm{b})$

Sol:

- The entropy of universe is continually on the increase.
- The increase in entropy is obtained from a given quantity of heat transfer at low temperature.
- The entropy of system reaches the maximum value when it is a state of equilibrium with its surrounding.

36. Ans: $(\mathbf{a}, \mathrm{b})$

Sol: $\quad 2.5 \times 4.18(T-30)=5 \times 4.18 \times(100-T)$ $\Rightarrow \mathrm{T}=77^{\circ} \mathrm{C}$

$$
\begin{aligned}
\Delta \mathrm{s} & =2.5 \times 4.18 \times \ln \left(\frac{350}{303}\right)+5 \times 4.18 \times \ln \left(\frac{350}{373}\right) \\
& =1.507-1.33=0.177 \mathrm{~kJ} / \mathrm{K}
\end{aligned}
$$

## 37. Ans: (b, c, d)

Sol: Option figures (b, c, d) represents throttling process of real gas across the orifice.

## 38. Ans: (a, b, d)

Sol: When air is compressed to half of volume at constant pressure entropy change is negative.
39. Ans: (a, c, d)

Sol:

- Two reversible adiabatic path cannot intersect each other.
- Through one point, only one reversible adiabatic can pass
- The path of forward and reversible process coincide for an internally reversible process
- Heat transfer between a reservoir and a system is an irreversible process

40. Ans: $(\mathrm{a}, \mathrm{b}, \mathrm{d})$

Sol: For a isentropic process

- A process where $\Delta \mathrm{S}=0$
- An isentropic process can serve as an appropriate model for actual processes.
- Isentropic process help us to define efficiencies for processes to compare the actual performance.

41. Ans: $(\mathbf{a}, \mathrm{b}, \mathrm{d})$

Sol: Example of ideal reversible process are

- Frictionless adiabatic expansion
- Condensation and boiling of liquids
- Frictionless isothermal compression

42. Ans: $(\mathbf{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})$

Sol: For a cycle to be reversible,

- The pressure and temperature of working substance must not differ, appreciably from those of the surrounding at any stage in the process
- All process must be extremely slow
- There should be no loss of energy
- Working parts of engine must be friction free


## Chapter <br> 6 <br> Availability

1. Ans: (b)

Sol: Whenever certain quantity of heat transferred from a system available energy decrease
02. Ans: (d)

Sol: Irreversibility is zero in the case of Reversible process
03. Ans: (b)
04. Ans: 26.77 kJ

Sol:


Loss in A.E $=\mathrm{T}_{0} \mathrm{~S}_{\text {gen }}$

$$
\begin{aligned}
& =280\left(\frac{\mathrm{Q}}{\mathrm{~T}_{2}}-\frac{\mathrm{Q}}{\mathrm{~T}_{1}}\right) \\
& =280\left[\frac{500}{720}-\frac{500}{835}\right]
\end{aligned}
$$

Loss in A.E $=26.77 \mathrm{~kJ}$
05. Ans: $\mathbf{1 1 . 2} \mathbf{k J}, 5.25 \mathrm{~kJ}$

Sol:

$\mathrm{AE}=\mathrm{Q}\left(1-\frac{\mathrm{T}_{0}}{\mathrm{~T}}\right)=100\left(1-\frac{288}{675}\right)=57.33 \mathrm{~kJ}$

$$
\mathrm{AE}_{\mathrm{I}}=\mathrm{Q}\left(1-\frac{\mathrm{T}_{02}}{\mathrm{~T}_{2}}\right)=100\left(1-\frac{338}{625}\right)=45.92 \mathrm{~kJ}
$$

Loss of available energy $=57.33-45.92$

$$
=11.41 \mathrm{~kJ}
$$


$\mathrm{T}_{\mathrm{m} 1}=\frac{\mathrm{T}_{1}+\mathrm{T}_{2}}{2}=\frac{675+625}{2}=650 \mathrm{~K}$
$\mathrm{T}_{\mathrm{m} 2}=\frac{\mathrm{T}_{01}+\mathrm{T}_{02}}{2}=\frac{288+338}{2}=313 \mathrm{~K}$
$\mathrm{AE}_{\Pi}=\mathrm{Q}\left(1-\frac{\mathrm{T}_{\mathrm{m} 2}}{\mathrm{~T}_{\mathrm{m} 1}}\right)$

$$
=100\left(1-\frac{333}{650}\right)=51.84 \mathrm{~kJ}
$$

Loss in $\mathrm{AE}=\mathrm{AE}_{\mathrm{I}}-\mathrm{AE}_{\mathrm{II}}$

$$
=57.33-51.84=5.49 \mathrm{~kJ}
$$

## 06. Ans: 5743 kJ

Sol: Given Ideal gas , $\mathrm{n}=1 \mathrm{k}$ mol
$\mathrm{P}_{1}=1 \mathrm{MPa}, \quad \mathrm{P}_{2}=0.1 \mathrm{MPa}$,
$\mathrm{T}_{1}=300 \mathrm{~K} \quad \mathrm{~T}_{\mathrm{f}}=\mathrm{T}_{1}$
$\mathrm{T}=$ constant $\Rightarrow$ isothermal process

## For isothermal process,

$$
\begin{aligned}
\mathrm{s}_{2}-\mathrm{s}_{1} & =\mathrm{mR} \ln \left(\frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}\right) \\
& =\mathrm{n} \overline{\mathrm{R}} \ln \left(\frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}\right)
\end{aligned}
$$

For Non-flow process

$$
\begin{aligned}
& \begin{aligned}
\mathrm{W}_{\max } & =\left(\mathrm{u}_{1}-\mathrm{u}_{2}\right)-\mathrm{T}_{0}\left(\mathrm{~s}_{1}-\mathrm{s}_{2}\right) \\
\mathrm{W}_{\max } & =-\mathrm{T}_{0}\left(\mathrm{~s}_{1}-\mathrm{s}_{2}\right) \quad(\because \mathrm{T}=\mathrm{constant}) \\
\mathrm{W}_{\max } & =\mathrm{T}_{0} \mathrm{n} \overline{\mathrm{R}} \ln \left(\frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}\right)=-\mathrm{T}_{0}\left(\mathrm{~s}_{1}-\mathrm{s}_{2}\right) \\
& =\mathrm{T}_{0}\left(\mathrm{~s}_{2}-\mathrm{s}_{1}\right) \\
& =300(1)(8.314) \ln \left(\frac{1}{0.1}\right) \\
\therefore \mathrm{W}_{\max } & =5743 \mathrm{~kJ}
\end{aligned}
\end{aligned}
$$

## 07. Ans: 222.7 kJ

Sol: $\mathrm{P}_{1}=1.4 \mathrm{MPa}=1400 \mathrm{kPa}$
$\mathrm{T}_{1}=175+273=448 \mathrm{~K} ;$
$\mathrm{V}=1 \mathrm{~m}^{3}$
$\mathrm{m}=\frac{\mathrm{P}_{1} \mathrm{~V}}{\mathrm{RT}_{1}}=\frac{1400 \times 1}{0.287 \times 448}=10.88 \mathrm{~kg}$
$\mathrm{T}_{2}=25^{\circ} \mathrm{C}=298 \mathrm{~K}$
$\mathrm{T}_{0}=25^{\circ} \mathrm{C}=298 \mathrm{~K}$
$\mathrm{V}=\mathrm{constant}$

$$
\frac{\mathrm{P}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}}
$$

$$
\frac{1400}{448}=\frac{\mathrm{P}_{2}}{298}
$$

$$
\mathrm{P}_{2}=931.25 \mathrm{kPa}
$$

Non flow process:
Availability at state I

$$
\begin{aligned}
\mathrm{AE}_{1}= & \left(\mathrm{u}_{1}-\mathrm{u}_{0}\right)-\mathrm{T}_{0}\left(\mathrm{~s}_{1}-\mathrm{s}_{0}\right) \\
= & \mathrm{C}_{\mathrm{v}}\left(\mathrm{~T}_{1}-\mathrm{T}_{0}\right)-\mathrm{T}_{0}\left(\mathrm{C}_{\mathrm{p}} \ln \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{0}}-\mathrm{R} \ln \frac{\mathrm{P}_{1}}{\mathrm{P}_{0}}\right) \\
= & 0.718(448-298)-298 \\
& \quad\left(1.005 \ln \frac{448}{298}-0.287 \ln \frac{1400}{100}\right)
\end{aligned}
$$

$$
=211.3 \mathrm{~kJ} / \mathrm{kg}
$$

Availability at state 2

$$
\begin{aligned}
A E_{\text {II }} & =\left(u_{2}-u_{0}\right)-T_{0}\left(\mathrm{~s}_{2}-\mathrm{s}_{0}\right) \\
& =\mathrm{C}_{\mathrm{v}}\left(\mathrm{~T}_{2}-\mathrm{T}_{0}\right)-\mathrm{T}_{0}\left(\mathrm{c}_{\mathrm{p}} \ln \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{0}}-\mathrm{R} \ln \frac{\mathrm{P}_{2}}{\mathrm{P}_{0}}\right) \\
& =0.718(298-298)-298 \\
& \quad\left(1.005 \ln \frac{298}{298}-0.287 \ln \frac{931.15}{100}\right) \\
& =190.82 \mathrm{~kJ}
\end{aligned}
$$

Loss in $\mathrm{AE}=20.47 \mathrm{~kJ} / \mathrm{kg}$
Total Irreversibility

$$
\mathrm{I}=\mathrm{m} \times \operatorname{loss} \text { in } \mathrm{AE}=222.7 \mathrm{~kJ}
$$

## 08. Ans: 25.83 kJ

Sol: Loss in available Energy in pipe

$$
\begin{aligned}
(\Delta \mathrm{E})_{\text {lost }} & =\mathrm{mRT}_{0}\left(\frac{\Delta \mathrm{p}}{\mathrm{p}_{1}}\right) \\
& =3 \times 0.287 \times 300\left(\frac{0.1 \mathrm{p}_{1}}{\mathrm{p}_{1}}\right) \\
& =3 \times 0.287 \times 300(0.1) \\
(\Delta \mathrm{E})_{\text {Lost }} & =25.83 \mathrm{~kJ}
\end{aligned}
$$

9. Ans: $7.04 \%$

Sol:


Second law efficiency,

$$
\begin{aligned}
& \eta_{\text {II }}=\frac{W_{\text {rev }}}{W_{\text {act }}} \text { or } \frac{(C o p)_{\text {act }}}{(C o p)_{\text {rev }}} \\
& (\text { Cop })_{\text {rev }}=\frac{\mathrm{T}_{\mathrm{H}}}{\mathrm{~T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{L}}}=\frac{298}{21}
\end{aligned}
$$

$(\mathrm{Cop})_{\text {act }}=14.19$
$(\mathrm{Cop})_{\text {act }}=\frac{\text { Heating effect }}{\text { Work input }}$
For resistance heater, the entire work in heating is lost as heat

$$
\begin{gathered}
\therefore(\mathrm{COP})_{\mathrm{act}}=\frac{54000}{54000}=1 \\
\eta_{\text {II }}=\frac{1}{14.19} \\
\eta_{\text {II }}=7.04 \%
\end{gathered}
$$

10. Ans: 0.962

Sol: $\quad \eta_{\text {II }}=\frac{\eta_{\text {actual }}}{\eta_{\text {reversible }}}$

$$
\begin{aligned}
& \eta_{\text {actual }}=\frac{(1000-20)-(300+20)}{(1000-20)}=0.6734 \\
& \eta_{\text {reversible }}=\frac{(1000-300)}{1000}=0.7 \\
& \eta_{\text {II }}=\frac{0.6734}{0.7}=0.962
\end{aligned}
$$

## 11. Ans: 214.8 MJ

Sol: Available energy

$$
=\mathrm{mc}_{\mathrm{p}}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)-\mathrm{T}_{\mathrm{o}}\left(\mathrm{mc}_{\mathrm{p}} \ell \mathrm{n}\left(\frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}\right)\right)
$$

where, $\mathrm{T}_{1}=1200 \mathrm{~K}, \mathrm{~T}_{2}=400 \mathrm{~K}, \mathrm{~T}_{\mathrm{o}}=300 \mathrm{~K}$

$$
=1000 \times 0.5 \times(1200-400)-300\left[1000 \times 0.5 \times \ln \left(\frac{1200}{400}\right)\right]
$$

$$
=235.2 \mathrm{MJ}
$$

Total energy available with steel

$$
\begin{aligned}
& =\mathrm{mc}_{\mathrm{p}}\left(\mathrm{~T}_{1}-\mathrm{T}_{\mathrm{o}}\right) \\
& =1000 \times 0.5 \times(1200-300)=450 \mathrm{MJ}
\end{aligned}
$$

Unavailable energy $=450-235.2$

$$
=214.8 \mathrm{MJ}
$$

## 12. Ans: 61.9 \%

Sol: $\quad \mathrm{W}_{\max }=\left(\mathrm{h}_{1}-\mathrm{h}_{2}\right)-\mathrm{T}_{0}\left(\mathrm{~S}_{1}-\mathrm{S}_{2}\right)+\frac{\mathrm{V}_{1}^{2}-\mathrm{V}_{2}^{2}}{2000}$

$$
=\mathrm{c}_{\mathrm{p}}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)-\mathrm{T}_{\mathrm{o}}\left[\mathrm{c}_{\mathrm{p}} \ln \left(\frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}\right)-\mathrm{R} \ln \left(\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}\right)\right]+\frac{\mathrm{V}_{1}^{2}-\mathrm{V}_{2}^{2}}{2000}
$$

where,

$$
\mathrm{T}_{1}=150^{\circ} \mathrm{C}, \quad \mathrm{~T}_{2}=35^{\circ} \mathrm{C}, \quad \mathrm{~T}_{\mathrm{o}}=25^{\circ} \mathrm{C}
$$

$\mathrm{P}_{1}=1000 \mathrm{kPa}, \quad \mathrm{P}_{2}=140 \mathrm{kPa}$
$\mathrm{V}_{1}=100 \mathrm{~m} / \mathrm{s} \quad$ and $\quad \mathrm{V}_{2}=50 \mathrm{~m} / \mathrm{s}$ $=1.005 \times(150-35)-298\left[1.005 \ln \left(\frac{273+150}{273+35}\right)-0.287 \ln \left(\frac{1000}{140}\right)\right]$

$$
+\frac{100^{2}-50^{2}}{2000}
$$

$$
=192.633 \mathrm{~kJ} / \mathrm{kg}
$$

$\mathrm{W}_{\text {act }}$ can be calculated using S.F.E.E

$$
\mathrm{h}_{1}+\frac{\mathrm{V}_{1}^{2}}{2000}+\frac{\mathrm{dQ}}{\mathrm{dm}}=\mathrm{h}_{2}+\frac{\mathrm{V}_{2}^{2}}{2000}+\frac{\mathrm{dW}}{\mathrm{dm}}
$$

$1.005 \times 150+\frac{100^{2}}{2000}+0=1.005 \times 35+\frac{50^{2}}{2000}+\frac{\mathrm{dW}}{\mathrm{dm}}$

$$
\begin{aligned}
& \frac{\mathrm{dW}}{\mathrm{dm}}=\mathrm{W}_{\text {act }}=119.325 \mathrm{~kJ} / \mathrm{kg} \\
& \eta_{\text {II }}=\frac{\mathrm{W}_{\text {act }}}{\mathrm{W}_{\max }}=\frac{119.325}{192.633}=0.619 \approx 61.9 \%
\end{aligned}
$$

## 13. Ans: 85.3 \%

Sol: SFEE for the compressor gives

$$
\begin{aligned}
\dot{\mathrm{W}} & =\dot{\mathrm{Q}}+\dot{\mathrm{m}}\left(\mathrm{~h}_{1}-\mathrm{h}_{2}\right) \\
& =-100+1 \times 1.005(25-160) \\
& =-235.7 \mathrm{~kW}
\end{aligned}
$$

$$
\dot{\mathrm{ma}}_{\mathrm{f} 1}+\dot{\mathrm{Q}}\left(1-\frac{\mathrm{T}_{\mathrm{o}}}{\mathrm{~T}}\right)-\dot{\mathrm{W}}-\dot{\mathrm{m}} \mathrm{a}_{\mathrm{f}_{2}}=\dot{\mathrm{I}}
$$

$$
-\dot{W}=\dot{m}\left(a_{f 2}-a_{f 1}\right)-\dot{Q}\left(1-\frac{T_{o}}{T}\right)+\dot{I}
$$

$$
\eta_{\mathrm{II}}=\frac{\dot{\mathrm{m}}\left(\mathrm{a}_{\mathrm{f} 2}-\mathrm{a}_{\mathrm{f} 1}\right)}{\dot{\mathrm{W}}}
$$

$$
\mathrm{a}_{\mathrm{f} 2}-\mathrm{a}_{\mathrm{f} 1}=\mathrm{h}_{2}-\mathrm{h}_{1}-\mathrm{T}_{\mathrm{o}}\left(\mathrm{~s}_{2}-\mathrm{s}_{1}\right)
$$

$$
=\mathrm{c}_{\mathrm{p}}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)-\mathrm{T}_{\mathrm{o}}\left(\mathrm{c}_{\mathrm{p}} \ln \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}-\mathrm{R} \ln \frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)
$$

$$
=1.005(160-25)-298\left(1.005 \ln \left(\frac{433}{298}\right)-0.287 \ln (8)\right)
$$

$$
=200.95 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\eta_{\text {II }}=\frac{200.95}{235.7}=0.853 \text { or } 85.3 \%
$$

## Chapter <br> 7 <br> Properties of Pure Substances

1. Ans: (b)
2. 

Sol: Given Non flow process \& adiabatic system

$$
\begin{array}{ll}
\mathrm{m}=1 \mathrm{~kg} \text { at } \mathrm{P}_{1}=700 \mathrm{kPa}, & \mathrm{~T}_{1}=300^{\circ} \mathrm{C}, \\
\mathrm{v}_{1}=0.371 \mathrm{~m}^{3} / \mathrm{kg}, & \mathrm{~h}_{1}=3059 \mathrm{~kJ} / \mathrm{kg}
\end{array}
$$

Due to Paddle work

$$
\begin{array}{ll}
\mathrm{T}_{2}=400^{\circ} \mathrm{C}, & \mathrm{v}_{2}=0.44 \mathrm{~m}^{3} / \mathrm{kg}, \\
\mathrm{P}_{2}=700 \mathrm{kPa}, & \mathrm{~h}_{2}=3269 \mathrm{~kJ} / \mathrm{kg}
\end{array}
$$

At $\mathrm{P}_{1}=700 \mathrm{kPa}$ from pressure Table $\mathrm{T}_{\text {sat }}=164.95^{\circ} \mathrm{C}$
$\Rightarrow \mathrm{T}_{1}>\mathrm{T}_{\text {sat }}$ so it is in super heated state.
$\mathrm{u}_{1}=\mathrm{h}_{1}-\mathrm{P}_{1} \mathrm{v}_{1}=3059-(700 \times 0.371)$

$$
=2799.3 \mathrm{~kJ} / \mathrm{kg}
$$

$\mathrm{u}_{2}=\mathrm{h}_{2}-\mathrm{P}_{2} \mathrm{v}_{2}=3269-700 \times 0.44$

$$
=2961 \mathrm{~kJ} / \mathrm{kg}
$$

It is a non flow process

$$
\begin{aligned}
\mathrm{P} & =\mathrm{C} \\
{ }_{1} \mathrm{~W}_{2} & =\mathrm{P}\left(\mathrm{v}_{2}-\mathrm{v}_{1}\right)=700(0.44-0.371) \\
\mathrm{W}_{\mathrm{s}} & ={ }_{1} \mathrm{~W}_{2}=48.3 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

For non flow process

$$
\begin{aligned}
& u_{1}+Q=u_{2}+W \\
& \mathrm{~W}=\mathrm{W}_{\mathrm{S}}+\mathrm{W}_{\mathrm{P}}=\mathrm{Q}+\left(\mathrm{u}_{1}-\mathrm{u}_{2}\right) \\
& \mathrm{W}_{\mathrm{p}}=\mathrm{Q}+\left(\mathrm{u}_{1}-\mathrm{u}_{2}\right)-\mathrm{W}_{\mathrm{S}} \\
&= 0+(2800-2961)-48.3 \\
&=-209.3 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

3. 

