

Mechanical Engineering

MACHINE DESIGN

Text Book : Theory with worked out Examples and Practice Questions

Machine Design

(Solutions for Text Book Practice Questions)

06. Ans: (a, b)

Sol: In each case the loading on all sections is same, hence all sections are critical.In each case, point A is critical.

In case 1,

At point A, $\sigma_x = \sigma_{axial} + \sigma_{bending}$

At point B, $\sigma_x = \sigma_{axial} - \sigma_{bending}$

Hence point B is not critical here.

In case 4, Pure shear,

ace online

$$\sigma_{\max} = \frac{16T}{\pi d^3} \& \tau_{\max} = \frac{16T}{\pi d^3}$$

In each other case; the maximum normal stress is more than the maximum shear stress.

Theories of Failure

Sol: $\sigma = 60$ MPa, $\tau = 40$ MPa,

 $S_{yt} = 330 \text{ MPa}$

According to maximum principal theory

$$\sigma_{1} = \frac{S_{yt}}{F.S}$$

$$\sigma_{1} = \frac{60+0}{2} + \sqrt{\left(\frac{60-0}{2}\right)^{2} + (40)^{2}}$$

$$= 30 + 50 = 80 \text{ MPa}$$

$$\Rightarrow 80 = \frac{330}{F.S} \Rightarrow F.S = 4.125$$
2. Ans: (c)
ol: Given $\sigma = \begin{bmatrix} 40 & 0 \\ 0 & -30 \end{bmatrix}$

$$\sigma_{1} = 40, \quad \sigma_{2} = -30, \quad \sigma_{yt} = 350 \text{ MPa}$$
Max shear stress theory
$$\tau_{max} = \frac{\sigma_{1} - \sigma_{2}}{2} = \frac{S_{sy}}{FOS} = \frac{S_{yt}}{2 \times FS}$$

$$\Rightarrow \frac{40+30}{2} = \frac{350}{2 \times FS}$$

$$\Rightarrow$$
 FS = $\frac{350}{70}$ = 5

03. Ans: (b) Sol: $F_t = 48 \text{ kN}$; $S_{yt} = 200 \text{ MPa}$ $F_S = 18 \text{ kN}$, $A = 600 \text{ mm}^2$, FS = ?

$$\frac{3}{5}$$
Since bolts are made of ductile material, so
we can use maximum shear stress theory
$$\sigma = \frac{48 \times 10^3}{600} = 80 \text{ MPa}$$

$$\tau = \frac{18 \times 10^3}{600} = 30 \text{ MPa}$$

$$\tau = \frac{18 \times 10^3}{600} = 30 \text{ MPa}$$

$$\tau_{max} = \sqrt{\left(\frac{\sigma}{2}\right)^2 + \tau^2} = \sqrt{\left(\frac{80}{2}\right)^2 + 30^2}$$

$$= 50 \text{ MPa}$$

According to maximum shear stress theory
$$\tau_{max} = \frac{S_{yx}}{PS}$$

$$\tau_{max} = \frac{S_{yx}}{PS} \Rightarrow F.S = 2$$

04. Ans: (d)
Sol: Given thin cylindrical shell
$$d_i = 4.6 \text{ m}, \qquad p = 0.210 \text{ MPa}$$

$$t = 16 \text{ mm}, \qquad S_{y_1} = 260 \text{ MPa}$$

$$\sigma_h = \frac{pd}{2t} = \frac{0.21 \times 4.6 \times 10^3}{2 \times 16} = 15.09 \text{ MPa}$$

$$\sigma_i = \sigma_i = 30.18 \text{ MPa}$$

$$\sigma_i = \sigma_i = 15.08 \text{ MPa}$$

$$\sigma_i = -10 \text{ MPa} = \frac{S_{yx}}{2 \times FS}$$

$$200 - (-100) = \frac{S_{yy}}{2 \times FS}$$

$$FS = 1.666 = 1.67$$

т

т

ace online

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

06. Ans: (b) Sol: $\sigma_b = 55$ MPa, $\tau = 31.5$ MPa, $S_{yt} = 284$ MPa S_{sv} 4

$$\tau_{\text{max}} = \frac{sy}{\text{FS}}$$

$$\tau_{\text{max}} = \frac{S_{yt}}{2 \times \text{FS}}$$

But $\tau_{\text{max}} = \sqrt{\left(\frac{\sigma_{\text{b}}}{2}\right)^2 + \tau^2}$

$$= \sqrt{\left(\frac{55}{2}\right)^2 + (31.5)^2} = 41.81$$

$$\text{FS} = \frac{S_{yt}}{2 \times \tau_{\text{max}}} = \frac{284}{2 \times 41.81} = 3.39$$

07. Ans: (a) Sol: $F_T = 20 \text{ kN}$, $F_s = 15 \text{ kN}$ $S_{yt} = 360 \text{ MPa}$, $F_s = 3$, d = ? $\sigma = \frac{F_T}{A} = \frac{20 \times 10^3}{A} N / mm^2$ $\tau = \frac{F_S}{A} = \frac{15 \times 10^3}{A} N / mm^2$ $\sigma_1 \& \sigma_2 = \frac{\sigma}{2} \pm \sqrt{\left(\frac{\sigma}{2}\right)^2 + \tau^2}$ $\frac{S_{yt}}{FS} = \sqrt{\sigma_1^2 + \sigma_2^2 - \sigma_1 \sigma_2}$ According to distortion energy theory $\sigma_1 = \frac{\sigma}{2} + \sqrt{\left(\frac{\sigma}{2}\right)^2 + \tau^2} = \frac{\sigma}{2} + \tau_{max} = \frac{\sigma}{2} + R$ $R = \sqrt{\left(\frac{\sigma}{2}\right)^2 + \tau^2}$

> ace online

 $\sigma_{eq} = \sqrt{\sigma_1^2 + \sigma_2^2 - \sigma_1 \sigma_2}$ $=\sqrt{\left(\frac{\sigma}{2}+R\right)^{2}+\left(\frac{\sigma}{2}-R\right)^{2}-\left(\frac{\sigma}{2}+R\right)\left(\frac{\sigma}{2}-R\right)}$ $\sigma_{eq} = \sqrt{\left(\frac{\sigma}{2}\right)^2 + 3\left(\left(\frac{\sigma}{2}\right)^2 + r^2\right)}$ $\sigma_{eq} = \sqrt{\left(\frac{\sigma}{2}\right)^2 + 3\left(\frac{\sigma}{2}\right)^2 + \tau^2}$ $\sigma_{eq} = \sqrt{\sigma^2 + 3\tau^2} = \frac{S_{yt}}{F}$ $= \sqrt{\left(\frac{20 \times 10^{3}}{A}\right)^{2} + 3 \times \left(\frac{15 \times 10^{3}}{A}\right)^{2}} = \frac{360}{3}$ $=\frac{10^3}{4}\sqrt{20^2+3\times15^2}=\frac{360}{3}$:. A = 273.22 mm² = ($\pi/4$) d² \Rightarrow d = 18.65 mm 08. Ans: (b) Sol: А A **≻**σ $S_{yt} = 310 \text{ MPa},$ FS = 2, F = 40 kN, T = ?d = 20 mm,According to Distortion Energy Theory $\frac{S_{yt}}{FS} = \sqrt{\sigma^2 + 3\tau^2}$

 Regular Live Doubt clearing Sessions
 Free Online Test Series | ASK an expert

 Affordable Fee |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

GATE – Text Book Solutions

Engineering Publications	5	Machine Design
$\sigma = \frac{F}{\frac{\pi}{4} \times d^2} = \frac{40 \times 10^3}{\frac{\pi}{4} \times 20^2} = 127.32 \text{ MPa}$ $\frac{310}{2} = \sqrt{(127.32^2 + 3\tau^2)}$		= 128.58 MPa Minor principal stress $\sigma_{2} = \frac{127.32}{2} - \sqrt{\left(\frac{127.32}{2}\right)^{2} + (12.73)^{2}}$
$\Rightarrow \tau = 51.03 \text{ MPa}$ $\tau = \frac{16T}{\pi d^3}$ $\Rightarrow 51.03 = \frac{16T}{\pi \times 20^3}$ $\Rightarrow T = 80157.73 \text{ Nmm} = 80.157 \text{ Nm}$	EERIA	= -1.26 MPa According to Tresca's theory of failure $\frac{S_{sy}}{FS} = \frac{S_{yt}}{2 \times FS} = \frac{\sigma_1 - \sigma_2}{2}$ $\therefore \frac{425}{FS} = \frac{128.58 + 1.26}{2}$ $FS = 3.27$
Sol: P = 5 kN, d = 10 cm = 0.1 m Torque, T = 5 × 10 ³ × 0.5 = 2500 Nm Syt = 425 MPa Bending moment M = 5 × 10 ³ × 2.5 = 12500 Nm Maximum shear stress $\tau = \frac{16T}{\pi d^3} = \frac{16 \times 2.5 \times 10^3}{\pi \times (0.1)^3}$ = 12732395 N/m ² = 12.73 MPa Maximum bending stress $\sigma_b = \frac{32M}{\pi d^3} = \frac{32 \times 12500}{\pi \times (0.1)^3}$ = 127323954 N/m ² = 127.32 MPa Major principal stress $\sigma_1 = \frac{\sigma_b}{2} + \sqrt{\left(\frac{\sigma_b}{2}\right)^2 + \tau^2}$ $= \frac{127.32}{2} + \sqrt{\left(\frac{127.32}{2}\right)^2 + (12.73)^2}$		0. Ans: (a) Sol: $S_{yt} = 200 \text{ N/mm}^2$; $FS = 2.5$ $\frac{d}{b} = 2$ $\frac{S_{yt}}{FS} = \sigma_b = \frac{200}{2.5} = 80 \text{ MPa}$ $I = \frac{bd^3}{12} = \frac{b(2b)^3}{12} = 0.66b^4$ Maximum Bending moment, $M = 5 \times 1500 + 5 \times 500$ $= 10000 \times 10^3 \text{ N-mm}$ $80 = \frac{M}{I} \times y = \frac{10^7}{0.66b^4} \times \frac{d}{2}$ $80 = \frac{10^7}{0.66b^4} \times \frac{2b}{2}$ $\Rightarrow b = 57.42 \text{ mm}$ 1. Ans: (b) Sol: $\sigma_x = 100 \text{ MPa}$, $\sigma_y = 40 \text{ MPa}$, $\tau = 40 \text{ MPa}$
India's Best Online Coaching Plat Enjoy a smooth on	 form for GA nline learnin	ATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams ng experience in various languages at your convenience

