GATE | PSUs

MACHINE DESIGN

Text Book :

Theory with worked out Examples and Practice Questions

Machine Design

(Solutions for Text Book Practice Questions)

Chapter
 1
 Static Loads

1. Ans: (d)

Sol: $\mathrm{t}=0.2 \mathrm{~mm}, \mathrm{~d}=25 \mathrm{~mm}$,
$\mathrm{E}=100 \mathrm{GPa}$
$\frac{M}{I}=\frac{E}{R}=\frac{\sigma_{b}}{y}$
$\sigma_{b}=\frac{100 \times 10^{3} \times\left(\frac{0.2}{2}\right)}{\left(\frac{25}{2}\right)}=800 \mathrm{MPa}$
02. Ans: (b)

Sol:

$\mathrm{T}=\mathrm{T}_{1}+\mathrm{T}_{2}$
$\theta=\theta_{1}=\theta_{2}$
$\frac{\mathrm{T}_{1} l_{1}}{\mathrm{GJ}_{1}}=\frac{\mathrm{T}_{2} l_{2}}{\mathrm{GJ}_{2}}$
$\mathrm{T}_{1}=\frac{7358 \times 1}{1.5}=4905.33 \mathrm{Nm}$
$\mathrm{T}_{2}=\frac{7358 \times 0.5}{1.5}=2452.66 \mathrm{Nm}$
Maximum shear stress
$\tau=\frac{16 \mathrm{~T}_{1}}{\pi \mathrm{~d}^{3}}=\frac{16 \times 4905.33 \times 10^{3}}{\pi \times 80^{3}}=48.8 \mathrm{MPa}$
03. Ans: (a)

Sol: $\quad \mathrm{G}=0.8 \times 10^{5} \mathrm{MPa}$

$$
\begin{aligned}
\frac{\mathrm{T}_{1}}{\mathrm{~J}_{1}} & =\frac{\mathrm{G} \theta_{1}}{l_{1}} \\
\theta_{1} & =\frac{4905.33 \times 10^{3} \times 0.5 \times 10^{3}}{\frac{\pi}{32} \times 80^{4} \times 0.8 \times 10^{5}} \\
& =7.62 \times 10^{-3} \text { radian } \\
& =7.62 \times 10^{-3} \times \frac{180}{\pi}=0.436 \text { degrees }
\end{aligned}
$$

4. Ans: (b)

Sol:

$\mathrm{P}=120 \mathrm{kN}, \quad \mathrm{t}=13 \mathrm{~mm}$

$$
\frac{120 \times 10^{3}}{(\mathrm{~b}-\mathrm{d}) \mathrm{t}}=75 \mathrm{MPa}
$$

$$
\frac{120 \times 10^{3}}{(b-22) \times 13}=75
$$

$$
\Rightarrow \quad b=145 \mathrm{~mm}
$$

5. Ans: (b)

Sol: Force applied on the bar $=95 \times 100 \times \mathrm{t}$ N
Maximum stress induced

$$
\begin{aligned}
& =\frac{\text { Force }}{\text { Minimum area }} \\
& =\frac{95 \times 100 \times \mathrm{t}}{(100-5) \times \mathrm{t}}=100 \mathrm{MPa}
\end{aligned}
$$

06. Ans: (\mathbf{a}, b)

Sol: In each case the loading on all sections is same, hence all sections are critical.
In each case, point A is critical.
In case 1,
At point $\mathrm{A}, \quad \sigma_{\mathrm{x}}=\sigma_{\text {axial }}+\sigma_{\text {bending }}$
At point $B, \quad \sigma_{x}=\sigma_{\text {axial }}-\sigma_{\text {bending }}$
Hence point B is not critical here.
In case 4, Pure shear,

$$
\sigma_{\max }=\frac{16 \mathrm{~T}}{\pi \mathrm{~d}^{3}} \& \tau_{\max }=\frac{16 \mathrm{~T}}{\pi \mathrm{~d}^{3}}
$$

In each other case; the maximum normal stress is more than the maximum shear stress.

Chapter
 2

Theories of Failure

1. Ans: (c)

Sol: $\sigma=60 \mathrm{MPa}, \tau=40 \mathrm{MPa}$,
$\mathrm{S}_{\mathrm{yt}}=330 \mathrm{MPa}$
According to maximum principal theory

$$
\begin{aligned}
\sigma_{1} & =\frac{\mathrm{S}_{\mathrm{yt}}}{\mathrm{~F} \cdot \mathrm{~S}} \\
\sigma_{1} & =\frac{60+0}{2}+\sqrt{\left(\frac{60-0}{2}\right)^{2}+(40)^{2}} \\
& =30+50=80 \mathrm{MPa}
\end{aligned}
$$

$$
80=\frac{330}{\mathrm{~F} . S} \Rightarrow \mathrm{~F} . \mathrm{S}=4.125
$$

2. Ans: (c)

Sol: Given $\sigma=\left[\begin{array}{cc}40 & 0 \\ 0 & -30\end{array}\right]$

$$
\sigma_{1}=40, \quad \sigma_{2}=-30, \quad \sigma_{y t}=350 \mathrm{MPa}
$$

Max shear stress theory

$$
\begin{aligned}
& \tau_{\max }=\frac{\sigma_{1}-\sigma_{2}}{2}=\frac{\mathrm{S}_{\mathrm{sy}}}{\mathrm{FOS}}=\frac{\mathrm{S}_{\mathrm{yt}}}{2 \times \mathrm{FS}} \\
\Rightarrow & \frac{40+30}{2}=\frac{350}{2 \times \mathrm{FS}} \\
\Rightarrow & \mathrm{FS}=\frac{350}{70}=5
\end{aligned}
$$

03. Ans: (b)

Sol: $\mathrm{F}_{\mathrm{t}}=48 \mathrm{kN}$; $\quad \mathrm{S}_{\mathrm{yt}}=200 \mathrm{MPa}$
$\mathrm{F}_{\mathrm{S}}=18 \mathrm{kN}, \quad \mathrm{A}=600 \mathrm{~mm}^{2}, \quad \mathrm{FS}=$?

(L) ACE	3	Machine Design

Since bolts are made of ductile material, so we can use maximum shear stress theory
$\sigma=\frac{48 \times 10^{3}}{600}=80 \mathrm{MPa}$
$\tau=\frac{18 \times 10^{3}}{600}=30 \mathrm{MPa}$
$\tau_{\max }=\sqrt{\left(\frac{\sigma}{2}\right)^{2}+\tau^{2}}=\sqrt{\left(\frac{80}{2}\right)^{2}+30^{2}}$
$=50 \mathrm{MPa}$

According to maximum shear stress theory

$$
\begin{aligned}
\tau_{\max } & =\frac{\mathrm{S}_{\mathrm{sy}}}{\mathrm{~F} . S} \\
\tau_{\max } & =\frac{\mathrm{S}_{\mathrm{yt}}}{2 \times \mathrm{F} . \mathrm{S}} \\
50 & =\frac{200}{2 \times \mathrm{F} . \mathrm{S}} \Rightarrow \mathrm{~F} . \mathrm{S}=2
\end{aligned}
$$

04. Ans: (d)

Sol: Given thin cylindrical shell

$$
\begin{aligned}
\mathrm{d}_{\mathrm{i}} & =4.6 \mathrm{~m}, \quad \mathrm{p}=0.210 \mathrm{MPa} \\
\mathrm{t} & =16 \mathrm{~mm}, \quad \mathrm{~S}_{\mathrm{yt}}=260 \mathrm{MPa} \\
\mathrm{~F}_{\mathrm{s}} & =? \\
\sigma_{\mathrm{h}} & =\frac{\mathrm{pd}}{2 \mathrm{t}}=\frac{0.21 \times 4.6 \times 10^{3}}{2 \times 16} \\
\sigma_{l} & =\frac{\mathrm{pd}}{4 \mathrm{t}}=\frac{0.21 \times 4.6 \times 10^{3}}{4 \times 16}=15.09 \mathrm{MPa} \\
\sigma_{\mathrm{h}} & =\sigma_{1}=30.18 \mathrm{MPa} \\
\sigma_{\mathrm{t}} & =\sigma_{2}=15.08 \mathrm{MPa} \\
\sigma_{3} & =0
\end{aligned}
$$

$$
\begin{gathered}
\tau_{\max }=\text { Max.of }\left\{\begin{array}{r}
\left|\frac{\sigma_{1}-\sigma_{2}}{2}\right| \\
\left|\frac{\sigma_{1}}{2}\right| \\
\left|\frac{\sigma_{2}}{2}\right|
\end{array}\right. \\
\left|\frac{30.18-15.08}{2}\right|=7.55
\end{gathered}
$$

$$
\text { i.e., } \quad\left|\frac{30.18-0}{2}\right|=15.09
$$

$$
\left|\frac{15.08}{2}\right|=7 . .54
$$

$$
\tau_{\max }=15.09
$$

According max shear stress theory
$15.09=\frac{\mathrm{S}_{\mathrm{sy}}}{\mathrm{F} . \mathrm{S}}$
$15.09=\frac{S_{y}}{2 \times \mathrm{FS}}$

$$
\mathrm{FS}=\frac{260}{2 \times 15.09}=8.615
$$

5. Ans: (c)

Sol: $\sigma_{\mathrm{t}}=200 \mathrm{MPa}=\sigma_{1}$
$\sigma_{\mathrm{c}}=-100 \mathrm{MPa}=\sigma_{2}$
$\mathrm{S}_{\mathrm{yt}}=500 \mathrm{MPa}$
Tresca theory

$$
\begin{aligned}
& \tau_{\max }=\frac{\sigma_{1}-\sigma_{2}}{2}=\frac{\mathrm{S}_{\mathrm{yt}}}{2 \times \mathrm{FS}} \\
& \frac{200-(-100)}{2}=\frac{500}{2 \times \mathrm{FS}} \\
& \mathrm{FS}=1.666=1.67
\end{aligned}
$$

$\dot{D}^{\prime \prime} \mathrm{ACD}$	4	GATE - Text Book Solutions

6. Ans: (b)

Sol: $\sigma_{\mathrm{b}}=55 \mathrm{MPa}, \tau=31.5 \mathrm{MPa}, \mathrm{S}_{\mathrm{yt}}=284 \mathrm{MPa}$

$$
\begin{aligned}
& \tau_{\max }=\frac{\mathrm{S}_{\mathrm{sy}}}{\mathrm{FS}} \\
& \tau_{\max }=\frac{\mathrm{S}_{\mathrm{yt}}}{2 \times \mathrm{FS}}
\end{aligned}
$$

But $\tau_{\max }=\sqrt{\left(\frac{\sigma_{\mathrm{b}}}{2}\right)^{2}+\tau^{2}}$

$$
=\sqrt{\left(\frac{55}{2}\right)^{2}+(31.5)^{2}}=41.81
$$

$$
\mathrm{FS}=\frac{\mathrm{S}_{\mathrm{yt}}}{2 \times \tau_{\max }}=\frac{284}{2 \times 41.81}=3.39
$$

07. Ans: (a)

Sol: $\mathrm{F}_{\mathrm{T}}=20 \mathrm{kN}, \quad \mathrm{F}_{\mathrm{s}}=15 \mathrm{kN}$
$\mathrm{S}_{\mathrm{yt}}=360 \mathrm{MPa}, \mathrm{F}_{\mathrm{s}}=3, \quad \mathrm{~d}=$?
$\sigma=\frac{F_{T}}{A}=\frac{20 \times 10^{3}}{A} \mathrm{~N} / \mathrm{mm}^{2}$
$\tau=\frac{F_{S}}{A}=\frac{15 \times 10^{3}}{A} \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{1} \& \sigma_{2}=\frac{\sigma}{2} \pm \sqrt{\left(\frac{\sigma}{2}\right)^{2}+\tau^{2}}$
$\frac{S_{y t}}{F S}=\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}-\sigma_{1} \sigma_{2}}$
According to distortion energy theory

$$
\begin{aligned}
& \sigma_{1}=\frac{\sigma}{2}+\sqrt{\left(\frac{\sigma}{2}\right)^{2}+\tau^{2}}=\frac{\sigma}{2}+\tau_{\max }=\frac{\sigma}{2}+R \\
& R=\sqrt{\left(\frac{\sigma}{2}\right)^{2}+\tau^{2}}
\end{aligned}
$$

Sol:

$$
\begin{array}{ll}
\mathrm{FS}=2, & \mathrm{~S}_{\mathrm{yt}}=31 \\
\mathrm{~F}=40 \mathrm{kN}, & \\
\mathrm{~d}=20 \mathrm{~mm}, & \mathrm{~T}=?
\end{array}
$$

$$
\mathrm{S}_{\mathrm{yt}}=310 \mathrm{MPa},
$$

According to Distortion Energy Theory

$$
\frac{\mathrm{S}_{\mathrm{yt}}}{\mathrm{FS}}=\sqrt{\sigma^{2}+3 \tau^{2}}
$$

$$
\begin{aligned}
& \sigma_{e q}=\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}-\sigma_{1} \sigma_{2}} \\
& =\sqrt{\left(\frac{\sigma}{2}+R\right)^{2}+\left(\frac{\sigma}{2}-R\right)^{2}-\left(\frac{\sigma}{2}+R\right)\left(\frac{\sigma}{2}-R\right)} \\
& \sigma_{\mathrm{eq}}=\sqrt{\left(\frac{\sigma}{2}\right)^{2}+3\left(\left(\frac{\sigma}{2}\right)^{2}+\mathrm{r}^{2}\right)} \\
& \sigma_{e q}=\sqrt{\left(\frac{\sigma}{2}\right)^{2}+3\left(\frac{\sigma}{2}\right)^{2}+\tau^{2}} \\
& \sigma_{e q}=\sqrt{\sigma^{2}+3 \tau^{2}}=\frac{S_{y t}}{F_{s}} \\
& =\sqrt{\left(\frac{20 \times 10^{3}}{A}\right)^{2}+3 \times\left(\frac{15 \times 10^{3}}{A}\right)^{2}}=\frac{360}{3} \\
& =\frac{10^{3}}{A} \sqrt{20^{2}+3 \times 15^{2}}=\frac{360}{3} \\
& \therefore \mathrm{~A}=273.22 \mathrm{~mm}^{2}=(\pi / 4) \mathrm{d}^{2} \\
& \Rightarrow \mathrm{~d}=18.65 \mathrm{~mm} \\
& \text { 08. Ans: (b) }
\end{aligned}
$$

(1) ACE	5	Machine Design

$$
\begin{aligned}
& \sigma=\frac{\mathrm{F}}{\frac{\pi}{4} \times \mathrm{d}^{2}}=\frac{40 \times 10^{3}}{\frac{\pi}{4} \times 20^{2}}=127.32 \mathrm{MPa} \\
& \frac{310}{2}=\sqrt{\left(127.32^{2}+3 \tau^{2}\right)} \\
& \Rightarrow \tau=51.03 \mathrm{MPa} \\
& \tau=\frac{16 \mathrm{~T}}{\pi \mathrm{~d}^{3}} \\
& \Rightarrow 51.03=\frac{16 \mathrm{~T}}{\pi \times 20^{3}} \\
& \Rightarrow \mathrm{~T}=80157.73 \mathrm{Nmm}=80.157 \mathrm{Nm}
\end{aligned}
$$

09. Ans: (b)

Sol: $\mathrm{P}=5 \mathrm{kN}, \mathrm{d}=10 \mathrm{~cm}=0.1 \mathrm{~m}$
Torque, $\mathrm{T}=5 \times 10^{3} \times 0.5=2500 \mathrm{Nm}$

$$
\mathrm{S}_{\mathrm{yt}}=425 \mathrm{MPa}
$$

Bending moment

$$
\mathrm{M}=5 \times 10^{3} \times 2.5=12500 \mathrm{Nm}
$$

Maximum shear stress

$$
\begin{aligned}
\tau & =\frac{16 \mathrm{~T}}{\pi \mathrm{~d}^{3}}=\frac{16 \times 2.5 \times 10^{3}}{\pi \times(0.1)^{3}} \\
& =12732395 \mathrm{~N} / \mathrm{m}^{2}=12.73 \mathrm{MPa}
\end{aligned}
$$

Maximum bending stress

$$
\begin{aligned}
\sigma_{b}=\frac{32 M}{\pi d^{3}} & =\frac{32 \times 12500}{\pi \times(0.1)^{3}} \\
& =127323954 \mathrm{~N} / \mathrm{m}^{2} \\
& =127.32 \mathrm{MPa}
\end{aligned}
$$

Major principal stress

$$
\begin{aligned}
\sigma_{1} & =\frac{\sigma_{b}}{2}+\sqrt{\left(\frac{\sigma_{b}}{2}\right)^{2}+\tau^{2}} \\
& =\frac{127.32}{2}+\sqrt{\left(\frac{127.32}{2}\right)^{2}+(12.73)^{2}}
\end{aligned}
$$

$$
=128.58 \mathrm{MPa}
$$

Minor principal stress

$$
\begin{aligned}
\sigma_{2} & =\frac{127.32}{2}-\sqrt{\left(\frac{127.32}{2}\right)^{2}+(12.73)^{2}} \\
& =-1.26 \mathrm{MPa}
\end{aligned}
$$

According to Tresca's theory of failure

$$
\begin{aligned}
& \frac{\mathrm{S}_{\mathrm{sy}}}{\mathrm{FS}}=\frac{\mathrm{S}_{\mathrm{yt}}}{2 \times \mathrm{FS}}=\frac{\sigma_{1}-\sigma_{2}}{2} \\
\therefore & \frac{425}{\mathrm{FS}}=\frac{128.58+1.26}{2}
\end{aligned}
$$

$$
\mathrm{FS}=3.27
$$

10. Ans: (a)

Sol: $\mathrm{S}_{\mathrm{yt}}=200 \mathrm{~N} / \mathrm{mm}^{2} \quad ; \quad \mathrm{FS}=2.5$

$$
\begin{aligned}
& \frac{d}{b}=2 \\
& \frac{S_{y t}}{F S}=\sigma_{\mathrm{b}}=\frac{200}{2.5}=80 \mathrm{MPa} \\
& \mathrm{I}=\frac{b d^{3}}{12}=\frac{b(2 b)^{3}}{12}=0.66 \mathrm{~b}^{4}
\end{aligned}
$$

Maximum Bending moment,

$$
\begin{aligned}
\mathrm{M} & =5 \times 1500+5 \times 500 \\
& =10000 \times 10^{3} \mathrm{~N}-\mathrm{mm} \\
80= & \frac{\mathrm{M}}{\mathrm{I}} \times \mathrm{y}=\frac{10^{7}}{0.66 \mathrm{~b}^{4}} \times \frac{\mathrm{d}}{2} \\
80 & =\frac{10^{7}}{0.66 \mathrm{~b}^{4}} \times \frac{2 b}{2} \\
\Rightarrow \mathrm{~b}= & 57.42 \mathrm{~mm}
\end{aligned}
$$

