GATE I PSUs

OPERATING SYSTEMS

Text Book:

Theory with worked out Examples and Practice Questions

Operating Systems
 (Solutions for Text Book Practice Questions)

Chapter
 1

Process Management - I

01. Ans: (c)

Sol: Software interrupt is a signal to be the processor initiated by software, indicating an event that needs immediate attention.
02. Ans: (c)
03. Ans: (a)

Sol: Software Interrupt is generated as a result of execution of a privileged instruction. This would change the mode from user to Kernel \& vice-versa. System calls, state changes can be caused by program commands, which are referred to as system calls and are implemented using software interrupts or automatically following certain events.
04. Ans: (d)

Sol: Loader is frequently required system software.
05. Ans: (b)

Sol: Process going from running to ready state is always preemptive.
06. Ans: (b) \& (c)

07. Ans: (c)

Sol: Scheduler process is meant to decide which ready process next should run on CPU.
08. Ans: (b)

Sol: In general, if no file name is specified in a command, the shell takes as input that you type on your keyboard.
09. Ans: (d)

Sol: Have multiple processes in ready to run.

10. Ans: (a)

Sol: S.J.F is the optimal non-preemptive CPU scheduling algorithm.

Explanation: SJF is the optimal nonpreemptive CPU scheduling algorithm. So, in order to produce the optimal Solution here it considers the shortest job first. The optimal sequence is $\{\mathrm{j} 3, \mathrm{j} 2, \mathrm{j} 1\}$.
Since, Burst time (j3) <Burst time (j2) < Burst time(j1)

But to start j3 CPU Should wait for 1.0 units of time as its arrival time is 1.0 .
11. Ans: (b)

Sol: $\mathrm{P}_{1} \rightarrow$ Finishing time $=10$
$\mathrm{P}_{2} \rightarrow$ Finishing time $=15$
$\mathrm{P}_{3} \rightarrow$ Finishing time $=9$

Online	India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, SSC, Banks, Groups \& PSC Exams

12. Ans: (c)

Sol: | | PID | AT | BT |
| :---: | :---: | :---: | :---: |
| | P_{1} | 0 | 5 |
| | P_{2} | 1 | 7 |
| | P_{3} | 3 | 4 |

FCFS	P_{1}	P_{2}	P_{3}
0	5	12	16

$$
\begin{array}{lll}
\mathrm{P}_{1}-5 & \mathrm{P}_{2}-7 & \mathrm{P}_{3}-4 \\
& \mathrm{P}_{3}-4
\end{array}
$$

<completion order: $\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3}>$
PID AT BT

P_{1}	0	10
P_{2}	2	20
P_{3}	6	30

$<$ completion order: $\mathrm{P}_{1} \mathrm{P}_{3} \mathrm{P}_{2}>$
13. Ans: (d)

14. Ans: (c)

Sol: Refer Gate PYQ book.
15. Ans: (b), (c) \& (d)

Sol: Consider the each statement:
(i) Statement is false because there is no connection between kernel supported threads and context switch.
(ii) Statement is true and it is drawback of user-level threads.
(iii) Statement is true because kernelsupported threads having own memory area and scheduled independently by the OS.
(iv) Statement is false because kernel is unaware about user level threads and there is no kernel support to user-level threads.
16. Ans: (b)

Sol: The critical distinction between them is data sharing. Processes do not share address space without explicit assistance. Threads within a process share address space.
17. Ans: (c)

Sol: RR is a pre-emptive scheduler, which is designed especially for time-sharing systems. In other words, it does not wait for a process to finish or give up control. In RR, each process is given a time slot to run.

If the process does not finish, it will "get back in line" and receive another time slot until it has completed.

18. Ans: (b)

Sol: Total number of jobs executed per unit time (also called throughput) is maximum in SJF. Since shorter jobs are executed first and More number of jobs will be executed per unit time.
19. Ans: (c)

Sol: The number of child processes with n -fork () is $2^{\mathrm{n}}-1$.
$\Rightarrow 3$-fork (1) $\Rightarrow 2^{3}-1=7$
20. Ans: (b)

Sol:

Process	Arrival time	Burst time
P_{1}	0	10
P_{2}	2	20
P_{3}	6	30

| P_{1} | P_{2} | P_{3} | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 10 | 30 | 60 |

$$
\begin{aligned}
& =P_{1} \text { to } P_{2} \& P_{2} \text { to } P_{3} \\
& =2 \text { context switch }
\end{aligned}
$$

21. Ans: (d)

Sol: Due to convoy effect.
22. Ans: (d)
23. Ans: (a) \& (b)

Sol: Block initiated by process and Ready by OS.
24. Ans: (b)
25. Ans: (a)

Sol: Spooling means a batch of process can be executed.