Sol: Given Non flow constant volume process

$$
\begin{aligned}
& \mathrm{P}_{1}=1.5 \mathrm{MPa} \quad \mathrm{x}_{1}=0.9 \\
& \mathrm{~V}=0.03 \mathrm{~m}^{3} \quad \mathrm{P}_{2}=500 \mathrm{kPa} \\
& \mathrm{v}_{1}=\mathrm{x}_{1} \mathrm{v}_{\mathrm{g}}=0.9 \times 0.132=0.1188 \mathrm{~m}^{3} / \mathrm{kg} \\
& \mathrm{~h}_{1}=\mathrm{h}_{\mathrm{f}}+\mathrm{x}_{1} \mathrm{~h}_{\mathrm{fg}}=845+0.9 \times 1947=2597.3 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{u}_{1}=\mathrm{h}_{1}-\mathrm{P}_{1} \mathrm{v}_{1}=2597.3-(1500 \times 0.1188) \\
& \mathrm{u}_{1}=2419.1 \mathrm{~kJ} / \mathrm{kg}, \quad \mathrm{~V}=0.03 \mathrm{~m}^{3}
\end{aligned}
$$

(i) Mass of wet steam $=\frac{\mathrm{V}}{\mathrm{v}_{1}}=\frac{0.03}{0.1188}=0.253 \mathrm{~kg}$

$$
\begin{aligned}
& \mathrm{V}=\mathrm{C}(\text { Rigid vessel }) \\
& \mathrm{v}_{1}=\mathrm{v}_{2}=\mathrm{x}_{2} \mathrm{v}_{\mathrm{g} 2} \\
& 0.1188=\mathrm{x}_{2}(0.375)
\end{aligned}
$$

(ii) $\quad \mathrm{x}_{2}=0.317$

$$
h_{2}=\mathrm{h}_{\mathrm{f}_{2}}+\mathrm{xh}_{\mathrm{fg}_{2}}=640+0.317 \times 2109
$$

$$
\mathrm{h}_{2}=1308.55 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\mathrm{u}_{2}=\mathrm{h}_{2}-\mathrm{P}_{2} \mathrm{~V}_{2}=1308.55-500 \times 0.1188
$$

(iii) $\Delta \mathrm{H}=\mathrm{m}\left(\mathrm{h}_{2}-\mathrm{h}_{1}\right)=-1288.75 \times 0.253$

$$
=-326.054 \mathrm{~kJ}
$$

$\Delta \mathrm{U}=\mathrm{m}\left(\mathrm{u}_{2}-\mathrm{u}_{1}\right)=0.253(1249.15-2419.1)$
$\Delta \mathrm{U}=-295.997 \mathrm{~kJ}$
For constant volume $\mathrm{dV}=0,{ }_{1} W_{2}=0$
(iv) $\quad{ }_{1} \mathrm{Q}_{2}=\mathrm{m}\left(\mathrm{u}_{2}-\mathrm{u}_{1}\right)=\Delta \mathrm{U}$
$\Delta \mathrm{U}=-295.997 \mathrm{~kJ}$
04. Ans: (d)

Sol: At $\mathrm{P}=1 \mathrm{~atm}, \mathrm{~h}_{\mathrm{fg}}=2256.5 \mathrm{~kJ} / \mathrm{kg}$

$$
\begin{aligned}
\text { Power }=\frac{\dot{\mathrm{m}}_{\mathrm{w}} \times \mathrm{h}_{\mathrm{fg}}}{\text { time }} & =\frac{0.5 \times 2256.5}{18 \times 60} \\
& =1.05 \mathrm{~kW}
\end{aligned}
$$

5. Ans: (a)

Sol:


By applying steady flow energy equation to turbine
$\dot{\mathrm{m}} \mathrm{h}_{1}+\dot{\mathrm{Q}}=\dot{\mathrm{m}}_{2} \mathrm{~h}_{2}+\dot{\mathrm{W}}$
$\dot{\mathrm{Q}}=0$ (For adiabatic)
$\dot{\mathrm{W}}=\dot{\mathrm{m}}\left(\mathrm{h}_{1}-\mathrm{h}_{2}\right)$
At 8 MPa \& 500 ${ }^{\mathbf{0}} \mathbf{C}, \quad \mathrm{h}_{1}=3399.5 \mathrm{~kJ} / \mathrm{kg}$
At 0.1 MPa, $\mathrm{h}_{2}=\mathrm{h}_{\mathrm{g}_{2}}=2675 \mathrm{~kJ} / \mathrm{kg}$
$\dot{\mathrm{W}}=3 \times(3399.5-2675)=2173.5 \mathrm{~kW}$
06. Ans: (a)

Sol: At 200 kPa ,

$$
\begin{array}{ll}
\mathrm{v}_{\mathrm{f}}=0.001061 \mathrm{~m}^{3} / \mathrm{kg}, & \mathrm{v}_{\mathrm{g}}=0.8857 \mathrm{~m}^{3} / \mathrm{kg} \\
\mathrm{v}=300 \mathrm{~m}^{3}, & \mathrm{P}=200 \mathrm{kPa} \\
\mathrm{~m}_{f}+\mathrm{m}_{\mathrm{v}}=\mathrm{m} & \\
\mathrm{v}_{f}+\mathrm{v}_{\mathrm{v}}=\mathrm{v} &
\end{array}
$$

$(0.25 \times \mathrm{m} \times 0.001061)+(0.75 \times \mathrm{m} \times 0.8857)=300$
$\Rightarrow \quad \mathrm{m}=451.44 \mathrm{~kg}$
07. Ans: (a)

Sol:


From tables:
$\mathrm{h}_{1}=3446 \mathrm{~kJ} / \mathrm{kg}, \quad \mathrm{h}_{2}=2961 \mathrm{~kJ} / \mathrm{kg}$,
$\dot{\mathrm{m}}=1350 \mathrm{~kg} / \mathrm{hr}$
Applying first law

$$
\begin{aligned}
& \dot{\mathrm{m}}_{1}+\frac{\mathrm{dQ}}{\mathrm{dt}}=\dot{\mathrm{m}} \mathrm{~h}_{2}+\frac{\mathrm{dW}}{\mathrm{dt}} \\
& \begin{aligned}
\frac{\mathrm{dW}}{\mathrm{dt}} & =\dot{\mathrm{m}}\left(\mathrm{~h}_{1}-\mathrm{h}_{2}\right)+\frac{\mathrm{dQ}}{\mathrm{dt}} \\
& =\frac{1350}{3600}[3446-2961]-25 \\
& =156.875 \mathrm{~kW}
\end{aligned}
\end{aligned}
$$

8. Ans: 0.95

Sol:


$$
\mathrm{P}_{1}=3 \mathrm{MPa}=30 \mathrm{bar},
$$

$$
\mathrm{h}_{\mathrm{f}_{\mathrm{i}}}=1008.41 \mathrm{~kJ} / \mathrm{kg}, \quad \mathrm{~h}_{\mathrm{fg}}=1795.7 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\mathrm{P}_{2}=0.1 \mathrm{MPa}, \quad \mathrm{~T}_{2}=120^{\circ} \mathrm{C}
$$

From steam tables

$$
\begin{aligned}
& \text { At } \mathbf{P}_{\mathbf{2}}=\mathbf{0 . 1 ~ M P a}, \\
& \mathrm{T}_{\text {sat }}=99.61^{\circ} \mathrm{C} \text { and } \mathrm{T}_{2}=100^{\circ} \mathrm{C}, \\
& \mathrm{~T}_{2}>\mathrm{T}_{\text {sat }} \quad \text { (superheated) } \\
& \mathrm{h}=2676.2 \mathrm{~kJ} / \mathrm{kg} \\
& \text { At } \quad \mathbf{P}_{\mathbf{2}}=\mathbf{0 . 1} \mathbf{~ M P a} \text { and } \mathrm{T}_{\mathbf{2}}=\mathbf{1 5 0}^{\circ} \mathbf{C} \\
& \mathrm{h}=2776.4 \mathrm{~kJ} / \mathbf{k g}
\end{aligned}
$$

$$
\text { At } P_{2}=0.1 \mathrm{MPa} \quad \text { and } \quad \mathrm{T}_{2}=120^{\circ} \mathrm{C}
$$

| (2) ACD | 46 | GATE - Text Book Solutions |
| :---: | :---: | :---: |

$\mathrm{h}_{2}=$ ?
$150^{\circ} \mathrm{C} \rightarrow 2776.6 \mathrm{~kJ} / \mathrm{kg}$
$100^{\circ} \mathrm{C} \rightarrow 2675.8 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{dT}=50^{\circ} \mathrm{C} \rightarrow \mathrm{dh}=100.8 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{dT}^{\prime}=30^{\circ} \mathrm{C} \rightarrow \mathrm{x}=60.48 \mathrm{~kJ} / \mathrm{kg}$
$\therefore \mathrm{h}_{2}=2716.12 \mathrm{~kJ} / \mathrm{kg}=\mathrm{h}_{1}$
(For throttling process)
$\therefore$ If dryness fraction is x
$\therefore \mathrm{h}_{1}=\mathrm{h}_{\mathrm{f}_{1}}+\mathrm{xh}_{\mathrm{fg}_{1}}$

$$
1008.41+x(1795.7)=2716.12
$$

$\therefore \mathrm{x}=0.95$

## 09. Ans: 0.8488

Sol: Given separating \& throttling calorimeter
$\mathrm{P}_{1}=15 \mathrm{bar}=\mathrm{P}_{2}, \mathrm{~m}_{1}=0.55 \mathrm{~kg}$
$\mathrm{T}_{1}=198.3^{0} \mathrm{C}=\mathrm{T}_{2}, \mathrm{~m}_{2}=4.2 \mathrm{~kg}$
$\mathrm{P}_{3}=1 \mathrm{bar}, \mathrm{T}_{3}=120^{\circ} \mathrm{C}$
$\therefore \mathrm{h}_{3}=2716.3 \mathrm{~kJ} / \mathrm{kg}$
(1)

$\mathrm{m}_{\mathrm{w}}=0.55 \mathrm{~kg}$

(Dryness fraction) $)_{\text {separator }}, \quad \mathbf{x}_{1}=\frac{m_{2}}{m_{1}+m_{2}}$

$$
=\frac{4.2}{4.2+0.55}=0.88
$$

For throttling: $\quad h_{2}=h_{3}$

$$
h_{f_{2}}+x_{2} h_{f g_{2}}=h_{3}
$$

$844.55+x_{2}(1946.4)=2716.2$
$\Rightarrow \quad \mathrm{x}_{2}=0.9616$
Mass of vapour $=\mathrm{m}_{\mathrm{v}}=\mathrm{x}_{2} \mathrm{~m}_{2}=0.96 \times 4.2$

$$
=4.032 \mathrm{~kg}
$$

(Dryness fraction) Boiler $=\mathrm{x}=\frac{\mathrm{m}_{\mathrm{v}}}{\mathrm{m}_{\text {total }}}=0.8488$
As quality of steam at boiler is $<90 \%$ so only throttling calorimeter can not be used.

## 10. Ans: 0.94

Sol:


From steam tables
At 1 bar, $150^{\circ} \mathrm{C}, \quad \mathrm{h}=2675.8 \mathrm{~kJ} / \mathrm{kg}$
At 1 bar, $100^{\circ} \mathrm{C}, \quad \mathrm{h}=2776.6 \mathrm{~kJ} / \mathrm{kg}$
A 1 bar, $130^{\circ} \mathrm{C}, \quad \mathrm{h}_{2}=$ ?
$\mathrm{P}_{2}=100 \mathrm{kPa}, \quad \mathrm{T}_{\mathrm{sat}}=99.61^{\circ} \mathrm{C}$
$\mathrm{T}_{2}>\mathrm{T}_{\text {sat }}$ (Superheated state)
$100^{\circ} \mathrm{C} \rightarrow 2776.6 \mathrm{~kJ} / \mathrm{kg}$
$130^{\circ} \mathrm{C} \rightarrow \mathrm{h}_{3}=$ ?
$150^{\circ} \mathrm{C} \rightarrow 2675.8 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{dT}=50^{\circ} \mathrm{C} \rightarrow 100.8 \mathrm{~kJ} / \mathrm{kg}$

| ADCM | 47 | Thermal Engineering |
| :---: | :---: | :---: |

$\mathrm{dT}^{\prime}=20^{\circ} \mathrm{C} \rightarrow \mathrm{x}$
$\mathrm{x}=\frac{100.8 \times 20}{50}=40.32 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{2}=2776.6-40.32=2736.28 \mathrm{~kJ} / \mathrm{kg}$
$\dot{m}=\frac{3.4 \mathrm{~kg}}{5 \mathrm{~min}}=\frac{3.4}{300}=0.0113 \mathrm{~kg} / \mathrm{s}$
By steady flow energy equation
$\dot{\mathrm{m}} \mathrm{h}_{1}+\dot{\mathrm{Q}}=\dot{\mathrm{m}} \mathrm{h}_{2}-\dot{\mathrm{W}}$
$\mathrm{h}_{1}=\mathrm{h}_{2}-\frac{\dot{\mathrm{Q}}}{\mathrm{m}}$

$$
=2736.28-\frac{2}{0.0113}=2559.28 \mathrm{~kJ} / \mathrm{kg}
$$

$\mathrm{h}_{1}=\mathrm{h}_{\mathrm{f}_{1}}+\mathrm{xh}_{\mathrm{fg}_{1}}=444.36+\mathrm{x} \times 2240.6$
$\mathrm{x}=0.9439$
11. Ans: (a)

Sol: $\mathrm{v}_{1}=$ specific volume $=\frac{0.025}{10}=0.0025 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}$
$\mathrm{v}_{1}<\mathrm{v}_{\mathrm{c}}$ (critical volume) after heating at constant volume it goes into liquid region hence level of liquid in the vessel rises.

## 12. Ans: (a, b, c, d)

Sol:

- Surface represent the fundamental properties of substance
- It provide a tool to study TD properties
- Each point on this surface represent an equilibrium state
- Line on the surface represent a process


## Chapter <br> 8 <br> Air Cycles

1. Ans: (a)

Sol: $1-2 \rightarrow$ Isothermal
$3-1 \rightarrow$ Adiabatic process
02. Ans: (d)

Sol: For Maximum specific output in case of Otto cycle, the temperature of working fluid at the end of compression and expansion should be equal

03. Ans: (c)
04. Ans: (c)

Sol: $\eta_{\text {Carnot }}>\eta_{\text {Stirling }}$
(If $100 \%$ effectiveness of heat exchanger is given then carnot efficiency equals to stirling efficiency)
05. Ans: (d)

Sol: For equal $r_{k}$ \& heat rejected

$$
\eta_{\text {otto }}>\eta_{\text {Dual }}>\eta_{\text {Diesel }}
$$

## 06. Ans: (a)

Sol:For same maximum pressure in Otto \& Diesel cycle

$$
\begin{aligned}
\eta_{\text {Diesel }} & >\eta_{\text {Otto }} \\
\text { And } \mathrm{r}_{\text {k Diesel }} & >\mathrm{r}_{\mathrm{k} \text { Otto }}
\end{aligned}
$$

## 07. Ans: (c)

8. 

Sol: $\mathrm{Q}_{\mathrm{s}}=1500 \mathrm{~kJ} / \mathrm{kg}$,
$\mathrm{P}_{1}=100 \mathrm{kPa}$,
$\mathrm{T}_{1}=27^{\circ} \mathrm{C}=300 \mathrm{~K}$
$\mathrm{r}_{\mathrm{k}}=8=\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{8}{1}=\frac{\mathrm{V}_{4}}{\mathrm{~V}_{3}}$
$\left(\mathrm{C}_{\mathrm{v}}\right)_{\text {air }}=0.72 \mathrm{~kJ} / \mathrm{kgK}$
For process 1-2

$$
\begin{aligned}
\mathrm{P}_{1} \mathrm{~V}_{1}^{\gamma} & =\mathrm{P}_{2} \mathrm{~V}_{2}^{\gamma} \\
\Rightarrow \quad \mathrm{P}_{2} & =\mathrm{P}_{1}\left(\frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}}\right)^{\gamma}=100 \times 8^{1.4} \\
& =1837.9 \mathrm{kPa}
\end{aligned}
$$




$$
\begin{aligned}
\mathrm{T}_{2}=\mathrm{T}_{1}\left(\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}\right)^{\frac{1-\gamma}{\gamma}} & =300 \times\left(\frac{100}{1837.9}\right)^{\frac{1-1.4}{1.4}} \\
& =689.2 \mathrm{~K}
\end{aligned}
$$

$$
\mathrm{Q}_{\mathrm{S}}=\mathrm{C}_{\mathrm{v}}\left(\mathrm{~T}_{3}-\mathrm{T}_{2}\right)=1500 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\Rightarrow 0.72 \times\left(\mathrm{T}_{3}-689.21\right)=1500
$$

$$
\mathrm{T}_{3}=2772.54 \mathrm{~K}
$$

## Process 2-3

$$
\begin{aligned}
& \Rightarrow \frac{P_{2}}{T_{2}}=\frac{P_{3}}{T_{3}} \\
& \Rightarrow P_{3}=P_{2} \times \frac{T_{3}}{T_{2}}=1837.9 \times \frac{2772.54}{689.2}
\end{aligned}
$$

$$
\mathrm{P}_{3}=7393.57 \mathrm{kPa}
$$

Process 3-4

$$
\begin{aligned}
\Rightarrow & \mathrm{P}_{3} \mathrm{~V}_{3}^{\gamma}=\mathrm{P}_{4} \mathrm{~V}_{4}^{\gamma} \\
\Rightarrow & \mathrm{P}_{4}=\mathrm{P}_{3} \times\left(\frac{\mathrm{V}_{3}}{\mathrm{~V}_{4}}\right)^{\gamma}=7393.47 \times\left(\frac{1}{8}\right)^{1.4} \\
\Rightarrow & \mathrm{P}_{4}=402.2 \mathrm{kPa} \\
& \mathrm{~T}_{3} \mathrm{~V}_{3}^{\gamma-1}=\mathrm{T}_{4} \mathrm{~V}_{4}^{\gamma-1} \\
\Rightarrow & \mathrm{~T}_{4}=1206.8 \mathrm{~K} \\
& \eta_{\text {Otto }}=1-\frac{1}{\left(\mathrm{r}_{\mathrm{k}}\right)^{\gamma-1}}=1-\frac{1}{8^{1.4-1}} \\
\Rightarrow & \eta_{\text {Otto }}=0.56=\frac{W}{1500} \Rightarrow \mathrm{~W}=847 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

9. Ans: (c)

Sol: $\mathrm{V}_{\mathrm{c}}=0.2 \mathrm{~V}_{\mathrm{s}}$
$\mathrm{r}_{\mathrm{k}}=$ Compression ratio

$$
\begin{gathered}
=\frac{\mathrm{V}_{\mathrm{S}}+\mathrm{V}_{\mathrm{C}}}{\mathrm{~V}_{\mathrm{C}}}=\frac{\mathrm{V}_{\mathrm{S}}+0.2 \mathrm{~V}_{\mathrm{S}}}{0.2 \mathrm{~V}}=6 \\
\eta_{\mathrm{th}}=1-\left(\frac{1}{\mathrm{r}_{\mathrm{k}}}\right)^{\gamma-1}=1-\left(\frac{1}{6}\right)^{1.4-1} \\
=0.5116 \text { or } 51.16 \%
\end{gathered}
$$

10. Ans: $\mathbf{4 7 . 3 6} \%$

Sol: $\mathrm{V}_{\mathrm{C}}=2000 \mathrm{CC}$

$$
\mathrm{V}_{\mathrm{s}}=\frac{\pi}{4} \mathrm{D}^{2} \mathrm{~L}=\frac{\pi}{4} \times 15^{2} \times 45=7948.125 \mathrm{CC}
$$

Compression Ratio

$$
\begin{aligned}
r_{\mathrm{k}} & =\frac{\mathrm{V}_{\mathrm{s}}+\mathrm{V}_{\mathrm{C}}}{\mathrm{~V}_{\mathrm{C}}}=\frac{7948.125+2000}{2000} \\
\eta_{\mathrm{th}} & =1-\left(\frac{1}{\mathrm{r}_{\mathrm{k}}}\right)^{\gamma-1} \\
& =1-\left(\frac{1}{4.974}\right)^{1.4-1}=0.4376 \text { or } 47.36 \%
\end{aligned}
$$

## 11. Ans: 60.8 \%

Sol:


$$
r_{k}=\frac{V_{1}}{V_{2}}=15 \Rightarrow V_{1}=15 \mathrm{~V}_{2}
$$

$$
\begin{aligned}
\mathrm{V}_{3}-\mathrm{V}_{2} & =\frac{6.5}{100}\left(\mathrm{~V}_{1}-\mathrm{V}_{2}\right) \\
& =\frac{6.5}{100}\left(15 \mathrm{~V}_{2}-\mathrm{V}_{2}\right) \\
& =0.91 \mathrm{~V}_{2} \\
\mathrm{~V}_{3} & =0.91 \mathrm{~V}_{2}+\mathrm{V}_{2}=1.91 \mathrm{~V}_{2} \\
\mathrm{r}_{\mathrm{c}} & =\frac{\mathrm{V}_{3}}{\mathrm{~V}_{2}}=1.91 \\
\eta_{\text {th }} & =1-\frac{1}{\gamma \cdot \mathrm{r}_{\mathrm{k}}^{\gamma-1}} \cdot \frac{\mathrm{r}_{\mathrm{c}}^{\gamma}-1}{\mathrm{r}_{\mathrm{c}}-1} \\
= & 1-\frac{1}{1.4 \times 15^{0.4}} \cdot\left(\frac{1.91^{1.4}-1}{1.91-1}\right)=60.8 \%
\end{aligned}
$$