г

$$\sigma = \frac{100 + 40}{2} \pm \sqrt{\left(\frac{100 - 40}{2}\right)^2 + 40^2}$$

$$\sigma_1 = 70 + \sqrt{30^2 + 40^2} = 120 \text{ MPa}$$

$$\sigma_2 = 70 - \sqrt{30^2 + 40^2} = 20 \text{ MPa}$$

According Distortion Energy Theory

$$\sqrt{\sigma_1^2 + \sigma_2^2 - \sigma_1 \sigma_2} = \frac{S_{yt}}{FS}$$

$$\sqrt{120^2 + 20^2 - 120 \times 20} = \frac{360}{FS} \implies FS = 3.23$$

12. Ans: (b)

Sol: T = 10 kN-m, M = 10 kN-m, FS = 1.5

Equivalent torque,

$$T_{e} = \sqrt{10^{2} + 10^{2}} = 14.14 \text{ kN-m}$$
$$\tau_{\max} = \frac{16T_{e}}{\pi d^{3}} = \frac{16 \times 14.14}{\pi d^{3}}$$

According to Maximum shear stress theory

$$\tau_{\text{max}} = \frac{S_{sy}}{FS}$$

$$\frac{16 \times 14.14}{\pi d^3} = \frac{S_{sy}}{1.5}$$

$$S_{sy} = \frac{16 \times 14.14 \times 1.5}{\pi d^3} = \frac{108.02}{d^3}$$
For M = 5 kN-m and T = 6 kN-m
$$T_e = \sqrt{5^2 + 6^2} = 7.81 \text{ kN-m}$$

$$\tau_{\text{max}} \times FS = \text{constant}$$

$$= \frac{16 \times 7.81 \times FS}{\pi d^3}$$

$$= \frac{16 \times 14.14 \times 1.5}{\pi d^3}$$

$$\Rightarrow$$
 FS = 2.7

ace online

Sol: Given data:

Loading 1: $\sigma_1 = \frac{32M}{\pi d^3}$ & $\sigma_2 = 0$ Loading 2: $\sigma_1 = \frac{16T}{\pi d^3}$ & $\sigma_2 = -\frac{16T}{\pi d^3}$ Loading 3: $\sigma_1 = \frac{16}{\pi d^3} \left(M + \sqrt{M^2 + T^2} \right)$ $\sigma_2 = \frac{16}{\pi d^3} \left(M - \sqrt{M^2 + T^2} \right)$

Loading 4: $\sigma_1 - \sigma_2 = 100 \text{ MPa}$

On plotting these loadings on safe diagram; as

From diagram it is clear that, loading lines of loading 1 and 4 intersect at points which are common to all three mentioned theories. Hence for these loading all three theories will give same results.

 Regular Live Doubt clearing Sessions
 |
 Free Online Test Series | ASK an expert

 Affordable Fee
 |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

GATE – Text Book Solutions

ACE Engineering Publications		7	Machine Design
Chapter 3	uctuating Loads		For completely reverse load $\sigma_m = 0$ $\sigma_a = \frac{16 \times 10^3}{(50 - 10)t}$
01. Ans: (b) Sol: Given: $S_u = 440 \text{ MPa}$ $K_a = 0.67$ $K_c = 0.9$ $K_t = 2.37$	$q = 0.8$ $K_{b} = 0.85$ $K_{d} = 0.897$ $F.S = 1.5$	ERII	$\therefore \sigma_{a} = \frac{400}{t} \text{ N/mm}^{2}$ $\frac{\sigma_{a}}{S_{e}} + \frac{\sigma_{m}}{S_{ut}} = \frac{1}{FS} \left(\text{Here} \frac{\sigma_{m}}{S_{ut}} = 0 \right)$ $\sigma_{a} = \frac{S_{e}}{FS} = \frac{48.63}{1.5} = \frac{400}{t}$ $G = \frac{1}{12.3} \text{ mm}$
Goodman's ec $\frac{\sigma_a}{S_e} + \frac{\sigma_m}{S_{ut}} = \frac{\sigma_m}{S_{ut}}$ $S_e' = Enduc species S_e = Modified$	puation $\frac{1}{F.S}$ rance strength of standar imen under ideal conditions. endurance strength	d	t = 12 mm 02. Ans: (b) Sol: F = 50 kN, S _{ut} = 300 MN/m ² S' _e = 200 MN/m ² , K _t = 1.55, q = 0.9 M = ? K _f = 1 + q(K _t - 1) = 1 + 0.9(1.55 - 1) = 1.495 1 ct = 200 contents
$S_{e} = K_{a} K_{b} K_{c}$ $S_{e}' = 0.5 S_{ut}$ $= 0.5 \times 440$ $S_{e} = 0.67 \times 0.85$ $K_{f} = \text{Actual stress of}$ $K_{f} = 1 + \sigma (K_{f})$	$K_{d} S'_{e}$ Sin = 220MPa $5 \times 0.9 \times 0.897 \times K_{e} \times S'_{e}$ concentration modifying factor	ce 1 or	$S_{e} = \frac{K_{f}}{K_{f}} S_{e} = \frac{133.779}{1.495}$
$K_{f} = 1 + q(K_{t})$ $= 1 + 0.8(1)$ $K_{e} = \text{Stress concentration}$ $= \frac{1}{K_{f}} = \frac{1}{2}$ $∴ S_{e} = 48.63M$	$-1)$ $.37) = 2.096$ ration modifying factor $\frac{1}{2.096} = 0.48$ MPa		Mean stress, $\sigma_{\rm m} = \frac{\overline{\rm A}}{\overline{\rm A}}$ $= \frac{\overline{\rm F}}{\frac{\pi}{4}{\rm d}^2} = \frac{50 \times 10^3}{\frac{\pi}{4}(25)^2} \Longrightarrow 101.85 \text{ MPa}$ Stress amplitude, $\sigma_{\rm a} = \frac{32 \text{ M}}{\pi {\rm d}^3} = \frac{32 \text{ M}}{\pi (25)^3}$
A ace online	India's Best Online Coaching Platfor Enjoy a smooth onlin	rm for G ie learn	GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams ing experience in various languages at your convenience

According to Goodman's equation

$$\frac{\sigma_a}{S_e} + \frac{\sigma_m}{S_{ut}} = \frac{1}{FS}$$
$$\frac{32M}{\pi(25)^3} + \frac{101.85}{300} = 1$$
$$\Rightarrow M = 135.5 \text{ N-m}$$

03. Ans: (b)

Sol:

Given:

$$\sigma_{1} = -50 \text{ MPa to } +150 \text{ MPa}$$

$$\sigma_{2} = 25 \text{ MPa to } 175 \text{ MPa}$$

$$S_{ut} = 500 \text{ MPa}, S_{e} = 250 \text{ MPa}$$

$$K_{t} = 1.85$$

$$\sigma_{1max} = 150 \text{ MPa}, \sigma_{1min} = -50 \text{ MPa}$$

$$\sigma_{1mean} = \frac{\sigma_{1max} + \sigma_{1min}}{2}$$

$$= \frac{150 - 50}{2} = 50 \text{ MPa}$$

$$\sigma_{1a} = \frac{150 + 50}{2} = 100 \text{ MPa}$$
Similarly
$$\sigma_{2max} = 175 \text{ MPa},$$

$$\sigma_{2min} = 25 \text{ MPa}$$

$$\sigma_{2m} = \frac{175 + 25}{2} = 100 \text{ MPa}$$

$$\sigma_{2a} = \frac{150}{2} = 75 \text{ MPa}$$
According to Soderberg's equation
$$\frac{\sigma_{a}}{S_{e}} + \frac{\sigma_{m}}{S_{wt}} = \frac{1}{F.S}$$

Here, $S_e = K_a K_b \dots S_a$ $=\frac{1}{1.85} \times 250 = 135 \text{ N/mm}^2$ According DET $\sigma_{\text{meq}} \leftarrow \left(\frac{S_{\text{yt}}}{F.S}\right) = \sqrt{\sigma_1^2 + \sigma_2^2 - \sigma_1\sigma_2}$ $\therefore \sigma_{meq} = \sqrt{\sigma_{1m}^2 + \sigma_{2m}^2 - \sigma_{1m}\sigma_{2m}}$ = 86.6MPa $\sigma_{aeq} = \sqrt{\sigma_{1a}^2 + \sigma_{2a}^2 - \sigma_{1a}\sigma_{2a}}$ = 90.14 MPa Substituting these values in Soderberg's equation $\frac{90.14}{135} + \frac{86.6}{500} = \frac{1}{F.S}$ \Rightarrow F.S = 1.2 Common Data for Questions 04 & 05 04. Ans: (c) & 05. Ans: (a) **Sol:** $S_e = 280 \text{ MPa}$ $S_f = 0.9 S_{ut}$ for 10^3 cycles $S_u = 600 \text{ MPa}$ $N = 200 \times 10^3$ cycles; $S_f = ?$ Basquin's equation, $A = S_f L^B$ $A = 280(10^6)^B$(1) $A = (0.9 \times 600) \times 10^{3B}$ $A = 540 \times 10^{3B}$(2) By solving (1) and (2), A = 1041.42