11. Ans: (b)

Sol: $\sigma_{\mathrm{x}}=100 \mathrm{MPa}, \sigma_{\mathrm{y}}=40 \mathrm{MPa}, \tau=40 \mathrm{MPa}$

A ACM	6	GATE - Text Book Solutions

$\sigma=\frac{100+40}{2} \pm \sqrt{\left(\frac{100-40}{2}\right)^{2}+40^{2}}$
$\sigma_{1}=70+\sqrt{30^{2}+40^{2}}=120 \mathrm{MPa}$
$\sigma_{2}=70-\sqrt{30^{2}+40^{2}}=20 \mathrm{MPa}$
According Distortion Energy Theory
$\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}-\sigma_{1} \sigma_{2}}=\frac{\mathrm{S}_{\mathrm{yt}}}{\mathrm{FS}}$
$\sqrt{120^{2}+20^{2}-120 \times 20}=\frac{360}{\mathrm{FS}} \Rightarrow \mathrm{FS}=3.23$
12. Ans: (b)

Sol: $\mathrm{T}=10 \mathrm{kN}-\mathrm{m}, \mathrm{M}=10 \mathrm{kN}-\mathrm{m}, \mathrm{FS}=1.5$
Equivalent torque,
$\mathrm{T}_{\mathrm{e}}=\sqrt{10^{2}+10^{2}}=14.14 \mathrm{kN}-\mathrm{m}$
$\tau_{\max }=\frac{16 T_{e}}{\pi d^{3}}=\frac{16 \times 14.14}{\pi d^{3}}$
According to Maximum shear stress theory

$$
\tau_{\max }=\frac{S_{s y}}{F S}
$$

$\frac{16 \times 14.14}{\pi d^{3}}=\frac{\mathrm{S}_{\mathrm{sy}}}{1.5}$

$$
\mathrm{S}_{\mathrm{sy}}=\frac{16 \times 14.14 \times 1.5}{\pi d^{3}}=\frac{108.02}{d^{3}}
$$

For $\mathrm{M}=5 \mathrm{kN}-\mathrm{m}$ and $\mathrm{T}=6 \mathrm{kN}-\mathrm{m}$

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{e}}=\sqrt{5^{2}+6^{2}}=7.81 \mathrm{kN}-\mathrm{m} \\
& \begin{aligned}
\tau_{\max } \times \mathrm{FS} & =\text { constant } \\
& =\frac{16 \times 7.81 \times \mathrm{FS}}{\pi \mathrm{~d}^{3}} \\
& =\frac{16 \times 14.14 \times 1.5}{\pi \mathrm{~d}^{3}} \\
\Rightarrow \mathrm{FS} & =2.7
\end{aligned}
\end{aligned}
$$

13. Ans: (\mathbf{a}, d)

Sol: Given data:

Loading 1: $\sigma_{1}=\frac{32 \mathrm{M}}{\pi \mathrm{d}^{3}} \& \sigma_{2}=0$
Loading 2: $\quad \sigma_{1}=\frac{16 \mathrm{~T}}{\pi \mathrm{~d}^{3}} \quad \& \quad \sigma_{2}=-\frac{16 \mathrm{~T}}{\pi \mathrm{~d}^{3}}$
Loading 3: $\sigma_{1}=\frac{16}{\pi d^{3}}\left(M+\sqrt{M^{2}+T^{2}}\right)$

$$
\sigma_{2}=\frac{16}{\pi \mathrm{~d}^{3}}\left(\mathrm{M}-\sqrt{\mathrm{M}^{2}+\mathrm{T}^{2}}\right)
$$

Loading 4: $\sigma_{1}-\sigma_{2}=100 \mathrm{MPa}$

On plotting these loadings on safe diagram; as

From diagram it is clear that, loading lines of loading 1 and 4 intersect at points which are common to all three mentioned theories. Hence for these loading all three theories will give same results.

ACE	7	Machine Design

Chapter
 3
 Fluctuating Loads

01. Ans: (b)

Sol: Given:

$$
\begin{array}{ll}
\mathrm{S}_{\mathrm{u}}=440 \mathrm{MPa}, & \mathrm{q}=0.8 \\
\mathrm{~K}_{\mathrm{a}}=0.67 & \mathrm{~K}_{\mathrm{b}}=0.85 \\
\mathrm{~K}_{\mathrm{c}}=0.9 & \mathrm{~K}_{\mathrm{d}}=0.897 \\
\mathrm{~K}_{\mathrm{t}}=2.37 & \mathrm{~F} . \mathrm{S}=1.5
\end{array}
$$

Goodman's equation

$$
\frac{\sigma_{\mathrm{a}}}{\mathrm{~S}_{\mathrm{e}}}+\frac{\sigma_{\mathrm{m}}}{\mathrm{~S}_{\mathrm{ut}}}=\frac{1}{\mathrm{~F} . \mathrm{S}}
$$

$\mathrm{S}_{\mathrm{e}}{ }^{\prime}=$ Endurance strength of standard specimen under ideal conditions.
$\mathrm{S}_{\mathrm{e}}=$ Modified endurance strength
$\mathrm{S}_{\mathrm{e}}=\mathrm{K}_{\mathrm{a}} \mathrm{K}_{\mathrm{b}} \mathrm{K}_{\mathrm{c}} \mathrm{K}_{\mathrm{d}} \mathrm{S}_{\mathrm{e}}^{\prime}$

$$
\begin{aligned}
\mathrm{S}_{\mathrm{e}}{ }^{\prime} & =0.5 \mathrm{~S}_{\mathrm{ut}} \\
& =0.5 \times 440=220 \mathrm{MPa} \\
\mathrm{~S}_{\mathrm{e}} & =0.67 \times 0.85 \times 0.9 \times 0.897 \times \mathrm{K}_{\mathrm{e}} \times \mathrm{S}_{\mathrm{e}}^{\prime}
\end{aligned}
$$

$\mathrm{K}_{\mathrm{f}}=$ Actual stress concentration modifying factor

$$
\begin{aligned}
\mathrm{K}_{\mathrm{f}} & =1+\mathrm{q}\left(\mathrm{~K}_{\mathrm{t}}-1\right) \\
& =1+0.8(1.37)=2.096
\end{aligned}
$$

$\mathrm{K}_{\mathrm{e}}=$ Stress concentration modifying factor

$$
=\frac{1}{K_{f}}=\frac{1}{2.096}=0.48
$$

$\therefore \mathrm{S}_{\mathrm{e}}=48.63 \mathrm{MPa}$

For completely reverse load

$$
\begin{aligned}
& \sigma_{\mathrm{m}}=0 \\
& \sigma_{\mathrm{a}}=\frac{16 \times 10^{3}}{(50-10) \mathrm{t}} \\
& \therefore \sigma_{\mathrm{a}}=\frac{400}{t} \mathrm{~N} / \mathrm{mm}^{2} \\
& \frac{\sigma_{\mathrm{a}}}{\mathrm{~S}_{\mathrm{e}}}+\frac{\sigma_{\mathrm{m}}}{\mathrm{~S}_{\mathrm{ut}}}=\frac{1}{\mathrm{~F} . \mathrm{S}}\left(\text { Here } \frac{\sigma_{\mathrm{m}}}{\mathrm{~S}_{\mathrm{ut}}}=0\right) \\
& \sigma_{\mathrm{a}}=\frac{\mathrm{S}_{\mathrm{e}}}{\mathrm{~F} . \mathrm{S}}=\frac{48.63}{1.5}=\frac{400}{\mathrm{t}} \\
& \therefore \mathrm{t}=12.3 \mathrm{~mm} \\
& \mathrm{t}=12 \mathrm{~mm}
\end{aligned}
$$

2. Ans: (b)

Sol: $\mathrm{F}=50 \mathrm{kN}, \quad \mathrm{S}_{\mathrm{ut}}=300 \mathrm{MN} / \mathrm{m}^{2}$

$$
\mathrm{S}_{\mathrm{e}}^{\prime}=200 \mathrm{MN} / \mathrm{m}^{2}, \mathrm{~K}_{\mathrm{t}}=1.55, \quad \mathrm{q}=0.9
$$

$\mathrm{M}=$?
$\mathrm{K}_{\mathrm{f}}=1+\mathrm{q}\left(\mathrm{K}_{\mathrm{t}}-1\right)$
$=1+0.9(1.55-1)=1.495$
$\mathrm{S}_{\mathrm{e}}=\frac{1}{\mathrm{~K}_{\mathrm{f}}} \mathrm{S}_{\mathrm{e}}^{\prime}=\frac{200}{1.495}=133.779$

Mean stress, $\sigma_{\mathrm{m}}=\frac{\mathrm{F}}{\mathrm{A}}$

$$
=\frac{\mathrm{F}}{\frac{\pi}{4} \mathrm{~d}^{2}}=\frac{50 \times 10^{3}}{\frac{\pi}{4}(25)^{2}} \Rightarrow 101.85 \mathrm{MPa}
$$

Stress amplitude, $\sigma_{a}=\frac{32 \mathrm{M}}{\pi \mathrm{d}^{3}}=\frac{32 \mathrm{M}}{\pi(25)^{3}}$

According to Goodman's equation

$$
\begin{aligned}
& \frac{\sigma_{\mathrm{a}}}{\mathrm{~S}_{\mathrm{e}}}+\frac{\sigma_{\mathrm{m}}}{\mathrm{~S}_{\mathrm{ut}}}=\frac{1}{\mathrm{FS}} \\
& \frac{32 \mathrm{M}}{\frac{\pi(25)^{3}}{133.779}}+\frac{101.85}{300}=1 \\
& \Rightarrow \mathrm{M}=135.5 \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

03. Ans: (b)

Sol: Given:

$$
\begin{aligned}
& \sigma_{1}=-50 \mathrm{MPa} \text { to }+150 \mathrm{MPa} \\
& \sigma_{2}=25 \mathrm{MPa} \text { to } 175 \mathrm{MPa} \\
& \mathrm{~S}_{\mathrm{ut}}=500 \mathrm{MPa}, \mathrm{~S}_{\mathrm{e}}=250 \mathrm{MPa} \\
& \mathrm{~K}_{\mathrm{t}}=1.85 \\
& \sigma_{1 \text { max }}=150 \mathrm{MPa}, \sigma_{1 \text { min }}=-50 \mathrm{MPa} \\
& \sigma_{1 \text { mean }}=\frac{\sigma_{1 \text { max }}+\sigma_{1 \text { min }}}{2} \\
& \quad=\frac{150-50}{2}=50 \mathrm{MPa} \\
& \sigma_{1 \mathrm{a}}=\frac{150+50}{2}=100 \mathrm{MPa}
\end{aligned}
$$

Similarly

$$
\begin{aligned}
& \sigma_{2 \max }=175 \mathrm{MPa}, \\
& \sigma_{2 \min }=25 \mathrm{MPa} \\
& \sigma_{2 \mathrm{~m}}=\frac{175+25}{2}=100 \mathrm{MPa} \\
& \sigma_{2 \mathrm{a}}=\frac{150}{2}=75 \mathrm{MPa}
\end{aligned}
$$

According to Soderberg's equation

$$
\frac{\sigma_{\mathrm{a}}}{\mathrm{~S}_{\mathrm{e}}}+\frac{\sigma_{\mathrm{m}}}{\mathrm{~S}_{\mathrm{ut}}}=\frac{1}{\mathrm{~F} . \mathrm{S}}
$$

Here,

$$
\begin{aligned}
\mathrm{S}_{\mathrm{e}} & =\mathrm{K}_{\mathrm{a}} \mathrm{~K}_{\mathrm{b}} \ldots . \mathrm{S}_{\mathrm{e}}^{\prime} \\
& =\frac{1}{1.85} \times 250=135 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

According DET

$$
\begin{aligned}
& \sigma_{\mathrm{meq}} \leftarrow\left(\frac{\mathrm{~S}_{\mathrm{yt}}}{\mathrm{~F} . \mathrm{S}}\right)=\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}-\sigma_{1} \sigma_{2}} \\
& \begin{aligned}
\therefore \sigma_{\mathrm{meq}} & =\sqrt{\sigma_{1 \mathrm{~m}}^{2}+\sigma_{2 \mathrm{~m}}^{2}-\sigma_{1 \mathrm{~m}} \sigma_{2 \mathrm{~m}}} \\
& =86.6 \mathrm{MPa} \\
\sigma_{\mathrm{aeq}} & =\sqrt{\sigma_{1 a}^{2}+\sigma_{2 a}^{2}-\sigma_{1 a} \sigma_{2 a}} \\
& =90.14 \mathrm{MPa}
\end{aligned}
\end{aligned}
$$

Substituting these values in Soderberg's equation
$\frac{90.14}{135}+\frac{86.6}{500}=\frac{1}{\text { F.S }}$
$\Rightarrow \mathrm{F} . \mathrm{S}=1.2$

Common Data for Questions 04 \& 05
04. Ans: (c) \& 05. Ans: (a)

Sol: $\mathrm{S}_{\mathrm{e}}=280 \mathrm{MPa}$
$\mathrm{S}_{\mathrm{f}}=0.9 \mathrm{~S}_{\mathrm{ut}}$ for 10^{3} cycles
$\mathrm{S}_{\mathrm{u}}=600 \mathrm{MPa}$
$\mathrm{N}=200 \times 10^{3}$ cycles ; $\quad \mathrm{S}_{\mathrm{f}}=$?
Basquin's equation,
$\mathrm{A}=\mathrm{S}_{\mathrm{f}} \mathrm{L}^{\mathrm{B}}$
$A=280\left(10^{6}\right)^{B}$
$\mathrm{A}=(0.9 \times 600) \times 10^{3 \mathrm{~B}}$
$\mathrm{A}=540 \times 10^{3 \mathrm{~B}}$
By solving (1) and (2),

$$
\mathrm{A}=1041.42
$$

1) ACE	9	Machine Design

$$
\begin{aligned}
\mathrm{B} & =0.095 \\
\Rightarrow 1041.42 & =\mathrm{S}_{\mathrm{f}} \mathrm{~L}^{0.095} \\
1041.42 & =\mathrm{S}_{\mathrm{f}}\left(200 \times 10^{3}\right)^{0.095} \\
\mathrm{~S}_{\mathrm{f}} & =326 \mathrm{MPa} \\
\Rightarrow 1041.42 & =420 \times \mathrm{L}^{0.095} \\
\Rightarrow \quad \mathrm{~L} & =1.4 \times 10^{4} \text { cycles }
\end{aligned}
$$

06. Ans: (d)

Sol: $\mathrm{S}_{\mathrm{f} 1}=500 \mathrm{MPa} \quad \mathrm{N}_{1}=10$ cycles
$\mathrm{L}_{1}=1 \times 10^{5}$ cycles
$\mathrm{S}_{\mathrm{f} 2}=600 \mathrm{MPa}$,
$\mathrm{N}_{2}=5$ cycles
$\mathrm{L}_{2}=0.4 \times 10^{5}$ cycles
$\mathrm{S}_{\mathrm{f} 3}=700 \mathrm{MPa}$,
$\mathrm{N}_{3}=3$ cycles
$\mathrm{L}_{3}=0.15 \times 10^{5}$ cycles

$$
\frac{\alpha_{1}}{L_{1}}+\frac{\alpha_{2}}{L_{2}}+\frac{\alpha_{3}}{\mathrm{~L}}=\frac{1}{\mathrm{~L}}
$$

$\alpha_{1}=\frac{N_{1}}{N_{1}+N_{2}+N_{3}}=\frac{10}{18}$
$\frac{10}{18\left(1 \times 10^{5}\right)}+\frac{5}{18\left(0.4 \times 10^{5}\right)}+\frac{3}{18\left(0.15 \times 10^{5}\right)}=\frac{1}{\mathrm{~L}}$
$\mathrm{L}=42352.94$ Cycles
For 18 cycles $\rightarrow \frac{1}{2} \times 60 \mathrm{sec}$
42352.94 cycles \rightarrow ? L

$$
\begin{aligned}
& \frac{42352.94}{10}=\frac{\mathrm{L}}{30 \sec }=\frac{\mathrm{L} \times 3600}{30} \\
& \Rightarrow \mathrm{~L}=19.6 \mathrm{hrs}
\end{aligned}
$$

7. Ans: (a)

Sol: $d=50 \mathrm{~mm}$

$$
\mathrm{T}_{\max }=2 \mathrm{kN}-\mathrm{m}
$$

$\mathrm{T}_{\text {min }}=-0.8 \mathrm{kN}-\mathrm{m}$
$\mathrm{S}_{\mathrm{sy}}=225 \mathrm{MPa}$,
FS $=$? (Soderberg)
$\mathrm{S}_{\mathrm{se}}=150 \mathrm{MPa}$
$\mathrm{T}_{\mathrm{a}}=\frac{2-(-0.8)}{2}=1.4 \mathrm{kN}-\mathrm{m}$
$\mathrm{T}_{\mathrm{m}}=\frac{2-0.8}{2}=0.6 \mathrm{kN}-\mathrm{m}$
$\tau_{\mathrm{m}}=\frac{16 \mathrm{~T}_{\mathrm{m}}}{\pi \mathrm{d}^{3}}=\frac{16 \times 0.6 \times 10^{6}}{\pi(50)^{3}}=24.446 \mathrm{MPa}$
$\tau_{\mathrm{a}}=\frac{16 \mathrm{~T}_{\mathrm{a}}}{\pi \mathrm{d}^{3}}=\frac{16(1.4) \times 10^{6}}{\pi(50)^{3}}=57.04 \mathrm{MPa}$
$\frac{\sigma_{\mathrm{a}}}{\mathrm{S}_{\mathrm{e}}}+\frac{\sigma_{\mathrm{m}}}{\mathrm{S}_{\mathrm{yt}}}=\frac{1}{\mathrm{FS}}$
$\frac{\tau_{\mathrm{a}}}{\mathrm{S}_{\mathrm{se}}}+\frac{\tau_{\mathrm{m}}}{\mathrm{S}_{\mathrm{sy}}}=\frac{1}{\mathrm{FS}}$
$\frac{24.446}{225}+\frac{57.04}{150}=\frac{1}{\mathrm{FS}}$
$\Rightarrow \mathrm{FS}=2.04$
08. Ans: (c)

Sol: $\mathrm{L}_{1}=10$ hours
$\mathrm{N}_{1}=9.8$ hours
$\mathrm{N}_{2}=8.2$ hours
$\mathrm{L}_{2}=$?
According to Miner's Equation,

$$
\begin{aligned}
& \frac{\mathrm{N}_{1}}{\mathrm{~L}_{1}}+\frac{\mathrm{N}_{2}}{\mathrm{~L}_{2}}=1 \\
\Rightarrow & \frac{9.8}{10}+\frac{8.2}{\mathrm{~L}_{2}}=1 \\
\mathrm{~L}_{2} & =410 \text { hours }
\end{aligned}
$$