12. Ans: (c)

Sol: $\mathrm{V}_{1}=3 \mathrm{~L}$,
$\mathrm{V}_{2}=0.15 \mathrm{~L}$
Compression ratio

$$
\begin{aligned}
& r_{k}=\frac{V_{1}}{V_{2}}=\frac{3}{0.15}=20 \\
& r_{c}=\frac{V_{3}}{V_{2}}=\frac{0.30}{0.15}=2
\end{aligned}
$$

$\eta_{\text {Diesel }}=1-\frac{1}{\gamma} \cdot \frac{1}{r_{k}{ }^{\gamma-1}} \cdot \frac{r_{c}^{\gamma}-1}{r_{c}-1}$
$=1-\frac{1}{1.4} \times \frac{1}{(20)^{1.4-1}} \times \frac{2^{1.4}-1}{(2-1)}=0.6467$

$$
=64.67 \%
$$

## 13. Ans: 63.44 \%

Sol: $P{ }^{\uparrow}$


Compression ratio $=r_{k}=\frac{V_{1}}{V_{2}}$
Expansion ratio $=r_{E}=\frac{\mathrm{V}_{4}}{\mathrm{~V}_{3}}=\frac{\mathrm{V}_{1}}{\mathrm{~V}_{3}}=10$
$\mathrm{P}_{1} \mathrm{~V}_{1}^{\gamma}=\mathrm{P}_{2} \mathrm{~V}_{2}^{\gamma}$
$\mathrm{r}_{\mathrm{k}}=\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)^{\frac{1}{\gamma}}=\left(\frac{48.5}{1}\right)^{\frac{1}{1.4}}=16$
Fuel cut off ratio $=r_{C}=\frac{V_{3}}{V_{2}}=\frac{r_{k}}{r_{\mathrm{E}}}=\frac{16}{10}=1.6$

$$
\begin{aligned}
\eta_{\mathrm{th}} & =1-\frac{1}{\gamma \cdot \mathrm{r}_{\mathrm{k}}^{\gamma-1}}\left[\frac{\mathrm{r}_{\mathrm{c}}^{\gamma}-1}{\mathrm{r}_{\mathrm{C}}-1}\right] \\
& =1-\frac{1}{(1.4) 16^{(1.4-1)}}\left[\frac{1.6^{1.4}-1}{1.6-1}\right] \\
& =1-\frac{1}{1.4 \times 3.0314}\left[\frac{1.9309-1}{1.6-1}\right]=0.6344
\end{aligned}
$$

## 14. Ans: $235.5 \mathbf{k P a}$

Sol: $\mathrm{D}_{1}=500-200=300 \mathrm{kPa}$
$\mathrm{D}_{2}=0.03-0.01=0.02 \mathrm{~m}^{3}$
${ }_{1} \mathrm{~W}_{2}=\frac{\pi}{4} \times \mathrm{D}_{1} \times \mathrm{D}_{2}$
${ }_{1} \mathrm{~V}_{2}=\mathrm{V}_{2}-\mathrm{V}_{1}=0.03-0.01=0.02 \mathrm{~m}^{3}$
mep $=\frac{\text { work done }}{\text { swept volume }}=\frac{{ }_{1} W_{2}}{{ }_{1} V_{2}}=\frac{\frac{\pi}{4} \times D_{1} \times D_{2}}{\left(\mathrm{~V}_{1}-\mathrm{V}_{2}\right)}$

$$
\begin{aligned}
& =\frac{\frac{\pi}{4} \times 300 \times 0.02}{0.02} \\
& =75 \pi=75 \times 3.14=235.5 \mathrm{kPa}
\end{aligned}
$$

15. Ans: (b)

Sol: Swept volume $=V_{s}=0.03 \mathrm{~m}^{3}$

$$
\begin{aligned}
& (\text { work })_{\text {net }}=\frac{\operatorname{work}(\mathrm{kW})}{\mathrm{N}(\mathrm{rps})}=\frac{1000}{\frac{2000}{60}}=30 \mathrm{~kJ} \\
& \operatorname{mep}=\frac{\mathrm{W}_{\text {net }}(\mathrm{kJ})}{\mathrm{V}_{\mathrm{s}}\left(\mathrm{~m}^{3}\right)}=\frac{30}{0.03}=1000 \mathrm{kPa}=1 \mathrm{MPa}
\end{aligned}
$$

## 16. Ans: (b)

Sol: $\mathrm{v}_{1}=\frac{1}{\rho_{1}}=\frac{1}{1.2}=0.833 \mathrm{~m}^{3} / \mathrm{kg}$

$$
\begin{aligned}
& \mathrm{r}_{\mathrm{k}}=\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{2.2}{0.26}=8.46 \\
& \mathrm{~V}_{2}=\frac{0.834}{8.46}=0.098 \mathrm{~m}^{3} / \mathrm{kg}
\end{aligned}
$$

$$
\mathrm{mep}=\frac{\mathrm{W}_{\text {net }}}{\mathrm{V}_{1}-\mathrm{V}_{2}}=\frac{440}{0.833-0.098}=598.8 \mathrm{kPa}
$$

17. 

Sol: $\eta=0.54=1-\left(\frac{1}{r_{k}}\right)^{\gamma-1}=1-\left(\frac{1}{r_{k}}\right)^{0.4}$


|  | Regular Live Doubt clearing Sessions \| Free Online Test Series | ASK an expert |  |
| :---: | :---: | :---: |
|  | Affordable Fee \| Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages |  |

$\left(\frac{1}{r_{k}}\right)^{0.4}=0.46$
$\mathrm{r}_{\mathrm{k}}=\frac{1}{(0.46)^{2.5}}=6.97$
$\mathrm{P}_{1}=1 \mathrm{bar}$
$\mathrm{T}_{1}=273+15=288 \mathrm{~K}$
$\mathrm{P}_{3}=75 \mathrm{bar}$
$\mathrm{P}_{2}=\mathrm{P}_{1} \mathrm{r}_{\mathrm{k}}{ }^{\gamma}=1 \times(6.97)^{1.4}$
$=15.154$ bar
$\mathrm{T}_{2}=\mathrm{T}_{1} \mathrm{r}_{\mathrm{k}}^{\gamma-1}=288(6.97)^{1.4-1}=626.16 \mathrm{~K}$
$\mathrm{T}_{3}=\mathrm{T}_{2} \times \frac{\mathrm{P}_{3}}{\mathrm{P}_{2}}=626.16 \times \frac{75}{15.154}=3099 \mathrm{~K}$
Heat supplied $=\mathrm{C}_{\mathrm{v}} \times\left(\mathrm{T}_{3}-\mathrm{T}_{2}\right)$

$$
\begin{aligned}
& =0.718(3099-626.16) \\
\mathrm{Q}_{\mathrm{s}} & =1775.5 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Work done $=\eta_{\text {th }} \times \mathrm{Q}_{\mathrm{s}}$

$$
\mathrm{W}=0.54 \times 1775.5=958.77 \mathrm{~kJ} / \mathrm{kg}
$$

Heat rejected $=\mathrm{Q}_{\mathrm{S}}-\mathrm{W}=1775.5-958.77$

$$
=816.73 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\begin{aligned}
& \mathrm{v}_{1}=\frac{\mathrm{RT}_{1}}{\mathrm{P}_{1}}=\frac{0.287 \times 288}{100}=0.82656 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} \\
& \mathrm{v}_{2}=\frac{\mathrm{RT}_{2}}{\mathrm{P}_{2}}=\frac{0.287 \times 626.16}{1515.4}=0.1186 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}
\end{aligned}
$$

$$
\operatorname{mep}=\frac{\mathrm{W}_{\mathrm{net}}\left(\frac{\mathrm{~kJ}}{\mathrm{~kg}}\right)}{\left(\mathrm{v}_{1}-\mathrm{v}_{2}\right)\left(\frac{\mathrm{m}^{3}}{\mathrm{~kg}}\right)}=\frac{958.77}{0.82656-0.1186}
$$

$$
=\frac{958.77}{0.70796}=1354.27 \mathrm{kPa}
$$

18. Ans: 54 \%

Sol:

$\mathrm{L}=14 \mathrm{~cm}, \theta=40^{\circ}, \mathrm{D}=10 \mathrm{~cm}$
Effective stroke length

$$
\begin{aligned}
\mathrm{L}_{\mathrm{e}} & =\mathrm{L} / 2+\frac{\mathrm{L}}{2} \cos \theta \\
& =7+7 \cos 40=12.36 \mathrm{~cm}
\end{aligned}
$$

Effective stroke volume

$$
\begin{aligned}
&\left(\mathrm{V}_{\mathrm{s}}\right)_{\text {eff }}=\frac{\pi}{4} \mathrm{D}^{2} \mathrm{~L}_{\mathrm{e}}=\frac{\pi}{4} \times 10^{2} \times 12.36=970.75 \mathrm{~cm}^{3} \\
& \mathrm{~V}_{\mathrm{C}}=157 \mathrm{~cm}^{3} \\
&\left(\mathrm{r}_{\mathrm{k}}\right)_{\text {effective }}=\frac{\left(\mathrm{V}_{\mathrm{s}}\right)_{\text {eff }}+\mathrm{V}_{\mathrm{C}}}{\mathrm{~V}_{\mathrm{C}}}=\frac{970.75+157}{157}=7.18 \\
& \eta_{\text {th }}=1-\left(\frac{1}{\mathrm{r}_{\mathrm{k}}}\right)^{\gamma-1}=1-\left(\frac{1}{7.18}\right)^{0.4} \\
&=0.54 \text { or } 54 \%
\end{aligned}
$$

19. Ans: $66.5 \%$

Sol:


| $\mathrm{L}^{\prime} \mathrm{ACD}$ | 52 | GATE - Text Book Solutions |
| :---: | :---: | :---: |

$\mathrm{D}=10 \mathrm{~cm}, \quad \mathrm{~L}=14 \mathrm{~cm}$


$$
\begin{aligned}
\mathrm{L}_{\mathrm{e}} & =\frac{\mathrm{L}}{2}+\frac{\mathrm{L}}{2} \cos \theta=7+7 \cos 60^{\circ}=10.5 \mathrm{~cm} \\
\mathrm{~L}_{\mathrm{f}} & =\frac{\mathrm{L}}{2}-\frac{\mathrm{L}}{2} \cos \theta_{1} \\
& =7-7 \cos 20^{\circ} \\
& =0.42 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
\left(\mathrm{V}_{\mathrm{s}}\right)_{\text {eff }} & =\frac{\pi}{4} \mathrm{D}^{2} \mathrm{~L}_{\mathrm{e}}=\frac{\pi}{4} \times 10^{2} \times 10.5 \\
& =824.6 \mathrm{~cm}^{3}
\end{aligned}
$$

$$
\mathrm{V}_{\mathrm{C}}=40.2 \mathrm{~cm}^{3}
$$

$\left(\mathrm{r}_{\mathrm{k}}\right)_{\text {effective }}=\frac{\left(\mathrm{V}_{\mathrm{s}}\right)_{\text {eff }}+\mathrm{V}_{\mathrm{C}}}{\mathrm{V}_{\mathrm{C}}}=21.51$
Volume corresponding to fuel cutoff

$$
\begin{aligned}
\mathrm{V}_{3}-\mathrm{V}_{2}=\frac{\pi}{4} \mathrm{D}^{2} \mathrm{~L}_{\mathrm{f}} & =\frac{\pi}{4} \times 10^{2} \times 0.42 \\
& =32.98 \mathrm{cc}
\end{aligned}
$$

$$
V_{3}-40.2=32.98
$$

$$
V_{3}=73.18
$$

$$
\mathrm{r}_{\mathrm{c}}=\frac{\mathrm{V}_{3}}{\mathrm{~V}_{2}}=\frac{73.18}{40.2}=1.82
$$

$$
\begin{aligned}
\eta_{\text {th }} & =1-\frac{1}{\gamma r_{k}^{\gamma-1}} \cdot \frac{r_{c}^{\gamma}-1}{r_{c}-1} \\
& =1-\frac{1}{1.4 \times(21.51)^{0.4}} \times \frac{1.82^{1.4}-1}{1.82-1} \\
& =66.5 \%
\end{aligned}
$$

20. Ans: $\mathbf{5 0 3} \mathrm{mm}^{2}$

Sol: $I P=\frac{p_{\mathrm{mi}} \mathrm{LANn}}{120,000}$

$$
=\frac{\frac{\mathrm{A}_{\mathrm{d}}}{\mathrm{~L}_{\mathrm{d}}} \times \mathrm{k} \times \mathrm{L} \times \mathrm{A} \times \mathrm{N} \times \mathrm{n}}{120000}
$$

$$
4=\frac{\frac{\mathrm{A}_{\mathrm{d}}}{0.1 \mathrm{~L}} \times 25 \times 10^{6} \times \mathrm{L} \times \frac{\pi}{4}(0.15)^{2} \times 216 \times 1}{120000}
$$

$$
A_{d}=503 \mathrm{~mm}^{2}
$$

21. Ans: (a, b, d)

Sol:

- Diesel cycle efficiency is always more than Otto cycle
- Otto cycle is used for two stroke CI engine
- Dual cycle is used for high speed Diesel engine
- For compression ratio more than 12 efficiency of Otto cycle increases

Chapter
9

## Psychrometry

1. Ans: (b)

Sol:


During sensible cooling of air DBT decreases, WBT decreases, h decreases and $\omega=$ constant,

DPT = constant, R.H increases
02. Ans: (c)

Sol:


During adiabatic saturation process DBT decreases, WBT $=$ constant, $\mathrm{h}=$ constant, specific humidity ( $\omega$ ) increases, DPT increases, relative humidity increases.
03. Ans: (b)

Sol: When warm saturated air is cooled, excess moisture condenses but relative humidity remains unchanged

## 04. Ans: (c)

Sol: Case (A): Moist air is adiabatically saturated
Case (B): Moist air is isobarically saturated


Case-(A): Adiabatically saturated $\rightarrow$ W.B.T
Case-(B): isobarically saturated $\rightarrow$ D.P.T

## 05. Ans (b)

Sol: For dehumidification, the coil temperature should be less than the dew point temperature of the incoming air.
06. Ans: (d)

Sol:


$$
\text { By pass factor }=\frac{\mathrm{BC}}{\mathrm{AC}}
$$

7. Ans: (b)
8. Ans: (d)

Sol:


During chemical dehumidification
Enthalpy \& W.B.T remains constant, specific humidity decreases, dew point temperature decreases and relative humidity decreases.
09. Ans: (c)
10. Ans: (a)

Sol: $\mathrm{T}_{\text {coil }}$ is greater than dew point temperature but less than dry bulb temperature hence it is sensible cooling.

## 11. Ans: (c)

Sol: Temperature of water spray is greater than dew point temperature hence it is a heating process and water molecules are mixing with air hence it is humidification.

## 12. Ans: (b)

Sol:Heat is absorbed so it is absorption or chemical process in which WBT remains constant \& DBT increases.

## 13. Ans: (a)

Sol: $\mu=\phi \times\left(\frac{\mathrm{P}_{\text {atm }}-\mathrm{P}_{\text {sat }}}{\mathrm{P}_{\text {atm }}-\mathrm{P}_{\mathrm{v}}}\right)=\frac{\mathrm{P}_{\mathrm{b}}-\mathrm{P}_{\mathrm{s}}}{\mathrm{P}_{\mathrm{b}}-\mathrm{P}_{\mathrm{v}}} \times \phi$

## 14. Ans: (a)

Sol:


By pass factor $=\frac{T_{\text {coil }}-T_{2}}{T_{\text {coil }}-T_{1}}=\frac{45-40}{45-20}$
$\mathrm{BPF}=0.2$

## 15. Ans: (c)

Sol: L.H.L = 0.25 S.H.L

$$
\begin{aligned}
& \text { S.H.F }=\frac{\mathrm{SHL}}{\mathrm{SHL}+\mathrm{LHL}} \\
& \text { S.H.F }=\frac{\text { S.H.L }}{1.25 \times \text { S.H.L }}=0.8
\end{aligned}
$$

16. Ans: (d)

Sol: $\mathrm{T}_{\text {sat }}=25^{\circ} \mathrm{C} \rightarrow \phi=100 \%$

$$
\begin{aligned}
& P_{\text {sat }}=3.1698 \mathrm{kPa} \\
& P_{\text {total }}=100 \mathrm{kPa}
\end{aligned}
$$

$$
\phi=\frac{\mathrm{P}_{\mathrm{V}}}{\mathrm{P}_{\mathrm{sat}}}=1 \Rightarrow \mathrm{P}_{\mathrm{V}}=\mathrm{P}_{\mathrm{sat}}=3.1698 \mathrm{kPa}
$$

$$
\omega=0.622 \frac{P_{v}}{P_{\text {atm }}-P_{v}}=0.622 \times \frac{3.1698}{100-3.1698}
$$

$$
=0.0204 \times \frac{\mathrm{kg} \mathrm{Vap}}{\text { kg dry air }}
$$

$$
\omega=\frac{\mathrm{m}_{\mathrm{v}}}{\mathrm{~m}_{\mathrm{a}}}
$$

$$
\mathrm{m}_{\mathrm{v}}=100 \times 0.0204=2.04 \mathrm{~kg}
$$

17. Ans: (c)

Sol: $\omega=\frac{\mathrm{m}_{\mathrm{v}}}{\mathrm{m}_{\mathrm{a}}}=\frac{0.6}{50}=0.012 \frac{\mathrm{~kg} \text { of Vapour }}{\mathrm{kg} \text { of dry air }}$

$$
\begin{aligned}
\mathrm{T}_{\text {sat }} & =25^{\circ} \mathrm{C}, \\
\mathrm{P}_{\text {sat }} & =3.1698 \mathrm{kPa} \\
\omega & =0.622 \frac{\mathrm{P}_{\mathrm{v}}}{95-\mathrm{P}_{\mathrm{v}}}=0.012 \\
\mathrm{P}_{\mathrm{V}} & =1.798 \mathrm{kPa} \\
\phi & =\frac{\mathrm{P}_{\mathrm{v}}}{\mathrm{P}_{\text {sat }}}=\frac{1.798}{3.1698}=0.567=56.7 \%
\end{aligned}
$$

|  | Regular Live Doubt clearing Sessions | Free Online Test Series \| ASK an expert |
| :---: | :---: | :---: |
|  | Affordable Fee \\| Available 1M | $\mathbf{3 M}\|\mathbf{6 M}\| 12 \mathrm{M} \mid 18 \mathrm{M}$ and $\mathbf{2 4}$ Months Subscription Packages |  |



## 18. Ans: (c)

Sol: $\mathrm{T}_{\mathrm{sat}}=30^{\circ} \mathrm{C} \rightarrow \mathrm{P}_{\mathrm{sat}}=4.2469 \mathrm{kPa}$

$$
\begin{aligned}
& \mathrm{P}_{\text {atm }}=90 \mathrm{kPa}, \quad \phi=\frac{\mathrm{P}_{\mathrm{V}}}{\mathrm{P}_{\text {sat }}}=75 \% \\
& \mathrm{P}_{\mathrm{V}}=0.75 \times 4.2469=3.185 \mathrm{kPa} \\
& \mathrm{P}_{\mathrm{a}}=\mathrm{P}_{\mathrm{atm}}-\mathrm{P}_{\mathrm{v}} \\
& \mathrm{P}_{\text {air }}=86.815 \mathrm{kPa} \\
& \mathrm{~m}_{\mathrm{a}}=\frac{\mathrm{P}_{\mathrm{a}} \mathrm{~V}}{\mathrm{R}_{\mathrm{a}} \mathrm{~T}}=\frac{86.815 \times 40}{0.287 \times 303}=39.93 \mathrm{~kg}
\end{aligned}
$$

19. 

Sol: $\mathrm{T}_{\text {sat }}=30^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{atm}}=100 \mathrm{kPa} \\
& \mathrm{P}_{\mathrm{sat}}=4 \mathrm{kPa}
\end{aligned}
$$

$$
\mu=0.24=\frac{\mathrm{P}_{\mathrm{v}}\left(\mathrm{P}_{\text {atm }}-\mathrm{P}_{\text {sat }}\right)}{\mathrm{P}_{\text {sat }}\left(\mathrm{P}_{\mathrm{atm}}-\mathrm{P}_{\mathrm{v}}\right)}=\frac{\mathrm{P}_{\mathrm{v}}(100-4)}{4\left(100-\mathrm{P}_{\mathrm{v}}\right)}
$$

$$
400 \times 0.24-0.24 \mathrm{Pv}=100 \mathrm{P}_{\mathrm{v}}-4 \mathrm{P}_{\mathrm{v}}
$$

$$
96.24 \mathrm{P}_{\mathrm{v}}=400 \times 0.24
$$

$$
\mathrm{P}_{\mathrm{v}}=\frac{400 \times 0.24}{96.24}=0.9975 \mathrm{kPa}
$$

Relative humidity

$$
\begin{aligned}
\phi & =\frac{P_{v}}{P_{\text {sat }}}=\frac{0.9975}{4}=0.2493 \text { or } 24.93 \% \\
\omega & =0.622 \frac{P_{v}}{P_{\text {atm }}-P_{v}} \\
& =0.622 \times \frac{0.9975}{100-0.9975}=0.00627 \frac{\mathrm{~kg} . \mathrm{vap}}{\mathrm{~kg} . \mathrm{d} . \mathrm{a}}
\end{aligned}
$$

20. 