26.

Sol: The process will have increase its priority because of two pointers pointing to same process. The advantage is, it will be given more time but shorter processes will suffer.
27.

Sol: (i) The SJF has the highest priority
(ii) The lowest level of Multilevel Feed back queue is FCFS.
(iii) FCFS gives highest priority to the job having been existence the longest time.
(iv) None
28.

Sol: Run in the order

$$
\begin{aligned}
& \quad x, 3,5,6 \text {, if } x<3 \\
& \text { else } 3, x, 5,6, \text { if } x>3 \& x<5 \\
& \text { else } 3,5, x, 6 \text { if } x>5 \& x<6 \\
& \text { else } 3,5,6, x \text { if } x>6
\end{aligned}
$$

by applying SJF; as it generates the least any waiting time.

There are only two main choices FCFS and SJF as no priority and Quantum size etc. has been given. Moreover x may take values $1,2,3,4,5$, and more than that, it is assumed that the job responses immediately after getting the CPU. Then response time will be same as waiting time. SJF calculations are shown by taking various values of x . SJF is considered because it produces minimum response time.

Case: 1 x=1

Average waiting time $=(0+1+4+9) / 4$

$$
=14 / 4=3.5
$$

$$
\begin{array}{lllll}
0 & 1 & 4 & 9 & 15
\end{array}
$$

Case: $2 \mathrm{x}=2$
This job will again be the first job to be executed.

Average waiting time $=(0+2+5+10) / 4$

$$
=17 / 4=4.25
$$

Case: $3 \mathrm{x}=3$.
Assuming x will again be the first job to be executed.

Average waiting time $=(0+3+6+11) / 4=5$

Case: $4 \mathrm{x}=4$.

Average waiting time

$$
=\frac{0+3+7+12}{4}=\frac{11}{2}=5.5
$$

and so on.
Thus, the order of execution depends on the value of x and average response time is $\operatorname{minimum} x=1$.
29.

Sol: Refer Process State Transition Diagram
30.

Sol: One is Zero and the other is the pid of the child process.
31.

Sol: Creates processes incessantly.

Chapter
2

Process Management - II

1. Ans: (a)

Sol: Critical section implies usage of shared resources.

02. Ans: (b)

Sol: Since semaphore value $S=10$
$6 \mathrm{P} \Rightarrow \mathrm{S}=\mathrm{S}-6=4$
$4 \mathrm{~V} \Rightarrow \mathrm{~S}=\mathrm{S}+4=8$
03. Ans: (b)

Sol: The semaphore value $\mathrm{S}=7$
P operation will decrement the value of the semaphore by 1 .

V operation will increment the value of the semaphore by 1 .
20 P operations $\Rightarrow \mathrm{S}=\mathrm{S}-20$

$$
=7-20=-13
$$

15 V operations $\Rightarrow \mathrm{S}=\mathrm{S}+15$

$$
=-13+15=2
$$

04. Ans: (d)

Sol: This is the algorithm of solution of consumer produces process with the help of semaphore.
So, $\mathrm{K}=\mathrm{P}$ (empty) $\rightarrow \mathrm{P}$ for wait
$\begin{aligned} \mathrm{L} & =\mathrm{V} \text { (full) } \quad \rightarrow \mathrm{V} \text { for signal } \\ \mathrm{M} & =\mathrm{P} \text { (full) } \\ \mathrm{N} & =\mathrm{V} \text { (empty) }\end{aligned}$
05. Ans: (d)

Sol: S_{x} and S_{y} are two binary semaphore if assume P means wait or V means signal then for two processes P_{1} and P_{2} we take alternate then there is no chance of deadlock. The code is as follows.