Common Data for Questions 09 \& 10

9. Ans: (c) \& 10. Ans: (d)

Sol: $\sigma_{\max }=+130 \mathrm{MPa}$

$$
\begin{aligned}
& \sigma_{\min }=-130 \mathrm{MPa} \\
& \mathrm{~K}_{\mathrm{d}}=\frac{1}{\mathrm{~K}_{\mathrm{f}}}=\frac{1}{1+0.95(1.85-1)} \\
& \mathrm{S}_{\mathrm{e}}
\end{aligned}=\mathrm{K}_{\mathrm{a}} \mathrm{~K}_{\mathrm{b}} \mathrm{~K}_{\mathrm{c}} \mathrm{~K}_{\mathrm{d}} \mathrm{~S}_{\mathrm{e}}^{\prime} .
$$

\therefore For a completely reversed,

$$
\begin{aligned}
& \sigma_{\mathrm{m}}=0 ; \quad \sigma_{\mathrm{a}}=130 \mathrm{MPa} \\
& \tau_{\mathrm{m}}=\frac{57+16}{2}=36.5 \mathrm{MPa} \\
& \tau_{\mathrm{a}}=\frac{57-16}{2}=20.5 \mathrm{MPa} \\
& \sigma_{\mathrm{eq}}=\sqrt{\sigma^{2}+3 \tau^{2}} \\
& \sigma_{\mathrm{meq}}=\sqrt{\sigma_{\mathrm{m}}^{2}+3 \tau_{\mathrm{m}}^{2}}=\sqrt{3 \times 36.5^{2}}=63.21 \mathrm{MPa} \\
& \sigma_{\text {aeq }}=\sqrt{\sigma_{a}^{2}+3 \tau_{a}^{2}}=\sqrt{130^{2}+3(20.5)^{2}} \\
& =134.76 \mathrm{MPa}
\end{aligned}
$$

According to Goodman's equation,

$$
\begin{aligned}
\frac{\sigma_{\text {aeq }}}{\mathrm{S}_{\mathrm{e}}}+\frac{\sigma_{\mathrm{meq}}}{\mathrm{~S}_{\mathrm{ut}}} & =\frac{1}{\mathrm{Fs}} \\
\frac{134.76}{224.4}+\frac{63.21}{1400} & =\frac{1}{\mathrm{FS}} \Rightarrow \mathrm{FS}=1.54
\end{aligned}
$$

11. Ans: (a, c)

Sol: Given data;

$$
\begin{aligned}
\sigma_{\max } & =+150 \mathrm{MPa} \\
\& \sigma_{\min } & =-100 \mathrm{MPa}
\end{aligned}
$$

$$
\begin{aligned}
& \sigma_{\mathrm{a}}=\frac{150-(-100)}{2}=125 \mathrm{MPa} \\
& \sigma_{\mathrm{m}}=\frac{150-100}{2}=25 \mathrm{MPa}
\end{aligned}
$$

$$
\tan \theta=\frac{\sigma_{\mathrm{a}}}{\sigma_{\mathrm{m}}}=\frac{125}{25}=5
$$

Modified Goodman Diagram:

Yield Line $\Rightarrow \sigma_{\mathrm{m}}+\sigma_{\mathrm{a}}=\mathrm{S}_{\mathrm{yt}}=0.5 \mathrm{~S}_{\mathrm{ut}} \ldots .$. (i)
Goodman Line $\Rightarrow \frac{\sigma_{\mathrm{m}}}{\mathrm{S}_{\mathrm{ut}}}+\frac{\sigma_{\mathrm{a}}}{\sigma_{\mathrm{e}}}=1$
$\therefore \quad \sigma_{\mathrm{m}}+2.5 \sigma_{\mathrm{a}}=\mathrm{S}_{\mathrm{ut}}$

$$
\begin{equation*}
\mathrm{S}_{\mathrm{e}}=0.4 \mathrm{~S}_{\mathrm{ut}} \tag{ii}
\end{equation*}
$$

From (i) \& (ii), $\sigma_{\mathrm{a}}=0.333 \mathrm{~S}_{\mathrm{ut}}$

$$
\begin{aligned}
\sigma_{\mathrm{m}} & =0.16 \mathrm{~S}_{\mathrm{ut}} \\
\therefore \quad \tan \alpha=\frac{\sigma_{\mathrm{a}}}{\sigma_{\mathrm{m}}} & =2
\end{aligned}
$$

- As $\theta>\alpha$, the loading line will cut Goodman Line.
\therefore Goodman Line is the design line.
- $\frac{\sigma_{m}}{S_{u t}}+\frac{\sigma_{a}}{S_{e}}=\frac{1}{\text { FOS }}$
$\therefore \quad \frac{25}{600}+\frac{125}{240}=\frac{1}{\text { FOS }}$
$\therefore \quad$ FOS $=1.78$

ACE	11	Machine Design

Chapter
 4
 Riveted Joints

01. Ans: (b)

Sol: Given $\frac{d}{p}=0.5$

Tearing efficiency $=\frac{\mathrm{p}-\mathrm{d}}{\mathrm{p}}$

$$
\begin{aligned}
& =\frac{p\left(1-\frac{d}{p}\right)}{p} \\
& =1-\frac{d}{p}=1-0.5 \\
& =0.5 \times 100=50 \%
\end{aligned}
$$

Common Data Question (02, 03, 04)

Given, $\mathrm{d}=30 \mathrm{~mm}$

$$
\begin{aligned}
& \sigma_{\mathrm{t}}=40 \mathrm{MPa}=40 \mathrm{~N} / \mathrm{mm}^{2} \\
& \mathrm{P}=90 \mathrm{~mm} \\
& \sigma_{\mathrm{s}}=30 \mathrm{MPa}=30 \mathrm{~N} / \mathrm{mm}^{2} \\
& \mathrm{t}=12.5 \mathrm{~mm} \\
& \sigma_{\mathrm{c}}=55 \mathrm{MPa}=55 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

2. Ans: (b)

Sol: Tearing Efficiency $=\frac{p-d}{p}$

$$
\begin{aligned}
& =\frac{90-30}{90}=\frac{60}{90} \\
& =\frac{2}{3} \times 100 \\
\eta_{\text {Tearing }} & =66.67 \%
\end{aligned}
$$

3. Ans: (b)

Sol: Strength of Riveted plate $=P=p \times t \times \sigma_{t}$

$$
\begin{aligned}
\mathrm{P} & =90 \times 12.5 \times 40 \\
& =45000 \mathrm{~N}
\end{aligned}
$$

Shearing Resistance,

$$
\begin{aligned}
P_{S} & =\frac{\pi}{4} d^{2} \times \sigma_{t} \\
P_{S} & =\frac{\pi}{4}(30)^{2} \times 30 \\
& =21206 N
\end{aligned}
$$

Shear efficiency $=\frac{P_{S}}{P}=\frac{21206}{45000}$

$$
=0.47=47 \%
$$

4. Ans: (c)

Sol: Crushing Strength

$$
\begin{aligned}
\mathrm{P}_{\mathrm{C}} & =\mathrm{d} \times \mathrm{t} \times \sigma_{\mathrm{c}} \\
& =30 \times 12.5 \times 55 \\
& =20625 \mathrm{~N}
\end{aligned}
$$

Tearing Strength

$$
\begin{aligned}
\mathrm{P}_{\mathrm{t}} & =(\mathrm{p}-\mathrm{d}) \mathrm{t} \times \sigma_{\mathrm{t}} \\
& =(90-30) \times 12.5 \times 40=30,000 \mathrm{~N}
\end{aligned}
$$

Shear Strength

$$
\begin{aligned}
\mathrm{P}_{\mathrm{S}} & =21206 \mathrm{~N}, \\
\mathrm{P} & =45000 \mathrm{~N}
\end{aligned}
$$

Strength of riveted joint
$\eta=\frac{\text { Least value among } P_{C}, P_{t} \& P_{S}}{P}$
$\eta=\frac{20625}{45000}=0.458=45.8 \%$

05. Ans: (c)

Sol: Given $\mathrm{t}=7 \mathrm{~mm}$
$\tau_{\mathrm{s}}=60 \mathrm{MPa}=60 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{\mathrm{c}}=120 \mathrm{MPa}=120 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{n}=3$ (Triple riveted joint)

$$
\begin{align*}
\mathrm{P}_{\mathrm{S}} & =\mathrm{n} \times \frac{\pi}{4} \times \mathrm{d}^{2} \times \tau_{\mathrm{s}} \\
& =3 \times \frac{\pi}{4} \mathrm{~d}^{2} \times 60=141.4 \mathrm{~d}^{2} \mathrm{~N} \ldots . \\
\mathrm{P}_{\mathrm{C}} & =\mathrm{n} \times \mathrm{d} \times \mathrm{t} \times \sigma_{\mathrm{c}}=3 \times \mathrm{d} \times 7 \times 120 \\
& =2520 \mathrm{~d} \mathrm{~N} \ldots \ldots . . \tag{2}
\end{align*}
$$

From equations (1) \& (2)
$141.4 \mathrm{~d}^{2}=2520 \mathrm{~d}$

$$
\mathrm{d}=\frac{2520}{141.4}=17.8 \approx 18 \mathrm{~mm}
$$

6. Ans: (d)

Sol: Given:
$\mathrm{t}=7 \mathrm{~mm}$,
$\mathrm{n}=3$
$\sigma_{\mathrm{t}}=80 \mathrm{MPa}=80 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{\mathrm{s}}=60 \mathrm{MPa}=60 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{\mathrm{c}}=120 \mathrm{MPa}=120 \mathrm{~N} / \mathrm{mm}^{2}$

Let $\mathrm{p}=$ pitch of rivets,

$$
\mathrm{d}=18 \mathrm{~mm} \quad(\text { from } Q .5)
$$

Tearing resistance is

$$
\begin{align*}
\mathrm{P}_{\mathrm{t}} & =(\mathrm{p}-\mathrm{d}) \mathrm{t} \times \sigma_{\mathrm{t}} \\
& =(\mathrm{p}-18) 7 \times 80 \\
& =560(\mathrm{p}-18) \mathrm{N} \tag{1}
\end{align*}
$$

$P_{s}=\frac{\pi}{4} d^{2} \times \tau_{s} \times \eta$
$\frac{\pi}{4}(18)^{2} \times 60 \times 3=45804 \mathrm{~N}$
From equations (1) and (2)

$$
\begin{aligned}
& 560(\mathrm{p}-18)=45804 \\
& \mathrm{p}=99.79 \\
& \mathrm{p} \cong 100 \mathrm{~mm}
\end{aligned}
$$

7. Ans (a)

Sol:

$$
\begin{aligned}
& \frac{\mathrm{S}_{\mathrm{yt}}}{\mathrm{FS}}=90 \mathrm{~N} / \mathrm{mm}^{2} \\
& \frac{\mathrm{~S}_{\mathrm{sy}}}{\mathrm{FS}}=75 \mathrm{~N} / \mathrm{mm}^{2} \\
& \frac{\mathrm{~S}_{\mathrm{yc}}}{\mathrm{FS}}=150 \mathrm{~N} / \mathrm{mm}^{2}, \quad \mathrm{t}=6 \mathrm{~mm}
\end{aligned}
$$

Shear strength = crushing strength

$$
\frac{\pi}{4} \mathrm{~d}^{2} \times \frac{\mathrm{S}_{\mathrm{sy}}}{\mathrm{FS}}=\mathrm{d} \times \mathrm{t} \times \frac{\mathrm{S}_{\mathrm{yc}}}{\mathrm{FS}}
$$

$d=6 \times \frac{150}{75 \times \pi} \times 4$
$\mathrm{d}=15.27 \mathrm{~mm}$

08. Ans: (b)

Sol: Given:

$$
\tau_{\mathrm{s}}=100 \mathrm{MPa}=100 \mathrm{~N} / \mathrm{mm}^{2}
$$

$\mathrm{d}=20 \mathrm{~mm}$,
$\mathrm{n}=4$
Direct shear load on each rivet
$P_{S}=\frac{\mathrm{P}}{\mathrm{n}}=\frac{\mathrm{P}}{4}=0.25 \mathrm{P}$
$\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\mathrm{B}}=\mathrm{P}_{\mathrm{C}}=\mathrm{P}_{\mathrm{D}}=\mathrm{P}_{\mathrm{S}}$
All dimensions are in mm

From figure,

$l_{\mathrm{A}}=l_{\mathrm{D}}=200+100=300 \mathrm{~mm}$
$l_{\mathrm{B}}=l_{\mathrm{C}}=100 \mathrm{~mm}$
$[\because$ Secondary shear loads are proportional to their radial distances from the C.G]

$$
\begin{aligned}
\mathrm{P} \times \mathrm{e} & =\frac{\mathrm{F}_{\mathrm{B}}}{1_{\mathrm{B}}}\left[l_{\mathrm{A}}^{2}+l_{\mathrm{B}}^{2}+l_{\mathrm{c}}^{2}+1_{\mathrm{D}}^{2}\right] \\
& =\frac{\mathrm{F}_{\mathrm{B}}}{1_{\mathrm{B}}}\left[21_{\mathrm{A}}^{2}+21_{\mathrm{B}}^{2}\right] \quad\left(\because l_{\mathrm{A}}=l_{\mathrm{D}} \& l_{\mathrm{B}}=l_{\mathrm{c}}\right)
\end{aligned}
$$

$$
\mathrm{P} \times 100=\frac{\mathrm{F}_{\mathrm{B}}}{100}\left[2(300)^{2}+2(100)^{2}\right]
$$

$$
\mathrm{F}_{\mathrm{B}}=0.05 \mathrm{P}=\mathrm{F}_{\mathrm{C}}
$$

$$
\mathrm{P} \times \mathrm{e}=\frac{\mathrm{F}_{\mathrm{A}}}{1_{\mathrm{A}}}\left[\mathrm{l}_{\mathrm{A}}^{2}+\mathrm{l}_{\mathrm{B}}^{2}+\mathrm{l}_{\mathrm{c}}^{2}+\mathrm{l}_{\mathrm{D}}^{2}\right]
$$

$$
\mathrm{F}_{\mathrm{A}}=\mathrm{F}_{\mathrm{B}}=0.15 \mathrm{P}
$$

Resultant load on rivet A

$$
\mathrm{R}_{\mathrm{A}}=\mathrm{P}_{\mathrm{s}}+\mathrm{F}_{\mathrm{A}}=0.25 \mathrm{P}+0.15 \mathrm{P}=0.4 \mathrm{P}
$$

Resultant load on rivet B ,

$$
\begin{aligned}
\mathrm{R}_{\mathrm{B}}=\mathrm{P}_{\mathrm{S}}+\mathrm{F}_{\mathrm{B}} & =0.25 \mathrm{P}+0.05 \mathrm{P} \\
& =0.3 \mathrm{P}
\end{aligned}
$$

Resultant load on rivet C ,

$$
\mathrm{R}_{\mathrm{C}}=\mathrm{P}_{\mathrm{S}}-\mathrm{F}_{\mathrm{C}}=0.25 \mathrm{P}-0.05 \mathrm{P}=0.2 \mathrm{P}
$$

Resultant load on rivet D ,

$$
\mathrm{R}_{\mathrm{D}}=\mathrm{P}_{\mathrm{S}}-\mathrm{F}_{\mathrm{D}}=0.25 \mathrm{P}-0.15 \mathrm{P}=0.1 \mathrm{P}
$$

R_{A} is the maximum shear load

$$
\begin{aligned}
& 0.40 \mathrm{P}=\frac{\pi}{4} \mathrm{~d}^{2} \times \sigma_{\mathrm{s}} \\
& 0.4 \mathrm{P}=\frac{\pi}{4}(20)^{2} 100=31420 \\
& \mathrm{P}=\frac{31420}{0.4}=78.55 \mathrm{kN} \approx 78 \mathrm{kN}
\end{aligned}
$$

9. Ans: (b)

Sol: $\mathrm{t}=15 \mathrm{~mm}$,

$$
\mathrm{d}=20 \mathrm{~mm}
$$

$$
\mathrm{p}=60 \mathrm{~mm}, \quad \tau=90 \mathrm{MPa}
$$

$$
\sigma_{\mathrm{t}}=120 \mathrm{MPa}, \quad \sigma_{\mathrm{c}}=160 \mathrm{MPa}
$$

Tensile load (F_{t})

$$
\begin{aligned}
& =(p-\mathrm{d}) \mathrm{t} \times \sigma_{\mathrm{t}} \\
& =(60-20) \times 15 \times 120=72000 \mathrm{~N} \\
& =72 \mathrm{kN}
\end{aligned}
$$

Shear Load $\left(F_{s}\right)=\frac{\pi}{4} \times \mathrm{d}^{2} \times \tau=\frac{\pi}{4} \times 20^{2} \times 90$

$$
=28274.33 \mathrm{~N}=28.274 \mathrm{kN}
$$

Crushing load $\left(\mathrm{F}_{\mathrm{c}}\right)=\mathrm{d} \times \mathrm{t} \times \sigma_{\mathrm{c}}$

$$
\begin{aligned}
& =20 \times 15 \times 160 \\
& =48000 \mathrm{~N}=48 \mathrm{kN}
\end{aligned}
$$

Load carrying capacity (F)

$$
\begin{aligned}
& =\text { Minimum of }\left(\mathrm{F}_{\mathrm{t}}, \mathrm{~F}_{\mathrm{s}} \& \mathrm{~F}_{\mathrm{c}}\right) \\
& =28.274 \mathrm{kN}
\end{aligned}
$$

Linked Answer Questions 10 \& 11:

10. Ans: (a)

Sol: $d=12 \mathrm{~mm}, \quad \mathrm{P}=4 \mathrm{kN}$
No. of Rivets $=2$
Primary shear load, $\mathrm{P}_{1}=\frac{4}{2}=2 \mathrm{kN}$
Secondary shear load,

$$
\begin{aligned}
& \mathrm{P}_{2}=\frac{\mathrm{Pe} \mathrm{r}}{1} \\
& \mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}
\end{aligned} \quad \begin{aligned}
& 4 \times 10^{3} \times(1.8+0.2) \times 0.2 \\
& 0.2^{2}+0.2^{2} \\
& \\
&
\end{aligned}=20000 \mathrm{~N}=20 \mathrm{kN}
$$

11. Ans: (b)

Sol:

Resultant load on Rivet $\mathrm{P}=\mathrm{P}_{2}-\mathrm{P}_{1}$

$$
=18 \mathrm{kN}
$$

Resultant shear stress on Rivet P

$$
=\frac{18 \times 10^{3}}{\frac{\pi}{4} \times 12^{2}}=159 \mathrm{MPa}
$$

12. Ans: (b, c)

Sol:

- Shearing strength,

$$
\mathrm{P}_{\mathrm{s}}=4 \times \frac{\pi}{4} \times 10^{2} \times 60=18.85 \mathrm{kN}
$$