Sol: $\mathrm{P}_{\text {atm }}=101 \mathrm{kPa}$; $\mathrm{T}_{\text {sat }}=40^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {sat }}=7.38 \mathrm{kPa}$

$$
\phi=0.5=\frac{\mathrm{P}_{\mathrm{v}}}{\mathrm{P}_{\text {sat }}}=\frac{\mathrm{P}_{\mathrm{v}}}{7.38}
$$

$\mathrm{P}_{\mathrm{v}}=3.692$

$$
\begin{aligned}
\omega & =0.622 \frac{P_{v}}{P_{\text {atm }}-P_{v}} \\
& =0.622 \times \frac{3.692}{101-3.692}
\end{aligned}
$$

$\omega=0.0235 \frac{\mathrm{kgVap}}{\mathrm{kgda}}$
As gas is compressed partial pressure increases in the same ratio,

$$
\mathrm{P}_{\mathrm{v}}=3.692 \times \frac{5.05}{1.01}
$$

At $\mathbf{1 5 0}^{\circ} \mathrm{C}$,

$$
\begin{aligned}
& \mathrm{P}_{\text {sat }}=475.8 \mathrm{kPa} \\
& \phi=\frac{\mathrm{P}_{\mathrm{v}}}{\mathrm{P}_{\text {sat }}}=\frac{18.46}{475.8} \times 100=3.9 \%
\end{aligned}
$$

## 21. Ans: 1.125 kPa

Sol: $\mathrm{P}_{1}=100 \mathrm{kPa}$
$\mathrm{P}_{2}=500 \mathrm{kPa}$
$\mathrm{DBT}=35^{\circ} \mathrm{C}$
$\mathrm{P}_{\mathrm{VS}}=5.628 \mathrm{kPa}$
$\omega_{\mathrm{S}}=0.622 \times \frac{\mathrm{P}_{\mathrm{VS}}}{\mathrm{P}_{2}-\mathrm{P}_{\mathrm{VS}}}=0.622 \times \frac{5.628}{500-5.628}$
$=7.08 \times 10^{-3} \mathrm{~kg}$ vapour $/ \mathrm{kg}$ dry air
$\omega_{2}=\omega_{\mathrm{s} 3}=7.08 \times 10^{-3}$
( $\because$ pressure remains constant in after cooler) Moisture is same throughout the process i.e., in compressor no moisture is removed or added and in after cooler, the pressure is constant so the moisture content will not change.

| ACE | 56 | GATE - Text Book Solutions |
| :--- | :--- | :--- |

$$
\begin{aligned}
& \omega_{1}=0.622 \times \frac{\mathrm{P}_{\mathrm{V}}}{\mathrm{P}_{1}-\mathrm{P}_{\mathrm{V}}} \\
& \frac{7.08 \times 10^{-3}}{0.622}=\frac{\mathrm{P}_{\mathrm{V}}}{\left(100-\mathrm{P}_{\mathrm{V}}\right)} \\
& \therefore \mathrm{P}_{\mathrm{V}}=1.125 \mathrm{kPa}
\end{aligned}
$$

## 22. Ans: (d)

Sol: $\mathrm{T}_{\text {sat }}=20^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{sat}}=2.339 \mathrm{kPa}$

$$
\begin{aligned}
& \phi=0.5 \\
& \phi=\frac{\mathrm{P}_{\mathrm{v}}}{\mathrm{P}_{\text {sat }}} \Rightarrow \mathrm{P}_{\mathrm{v}}=0.5 \times 2.339=1.169 \mathrm{kPa}
\end{aligned}
$$

Corresponding to partial pressure of vapor whatever the saturation temperature is the temperature at which the water vapor present in air starts condensing and this beginning of this condensation is called as dew point temperature.
At $5^{\circ} \mathrm{C} \rightarrow 0.8725$

$$
\mathrm{T}_{2}-? \rightarrow \mathrm{P}_{2}=1.169
$$

$$
10^{\circ} \mathrm{C} \rightarrow 1.2281
$$

$$
\frac{1.2281-0.8725}{1.169-0.8725}=\frac{10-5}{\mathrm{~T}_{2}-5}
$$

$$
\mathrm{T}_{2}=9.16^{\circ} \mathrm{C}
$$

## 23. Ans: (d)

Sol:


Cooling load on coil $\mathrm{h}_{1}$

$$
\begin{aligned}
& =\mathrm{C}_{\mathrm{Pa}_{\mathrm{a}}}\left(\mathrm{~T}_{1}-0\right)+\omega_{1}\left\lfloor\left(\mathrm{~h}_{\mathrm{fg}}\right)_{0^{\circ} \mathrm{C}}+\mathrm{C}_{\mathrm{PV}}\left(\mathrm{~T}_{1}-0\right)\right] \\
& =1.005 \times(30-0)+0.023[2500+1.88(30-0)] \\
& =88.94 \mathrm{~kJ} / \mathrm{kg} \text { of dry air } \\
\mathrm{h}_{2}= & \mathrm{C}_{\mathrm{Pa}_{\mathrm{a}}}\left(\mathrm{~T}_{2}-0\right)+\omega_{2}\left\lfloor\left(\mathrm{~h}_{\mathrm{fg}}\right)_{0^{\circ} \mathrm{C}}+\mathrm{C}_{\mathrm{PV}}\left(\mathrm{~T}_{2}-0\right)\right] \\
& =1.005(15-0)+0.015[2500+1.88(15-0)] \\
& =52.99 \mathrm{~kJ} / \mathrm{kg} \text { of dry air }
\end{aligned}
$$

Total heat load $=\mathrm{m}_{\mathrm{a}}\left(\mathrm{h}_{2}-\mathrm{h}_{1}\right)$

$$
=0.7(52.99-88.94)=-25 \mathrm{~kW}
$$

## 24. Ans: (a)

Sol:


$$
\mathrm{P}_{\text {total }}=90 \mathrm{kPa}, \mathrm{~T}_{\mathrm{sat}}=15^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{sat}}=1.7057 \mathrm{kPa}
$$

$$
\phi_{1}=\frac{\mathrm{P}_{\mathrm{v}_{1}}}{\mathrm{P}_{\mathrm{sta} 1}}=0.75
$$

$$
\mathrm{P}_{\mathrm{V} 1}=1.278 \mathrm{kPa}
$$

$$
\omega_{1}=0.622 \times \frac{P_{\mathrm{V}_{1}}}{\mathrm{P}_{\mathrm{atm}}-\mathrm{P}_{\mathrm{V}_{1}}}=0.622 \times \frac{1.278}{90-1.278}
$$

$$
=0.0089 \frac{\mathrm{~kg} \text { of vapour }}{\mathrm{kg} \text { of dry air }}
$$

$$
\mathrm{T}_{\mathrm{sat}}=25^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{sat}}=3.1698 \mathrm{kPa}, \quad \phi=0.75
$$

$$
\phi=\frac{\mathrm{P}_{\mathrm{V} 2}}{\mathrm{P}_{\mathrm{sat} 2}} \Rightarrow \mathrm{P}_{\mathrm{V} 2}=2.377 \mathrm{kPa}
$$

$$
\omega_{2}=0.622 \times \frac{\mathrm{P}_{\mathrm{v}_{2}}}{\mathrm{P}_{\mathrm{atm}}-\mathrm{P}_{\mathrm{v}_{2}}}
$$

$$
=0.622 \times \frac{2.377}{90-2.377}=0.0168 \frac{\mathrm{~kg} \text { of Vap }}{\mathrm{kg} \text { of dry air }}
$$

| ACE | 57 | Thermal Engineering |
| :---: | :---: | :---: |

Mass of vapour added,

$$
\begin{aligned}
\dot{\mathrm{m}}_{\mathrm{v}} & =\dot{\mathrm{m}}_{\mathrm{a}}\left(\omega_{2}-\omega_{1}\right) \\
& =4(0.0168-0.0089) \\
& =0.03 \mathrm{~kg} \text { of vapour } / \mathrm{sec}
\end{aligned}
$$

## 25. Ans: 769 m

Sol: $\mathrm{P}_{\text {sat }}=3.166 \mathrm{kPa}$,
$\mathrm{T}_{\text {sat }}=25^{\circ} \mathrm{C}=298 \mathrm{~K}$
$\phi=0.74=\frac{\mathrm{P}_{\mathrm{v}}}{\mathrm{P}_{\text {sat }}}=\frac{\mathrm{P}_{\mathrm{v}}}{3.166}$
$\mathrm{P}_{\mathrm{v}}=0.74 \times 3.166=2.34 \mathrm{kPa}$,
At 2.34 kPa ,

$$
\mathrm{T}_{\mathrm{sat}}=20^{\circ} \mathrm{C}=293 \mathrm{~K}=\mathrm{DPT}
$$

Corresponding to saturation temperature whatever the saturation pressure, the water vapor starts condensing.
$\mathrm{dT}=298-293=5 \mathrm{~K}$
6.5 K drops in temperature $=1000 \mathrm{~m}$

5 K drop temperature $=\frac{5}{6.5} \times 1000$

$$
=769 \mathrm{~m}
$$

26. Ans: 0.02

Sol: $m=m_{a}+m_{v_{1}}$
$\frac{\mathrm{m}}{\mathrm{m}_{\mathrm{a}}}=1+\frac{\mathrm{m}_{\mathrm{v} 1}}{\mathrm{~m}_{\mathrm{a}}}$
$\frac{\mathrm{m}}{\mathrm{m}_{\mathrm{a}}}=1+\omega_{1}$
$\frac{10.1}{\mathrm{~m}_{\mathrm{a}}}=1.01$
$\dot{\mathrm{m}}_{\mathrm{a}}=\frac{10.1}{1.01}=10 \mathrm{~kg} / \mathrm{sec}$
$\dot{\mathrm{m}}_{\mathrm{v}_{1}}=\omega_{1} \times \mathrm{m}_{\mathrm{a}}=0.01 \times 10=0.1 \mathrm{~kg} / \mathrm{sec}$
$\dot{\mathrm{m}}_{\mathrm{v}_{2}}=0.1 \mathrm{~kg} / \mathrm{sec}$
Total mass of vapour after mixing

$$
\begin{aligned}
=\dot{\mathrm{m}}_{\mathrm{v}} & =\dot{\mathrm{m}}_{\mathrm{v}_{1}}+\dot{\mathrm{m}}_{\mathrm{v}_{2}} \\
& =0.1+0.1 \\
& =0.2 \mathrm{~kg} / \mathrm{sec}
\end{aligned}
$$

Specific humidity of mixture

$$
\begin{aligned}
\omega=\frac{\dot{\mathrm{m}}_{\mathrm{v}}}{\dot{\mathrm{~m}}_{\mathrm{a}}} & =\frac{0.2 \mathrm{~kg} / \mathrm{sec}}{10 \mathrm{~kg} / \mathrm{sec}} \\
& =0.02 \mathrm{kgvap} / \mathrm{kgd} \cdot \mathrm{a}
\end{aligned}
$$

27. Ans: $(a, b, d)$

Sol:

- For given total atmospheric pressure specific humidity is only function at partial pressure of vapour
- Steam spray is an example of heating and humidification
- Silica gel is used for heating and dehumidification
- Air cooler is an example of sensible cooling

| ACE | 58 | GATE - Text Book Solutions |
| :--- | :--- | :--- |

## Chapter

10

## Rankine Cycle

1. Ans: (d)

Sol: Assertion is false and Reason is true Steam rate or specific steam consumption

$$
=\frac{1}{W_{T}-W_{C}} \frac{\mathrm{~kg}}{\mathrm{~kW} \mathrm{sec}}=\frac{3600}{\mathrm{~W}_{\mathrm{T}}-\mathrm{W}_{\mathrm{P}}} \frac{\mathrm{~kg}}{\mathrm{~kW} \cdot \mathrm{hr}}
$$

For Carnot cycle as pump work is very high so specific steam consumption is very high.

For Carnot cycle the mean temperature heat addition is greater than Rankine cycle, so $\eta_{C}>\eta_{R}$
02. Ans: (d)
03. Ans: (a)

Sol: At 5 MPa ,

$$
\mathrm{T}_{\text {sat }}=263.9^{\circ} \mathrm{C}
$$

At 2 MPa ,

$$
\begin{gathered}
\mathrm{T}_{\mathrm{sat}}=212.38^{\circ} \mathrm{C} \\
\eta_{\text {Carnot }}=\frac{263.9-212.38}{263.9+273}=0.095
\end{gathered}
$$

Work done $=0.095 \times 380=36.5 \mathrm{~kW}$
Note: Correct answer is option (a)

## 04. Ans: (b)

Sol: The expansion process in turbine like 1-2 is carried out in modified Rankine cycle.

## 05. Ans: (c)

Sol: Due to reheating in Rankine cycle :

(i) Work output of turbine increases as expansion is carried in two stages.
$\mathrm{W}($ without reheat $)=\mathrm{h}_{1}-\mathrm{h}_{2}$
$\mathrm{W}($ with reheat $)=\left(\mathrm{h}_{1}-\mathrm{h}_{2}{ }^{\prime}\right)+\left(\mathrm{h}_{5}-\mathrm{h}_{5}{ }^{\prime}\right)$
(ii) Turbine efficiency increases as mean temperature of heat addition increases.
(iii) Specific steam consumption $=\frac{3600}{\mathrm{~W}_{\text {net }}}$

As $\mathrm{W}_{\text {net }}$ increases so specific steam consumption decreases.
06. Ans: (b)

Sol:


$$
\begin{aligned}
\mathrm{h}_{1} & =3514 \mathrm{~kJ} / \mathrm{kg} \\
\mathrm{~W}_{\mathrm{HP}} & =3 \mathrm{~kJ} / \mathrm{kg} \\
\mathrm{~h}_{2} & =613 \mathrm{~kJ} / \mathrm{kg} \\
\mathrm{~W}_{\mathrm{LP}} & =1 \mathrm{~kJ} / \mathrm{kg} \\
\mathrm{~h}_{3}-\mathrm{h}_{2} & =\mathrm{W}_{\mathrm{HP}}
\end{aligned}
$$

| AD AD | 59 | Thermal Engineering |
| :---: | :---: | :---: |

$$
\begin{aligned}
& \mathrm{h}_{3}-613=3 \\
& \mathrm{~h}_{3}=616 \mathrm{~kJ} / \mathrm{kg} \\
& \begin{array}{r}
\mathrm{Q}_{\mathrm{S}}=\mathrm{h}_{1}-\mathrm{h}_{3}=3514-616 \\
\\
\quad=2898 \mathrm{~kJ} / \mathrm{kg}
\end{array}
\end{aligned}
$$

7. Ans: (d)

Sol: $\quad \eta=\frac{\mathrm{P}_{\mathrm{w}}}{\text { Power input }}=\frac{\mathrm{vdp}}{\text { Power input }}$

$$
\begin{aligned}
0.75 & =\frac{\frac{0.15}{60}(5000-200)}{P_{i}} \\
\mathrm{P}_{\mathrm{i}} & =16 \mathrm{~kW}
\end{aligned}
$$

8. Ans: 3.6

Sol: Specific steam consumption $=\frac{3600}{\mathrm{~W}_{\text {net }}}$

$$
\mathrm{W}_{\mathrm{T}}=3103-2100-3=1000 \mathrm{~kJ} / \mathrm{kg}
$$

Specific steam consumption $=\frac{3600}{1000}$

$$
=3.6 \mathrm{~kg} / \mathrm{kW}-\mathrm{hr}
$$

9. 

Sol: At $\mathbf{T}_{\mathbf{1}}=\mathbf{5 0 0}{ }^{\circ} \mathbf{C}$ and $7 \mathbf{M P a}$
$\mathrm{h}_{1}=3410.3 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{s}_{1}=6.7975 \mathrm{~kJ} / \mathrm{kgK}$

## At 10 kPa

$\mathrm{h}_{3}=\mathrm{h}_{\mathrm{f}_{3}}=191.83 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{s}_{3}=\mathrm{s}_{\mathrm{f}_{3}}=0.6493 \mathrm{~kJ} / \mathrm{kgK}$
$\mathrm{v}_{3}=\mathrm{v}_{\mathrm{f}_{3}}=1.01 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{kg}$
$\mathrm{s}_{\mathrm{g}_{2}}=8.1502 \mathrm{~kJ} / \mathrm{kgK}$


## Process (1-2)

$\mathrm{Q}=0, \mathrm{~s}=\mathrm{c}$
$\mathrm{s}_{1}=\mathrm{s}_{2}=6.7975 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}<8.1502 \frac{\mathrm{~kJ}}{\mathrm{kgK}}$
So point 2 is in wet state

$$
\begin{aligned}
& \mathrm{s}_{2}=\mathrm{s}_{\mathrm{f} 2}+\mathrm{x}_{2} \mathrm{~s}_{\mathrm{fg}_{2}} \\
& 6.7975=0.6493+\mathrm{x}_{2}(8.1502-0.6493) \\
& \mathrm{x}_{2}=0.82 \\
& \mathrm{~h}_{2}=\mathrm{h}_{\mathrm{f}_{2}}+\mathrm{x}_{2} \mathrm{~h}_{\mathrm{fg}_{2}} \\
& =191.83+0.82 \times 2392.8 \\
& =2153.92 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

## Process (3-4)

$$
\begin{aligned}
& \mathrm{s}_{3}=\mathrm{s}_{4}=0.6393 \mathrm{~kJ} / \mathrm{kgK} \\
& \mathrm{~W}_{\mathrm{p}}=\mathrm{h}_{4}-\mathrm{h}_{3}=\mathrm{V}_{\mathrm{f}_{3}} \times\left(\mathrm{P}_{\text {boil }}-\mathrm{P}_{\text {cond }}\right) \\
& =1.01 \times 10^{-3}(7000-10) \\
& =7.05 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{~h}_{4}=7.05+191.83=198.88 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{~W}_{\mathrm{T}}=\mathrm{h}_{1}-\mathrm{h}_{2}=3410.3-2153.92 \\
& =1256.4 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Heat supplied, $\mathrm{Q}_{\mathrm{S}}=\mathrm{h}_{1}-\mathrm{h}_{4}$

$$
3410.3-198.88=3211.5 \mathrm{~kJ} / \mathrm{kg}
$$

| (1) ACE | 60 | GATE - Text Book Solutions |
| :---: | :---: | :---: |

$$
\begin{aligned}
\mathrm{W}_{\text {net }}=\mathrm{W}_{\mathrm{T}}-\mathrm{W}_{\mathrm{P}} & =1256.4-7.05 \\
& =1249.35 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Work ratio $=\frac{\mathrm{W}_{\text {net }}}{\mathrm{W}_{\mathrm{T}}}=\frac{1249.35}{1256.4}=0.99$

$$
\eta_{\text {th }}=\frac{\mathrm{W}_{\text {net }}}{\mathrm{Q}_{\mathrm{S}}}=\frac{1249.35}{3211.5}=38.9 \%
$$

Steam rate $=\frac{3600}{W_{\text {net }}}=2.8816 \mathrm{~kg} / \mathrm{kW}-\mathrm{hr}$
Heat rate $=\frac{3600}{\eta_{\text {th }}}=9254 \mathrm{~kJ} / \mathrm{kW}-\mathrm{hr}$

$$
\text { Power }=\dot{\mathrm{m}}_{\mathrm{s}} \times \mathrm{W}_{\text {net }}=30 \times 10^{3}
$$

$$
\dot{\mathrm{m}}_{\mathrm{s}}=\frac{30 \times 10^{3}}{1249.35}=24.01 \mathrm{~kg} / \mathrm{sec}
$$

Boiler capacity is mass flow rate of steam expressed in $\mathrm{kg} / \mathrm{hr}$

$$
\begin{aligned}
& =24.01 \times 3600 \mathrm{~kg} / \mathrm{hr} \\
& =86436 \mathrm{~kg} / \mathrm{hr}
\end{aligned}
$$

Condenser load $=\dot{\mathrm{m}}_{\mathrm{s}}\left(\mathrm{h}_{2}-\mathrm{h}_{3}\right)$

$$
\begin{aligned}
& =24.01(2153.92-191.83) \\
& =47109.7 \mathrm{~kW}
\end{aligned}
$$

$(\Delta \mathrm{T})_{\mathrm{w}}=$ rise in temperature of water
Heat gained by water $=$ condenser load

$$
\begin{gathered}
\dot{\mathrm{m}}_{\mathrm{w}} \times \mathrm{C}_{\mathrm{pw}} \times(\Delta \mathrm{T})_{\mathrm{w}}=47109.7 \\
(\Delta \mathrm{~T})_{\mathrm{w}}=\frac{47109.7}{2000 \times 4.186}=5.63^{\circ} \mathrm{C}
\end{gathered}
$$

10. 