A ace online

 Regular Live Doubt clearing Sessions
 Free Online Test Series | ASK an expert

 Affordable Fee |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

8

Engineering Publications	9 Machine Design			
B = 0.095	$T_{min} = -0.8 \text{ kN-m}$			
$\Rightarrow 1041.42 = S_{fL}^{0.095}$	$S_{sv} = 225 \text{ MPa},$			
$1041.42 = S_f (200 \times 10^3)^{0.095}$	FS = ? (Soderberg)			
$S_f = 326 \text{ MPa}$	$S_{se} = 150 \text{ MPa}$			
$\Rightarrow 1041.42 = 420 \times L^{0.095}$	2 - (-0.8) = 1.41 N m			
\Rightarrow L = 1.4 ×10 ⁴ cycles	$I_a = \frac{1}{2} = 1.4 \text{ kin} - \text{ m}$			
	$T = \frac{2 - 0.8}{2} = 0.6 \text{ kN} - \text{m}$			
06. Ans: (d)				
Sol: $S_{f1} = 500 \text{ MPa}$ $N_1 = 10 \text{ cycles}$	$\tau_{\rm m} = \frac{16 {\rm T_m}}{10^{-10}} = \frac{16 \times 0.6 \times 10^6}{10^{-10}} = 24.446 {\rm MPa}$			
$L_1 = 1 \times 10^5$ cycles	$\pi d^3 = \pi (50)^3$			
$S_{f2} = 600 \text{ MPa}, \qquad N_2 = 5 \text{ cycles}$	ERING $\tau = \frac{16T_a}{16(1.4) \times 10^6} = 57.04 \text{ MPa}$			
$L_2 = 0.4 \times 10^5$ cycles	$\pi d^3 = \pi (50)^3$			
$S_{f3} = 700 \text{ MPa}, N_3 = 3 \text{ cycles}$	$\frac{\sigma_a}{\sigma_m} + \frac{\sigma_m}{\sigma_m} = \frac{1}{\sigma_m}$			
$L_3 = 0.15 \times 10^5 \text{ cycles}$	S _e S _{yt} FS			
α_1 , α_2 , α_3 1	$\frac{\tau_a}{\tau_a} + \frac{\tau_m}{\tau_m} = \frac{1}{\tau_m}$			
$\overline{L_1}$ + $\overline{L_2}$ + \overline{L} - L	S _{se} S _{sy} FS			
$N_1 = 10$	24.446 57.04 1			
$\alpha_1 - \frac{1}{N_1 + N_2 + N_3} - \frac{1}{18}$	225 150 FS			
10 5 3 1	\Rightarrow FS = 2.04			
$\frac{18(1\times10^5)}{18(0.4\times10^5)} + \frac{18(0.4\times10^5)}{18(0.15\times10^5)} = \frac{1}{L}$				
L = 42352.94 Cycles Since	CE 108. Ans: (c)			
For 18 cycles $\rightarrow \frac{1}{2} \times 60$ sec	Sol : $L_1 = 10$ hours			
	$N_1 = 9.8$ hours			
42352.94 cycles \rightarrow ? L	$N_2 = 8.2$ hours			
$\frac{42352.94}{2} = \frac{L}{2} = \frac{L \times 3600}{2}$	$L_2 = ?$			
10 30sec 30	According to Miner's Equation,			
\Rightarrow L = 19.6 hrs	$\frac{N_1}{L} + \frac{N_2}{L} = 1$			
U/. Ans: (a)	$\Rightarrow \frac{9.8}{10} + \frac{8.2}{1} = 1$			
Sol: $a = 50 \text{ mm}$	L = 410 hours			
$I_{max} = 2 \text{ kin-m}$	$L_2 = 410$ nours			
India's Best Online Coaching Platfor	l rm for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams			
Enjoy a smooth online learning experience in various languages at your convenience				

Common Data for Questions 09 & 10 **09.** Ans: (c) & 10. Ans: (d) **Sol:** $\sigma_{max} = +130 \text{ MPa}$ $\sigma_{\min} = -130 \text{ MPa}$ $K_{d} = \frac{1}{K_{f}} = \frac{1}{1 + 0.95(1.85 - 1)}$ $S_e = K_a K_b K_c K_d S'_e$ $= 0.76 \times 0.85 \times 0.897 \times \frac{1}{1+0.95(1.85-1)} (0.5 \times 1400)$ = 224.411 MPa \therefore For a completely reversed, $\sigma_m = 0$; $\sigma_a = 130 \text{ MPa}$ $\tau_{\rm m} = \frac{57 + 16}{2} = 36.5 \,{\rm MPa}$ $\tau_{a} = \frac{57 - 16}{2} = 20.5 \text{ MPa}$ $\sigma_{eq} = \sqrt{\sigma^2 + 3\tau^2}$ $\sigma_{meg} = \sqrt{\sigma_m^2 + 3\tau_m^2} = \sqrt{3 \times 36.5^2} = 63.21 \text{ MPa}$ $\sigma_{aeg} = \sqrt{\sigma_a^2 + 3\tau_a^2} = \sqrt{130^2 + 3(20.5)^2}$ = 134.76 MPa According to Goodman's equation, $\frac{\sigma_{aeq}}{S_e} + \frac{\sigma_{meq}}{S_{ut}} = \frac{1}{Fs}$ $\frac{134.76}{224.4} + \frac{63.21}{1400} = \frac{1}{FS} \implies FS = 1.54$ 11. Ans: (a, c) Sol: Given data; $(\sigma_{\rm m}, \sigma_{\rm a}) = (25, 125)$ $\sigma_{max} = +150 \text{ MPa}$

& $\sigma_{\min} = -100$ MPa

$$\sigma_{a} = \frac{150 - (-100)}{2} = 125 \text{ MPa}$$

$$\sigma_{m} = \frac{150 - 100}{2} = 25 \text{ MPa}$$

$$\sigma_{m} = \frac{\sigma_{a}}{2} = \frac{125}{2} = 5$$

$$\tan \theta = \frac{\sigma_a}{\sigma_m} = \frac{125}{25} = 5$$

10

Modified Goodman Diagram:

 $\label{eq:Yield Line} Yield \ Line \Rightarrow \sigma_m + \sigma_a = S_{yt} = 0.5 \ S_{ut} \ \ldots .(i)$

$$\begin{aligned} &\text{Goodman Line} \Rightarrow \frac{\sigma_m}{S_{ut}} + \frac{\sigma_a}{\sigma_e} = 1 \\ &\therefore \qquad \sigma_m + 2.5\sigma_a = S_{ut} \qquad \dots \dots (ii) \\ &\therefore \qquad S_e = 0.4S_{ut} \end{aligned}$$

From (i) & (ii),
$$\sigma_a = 0.333 S_{ut}$$

$$\sigma_{\rm m} = 0.16 \, \rm S_{\rm ut}$$

$$\therefore \quad \tan \alpha = \frac{\sigma_{a}}{\sigma_{m}} = 2$$

- As θ > α, the loading line will cut Goodman Line.
 - \therefore Goodman Line is the design line.

$$\frac{\sigma_{\rm m}}{S_{\rm ut}} + \frac{\sigma_{\rm a}}{S_{\rm e}} = \frac{1}{\rm FOS}$$
$$\therefore \quad \frac{25}{600} + \frac{125}{240} = \frac{1}{\rm FOS}$$

.
$$FOS = 1.78$$

 Regular Live Doubt clearing Sessions
 Free Online Test Series
 ASK an expert

 Affordable Fee
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

 σ_{m}

GATE – Text Book Solutions

		12	2 GATE – Text Book Solution
	Shear Strength $P_{s} = 21206 \text{ N},$ P = 45000 N Strength of riveted joint $\eta = \frac{\text{Least value among } P_{c}, P_{t} \& P_{s}}{P}$ $\eta = \frac{20625}{45000} = 0.458 = 45.8\%$		$\frac{d}{d} = 18 \text{ mm} (from \ Q. 5)$ $Tearing resistance is$ $P_t = (p - d)t \times \sigma_t$ $= (p - 18)7 \times 80$ $= 560(p - 18) \text{ N} \dots (1)$ $P_s = \frac{\pi}{4} d^2 \times \tau_s \times \eta$
05. Sol:	Ans: (c) Given t = 7 mm $\tau_s = 60 \text{ MPa} = 60 \text{ N/mm}^2$ $\sigma_c = 120 \text{ MPa} = 120 \text{ N/mm}^2$ n = 3 (Triple riveted joint) $P_S = n \times \frac{\pi}{4} \times d^2 \times \tau_s$	C	$\frac{\pi}{4}(18)^2 \times 60 \times 3 = 45804 \text{ N} \dots (2)$ From equations (1) and (2) 560(p-18) = 45804 p = 99.79 $p \approx 100 \text{ mm}$ 07. Ans (a)
06. Sol:	$= 3 \times \frac{\pi}{4} d^{2} \times 60 = 141.4 d^{2} N \dots (1)$ $P_{C} = n \times d \times t \times \sigma_{c} = 3 \times d \times 7 \times 120$ $= 2520 d N \dots (2)$ From equations (1) & (2) $141.4 d^{2} = 2520 d$ $d = \frac{2520}{141.4} = 17.8 \approx 18 mm$ Ans: (d) Given: t = 7 mm,	C	Sol: $\frac{S_{yt}}{FS} = 90 \text{ N/mm}^2$ $\frac{S_{sy}}{FS} = 75 \text{ N/mm}^2$ $\frac{S_{yc}}{FS} = 150 \text{ N/mm}^2$, $t = 6 \text{ mm}$ Shear strength = crushing strength $\frac{\pi}{4}d^2 \times \frac{S_{sy}}{FS} = d \times t \times \frac{S_{yc}}{FS}$ $d = 6 \times \frac{150}{75 \times \pi} \times 4$ d = 15.27 mm
	$\sigma_t = 80 \text{ MPa} = 80 \text{ N/mm}^2$ $\tau_s = 60 \text{ MPa} = 60 \text{ N/mm}^2$ $\sigma_c = 120 \text{ MPa} = 120 \text{ N/mm}^2$		08. Ans: (b) Sol: Given: $\tau_s = 100 \text{ MPa} = 100 \text{ N/mm}^2$

Regular Live Doubt clearing Sessions | Free Online Test Series | ASK an expert

Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

	A	CE	
\$\$128			

Machine Design

Resultant load on rivet B, $R_{\rm B} = P_{\rm S} + F_{\rm B} = 0.25P + 0.05P$ = 0.3PResultant load on rivet C. $R_{C} = P_{S} - F_{C} = 0.25P - 0.05P = 0.2P$ Resultant load on rivet D. $R_D = P_S - F_D = 0.25P - 0.15P = 0.1P$ R_A is the maximum shear load $0.40P = \frac{\pi}{4}d^2 \times \sigma_s$ $0.4P = \frac{\pi}{4} (20)^2 100 = 31420$ $P = \frac{31420}{0.4} = 78.55 \,\text{kN} \approx 78 \,\text{kN}$ 09. Ans: (b) d = 20 mm**Sol:** t = 15 mm, p = 60 mm, $\tau = 90 \text{ MPa}$ $\sigma_t = 120 \text{ MPa}, \sigma_c = 160 \text{ MPa}$ Tensile load (F_t) $= (p - d)t \times \sigma_t$ $=(60-20) \times 15 \times 120 = 72000$ N = 72 kNShear Load (F_s) = $\frac{\pi}{4} \times d^2 \times \tau = \frac{\pi}{4} \times 20^2 \times 90$ = 28274.33 N = 28.274 kN Crushing load (F_c) = $d \times t \times \sigma_c$ $= 20 \times 15 \times 160$ = 48000 N = 48 kN