- Crushing strength,

$$
P_{c}=4 \times 10 \times 5 \times 120=24 \mathrm{kN}
$$

- Tearing Strength at AA

$$
=(50-10) \times 5 \times 80=16
$$

- Tearing Strength at BB

$$
\begin{aligned}
& =(150-2 \times 10) \times 5 \times 80+\frac{\pi}{4} \times 10^{2} \times 60 \\
& =16.712 \mathrm{kN}
\end{aligned}
$$

ACE	15	Machine Design

Chapter
5

Threaded Fasteners

1. Ans: (b)

Sol: Given d $=24 \mathrm{~mm}$
$\mathrm{F}_{\mathrm{i}}=2840 \mathrm{~d}=2840 \times 24$
$\sigma_{\mathrm{t}}=\frac{\mathrm{F}_{\mathrm{i}}}{\frac{\pi}{4} \mathrm{~d}_{\mathrm{c}}^{2}}$
Here, $\mathrm{d}_{\mathrm{c}}=0.84 \mathrm{~d} \Rightarrow \mathrm{~d}_{\mathrm{c}}=0.84 \times 24$

$$
\begin{aligned}
\sigma_{t} & =\frac{2840 \times 24}{\frac{\pi}{4}(0.84 \times 24)^{2}} \\
\sigma_{t} & =213.529 \mathrm{MPa}
\end{aligned}
$$

02. Ans: (c)

Sol: Given

$$
\begin{aligned}
\mathrm{d} & =36 \mathrm{~mm} \\
\mathrm{~d}_{\mathrm{c}} & =0.84 \mathrm{~d}=0.84 \times 36 \\
\mathrm{~F} . \mathrm{S} & =1.5 \\
\mathrm{~S}_{\mathrm{yt}} & =280 \mathrm{MPa} \\
\sigma_{\mathrm{t}} & =\frac{s_{y t}}{F . s}=\frac{280}{1.5} \\
\mathrm{P} & =\frac{\pi}{4} d_{c}^{2} \sigma_{\mathrm{t}} \\
& =\frac{\pi}{4}(0.84 \times 36)^{2} \times \frac{280}{1.5} \\
& =134066 \mathrm{~N} \\
\mathrm{P} & =134 \mathrm{kN}
\end{aligned}
$$

3. Ans: (d)

Sol: Given pitch $=4 \mathrm{~mm}$
Torque (T) $=1.4 \mathrm{kN}-\mathrm{mm}$
Work done $=$ force \times distance
Force \times distance $=$ Torque \times Angle of rotation
$\mathrm{F} \times 4=\mathrm{T} \times \theta$

$$
\mathrm{F}=\frac{1.4 \times 2 \pi}{4}=2.199 \mathrm{kN}=2.2 \mathrm{kN}
$$

4. Ans: (d)

Sol: Given

$$
\begin{aligned}
\mathrm{F}_{\mathrm{i}} & =5.3 \mathrm{kN}, \\
\mathrm{C} & =0.25, \\
\mathrm{P} & =9.6 \mathrm{kN} \\
\mathrm{~F}_{\mathrm{b}} & =\mathrm{CP}+\mathrm{F}_{\mathrm{i}} \\
& =(0.25)(9.6)+(5.3) \\
\mathrm{F}_{\mathrm{b}} & =7.7 \mathrm{kN}
\end{aligned}
$$

05. Ans: (b)

Sol: Given

$$
\mathrm{D}=250 \mathrm{~mm}
$$

Pressure $=12 \mathrm{bar}=1.2 \mathrm{MPa}$

$$
F . S=5
$$

$$
\begin{aligned}
\mathrm{S}_{\mathrm{yt}} & =300 \mathrm{MPa} \\
\mathrm{n} & =8
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{F}_{\mathrm{b}}=\operatorname{Load}(\mathrm{P}) & =\frac{\frac{\pi}{4}\left(\mathrm{D}^{2}\right) \times \mathrm{P}}{\mathrm{n}} \\
& =\frac{\frac{\pi}{4}(250)^{2} \times 1.2}{\mathrm{n}}=7363.1 \mathrm{~N}
\end{aligned}
$$

ACE	16	GATE - Text Book Solutions

$$
\begin{aligned}
& \sigma_{\mathrm{t}}=\frac{\mathrm{F}_{\mathrm{b}}}{\mathrm{~A}_{\mathrm{b}}}=\frac{\mathrm{S}_{\mathrm{yt}}}{\mathrm{~F} . \mathrm{S}} \\
\Rightarrow & \frac{7.36 \times 10^{3}}{\mathrm{~A}_{\mathrm{b}}}=\frac{300}{5} \\
\Rightarrow & \mathrm{~A}_{\mathrm{b}}=122.66 \mathrm{~mm}^{2}
\end{aligned}
$$

6. Ans: (d)

Sol: Given,

$$
\begin{aligned}
\mathrm{D} & =500 \mathrm{~mm} \\
\mathrm{n} & =8 \\
\mathrm{P} & =20 \mathrm{bar}=2 \mathrm{MPa} \\
\mathrm{~K}_{\mathrm{m}} & =3 \mathrm{~K}_{\mathrm{b}} \\
\mathrm{c} & =\frac{\mathrm{K}_{\mathrm{b}}}{\mathrm{~K}_{\mathrm{b}}+\mathrm{K}_{\mathrm{m}}}=\frac{1}{4}=0.25
\end{aligned}
$$

To avoid leakage
Load $(\mathrm{P})=\operatorname{Pr} \times \mathrm{A}$

$$
=\frac{2 \times \frac{\pi}{4}(500)^{2}}{8}=49 \mathrm{kN}
$$

For leak proof joint $\mathrm{F}_{\mathrm{m}} \leq 0$

$$
\begin{aligned}
\mathrm{F}_{\mathrm{i}} & =(1-\mathrm{C}) \mathrm{P} \\
\mathrm{~F}_{\mathrm{i}} & =(1-0.25) 49 \\
& =36.75 \mathrm{kN} \approx 37 \mathrm{kN}
\end{aligned}
$$

Linked Answer Q 07 \& 08

7. Ans: (d)

Sol: $\mathrm{S}_{\mathrm{yt}}=650 \mathrm{MPa}, \quad \mathrm{t}=20 \mathrm{~mm}$
$A=115 \mathrm{~mm}^{2}, \quad d=14 \mathrm{~mm}$
$\mathrm{K}_{\mathrm{m}}=1.7 \times 10^{6} \mathrm{~N} / \mathrm{mm}$,
$\mathrm{E}_{\mathrm{cu}}=1.05 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{E}_{\text {steel }}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$

$$
\begin{aligned}
\mathrm{F}_{\mathrm{i}}= & 0.8 \mathrm{~S}_{\mathrm{yt}} \times \mathrm{A} \\
= & 0.8 \times 650 \times 115=59800 \mathrm{~N}
\end{aligned}
$$

For bolt,

$$
\begin{aligned}
\mathrm{K}_{\mathrm{b}} & =\frac{\mathrm{P}_{\mathrm{b}}}{\delta_{\mathrm{b}}}=\frac{\mathrm{P}_{\mathrm{b}}}{\frac{\mathrm{P}_{\mathrm{b}} \cdot l_{\mathrm{b}}}{\mathrm{~A}_{\mathrm{b}} \mathrm{E}_{\mathrm{b}}}}=\frac{\mathrm{A}_{\mathrm{b}} \mathrm{E}_{\mathrm{b}}}{l_{\mathrm{b}}} \\
& =\frac{115 \times 2 \times 10^{5}}{20+20}=5.75 \times 10^{5} \mathrm{~N} / \mathrm{mm}
\end{aligned}
$$

Where, $l_{\mathrm{b}}=\mathrm{t}_{1}+\mathrm{t}_{2}=20+20=40 \mathrm{~mm}$

$$
\text { Stiffness factor } \mathrm{C}=\frac{\mathrm{K}_{\mathrm{b}}}{\mathrm{~K}_{\mathrm{b}}+\mathrm{K}_{\mathrm{m}}}=0.25
$$

08. Ans: (a)

Sol: Safe external load that can be applied safely on the joint
$(1-\mathrm{C}) \mathrm{P}-\mathrm{F}_{\mathrm{i}}=0$
$(1-0.25) \times \mathrm{P}=59800 \mathrm{~N}$
$\mathrm{P}=79733 \mathrm{~N}=79.733 \mathrm{kN}$
For strength

$$
\begin{aligned}
& \sigma_{t}=\frac{\mathrm{F}_{\mathrm{b}}}{A}=\frac{\mathrm{S}_{\mathrm{yt}}}{\mathrm{FS}} \\
& \Rightarrow \mathrm{~F}_{\mathrm{b}}=\frac{\mathrm{S}_{\mathrm{yt}} \times \mathrm{A}_{\mathrm{b}}}{\mathrm{FS}} \\
& \mathrm{CP}+\mathrm{F}_{\mathrm{i}}=\frac{\mathrm{S}_{\mathrm{yt}} \times \mathrm{A}_{\mathrm{b}}}{\mathrm{FS}} \\
& \mathrm{CP}=\frac{\mathrm{S}_{\mathrm{yt}}}{\mathrm{FS}} \times \mathrm{A}_{\mathrm{b}}-\mathrm{F}_{\mathrm{i}} \\
& \mathrm{CP}=\frac{650}{1} \times 115-59800 \\
& \mathrm{CP}=14950 \\
& \mathrm{P}=\frac{14950}{0.25}=59800 \mathrm{~N}=59.8 \mathrm{kN} \cong 60 \mathrm{kN}
\end{aligned}
$$

09. Ans: (b)

Sol: F.S $=3, \mathrm{~S}_{\mathrm{yt}}=400 \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{P}=5 \mathrm{kN}$
Direct shear load

$\mathrm{P}_{\mathrm{s}}=\frac{5}{3}=1.67 \mathrm{kN}$
Secondary shear Load, $\mathrm{P}_{\mathrm{S} 1}$

$$
=\frac{5 \times 250}{(75)^{2}+0^{2}+(75)^{2}} \times 75=8.3 \mathrm{kN}
$$

Resultant $\operatorname{Load}(\mathrm{R})=\sqrt{\mathrm{P}_{\mathrm{S}}^{2}+\mathrm{P}_{\mathrm{S}_{1}}^{2}}$

$$
\begin{aligned}
& =\sqrt{(1.67)^{2}+(8.3)^{2}} \\
& =8.498 \mathrm{kN}
\end{aligned}
$$

$$
\mathrm{R}=\frac{\pi}{4} \mathrm{~d}^{2} \times \frac{\mathrm{S}_{\mathrm{sy}}}{\mathrm{~F} . \mathrm{s}}\left[\mathrm{~S}_{\mathrm{yt}}=2 \times \mathrm{S}_{\mathrm{sy}}\right]
$$

$8.498 \times 10^{3}=\frac{\pi}{4}\left(\mathrm{~d}^{2}\right) \times \frac{400}{2 \times 3}$
$\therefore \mathrm{d}=12.74 \mathrm{~mm} \approx 13 \mathrm{~mm}$

10. Ans: (a)

Sol: $\mathrm{n}=4$,
$\mathrm{L}=550 \mathrm{~mm}$
$\mathrm{P}=10 \mathrm{kN}$,
$\mathrm{L}_{2}=325 \mathrm{~mm}$
$\mathrm{S}_{\mathrm{yt}}=400 \mathrm{~N} / \mathrm{mm}^{2}$,
$\mathrm{L}_{1}=75 \mathrm{~mm}$
$\mathrm{FS}=6$
$\mathrm{d}_{\mathrm{c}}=0.8 \mathrm{~d}$
Using Rankine theory

$$
\begin{aligned}
\mathrm{P}_{\mathrm{A}}{ }^{\prime} & =\mathrm{CL}_{2}(\text { tensile load }) \\
& =\frac{\mathrm{PL}}{2\left(\mathrm{~L}_{1}^{2}+\mathrm{L}_{2}^{2}\right)} \times \mathrm{L}_{2} \\
& =\frac{10 \times 550}{2\left(75^{2}+325^{2}\right)} \times 325=8 \mathrm{kN} \\
\mathrm{P}_{\text {direct }} & =\frac{\mathrm{P}}{4}=2.5 \mathrm{kN}=\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\mathrm{B}}
\end{aligned}
$$

Bolt ' A ' is subjected to maximum load

Rankine Theory

\therefore Total Tensile load on bolt $=\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{A}}^{\prime}$

$$
\begin{aligned}
& \sigma_{\mathrm{t}}=\frac{\mathrm{F}}{\frac{\pi}{4} \mathrm{~d}_{\mathrm{c}}^{2}}=\frac{\mathrm{S}_{\mathrm{yt}}}{\mathrm{FS}} \\
& \frac{10.5}{\frac{\pi}{4} \mathrm{~d}_{\mathrm{c}}^{2}}=\frac{400}{6} \\
& \mathrm{~d}_{\mathrm{c}}=14.16 \\
& \mathrm{~d}=\frac{\mathrm{d}_{\mathrm{c}}}{0.8}=17.7=18 \mathrm{~mm}
\end{aligned}
$$

11. Ans: (c)

Sol: Given

$$
\begin{array}{rlrl}
\mathrm{n} & =4, \quad \mathrm{P}=5 \mathrm{kN}, & \mathrm{~L}=250 \mathrm{~mm} \\
\mathrm{~L}_{1} & =75 \mathrm{~mm}, & \mathrm{~L}_{2}=375 \mathrm{~mm} \\
\mathrm{~S}_{\mathrm{yt}} & =380 \mathrm{~N} / \mathrm{mm}^{2}, & & \\
\mathrm{~F} . \mathrm{S} & =5, & \mathrm{~d}_{\mathrm{c}}=0.8 \mathrm{~d} \\
\mathrm{P}_{\mathrm{tA}} & =\mathrm{CL}_{2}=(\text { Tensile }) & \\
& =\frac{P L}{2\left(L_{1}^{2}+L_{2}^{2}\right)} \times L_{2} \\
& =\frac{5 \times 250}{2\left(75^{2}+375^{2}\right)} \times 375=1.6 \mathrm{kN}
\end{array}
$$

$$
\mathrm{P}_{\text {shear }}=\frac{P}{4}=\frac{5}{4}=1.25 \mathrm{kN}
$$

Direct shear load,

$$
\mathrm{P}_{\mathrm{SA}}=\mathrm{P}_{\mathrm{SB}}=\frac{P}{4}=1.25 \mathrm{kN}
$$

Bolts at ' A ' is under maximum bending

Rankine Theory

$$
\begin{aligned}
\tau & =\frac{\mathrm{P}_{\mathrm{SA}}}{\mathrm{~A}}=\frac{1.25 \times 10^{3}}{\mathrm{~A}} \\
& \Rightarrow \mathrm{~A}=\frac{\pi}{4} \mathrm{~d}_{\mathrm{c}}^{2}
\end{aligned}
$$

$$
\sigma_{\mathrm{t}}=\frac{\mathrm{P}_{\mathrm{tA}}}{\mathrm{~A}}=\frac{1.6 \times 10^{3}}{\mathrm{~A}}
$$

$$
\sigma_{1}=\frac{\sigma_{t}}{2}+\sqrt{\left(\frac{\sigma_{t}}{2}\right)^{2}+\tau_{x y}^{2}}
$$

$$
\sigma_{1}=\frac{1.6 \times 10^{3}}{2 \mathrm{~A}}+\frac{1}{\mathrm{~A}} \sqrt{\left(\frac{1.6 \times 10^{3}}{2}\right)^{2}+\left(1.25 \times 10^{3}\right)^{2}}
$$

$$
=\frac{2284.1}{\mathrm{~A}} \mathrm{~N} / \mathrm{mm}^{2}
$$

According to Rankine Theory

$$
\begin{aligned}
& \sigma_{1}=\frac{\mathrm{S}_{\mathrm{yt}}}{\mathrm{FS}} \\
& \Rightarrow \frac{2284.1}{\mathrm{~A}}=\frac{380}{5} \\
& \Rightarrow \mathrm{~A}=30.05 \mathrm{~mm}^{2}=\frac{\pi}{4} \times \mathrm{d}_{\mathrm{c}}^{2} \\
& \Rightarrow \mathrm{~d}_{\mathrm{c}}=6.186 \mathrm{~mm} \\
& \Rightarrow \mathrm{~d}=\frac{6.196}{0.8}=7.732 \mathrm{~mm}
\end{aligned}
$$

12. Ans: (a, c)

Sol: In threaded joints following statements are true:

- Pre loading decreases the stress fluctuations in bolt.
- Pre loading increases the stress in bolt.
- Soft gasket is more useful the stress in bolt than the hard gasket.
- It increases fatigue life.
- It decrease stress amplitude.