Sol: State - 1

$$
\begin{array}{ll}
\mathrm{P}_{1}=10 \mathrm{MPa}, & \mathrm{~T}_{1}=500^{\circ} \mathrm{C} \\
\mathrm{~h}_{1}=3373.7 \mathrm{~kJ} / \mathrm{kg}, & \mathrm{~s}_{1}=6.5966 \mathrm{~kJ} / \mathrm{kgK}
\end{array}
$$



## State - 2

$$
\begin{array}{ll}
\mathrm{P}_{2}=1 \mathrm{MPa}, & \mathrm{~T}_{2}=? \\
\mathrm{~T}_{\mathrm{sat}}=179.91^{\circ} \mathrm{C}, \quad \mathrm{~h}_{2}=? \\
\mathrm{~s}_{1}=6.5966 \mathrm{~kJ} / \mathrm{kg}=\mathrm{s}_{2} \\
\mathrm{~s}_{2}=\mathrm{s}_{\mathrm{g}_{2}}+\mathrm{C}_{\mathrm{P}_{\mathrm{Vappur}} \times \ln \left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{\text {sat }}}\right)}
\end{array}
$$

(As $\mathrm{s}_{2}>\mathrm{s}_{\mathrm{g}_{2}}$ it is in superheated state)

$$
\mathrm{s}_{2}=6.5966 \mathrm{~kJ} / \mathrm{kgK}
$$

$$
=6.5865+2.1 \times \ln \left(\frac{\mathrm{T}_{2}}{(273+179.91)}\right)
$$

$$
\mathrm{T}_{2}=455.09 \mathrm{~K}
$$

$$
\begin{aligned}
\mathrm{h}_{2} & =\mathrm{h}_{\mathrm{g}_{2}}+C_{P_{\text {vapour }}} \times\left(\mathrm{T}_{2}-\mathrm{T}_{\mathrm{sat}}\right) \\
& =2778.1+2.1[455.09-(273+179.91)] \\
& =2782.67 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

## State - 3

$$
\begin{aligned}
& \mathrm{P}_{3}=1 \mathrm{MPa}, \quad \mathrm{~T}_{3}=500^{\circ} \mathrm{C} \\
& \mathrm{~h}_{3}=3478.5 \mathrm{~kJ} / \mathrm{kg}, \quad \mathrm{~s}_{3}=7.7622 \mathrm{~kJ} / \mathrm{kgK}
\end{aligned}
$$

## State - 4

$$
\begin{aligned}
& \mathrm{P}_{4}=10 \mathrm{kPa}, \quad \mathrm{~T}_{4}=45.81^{\circ} \mathrm{C}, \mathrm{~h}_{4}=? \\
\mathrm{~s}_{4}= & \mathrm{s}_{3}=7.7622 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K} \\
\mathrm{~s}_{4}= & \mathrm{s}_{\mathrm{f}_{4}}+\mathrm{x}_{4}\left(\mathrm{~s}_{\mathrm{g}_{4}}-\mathrm{s}_{\mathrm{f}_{4}}\right) \\
= & 0.6493+\mathrm{x}_{4}(8.1502-0.6493) \\
\mathrm{x}_{4}= & 0.94 \rightarrow(\text { wet state })
\end{aligned}
$$

( | $\mathrm{h}_{4}$ | $=\mathrm{h}_{\mathrm{f}_{4}}+\mathrm{x}_{4}\left(\mathrm{~h}_{\mathrm{g}_{4}}-\mathrm{h}_{\mathrm{f}_{4}}\right)$ |
| ---: | :--- |
|  | $=191.83+0.94(2584.6-191.83)$ |
|  | $=2441.03 \mathrm{~kJ} / \mathrm{kg}$ |

State - 5
$\mathrm{P}_{5}=10 \mathrm{kPa}$
$\mathrm{h}_{5}=\left(\mathrm{h}_{\mathrm{f}}\right)_{\mathrm{w}}=191.83 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{s}_{5}=s_{f_{5}}=0.6493 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
$\mathrm{v}_{5}=0.0010 \mathrm{~m}^{3} \mathrm{~kg}$

$$
\begin{aligned}
& \text { State - } 6 \\
& \qquad \begin{aligned}
& \mathrm{P}_{6}=1 \mathrm{MPa} \\
& \mathrm{~S}_{6}=0.6493 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \\
& \mathrm{~W}_{\mathrm{p}}=\mathrm{v}_{\mathrm{f}_{5}}\left(\mathrm{P}_{6}-\mathrm{P}_{5}\right) \\
&=0.0010 \times\left(10 \times 10^{3}-10\right)=9.99 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{~W}_{\mathrm{p}}=\left(\mathrm{h}_{6}-\mathrm{h}_{5}\right) \\
& \mathrm{h}_{6}= \mathrm{W}_{\mathrm{p}}+\mathrm{h}_{5} \\
&=9.99+191.83=201.82 \mathrm{~kJ} / \mathrm{kg} \\
& \begin{aligned}
\mathrm{W}_{\mathrm{T}} & =\left(\mathrm{h}_{1}-\mathrm{h}_{2}\right)+\left(\mathrm{h}_{3}-\mathrm{h}_{4}\right) \\
= & (3373.7-2782.67)+(3478.5-2441.03) \\
& =1628.5 \mathrm{~kJ} / \mathrm{kg}
\end{aligned} \\
& \mathrm{~W}_{\mathrm{net}}=\mathrm{W}_{\mathrm{T}}-\mathrm{W}_{\mathrm{P}}=1628.5-9.99 \\
& \quad=1618.51 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
\end{aligned}
$$

Work ratio $=\frac{\mathrm{W}_{\text {net }}}{\mathrm{W}_{\mathrm{T}}}=\frac{1618.51}{1628.5}=0.99$
Heat supplied $\mathrm{Q}_{\mathrm{s}}=\left(\mathrm{h}_{1}-\mathrm{h}_{6}\right)+\left(\mathrm{h}_{3}-\mathrm{h}_{2}\right)$

$$
\begin{aligned}
& =(3373.7-201.82)+(3478.5-2782.67) \\
& =3867.71 \mathrm{~kJ} / \mathrm{kg} \\
\eta_{\text {th }} & =\frac{\mathrm{W}_{\text {net }}}{\mathrm{Q}_{\mathrm{S}}}=\frac{1618.51}{3867.71}=0.418=41.8 \%
\end{aligned}
$$

11. 

Sol: State - 1: (super heated)

$$
\begin{array}{ll}
\mathrm{P}_{1}=6 \mathrm{MPa}, & \mathrm{~T}_{1}=450^{\circ} \mathrm{C} \\
\mathrm{~h}_{1}=3301.8 \mathrm{~kJ} / \mathrm{kg}, & \mathrm{~s}_{1}=6.7193 \mathrm{~kJ} / \mathrm{kgK}
\end{array}
$$



State - 2: (wet state)
$\begin{array}{lll}\mathrm{P}_{2}=0.4 \mathrm{MPa}, & \mathrm{h}_{2}=?, & \mathrm{~T}_{2}=? \\ \mathrm{~s}_{2}=6.7193 \mathrm{~kJ} / \mathrm{kg}, & \mathrm{s}_{\mathrm{g}_{2}}=6.8959 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}\end{array}$
As $\mathrm{s}_{2}<\mathrm{s}_{\mathrm{g}_{2}}$ this is in wet state

$$
\mathrm{s}_{2}=\mathrm{s}_{\mathrm{f}_{2}}+\mathrm{x}_{2}\left(\mathrm{~s}_{\mathrm{g}_{2}}-\mathrm{s}_{\mathrm{f}_{2}}\right)
$$

$$
6.7193=1.7766+x_{2}(6.8959-1.7766)
$$

$$
\mathrm{x}_{2}=0.96
$$

$$
\mathrm{h}_{2}=\mathrm{h}_{\mathrm{f}_{2}}+\mathrm{x}_{2}\left(\mathrm{~h}_{\mathrm{g}_{2}}-\mathrm{h}_{\mathrm{f}_{2}}\right)
$$

$$
=604.74+0.96(2738.6-604.74)
$$

$$
=2653.24 \mathrm{~kJ} / \mathrm{kg}
$$

State - 3: (wet state)

$$
\begin{gathered}
\mathrm{P}_{3}=20 \mathrm{kPa}, \quad \mathrm{~h}_{3}=? \\
\mathrm{~s}_{2}=\mathrm{s}_{3}=6.7193 \mathrm{~kJ} / \mathrm{kgK} \\
\mathrm{~s}_{\mathrm{g}_{3}}=7.9085 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K} \\
6.7193=0.8320+\mathrm{x}_{3}(7.9085-0.8320) \\
\mathrm{x}_{3}=0.83 \\
\mathrm{~h}_{3}=\mathrm{h}_{\mathrm{f}_{3}}+\mathrm{x}_{3}\left(\mathrm{~h}_{\mathrm{g}_{3}}-\mathrm{h}_{\mathrm{f}_{3}}\right) \\
=251.4+0.83(2609.7-251.40) \\
=2208.8 \mathrm{~kJ} / \mathrm{kg}
\end{gathered}
$$

|  | 62 | TE - Text Book Solutions |
| :---: | :---: | :---: |

State - 4: (saturated)

$$
\begin{aligned}
& \mathrm{P}_{4}=20 \mathrm{kPa} \\
& \mathrm{~h}_{4}=\mathrm{h}_{\mathrm{f}_{4}}=251.40 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

State - 5: (compressed)
$\mathrm{P}_{5}=0.4 \mathrm{MPa}$
State - 6: (saturated)

$$
\begin{aligned}
& \mathrm{P}_{6}=0.4 \mathrm{MPa} \\
& \mathrm{~h}_{6}=\mathrm{h}_{\mathrm{f}_{6}}=604.74 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{~s}_{6}=1.7766 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}
\end{aligned}
$$

State - 7: (compressed)
$\mathrm{P}_{7}=6 \mathrm{MPa}$
High pressure pump work

$$
\begin{aligned}
\mathrm{W}_{\mathrm{HP}} & =\mathrm{v}_{\mathrm{f}_{6}}\left(\mathrm{P}_{7}-\mathrm{P}_{6}\right) \\
& =1.084 \times 10^{-3}\left(6 \times 10^{3}-0.4 \times 10^{3}\right) \\
& =6.0704 \mathrm{~kJ} / \mathrm{kg} \\
\mathrm{~h}_{7} & =\mathrm{h}_{6}+\mathrm{W}_{\mathrm{HP}} \\
& =604.74+6.0704=610.08 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Low pressure pump work

$$
\begin{aligned}
\mathrm{W}_{\mathrm{LP}} & =\mathrm{v}_{\mathrm{f}_{4}}\left(\mathrm{P}_{5}-\mathrm{P}_{4}\right) \\
& =1.017 \times 10^{-3}\left(0.4 \times 10^{3}-20\right) \\
& =0.386 \mathrm{~kJ} / \mathrm{kg} \\
\mathrm{~h}_{5} & =\mathrm{h}_{4}+\mathrm{W}_{\mathrm{LP}} \\
& =251.40+0.386=251.786 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

The mass of steam $\mathrm{m}_{1}$ extracted from turbine at 0.4 MPa

## Energy balance:



Energy in = Energy out

$$
\begin{aligned}
& (1-\mathrm{m}) \mathrm{h}_{5}+\mathrm{mh}_{2}=1 \times \mathrm{h}_{6} \\
& \Rightarrow \mathrm{~m}\left(\mathrm{~h}_{2}-\mathrm{h}_{5}\right)=\mathrm{h}_{6}-\mathrm{h}_{5} \\
& \mathrm{~m}=\frac{\mathrm{h}_{6}-\mathrm{h}_{5}}{\mathrm{~h}_{2}-\mathrm{h}_{5}} \\
& =\frac{604.74-251.786}{2653.24-251.786}=0.146 \mathrm{~kg} \\
& \mathrm{~W}_{\mathrm{T}}=\left(\mathrm{h}_{1}-\mathrm{h}_{2}\right)+(1-\mathrm{m})\left(\mathrm{h}_{2}-\mathrm{h}_{3}\right) \\
& =(3301.8-2653.24)+(1-0.146) \\
& \quad \times(2653.24-2208.8)
\end{aligned}
$$

$$
=1028.12 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\mathrm{W}_{\mathrm{P}}=\mathrm{W}_{\mathrm{HP}}+\mathrm{W}_{\mathrm{LP}}
$$

$$
=6.0704+0.386=6.456 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\mathrm{W}_{\text {net }}=\mathrm{W}_{\mathrm{T}}-\mathrm{W}_{\mathrm{P}}=1028.12-6.456
$$

$$
=1021.66 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\mathrm{Q}_{\mathrm{s}}=\mathrm{h}_{1}-\mathrm{h}_{7}
$$

$$
=3301.8-610.07=2691.73 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\eta_{\text {th }}=\frac{W_{\text {net }}}{Q_{s}}=\frac{1021.66}{2691.73}=0.379=37.9 \%
$$

12. Ans: (a, b, c, d)

Sol: Carnot cycle cannot be considered as the theoretical cycle for steam power plant because

- the compression work is high
- net work is high
- superheat cannot be advantage
- compression of mixture is very difficult


## Chapter <br> 11 <br> Gas Turbines

1. 

Sol:


Given
$\mathrm{T}_{1}=300 \mathrm{~K}$
$\mathrm{P}_{1}=0.1 \mathrm{MPa}$
$\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=6.25=\frac{\mathrm{P}_{3}}{\mathrm{P}_{4}}$
$\mathrm{T}_{3}=800+273=1073 \mathrm{~K}$
$\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)^{\frac{\gamma-1}{\gamma}}=(6.25)^{\frac{0.4}{\frac{0.4}{4}}\{\gamma=1.4 \text { for air }\}, ~}$
$\mathrm{T}_{2}=506.4 \mathrm{~K}$
$\frac{\mathrm{T}_{3}}{\mathrm{~T}_{4}}=\left(\frac{\mathrm{P}_{3}}{\mathrm{P}_{4}}\right)^{\frac{0.4}{1.4}}=(6.25)^{\frac{0.4}{1.4}}$
$\frac{1073}{\mathrm{~T}_{4}}=(6.25)^{\frac{0.4}{1.4}}$
$\mathrm{T}_{4}=635.6 \mathrm{~K}$
(a) Work done on the compressor

$$
\begin{aligned}
\mathrm{W}_{\mathrm{C}} & =\mathrm{m} \times \mathrm{C}_{\mathrm{p}} \times\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right) \\
& =1 \times 1.005 \times(506.4-300) \\
& =207.432 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

(b) Work done by Turbine

$$
\begin{aligned}
\mathrm{W}_{\mathrm{T}} & =\mathrm{m} \times \mathrm{C}_{\mathrm{p}} \times\left(\mathrm{T}_{3}-\mathrm{T}_{4}\right) \\
& =1 \times 1.005 \times(1073-635.6) \\
& =439.587 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

(c) Heat supplied
$\mathrm{Q}_{\mathrm{s}}=\mathrm{mC}_{\mathrm{p}} \times\left(\mathrm{T}_{3}-\mathrm{T}_{2}\right)$

$$
=1 \times 1.005 \times(1073-506.4)
$$

$\mathrm{Q}_{\mathrm{S}}=569.433 \mathrm{~kJ} / \mathrm{kg}$
(d) $\quad \eta_{\text {th }}=\frac{\mathrm{W}_{\mathrm{T}}-\mathrm{W}_{\mathrm{C}}}{\mathrm{Q}_{\mathrm{S}}}=\frac{439.587-207.432}{569.433}$

$$
=40.77 \%
$$

2. 

Sol:


Caloric value $(\mathrm{CV})=42000 \mathrm{~kJ} / \mathrm{kg}$

$$
\eta_{\mathrm{T}}=0.85,
$$

$$
\eta_{c}=0.8
$$

$\mathrm{T}_{\text {max }}=\mathrm{T}_{3}=875^{\circ} \mathrm{C}=1148 \mathrm{~K}$
$\mathrm{P}_{1}=1 \mathrm{~atm}$
$\mathrm{T}_{1}=300 \mathrm{~K}$
$\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=4=\mathrm{r}_{\mathrm{p}}$
The temperature after isentropic compression

| (\%) ACE | 64 | GATE - Text Book Solutions |
| :---: | :---: | :---: |

$$
\begin{aligned}
\mathrm{T}_{2} & =\mathrm{T}_{1}\left(\mathrm{r}_{\mathrm{p}}\right)^{\frac{\gamma-1}{\gamma}} \\
& =300 \times 4^{\frac{1.4-1}{4.4}}=446 \mathrm{~K}
\end{aligned}
$$

The isentropic efficiency of the compressor

$$
\begin{aligned}
& \eta_{\mathrm{c}}=\frac{\mathrm{W}_{\mathrm{s}=\mathrm{c}}}{\mathrm{~W}_{\text {actual }}}=\frac{\mathrm{C}_{\mathrm{P}}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)}{\mathrm{C}_{\mathrm{P}}\left(\mathrm{~T}_{2}^{\prime}-\mathrm{T}_{1}\right)} \\
& \Rightarrow 0.8=\frac{445.8-300}{\mathrm{~T}_{2}^{\prime}-300} \\
& \Rightarrow \mathrm{~T}_{2}^{\prime}=482.5 \mathrm{~K}
\end{aligned}
$$

$\mathrm{T}_{2}^{\prime}=$ actual temperature at exit of compressor

## Process 3-4: $\mathrm{Q}=\mathbf{0}, \mathrm{S}=\mathbf{C}$

$$
\frac{\mathrm{T}_{3}}{\mathrm{~T}_{4}}=\left(\frac{\mathrm{P}_{3}}{\mathrm{P}_{4}}\right)^{\frac{\gamma-1}{\gamma}}
$$

$$
\mathrm{T}_{4}=\frac{\mathrm{T}_{3}}{(4)^{\frac{0.4}{1.4}}}=\frac{1148}{4^{\frac{0.4}{1.4}}}
$$

$$
\mathrm{T}_{4}=773 \mathrm{~K}
$$

$$
\eta_{\mathrm{T}}=\frac{\mathrm{W}_{\mathrm{act}}}{\mathrm{~W}_{\mathrm{S}=\mathrm{C}}}=\frac{\mathrm{C}_{\mathrm{P}}\left(\mathrm{~T}_{3}-\mathrm{T}_{4^{\prime}}\right)}{\mathrm{C}_{\mathrm{P}}\left(\mathrm{~T}_{3}-\mathrm{T}_{4}\right)}
$$

$$
\mathrm{T}_{4^{\prime}}=1148-0.85(1148-773)
$$

$$
\mathrm{T}_{4^{\prime}}=829 \mathrm{~K}
$$

$$
\mathrm{W}_{\mathrm{T}}=\mathrm{C}_{\mathrm{P}}\left(\mathrm{~T}_{3}-\mathrm{T}_{4^{\prime}}\right)=1.005(1148-829)
$$

$$
=320.32 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\mathrm{W}_{\mathrm{C}}=\mathrm{C}_{\mathrm{P}}\left(\mathrm{~T}_{2}^{\prime}-\mathrm{T}_{1}\right)=1.005(483-300)=184 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\mathrm{Q}_{\mathrm{S}}=\mathrm{C}_{\mathrm{P}}\left(\mathrm{~T}_{3}-\mathrm{T}_{2}^{\prime}\right)=1.005(1148-484)
$$

$$
=668.325 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\mathrm{W}_{\mathrm{net}}=\mathrm{W}_{\mathrm{T}}-\mathrm{W}_{\mathrm{C}}=320.32-184
$$

$$
=136.32 \mathrm{~kJ} / \mathrm{kg}
$$

Work ratio $=\frac{W_{\text {net }}}{W_{T}}=0.428$
Back work ratio $=\frac{\mathrm{W}_{\mathrm{C}}}{\mathrm{W}_{\mathrm{T}}}=0.571$

$$
\eta_{\mathrm{th}}=\frac{\mathrm{W}_{\text {net }}}{\mathrm{Q}_{\mathrm{s}}}=20.5 \%
$$

Heat rate $=\frac{3600}{\eta_{\text {th }}}=17560.97 \frac{\mathrm{~kJ}}{\mathrm{~kW} / \mathrm{hr}}$
Air rate $=\frac{3600}{W_{\text {net }}}=26.22 \frac{\mathrm{~kg}}{\mathrm{kWhr}}$
$\mathrm{T}_{\mathrm{m} 1}=\frac{\mathrm{h}_{3}-\mathrm{h}_{2^{\prime}}}{\mathrm{s}_{3}-\mathrm{s}_{2^{\prime}}}=\frac{\mathrm{C}_{\mathrm{P}}\left(\mathrm{T}_{3}-\mathrm{T}_{2^{\prime}}\right)}{\mathrm{C}_{\mathrm{P}}\left(\ln \frac{\mathrm{T}_{3}}{\mathrm{~T}_{2^{\prime}}}\right)}=768 \mathrm{~K}$
$\mathrm{T}_{\mathrm{m} 2}=\frac{\mathrm{h}_{4^{\prime}}-\mathrm{h}_{1}}{\mathrm{~s}_{4^{\prime}}-\mathrm{s}_{1}}=\frac{\mathrm{C}_{\mathrm{P}}\left(\mathrm{T}_{4^{\prime}}-\mathrm{T}_{1}\right)}{\mathrm{C}_{\mathrm{P}}\left(\ln \frac{\mathrm{T}_{4^{\prime}}}{\mathrm{T}_{1}}\right)}=520.4 \mathrm{~K}$


## Energy balance:

$\dot{\mathrm{m}}_{\mathrm{a}} \mathrm{C}_{\mathrm{Pa}} \mathrm{T}_{2}^{\prime}+\dot{\mathrm{m}}_{\mathrm{f}}(\mathrm{CV}) \eta_{\mathrm{comb}}=\dot{\mathrm{m}}_{\mathrm{a}} \mathrm{C}_{\mathrm{Pa}} \mathrm{T}_{3}$
$\frac{\dot{\mathrm{m}}_{\mathrm{a}}}{\dot{\mathrm{m}}_{\mathrm{f}}} \mathrm{C}_{\mathrm{Pa}} \mathrm{T}_{2}^{\prime}+\dot{\mathrm{m}}_{\mathrm{f}}(\mathrm{CV}) \eta_{\mathrm{comb}}=\frac{\dot{\mathrm{m}}_{\mathrm{a}}}{\dot{\mathrm{m}}_{\mathrm{f}}} \mathrm{C}_{\mathrm{Pa}} \mathrm{T}_{3}$
$(\mathrm{AFR}) \mathrm{C}_{\mathrm{Pa}} \mathrm{T}_{2}^{\prime}+(\mathrm{CV}) \eta_{\mathrm{comb}}=(\mathrm{AFR}) \mathrm{C}_{\mathrm{Pa}} \mathrm{T}_{3}$
$\mathrm{AFR} \times 1 \times 482.5+42000 \times 0.9=\mathrm{AFR} \times 1 \times 1148$
$\therefore \mathrm{AFR}=56.56: 1$
03.