 OCE
 India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams

 Enjoy a smooth online learning experience in various languages at your convenience

ACE Engineering Publications		14		GATE – Text Book Solutions
Expression of Rivers P_{1} Load carrying car	apacity (F) mum of (F _t , F _s & F _c) 74 kN tions 10 & 11: P = 4 kN 2 ad, P ₁ = $\frac{4}{2} = 2$ kN 10ad, $\frac{r_1}{r_2^2}$ $\frac{0^3 \times (1.8 + 0.2) \times 0.2}{0.2^2 + 0.2^2}$ 0 N = 20 kN $P_1 = \frac{19}{2} P_2$		12. Sol: •	Ans: (b, c) Shearing strength, $P_s = 4 \times \frac{\pi}{4} \times 10^2 \times 60 = 18.85 \text{ kN}$ Crushing strength, $P_c = 4 \times 10 \times 5 \times 120 = 24 \text{ kN}$ Tearing Strength at AA $= (50 - 10) \times 5 \times 80 = 16$ Tearing Strength at BB $= (150 - 2 \times 10) \times 5 \times 80 + \frac{\pi}{4} \times 10^2 \times 60$ = 16.712 kN
Resultant load Resultant shear s	on Rivet $P = P_2 - P_1$ = 18 kN stress on Rivet P			
	$=\frac{18\times10^{3}}{\frac{\pi}{4}\times12^{2}}=159 \text{ MPa}$			
	Regular Live Doubt Affordable Fee Avail	t clearin able 1M	ig Sess [3M 0	Sons Free Online Test Series ASK an expert 5M 12M 18M and 24 Months Subscription Packages

ACE Machine Design 15 03. Ans: (d) **Sol:** Given pitch = 4 mmChapter **Threaded Fasteners** Torque (T) = 1.4 kN-mm 5 Work done = force × distance Ans: (b) 01. Force×distance = Torque× Angle of rotation **Sol:** Given d = 24 mm $F \times 4 = T \times \theta$ $F_i = 2840 d = 2840 \times 24$ $F = \frac{1.4 \times 2\pi}{4} = 2.199 \text{ kN} = 2.2 \text{ kN}$ $\sigma_{t} = \frac{F_{i}}{\frac{\pi}{4}d_{c}^{2}}$ 04. Ans: (d) Here, $d_c = 0.84d \implies d_c = 0.84 \times 24$ Sol: Given $\sigma_{t} = \frac{2840 \times 24}{\frac{\pi}{4} (0.84 \times 24)^{2}}$ $F_i = 5.3 \text{ kN}$. C = 0.25. P = 9.6 kN $\sigma_t = 213.529 \text{ MPa}$ $F_{\rm b} = CP + F_{\rm i}$ =(0.25)(9.6)+(5.3)02. Ans: (c) $F_{\rm h} = 7.7 \ \rm kN$ Sol: Given d = 36 mm05. Ans: (b) $d_c = 0.84 d = 0.84 \times 36$ Sol: Given F.S = 1.5D = 250 mmSince $S_{vt} = 280 \text{ MPa}$ Pressure = 12 bar = 1.2 MPa $\sigma_t = \frac{s_{yt}}{F_{x}} = \frac{280}{1.5}$ F.S = 5 $S_{yt} = 300 \text{ MPa}$ $\mathbf{P} = \frac{\pi}{4} d_c^2 \, \sigma_{\rm t}$ n = 8 $F_b = \text{Load}(P) = \frac{\frac{\pi}{4}(D^2) \times P}{n}$ $=\frac{\pi}{4}(0.84\times36)^2\times\frac{280}{1.5}$ = 134066 N $=\frac{\frac{\pi}{4}(250)^2 \times 1.2}{2} = 7363.1 \text{ N}$ P = 134 kN

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

$$\sigma_{t} = \frac{F_{b}}{A_{b}} = \frac{S_{yt}}{F.S}$$
$$\Rightarrow \frac{7.36 \times 10^{3}}{A_{b}} = \frac{300}{5}$$
$$\Rightarrow A_{b} = 122.66 \text{ mm}^{2}$$

06. Ans: (d)

Sol: Given,

$$D = 500 \text{ mm}$$
$$n = 8$$

$$P = 20 bar = 2 MPa$$

$$K_m = 3K_b$$

$$c = \frac{K_{b}}{K_{b} + K_{m}} = \frac{1}{4} = 0.25$$

To avoid leakage

Load (P) = $Pr \times A$

$$=\frac{2\times\frac{\pi}{4}(500)^2}{8}=49$$
 kN

For leak proof joint $F_m \le 0$ $F_i = (1 - C) P$

$$F_i = (1 - 0.25) 49$$

= 36.75 kN \approx 37 kN

Linked Answer Q 07 & 08

07. Ans: (d)

А

Sol:
$$S_{yt} = 650 \text{ MPa}$$
, $t = 20 \text{ mm}$
 $A = 115 \text{ mm}^2$, $d = 14 \text{ mm}$
 $K_m = 1.7 \times 10^6 \text{ N/mm}$,
 $E_{cu} = 1.05 \times 10^5 \text{ N/mm}^2$
 $E_{steel} = 2 \times 10^5 \text{ N/mm}^2$

 $F_i = 0.8 S_{vt} \times A$

= 0.8 ×650 ×115 = 59800 N For bolt,

$$K_{b} = \frac{P_{b}}{\delta_{b}} = \frac{P_{b}}{\frac{P_{b}I_{b}}{A_{b}E_{b}}} = \frac{A_{b}E_{b}}{I_{b}}$$

$$=\frac{115\times2\times10^5}{20+20}=5.75\times10^5$$
 N/mm

Where, $l_b = t_1 + t_2 = 20 + 20 = 40 \text{ mm}$

Stiffness factor C =
$$\frac{K_b}{K_b + K_m} = 0.25$$

08. Ans: (a)

Sol: Safe external load that can be applied safely on the joint $(1-C)P - F_{1} = 0$

$$(1-0.25) \times P = 59800 \text{ N}$$

P = 79733 N = 79.733 kN
For strength

$$\sigma_{t} = \frac{F_{b}}{A} = \frac{S_{yt}}{FS}$$
$$\Rightarrow F_{b} = \frac{S_{yt} \times A_{b}}{FS}$$
$$S_{x} \times A_{b}$$

$$CP + F_i = \frac{S_{yt} \wedge A_b}{FS}$$

$$CP = \frac{S_{yt}}{FS} \times A_b - F_i$$

$$CP = \frac{650}{1} \times 115 - 59800$$

$$CP = 14950$$

$$P = \frac{14950}{0.25} = 59800 \,\text{N} = 59.8 \,\text{kN} \cong 60 \,\text{kN}$$

Regular Live Doubt clearing Sessions | Free Online Test Series | ASK an expert

ace online

Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

	ACE Engineering Publications		17	Machine Design
09.	Ans: (b)			$P_{A}' = CL_2$ (tensile load)
Sol:	$F.S = 3$, $S_{yt} =$ Direct shear lo	400 N/mm^2 , P = 5 kN ad		$=\frac{\mathrm{PL}}{2(\mathrm{L}_{1}^{2}+\mathrm{L}_{2}^{2})}\times\mathrm{L}_{2}$
		$\begin{array}{c c} P_{s}^{1} & 250 \\ \hline P_{s_{2}} \\ P_{s_{3}} \\ \hline \end{array} $		$= \frac{10 \times 550}{2(75^2 + 325^2)} \times 325 = 8 \text{ kN}$ $P_{\text{direct}} = \frac{P}{4} = 2.5 \text{ kN} = P_A = P_B$ Bolt 'A' is subjected to maximum load
		[*] P _{s₁}		Rankine Theory
			:D1/	\therefore Total Tensile load on bolt = P _A +P'.
	$P_s = \frac{5}{3} = 1.67 \text{ k}$	N	= 11/1	= 8 + 2.5 = 10.5kN
	Secondary she	ar Load, P _{S1}		F S _{yt}
	$=\frac{1}{(75)}$	$\frac{5 \times 250}{(1)^2 + 0^2 + (75)^2} \times 75 = 8.3 \text{kN}$		$\sigma_{t} = \frac{\pi}{\frac{\pi}{4}d_{c}^{2}} = \frac{1}{FS}$
	Resultant Load	$I(R) = \sqrt{P_{S}^{2} + P_{S_{1}}^{2}}$ $\sqrt{(1 + (7)^{2} + (0, 2))^{2}}$		$\frac{10.5}{\frac{\pi}{4}d_{\rm c}^2} = \frac{400}{6}$
		$= \sqrt{(1.67)^{2} + (8.3)^{2}}$ = 8.498 kN		$d_c = 14.16$
	$R = \frac{\pi}{4} d^2 \times \frac{S_{sy}}{F.s}$	$[S_{yt} = 2 \times S_{sy}]$		$d = \frac{d_c}{0.8} = 17.7 = 18$ mm
	ο 400 103 π	$S(12) 400$ _ Since	ce 1	1995
	$8.498 \times 10^{\circ} = -4$	$(d^2) \times \frac{1}{2 \times 3}$		II. Alls: (c) Sole Civen
	\therefore d = 12.74mn	n ≈ 13mm		n = 4. $P = 5 kN$. $L = 250 mm$
				$L_1 = 75 \text{ mm},$ $L_2 = 375 \text{ mm}$
10.	Ans: (a)			$S_{vt} = 380 \text{ N/mm}^2$,
Sol:	n = 4,	L = 550 mm		$F.S = 5$, $d_c = 0.8 d$
	P = 10 kN,	$L_2 = 325 \text{ mm}$		$P_{tA} = CL_2 = (Tensile)$
	$S_{yt} = 400 \text{ N/mm}$	$L_1 = 75 mm$		PL _
	FS = 6			$=\frac{1}{2(L_1^2+L_2^2)} \times L_2$
	$d_{c} = 0.8d$			5×250
	Using Rankine	theory		$=\frac{2125}{2(75^2+375^2)}\times 375 = 1.6 \text{ kN}$
	ace	India's Best Online Coaching Platfor	m for G	GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams
	a online	Enjoy a smooth onlin	e learni	ing experience in various languages at your convenience