ACE	19	Machine Design

Chapter
 6

01. Ans (b)

Sol: Given: $\mathrm{s}=10 \mathrm{~mm}$,

$$
\begin{aligned}
& \tau=80 \mathrm{MPa} \\
& \mathrm{P}=0.707 \times \mathrm{s} \times l \times \tau \\
&=0.707 \times 10 \times 10 \times 80=5.6 \mathrm{kN}
\end{aligned}
$$

02. Ans (b)

Sol: Given, $\mathrm{P}=400 \mathrm{kN}$,

$$
\begin{aligned}
\tau & =80 \mathrm{MPa} \\
\mathrm{P} & =2 \times 0.707 \times \mathrm{s} \times \ell \times \frac{\mathrm{S}_{\mathrm{sy}}}{\mathrm{FS}}
\end{aligned}
$$

$$
400 \times 1000=2 \times .707 \times 10 \times 80 \times l
$$

$$
2 l=\frac{400000}{0.707 \times 10 \times 80}
$$

Total length $=2 l \approx 703 \mathrm{~mm}$
03. Ans: (a)

Sol: Given:
$\mathrm{P}=340 \mathrm{kN}=340000 \mathrm{~N}$
$\frac{\mathrm{S}_{\mathrm{sy}}}{\mathrm{FS}}=80 \mathrm{MPa}$,
$\mathrm{s}=15 \mathrm{~mm}$
$\mathrm{P}=0.707 \mathrm{~s} l \times \frac{\mathrm{S}_{\mathrm{sy}}}{\mathrm{FS}}$
$340 \times 10^{3}=0.707 \times 15 \times \ell \times 80$
$l=400 \mathrm{~mm}$ length of weld adjusted on both sides i.e., 200 mm on each side.
04. Ans: (b)

Sol: $S=10 \mathrm{~mm}, \quad \mathrm{P}=4 \mathrm{kN} / \mathrm{cm}$

$$
\begin{aligned}
P_{\text {transverse }} & =0.707 \times S \times l \times \frac{S_{\mathrm{sy}}}{\mathrm{FS}} \\
4 \mathrm{kN} & \rightarrow 1 \mathrm{~cm} \\
180 \mathrm{kN} & =\frac{180}{4}=45 \mathrm{~cm}=450 \mathrm{~mm}
\end{aligned}
$$

$$
\therefore l+100+l=450
$$

$$
\therefore \quad l=175 \mathrm{~mm}
$$

5. Ans (a)

Sol: Given: $d=60 \mathrm{~mm}, \mathrm{~s}=10 \mathrm{~mm}$,

$$
\begin{aligned}
& \tau=70 \mathrm{MPa} \\
& \tau=\frac{\mathrm{T}}{\mathrm{~J}} \times \mathrm{r}=\frac{\mathrm{T}}{2 \pi \mathrm{r}^{3} \mathrm{t}} \times \mathrm{r}=\frac{\mathrm{T}}{2 \pi \mathrm{r}^{2} \mathrm{t}} \\
&=\frac{\mathrm{T}}{2 \pi \mathrm{r}^{2} \times 0.707 \mathrm{~s}} \\
&=\frac{\mathrm{T}}{2 \pi \times \frac{\mathrm{d}^{2}}{4} \times 0.707 \times \mathrm{s}} \\
& \tau=\frac{2.83 \mathrm{~T}}{\pi \mathrm{sd}^{2}} \\
& \mathrm{~s}=\text { Size of the weld }^{\mathrm{T}}=\frac{70 \times \pi \times 10 \times(60)^{2}}{2.83} \\
&=2797460 \mathrm{~N}-\mathrm{mm} \Rightarrow \mathrm{~T}=2.797 \mathrm{kN}-\mathrm{m}
\end{aligned}
$$

06. Ans (a)

Sol: $t=10 \mathrm{~mm}$

$$
\mathrm{d}=15 \times 10^{3} \mathrm{~mm}
$$

$$
\frac{\mathrm{S}_{\mathrm{yt}}}{\mathrm{FS}}=85 \mathrm{MPa}
$$

$\sigma_{l}=\sigma_{\mathrm{h}}=\frac{\mathrm{pd}}{4 \mathrm{t}}=\sigma_{1}$
According to Rankine Theory
$\sigma_{1}=\frac{\mathrm{S}_{\mathrm{yt}}}{\mathrm{FS}}$
$\frac{\mathrm{pd}}{4 \mathrm{t}}=85$
$\Rightarrow \frac{\mathrm{p} \times 15 \times 10^{3}}{4 \times 10}=85$
$\Rightarrow \mathrm{p}=0.226 \mathrm{MPa}$
07. Ans: (b)

Sol:

$\mathrm{D}_{2}=200 \mathrm{~mm}$
$\mathrm{D}_{0}=210 \mathrm{~mm}$,

$$
\frac{\mathrm{S}_{\mathrm{sy}}}{\mathrm{FS}}=110 \mathrm{MPa}
$$

$\mathrm{s}=\frac{210-205}{2}=2.5 \mathrm{~mm}$
$\mathrm{t}=0.707 \mathrm{~s}=0.707 \times 2.5=1.7675 \mathrm{~mm}$
Force $=$ Pressure \times Area

$$
=\mathrm{P} \times \frac{\pi}{4} \mathrm{D}_{2}^{2}
$$

$$
\begin{equation*}
\mathrm{F}=\pi \mathrm{D}_{1} \mathrm{t} \times \frac{\mathrm{S}_{\mathrm{sy}}}{\mathrm{FS}} \tag{2}
\end{equation*}
$$

Equate (1) \& (2)

$$
\begin{aligned}
& \mathrm{P} \times \frac{\pi}{4} \mathrm{D}_{2}^{2}=\pi \mathrm{D}_{1} \mathrm{t} \frac{\mathrm{~S}_{\text {sy }}}{\mathrm{FS}} \\
& \mathrm{P}=\frac{205 \times 4 \times 1.7675}{(200)^{2}} \times 110
\end{aligned}
$$

$\mathrm{P}=3.9857 \mathrm{MPa}$

Linked questions (Q.08 \&Q.09)

8. Ans: (a)
9. Ans: (a)

Sol: Given:

$$
\begin{array}{rlrl}
\tau & =75 \mathrm{~N} / \mathrm{mm}^{2}, & \mathrm{~s}=10 \mathrm{~mm} \\
\mathrm{P}=200 \mathrm{kN}, & \mathrm{a}=145 \mathrm{~mm}
\end{array}
$$

$$
\mathrm{P}=200 \times 10^{3} N
$$

$$
\mathrm{b}=55 \mathrm{~mm}
$$

$$
\begin{aligned}
\mathrm{P} & =\tau \times 0.707 s \times l \\
200 \times 10^{3} & =75 \times 0.707 \times 10 \times \ell
\end{aligned}
$$

$$
l=\frac{200 \times 10^{3}}{75 \times 0.707(10)}
$$

$$
l=377.18 \mathrm{~mm}
$$

$$
l_{\mathrm{a}}=\frac{l \times b}{a+b}
$$

$$
=\frac{377.18 \times 55}{(145+55)}=103.72 \mathrm{~mm}
$$

For calculating force carried by top weld

$$
\begin{aligned}
\mathrm{P} & =\tau \times 0.707 \times \mathrm{s} \times \ell_{\mathrm{a}} \\
& =75 \times 0.707 \times 10 \times 103.7 \\
& =54986.9 \mathrm{~N} \\
\mathrm{P} & =54.9 \mathrm{kN} \approx 55 \mathrm{kN}
\end{aligned}
$$

$1{ }^{2} \mathrm{ACE}$	21	Machine Design

10. Ans: (a, d)

Sol: In first case; primary and secondary stresses, both are shear.
In second case; primary stress is shear but secondary stress is bending stress.

From the figure it is clear that, point B is critical.

Chapter
 7
 Sliding Contact Bearings

1. Ans: (b)

Sol: Given:
Load, $\mathrm{W}=3 \mathrm{kN}$
$\mathrm{d}=40 \mathrm{~mm}$
$\mathrm{p}=1.3 \mathrm{MPa}=1.3 \mathrm{~N} / \mathrm{mm}^{2}$
$\operatorname{Pressure}(\mathrm{p})=\frac{\mathrm{W}}{l \times \mathrm{d}}$

$$
l=\frac{\mathrm{W}}{p \times \mathrm{d}}
$$

$$
=\frac{3000}{1.3 \times 40}
$$

$$
l=57.69 \mathrm{~mm}
$$

$$
\frac{\ell}{\mathrm{d}}=\frac{57.69}{40}=1.44 \approx 1.45
$$

2. Ans: (a)

Sol:

$\frac{\ell}{\mathrm{d}}=1.5$
$\mathrm{d}=25 \mathrm{~mm} \quad l=500 \mathrm{~mm}$
$\mathrm{W}=2.2 \mathrm{kN}$
$\mathrm{a}=300 \mathrm{~mm}$
$\mathrm{P}=$?
$\Sigma \mathrm{M}_{\mathrm{B}}=0$
$\mathrm{R}_{\mathrm{A}} \times 500=2.2 \times 300$

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups \& PSC Exams

(1) ACE	22	GATE - Text Book Solutions

$\mathrm{R}_{\mathrm{A}}=1.32 \mathrm{kN}$
$\mathrm{R}_{\mathrm{B}}=2.2 \mathrm{kN}-1.32=0.88 \mathrm{kN}$
Bearing pressure,

$$
\mathrm{P}=\frac{\mathrm{R}_{\mathrm{A}}}{\ell \mathrm{~d}}=\frac{1.32 \times 10^{3}}{25 \times 1.5 \times 25}=1.408 \mathrm{MPa}
$$

03. Ans: (a)

Sol: Given:

$$
\begin{aligned}
& \mathrm{d}=75 \mathrm{~mm}, \quad \mathrm{~N}_{1}=300 \mathrm{rpm} \\
& \mathrm{p}_{1}=1.4 \mathrm{MPa}=1.4 \mathrm{~N} / \mathrm{mm}^{2} \\
& \mu=0.06 \mathrm{~Pa}-\mathrm{sec}, \quad \mathrm{~N}_{2}=400 \mathrm{rpm} \\
& \mathrm{p}_{2}=? \\
& \frac{\mu_{1} \mathrm{~N}_{1}}{\mathrm{p}_{1}}=\frac{\mu_{2} \mathrm{~N}_{2}}{\mathrm{p}_{2}}
\end{aligned}
$$

Since, same oil is used μ is same i.e. $\mu_{1}=\mu_{2}$

$$
\begin{aligned}
\Rightarrow \frac{\mathrm{N}_{1}}{\mathrm{p}_{1}} & =\frac{\mathrm{N}_{2}}{\mathrm{p}_{2}} \\
\frac{300}{1.4} & =\frac{400}{\mathrm{p}_{2}} \\
\mathrm{p}_{2} & =\frac{400 \times 1.4}{300} \\
\mathrm{p}_{2} & =1.87 \mathrm{MPa}
\end{aligned}
$$

04. Ans: (b)

Sol: Given: Eccentricity ratio, $\in=0.8$

$$
\epsilon=1-\frac{\mathrm{h}_{0}}{\mathrm{c}}
$$

$\frac{h_{0}}{\mathrm{c}}=1-0.8$
$\frac{\mathrm{h}_{0}}{\mathrm{c}}=0.2$

05. Ans: (a)

Sol: $d=150 \mathrm{~mm}=0.15 \mathrm{~m}$
$\mathrm{L}=225 \mathrm{~mm}=0.225 \mathrm{~mm}$
$\operatorname{Load}(\mathrm{W})=9 \mathrm{kN}=9000 \mathrm{~N}$

$$
\mathrm{c}=0.075 \mathrm{~mm}
$$

Diametral clearance

$$
\begin{aligned}
\left(\mathrm{C}_{\mathrm{d}}\right) & =2 \times 0.075=0.15 \mathrm{~mm} \\
& =0.15 \times 10^{-3} \mathrm{~m} \\
\mathrm{~N} & =1000 \mathrm{rpm}
\end{aligned}
$$

Heat dissipated by bearing $=90 \mathrm{~kJ} / \mathrm{min}$
$\mathrm{H}=\frac{90}{60} \mathrm{~kW}=1.5 \mathrm{~kW}$
Heat generated at the bearing $=1500 \mathrm{~W}$
$V=\frac{\pi \mathrm{dN}}{60}=\frac{\pi \times 0.15 \times 1000}{60}$
$\mathrm{V}=7.85 \mathrm{~m} / \mathrm{sec}$,
$\mathrm{f}=$ coefficient of friction
Load $(W)=9000 \mathrm{~N}$
Heat generated $=f . V . W$

$$
\begin{aligned}
1500 & =\mathrm{f}(7.85)(9000) \\
\mathrm{f} & =\frac{1500}{7.85 \times 9000}=0.021 \\
\frac{\mathrm{~d}}{\mathrm{C}_{\mathrm{d}}} & =\frac{150}{2 \times 0.075}=1000
\end{aligned}
$$

Pressure $(\mathrm{p})=\frac{\text { Load }}{l \times \mathrm{d}}$
$\mathrm{p}=\frac{9000}{0.15 \times 0.225}=0.267 \mathrm{MPa}$
According to Mckee equation
$\mathrm{f}=0.326\left(\frac{\mu \mathrm{~N}}{\mathrm{p}}\right)\left(\frac{\mathrm{d}}{\mathrm{C}_{\mathrm{d}}}\right)+0.002$

ACE	23	Machine Design

$$
\begin{aligned}
0.0212 & =0.326\left(\frac{\mu \times 1000}{0.267 \times 10^{6}}\right) 1000+0.002 \\
\mu & =0.0157 \mathrm{~Pa}-\mathrm{sec}
\end{aligned}
$$

06. Ans: (a)

Sol: Given:

$\mathrm{d}=50 \mathrm{~mm}, \quad l=75 \mathrm{~mm}, \quad \mathrm{f}=0.0015$
$\mathrm{p}=2 \mathrm{MPa}, \quad \mathrm{N}=500 \mathrm{rpm}$
$\mathrm{C}=11.6 \mathrm{~W} / \mathrm{m}^{20} \mathrm{C}, \quad \mathrm{T}_{\mathrm{r}}=28^{\circ} \mathrm{C}$
Heat lost in friction $=f \times W \times V$

$$
\begin{aligned}
& =(\mathrm{f})(\mathrm{p} \times l \times \mathrm{d})\left(\frac{\pi \mathrm{dN}}{60}\right) \\
& =0.0015 \times 2 \times 50 \times 75 \times \frac{\pi \times 0.05 \times 500}{60} \\
& =14.72 \mathrm{Nm} / \mathrm{sec} \\
& 14.72=\mathrm{CA}\left(\mathrm{~T}_{\mathrm{s}}-\mathrm{T}_{\mathrm{r}}\right) \\
& 14.72=11.6 \times 0.05 \times 0.075 \times 8\left(\mathrm{~T}_{\mathrm{s}}-28\right) \\
& \quad \mathrm{T}_{\mathrm{s}}=70.2^{\circ} \mathrm{C}
\end{aligned}
$$

Linked Answer Question 07 \& 08

7. Ans: (a)
8. Ans: (c)

Sol: Given:

$$
\begin{aligned}
\mathrm{d} & =100 \mathrm{~mm}=0.1 \mathrm{~m} \\
l & =150 \mathrm{~mm}=0.15 \mathrm{~m} \\
\mathrm{~W} & =4.5 \mathrm{kN}=4500 \mathrm{~N} \\
\mathrm{~N} & =600 \mathrm{rpm} \\
\mu & =18.5 \times 10^{-3} \mathrm{~kg} / \mathrm{m}-\mathrm{s}=0.0185 \mathrm{~kg} / \mathrm{m}-\mathrm{s} \\
\mathrm{C}_{\mathrm{d}} & =0.1 \\
\epsilon & =0.4
\end{aligned}
$$

Sommerfeld Number $=\left(\frac{\mu N_{s}}{p}\right)\left(\frac{d}{C_{d}}\right)^{2}$
Here pressure $(\mathrm{p})=\frac{W}{A}=\frac{W}{l \times d}$

$$
\begin{aligned}
& =\frac{4500}{0.15 \times 0.1}=30 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2} \\
\mathrm{P} & =0.3 \mathrm{MPa}
\end{aligned}
$$

Sommerfeld no "S"

$$
=\frac{0.0185 \times\left(\frac{600}{60}\right)}{0.3 \times 10^{6}}\left(\frac{100}{0.1}\right)^{2}
$$

$$
=0.617
$$

Eccentricity ratio, $\in=1-\frac{\mathrm{h}_{0}}{\left(\frac{\mathrm{C}_{\mathrm{d}}}{2}\right)}$

$$
0.4=1-\frac{\mathrm{h}_{0}}{\left(\frac{0.1}{2}\right)}
$$

$$
\mathrm{h}_{0}=0.03 \mathrm{~mm}
$$

9. Ans: (a)

Sol: Given

$$
\begin{aligned}
\mathrm{W} & =150 \mathrm{kN}, \quad \mathrm{~N}=1800 \mathrm{rpm} \\
\mathrm{~d} & =300 \mathrm{~mm}=0.3 \mathrm{~m} \\
\mathrm{p} & =1.6 \mathrm{~N} / \mathrm{mm}^{2}=1.6 \times 10^{6} \mathrm{~Pa} \\
\mathrm{C}_{\mathrm{d}} & =0.25, \quad \mu=20 \times 10^{-3} \mathrm{~Pa}-\mathrm{sec} \\
\mathrm{~K} & =0.002 \\
\mathrm{f} & =\left[0.326\left(\frac{\mu \mathrm{~N}}{\mathrm{p}}\right)\left(\frac{\mathrm{d}}{\mathrm{C}_{\mathrm{d}}}\right)+\mathrm{K}\right] \\
& =\left[0.326\left(\frac{20 \times 10^{-3} \times 1800}{1.6 \times 10^{6}}\right)\left(\frac{300}{0.25}\right)+0.002\right] \\
& =0.01
\end{aligned}
$$

Heat generation $=0.01 \times 150 \times \pi \times \mathrm{d} \times \mathrm{N}$

$$
\begin{aligned}
& =0.01 \times 150 \times \pi \times 0.3 \times 1800 \\
& =2748.7 \mathrm{~kJ} / \mathrm{min}
\end{aligned}
$$

10. Ans: (a)

Sol: Given: $d_{1}=75 \mathrm{~mm}, \mathrm{~d}_{2}=12 \mathrm{~mm}$

$$
\mathrm{p}=0.6 \mathrm{MPa}=0.6 \mathrm{~N} / \mathrm{mm}^{2}
$$

Area $=\frac{\pi}{4}\left(\mathrm{~d}_{1}^{2}-\mathrm{d}_{2}^{2}\right)$

$$
\begin{aligned}
& \mathrm{A}=\frac{\pi}{4}\left(75^{2}-12^{2}\right) \\
& \mathrm{A}=4304.77 \mathrm{~mm}^{2}
\end{aligned}
$$

Axial load $=p \times A$

$$
\begin{aligned}
& =0.6 \times 4304.77 \mathrm{~N} \\
& =2582.862 \mathrm{~N} \\
\mathrm{P} & =2.58 \mathrm{kN}
\end{aligned}
$$

11. Ans: (a)

Sol: $d=60 \mathrm{~mm}=0.06 \mathrm{~m}$
$\mathrm{N}=600 \mathrm{rpm}, \quad \mathrm{P}=120 \mathrm{kPa}$
$\mu=0.05$
For foot step bearing

$$
\begin{aligned}
\mathrm{T}_{\mathrm{f}} & =\frac{2}{3} \mu \times \mathrm{F} \times \mathrm{r} \\
& =\frac{2}{3} \times 0.05 \times 120 \times 10^{3} \times \frac{\pi}{4} \times 0.06^{2} \times 0.03 \\
\mathrm{~T}_{\mathrm{f}} & =0.339 \mathrm{~N}-\mathrm{m} \\
\mathrm{P} & =\frac{2 \pi \mathrm{NT}_{\mathrm{f}}}{60} \\
& =\frac{2 \pi \times 600 \times 0.339}{60}=21.29 \mathrm{~W}
\end{aligned}
$$

12. Ans: (b, c)

Sol: For a hydrodynamic bearing following statements are true:

- In counter-clockwise rotation of shaft at low speeds, the centre of shaft will shift to left side of bearing.
- In counter-clockwise rotation of shaft at high speeds, the centre of shaft will shift to right side of bearing.
Note: Correct answer key is (b \& c)

ACE	25	Machine Design

Chapter
 8
 Rolling Contact Bearings

1. Ans: (b)

Sol: Given: 6210 bearing
$\mathrm{C}=22.5 \mathrm{kN}$
$\mathrm{L}=27$ million rev
6 - series - Ball bearing

$$
\mathrm{L}_{10}=\left(\frac{\mathrm{C}}{\mathrm{P}}\right)^{3}
$$

$\mathrm{K}=3$ for Ball bearing

$$
\begin{aligned}
& 27=\left(\frac{22.5}{\mathrm{P}}\right)^{3} \\
& \mathrm{P}^{3}=\frac{11.39 \times 10^{3}}{27}
\end{aligned}
$$

$$
\mathrm{P}=7.5 \mathrm{kN}
$$

2. Ans: (b)

Sol: Given: C $=48.545 \mathrm{kN}$

$$
\begin{array}{r}
\mathrm{L}=6000 \mathrm{hrs} \\
\mathrm{~N}=500 \mathrm{rpm} \\
\mathrm{~L}_{10}=\left(\frac{\mathrm{C}}{\mathrm{P}}\right)^{\mathrm{K}}
\end{array}
$$