Sol:

$\mathrm{T}_{\text {max }}=1200 \mathrm{~K}, \quad \mathrm{~T}_{\text {min }}=300 \mathrm{~K}$
At $\left(\mathrm{r}_{\mathrm{p}}\right)_{\mathrm{opt}}, \mathrm{T}_{2}=\mathrm{T}_{4}=\sqrt{\mathrm{T}_{1} \mathrm{~T}_{3}}=600 \mathrm{~K}$

$$
\begin{aligned}
\mathrm{W}_{\mathrm{C}} & =\mathrm{C}_{\mathrm{P}}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right) \\
& =1.005(600-300)=301.5 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

$$
\mathrm{W}_{\mathrm{T}}=\mathrm{C}_{\mathrm{P}}\left(\mathrm{~T}_{3}-\mathrm{T}_{4}\right)=1.005(1200-600)
$$

$$
=603 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\begin{aligned}
\eta_{\text {th, (rp)opt }} & =1-\sqrt{\frac{T_{\min }}{T_{\max }}} \\
& =1-\sqrt{\frac{300}{1200}}=50 \%
\end{aligned}
$$

## 04. Ans: (a)

## Sol:

- Due to Regeneration thermal efficiency increases as heat required in combustor is less.
- Reheating decreases thermal efficiency as mean temperature of heat rejection increases.
- When maximum temperature of the cycle is increased, thermal efficiency increases as mean temperature of heat addition increases.


## 05. Ans: (d)

## Sol:

- There is very little gain in thermal efficiency when intercooling is used without the benefit of regeneration.
- With higher values of ' $\gamma$ ' and cp of the working fluid the net power output of Brayton cycle will increase.


## 06. Ans: (a)

Sol: During regeneration process, turbine work and compressor work remain unchanged and only heat supplied decreases so specific work output remains same.
07. Ans: (d)

Sol: $\mathrm{P}_{1}=100 \mathrm{kPa}$,
$\mathrm{P}_{2}=400 \mathrm{kPa}$
$\mathrm{T}_{1}=298 \mathrm{~K}$,
$\mathrm{T}_{3}=1473 \mathrm{~K}$
$\mathrm{r}_{\mathrm{p}}=\frac{400}{100}=4$
$\mathrm{T}_{2}=\mathrm{T}_{1}\left(\mathrm{r}_{\mathrm{P}}\right)^{\frac{\gamma-1}{\gamma}}=298 \times 4^{\frac{0.67}{1.67}}=519.7 \mathrm{~K}$
$\mathrm{T}_{4}=\frac{\mathrm{T}_{3}}{\left(\mathrm{r}_{\mathrm{p}}\right)^{\frac{\gamma-1}{\gamma}}}=844.61 \mathrm{~K}$
The maximum temperature up to which we can heat the compressed air is turbine exhaust temperature and this will happen when effectiveness of the heat exchanger must be unity.
i.e. $T_{3}^{\prime}=T_{4}=844.61 \mathrm{~K}=573^{\circ} \mathrm{C}$

| AD A A A | 66 | GATE - Text Book Solutions |
| :---: | :---: | :---: |

8. 

$$
\text { Sol: } \begin{aligned}
& \mathrm{T}_{1}=300 \mathrm{~K}, \quad \mathrm{r}_{\mathrm{p}}=4 \\
& \mathrm{~T}_{4}=833 \mathrm{~K} \\
& \eta_{\mathrm{T}}=0.85 \\
& \eta_{\mathrm{c}}=0.83 \\
& \xi=0.75 \\
& \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}=\left(\mathrm{r}_{\mathrm{p}}\right)^{\frac{\gamma-1}{\gamma}} \Rightarrow \mathrm{~T}_{2}=445.8 \mathrm{~K} \quad\{\gamma=1.4 \text { for air }\} \\
& \eta_{\mathrm{C}}=0.83=\frac{\mathrm{T}_{2}-\mathrm{T}_{1}}{\mathrm{~T}_{2}^{\prime}-\mathrm{T}_{1}}=\frac{445.8-300}{\mathrm{~T}_{2}^{\prime}-300} \\
& \mathrm{~T}_{2}^{\prime}=475.66 \mathrm{~K} \\
& \frac{\mathrm{~T}_{4}}{\mathrm{~T}_{5}}=\left(\mathrm{r}_{\mathrm{p}}\right)^{\frac{\gamma-1}{\gamma}}=(4)^{\frac{0.4}{1.4}} \Rightarrow \mathrm{~T}_{5}=560.56 \mathrm{~K} \\
& \eta_{\mathrm{T}}=0.85=\frac{\mathrm{T}_{4}-\mathrm{T}_{5}^{\prime}}{\mathrm{T}_{4}-\mathrm{T}_{5}}=\frac{833-\mathrm{T}_{5}^{\prime}}{833-560.56} \\
& \mathrm{~T}_{5}^{\prime}=601.43 \mathrm{~K} \\
& \xi=\frac{\mathrm{Q}_{\mathrm{act}}}{\mathrm{Q}_{\mathrm{max}}}=\frac{\mathrm{T}_{3}-\mathrm{T}_{2}^{\prime}}{\mathrm{T}_{5}^{\prime}-\mathrm{T}_{2}^{\prime}}=\frac{\mathrm{T}_{3}-475.66}{601.43-475.66} \\
& \Rightarrow \mathrm{~T}_{3}=569.98 \mathrm{~K}
\end{aligned}
$$

$$
\eta_{\mathrm{th}}=\frac{\mathrm{W}_{\mathrm{T}}-\mathrm{W}_{\mathrm{C}}}{\mathrm{Q}_{\mathrm{S}}}=\frac{\mathrm{mc}_{\mathrm{p}} \times\left(\mathrm{T}_{4}-\mathrm{T}_{5}^{\prime}\right)-\mathrm{mc}_{\mathrm{p}} \times\left(\mathrm{T}_{2}^{\prime}-\mathrm{T}_{1}\right)}{\mathrm{m} \times \mathrm{c}_{\mathrm{p}} \times\left(\mathrm{T}_{4}-\mathrm{T}_{3}\right)}
$$

$$
=\frac{(833-601.43)-(475.66-300)}{833-569.98}=21.26 \%
$$

9. Ans: (d)


$$
\begin{array}{ll}
\mathrm{P}_{1}=80 \mathrm{kPa}, & \mathrm{P}_{2}=400 \mathrm{kPa} \\
\mathrm{~T}_{1}=283 \mathrm{~K} & \mathrm{~T}_{3}=1273 \mathrm{~K} \\
\mathrm{r}_{\mathrm{P}}=\frac{400}{80}=5 & \\
\mathrm{~T}_{3}^{1}=450+273=723 \mathrm{~K} \\
\mathrm{~T}_{4}=\frac{\mathrm{T}_{3}}{\left(\mathrm{r}_{\mathrm{P}}\right)^{\frac{\gamma-1}{\gamma}}}=\frac{1273}{(5)^{\frac{0.4}{1.4}}}=804 \mathrm{~K}
\end{array}
$$

Effectiveness of heat exchanger.

$$
\epsilon=\frac{(\Delta \mathrm{T})_{\mathrm{act}}}{(\Delta \mathrm{~T})_{\max }}=\frac{\mathrm{T}_{3}^{\prime}-\mathrm{T}_{2}}{\mathrm{~T}_{4}-\mathrm{T}_{2}} \times 100=77 \%
$$

10. Ans: (c)

Sol: $\mathrm{T}_{\min }=\mathrm{T}_{1}=20+273=293 \mathrm{~K}$,
$\mathrm{T}_{\max }=\mathrm{T}_{4}=900+273=1173 \mathrm{~K}$
$\gamma=1.3, \quad \mathrm{r}_{\mathrm{p}}=6$
$\begin{aligned}\left(\eta_{B}\right)_{\text {ideal regeneration }} & =1-\frac{T_{\min }}{T_{\max }}\left(r_{p}\right)^{\frac{\gamma-1}{\gamma}} \\ = & 1-\left(\frac{293}{1173}\right) \times(6)^{\frac{1.3-1}{1.3}}\end{aligned}$
$=0.62$ or $62 \%$

## 11. Ans: (d)

Sol: Whenever we reheat, we reheat to the same temperature until unless mentioned in the problem. Whenever, we intercool to the same temperature, if there are infinitely large number of reheats and if there are infinitely large number of intercoolers then reversible adiabatic expansion becomes isothermal expansion and reversible adiabatic compression becomes isothermal

|  | Regular Live Doubt clearing Sessions | Free Online Test Series \| ASK an expert |
| :---: | :---: | :---: |
|  | Affordable Fee \\| Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages |  |

compression and thermal efficiency of Brayton cycle becomes equal to Ericsson cycle.

$$
\therefore\left(\eta_{\text {th }}\right)_{\text {Braton }}=\left(\eta_{\text {th }}\right)_{\text {Ericsson }}
$$

Ericsson cycle is an ideal gas turbine cycle
Ideal $(\eta)_{\text {Ericsson }}=(\eta)_{\text {Carnot }}$

$$
(\eta)_{\text {Carnot }}=1-\frac{T_{\min }}{T_{\max }}=76 \%
$$

12. Ans: (a, c, d)

Sol:

- Regeneration always increases the efficiency
- Reheating may increase or decrease the efficiency of cycle
- Ericsson cycle is ideal regeneration cycle
- Intercooling along with regeneration increase the efficiency of the cycle

Chapter
12

## Refrigeration

1. 

Sol: Refrigeration effect $=1$ tonne

$$
\begin{aligned}
& =210 \mathrm{~kJ} / \mathrm{min} \\
& =3.5 \mathrm{~kW}
\end{aligned}
$$

Work input $=1.5 \mathrm{~kW}$

$$
\mathrm{COP}=\frac{3.5}{1.5}=2.33
$$

2. 

Sol: Maximum COP = Carnot COP

$$
\begin{aligned}
& =\frac{-30+273}{(273+32)-(273-30)} \\
& =\frac{243}{62}=3.92
\end{aligned}
$$

Actual COP $=0.75 \times 3.92=2.94$

$$
2.94=\frac{5}{\mathrm{~W}_{\text {input }}}
$$

$$
\Rightarrow \mathrm{W}_{\text {input }}=1.7 \mathrm{~kW}
$$

3. 

Sol: Actual COP $=0.15 \times$ Carnot's COP

$$
\begin{aligned}
& =0.15 \times \frac{273+2}{(273+30)-(273+2)} \\
& =1.473
\end{aligned}
$$

$$
\text { R.E }=\frac{8000}{24 \times 60 \times 60} \mathrm{kN}=0.093 \mathrm{~kW}
$$

$$
1.473=\frac{0.093}{\mathrm{~W}_{\mathrm{in}}}
$$

| N. ACE | 68 | GATE - Text Book Solutions |
| :--- | :--- | :--- |

$$
\begin{aligned}
\mathrm{W}_{\text {in }} & =0.063 \mathrm{~kW} \\
& =0.063 \mathrm{~kJ} / \mathrm{s} \times 3600 \times 24 \mathrm{~s} \\
& =5443.2 \mathrm{~kJ}
\end{aligned}
$$

$1 \mathrm{~kW}-\mathrm{h}=3600 \mathrm{~kJ}$
$5443.2 \mathrm{~kJ}=1.5 \mathrm{~kW}-\mathrm{h}$
04. Ans: (a)

Sol:

$\mathrm{P}_{1}=140 \mathrm{kPa}, \quad \mathrm{P}_{2}=800 \mathrm{kPa}$
From steam table

$$
\begin{aligned}
\mathrm{h}_{2} & =\mathrm{h}_{\mathrm{g}}=267.29 \mathrm{~kJ} / \mathrm{kg} \\
\mathrm{~h}_{3} & =\mathrm{h}_{\mathrm{f}}=95.49 \mathrm{~kJ} / \mathrm{kg} \\
\mathrm{Q}_{\mathrm{R}} & =\mathrm{h}_{2}-\mathrm{h}_{3} \\
& =267.29-95.49=171.82 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

$$
\begin{aligned}
(\mathrm{COP})_{\mathrm{HP}} & =\frac{\mathrm{Q}_{\mathrm{R}}}{\mathrm{~W}}=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{2}-\mathrm{T}_{1}} \\
\frac{171.82}{\mathrm{~W}} & =\frac{273+31.31}{(273+31.31)-(273-18.77)} \\
\mathrm{W} & =28.54 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

## 05. Ans: (b)

Sol: For minimum required power input condition the COP has to be maximum and the maximum COP is the reversed Carnot cycle COP.

$$
\begin{gathered}
{\left[(\mathrm{COP})_{\text {Carnot }}\right]_{\text {Refrigerator }}=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}-\mathrm{T}_{2}}=\frac{\mathrm{Q}_{2}}{\mathrm{~W}}} \\
\Rightarrow \frac{268}{293-268}=\frac{0.35}{\mathrm{~W}} \\
\Rightarrow \quad \mathrm{~W}_{\min }=33 \mathrm{~W}
\end{gathered}
$$

6. Ans: 12 kW

Sol:


Total heat to be removed

$$
=3600 \times 2 \times[27-(-3)]+3600 \times 230+3600 \times 20 \times 0.5
$$

## $=1080000 \mathrm{~kJ}$

$$
\text { Rate of heat removed }=\frac{1080000}{10 \times 3600}=30 \mathrm{~kW}
$$

$$
\text { Actual cop }=0.5 \times \frac{250}{300-250}=2.5
$$

$$
2.5=\frac{30}{\text { Power }}
$$

Power input $=12 \mathrm{~kW}$
07. Ans: (c)

Sol:


Ideal vapour compression means the compression starts from dry and saturated vapor line.
$\mathrm{P}_{1}=120 \mathrm{kPa}, \quad \mathrm{P}_{2}=800 \mathrm{kPa}$
$\mathrm{h}_{1}=236.97 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{3}=\mathrm{h}_{4}=95.47 \mathrm{~kJ} / \mathrm{kg}$
Net refrigeration effect (NRE) $=32 \mathrm{~kW}$

$$
\begin{aligned}
& =\dot{\mathrm{m}}_{\mathrm{r}}\left(\mathrm{~h}_{1}-\mathrm{h}_{4}\right) \\
\dot{\mathrm{m}}_{\mathrm{r}} & =0.23 \mathrm{~kg} / \mathrm{sec}
\end{aligned}
$$

8. Ans: (d)

Sol: $\dot{\mathrm{m}}_{\mathrm{r}}=0.193 \mathrm{~kg} / \mathrm{sec}$
$\mathrm{s}_{1}=\mathrm{s}_{2}=0.93 \mathrm{~kJ} / \mathrm{kgK}$
After compression the refrigerant is in super heated state with entropy $=0.93$ at a pressure 1.2 MPa
$\mathrm{h}_{1}=251.88 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{2}=278.27 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{3}=117.73 \mathrm{~kJ} / \mathrm{kg}$
Heat supply $=\dot{\mathrm{m}}_{\mathrm{r}}\left(\mathrm{h}_{2}-\mathrm{h}_{3}\right)=30.98 \mathrm{~kW}$
09.

Sol:


Refrigeration effect $=5 \mathrm{~kW}$
$\mathrm{h}_{4}=75 \mathrm{~kJ} / \mathrm{kg}, \mathrm{h}_{1}=183 \mathrm{~kJ} / \mathrm{kg}$,
$\mathrm{h}_{2}=210 \mathrm{~kJ} / \mathrm{kg}$
(i) $\mathrm{COP}=\frac{\text { Refrigeration effect }}{\text { work input }}=\frac{\mathrm{h}_{1}-\mathrm{h}_{4}}{\mathrm{~h}_{2}-\mathrm{h}_{1}}=4$
(ii) Cooling capacity $=\dot{\mathrm{m}} \times\left(\mathrm{h}_{1}-\mathrm{h}_{4}\right)$

$$
\begin{aligned}
& 5=\dot{\mathrm{m}} \times(183-75) \\
& \dot{\mathrm{m}}=0.0463 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

Power input to the compressor

$$
\begin{aligned}
& =\dot{\mathrm{m}} \times\left(\mathrm{h}_{2}-\mathrm{h}_{1}\right) \\
& =0.0463 \times(210-183) \\
& =1.25 \mathrm{~kW}
\end{aligned}
$$

(iii) Heat transfer at the condenser

$$
\begin{aligned}
& =0.0463 \times\left(\mathrm{h}_{2}-\mathrm{h}_{3}\right) \\
& =0.0463 \times(210-75) \\
& =6.25 \mathrm{~kW}
\end{aligned}
$$

10. Ans: (b)

Sol: $\mathrm{h}_{3}=107.32 \mathrm{~kJ} / \mathrm{kg}=\mathrm{h}_{4}$ at 1 MPa
$\mathrm{h}_{4}=\mathrm{h}_{\mathrm{f}_{4}}+\mathrm{x}\left(\mathrm{h}_{\mathrm{g}_{4}}-\mathrm{h}_{\mathrm{f}_{4}}\right)$
$107.32=22.49+x(226.97-22.49)$
Dry fraction of liquid, $x=0.4$
Mass fraction of liquid $=1-x=0.6$
11. Ans: (d)

Sol:

$\mathrm{h}_{3}=117.71 \mathrm{~kJ} / \mathrm{kg}$ at 1.2 MPa
$\mathrm{h}_{1}=251.8 \mathrm{~kJ} / \mathrm{kg}$ at 0.32 MPa
$\mathrm{h}_{2}=278.27 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{COP}=\frac{\mathrm{h}_{1}-\mathrm{h}_{4}}{\mathrm{~h}_{2}-\mathrm{h}_{1}}=\frac{251.8-117.71}{278.27-251.8}=5.07$

## 12. Ans: (d)

Sol:

$\mathrm{h}_{1}=241 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{2}=286.69 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{4}=\mathrm{h}_{3}=95.47 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{COP}=\frac{\mathrm{h}_{1}-\mathrm{h}_{4}}{\mathrm{~h}_{2}-\mathrm{h}_{1}}=\frac{\mathrm{NRE}}{\mathrm{W}_{\mathrm{C}}}=3.2$
13.