$$P_{\text{shear}} = \frac{P}{4} = \frac{5}{4} = 1.25 \text{ kN}$$

Direct shear load,

$$P_{SA} = P_{SB} = \frac{P}{4} = 1.25 \text{ kN}$$

Bolts at 'A' is under maximum bending

Rankine Theory

$$\tau = \frac{P_{SA}}{A} = \frac{1.25 \times 10}{A}$$
$$\implies A = \frac{\pi}{4} d_c^2$$

$$\sigma_{t} = \frac{P_{tA}}{A} = \frac{1.6 \times 10^{3}}{A}$$

$$\sigma_1 = \frac{\sigma_t}{2} + \sqrt{\left(\frac{\sigma_t}{2}\right)^2}$$

$$\sigma_1 = \frac{1.6 \times 10^3}{2A} +$$

$$=\frac{2284.1}{A}N/mm^2$$

According to Rankine Theory

 $+ \tau_{xy}^2$

 1.6×10^{3}

 $+(1.25\times10^{3})^{2}$

$$\sigma_1 = \frac{S_{yt}}{FS}$$
$$\Rightarrow \frac{2284.1}{A} = \frac{380}{5}$$
$$\Rightarrow A = 30.05 \text{ mm}^2 = \frac{\pi}{4} \times d_c^2$$
$$\Rightarrow d_c = 6.186 \text{ mm}$$
$$\Rightarrow d = \frac{6.196}{0.8} = 7.732 \text{ mm}$$

 OCE
 Regular Live Doubt clearing Sessions
 Free Online Test Series | ASK an expert

 Affordable Fee |
 Available 1M | 3M | 6M | 12M | 18M and 24 Months Subscription Packages

GATE – Text Book Solutions

12. Ans: (a, c)

18

- Sol: In threaded joints following statements are true:
 - Pre loading decreases the stress fluctuations in bolt.
 - Pre loading increases the stress in bolt.
 - Soft gasket is more useful the stress in bolt than the hard gasket.
 - It increases fatigue life.
 - It decrease stress amplitude.

Image: Problem 10
 Mathine Design

 Mathine Design
 Image: Problem 10

 Mathine Design
 Image: Problem 10

 Output
 Welded Joints

 O1. Ans (b)
 Sol: Given:
$$s = 10 \text{ mm}$$
, $\tau = 80 \text{ MPa}$
 Permoves = 0.707 × S × l × $\frac{S_w}{FS}$

 P = 0.707 × S × l × τ
 Permoves = 0.707 × S × l × $\frac{S_w}{FS}$
 Image: Problem 10

 O2. Ans (b)
 Sol: Given: $t = 60 \text{ mm}$, $s = 10 \text{ mm}$, $\tau = 70 \text{ MPa}$
 Image: Problem 10

 P = 2 × 0.707 × S × l × $\frac{S_w}{FS}$
 Permoves = 0.707 × S × l × $\frac{S_w}{TS}$
 Image: Problem 10

 O3. Ans: (a)
 Sol: Given: $P = 340 \text{ kN} = 340000 \text{ N}$
 Image: Problem 10
 Permoves = 0.707 × S × l × $\frac{S_w}{TS}$

 O3. Ans: (a)
 Sol: Given: $P = 340 \text{ kN} = 340000 \text{ N}$
 Image: Problem 10
 Proble

 OCE
 India's Best Online Coaching Platform for GATE, ESE, P.

 ONLINE
 Enjoy a smooth online learning experient

Enjoy a smooth online learning experience in various languages at your convenience

$$\sigma_{l} = \sigma_{h} = \frac{pd}{4t} = \sigma_{1}$$
According to Rankine Theory
$$\sigma_{1} = \frac{S_{yt}}{FS}$$

$$\frac{pd}{4t} = 85$$

$$\Rightarrow \frac{p \times 15 \times 10^{3}}{4 \times 10} = 85$$

$$\Rightarrow p = 0.226 \text{ MPa}$$

07. Ans: (b)

Sol: Weld D_0 $D_1 = 205 \text{ mm},$ $D_2 = 200 \text{ mm}$ $D_0 = 210 \text{ mm},$ $\frac{S_{sy}}{FS} = 110 \text{ MPa}$ $s = \frac{210 - 205}{2} = 2.5 \text{ mm}$ $t = 0.707 \text{ s} = 0.707 \times 2.5 = 1.7675 \text{ mm}$ Force = Pressure × Area $= P \times \frac{\pi}{4} D_2^2 \dots (1)$ $F = \pi D_1 t \times \frac{S_{sy}}{FS} \dots (2)$

Equate (1) & (2)

$$P \times \frac{\pi}{4} D_2^2 = \pi D_1 t \frac{S_{sy}}{FS}$$

 $P = \frac{205 \times 4 \times 1.7675}{(200)^2} \times 110$
 $P = 3.9857 \text{ MPa}$
Linked questions (Q.08 &Q.09)
08. Ans: (a)
09. Ans: (a)
Sol: Given:
 $\tau = 75N / mm^2$, $s = 10 \text{ mm}$
 $P = 200 \text{ kN}$, $a = 145 \text{ mm}$
 $P = 200 \times 10^3 N$

$$l = \frac{200 \times 10^{3}}{75 \times 0.707(10)}$$

$$l = 377.18 \text{ mm}$$

$$l_{a} = \frac{l \times b}{a + b}$$

$$= \frac{377.18 \times 55}{(145 + 55)} = 103.72 \text{ mm}$$

 $\mathbf{P} = \tau \times 0.707 s \times l$

For calculating force carried by top weld $P = \tau \times 0.707 \times s \times \ell$

$$P = 1 \times 0.707 \times s \times \ell_{a}$$

= 75 × 0.707 × 10 × 103.7
= 54986.9 N
P = 54.9 kN ≈ 55 kN

A ace online

 Regular Live Doubt clearing Sessions
 |
 Free Online Test Series | ASK an expert

 Affordable Fee
 |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

b = 55mm

ace ace

Enjoy a smooth online learning experience in various languages at your convenience

		22	2	GATE – Text Book Solutions
	$R_{A} = 1.32 \text{ kN}$	1	05.	Ans: (a)
	$R_B = 2.2 \text{ kN} - 1.32 = 0.88 \text{ kN}$		So	l: $d = 150 \text{ mm} = 0.15 \text{ m}$
	Bearing pressure,			L = 225 mm = 0.225 mm
	$R_{\rm A} = 1.32 \times 10^3$			Load (W) = $9 \text{ kN} = 9000 \text{ N}$
	$P = \frac{A}{\ell d} = \frac{1.408 \text{ MPa}}{25 \times 1.5 \times 25} = 1.408 \text{ MPa}$			c = 0.075 mm,
				Diametral clearance
03.	Ans: (a)			$(C_d) = 2 \times 0.075 = 0.15 \text{ mm}$
Sol:	Given:			$= 0.15 \times 10^{-3} \text{ m}$
	$d = 75 \text{ mm}$, $N_1 = 300 \text{ rpm}$			N = 1000 rpm
	$p_1 = 1.4 \text{ MPa} = 1.4 \text{ N/mm}^2$			
	$\mu = 0.06 \text{ Pa-sec}$, $N_2 = 400 \text{ rpm}$			Heat dissipated by bearing =90 kJ/min
	$p_2 = ?$			$H = \frac{90}{60} kW = 1.5 kW$
	$\frac{\mu_1 N_1}{\mu_1 N_1} = \frac{\mu_2 N_2}{\mu_2 N_2}$			Heat generated at the bearing $= 1500 \text{ W}$
	p ₁ p ₂			$\pi dN = \pi \times 0.15 \times 1000$
	Since, same oil is used μ is same i.e. $\mu_1 = \mu_2$	2		$V = \frac{1}{60} = \frac{1}{60}$
	$\rightarrow \frac{N_1}{N_2} - \frac{N_2}{N_2}$			V = 7.85 m/sec,
	$\overrightarrow{p_1}$ $\overrightarrow{p_2}$			f = coefficient of friction
	300 _ 400			Load (W) = 9000N
	$\overline{1.4} - \overline{p_2}$			Heat generated = $f.V.W$
	- 400×1.4			1500 = f(7.85) (9000)
	$p_2 - \frac{1}{300}$			$f = \frac{1500}{2} = 0.021$
	p ₂ = 1.87 MPa			7.85×9000
				$\frac{d}{d} = \frac{150}{1000} = 1000$
04.	Ans: (b)			$C_d = 2 \times 0.075$
Sol:	Given: Eccentricity ratio, $\epsilon = 0.8$			Pressure $(p) = \frac{\text{Load}}{m}$
	$\epsilon = 1 - \frac{h_0}{h_0}$			$l \times d$
	с			$p = \frac{9000}{0.15 - 0.225} = 0.267 MPa$
	$\frac{h_0}{1} = 1 - 0.8$			0.15×0.225
	С			According to Mckee equation

 $\frac{h_0}{c} = 0.2$

ace online

 $f = 0.326 \left(\frac{\mu N}{p}\right) \left(\frac{d}{C_d}\right) + 0.002$

Regular Live Doubt clearing Sessions | Free Online Test Series | ASK an expert Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

A ace online

Enjoy a smooth online learning experience in various languages at your convenience