For Ball bearing, $\mathrm{K}=3$
$\mathrm{L}_{10}=\left(\frac{48.545}{\mathrm{P}}\right)^{3}$
$\mathrm{L}_{10}=\frac{\mathrm{L}_{50}}{5}=\left(\frac{48.545}{\mathrm{P}}\right)^{3}$
$\mathrm{L}_{50}=\frac{60 \mathrm{NL}_{\mathrm{H}}}{10^{6}}=\frac{60 \times 500 \times 6000}{10^{6}}$
$=180$ million rev
$\mathrm{L}_{10}=\frac{\mathrm{L}_{50}}{5}=\frac{180}{5}=\left(\frac{48.545}{\mathrm{P}}\right)^{3}$
$36=\left(\frac{48.545}{\mathrm{P}}\right)^{3}$
$\mathrm{P}=14.7 \mathrm{kN}$

Linked Answer Question (03 \& 04)

3. Ans: (a)
4. Ans: (c)

Sol: $\mathrm{F}_{\mathrm{r}}=2.5 \mathrm{kN}$

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{a}}=1.5 \mathrm{kN} \\
& \mathrm{C}_{\mathrm{s}}=1.5 \\
& \mathrm{~N}=1000 \mathrm{rpm} \\
& \mathrm{X}=0.56 \\
& \mathrm{Y}=1.4, \mathrm{~V}=\text { race rotation factor }=1
\end{aligned}
$$

Equivalent load $(\mathrm{P})=\left(\mathrm{XVF}_{\mathrm{r}}+\mathrm{YF}_{\mathrm{a}}\right) \mathrm{C}_{\mathrm{s}}$
V for most bearings $=1$
$\mathrm{P}=[(0.56 \times 1 \times 2.5)+(1.4 \times 1.5)] 1.5$
$\mathrm{P}=[11.4+2.1] 1.5$
$\mathrm{P}=(3.5)(1.5)$
$\mathrm{P}=5.25 \mathrm{kN}$
$\mathrm{L}_{10}=\left(\frac{\mathrm{C}}{\mathrm{P}}\right)^{\mathrm{K}}$
$\mathrm{K}=3$ for ball bearing

$$
\begin{aligned}
\mathrm{L}_{\mathrm{H}} & =\frac{40 \mathrm{hrs}}{\text { week }} \times \frac{52 \text { weeks }}{\mathrm{yr}} \times 5 \text { years } \\
& =10,400 \mathrm{hrs}
\end{aligned}
$$

ACE	26	GATE - Text Book Solutions

$$
\begin{aligned}
\mathrm{L} & =\frac{60 \times \mathrm{N} \times \mathrm{L}_{\mathrm{H}}}{10^{6}} \\
& =\frac{60 \times 1000 \times 10,400}{10^{6}} \\
\mathrm{~L} & =624 \text { million revolutions } \\
\mathrm{L}_{10} & =\left(\frac{\mathrm{C}}{\mathrm{P}}\right)^{3} \\
624 & =\left(\frac{\mathrm{C}}{5.25}\right)^{3} \\
\frac{\mathrm{C}}{5.25} & =8.545 \\
\mathrm{C} & =44.86 \mathrm{kN}
\end{aligned}
$$

Linked Answer Question (05 \& 06)

5. Ans: (c)
6. Ans: (a)

Sol: Given C $=16.6 \mathrm{kN}$
$\%$ of element time $=\alpha$
$\mathrm{N}_{1}=\alpha_{1} \mathrm{n}_{1}=\frac{30}{100} \times 900=270$
$\mathrm{N}_{2}=\alpha_{2} \mathrm{n}_{2}=\frac{40}{100} \times 1440=576$
$\mathrm{N}_{3}=\alpha_{3} \mathrm{n}_{3}=\frac{30}{100} \times 720=216$
$\mathrm{N}=270+576+216=1062$
$\mathrm{P}=\left(\frac{\mathrm{N}_{1} \mathrm{P}_{1}^{3}+\mathrm{N}_{2} \mathrm{P}_{2}^{3}+\mathrm{N}_{2} \mathrm{P}_{3}^{3}}{\mathrm{~N}_{1}+\mathrm{N}_{2}+\mathrm{N}_{3}}\right)^{1 / \mathrm{K}}$
$\mathrm{K}=3$ for Ball bearing

$$
\mathrm{P}=\left[\frac{\left(270 \times 5^{3}\right)+\left(576 \times 7^{3}\right)+\left(216 \times 3^{3}\right)}{270+576+216}\right]^{1 / 3}
$$

$$
\begin{aligned}
& =\left[\frac{33750+197568+5832}{1062}\right]^{\frac{1}{3}} \\
& =\left[\frac{237150}{1062}\right]^{1 / 3}
\end{aligned}
$$

$\mathrm{P}=6.067 \mathrm{kN}$
$L=\left(\frac{C}{P}\right)^{K}$
$L=\left(\frac{16.6}{6.067}\right)^{3}$
$\mathrm{L}=20.5$ million rev

Linked Answer Question (07 to 10)
07. Ans: (b)
08. Ans: (a)
09. Ans: (b)
10. Ans: (a)

Sol: Given:
$\mathrm{T}_{1}=3 \mathrm{kN}$
$\mathrm{T}_{2}=1.5 \mathrm{kN}$
$\mathrm{F}_{\mathrm{a}}=2 \mathrm{kN}$
$\mathrm{L}_{\mathrm{H}}=5000 \mathrm{hrs}$
$\mathrm{X}=0.56$
$\mathrm{Y}=1.5$

$\mathrm{W}=$ weight of pulley $=1 \mathrm{kN}$

Resultant Radial load of shaft $=\sqrt{(3+1.5)^{2}+1^{2}}$

$$
\mathrm{R}=4.61 \mathrm{kN}=\mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}
$$

Take $\sum \mathrm{M}_{\mathrm{B}}=0$

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{A}} \times 500=\mathrm{R} \times 300 \\
& \mathrm{R}_{\mathrm{A}}=\frac{4.61 \times 300}{500} \\
& \mathrm{R}_{\mathrm{A}}=2.766 \mathrm{kN}, \\
& \mathrm{R}_{\mathrm{B}}=1.8436 \mathrm{kN} \\
& \text { Equivalent load } \\
& \mathrm{P}=\left[\mathrm{XVF}_{\mathrm{r}}+\mathrm{F}_{\mathrm{a}} \mathrm{Y}\right] \\
&=(0.56 \times 1 \times 2.76)+(1.5 \times 2) \\
& \mathrm{P}=4.546 \mathrm{kN}
\end{aligned}
$$

Dynamic load rating
$\mathrm{L}_{10}=\left(\frac{\mathrm{C}}{\mathrm{P}}\right)^{\mathrm{K}}, \quad[\mathrm{K}=3$ For Ball bearing $]$
$\mathrm{L}_{10}=\frac{60 \times 400 \times 5000}{10^{6}}=120$ million rev
$120=\left(\frac{\mathrm{C}}{4.55}\right)^{3}$
$\mathrm{C}=22.44 \mathrm{kN}$
11. Ans: (b, d)

Sol: $\frac{\mathrm{L}_{95}}{\mathrm{~L}_{90}}=\left\{\frac{\log _{\mathrm{e}}(1 / 0.95)}{\log _{\mathrm{e}}(1 / 0.9)}\right\}^{1 / 1.17}$
$\mathrm{L}_{90}=\mathrm{L}_{95} \times 0.54$
$\mathrm{L}_{90}=0.54 \times \frac{5000 \times 60 \times 720}{10^{6}}=\left(\frac{\mathrm{C}}{2000}\right)^{10 / 3}$
$\therefore \mathrm{C}=8340.8 \mathrm{~N}$
Reliability of system,

$$
\mathrm{R}_{\mathrm{s}}=\mathrm{R}^{\mathrm{N}}=(0.95)^{3}=85.73 \%
$$

Chapter
 9
 Clutch Design

1. Ans: (b)

Sol: Given,

$$
\begin{aligned}
\mathrm{W} & =1000 \mathrm{~N}, \quad \mathrm{n}=2 \\
\mathrm{r}_{1} & =150 \mathrm{~mm}=0.15 \mathrm{~mm} \\
\mathrm{r}_{2} & =100 \mathrm{~mm}=0.1 \mathrm{~mm} \\
\mu & =0.5
\end{aligned}
$$

Mean Radius $(\mathrm{R})=\frac{r_{1}+r_{2}}{2}$

$$
=\frac{150+100}{2}
$$

$$
\mathrm{R}=125 \mathrm{~mm}
$$

Torque Transmitted,

$$
T=n \mu W R
$$

(For both sides effective $\mathrm{n}=2$)

$$
\begin{aligned}
& =2 \times 0.5 \times 1000 \times 125 \\
& =125000 \mathrm{~N}-\mathrm{mm}
\end{aligned}
$$

$$
\mathrm{T}=125 \mathrm{~N}-\mathrm{m}
$$

Linked Answer Questions (2 \& 3)
02. Ans: (a)
03. Ans: (a)

Sol: $\mathrm{P}=10 \mathrm{~kW}$

$$
\begin{aligned}
& \mathrm{T}=100 \mathrm{~N}-\mathrm{m} \\
& \mathrm{n}=2 \\
& \mathrm{p}_{\max }=0.085 \mathrm{MPa} \\
& \mathrm{~d}_{1}=1.25 \mathrm{~d}_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{r}_{1}=1.25 \mathrm{r}_{2} \\
& \mu=0.3
\end{aligned}
$$

$\mathrm{T}=\frac{\mu \mathrm{W}\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right)}{2} \times \mathrm{n}$ for uniform wear

$$
=\frac{\mu 2 \pi \mathrm{C}\left(\mathrm{r}_{1}-\mathrm{r}_{2}\right)\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right)}{2} \times 2
$$

$$
\left[\because \mathrm{W}=2 \pi \mathrm{C}\left(\mathrm{r}_{1}-\mathrm{r}_{2}\right), \mathrm{C}=\mathrm{p}_{1} \mathrm{r}_{1}=\mathrm{p}_{2} \mathrm{r}_{2}\right]
$$

$$
100=(0.3) 2 \pi(0.085)\left(\mathrm{r}_{2}\right)\left(\mathrm{r}_{1}^{2}-\mathrm{r}_{2}^{2}\right)
$$

$$
100 \times 10^{3}=(0.3) 2 \pi(0.085)\left(\mathrm{r}_{2}\right)\left[\left(1.25 \mathrm{r}_{2}\right)^{2}-\mathrm{r}_{2}^{2}\right]
$$

$\mathrm{r}_{1}=130 \mathrm{~mm}, \quad \mathrm{~d}_{1}=260 \mathrm{~mm}$
$\mathrm{r}_{2}=104 \mathrm{~mm}, \quad \mathrm{~d}_{2}=208 \mathrm{~mm}$
$\mathrm{W}=2 \pi \mathrm{C}\left(\mathrm{r}_{1}-\mathrm{r}_{2}\right)$
$=2 \pi\left(\mathrm{p}_{\max }\right)\left(\mathrm{r}_{2}\right)\left(\mathrm{r}_{1}-\mathrm{r}_{2}\right)$
$=2 \pi(0.085)(104)(130-104)$
$\mathrm{W}=1.44 \mathrm{kN}$
04. Ans: (c)

Sol: Given,
$\mu=0.5$
$\mathrm{r}_{1}=150 \mathrm{~mm}=0.15 \mathrm{~m}$
$\mathrm{r}_{2}=100 \mathrm{~mm}=0.1 \mathrm{~m}$
$\mathrm{T}=0.4 \mathrm{kN}-\mathrm{m}=400 \mathrm{~N}-\mathrm{m}$
$\mathrm{n}_{1}+\mathrm{n}_{2}=5$,
$\mathrm{n}=$ No. of pairs of contact surface

$$
\begin{aligned}
\mathrm{n} & =\mathrm{n}_{1}+\mathrm{n}_{2}-1=5-1=4 \\
\mathrm{R} & =\frac{r_{1}+r_{2}}{2}=\frac{0.15+0.1}{2}=0.125 \mathrm{~m} \\
\mathrm{~T} & =\mathrm{n} \mu \mathrm{~W} \mathrm{R} \\
400 & =4(0.5)(\mathrm{W}) 0.125 \\
\mathrm{~W} & =1600 \mathrm{~N}
\end{aligned}
$$

\because Four springs exert axial load,
Load per spring $=\frac{1600}{4}=400 \mathrm{~N}$

Linked Answer Question (05 \& 06)

5. Ans: (b)

Sol: $\mathrm{N}=1000 \mathrm{rpm}$,
$2 \alpha=24^{0} \Rightarrow \alpha=12^{0}$
$\mu=0.2$,
$\mathrm{r}_{\mathrm{m}}=150 \mathrm{~mm}, \quad \mathrm{P}=20 \mathrm{~kW}$
$\mathrm{p}=70 \mathrm{kN} / \mathrm{m}^{2}$
$\mathrm{T}=\frac{60 \mathrm{P}}{2 \pi \mathrm{~N}}=\mu \mathrm{W}_{\mathrm{n}} \mathrm{r}_{\mathrm{m}}=\mu \mathrm{W}_{\mathrm{n}}\left(\frac{\mathrm{r}_{1}+\mathrm{r}_{2}}{2}\right)$
$\mathrm{T}=\frac{60(20) \times 1000}{2 \pi(1000)}=191 \mathrm{~N}-\mathrm{m}$
$191 \times 10^{3} \mathrm{~N}-\mathrm{mm}=0.2 \times \mathrm{W}_{\mathrm{n}} \times 150$
$\mathrm{W}_{\mathrm{n}}=6366.19 \mathrm{~N} \quad\left[\therefore \mathrm{~W}_{\mathrm{a}}=\mathrm{W}_{\mathrm{n}} \sin \alpha\right]$
$\mathrm{W}_{\mathrm{a}}=1323.60 \mathrm{~N}$

Force required for engagement

$$
\begin{aligned}
\mathrm{W}_{\mathrm{ae}} & =\mathrm{W}_{\mathrm{a}}+\mu \mathrm{W}_{\mathrm{n}} \cos \alpha \\
& =1323.60+[0.2 \times 6366.19 \times \cos 12] \\
\mathrm{W}_{\mathrm{ae}} & =2.56 \mathrm{kN}
\end{aligned}
$$

¢ ${ }^{\circ} \mathrm{ACD}$	29	Machine Design

06. Ans: (b)

Sol: $\quad W_{n}=p \times 2 \pi r_{m} \times b$

$$
\begin{aligned}
6366.19 & =70 \times 10^{3} \times 2 \times \pi \times 0.15 \times \mathrm{b} \\
\Rightarrow \mathrm{~b} & =0.0964 \mathrm{~m}=96.4 \mathrm{~mm}
\end{aligned}
$$

Common Data for Q. 07\& 08

7. Ans: (c)
8. Ans: (a)

Sol: Given :
$\mathrm{d}_{1}=120 \mathrm{~mm}, \quad \mathrm{~d}_{2}=200 \mathrm{~mm}$
$\mathrm{I}=20 \mathrm{~kg}-\mathrm{m}^{2}, \quad \mathrm{t}=5 \mathrm{sec}, \quad \mu=0.3$
$\mathrm{N}_{1}=200 \mathrm{rpm}$,
$\omega_{1}=\frac{2 \pi \mathrm{~N}}{60}=\frac{2 \times \pi \times 200}{60}=20.95 \mathrm{rad} / \mathrm{s}$
$\omega_{2}=0$
$\alpha=\frac{\omega_{1}-\omega_{2}}{\mathrm{t}}=\frac{20.95}{5}=4.18 \mathrm{rad} / \mathrm{s}^{2}$
Torque $\mathrm{T}=\mathrm{I} \alpha=20 \times 4.18=83.6 \mathrm{~N}-\mathrm{m}$

$$
\mu=0.3
$$

For uniform pressure,

$$
\begin{aligned}
\mathrm{T} & =\frac{2}{3} \mu \mathrm{~W}\left[\frac{\mathrm{r}_{1}^{3}-\mathrm{r}_{2}^{3}}{\mathrm{r}_{1}^{2}-\mathrm{r}_{2}^{2}}\right] \times \mathrm{n} \\
83.6 \times 10^{3} & =\frac{2}{3} \times 0.3 \times \mathrm{W}\left[\frac{100^{3}-60^{3}}{100^{2}-60^{2}}\right] \times 2 \\
\mathrm{~W} & =1706.12 \mathrm{~N}
\end{aligned}
$$

9. Ans: (d)

Sol: Given,

$$
\begin{array}{cl}
\mathrm{n}=4, & \mathrm{P}=21 \mathrm{~kW} \\
\mathrm{~N}=750 \mathrm{rpm}, & \omega_{1}=0.75 \omega_{2} \\
\mathrm{R}=300 \mathrm{~mm}, & \mathrm{r}=125 \mathrm{~mm}, \quad \mu=0.25
\end{array}
$$

$\mathrm{T}=\frac{60 \mathrm{P}}{2 \pi \mathrm{~N}}=318.3 \mathrm{~N}-\mathrm{m}$
$\omega_{2}=\frac{2 \pi \mathrm{~N}}{60}=78.5 \mathrm{rad} / \mathrm{s}$
$318.3=\mathrm{n} \times \mu \times \operatorname{mr}\left(\omega_{2}^{2}-\omega_{1}^{2}\right) \times \mathrm{R}$
$318.3=4 \times 0.25 \times \mathrm{m} \times 0.125\left(1-\frac{9}{16}\right) \times 78.5^{2} \times 0.15$
$\mathrm{m}=6.3 \mathrm{~kg}$

10. Ans: $\mathbf{1 5 7} \mathbf{m m} \& \mathbf{1 3 5 . 2 2} \mathbf{~ m m}$

Sol: Centrifugal force between each shoe and drum
$\mathrm{F}=\operatorname{mr}\left(\omega_{2}^{2}-\omega_{1}^{2}\right)$
$\mathrm{F}=2123.08 \mathrm{~N}$
Area $=\frac{F}{0.1}=21230.87 \mathrm{~mm}^{2}$
width \times arc length $=\mathrm{w} \times \frac{\pi}{3} \times 150=21230.87$
$\mathrm{w}=135.22 \mathrm{~mm}$
Length $=\frac{\pi}{3} \times 150=157 \mathrm{~mm}$
Length $=157 \mathrm{~mm}$
Width $=135.22 \mathrm{~mm}$
11. Ans: (a, c)

Sol:

- A new clutch designed based upon uniform wear theory will not slip in working.
- An old clutch designed based upon uniform pressure theory will slip in working.