Sol:


$$
\begin{aligned}
\mathrm{h}_{3} & =\mathrm{h}_{4}=64.6 \mathrm{~kJ} / \mathrm{kg}, \quad \mathrm{~h}_{1}=195.7 \mathrm{~kJ} / \mathrm{kg} \\
\mathrm{v}_{1} & =0.082 \mathrm{~m}^{3} / \mathrm{kg} \\
\mathrm{n} & =1.13
\end{aligned}
$$

$\operatorname{NRE}(\mathrm{kW})=3.517 \times 15=\dot{\mathrm{m}}_{\mathrm{r}}\left(\mathrm{h}_{1}-\mathrm{h}_{4}\right)$
$\dot{\mathrm{m}}_{\mathrm{r}}=0.402 \mathrm{Kg} / \mathrm{sec}$

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{C}}(\mathrm{~kJ} / \mathrm{kg})=\frac{\mathrm{n}}{\mathrm{n}-1} \mathrm{P}_{1} \mathrm{v}_{1}\left[\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)^{\frac{\mathrm{n}-1}{\mathrm{n}}}-1\right] \\
& \quad=\frac{1.13}{1.13-1} \times 219 \times 0.082\left[\left(\frac{9.6}{2.19}\right)^{\frac{1.13-1}{1.13}}-1\right]
\end{aligned}
$$

$$
=28.92 \mathrm{~kJ} / \mathrm{kg}
$$

$\mathrm{W}_{\mathrm{C}}(\mathrm{kW})=0.402 \times 28.92=11.62 \mathrm{~kW}$
$\mathrm{COP}=\frac{\mathrm{NRE}}{\mathrm{W}_{\mathrm{C}}}=\frac{15 \times 3.517}{11.62}=4.54$
14. Ans: (a)

Sol:

$\mathrm{T}_{3}=308 \mathrm{~K}$
$\mathrm{T}_{4}=\frac{\mathrm{T}_{3}}{\left(\mathrm{r}_{\mathrm{p}}\right)^{\frac{\gamma-1}{\gamma}}}=\frac{308}{\left(\frac{280}{80}\right)^{\frac{0.4}{1.4}}}$
$\mathrm{T}_{4}=-58^{\circ} \mathrm{C}$
15. Ans: (b)

Sol:


For Helium, $\gamma=1.67$
$\dot{\mathrm{m}}=0.2 \mathrm{~kg} / \mathrm{sec}, \quad \mathrm{T}_{1}=-10^{\circ} \mathrm{C}=263 \mathrm{~K}$
Pressure ratio, $r_{p}=\frac{P_{2}}{P_{1}}=\frac{250}{100}=2.5$
$\mathrm{T}_{2}=\mathrm{T}_{1} \times\left(\mathrm{r}_{\mathrm{p}}\right)^{\frac{\gamma-1}{\gamma}}=263 \times(2.5)^{\frac{0.67}{1.67}}=379.84 \mathrm{~K}$
$\mathrm{T}_{4}=\frac{\mathrm{T}_{3}}{\left(\mathrm{r}_{\mathrm{p}}\right)^{\frac{\gamma-1}{\gamma}}}=\frac{293}{(2.5)^{\frac{0.67}{1.67}}}=202.87 \mathrm{~K}$


$$
\begin{aligned}
\mathrm{W}_{\mathrm{C}} & =\dot{\mathrm{m}}_{\mathrm{P}}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right) \\
& =\dot{\mathrm{m}} \frac{\gamma \overline{\mathrm{R}}}{\mathrm{M}(\gamma-1)}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right) \\
& =\frac{0.2 \times 1.67 \times 8.314}{4(1.67-1)}(379.84-263) \\
& =121 \mathrm{~kW} \\
\mathrm{~W}_{\mathrm{E}} & =\dot{\mathrm{m}} \frac{\gamma \overline{\mathrm{R}}}{\mathrm{M}(\gamma-1)}\left(\mathrm{T}_{3}-\mathrm{T}_{4}\right) \\
& =\frac{0.2 \times 1.67 \times 8.314}{4 \times(1.67-1)} \times(293-202.87) \\
& =93.3 \mathrm{~kW} \\
\mathrm{~W}_{\text {net }} & =\mathrm{W}_{\mathrm{C}}-\mathrm{W}_{\mathrm{E}} \\
& =121-93.3=27.7 \mathrm{~kW}
\end{aligned}
$$

16. Ans: 80 W

Sol:


For minimum value of heat required

$$
S_{\mathrm{gen}}=0
$$

dS (reservoir at 400 K$)+\mathrm{dS}$ (reservoir at $250 \mathrm{~K})+\mathrm{dS}($ reservoir at 300 K$)+\mathrm{dS}$ (working fluid) $=0$
$\frac{-\mathrm{Q}}{400}-\frac{100}{250}+\frac{\mathrm{Q}_{\mathrm{R}}}{300}+0=0$
$\mathrm{Q}_{\mathrm{R}}=100+\mathrm{Q}$
Solve (i) and (ii)
$\therefore \mathrm{Q}=80 \mathrm{~W}$

## 17. Ans: (b, c)

## Sol:

- Air refrigeration system is based on reversed Brayton cycle
- Vapour refrigeration system is not based on reversed Carnot cycle
- R-32 is the most commonly used refrigerant
- Domestic refrigerator is based on vapour compression refrigeration system


## Chapter <br> 13 <br> Thermodynamic Relations

1. Ans: (b)

Sol: Clayperon equation is given by

$$
\begin{aligned}
& \left(\frac{d P}{d T}\right)_{h}=\frac{\left(h_{g}-h_{f}\right)}{T_{s}\left(v_{g}-v_{f}\right)} \\
& \therefore\left(v_{g}-v_{f}\right)=\frac{d T_{s}}{d P} \frac{\left(h_{g}-h_{f}\right)}{T_{s}}
\end{aligned}
$$

2. Ans: (a)

Sol: Joule Thomson coefficient is

$$
\mu_{\mathrm{j}}=\left(\frac{\mathrm{dT}}{\mathrm{dP}}\right)_{\mathrm{h}}
$$

It is the constant enthalpy line in temperature pressure curve of real gases.

## 03. Ans: (c)

## Sol:

(a) $\left(\mathrm{c}_{\mathrm{p}}-\mathrm{c}_{\mathrm{v}}\right)=-\mathrm{T}\left(\frac{\partial \mathrm{V}}{\partial \mathrm{T}}\right)_{\mathrm{P}}^{2}\left(\frac{\partial \mathrm{P}}{\partial \mathrm{V}}\right)_{\mathrm{T}}$
$\because\left(\frac{\partial \mathrm{P}}{\partial \mathrm{V}}\right)_{\mathrm{T}}$ is always negative
$\therefore \mathrm{c}_{\mathrm{p}}-\mathrm{c}_{\mathrm{v}}>0$
Hence, $c_{p}$ is always greater than $c_{v}$.
(b) For an ideal gas

$$
\begin{array}{r}
\mathrm{Pv}=\mathrm{RT} \\
\left(\frac{\mathrm{dP}}{\mathrm{dv}}\right)_{\mathrm{T}} \mathrm{v}+\mathrm{P}=0 \\
\left(\frac{\mathrm{dP}}{\mathrm{dv}}\right)_{\mathrm{T}}=-\frac{\mathrm{P}}{\mathrm{~V}} \tag{1}
\end{array}
$$

$$
\begin{equation*}
\left(\frac{\mathrm{dv}}{\mathrm{dT}}\right)_{\mathrm{P}}=\left(\frac{\mathrm{R}}{\mathrm{P}}\right)=\left(\frac{\mathrm{v}}{\mathrm{~T}}\right) \tag{2}
\end{equation*}
$$

From (1) and (2)
$\therefore \mathrm{c}_{\mathrm{p}}-\mathrm{c}_{\mathrm{v}}=-\mathrm{T} \times \frac{\mathrm{v}^{2}}{\mathrm{~T}^{2}}\left(-\frac{\mathrm{P}}{\mathrm{v}}\right)=\frac{\mathrm{Pv}}{\mathrm{T}}=\mathrm{R}$
$\therefore \mathrm{c}_{\mathrm{p}}-\mathrm{c}_{\mathrm{v}}=\mathrm{R}$
(c) $\left(\frac{\partial \mathrm{P}}{\partial \mathrm{v}}\right)_{\mathrm{T}}$ is always negative.
$\left(\frac{\partial \mathrm{v}}{\partial \mathrm{P}}\right)_{\mathrm{P}}^{2}$ is always positive
(d) For water (incompressible fluid)
$\therefore \mathrm{c}_{\mathrm{p}} \approx \mathrm{c}_{\mathrm{v}}$
04. Ans: (a)

Sol: Gibb's energy ' $G$ ' is given by $\mathrm{G}=\mathrm{H}-\mathrm{TS}$
05. Ans: (c)

Sol:

- Specific heat at constant volume $\mathrm{C}_{\mathrm{v}} \rightarrow \mathrm{T}\left(\frac{\partial \mathrm{s}}{\partial \mathrm{T}}\right)_{\mathrm{V}}$
- Isothermal compressibility $\kappa \rightarrow-\frac{1}{\mathrm{~V}}\left(\frac{\partial \mathrm{~V}}{\partial \mathrm{P}}\right)_{\mathrm{T}}$
- Volume expansivity $\beta \rightarrow \frac{1}{\mathrm{~V}}\left(\frac{\partial \mathrm{~V}}{\partial \mathrm{~T}}\right)_{\mathrm{P}}$
- Difference between specific heats at constant pressure and constant volume

$$
\left(\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v})} \rightarrow-\mathrm{T}\left(\frac{\partial \mathrm{P}}{\partial \mathrm{~V}}\right)_{\mathrm{T}}\left(\frac{\partial \mathrm{~V}}{\partial \mathrm{~T}}\right)_{\mathrm{P}}^{2}\right.
$$

6. Ans: (c)

Sol: Helmholtz function is given by $\mathrm{H}=\mathrm{U}-\mathrm{TS}$
07. Ans: (b)

Sol: Joule Thomson coefficient is
$\mu_{\mathrm{j}}=\left(\frac{\partial \mathrm{T}}{\partial \mathrm{P}}\right)_{\mathrm{h}}=$ slop of constant
Enthalpy line in on T-P diagram
08. Ans: (b)

Sol: Joule Thomson coefficient $\rightarrow(\partial \mathrm{T} / \partial \mathrm{p})_{\mathrm{h}}$
$C_{p}$ for monoatomic gas $\rightarrow 5 / 2 \mathrm{R}$
$C_{p}-C_{v}$ for diatomic gas $\rightarrow \mathrm{R}$ $(\partial \mathrm{U} / \partial \mathrm{T})_{\mathrm{v}} \rightarrow \mathrm{C}_{\mathrm{v}}$
09. Ans: (d)

## Sol:

- Irreversibility $\rightarrow$ Loss of availability
- Joule Thomson experiment $\rightarrow$ Throttling process
- Joule's experiment $\rightarrow$ Mechanical equivalent
- Reversible engines $\rightarrow$ Thermodynamic temperature scale

10. Ans: (b)

Sol: Clapeyron's equation for dry saturated steam is given by

$$
\left(v_{g}-v_{f}\right)=\left(\frac{d T_{s}}{d P}\right)_{h} \frac{\left(h_{g}-h_{f}\right)}{T_{s}}
$$

## 11. Ans: (c)

Sol: The internal energy of a gas obeying Vander Waals equation $\left(\mathrm{P}+\frac{a}{V^{2}}\right)(\mathrm{v}-\mathrm{b})=\mathrm{RT}$ depends on its temperature and specific volume.

## Chapter <br> 14 <br> Reciprocating Air Compressors

1. Ans: (b)

Sol: $\mathrm{n}=2, \mathrm{P}_{\mathrm{s}}=1.5$ bar, $\mathrm{P}_{\mathrm{d}}=54$ bar
Intercooler pressure,

$$
\begin{aligned}
\mathrm{P}_{\mathrm{i}} & =\sqrt{\mathrm{P}_{\mathrm{s}} \mathrm{P}_{\mathrm{d}}} \\
& =\sqrt{54 \times 1.5} \\
\Rightarrow \quad \mathrm{P}_{\mathrm{i}} & =9 \mathrm{bar}
\end{aligned}
$$

2. Ans: (a)
3. Ans: (a)

Sol: $\eta_{v}=1-C\left[\left(\frac{P_{d}}{P_{s}}\right)^{\frac{1}{n}}-1\right]$
If clearance (C) is large volumetric efficiency ( $\eta_{v}$ ) decreases hence volume flow rate decreases.
04. Ans: (c)

Sol: Mass of air in clearance volume has no effect on work done per kg of air.

## 05. Ans: (d)

Sol: Volumetric efficiency is given by

$$
\eta_{\mathrm{v}}=1-C\left[\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)^{\frac{1}{\mathrm{n}}}-1\right]
$$

where,
$\mathrm{C}=$ clearance ratio,
$\mathrm{P}_{2}=$ delivery pressure,
$\mathrm{P}_{1}=$ suction pressure
n = index of expansion
06. Ans: (c)

Sol: $\quad \eta_{v}=1-C\left[\left(\frac{P_{2}}{P_{1}}\right)^{\frac{1}{n}}-1\right]$
where,
$\mathrm{C}=$ clearance ratio,
$\mathrm{P}_{2}=$ delivery pressure,
$\mathrm{P}_{1}=$ suction pressure
07. Ans: (d)

Sol: Total work of 3-stages is given by

$$
\mathrm{W}=\frac{3 \mathrm{n}}{(\mathrm{n}-1)} \mathrm{P}_{1} \mathrm{~V}_{1}\left[\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)^{\frac{\mathrm{n}-1}{3 n}}-1\right]
$$

8. Ans: (a)

Sol: $\eta_{\mathrm{Vol}}=1+\mathrm{C}-\mathrm{C}\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)^{\frac{1}{n}} \quad ; \mathrm{P}_{1} \mathrm{~V}_{1}{ }^{\mathrm{n}}=\mathrm{P}_{2} \mathrm{~V}_{2}{ }^{\mathrm{n}}$

$$
\begin{aligned}
& \eta_{\text {Vol }}=1+C-C\left(\frac{V_{1}}{V_{2}}\right) ; \quad\left(\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}\right)^{\mathrm{n}}=\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}} \\
& \eta_{\mathrm{vol}}=1+0.05-0.05\left(\frac{0.04}{0.02}\right)=0.95 \text { or } 95 \%
\end{aligned}
$$

9. Ans: (b)

Sol: Advantages of multi-stage compression are

- Improved overall volumetric efficiency. If all compression were done in one cylinder the gas in the clearance volume would expand to a large volume before the new intake could begin. This results in a very low volumetric efficiency. By cooling the gas between the stages a much higher efficiency can be obtained.
- A reduction in work required per stroke, and therefore the total driving power.
- Size and strength of cylinders can be adjusted to suit volume and pressure of gas.
- Multi-cylinders give more uniform torque and better mechanical balance thus needing smaller flywheel.

10. Ans: (d)

Sol: $\eta_{v}=1-C\left[\left(\frac{P_{2}}{P_{1}}\right)^{\frac{1}{n}}-1\right]$
where, $\quad \mathrm{C}=$ clearance ratio,

$$
\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=\text { pressure ratio }
$$

We can observe from the above expression that as $C$ and $\frac{P_{2}}{P_{1}}$ increases $\eta_{v}$ decreases.


## 11. Ans: (a)

Sol:

$\mathrm{P}-\mathrm{V}$ representation of cycle in a reciprocating compressor

From the P.V. diagram we can see that work done is minimum when the compression process is isothermal.
12. Ans: (b)
13. Ans: (d)

Sol: Cooling of reciprocating compressor

1. increases volumetric efficiency
2. decreases work input

## 14. Ans: 3

Sol: $\frac{T_{2}}{T_{1}}=\left(\frac{P_{2}}{P_{1}}\right)^{\frac{n-1}{n}}$
$\frac{423}{300}=\left(\frac{\mathrm{P}_{2}}{1}\right)^{\frac{1.25-1}{1.25}}$
$\mathrm{P}_{2}=5.57 \mathrm{bar}$
For optimum intercooling pressure ratios are same
$\frac{P_{2}}{P_{1}}=\frac{P_{3}}{P_{2}}=\frac{P_{4}}{P_{3}}=\frac{P_{n+1}}{P_{n}}$
$\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)^{\mathrm{n}}=\frac{180}{1}$
$(5.57)^{\mathrm{n}}=180$
$\Rightarrow \mathrm{n} \approx 3.023$
$\Rightarrow \mathrm{n}=3$ stages
15.

Sol:


Swept volume, $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{1}-\mathrm{V}_{3}=\frac{\pi}{4} \times \mathrm{D}^{2} \times \mathrm{L}$

$$
=\frac{\pi}{4} \times 0.2^{2} \times 0.3=9.42 \times 10^{-3} \mathrm{~m}^{3}
$$

Clearance volume $=\mathrm{V}_{3}=0.05 \times\left(\mathrm{V}_{1}-\mathrm{V}_{3}\right)$

$$
=4.71 \times 10^{-4} \mathrm{~m}^{3}
$$

$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{S}}+\mathrm{V}_{3}=9.89 \times 10^{-3} \mathrm{~m}^{3}$
$\frac{\mathrm{V}_{4}}{\mathrm{~V}_{3}}=\left(\frac{\mathrm{P}_{3}}{\mathrm{P}_{4}}\right)^{\frac{1}{n}}=\left(\frac{550}{97}\right)^{\frac{1}{1.3}}$
$\mathrm{V}_{4}=1.79 \times 10^{-3}$
Effective swept volume $=\mathrm{V}_{1}-\mathrm{V}_{4}$

$$
=8.1 \times 10^{-3} \mathrm{~m}^{3}
$$

$$
\begin{aligned}
\frac{P_{a} V_{a}}{T_{a}} & =\frac{P_{1} \times\left(V_{1}-V_{4}\right)}{T_{1}} \\
& =\frac{101.325 \times V_{a}}{288}=\frac{97 \times 8.1 \times 10^{-3}}{293}
\end{aligned}
$$

| + A C A | 76 | GATE - Text Book Solutions |
| :---: | :---: | :---: |

(i) $\quad \eta_{\mathrm{V}}=\frac{\mathrm{P}_{1}}{\mathrm{~T}_{1}} \times \frac{\mathrm{T}_{\mathrm{o}}}{\mathrm{P}_{\mathrm{o}}}\left[1+\mathrm{C}-\mathrm{C}\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)^{\frac{1}{\mathrm{n}}}\right]$

## Chapter <br> 15

## Steam Turbines

$=\frac{97}{293} \times \frac{288}{101.325}\left[1+0.05-0.05 \times\left(\frac{550}{97}\right)^{\frac{1}{1.3}}\right]$
$=80.92 \%$
(ii) Power required

$$
\begin{aligned}
& =\frac{n}{n-1} P_{1}\left(V_{1}-V_{4}\right)\left[\left(\frac{P_{2}}{P_{1}}\right)^{\frac{n-1}{n}}-1\right] \\
& =\frac{1.3}{1.3-1} \times 97 \times 8.1 \times 10^{-3} \times\left[\left(\frac{550}{97}\right)^{\frac{1.3-1}{1.3}}-1\right] \\
& =1.676 \mathrm{~kJ} / \text { cycle } \\
& =1.676 \times \frac{500}{60}=13.97 \mathrm{~kW}
\end{aligned}
$$

1. Ans: (a)

Sol:

- De laval turbine - simple impulse turbine
- Rateau Turbine - Pressure compounded steam turbine
- Curtis Turbine - velocity compounded steam turbine
- Parson - simple reaction steam turbine

2. Ans: (c)

Sol: In compounding high speeds of rotors are brought down to normal levels.
03. Ans: (c)

Sol: Blade speed, $\mathrm{U}=\frac{\pi \mathrm{DN}}{60}$
As power generated in the $\mathrm{III}^{\text {rd }}$ stage is more than I and II stage

$$
\begin{aligned}
& U_{3}>U_{2}=U_{1} \\
& D_{3}>D_{2}=D_{1} \quad(\because \text { N is same for all stages })
\end{aligned}
$$

4. Ans: (c)

Sol: $\frac{U}{V_{1}}=0.42$

$$
\mathrm{V}_{1}=\frac{\mathrm{U}}{0.42}=\frac{\frac{\pi \mathrm{DN}}{60}}{0.42}
$$

$$
=\frac{\pi \times 1.2 \times 3000}{60 \times 0.42}=450 \mathrm{~m} / \mathrm{sec}
$$

5. Ans: (b)

Sol:



Moving blade
Exit of fixed blade $=$ Exit of moving blade ( $\alpha_{2}=\beta_{2}$ )
Inlet of fixed blade $=$ Inlet of moving blade.
$\left(\alpha_{1}=\beta_{1}\right)$

## 06. Ans: (c)

## Sol:

- Parson's $\rightarrow$ Reaction
- De Laval $\rightarrow$ Simple impulse
- Rateau $\rightarrow$ Pressure compounded
- Curtis $\rightarrow$ Velocity Compounded

7. Ans: (c)

Sol: Ljungstrom turbine is steam turbine in which flow is in radial direction from inside to the outside and consists of two halves that rotate against each other.