P_{1}

while true do \{
$\mathrm{L}_{1}: \mathrm{P}\left(\mathrm{S}_{\mathrm{x}}\right)$
$\mathrm{L}_{2}: \mathrm{P}\left(\mathrm{S}_{\mathrm{y}}\right)$
$\mathrm{x}=\mathrm{x}+1$;
$\mathrm{y}=\mathrm{y}-1$;
$\mathrm{V}\left(\mathrm{S}_{\mathrm{x}}\right)$;
$\mathrm{V}\left(\mathrm{S}_{\mathrm{y}}\right)$;
\}

\mathbf{P}_{2}

while true do $\{$
$\mathrm{L}_{3}: \mathrm{P}\left(\mathrm{S}_{\mathrm{x}}\right)$
$\mathrm{L}_{4}: \mathrm{P}\left(\mathrm{S}_{\mathrm{y}}\right)$
$\mathrm{y}=\mathrm{y}+1$;
$\mathrm{x}=\mathrm{y}-1$;
$\mathrm{V}\left(\mathrm{S}_{\mathrm{y}}\right)$;
$\mathrm{V}\left(\mathrm{S}_{\mathrm{x}}\right)$;
\}
06. Ans: (c)

Sol: If P1 access the variable critical_flag then it executes the critical section otherwise P2 executes the critical section but both cannot and there is a possible deadlock.
07. Ans: (d)

Sol: Based on strict alternation.
08. Ans: (c)

Sol: (a) All philosophers gets one fork, each philosopher waits for the other fork held by other philosophers.
(b) There is a deadlock.
(c) This avoids deadlock.
09. Ans: (b)

Sol: If two barriers are invocated immediately then two goes into deadlock.
10. Ans: (b)
11. Ans: (a) \& (c)
12. Ans: (b)
13. Ans: (d)

Sol: X, W reads x and increment x by 1
Y, Z reads x and decrement x by 2
start with X. will perform $P(S)$ then $S=1$, read.
$\mathrm{x}=0, \mathrm{x}=\mathrm{x}+1=1$
Then Y will perform $P(S)$ then $S=0$, read $x=0, x=x-2=-2$, then store $x . V(S), S=1$ Then Z will perform $P(S)$ then $S=0$, read $x=-2, x=x-2=-4$, then store $x, V(S), S=1$

Then X will store $\mathrm{x}, \mathrm{V}(\mathrm{S}), \mathrm{S}=2, \mathrm{x}=1$
Then W will perform $P(S), S=1$, read $x=1$ $x=x+1=2$, store $x, V(S), S=2, x=2$

14. Ans: (a)

15. Ans: (a)

Sol: If context switching is disabled in P and if the value of semaphore is 'one', then it goes into infinite loop.
16. Ans: (a)
17. Ans: (a)
18. Ans: (a)
19. Ans: (c)
20. Ans: (b)
21. Ans: $\mathbf{1 \& 2}$
22.

Sol: (a) Mutual exclusion is guaranteed
(b) Deadlock occurs; Allow both processes to get pre-empted after S2 \& Q2 respectively.
(c) Now mutual exclusion is not guaranteed Deadlock is not possible, as both the processes would be executing the same code.
23. (a) Ans: 3
(b) Ans: 3
(c) Ans: 0

Chapter

Deadlocks

1. Ans: (a), (b) \& (d)

Sol: Only option(c) is not a valid deadlock prevention scheme.
02. Ans: (a)

Sol: Deadlock prevention deals only with preventing mutual exclusion, hold \& wait, No Preemption, Circular wait.
03. Ans: (b)
04. Ans: (a)

Sol: This is deadlock free but causes starvation.
05. Ans: (b) \& (c)

Sol: $3 \mathrm{n}<6+\mathrm{n}$
$2 \mathrm{n}<6 \Rightarrow \mathrm{n}<3$
1 (2) max value for each deadlock for not occur
06. Ans: (c)

Sol: $6<3+\mathrm{m}$

$3<\mathrm{m} \Rightarrow \mathrm{m}>3$
8765 (4) minimum value for which deadlock will not occur
07. Ans: (a)

Sol: If there are 2 processes then each process will hold 3 tape drives as there are 6 tape drives for which the system is guaranteed to be deadlock free.
08. Ans: (d) \& (e)

Sol: If there are 13 resources then deadlock will not occur as the peak demands is also 13 .