ACE	30	GATE - Text Book Solutions

Chapter
 10

Linked Answer Questions (01 \& 02)

01. Ans: (b)

Sol: Given, $\mu=0.24, \mathrm{~N}=100 \mathrm{rpm}, \mathrm{r}=150 \mathrm{~mm}$

$$
\Sigma \mathrm{M}_{\text {Pivot }}=0
$$

$$
300 \times 500=\mathrm{R}_{\mathrm{N}} \times 200
$$

$$
\mathrm{R}_{\mathrm{N}}=750 \mathrm{~N}
$$

$$
\mathrm{F}_{\mathrm{t}}=\mu \mathrm{R}_{\mathrm{N}}=180 \mathrm{~N}
$$

$$
\mathrm{T}=\mathrm{F}_{\mathrm{t}} \mathrm{r}
$$

$$
=180 \times\left(\frac{300}{2}\right) \times 10^{-3}=27 \mathrm{~N}-\mathrm{m}
$$

2. Ans: (a)

Sol: $\omega_{1}=\frac{2 \pi \times 100}{60}=10.47 \mathrm{rad} / \mathrm{sec}$

$$
\omega_{2}=0
$$

Capacity to bring the system to rest from $100 \mathrm{rpm}=$ work done $=$ Heat generation $=$ $T \times \theta$

$$
\begin{aligned}
& =\mathrm{T} \times\left(\frac{\omega_{1}+\omega_{2}}{2}\right) \mathrm{t} \\
& =27 \times 5.235 \times 5=706.725 \mathrm{~J}
\end{aligned}
$$

3. Ans: (b)

Sol: $\mu=0.3$

$$
\begin{aligned}
2 \theta & =90^{\circ}=\pi / 2 \mathrm{rad} \\
\theta & =45^{\circ}
\end{aligned}
$$

Equivalent coefficient of friction

$$
\begin{aligned}
\mu^{1} & =\frac{4 \mu \sin \theta}{2 \theta+\sin 2 \theta} \\
& =\frac{4 \times 0.3 \times \sin 45^{0}}{\pi / 2+\sin 90^{0}} \\
& =\frac{0.848}{2.57}=0.329=0.33
\end{aligned}
$$

Common Data Question 04 \& 05
04. Ans: (c)

Sol:

$\mathrm{T}=450 \mathrm{~N}-\mathrm{m}$
$\mu=$?
$\mathrm{P}=220 \mathrm{~N}$
$\mathrm{a}=50 \mathrm{~mm}$
$\mathrm{b}=100 \mathrm{~mm}$
$\sum \mathrm{M}_{\text {pivot }}=0$
$(220 \times 200)-\left(\mathrm{T}_{2} \times 100\right)+\left(\mathrm{T}_{1} \times 50\right)=0$
$\mathrm{T}_{2} \times 100-50 \mathrm{~T}_{1}=220 \times 200$ \qquad
$\mathrm{T}=\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right) \times \mathrm{r}$
$\mathrm{T}=\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)\left(\frac{0.150}{2}\right)$
$\mathrm{T}_{1}-\mathrm{T}_{2}=6000$
From (1) and (2) $\mathrm{T}_{1}=12880 \mathrm{~N}$

$$
\mathrm{T}_{2}=6880 \mathrm{~N}
$$

$$
\begin{aligned}
\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}} & =\mathrm{e}^{\mu \times \theta} \\
\frac{12880}{6880} & =\mathrm{e}^{\mu \times \pi} \\
\Rightarrow \mu & =0.199=0.2
\end{aligned}
$$

5. Ans: (a)

Sol:

We know that

$$
\ln \left(\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}\right)=\mu \theta
$$

Here, $\mu=0.4$, as given
$\ln \left(\frac{T_{1}}{T_{2}}\right)=0.4 \times \pi$
$\ln \left(\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}\right)=0.546$
(or)

$$
\begin{align*}
& \left(\frac{T_{1}}{T_{2}}\right)=e^{\mu \theta} \\
& \left(\frac{T_{1}}{T_{2}}\right)=\mathrm{e}^{(0.4 \times \pi)} \\
& \left(\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}\right)=3.51 \ldots \tag{1}
\end{align*}
$$

Here when the drum rotates in anti clockwise direction. T_{1} will be attached to B and T_{2} will be attached to A. i.e. tight side and slack side tensions will be changed.

Taking moments about "O"

$$
\begin{equation*}
220 \times 200+\mathrm{T}_{2} \times 50=\mathrm{T}_{1} \times 100 \tag{2}
\end{equation*}
$$

By solving $1 \& 2$

$$
\mathrm{T}_{2}=146.17 \mathrm{~N}, \mathrm{~T}_{1}=513 \mathrm{~N}
$$

Torque $=\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right) \times \mathrm{r}$

$$
=(513-146.17) \times 75 \times 10^{-3}
$$

$$
=27.5 \mathrm{~N}-\mathrm{m}
$$

Linked Answer Questions 06 \& 07
06. Ans: (b)

Sol: $d=250 \mathrm{~mm}$

$$
\begin{aligned}
& \rho=7200 \mathrm{~kg} / \mathrm{m}^{3} \\
& \mathrm{t}=20 \mathrm{~mm} \\
& \tau=0.40 \mathrm{sec} \\
& \mathrm{~N}=500 \mathrm{rpm}
\end{aligned}
$$

Energy absorbed by brake

$$
\begin{aligned}
& \mathrm{E}=\frac{1}{2} \mathrm{I}\left(\omega_{2}^{2}-\omega_{1}^{2}\right) \\
& \mathrm{I}
\end{aligned}=\mathrm{mK}^{2}=\rho \mathrm{At}\left(\frac{\mathrm{~d}}{2 \sqrt{2}}\right)^{2}, \begin{aligned}
& \mathrm{I}=7200 \times \frac{\pi}{4}(0.25)^{2}(0.02)\left(\frac{0.250}{2 \sqrt{2}}\right)^{2} \\
&=0.055 \mathrm{kgm}^{2} \\
& \mathrm{~N}_{2}=0 \rightarrow \text { Stop } \\
& \Rightarrow \mathrm{E}=\frac{1}{2}(0.05)\left(\frac{2 \pi \times 500}{60}\right)^{2}=75 \mathrm{~J}
\end{aligned}
$$

7. Ans: (d)

Sol: \quad Energy absorbed, $\mathrm{E}=\mathrm{T} \times \theta$

$$
\begin{aligned}
75 & =\mathrm{T} \times\left(\frac{\omega_{1}+\omega_{2}}{2}\right) \times \mathrm{t} \\
75 & =\mathrm{T} \times\left(\frac{\frac{2 \pi \times 500}{60}+0}{2}\right) \times 0.4 \\
\Rightarrow \mathrm{~T} & =7.16 \mathrm{Nm}
\end{aligned}
$$

Linked Answer Question (08 \& 09)

8. Ans: (c)

Sol: $\quad \mathrm{T}=800 \mathrm{~N}-\mathrm{m}, \quad \mathrm{r}=0.5 \mathrm{~m}$
$\mathrm{T}=\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right) \times \mathrm{r}$
$\Rightarrow \mathrm{T}_{1}-\mathrm{T}_{2}=\frac{800}{0.5}$
$\mathrm{T}_{1}-\mathrm{T}_{2}=1600 \mathrm{~N}$
But, $\mathrm{T}_{2}=300 \mathrm{~N}$

$$
\begin{gathered}
\mathrm{T}_{1}=1900 \mathrm{~N} \\
\frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}=\mathrm{e}^{\mu \theta} \Rightarrow \frac{1900}{300}=\mathrm{e}^{0.45 \times \theta} \\
\theta=235^{\circ}
\end{gathered}
$$

9. Ans: (c)

Sol: $\mathrm{P}_{\max }=\frac{\mathrm{T}_{1}}{\text { r.W }}=\frac{1900}{0.5 \times 0.03}$
$\mathrm{P}_{\text {max }}=126.67 \mathrm{kPa}$

Common Data Question (10 \& 11)

10. Ans: (a)
11. Ans: (b)

Sol: Given
$\mathrm{d}=320 \mathrm{~mm}=0.32 \mathrm{~m}$
$\mathrm{r}=160 \mathrm{~mm}=0.16 \mathrm{~m}$
$\mu=0.3$
$\mathrm{F}=600 \mathrm{~N}$
Taking moments about ' O '

$$
\begin{aligned}
& 600(400+350)-\mathrm{F}_{\mathrm{t}}(200-160)=\mathrm{R}_{\mathrm{N}}(350) \\
& 600(750)-\mathrm{F}_{\mathrm{t}}(40)=\mathrm{R}_{\mathrm{N}}(350) \\
& 450000-\mu \mathrm{R}_{\mathrm{N}}(40)=\mathrm{R}_{\mathrm{N}}(350) \quad\left(\because \mathrm{F}_{\mathrm{t}}=\mu \mathrm{R}_{\mathrm{N}}\right) \\
& 450000-\mathrm{R}_{\mathrm{N}}(12)=\mathrm{R}_{\mathrm{N}}(350) \\
& \mathrm{R}_{\mathrm{N}}(350)+\mathrm{R}_{\mathrm{N}}(12)=45000 \\
& \mathrm{R}_{\mathrm{N}}=\frac{450000}{362} \\
& \mathrm{R}_{\mathrm{N}}=1243 \mathrm{~N}
\end{aligned}
$$

For calculating breaking torque $\left(\mathrm{T}_{\mathrm{B}}\right)$
$\mathrm{F}_{\mathrm{t}}=\mu \mathrm{R}_{\mathrm{N}}$
$\mathrm{F}_{\mathrm{t}}=0.3 \times 1243$
$\mathrm{F}_{\mathrm{t}}=372.9 \mathrm{~N}$
$\mathrm{T}_{\mathrm{B}}=\mathrm{F}_{\mathrm{t}} \times \mathrm{r}=372.9 \times 0.16=59.664$
$\mathrm{T}_{\mathrm{B}}=60 \mathrm{Nm}$

D. ACE	33	Machine Design

Chapter

11

Spur Gear Tooth

1. Ans: (b)

Sol: Given: $\mathrm{T}_{\mathrm{p}}=25, \mathrm{~m}=4, \mathrm{C}=$?

$$
\begin{aligned}
& \quad \mathrm{N}_{\mathrm{p}}=1200 \mathrm{rpm}, \quad \mathrm{~N}_{\mathrm{G}}=200 \mathrm{rpm} \\
& \mathrm{C}= \\
& =\frac{\mathrm{m}\left(\mathrm{~T}_{\mathrm{p}}+\mathrm{T}_{\mathrm{G}}\right)}{2} \\
& \frac{\mathrm{~T}_{\mathrm{P}}}{\mathrm{~T}_{\mathrm{G}}}=\frac{\mathrm{N}_{\mathrm{G}}}{\mathrm{~N}_{\mathrm{P}}} \Rightarrow \mathrm{~T}_{\mathrm{G}}=\frac{1200}{200} \times 25=150 \\
& \mathrm{C}=\frac{4(25+150)}{2}=350 \mathrm{~mm}
\end{aligned}
$$

02. Ans (b)

Sol: Given, $\mathrm{T}_{1}=19, \mathrm{~T}_{2}=37, \mathrm{C}=140 \mathrm{~mm}$

$$
\begin{aligned}
\mathrm{C} & =\frac{\mathrm{m}\left(\mathrm{~T}_{1}+\mathrm{T}_{2}\right)}{2} \\
140 & =\frac{\mathrm{m}(19+37)}{2} \\
\mathrm{~m} & =\frac{140 \times 2}{56}=5 \mathrm{~mm}
\end{aligned}
$$

03. Ans: (c)

Sol: $\mathrm{m}=8 \mathrm{~mm}$
Face width $(\mathrm{w})=90 \mathrm{~mm}$

$$
\mathrm{F}_{\mathrm{t}}=7.56 \mathrm{kN}
$$

Tensile stress $=35 \mathrm{MPa}=\mathrm{S}$
Form factor (y) = ?
Let $\mathrm{C}_{\mathrm{V}}=1$

$$
\begin{aligned}
\mathrm{F}_{\mathrm{t}} & =\mathrm{S} \text { w m y C } \mathrm{C}_{\mathrm{v}} \\
7.56 \times 10^{3} & =35 \times 90 \times 8 \times \mathrm{y} \\
\Rightarrow \quad \mathrm{y} & =0.3
\end{aligned}
$$

4. Ans: (a)

Sol: $\mathrm{P}=9 \mathrm{~kW}, \quad \mathrm{~N}=1440 \mathrm{rpm}$
$\mathrm{d}=100 \mathrm{~mm}, \quad \mathrm{~F}_{\mathrm{t}}=$?
$\mathrm{P}=\mathrm{F}_{\mathrm{t}} \times \mathrm{V}$

$$
\mathrm{F}_{\mathrm{t}}=\frac{\mathrm{P}}{\mathrm{~V}}=\frac{9 \times 10^{3}}{\frac{\pi \times 0.1 \times 1440}{60}}=1.19 \mathrm{kN}
$$

05. Ans (b)

Sol: $P=10 \mathrm{~kW}=10 \times 10^{3} \mathrm{~W}$

$$
\begin{aligned}
& \mathrm{V}=600 \mathrm{~m} / \mathrm{min} \\
& \mathrm{~d}=100 \mathrm{~mm} \Rightarrow \mathrm{r}=50 \mathrm{~mm} \\
& \mathrm{~F}_{\mathrm{t}}=\frac{\mathrm{P}}{\mathrm{~V}} \\
& \quad=\frac{10 \times 10^{3} \times 60}{600}=10^{3} \mathrm{~N} \\
& \mathrm{~F}_{\mathrm{t}}=1 \mathrm{kN} \\
& \text { Torque }=\mathrm{F}_{\mathrm{t}} \times \mathrm{r}=\frac{1 \times 10^{3} \times 50}{1000} \\
& \quad \mathrm{~T}=50 \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

6. Ans: (b)

Sol: Given $P=20 \mathrm{~kW}$

$$
\begin{aligned}
\mathrm{N}_{\mathrm{P}} & =300 \mathrm{rpm} \\
\sigma_{\mathrm{b}} & =80 \mathrm{MPa} \\
\mathrm{y} & =0.094, \\
\mathrm{C}_{\mathrm{v}} & =1 \\
\mathrm{w} & =14 \mathrm{~m} \\
\mathrm{~T}_{\mathrm{p}} & =18, \\
\mathrm{~m} & =? \\
\mathrm{~F}_{\mathrm{t}} & =\frac{\mathrm{P}}{\mathrm{~V}}=\operatorname{SwmyC}_{\mathrm{v}} \times \pi
\end{aligned}
$$

ACE	34	GATE - Text Book Solutions

$\Rightarrow \frac{20 \times 10^{3}}{\left(\frac{\pi d_{p} \times 300}{60 \times 1000}\right)}=80 \times 10^{6} \times(14 \mathrm{~m}) \mathrm{m} \times 0.094 \times 1 \times \pi$

$$
\left(\because \mathrm{d}_{\mathrm{p}}=\mathrm{mT}_{\mathrm{p}}\right)
$$

$\Rightarrow \frac{20 \times 10^{6} \times 60}{\pi \times 18 \times \mathrm{m} \times 300}=80 \times 14 \times 0.094 \times \pi \times \mathrm{m}^{2} \times 10^{6}$
$\Rightarrow \mathrm{m}=5.98 \approx 6$

Linked Answer Questions 07 \& 08

7. Ans: (b)
8. Ans: (a)

Sol: $\mathrm{P}=11 \mathrm{~kW}, \quad \mathrm{~N}_{\mathrm{P}}=1440 \mathrm{rpm}$
$\phi=14 \frac{1}{2}, \quad \mathrm{~m}=6 \mathrm{~mm}$
$\mathrm{T}_{\mathrm{P}}=25, \quad \mathrm{y}=0.1, \quad \mathrm{C}_{\mathrm{v}}=0.21$
$\frac{\mathrm{T}_{\mathrm{G}}}{\mathrm{T}_{\mathrm{p}}}=\frac{\mathrm{N}_{\mathrm{P}}}{\mathrm{N}_{\mathrm{G}}}=3: 1$
$\mathrm{T}_{\text {max }}=1.5 \mathrm{~T}_{\text {mean }}$
$\mathrm{S}=210 \mathrm{MPa}$
$\mathrm{F}_{\mathrm{t}}=$?,$\quad \mathrm{w}=$?
$\mathrm{F}_{\mathrm{t}}=\frac{\mathrm{P}}{\mathrm{V}} \mathrm{C}_{\mathrm{s}} \quad\left(\because \mathrm{V}=\frac{\pi \mathrm{dN}}{60}\right)(\mathrm{d}=\mathrm{mT})$
$F_{t}=\frac{11 \times 10^{3}}{\frac{\pi(6 \times 25) \times 1440}{60 \times 1000}} \times 1.5$
$\mathrm{F}_{\mathrm{t}}=1.46 \mathrm{kN}$
$\mathrm{F}_{\mathrm{t}}=\mathrm{S}$ w my C_{v}
$1.46 \times 10^{3}=210 \times \mathrm{w} \times 6 \times 0.1 \pi \times 0.21$
$\Rightarrow \quad \mathrm{w}=18 \mathrm{~mm}$

Linked Answer Questions 09 to 11

9. Ans: (b)

Sol: $\mathrm{P}=500 \mathrm{~kW}, \quad \mathrm{~N}_{\mathrm{P}}=1800 \mathrm{rpm}$,

$$
\begin{aligned}
\mathrm{C} & =660 \mathrm{~mm}, \quad \phi=22 \frac{1}{2}, \quad \mathrm{~m}=8 \mathrm{~mm} \\
\frac{\mathrm{~T}_{\mathrm{G}}}{\mathrm{~T}_{\mathrm{P}}} & =10: 1 ; \quad \mathrm{F}_{\mathrm{n}}=200 \mathrm{~N} / \mathrm{mm} \\
\mathrm{C} & =\frac{\mathrm{m}\left(\mathrm{~T}_{\mathrm{G}}+\mathrm{T}_{\mathrm{P}}\right)}{2} \\
660 & =\frac{8\left(\mathrm{~T}_{\mathrm{P}}+10 \mathrm{~T}_{\mathrm{P}}\right)}{2} \\
\mathrm{~T}_{\mathrm{P}} & =15 \text { and } \quad \mathrm{T}_{\mathrm{G}}=150 \\
\mathrm{~d}_{\mathrm{p}} & =\mathrm{mT}_{\mathrm{p}}=8(15)=120 \mathrm{~mm}
\end{aligned}
$$

F_{r} on bearing $=?, \quad \mathrm{~F}_{\mathrm{t}}=?, \quad \mathrm{w}=$?