	ACE Engineering Publications	24	GATE – Text Book Solutions
10. Sol:	Heat generation = $0.01 \times 150 \times \pi \times d \times N$ = $0.01 \times 150 \times \pi \times 0.3 \times 1800$ = 2748.7 kJ/min Ans: (a) Given: $d_1 = 75 \text{ mm}$, $d_2 = 12 \text{ mm}$ $p = 0.6 \text{ MPa} = 0.6 \text{ N/mm}^2$ Area = $\frac{\pi}{4} (d_1^2 - d_2^2)$ $A = \frac{\pi}{4} (75^2 - 12^2)$ $A = 4304.77 \text{ mm}^2$ Axial load = $p \times A$		 12. Ans: (b, c) Sol: For a hydrodynamic bearing following statements are true: In counter-clockwise rotation of shaft at low speeds, the centre of shaft will shift to left side of bearing. In counter-clockwise rotation of shaft at high speeds, the centre of shaft will shift to right side of bearing. Note: Correct answer key is (b & c)
11. Sol:	$= 0.6 \times 4304.77 \text{ N}$ = 2582.862 N P = 2.58 kN Ans: (a) d = 60 mm = 0.06 m	C	ice Inline
	$N = 600 \text{ rpm}, \qquad P = 120 \text{ kPa}$ $\mu = 0.05$ For foot step bearing $T_f = \frac{2}{3}\mu \times F \times r$ $= \frac{2}{3} \times 0.05 \times 120 \times 10^3 \times \frac{\pi}{4} \times 0.06^2 \times 0.03$ $T_f = 0.339 \text{N-m}$ $P = \frac{2\pi \text{NT}_f}{60}$ $= \frac{2\pi \times 600 \times 0.339}{60} = 21.29 \text{ W}$		

A ace online

 Regular Live Doubt clearing Sessions
 |
 Free Online Test Series | ASK an expert

 Affordable Fee
 |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

ace online

	27 Machine Design
Resultant Radial load of shaft = $\sqrt{(3+1.5)^2 + 1^2}$ $R = 4.61 \text{ kN} = R_A + R_B$ Take $\sum M_B = 0$ $R_A \times 500 = R \times 300$ $R_A = \frac{4.61 \times 300}{500}$ $R_A = 2.766 \text{ kN},$ $R_B = 1.8436 \text{ kN}$ Equivalent load $P = [XVF_r + F_aY]$ $= (0.56 \times 1 \times 2.76) + (1.5 \times 2)$ P = 4.546 kN Dynamic load rating	27 Machine Design 27 Chapter 9 Clutch Design 01. Ans: (b) Sol: Given, W = 1000 N, n = 2 $r_1 = 150 \text{ mm} = 0.15 \text{ mm}$ $r_2 = 100 \text{ mm} = 0.1 \text{ mm}$ $\mu = 0.5$ Mean Radius (R) $= \frac{r_1 + r_2}{2}$ $= \frac{150 + 100}{2}$
L ₁₀ = $\left(\frac{C}{P}\right)^{K}$, [K = 3 For Ball bearing] L ₁₀ = $\frac{60 \times 400 \times 5000}{10^{6}}$ =120 million rev 120 = $\left(\frac{C}{4.55}\right)^{3}$ C = 22.44 kN	R = 125 mm Torque Transmitted, $T = n\mu WR$ (For both sides effective n = 2) $= 2 \times 0.5 \times 1000 \times 125$ $= 125000 \text{ N-mm}$ $T = 125 \text{ N-m}$
11. Ans: (b, d) Sol: $\frac{L_{95}}{L_{90}} = \left\{ \frac{\log_{e}(1/0.95)}{\log_{e}(1/0.9)} \right\}^{1/1.17}$	Linked Answer Questions (2 & 3) 02. Ans: (a)
L ₉₀ = L ₉₅ × 0.54 L ₉₀ = 0.54 × $\frac{5000 \times 60 \times 720}{10^6} = \left(\frac{C}{2000}\right)^{10/3}$ ∴ C = 8340.8 N Reliability of system, R _s = R ^N = (0.95) ³ = 85.73%	03. Ans: (a) Sol: $P = 10 \text{ kW}$ T = 100 N-m n = 2 $p_{max} = 0.085 \text{ MPa}$ $d_1 = 1.25d_2$
India's Best Online Coaching Platfor	rm for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams

Enjoy a smooth online learning experience in various languages at your convenience

ACE Engineering Publications		28	GATE – Text Book Solutions
$r_{1} = 1.25r_{2}$ $\mu = 0.3$ $T = \frac{\mu W(r_{1} + r_{2})}{2} \times n$ $= \frac{\mu 2\pi C(r_{1} - r_{2})(r_{1})}{2}$ [:: W = $2\pi C(r_{1} - r_{2})(r_{1})$ [:: W = $2\pi C(r_{1} - r_{2})(r_{1})$ [:: W = $2\pi C(r_{1} - r_{2})$ [:: W = $2\pi C(r_{1} - r_{2})$ [: W = $2\pi C(r_{1} - r_{2})$ [: $2\pi (0.085)(104)$ W = 1.44 kN 04. Ans: (c) Sol: Given, $\mu = 0.5$ $r_{1} = 150$ mm = 0.15 $r_{2} = 100$ mm = 0.1 n T = 0.4 kN-m = $400n_{1} + n_{2} = 5,n = No.$ of pairs of c $n = n_{1} + n_{2} - 1 = 5 - 1$ $R = \frac{r_{1} + r_{2}}{2} = \frac{0.15}{2}$ $T = n\mu W R$ 400 = 4(0.5) (W) 0.1	for uniform wear $\frac{+r_2}{-r_2} \times 2$ $r(r_1 - r_2), C = p_1r_1 = p_2r_2$ $r_2(r_1 - r_2), C = p_1r_1 = p_2r_2$ $r_1(r_1 - r_2), C = p_1r_1 = p_2$ $r_2(r_1 - r_2), C = p_1r_1 = p_2$ $r_1(r_1 - r_2), C = p_1r_1 = p_2$ $r_2(r_1 - r_2), C = p_1r_1 = p_2$ $r_2(r_1 - r_2), C = p_1r_1 = p_2$ $r_2(r_1 - r_2), C = p_1$ $r_2(r_1 - r_2), C = p_1$ $r_2(r_1 - $		GATE – Text Book Solutions $\therefore \text{ Four springs exert axial load,} \\ \text{Load per spring} = \frac{1600}{4} = 400 \text{ N}$ Linked Answer Question (05 & 06) 05. Ans: (b) Sol: N = 1000 rpm, $2\alpha = 24^0 \Rightarrow \alpha = 12^0$ $\mu = 0.2$, $r_m = 150 \text{ mm}$, P = 20 kW $p = 70 \text{ kN/m}^2$ $T = \frac{60P}{2\pi N} = \mu W_n r_m = \mu W_n \left(\frac{r_1 + r_2}{2}\right)$ $T = \frac{60(20) \times 1000}{2\pi (1000)} = 191 \text{ N-m}$ $191 \times 10^3 \text{ N-mm} = 0.2 \times W_n \times 150$ $W_n = 6366.19 \text{ N}$ [: $W_a = W_n \sin \alpha$] $W_a = 1323.60 \text{ N}$ Force required for engagement} $W_{ac} = W_a + \mu W_n \cos \alpha$ $= 1323.60 + [0.2 \times 6366.19 \times \cos 12]$ $W_{ac} = 2.56 \text{ kN}$
W - 1000 IN	1		,
ace	Regular Live Doubt Affordable Fee Availa	clearin Ible 1M	ng Sessions Free Online Test Series ASK an expert 3M 6M 12M 18M and 24 Months Subscription Packages

06. Ans: (b) Sol: $W_n = p \times 2\pi r_m \times b$ $6366.19 = 70 \times 10^3 \times 2 \times \pi \times 0.15 \times b$ $\Rightarrow b = 0.0964 \text{ m} = 96.4 \text{ mm}$ Common Data for Q. 07& 08 07. Ans: (c) 08. Ans: (a) Sol: Given : $d_1 = 120 \text{ mm}, \quad d_2 = 200 \text{ mm}$

 $d_{1} = 120 \text{ mm}, \quad d_{2} = 200 \text{ mm}$ $I = 20 \text{ kg-m}^{2}, \quad t = 5 \text{ sec}, \quad \mu = 0.3$ $N_{1} = 200 \text{ rpm},$ $\omega_{1} = \frac{2\pi N}{60} = \frac{2 \times \pi \times 200}{60} = 20.95 \text{ rad/s}$ $\omega_{2} = 0$ $\alpha = \frac{\omega_{1} - \omega_{2}}{t} = \frac{20.95}{5} = 4.18 \text{ rad/s}^{2}$

Torque T = I
$$\alpha$$
 = 20 × 4.18 = 83.6 N-m

For uniform pressure,

$$T = \frac{2}{3} \mu W \left[\frac{r_1^3 - r_2^3}{r_1^2 - r_2^2} \right] \times n$$
Since
$$83.6 \times 10^3 = \frac{2}{3} \times 0.3 \times W \left[\frac{100^3 - 60^3}{100^2 - 60^2} \right] \times 2$$

$$W = 1706.12 \text{ N}$$

09. Ans: (d)

Sol: Given,

 $\label{eq:mean} \begin{array}{ll} n=4, & P=21 \ kW \\ N=750 \ rpm, & \omega_1=0.75 \ \omega_2 \\ R=300 \ mm, & r=125 \ mm, & \mu=0.25 \end{array}$

$$T = \frac{60P}{2\pi N} = 318.3 \text{ N} - \text{m}$$

$$\omega_2 = \frac{2\pi N}{60} = 78.5 \text{ rad/s}$$

$$318.3 = n \times \mu \times \text{mr} (\omega_2^2 - \omega_1^2) \times \text{R}$$

$$318.3 = 4 \times 0.25 \times \text{m} \times 0.125 \left(1 - \frac{9}{16}\right) \times 78.5^2 \times 0.15$$

$$m = 6.3 \text{ kg}$$

10. Ans: 157 mm & 135.22 mm

29

- Sol: Centrifugal force between each shoe and drum $F = mr(\omega_2^2 - \omega_1^2)$ F = 2123.08 N $Area = \frac{F}{0.1} = 21230.87 \text{ mm}^2$ width×arc length = $w \times \frac{\pi}{3} \times 150 = 21230.87$ w = 135.22 mmLength = $\frac{\pi}{3} \times 150 = 157 \text{ mm}$ Uength = 157 mm Width = 135.22 mm 11. Ans: (a, c) Sol:
 - A new clutch designed based upon uniform wear theory will not slip in working.
 - An old clutch designed based upon uniform pressure theory will slip in working.