09. Ans: (b)

Sol: Right now ($\mathrm{n}-2$) processes are blocked, as available is zero. Only ' p ' \& ' q ' processes can complete, upon which they would release their resources $\mathrm{x}_{\mathrm{p}}, \mathrm{x}_{\mathrm{q}}$. therefore if $x_{p}+x_{q} \geq \min y_{k, k} \neq p, q$ this would guarantee that one out of the blocked processes can come out of the cycle. Right now ($\mathrm{n}-2$) processes are blocked, as available is zero. Only ' p ' \&' q ' processes can complete, upon which they would release their resources X_{p}, X_{q} therefore if $X_{p}+X_{q}>=\min Y_{k, k}!=p, q$ this would guarantee that one out of the blocked processes can come out of cycle.
10. Ans: (d)
11. Ans: (c)
12. Ans: (a)

Sol: Hint: Draw the timing diagram for all three processes; one can observe that all the process requests could be satisfied at different intervals of time and eventually leading to successful completion of them.
13. Ans: (b)

Sol: $4<2+3$
$4<5$ (True)
So, Deadlock will not occur
14. Ans: Yes
15. (b) Ans: Need = Max-Allocation
(c) Ans: It is safe because the Needs of all processes are satisfiable with the available resources.
(d) Ans: Request should be granted only if the resulting state of the system is safe after granting the request. However if it is not then it is not granted and the process initiating the request is blocked.

16.

Sol: Run Safety Algorithm and check that the needs of all processes are satisfiable with the available resources.

Chapter
 4

Memory Management

1. Ans: (b)
2. Ans: (b)
3. Ans: (c)

Sol: Memory specification
$=$ Number of words \times width of word.
$\mathrm{MC}=4 \mathrm{k} \times 16$
$=2^{2} 2^{10} \times 16$
$=2^{12} \times 16$
\therefore So, 12 address lines, 16 Data lines are required.
04. Ans: (a) \& (d)
05. Ans: (b)

Sol: Initialized early means it is FCFS.
If FIFO page replacement algorithm is used then a memory page containing a heavily used variable that was initialized very early and is in constant use is removed.
06. Ans: (c)

Sol: By definition of virtual memory.
07. Ans: (b)

Sol: Virtual Memory is implemented on secondary storage.
08. Ans: (c)

Sol: Single level paging has overhead of large page table sizes.

09. Ans: (c)

Sol: Due to Belady's anomaly
Belady's anomaly proves that it is possible to have more page faults when increasing the number of page frames while using the First in First Out (FIFO) page replacement algorithm.
10. Ans: (a)
11. Ans: (b)

Sol: Belady's anomaly proves that it is possible to have more page faults when increasing the number of page frames while using the First in First Out (FIFO) page replacement algorithm.
locality of reference, also known as the principle of locality, is the phenomenon of the same value or related storage locations being frequently accessed.
12. Ans: (d)
13. Ans: (a)

Sol: Dirty bit indicates whether page is clean or modified
14. Ans: (a)

Sol: Segment table must be paged in order to be accommodated in one page.

In a paged segmented scheme of memory management, the segment table itself must have a page table because the segment table is often too large to fit in one page.
15. Ans: (b)

Sol: Locality of reference, also known as the principle of locality, is the phenomenon of the same value or related storage locations being frequently accessed. There are two basic types of reference locality. Temporal locality refers to the reuse of specific data and/or resources within relatively small time durations. Spatial locality refers to the use of data elements within relatively close storage locations. Sequential locality, a special case of spatial locality, occurs when data elements are arranged and accessed linearly, e.g., traversing the elements in a onedimensional array.
16. Ans: (a)
17. Ans: (b)

Sol: At any time required $14 \mathrm{~KB} \mathrm{~A}, \mathrm{~B}$ and C or D and E when you load it requires 14 KB .
18. Ans: (c)
19. Ans: (b), (c) \& (d)

Sol:
(b) Is false, because all pieces of a process need not be loaded into main memory.

OnCe	India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, SSC, Banks, Groups \& PSC Exams

20. Ans: (a), (b) \& (c)

Sol: Absolute addresses will be assigned only by loader.
21. Ans: (d)

Sol: EMAT

$$
\begin{aligned}
= & 0.96[1 \mathrm{~ns}+0.9(1 \mathrm{~ns})+0.1(1 \mathrm{~ns}+10 \mathrm{~ns})] \\
& +0.04[1 \mathrm{~ns}+10 \mathrm{~ns}+10 \mathrm{~ns}+0.9(1 \mathrm{~ns}) \\
& +0.1(1 \mathrm{~ns}+10 \mathrm{~ns})]
\end{aligned}
$$

EMAT

$=0.96[1 \mathrm{~ns}+0.9(1 \mathrm{~ns})+0.1(1 \mathrm{~ns}+10 \mathrm{~ns})]+0.04$
$[1 \mathrm{~ns}+10 \mathrm{~ns}+10 \mathrm{~ns}+0.9(1 \mathrm{~ns})+0.1(1 \mathrm{~ns}+10 \mathrm{~ns}]$
TLB is successfully 96% of total request \& for remaining 4%.

RAM is accessed twice.
So average time taken.

$$
\begin{aligned}
= & .96(1+(0.9 \# 1)+0.1 \#(1+10)) \\
& \quad+.04(21+(.9 \# .1))+0.1 \#(1+10) \\
= & .96(1+.9+1.1)+0.4(21+.09+1.1) \\
= & .96 \# 3+0.4 \# 23 \\
= & 2.88+.92 \\
= & 3.80,4 \mathrm{~ns}
\end{aligned}
$$

22. Ans: (c)

Sol: First level page table size $=4 \mathrm{~Kb}$ in the second level, we require 3 pages of the inner page table. One for the code, another for data and last one for stack. A size of each page is 4 KB ; outer page table is also 4 KB .
23. Ans: (b)

Sol: a: True
b: False
c: True
d: True

24. Ans: (d)

Sol: Virtual address
$=32$ bits----[$\left[\begin{array}{l}p(20) \\ d(12)\end{array}\right.$

Physical address
$=30$ bits---- $\left[\begin{array}{l}18(\mathrm{t}) \\ 12(\mathrm{~d})\end{array}\right.$

Page size $\quad=4 \mathrm{~K}$ byte
Format of page number entry $=$ Fno + BKI
\Rightarrow Fno + BKI $=32$
$18+\mathrm{BKI}=32$
$\mathrm{BKI}=4$
25. Ans: (c)
26. Ans: (c)

Sol: Find the reference string first the number of page faults $=$ length of reference string in this case as the number of frames is one.
Find the reference String first:
It is 1,2,4,5,1,2,3.
The number of Page faults $=$ length of reference string in this case as the number of frames is one.
27. Ans: (d)
28. Ans: (b)

Sol: Page frame number is most important and virtual page number may not be stored entirely.
29. Ans: (c)
30. Ans: (b)

Sol: Linking is done at run-time in Dynamic Linking.
31. Ans: (a)
32. Ans: (d)
33. Ans: (a)

Sol: The number of allocation units

$$
=1 \mathrm{~GB} / 64 \mathrm{~KB}=2^{14} .
$$

1 bit is required for each allocation unit.
34. Ans: (c)
35. Ans: (b)

Sol: Effective Memory Access Time $=\mathrm{p}$ * (page fault service time)
$+(1-\mathrm{p}) *($ Memory access time $)$
$=\left(\frac{1}{10^{6}}\right) * 10 * 10^{6} \mathrm{~ns}+\left(1-\left(\frac{1}{10^{6}}\right)\right) * 20 \mathrm{~ns}$ $=30 \mathrm{~ns}$ (approximately)
36. Ans: (a), (b) \& (e)

Sol: (a) 0,4302 A: Error
(b) $1,15 \quad$ A: Error
(c) $2,50 \quad \mathrm{~A}: 90+50$
(d) 3, 400 A: Error
(e) 4, $112 \quad$ A: Error
37. Ans: (b)
38. Ans: (b)
39. Ans: (a)
40. Ans: (a)
41. Ans: (c) \& (e)

Sol: Physical address for the following logical addresses $=$ Base address + logical address
(a) $219+430=649$
(b) $2300+10=2310$
(c) $90+500=590$ (Illegal reference).
(d) $1327+400=1767$
(e) $1952+112=2064$ (Illegal reference)
42. Ans: (d), (e)

Sol: d, e; will
43.

Sol: Good are a, c, e, f
44.

Sol: No. of entries equals to number of pages. i.e., 32 G
45.

Sol: 3 Levels using the conventional formula of page table size i.e N^{*} e Bytes
46.

Sol: Using the equation EMAT $=\mathrm{P} * \mathrm{~S}+(1-\mathrm{P}) * \mathrm{M}$ Substituting the values from the statements we get roughly in micro seconds.
47.

Sol: Upon IO
48.

Sol: (a) 212 in $300 ; 417$ in $500 ; 112$ in 200 ; 350 in 600;
(b) Internal Fragmentation is the difference of the partition size and the accommodated process size.
(c) No External Fragmentation in Fixed Partitioning.
49.

Sol: (a) 32 bits. P is 20 bits and D is 12 bits.
(b) 16
(c) 1 M
50. Ans: 32768

Sol: 64×512 B = 32768

51. Ans: 1 Byte

Sol: Number of Partitions $=2^{24} / 64 \mathrm{~K}$ which is 256 and hence addressed with a Byte.
52. Ans: 384

Sol: Page Table Size $=\left(\frac{\text { Number of pages }}{\text { Page size }}\right) *$ PTE
Number of Pages $=2^{40} \mathrm{~B} / 16 \mathrm{~KB}$
$\mathrm{PTE}=6 \mathrm{~B}$
$\frac{2^{40} \mathrm{~B}}{16 \mathrm{~KB}} \times 6 \mathrm{~B}=384 \mathrm{MB}$
53.

Sol: (a) Minimum page size $=128$ Bytes.
Let page size $=2^{k}$ Bytes
Page table size $=2^{13}=\left(2^{13-k}\right) \times 2$ bytes

$$
=2^{14-\mathrm{k}} \text { Bytes }
$$

By given condition $2^{14-\mathrm{k}}=2^{\mathrm{k}},(\mathrm{k}=7)$ and hence page size $=2^{7}=128$ Bytes.
54. Ans: (a) 0
(b) 2
(c) 1
(d) 0
55.

Sol: LAS $=2^{48} \mathrm{~B}$
$\mathrm{PAS}=2^{32} \mathrm{~B}$
Page Size $(P S)=8 K=2^{3} .2 B=2^{13} B$
Number of pages $=\frac{L A S}{P A}=\frac{2^{48}}{2^{13}}=2^{35}$
Number of frames $=\frac{2^{32}}{2^{13}}=2^{19}$
56.
(a) Ans: 400 (2*mmat)
(b) Ans: $0.75 * 200+0.25 * 400=250 \mathrm{~ns}$
57. Ans: 12 bits

Sol: $\frac{2^{32}}{2^{20}}=12$ bits
58. Ans: (d) \& (e)

Chapter
5

File Systems \& I/O Management

01. Ans: (b)

Sol: Nearest cylinder next is also known as shortest seek time first which is the optimal algorithm.

02. Ans: (b)

Sol: To facilitate/minimize the Disk access time.

03. Ans: (a) \& (d)

Sol: Cache and memory are not devices.

04. Ans: (a)

Sol: Large Block size results in more internal fragmentation and reading a larger block results in reading more data and hence higher throughput.
05. Ans: (a)

Sol: Disk capacity $=16 \times 128 \times 256 \times 512 \mathrm{~B}=256 \mathrm{Mb}$ Sector address $=4+7+8=19$ bits.
06. Ans: (a)
07. Ans: (c)
08. Ans: (a), (b) \& (d)
09. Ans: (c)
10. Ans: (a) Transfer time is 204 ms
(b) Access time is $4+20+2014 \mathrm{~ms}$
(c) Rotational Time is 40 ms
(d) Time to read a sector $1 / 100 \mathrm{~ms}$
(e) Time to read a track is 40 ms
11. Ans: 3

Sol:

12.

Sol: Data Transfer rate is measured in Bytes per second. It is the rate at which the number of bytes that can be transferred in one second. It is calculated with reference to track size and rpm.

To read all 8 sectors in a double interleaved disk two full rotations and latency of 0.5 is needed.
13.

Sol: 64 TB which is the sum of 12 direct pointers and size accessible with single double and triple indirect pointers. Ignoring the sizes in front of triple indirect pointer the file size roughly is 64 TB .