$$
\mathrm{F}_{\mathrm{t}}=\frac{\mathrm{P}}{\mathrm{~V}}=\frac{500(\mathrm{~kW})}{\frac{\pi \mathrm{d}_{\mathrm{p}} \mathrm{~N}_{\mathrm{p}}}{60}}
$$

$$
\frac{500 \times 10^{3}}{\pi\left(\frac{120}{1000} \mathrm{~m}\right) \times\left(\frac{1800}{60}\right) \frac{1}{\mathrm{sec}}}
$$

$$
\mathrm{F}_{\mathrm{t}}=44.2 \mathrm{kN}
$$

10. Ans: (c)

Sol: $\mathrm{F}_{\mathrm{r}}=\mathrm{F}_{\mathrm{t}} \tan \phi=44.2 \tan (22.5)=18.3 \mathrm{kN}$

$$
\mathrm{F}_{\mathrm{n}}=\frac{\mathrm{F}_{\mathrm{t}}}{\cos \phi}=\frac{44.2}{\cos 22.5}=47.85 \mathrm{kN}
$$

11. Ans: (d)

Sol: $\quad 200 \mathrm{~N} \rightarrow 1 \mathrm{~mm}$ width $47.85 \mathrm{kN} \rightarrow$?

$$
\mathrm{w}=\frac{47.85 \times 10^{3}}{200}=240 \mathrm{~mm}
$$

ACE	35	Machine Design

12. Ans: (c)

Sol: $\mathrm{S}_{\text {teel }}=120 \mathrm{MPa} \rightarrow$ for pinion
$\mathrm{S}_{\mathrm{CI}}=100 \mathrm{MPa} \rightarrow$ for gear
Form factors
For gear, for pinion $\left(y_{C I}\right)_{g}=0.13$
Form factors
$\left(\mathrm{y}_{\text {steel }}\right)_{\mathrm{p}}=0.093$
$\mathrm{S}_{\text {steel }} \times \mathrm{y}_{\text {steel }}=120 \times 0.093=11.16$
$\mathrm{S}_{\mathrm{CI}} \times \mathrm{y}_{\mathrm{CI}}=100 \times 0.13=13$
$\therefore \quad \mathrm{S}_{\text {steel }} \times \mathrm{y}_{\text {steel }}<\mathrm{S}_{\mathrm{CI}} \times \mathrm{y}_{\mathrm{CI}}$
\therefore (Strength) $)_{\text {pinion }}<$ (Strength $)_{\text {gear }}$
So Pinion is weaker than gear.
13. Ans: (b)

Sol: Given: G.R $=\frac{T_{G}}{T_{P}}=2$

$$
\begin{aligned}
& \mathrm{w}=10 \mathrm{~cm}=100 \mathrm{~mm} \\
& \mathrm{~d}_{\mathrm{p}}=40 \mathrm{~cm}=400 \mathrm{~mm}
\end{aligned}
$$

Stress factor for fatigue $=1.5 \mathrm{~N} / \mathrm{mm}^{2}=\mathrm{K}$
$\mathrm{Q}=\frac{2 \mathrm{~T}_{\mathrm{G}}}{\mathrm{T}_{\mathrm{G}}+\mathrm{T}_{\mathrm{P}}}=\frac{2\left(2 \mathrm{~T}_{\mathrm{P}}\right)}{2 \mathrm{~T}_{\mathrm{P}}+\mathrm{T}_{\mathrm{P}}}=\frac{4}{3}$
$\mathrm{F}_{\mathrm{w}}=\mathrm{Kd}_{\mathrm{p}} \mathrm{w} \mathrm{Q}$
$\mathrm{F}_{\mathrm{w}}=(1.5)(400)(100) \frac{4}{3}=80 \times 10^{3}=80 \mathrm{kN}$

14. Ans: (b, c)

Sol:

- In a single stage gear reduction system, the gear teeth are subjected to repeated loading.
- The teeth of idler gear are subjected to reversed loading.

Chapter
 12
 Springs

1. Ans: (d)

Sol: Let, $\mathrm{n}=\mathrm{no}$. of active coils of spring

$$
\mathrm{k}=\frac{\mathrm{Gd}^{4}}{8 \mathrm{D}^{3} \mathrm{n}}
$$

For a given spring $\mathrm{G}, \mathrm{d}, \mathrm{D}$ are constant

$$
\begin{aligned}
& \mathrm{k} \propto \frac{1}{\mathrm{n}} \\
& \frac{\mathrm{k}_{2}}{\mathrm{k}_{1}}=\frac{\mathrm{n}_{1}}{\mathrm{n}_{2}} \\
& \mathrm{k}_{2}=\frac{\mathrm{n}}{\mathrm{n} / 3} \times \mathrm{k}_{1} \\
& \Rightarrow \quad \mathrm{k}_{2}=3 \mathrm{k}
\end{aligned}
$$

2. Ans: 668.4 MPa

Sol: Given, $\mathrm{C}=10$
$\mathrm{k}_{\mathrm{s}}=$ direct shear stress factor

$$
\begin{aligned}
& =1+\frac{1}{2 \mathrm{C}} \\
& =1+\frac{1}{20}=\frac{21}{20}
\end{aligned}
$$

$$
\tau_{\max }=\mathrm{k}_{\mathrm{s}} \frac{8 \mathrm{~F} \times \mathrm{D}}{\pi \mathrm{~d}^{3}}=\frac{21}{20} \times \frac{8 \times 3600}{4 \times(36 \pi)} \times 10
$$

$$
\tau_{\max }=668.45 \mathrm{MPa}
$$

03. Ans: (b)

Sol: Wire of spring experiences direct shear load and twisting moment due to axial load which passes through the axis of spring.

ACE	36	GATE - Text Book Solutions

04. Ans: 10

Sol: Given,

$$
\begin{aligned}
& \frac{\tau_{\max }}{\delta}=\frac{10}{\pi} \\
& \frac{8 \mathrm{FD} / \pi \mathrm{d}^{3}}{8 \mathrm{FD}^{3} \mathrm{n} / \mathrm{Gd}^{4}}=\frac{10}{\pi} \\
& \frac{\mathrm{G} \times \mathrm{d}}{\pi \mathrm{D}^{2} \mathrm{n}}=\frac{10}{\pi} \\
& \frac{80 \times 10^{3} \times 8}{800 \pi \times \mathrm{D}}=\frac{10}{\pi} \\
& \quad \mathrm{D}=80 \mathrm{~mm} \\
& \Rightarrow \ell=\pi \mathrm{D}=800 \pi \\
& \Rightarrow \mathrm{n}=10
\end{aligned}
$$

05. Ans: (b)

Sol: $\delta=\frac{\mathrm{F}}{\mathrm{k}_{\mathrm{eq}}}=\frac{\mathrm{F}}{3 \mathrm{k}+5 \mathrm{k}}=\frac{\mathrm{F}}{8 \mathrm{k}}$
06. Ans: 300

Sol: $\delta=\frac{3}{8} \frac{\mathrm{WL}^{3}}{\mathrm{nbt}^{3} \mathrm{E}}$
$15=\frac{3}{8} \times \frac{3600 \times 1800^{3}}{6 \times \mathrm{b} \times 12^{3} \times 200 \times 10^{3}}$
$\Rightarrow \mathrm{b}=253.125 \mathrm{~mm}$
$\sigma=\frac{3 \mathrm{~W} \mathrm{~L}}{2 \mathrm{nbt}^{2}}$
$37.5=\frac{3 \times 3600 \times 1800}{2 \times 6 \times b \times 12^{2}}$
$\Rightarrow \mathrm{b}=300$
Safe width $=300 \mathrm{~mm}$

Chapter
 13
 Shafts

1. Ans: (c)

Sol: Axle is designed against bending. Design of brittle material against bending is based on Rankine's theory.
02. Ans: (a)

Sol: We know that, $\frac{\mathrm{T}}{\mathrm{J}}=\frac{\tau}{\mathrm{r}}$
here, $J=\frac{\pi \mathrm{d}^{4}}{32}$ for solid circular shaft and $r=d / 2$
$\Rightarrow \tau_{\max }=\frac{16 \mathrm{~T}}{\pi \mathrm{~d}^{3}}$
03. Ans: (a)

Sol: Equivalent Torque: It is the twisting moment, which is acting along to produce the maximum shear stress due to combined bending and Torsion.

$$
\mathrm{T}_{\mathrm{e}}=\sqrt{\mathrm{M}^{2}+\mathrm{T}^{2}}
$$

4. Ans: (a)

Sol: We know that, $\frac{\mathrm{T}}{\mathrm{J}}=\frac{\tau}{\mathrm{r}}$
here, $\mathrm{J}=\frac{\pi\left(\mathrm{D}^{4}-\mathrm{d}^{4}\right)}{32}$ for hollow circular shaft and $\mathrm{r}=\mathrm{D} / 2$
$\Rightarrow \tau=\frac{16 \mathrm{~T}}{\pi \mathrm{D}^{3}\left(1-\mathrm{k}^{4}\right)} \quad($ where $\mathrm{k}=\mathrm{d} / \mathrm{D})$

05. Ans: (a)

Sol: For a solid shaft, $\tau_{\max }=\tau=\frac{16 \mathrm{~T}}{\pi \mathrm{D}^{3}}$
For a hollow shaft,

$$
\tau_{\max }=\frac{16 \mathrm{~T}}{\pi \mathrm{D}^{3}\left(1-\mathrm{k}^{4}\right)}=\frac{\tau}{\left(1-\mathrm{k}^{4}\right)}
$$

here, $\mathrm{k}=\mathrm{d}_{\mathrm{i}} / \mathrm{d}_{\mathrm{o}}=0.5$
$\Rightarrow \tau_{\max }=1.067 \tau$

06. Ans: (d)

Sol: Equivalent Bending Moment: The bending moment is to produce the maximum bending stress equal to greater principle stress ' σ_{1} '.

$$
\begin{aligned}
\mathrm{M}_{\mathrm{e}} & =\frac{1}{2}\left(\mathrm{M}+\sqrt{\mathrm{T}^{2}+\mathrm{M}^{2}}\right) \\
& =\frac{1}{2}\left(40+\sqrt{30^{2}+40^{2}}\right) \\
& =45 \mathrm{kN}-\mathrm{m}
\end{aligned}
$$

07. Ans: (d)

Sol: Equivalent twisting moment,

$$
\begin{aligned}
\mathrm{T}_{\mathrm{e}} & =\sqrt{\left(\mathrm{k}_{\mathrm{b}} \mathrm{M}_{\mathrm{b}}\right)^{2}+\left(\mathrm{k}_{\mathrm{t}} \mathrm{M}_{\mathrm{t}}\right)^{2}} \\
& =\sqrt{(1.5 \times 0.5)^{2}+(2 \times 1)^{2}}=2.136 \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

8. Ans: (c)

Sol: According to ASME code for shaft design under static load, the design stress must be least of $0.3 \mathrm{~S}_{\mathrm{yt}}$ and $0.18 \mathrm{~S}_{\mathrm{ut}}$.

09. Ans: (d)

Sol: In general, axles are not rotating member but it supports the transverse loads like bearing reactions which causes bending moment and does not transmit any useful torque. Thus, axles are designed for bending moment.

Shafts are subjected to torque as well as bending. Thus, they are designed for bending as well as torsion.

10. Ans: (c)

Sol: A transmission shaft subjected to bending should be designed to resist torsional aas well as bending moment both. Thus, equivalent torsional moment and equivalent bending moment is used for designing the shaft which are based on Guest's and Rankine's theory, respectively.
11. Ans: (c)

Sol: Given data:

$$
\mathrm{d}_{\mathrm{A}}=2 \mathrm{~d}_{\mathrm{B}}
$$

Power, ' P ' $=\frac{2 \pi \mathrm{NT}}{60}$
Torque, ' T ' $=\frac{\pi}{16} \mathrm{~d}^{3} \tau$
$\therefore \mathrm{P} \propto \mathrm{d}^{3}$

$$
\begin{aligned}
& \therefore \frac{\mathrm{P}_{\mathrm{A}}}{\mathrm{P}_{\mathrm{B}}}=\left(\frac{\mathrm{d}_{\mathrm{A}}}{\mathrm{~d}_{\mathrm{B}}}\right)^{3} \\
& \therefore \frac{\mathrm{P}_{\mathrm{A}}}{\mathrm{P}_{\mathrm{B}}}=\frac{\mathrm{d}_{\mathrm{A}}^{3}}{8 \mathrm{~d}_{\mathrm{A}}^{3}} \quad\left(\because \mathrm{~d}_{\mathrm{B}}=2 \mathrm{~d}_{\mathrm{A}}\right)
\end{aligned}
$$

ACE	38	GATE - Text Book Solutions

$\therefore \frac{\mathrm{P}_{\mathrm{A}}}{\mathrm{P}_{\mathrm{B}}}=\frac{1}{8}$

12. Ans: (a)

Sol: When a transmission shaft transmits load through spur gear, along with the torsion, shaft is also subjected to radial and tangential load which are transmitted through spur gear.

13. Ans: (c)

Sol: The resultant force acting on a tooth of helical gear is resolved into three components.

- Tangential component
- Radial component
- Axial (or) thrust component

14. Ans: (a)
15. Ans: (d)

Sol: Shaft is generally made of ductile materials. For ductile materials maximum shear stress (Tresca) and distortion energy (von-Mises) theories can be used. Out of these two theories von-Mises theory is best suitable for ductile materials. Rankine's theory or principal stress theory is suitable for brittle materials only.

16. Ans: (b)

Sol: The term 'transmission shaft' usually refers to a rotating machine element. Thus, shaft in power transmission is inherently subjected to torsional moment.
17. Ans: (b)

Sol:

- Bending stress $\sigma_{b}=\frac{M}{I} . y \quad$ and

Torsional shear stress $\tau_{\mathrm{xy}}=\frac{\mathrm{T}}{\mathrm{J}} . \mathrm{r}$
where, $\mathrm{y}=$ distance from neutral axis and $r=$ radial distance from centre of shaft. As the shaft rotates, the radial distance of any point from centre of the shaft does not change, so the torsional stress would remain constant.

As the shaft rotates, the distance of any point from the neutral axis does change with the rotation of the shaft; so the bending stress will also change.

- Hence the shaft experiences varying bending stress and constant torsional stress.

18. Ans: (a, b, d)

Sol: Shaft Load: Bending moment \& Twisting moment

$$
\begin{align*}
& \therefore \quad \sigma_{\max }=\frac{32 \mathrm{M}}{\pi \mathrm{~d}^{3}}, \sigma_{\mathrm{xy}}=\frac{16 \mathrm{~T}}{\pi \mathrm{~d}^{3}}, \sigma_{y}=0 \\
& \therefore \quad \sigma_{\max }=\frac{16}{\pi \mathrm{~d}^{3}}\left(\mathrm{M}+\sqrt{\mathrm{M}^{2}+\mathrm{T}^{2}}\right) \ldots \ldots \tag{i}
\end{align*}
$$

	Regular Live Doubt clearing Sessions \| Free Online Test Series	ASK an expert		
	Affordable Fee \\| Available 1M	$3 \mathrm{M}\|6 \mathrm{M}\| 12$	18M and 24 Months Subscription Packages	

$\mathbf{*}$ ACE	39	Machine Design

$$
\begin{align*}
\sigma_{\max } & =\frac{16}{\pi \mathrm{~d}^{3}} \sqrt{\left(\mathrm{M}^{2}+\mathrm{T}^{2}\right)} \tag{ii}\\
\sigma_{\mathrm{vm}} & =\sqrt{\sigma_{\mathrm{x}}^{2}+3 \times \sigma_{\mathrm{xy}}^{2}} \\
& =\sqrt{\left\{\frac{32 \mathrm{M}}{\pi \mathrm{~d}^{3}}\right\}^{2}+3 \times\left\{\frac{16 \mathrm{~T}}{\pi \mathrm{~d}^{3}}\right\}^{2}} \tag{iii}
\end{align*}
$$

Equivalent bending moment (\mathbf{M}_{e}) :

$$
\begin{align*}
& \therefore \sigma_{\mathrm{x}}=\frac{32 \mathrm{M}_{\mathrm{e}}}{\pi \mathrm{~d}^{3}}, \sigma_{\mathrm{y}}=0=\tau_{\mathrm{xy}} \\
& \therefore \sigma_{\max }=-\frac{\sigma_{\mathrm{x}}}{\mathrm{x}}=\frac{16 \mathrm{M}_{\mathrm{e}}}{\pi \mathrm{~d}^{3}} \tag{iv}\\
& \& \sigma_{\mathrm{vm}}=\sigma_{\mathrm{x}}=\frac{32 \mathrm{M}_{\mathrm{e}}}{\pi \mathrm{~d}^{3}} \tag{v}
\end{align*}
$$

As per shear stress theory, comparing ii $\&$ iv

$$
\begin{aligned}
\tau_{\max } & =\frac{16}{\pi \mathrm{~d}^{3}} \cdot \sqrt{\mathrm{M}^{2}+\mathrm{T}^{2}}=\frac{16 \mathrm{M}_{\mathrm{e}}}{\pi \mathrm{~d}^{3}} \\
\therefore \quad \mathrm{M}_{\mathrm{e}} & =\sqrt{\mathrm{M}^{2}+\mathrm{T}^{2}}
\end{aligned}
$$

As per direction energy theory: from iii \& v

$$
\begin{aligned}
& \sigma_{\mathrm{vm}}=\left\{\left(\frac{32 \mathrm{M}}{\pi \mathrm{~d}^{3}}\right)^{2}+3 \times\left(\frac{16 \mathrm{~T}}{\pi \mathrm{~d}^{3}}\right)^{2}\right\}^{1 / 2}=\frac{32 \mathrm{M}}{\pi \mathrm{~d}^{3}} \\
& \therefore \mathrm{M}_{\mathrm{e}}=\sqrt{\mathrm{M}^{2}+\frac{3}{4} \times \mathrm{T}^{2}}
\end{aligned}
$$

Equivalent torsional moment (\mathbf{T}_{e}) :

$$
\begin{align*}
& \therefore \sigma_{x}=0=\sigma_{y} \& \quad \sigma_{x y}=\frac{16 T_{e}}{\pi d^{3}} \\
& \therefore \sigma_{\max }=\sigma_{x y}=\frac{16 T_{e}}{\pi d^{3}} \ldots \ldots(\mathrm{vi}) \tag{vi}
\end{align*}
$$

As per Normal stress theory, from (vi) \& (i)

$$
\begin{aligned}
& \sigma_{\max }=\frac{16}{\pi \mathrm{~d}^{3}} \times\left(\mathrm{M}+\sqrt{\mathrm{M}^{2}+\mathrm{T}^{2}}\right)=\frac{16 \mathrm{~T}_{\mathrm{e}}}{\pi \mathrm{~d}^{3}} \\
& \therefore \mathrm{~T}_{\mathrm{e}}=\mathrm{M}+\sqrt{\mathrm{M}^{2}+\mathrm{T}^{2}}
\end{aligned}
$$