 India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams

 Enjoy a smooth online learning experience in various languages at your convenience

Machine Design

A ace online

Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

Engineering Publications		31	Machine Design
$\frac{T_{1}}{T_{2}} = \frac{12880}{6880} = \frac{12880}{6880} = \frac{12880}{6880} = \frac{12880}{6880} = \frac{12880}{6880} = \frac{12880}{6880} = \frac{1280}{6880} = \frac{1280}{680} = \frac{1280}{680} = \frac{1280}{680} = \frac{1280}$	$e^{\mu \times \theta}$ $= e^{\mu \times \pi}$ $= 0.199 = 0.2$ $4ll \text{ dimensions}$ $T_{1} \text{ in 'mm'}$ 100		Here when the drum rotates in anti clockwise direction. T ₁ will be attached to B and T ₂ will be attached to A. i.e. tight side and slack side tensions will be changed. Taking moments about "O" $220 \times 200 + T_2 \times 50 = T_1 \times 100 \dots (2)$ By solving 1 & 2 $T_2 = 146.17 \text{ N}, T_1 = 513 \text{ N}$ Torque = $(T_1 - T_2) \times r$ = $(513 - 146.17) \times 75 \times 10^{-3}$ = 27.5N-m <i>inked Answer Questions 06 & 07</i>
We know that $ln\left(\frac{T_1}{T_2}\right) = \mu \theta$ Here, $\mu = 0.4$, $ln\left(\frac{T_1}{T_2}\right) = 0.4$ $ln\left(\frac{T_1}{T_2}\right) = 0.4$ (or) $\left(\frac{T_1}{T_2}\right) = 0.4$ $\left(\frac{T_1}{T_2}\right) = 0.4$ $\left(\frac{T_1}{T_2}\right) = 0.4$ $\left(\frac{T_1}{T_2}\right) = 0.4$, as given $\times \pi$ 546 $4 \times \pi$) 51(1)		6. Ans: (b) ol: d = 250 mm $\rho = 7200 \text{ kg/m}^3$ t = 20 mm $\tau = 0.40 \text{ sec}$ N = 500 rpm Energy absorbed by brake $E = \frac{1}{2} I (\omega_2^2 - \omega_1^2)$ $I = mK^2 = \rho At (\frac{d}{2\sqrt{2}})^2$ $I = 7200 \times \frac{\pi}{4} (0.25)^2 (0.02) (\frac{0.250}{2\sqrt{2}})^2$ $= 0.055 \text{ kgm}^2$ N ₂ = 0 \rightarrow Stop $\Rightarrow E = \frac{1}{2} (0.05) (\frac{2\pi \times 500}{60})^2 = 75 \text{ J}$
A ace online	India's Best Online Coaching Platfor Enjoy a smooth onlin	ا m for GA' e learning	TE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams g experience in various languages at your convenience

	ACE Engineering Publications	32		GATE – Text Book Solutions		
07.	Ans: (d)		Com	mon Data Question (10 & 11)		
Sol:	Energy absorbed, $E = T \times \theta$		10.	Ans: (a)		
	$75 = T \times \left(\frac{\omega_1 + \omega_2}{2}\right) \times t$	1	11.	Ans: (b)		
	$75 = T \times \left(\frac{\frac{2\pi \times 500}{60} + 0}{2}\right) \times 0.4$ $\Rightarrow T = 7.16 \text{ Nm}$	S	Sol:	Given d = 320 mm = 0.32 m r = 160 mm = 0.16 m $\mu = 0.3$ F = 600 N		
Linked Answer Question (08 & 09)				Taking moments about 'O' $600(400+350) - F_t(200-160) = R_N(350)$		
08. Sol:	Ans: (c) $T = 800 \text{ N-m}, r = 0.5 \text{ m}$ $T = (T_1 - T_2) \times r$ $\Rightarrow T_1 - T_2 = \frac{800}{0.5}$ $T_1 - T_2 = 1600 \text{ N}$ But, $T_2 = 300 \text{ N}$ $T_1 = 1900 \text{ N}$ $\frac{T_1}{T_2} = e^{\mu\theta} \Rightarrow \frac{1900}{300} = e^{0.45 \times \theta}$ $\theta = 235^{\circ}$	C		$600(750) - F_t(40) = R_N(350)$ $450000 - \mu R_N(40) = R_N(350) (\because F_t = \mu R_N)$ $450000 - R_N(12) = R_N(350)$ $R_N(350) + R_N(12) = 45000$ $R_N = \frac{450000}{362}$ $R_N = 1243 \text{ N}$ For calculating breaking torque (T_B) $F_t = \mu R_N$ $F_t = 0.3 \times 1243$ $F_t = -372.9 \text{ N}$		
09. Sol:	Ans: (c) $P_{max} = \frac{T_1}{r.W} = \frac{1900}{0.5 \times 0.03}$ $P_{max} = 126.67 \text{ kPa}$			$T_{\rm B} = F_{\rm t} \times r = 372.9 \times 0.16 = 59.664$ $T_{\rm B} = 60 \text{ Nm}$		

Engineering Publications	34 GATE – Text Book Solutions				
$\Rightarrow \frac{20 \times 10^{3}}{\left(\frac{\pi d_{p} \times 300}{20}\right)} = 80 \times 10^{6} \times (14m)m \times 0.094 \times 1 \times \pi$	Linked Answer Questions 09 to 11				
$\left(60 \times 1000\right)$	Sol. $D = 500 \text{ kW}$ $N = 1800 \text{ mm}$				
$(\because d_p = mT_p)$ $\Rightarrow \frac{20 \times 10^6 \times 60}{\pi \times 18 \times m \times 300} = 80 \times 14 \times 0.094 \times \pi \times m^2 \times 10^6$ $\Rightarrow m = 5.98 \approx 6$	Sol: $P = 300 \text{ kW}$, $N_P = 1800 \text{ rpm}$, $C = 660 \text{ mm}$, $\phi = 22 \frac{1}{2}$, $m = 8 \text{ mm}$ $\frac{T_G}{T_P} = 10:1$; $F_n = 200 \text{ N/mm}$				
Linked Answer Questions 07 & 08	$C = \frac{m(I_G + I_P)}{2}$				
07. Ans: (b)	$660 = \frac{8(T_{\rm P} + 10T_{\rm P})}{2}$				
08. Ans: (a)	$T_P = 15$ and $T_G = 150$				
Sol: $P = 11 \text{ kW}$, $N_P = 1440 \text{ rpm}$	$d_p = mT_p = 8(15) = 120 mm$				
$\phi = 14\frac{1}{2}$, m = 6 mm	F_r on bearing =?, F_t =?, w =?				
$T_P = 25$, $y = 0.1$, $C_v = 0.21$	$F_{t} = \frac{P}{V} = \frac{500(kW)}{\pi d_{p}N_{p}}$				
$\frac{T_G}{T_p} = \frac{N_P}{N_G} = 3:1$ $T_{max} = 1.5 T_{mean}$ $S = 210 \text{ MPa}$	$ = \frac{\frac{1}{60}}{\pi \left(\frac{120}{1000} \mathrm{m}\right) \times \left(\frac{1800}{60}\right) \frac{1}{\mathrm{sec}}} $				
$F_t = ?$, $w = ?$	$F_t = 44.2 \text{ kN}$				
$F_t = \frac{P}{V}C_s$ $\left(\because V = \frac{\pi dN}{60}\right) (d = mT)$	10. Ans: (c)				
$F_{t} = \frac{\frac{11 \times 10^{3}}{\pi (6 \times 25) \times 1440} \times 1.5}{\frac{\pi (6 \times 25) \times 1440}{60 \times 1000}}$	Sol: $F_r = F_t \tan \phi = 44.2 \tan (22.5) = 18.3 \text{ kN}$ $F_n = \frac{F_t}{\cos \phi} = \frac{44.2}{\cos 22.5} = 47.85 \text{ kN}$				
$F_t = 1.46 \text{ kN}$	11. Ans: (d)				
$F_t = S w m y C_v$ 1.46× 10 ³ = 210 × w × 6 × 0.1π × 0.21 \Rightarrow w = 18 mm	Sol: 200 N \rightarrow 1 mm width 47.85 kN \rightarrow ? w = $\frac{47.85 \times 10^3}{200}$ = 240 mm				

 Regular Live Doubt clearing Sessions
 |
 Free Online Test Series | ASK an expert

 Affordable Fee
 |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

12.	Ans: (c)	Chapter		
Sol:	$S_{teel} = 120 \text{ MPa} \rightarrow \text{ for pinion}$	12 Springs		
	$S_{CI} = 100 \text{ MPa} \rightarrow \text{for gear}$			
	Form factors	01. Ans: (d)		
	For gear, for pinion $(y_{CI})_g = 0.13$	Sol: Let, $n = no.$ of active coils of spring		
	Form factors	$-Gd^4$		
	$(y_{\text{steel}})_p = 0.093$	$k = \frac{1}{8D^3n}$		
	$S_{steel} \times y_{steel} = 120 \times 0.093 = 11.16$	For a given spring G, d, D are constant		
	$S_{CI} \times y_{CI} = 100 \times 0.13 = 13$			
	$\therefore S_{steel} \times y_{steel} < S_{CI} \times y_{CI} \qquad \qquad$	R N G		
	\therefore (Strength) _{pinion} < (Strength) _{gear}	$k_2 n_1$		
	So Pinion is weaker than gear.	$\overline{\mathbf{k}_1} - \overline{\mathbf{n}_2}$		
	A	1 - 2 n		
13.	Ans: (b)	$\mathbf{K}_2 = \frac{1}{n_3} \times \mathbf{K}_1$		
Sale	Civer: $\mathbf{C} \mathbf{P} = \mathbf{T}_{\mathbf{G}} = 2$	\Rightarrow $k_1 = 3 k_2$		
501.	Given. $G.K = \frac{1}{T_p} = 2$	\rightarrow $K_2 - 3 K$		
	w = 10 cm = 100 mm	07 Ans: 668 4 MPa		
	$d_p = 40 \ cm = 400 \ mm$	Sol: Given $C = 10$		
	Stress factor for fatigue = $1.5 \text{ N/mm}^2 = \text{K}$	k = direct shear stress factor		
	$2T_{G}$ 2(2T _P) 4	K_s uncet shear stress factor		
	$Q = \frac{1}{T_{G} + T_{P}} = \frac{1}{2T_{P} + T_{P}} = \frac{1}{3}$ Since	$=1+\frac{1}{2C}$		
	$F_w = Kd_pwQ$			
	$F = (1.5)(400)(100)^{4} = 80 \times 10^{3} = 80 \text{ km}$	$=1+\frac{1}{20}=\frac{1}{20}$		
	$F_w = (1.5)(400)(100)\frac{1}{3} = 80 \times 10^{-1} = 80 \text{ km}$	$8F \times D$ 21 8×3600 10		
14		$\tau_{\max} = \kappa_s \frac{\pi d^3}{\pi d^3} = \frac{1}{20} \times \frac{1}{4 \times (36\pi)} \times 10$		
14. Scl.	Aus: (0, c)	$\tau_{\rm max} = 668.45 \text{ MPa}$		
501:	In a simple stars, and a bestime restart of			
•	in a single stage gear reduction system, the	03. Ans: (b)		
	gear teeth are subjected to repeated loading.	Sale Wine of aming experiences direct sheet		

Sol: Wire of spring experiences direct shear load and twisting moment due to axial load which passes through the axis of spring.