## 08. Ans: (a)

Sol: $\frac{\mathrm{U}}{\mathrm{V}}=\cos \alpha . \Rightarrow \mathrm{V}=\frac{320}{\cos 30}=\frac{640}{\sqrt{3}} \frac{\mathrm{~m}}{\mathrm{~s}}$

## 09. Ans: (a)

Sol: Impulse turbine blades are De-Laval blades which are thick at centre and thin at edges.

## 10. Ans: (a)

Sol: Running speeds of steam turbine can be brought down to practical limits by compounding. The types of compounding are :

- Pressure compounding.
- Velocity compounding.
- Pressure and Velocity compounding.

11. Ans: (d)

Sol: Power $=F_{T} \times V$

$$
\begin{aligned}
50 \mathrm{~kW} & =\mathrm{F}_{\mathrm{T}} \times 400 \\
\mathrm{~F}_{\mathrm{T}} & =\frac{50 \times 1000}{400}=125 \mathrm{~N}
\end{aligned}
$$

12. Ans: (c)

Sol:

- $50 \%$ Reaction - Parson
- Two row Velocity compounded - Curtis
- Simple impulse stage - De Laval
- Pressure compounded - Rateau

13. Ans: (a)

Sol: Change in KE of steam = Work Done
$\frac{1}{2} \mathrm{~m}\left(\mathrm{~V}_{2}^{2}-\mathrm{V}_{1}^{2}\right)=$ Work
$\Rightarrow$ Work $=\frac{1}{2} \times 1\left(30^{2}-10^{2}\right)=400 \mathrm{Nm}$

## 14. Ans: (c)

Sol: $(\Delta \mathrm{h})_{\mathrm{R}}=2.38 \mathrm{~kJ} / \mathrm{kg}$
$(\Delta \mathrm{h})_{\mathrm{S}}=4.62 \mathrm{~kJ} / \mathrm{Kg}$.

$$
\begin{aligned}
\mathrm{DR} & =\frac{(\Delta \mathrm{h})_{\mathrm{R}}}{(\Delta \mathrm{~h})_{\mathrm{R}}+(\Delta \mathrm{h})_{\mathrm{S}}} \\
& =\frac{2.38}{2.38+4.62}=0.34
\end{aligned}
$$

## 15. Ans: (d)

Sol: Given maximum blade efficiency, for $50 \%$ reaction turbine.
$\Rightarrow \rho=\cos \alpha=\frac{\mathrm{u}}{\mathrm{V}_{1}}$
Work done,

$$
\begin{aligned}
\mathrm{W} & =\mathrm{V}_{1}^{2}\left(2 \rho \cos \alpha-\rho^{2}\right) \\
& =\mathrm{V}_{1}^{2}\left(2 \rho \times \rho-\rho^{2}\right) \\
& =\mathrm{V}_{1}^{2}\left(2 \rho^{2}-\rho^{2}\right)=\mathrm{V}_{1}^{2} \times \rho^{2} \\
& =\mathrm{V}_{1}^{2} \times\left(\frac{\mathrm{u}}{\mathrm{~V}_{1}}\right)^{2}=\mathrm{U}^{2} \\
\mathrm{~W} & =\mathrm{U}^{2}
\end{aligned}
$$

16. Ans: (d)

Sol: As pressure drop is gradual in both fixed and moving blades it is reaction turbine.
17. Ans: 445.97


$$
\begin{aligned}
& \mathrm{s}_{1}=\mathrm{s}_{2} \\
& \mathrm{~s}_{\mathrm{g} 1}=\mathrm{s}_{\mathrm{f} 2}+\mathrm{x}\left(\mathrm{~s}_{\mathrm{g} 2}-\mathrm{s}_{\mathrm{f} 2}\right) \\
& 5.7081=2.9206+\{\mathrm{x}(5.9735-2.9206)\} \\
& \Rightarrow \quad \mathrm{x}=0.913 \\
& \mathrm{C}_{1}=0 \\
& \mathrm{~h}_{1}= \mathrm{h}_{\mathrm{g} 1}=2751 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{~h}_{2}=\mathrm{h}_{\mathrm{f} 2}+\mathrm{x}\left(\mathrm{~h}_{\mathrm{g} 2}-\mathrm{h}_{\mathrm{f} 2}\right) \\
&=1154.5+\{0.913(2794.2-1154.5)\} \\
&= 2651.55 \mathrm{~kJ} / \mathrm{kg} \\
& \frac{\mathrm{C}_{1}^{2}}{2000}+\mathrm{h}_{1}=\frac{\mathrm{C}_{2}^{2}}{2000}+\mathrm{h}_{2} \\
& \mathrm{C}_{2}=44.72 \sqrt{\mathrm{~h}_{1}-\mathrm{h}_{2}} \\
&=44.72 \sqrt{(2751-2651.55)}=445.97 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

18. Ans: (a)

Sol: Given data :

$$
\begin{aligned}
\eta_{\mathrm{b}} & =0.92, \quad \eta_{\mathrm{T}}=0.94, \\
\eta_{\mathrm{g}} & =0.95, \quad \eta_{\mathrm{c}}=0.44, \\
\eta_{\mathrm{aux}} & =\frac{\text { Net power transmitted by the generator }}{\text { Gross power produced by the plant }} \\
& =\frac{\text { gross power }- \text { power for auxilliaries }}{\text { gross power }} \\
& =\frac{\text { gross power }-6 \% \text { of gross power }}{\text { gross power }} \\
& =1-0.06 \\
\eta_{\text {aux }} & =0.94
\end{aligned}
$$

Overall efficiency

$$
\begin{aligned}
\left(\eta_{\mathrm{o}}\right) & =\eta_{\mathrm{b}} \times \eta_{\mathrm{T}} \times \eta_{\mathrm{g}} \times \eta_{\mathrm{c}} \times \eta_{\text {aux }} \\
& =0.92 \times 0.94 \times 0.95 \times 0.44 \times 0.94 \\
& =0.34 \\
& =34 \%
\end{aligned}
$$

## 19. Ans: (a)

Sol: Given data :
$\mathrm{u}=150 \mathrm{~m} / \mathrm{s}$,
$\frac{\mathrm{u}}{\mathrm{V}_{1}}=0.5$
$\frac{150}{\mathrm{~V}_{1}}=0.5 \Rightarrow \mathrm{~V}_{1}=300 \mathrm{~m} / \mathrm{s}$
$\eta_{\text {nozzle }}=\frac{\frac{1}{2} \times \mathrm{V}_{1}^{2}}{\Delta \mathrm{~h}}$
$0.9=\frac{300^{2}}{2 \times \Delta h}$
$\Rightarrow \Delta \mathrm{h}=50000 \mathrm{~J} / \mathrm{kg}=50 \mathrm{~kJ} / \mathrm{kg}$
20. Ans: (b)

Sol:

$\mathrm{A}_{2}=2.5 \mathrm{~cm}^{2}=2.5 \times 10^{-4} \mathrm{~m}^{2}$
$\mathrm{P}_{1}=10 \mathrm{bar}$,
$\mathrm{P}_{2}=2 \mathrm{bar}$
$\mathrm{T}_{1}=500 \mathrm{~K}, \quad \mathrm{~T}_{2}=$ ?
$\mathrm{c}_{\mathrm{p}}=1005 \mathrm{~J} / \mathrm{kg} . \mathrm{K}$,
$\mathrm{c}_{\mathrm{v}}=718 \mathrm{~J} / \mathrm{kg} . \mathrm{K}$
$\gamma=\frac{\mathrm{c}_{\mathrm{p}}}{\mathrm{c}_{\mathrm{v}}}=\frac{1005}{718}=1.4$
$\mathrm{T}_{2}=\mathrm{T}_{1}\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)^{\frac{\gamma-1}{\gamma}}=500 \times\left(\frac{2}{10}\right)^{\frac{0.4}{1.4}}=315.7 \mathrm{~K}$
$\mathrm{h}_{1}+\frac{\mathrm{V}_{1}^{2}}{2}+\mathrm{Q}=\mathrm{h}_{2}+\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}+\mathrm{W}$
$\mathrm{Q}=0, \quad \mathrm{~W}=0, \quad \mathrm{~V}_{1}=0$

$$
\begin{aligned}
\therefore \mathrm{V}_{2} & =\sqrt{2 \mathrm{c}_{\mathrm{p}}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)} \\
& =\sqrt{2 \times 1005(500-315.7)} \\
& =608.64 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

Specific volume,

$$
\begin{aligned}
\mathrm{V}_{2} & =\frac{\mathrm{RT}_{2}}{\mathrm{P}_{2}} \\
& =\frac{287 \times 315.7}{2 \times 10^{5}}=0.453 \mathrm{~m}^{3} / \mathrm{kg}
\end{aligned}
$$

Mass flow rate,

$$
\begin{aligned}
\dot{\mathrm{m}} & =\frac{\mathrm{A}_{2} \mathrm{~V}_{2}}{\mathrm{v}_{2}} \\
& =\frac{2.5 \times 10^{-4} \times 608.64}{0.453}=0.3358 \mathrm{~kg} / \mathrm{sec}
\end{aligned}
$$

Note: Option (b) is correct answer.
21. Ans: 2.319

Sol:

$1-2 \mathrm{~s} \rightarrow$ isentropic expansion
$1-2 \rightarrow$ actual expansion
$S_{\text {gen }}=S_{\text {prod }}=m\left(S_{2}-S_{1}\right)-\frac{d Q}{T}$
Adiabatic turbine, $\mathrm{dQ}=0$ and moisture at exit is negligible.

$$
\begin{aligned}
\therefore \mathrm{S}_{\mathrm{gen}} & =\mathrm{m}\left(\mathrm{~S}_{2}-\mathrm{S}_{1}\right) \\
& =3(7.359-6.586)=2.319 \mathrm{~kW} / \mathrm{K}
\end{aligned}
$$

22. Ans: (a)

Sol: $V=44.72 \sqrt{h_{1}-h_{2}}$

$$
=44.72 \sqrt{(2935-2584)}=837.83 \mathrm{~m} / \mathrm{s}
$$

For maximum blade efficiency in impulse turbine,

$$
\begin{aligned}
\frac{\mathrm{u}}{\mathrm{~V}_{1}} & =\frac{\cos \alpha}{2} \\
\frac{\mathrm{u}}{837.83} & =\frac{\cos 20^{\circ}}{2} \\
\Rightarrow \quad \mathrm{u} & =393.65 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

23. Ans: (d)

Sol: $\dot{\mathrm{m}}_{1}-\mathrm{Q}=\dot{\mathrm{m}}_{2}+\mathrm{W}_{\mathrm{T}}$

$$
\begin{aligned}
\mathrm{W}_{\mathrm{T}} & =\dot{\mathrm{m}}\left(\mathrm{~h}_{1}-\mathrm{h}_{2}\right)-\mathrm{Q} \\
& =[0.25(3486-3175.8)]-50 \\
& =27.55 \mathrm{~kW}
\end{aligned}
$$

## 24. Ans: (b)

Sol: Work given by z- stage Curtis turbine.

$$
\mathrm{z}=\text { no. of stages }
$$

Work given by last stage of Curtis turbine $=2 u^{2}$
$\mathrm{W}_{\text {total }}=2 \mathrm{u}^{2} \times\left(\mathrm{z}^{2}\right)=6400$
$\mathrm{W}_{\text {total }}=$ last stage work $\times\left(\mathrm{z}^{2}\right)=6400$
No. of stages, $\mathrm{z}=4$
$\therefore$ Last stage work $=\frac{6400}{\mathrm{z}^{2}}$

$$
=\frac{6400}{4^{2}}=400 \mathrm{~kW}
$$

## 25. Ans: (c)

Sol: Ideal regenerative Rankine cycle efficiency is same as Carnot cycle efficiency.

$$
\begin{aligned}
\eta & =1-\frac{T_{2}}{T_{1}} \\
& =1-\frac{(27+273)}{(327+273)}=1-\frac{300}{600}=50 \%
\end{aligned}
$$

26. Ans: (b)

Sol:


$$
\begin{aligned}
\eta_{\text {Turbine }} & =\frac{\text { Actual enthalpy drop }}{\text { Isentropic enthalpy drop }} \\
& =\frac{3200-2560}{3200-2400}=0.8=80 \%
\end{aligned}
$$

27. Ans: (a)

Sol: $V_{w}=60 \mathrm{~m} / \mathrm{s}, \quad u=30 \mathrm{~m} / \mathrm{s}$
Specific work done $=V_{w} \times u$

$$
=60 \times 30=1800 \mathrm{~J} / \mathrm{kg}
$$

## 28. Ans: (b)

Sol: Manometer reading,

$$
\begin{aligned}
P_{1}-P_{2} & =45 \mathrm{~mm} \text { of water } \\
& =0.045 \mathrm{~m} \text { of water }
\end{aligned}
$$

Pressure at section, $\mathrm{P}_{1}=100 \mathrm{kPa}(\mathrm{abs})$
Temperature, $\quad \mathrm{T}_{1}=25^{\circ} \mathrm{C}$
Density of water, $\quad \rho_{w}=999 \mathrm{~kg} / \mathrm{m}^{3}$

$$
\begin{aligned}
& \mathrm{P}_{1}-\mathrm{P}_{2}=\frac{\rho_{\text {air }} \times \mathrm{V}_{2}^{2}}{2} \\
& \rho_{\text {air }}=\frac{\mathrm{P}}{\mathrm{RT}}=\frac{100 \times 10^{3}}{287 \times 298}=1.169 \approx 1.17 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

$$
P_{1}-P_{2}=\rho_{w} g(\Delta h)
$$

$$
\Rightarrow \frac{\rho_{\text {air }} \times \mathrm{V}_{2}^{2}}{2}=\rho_{\mathrm{w}} \mathrm{~g}(\Delta \mathrm{~h})
$$

$$
\frac{1.17 \times \mathrm{V}_{2}^{2}}{2}=999 \times 9.8 \times 0.045
$$

$$
\therefore \quad \mathrm{V}_{2}=27.44 \mathrm{~m} / \mathrm{s}
$$

29. Ans: (b, d)

Sol:

$\frac{\mathrm{u}}{\mathrm{V}_{\mathrm{w} 1}}=0.6$

$$
\mathrm{V}_{1}=1200 \mathrm{~m} / \mathrm{s}, \quad \alpha=20^{\circ}
$$

$$
\mathrm{u}_{1}=\mathrm{u}_{2}=\mathrm{u}
$$

$$
\mathrm{V}_{\mathrm{w} 1}=\mathrm{V}_{1} \cos \alpha
$$

$$
=1200 \times \cos 20^{\circ}=1127.63 \mathrm{~m} / \mathrm{s}
$$

$$
\frac{\mathrm{u}}{\mathrm{~V}_{\mathrm{w} 1}}=0.6
$$

$$
\Rightarrow \mathrm{u}=0.6 \times \mathrm{V}_{\mathrm{w} 1}
$$

$$
=0.6 \times 1127.63=676.578 \mathrm{~m} / \mathrm{s}
$$

Blade velocity $=676.58 \mathrm{~m} / \mathrm{s}$
Work done/s $=\mathrm{F}_{\mathrm{x}} \times \mathrm{u}$

$$
\begin{aligned}
& =\dot{\mathrm{m}}_{\mathrm{s}}\left(\mathrm{~V}_{\mathrm{w} 1} \pm \mathrm{V}_{\mathrm{w} 2}\right) \mathrm{u} \\
& =1 \times(1127.63 \pm 0) \times 676.578 \\
& =762929.65 \mathrm{~J} / \mathrm{kg}=762.93 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

30. Ans: (a, d)

Sol:

$\mathrm{V}_{1}=400 \mathrm{~m} / \mathrm{s}, \quad \alpha=20^{\circ}$
Given, blades are operating close to maximum blading efficiency.
$\Rightarrow \frac{\mathrm{u}}{\mathrm{V}_{1}}=\frac{\cos \alpha}{2}$
$\mathrm{V}_{\mathrm{r} 1}=\mathrm{V}_{\mathrm{r} 2}$ (No blade friction)
$\theta=\phi$ (equiangular blades)
From, $\frac{\mathrm{u}}{\mathrm{V}_{1}}=\frac{\cos \alpha}{2}$

$$
u=\frac{\mathrm{V}_{1} \cos \alpha}{2}=\frac{400 \times \cos 20^{\circ}}{2}=187.94 \mathrm{~m} / \mathrm{s}
$$


$\mathrm{V}_{\mathrm{w} 1}=\mathrm{V}_{1} \cos \alpha=400 \cos 20^{\circ}=375.87 \mathrm{~m} / \mathrm{s}$
$\mathrm{V}_{\mathrm{f} 1}=\mathrm{V}_{1} \sin \alpha=400 \sin 20^{\circ}=136.8 \mathrm{~m} / \mathrm{s}$
Consider inner inlet triangle,

$$
\begin{aligned}
& \tan \theta=\frac{\mathrm{V}_{\mathrm{f} 1}}{\mathrm{~V}_{\mathrm{w} 1}-\mathrm{u}} \\
& \theta=\tan ^{-1}\left(\frac{\mathrm{~V}_{\mathrm{f} 1}}{\mathrm{~V}_{\mathrm{w} 1}-\mathrm{u}}\right)
\end{aligned}
$$


$=\tan ^{-1}\left(\frac{136.8}{375.87-187.94}\right)=36.05^{\circ}$
$\theta=\phi=36.05^{\circ}$
$\mathrm{V}_{\mathrm{r} 1}=\frac{\mathrm{V}_{\mathrm{f} 1}}{\sin \theta}=\frac{136.8}{\sin \left(36.05^{\circ}\right)}=232.45 \mathrm{~m} / \mathrm{s}$
$\mathrm{V}_{\mathrm{r} 1}=\mathrm{V}_{\mathrm{r} 2}=232.45 \mathrm{~m} / \mathrm{s}$


$$
\cos \phi=\frac{\mathrm{V}_{\mathrm{w} 2}+\mathrm{u}}{\mathrm{~V}_{\mathrm{r} 2}}
$$

$$
\begin{aligned}
& \begin{aligned}
\mathrm{V}_{\mathrm{w} 2} & = \\
& \mathrm{V}_{\mathrm{r} 2} \cos \phi-\mathrm{u} \\
& =\left[\left(232.45 \times \cos 36.05^{\circ}\right)-187.94\right] \\
& =0
\end{aligned} \\
& \text { Power }=\frac{\dot{\mathrm{m}}_{\mathrm{s}}\left(\mathrm{~V}_{\mathrm{w} 1} \pm \mathrm{V}_{\mathrm{w} 2}\right) \times \mathrm{u}}{1000} \\
&=\frac{0.6 \times(375.87 \pm 0) \times 187.94}{1000} \\
&=42.38 \mathrm{~kW}
\end{aligned}
$$

Diagram efficiency

$$
\begin{aligned}
\left(\eta_{\text {blade }}\right) & =\frac{2 \mathrm{u} \times\left(\mathrm{V}_{\mathrm{w} 1} \pm \mathrm{V}_{\mathrm{w} 2}\right)}{\mathrm{V}_{1}^{2}} \\
& =\frac{2 \times 187.94(375.87 \pm 0)}{(400)^{2}}=88.3 \%
\end{aligned}
$$

## (OR)

Maximum diagram work $=2 \mathrm{u}^{2}$
Maximum diagram power $=\dot{\mathrm{m}} \times\left(2 \mathrm{u}^{2}\right)$

$$
=0.6 \times\left(2 \times\left(\frac{400}{2} \cos 20^{\circ}\right)^{2}\right)=42.38 \mathrm{~kW}
$$

Maximum blade efficiency

$$
\begin{aligned}
\left(\eta_{\text {blade } \max }\right) & =\cos ^{2} \alpha \\
& =\cos ^{2}\left(20^{\circ}\right)=88.3 \%
\end{aligned}
$$

NOTE: In given options diagram power is 48 kW and diagram efficiency is $87.9 \%$, change them to 42.38 kW and $88.3 \%$ respectively.

## 31. Ans: (b, c)

Sol:

- The supersonic velocity in the flow can be found for de-Laval turbine.
- The blade thickness is more at the centre of impulse turbine blades.
- Degree of reaction is $50 \%$ for a Parson reaction turbine.
- Both impulse and reaction turbines need compounding.

32. Ans: (a, c, d)

Sol:

- Ljunstorm turbine is outward flow reaction turbine
- Normal shock waves are developed only in the diverging portion, because, the normal shock waves are characteristics of supersonic flow.
- Mass flow rate increases with metastable flow
- Mass flow rate cannot be changed with normal shock wave.


## 33. Ans: $(\mathbf{a}, \mathrm{b}, \mathrm{d})$

Sol:

- The blades are arranged for Parson's turbine to have the converging passages.
- Chances of flow separation is less in Parson's turbine
- For the same blade speed the Parson's turbine maximum work output is not more than that of De-Laval turbine
Maximum work of De-Laval turbine $=2 u^{2}$
Maximum work of Parson's turbine $=u^{2}$
- The relative velocity increases in the Parson's turbine.