 OCE
 India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams

 Enjoy a smooth online learning experience in various languages at your convenience

The teeth of idler gear are subjected to

•

reversed loading.

	ACE Engineering Publications	3	6		GATE	– Text Book S	olutions
04. Sol: 05. Sol: 06. Sol:	Ans: 10 Given, $\frac{\tau_{max}}{\delta} = \frac{10}{\pi}$ $\frac{8FD}{\pi d^3}_{G d^4} = \frac{10}{\pi}$ $\frac{G \times d}{\pi D^2 n} = \frac{10}{\pi}$ $\frac{80 \times 10^3 \times 8}{800\pi \times D} = \frac{10}{\pi}$ $D = 80 \text{ mm}$ $\Rightarrow \ell = \pi D \text{ n} = 800 \pi$ $\Rightarrow n = 10$ Ans: (b) $\delta = \frac{F}{k_{eq}} = \frac{F}{3k + 5k} =$ Ans: 300 $\delta = \frac{3}{8} \frac{WL^3}{n \text{ b } t^3 \text{ E}}$ $15 = \frac{3}{8} \times \frac{3600 \times 1}{6 \times b \times 12^3 \times 2}$ $\Rightarrow b = 253.125 \text{ mm}$	$\frac{F}{8k}$		Chapter 13 Ans: (a) Ans: (a) brittle Rankin Ans: (a) Ans: (a) brittle Rankin Ans: (a) Ans: (a)	GATE GATE C) S designed again the stheory. a) ow that, $\frac{T}{J} = \frac{1}{2}$ $= \frac{\pi d^4}{32}$ for some $x = \frac{16T}{\pi d^3}$ a) <i>elent Torque</i> and the state of the sta	- Text Book S Shafts ainst bending. nst bending is $\frac{\tau}{r}$ plid circular sha d r = d/2 It is the acting along to stress due to n. $\frac{\tau}{r} + T^2}$	olutions Design of based on aft twisting o produce combined
	$\Rightarrow b = 253.125 \text{ mm}$ $\sigma = \frac{3 \text{ W L}}{2 \text{ n b } \text{t}^2}$ $37.5 = \frac{3 \times 3600 \times 1800}{2 \times 6 \times \text{ b} \times 12^2}$ $\Rightarrow b = 300$ Safe width = 300 mm	S	Ans: (a) bl: We known here, J shaft a $\Rightarrow \tau =$	(a) ow that, $\frac{T}{J} = \frac{1}{2}$ $J = \frac{\pi (D^4 - d)}{32}$ and $r = D/2$ $\frac{16T}{\pi D^3 (1 - k^4)}$	$\frac{\tau}{r}$ $\frac{l^4}{d}$ for hollow (where k = d)	v circular I/D)	
		Regular Live Doubt clea	 aring	Sessions F	ree Online Test S	Series ASK an expe	ert

A dce online Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

05. Ans: (a)

Sol: For a solid shaft, $\tau_{max} = \tau = \frac{16T}{\pi D^3}$

For a hollow shaft,

$$\tau_{max} = \frac{16T}{\pi D^3 (1 - k^4)} = \frac{\tau}{(1 - k^4)}$$

here, $k = d_i/d_o = 0.5$
 $\Rightarrow \tau_{max} = 1.067 \tau$

06. Ans: (d)

Sol: Equivalent Bending Moment: The bending moment is to produce the maximum bending stress equal to greater principle stress ' σ_1 '.

$$M_{e} = \frac{1}{2} \left(M + \sqrt{T^{2} + M^{2}} \right)$$
$$= \frac{1}{2} \left(40 + \sqrt{30^{2} + 40^{2}} \right)$$
$$= 45 \text{ kN-m}$$

07. Ans: (d)

Sol: Equivalent twisting moment,

$$T_{e} = \sqrt{(k_{b}M_{b})^{2} + (k_{t}M_{t})^{2}}$$
$$= \sqrt{(1.5 \times 0.5)^{2} + (2 \times 1)^{2}} = 2.136 \text{ N-m}$$

08. Ans: (c)

Sol: According to ASME code for shaft design under static load, the design stress must be least of 0.3 S_{yt} and 0.18 S_{ut} .

09. Ans: (d)

37

Sol: In general, axles are not rotating member but it supports the transverse loads like bearing reactions which causes bending moment and does not transmit any useful torque. Thus, axles are designed for bending moment.

Shafts are subjected to torque as well as bending. Thus, they are designed for bending as well as torsion.

10. Ans: (c)

Sol: A transmission shaft subjected to bending should be designed to resist torsional aas well as bending moment both. Thus, equivalent torsional moment and equivalent bending moment is used for designing the shaft which are based on Guest's and Rankine's theory, respectively.

Ans: (c)
 Sol: Given data:

Since

$$d_{A} = 2d_{B}$$
Power, 'P' = $\frac{2\pi NT}{60}$
Torque, 'T' = $\frac{\pi}{16} d^{3}\tau$

 $\therefore P \propto d^{3}$

 $\therefore \frac{P_{A}}{P_{B}} = \left(\frac{d_{A}}{d_{B}}\right)^{3}$

 $\therefore \frac{P_{A}}{P_{B}} = \frac{d_{A}^{3}}{8d_{A}^{3}}$ (:: $d_{B} = 2d_{A}$)

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

$$\therefore \frac{P_{A}}{P_{B}} = \frac{1}{8}$$

12. Ans: (a)

Sol: When a transmission shaft transmits load through spur gear, along with the torsion, shaft is also subjected to radial and tangential load which are transmitted through spur gear.

13. Ans: (c)

- Sol: The resultant force acting on a tooth of helical gear is resolved into three components.
 - Tangential component
 - Radial component
 - Axial (or) thrust component

14. Ans: (a)

15. Ans: (d)

Sol: Shaft is generally made of ductile materials. For ductile materials maximum shear stress (Tresca) and distortion energy (von-Mises) theories can be used. Out of these two theories von-Mises theory is best suitable for ductile materials. Rankine's theory or principal stress theory is suitable for brittle materials only.

16. Ans: (b)

Sol: The term 'transmission shaft' usually refers to a rotating machine element. Thus, shaft in power transmission is inherently subjected to torsional moment.

17. Ans: (b)

Sol:

• Bending stress $\sigma_b = \frac{M}{I}.y$ and

Torsional shear stress $\tau_{xy} = \frac{T}{J}.r$

where, y = distance from neutral axis and

r = radial distance from centre of shaft.

- As the shaft rotates, the radial distance of any point from centre of the shaft does not change, so the torsional stress would remain constant.
- As the shaft rotates, the distance of any point from the neutral axis does change with the rotation of the shaft; so the bending stress will also change.
- Hence the shaft experiences varying bending stress and constant torsional stress.

18. Ans: (a, b, d)

Sol: Shaft Load: Bending moment & Twisting moment

$$\therefore \quad \sigma_{\max} = \frac{32M}{\pi d^3}, \sigma_{xy} = \frac{16T}{\pi d^3}, \ \sigma_y = 0$$
$$\therefore \quad \sigma_{\max} = \frac{16}{\pi d^3} \left(M + \sqrt{M^2 + T^2} \right) \dots \dots \dots (i)$$

$$\sigma_{\rm max} = \frac{16}{\pi d^3} \sqrt{(M^2 + T^2)}$$
 (ii)

39

Since 1995

$$\sigma_{\rm vm} = \sqrt{\sigma_{\rm x}^2 + 3 \times \sigma_{\rm xy}^2}$$
$$= \sqrt{\left\{\frac{32M}{\pi d^3}\right\}^2 + 3 \times \left\{\frac{16T}{\pi d^3}\right\}^2} \quad \dots \dots \dots (iii)$$

Equivalent bending moment (M_e) :

$$\therefore \sigma_{x} = \frac{32M_{e}}{\pi d^{3}}, \sigma_{y} = 0 = \tau_{xy}$$

$$\therefore \sigma_{max} = -\frac{\sigma_{x}}{x} = \frac{16M_{e}}{\pi d^{3}} \qquad \dots \dots (iv)$$

$$\& \sigma_{vm} = \sigma_{x} = \frac{32M_{e}}{\pi d^{3}} \qquad \dots \dots (v)$$

As per shear stress theory, comparing ii & iv

$$\tau_{\text{max}} = \frac{16}{\pi d^3} \cdot \sqrt{M^2 + T^2} = \frac{16M_e}{\pi d^3}$$
$$\therefore \quad M_e = \sqrt{M^2 + T^2}$$

As per direction energy theory: from iii & v $\sigma_{vm} = \left\{ \left(\frac{32M}{\pi d^3} \right)^2 + 3 \times \left(\frac{16T}{\pi d^3} \right)^2 \right\}^{1/2} = \frac{32M}{\pi d^3}$ $\therefore M_e = \sqrt{M^2 + \frac{3}{4} \times T^2}$

Equivalent torsional moment (T_e) :

$$\therefore \ \sigma_{x} = 0 = \sigma_{y} \quad \& \quad \sigma_{xy} = \frac{16T_{e}}{\pi d^{3}}$$
$$\therefore \ \sigma_{max} = \sigma_{xy} = \frac{16T_{e}}{\pi d^{3}} \dots \dots (vi)$$

As per Normal stress theory, from (vi) & (i)

$$\sigma_{\text{max}} = \frac{16}{\pi d^3} \times \left(M + \sqrt{M^2 + T^2} \right) = \frac{16T_e}{\pi d^3}$$

$$\therefore T_e = M + \sqrt{M^2 + T^2}$$

A ace online India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience