ESE | GATE | PSUS

ENGINEERING MECHANICS

Textbook \& Workbook:

Theory with worked out Examples and Practice Questions

Engineering Mechanics

(Solutions for Text Book Practice Questions)

Chapter
 1
 Force and Moment Systems

1. Ans: (b)

Sol:

Assume $\mathrm{F}_{1}=2 \mathrm{~F}_{2}\left(\mathrm{~F}_{1}>\mathrm{F}_{2}\right)$
$\mathrm{F}_{1 \mathrm{x}}=2 \mathrm{~F}_{2}$
$\mathrm{R}=\sqrt{\mathrm{F}_{1}^{2}+\mathrm{F}_{2}^{2}+4 \mathrm{~F}_{2}^{2} \cos \theta}$
$260=\sqrt{4 \mathrm{~F}_{2}^{2}+\mathrm{F}_{2}^{2}+4 \mathrm{~F}_{2}^{2} \cos \theta}$
$260^{2}=5 \mathrm{~F}_{2}^{2}+4 \mathrm{~F}_{2}^{2} \cos \theta$

$$
\begin{align*}
\mathrm{R}^{1} & =\sqrt{\mathrm{F}_{1 \mathrm{x}}^{2}+\mathrm{F}_{2}^{2}+2 \mathrm{~F}_{1 \mathrm{x}} \mathrm{~F}_{2} \cos \theta} \tag{1}\\
180 & =\sqrt{4 \mathrm{~F}_{2}^{2}+\mathrm{F}_{2}^{2}+2 \cdot \mathrm{~F}_{2} \cdot \mathrm{~F}_{2} \cos (180-\theta)} \\
180^{2} & =5 \mathrm{~F}_{2}^{2}-4 \mathrm{~F}_{2}^{2} \cos \theta-\cdots--(2) \\
260^{2} & =5 \mathrm{~F}_{2}^{2}+4 \mathrm{~F}_{2}^{2} \cos \theta
\end{align*}
$$

$$
180^{2}=5 \mathrm{~F}_{2}^{2}-4 \mathrm{~F}_{2}^{2} \cos \theta
$$

$$
260^{2}+180^{2}=10 \mathrm{~F}_{2}^{2}
$$

$$
\Rightarrow \mathrm{F}_{2}=100 \mathrm{~N}
$$

$$
260^{2}=5(100)^{2}+4(100)^{2} \cos \theta
$$

$$
\Rightarrow \theta=63.89
$$

Where θ angle between two forces.
02. Ans: (b)

Sol: Let the angle between the forces be θ

Where, R is the resultant of the two forces.

If Q is doubled i.e., 2 Q then resultant $\left(\mathrm{R}^{\prime}\right)$ is perpendicular to P.

$$
\begin{align*}
& \tan 90=\frac{2 \mathrm{Q} \sin \theta}{\mathrm{P}+2 \mathrm{Q} \cos \theta} \\
& \Rightarrow \quad \mathrm{P}+2 \mathrm{Q} \cos \theta=0 \\
& \mathrm{P}=-2 \mathrm{Q} \cos \theta \tag{i}
\end{align*}
$$

Also, $\mathrm{R}=\sqrt{\mathrm{P}^{2}+\mathrm{Q}^{2}+2 \mathrm{PQ} \cos \theta}$

$$
\mathrm{R}=\mathrm{Q} \text { [using eq.(i)] }
$$

3. Ans: (b)

Sol: Since moment of F about point A is zero.
\therefore F passes through point A ,

$M_{0}^{F}=180 N-m$
$M_{B}^{F}=90 N-m$
$M_{A}^{F}=0$
$\mathrm{M}_{0}^{\mathrm{F}}=180=\mathrm{F}_{\mathrm{x}} \times 3+\mathrm{F}_{\mathrm{y}} \times 0$
$\mathrm{F}_{\mathrm{x}}=60 \mathrm{~N}$ \qquad
$M_{B}^{F}=F_{x} \times 3-F_{y} \times 6=-90$
$60 \times 3-6 \mathrm{~F}_{\mathrm{y}}=-90$
$\Rightarrow \mathrm{F}_{\mathrm{y}}=\frac{270}{6}$

$$
\mathrm{F}_{\mathrm{y}}=45 \mathrm{~N}
$$

$\therefore \mathrm{F}=\sqrt{\mathrm{F}_{\mathrm{x}}^{2}+\mathrm{F}_{\mathrm{y}}^{2}}=\sqrt{60^{2}+45^{2}}=75$
04. Ans: (a)

Sol:

$$
\int_{0}^{w} d w=\int_{0}^{16} w d x
$$

$$
\mathrm{w}=\int_{0}^{16} 90 \sqrt{\mathrm{x}} \mathrm{dx}=90\left[\frac{\mathrm{x}^{\frac{1}{2}+1}}{\frac{1}{2}+1}\right]_{0}^{16}
$$

$$
=90 \times \frac{2}{3}\left[\mathrm{x}^{3 / 2}\right]_{0}^{16}=60(16)^{3 / 2}
$$

$$
\mathrm{w}=3840 \mathrm{~N}
$$

The moment due to average force should be equal to the variable force

$$
\mathrm{R} \times \mathrm{d}=\Sigma \mathrm{dw} \times \mathrm{x}
$$

$$
\begin{aligned}
3840 \times \mathrm{d} & =\int_{0}^{16} 90 \sqrt{\mathrm{x}} \cdot \mathrm{dx} \cdot \mathrm{x} \\
& =90 \int_{0}^{15} \mathrm{x}^{1.5} \mathrm{dx} \\
3840 \mathrm{~d} & =90\left[\frac{\mathrm{x}^{2.5}}{2.5}\right]_{0}^{16} \\
\Rightarrow \mathrm{~d} & =9.6 \mathrm{~m}
\end{aligned}
$$

5. Ans: (c)

Sol: Moment about ' O '

$$
\begin{aligned}
\mathrm{M}_{0} & =100 \sin 60 \times 3 \\
& =300 \times \frac{\sqrt{3}}{2}=150 \sqrt{3} \\
& =259.8 \cong 260 \mathrm{~N}
\end{aligned}
$$

6. Ans: (a)

$\mathrm{F}_{\mathrm{R}}=\Sigma \mathrm{F}_{\mathrm{y}}$
$\mathrm{F}_{\mathrm{R}}=100+150-25+200$ (upward force
positive and downward force negative)
$\mathrm{R}=425 \mathrm{~N}$
For equilibrium
$\Sigma \mathrm{M}_{\mathrm{A}}=0$ (since $\mathrm{R}=$ resultant)
Let R is acting at a distance of ' d '

$$
\begin{aligned}
425 \times \mathrm{d} & =150 \times 0.9+25 \times 2.1-200 \times 2.85 \\
\Rightarrow \quad \mathrm{~d} & =1.535 \mathrm{~m}(\text { from A) }
\end{aligned}
$$

$\mathbf{A C E}$	3	Engineering Mechanics

Chapter

2

Equilibrium of Force System

1. Ans: (d)

Sol:

Resolve the forces along the inclined surface

$$
\begin{aligned}
& \begin{array}{c}
\sum \mathrm{F}_{\mathrm{x}}=0 \\
\mathrm{P} \cos 45-\mathrm{W} \sin 30=0 \\
\quad \mathrm{P}=\frac{300 \sin 30}{\cos 45} \Rightarrow \mathrm{P}=212.13 \mathrm{~N}
\end{array}
\end{aligned}
$$

2. Ans: (a)

Sol:

$\mathrm{T}_{\mathrm{AB}} \cos 60^{\circ}=\mathrm{T}_{\mathrm{AC}} \cos 30^{\circ}$

$$
\mathrm{T}_{\mathrm{AB}}=\sqrt{3} \mathrm{~T}_{\mathrm{AC}}
$$

$\mathrm{T}_{\mathrm{AB}} \sin 60^{\circ}+\mathrm{T}_{\mathrm{AC}} \sin 30^{\circ}=600 \mathrm{~N}$
$\frac{3}{2} \mathrm{~T}_{\mathrm{AC}}+\frac{1}{2} \mathrm{~T}_{\mathrm{AC}}=600$
$\Rightarrow \mathrm{T}_{\mathrm{AB}}=520 \mathrm{~N} ; \quad \mathrm{T}_{\mathrm{AC}}=300 \mathrm{~N}$
03. Ans: (c)

Sol:

Fig: Free body diagram at 'B'

Fig: Free body diagram at ' C '

For Equilibrium of Point 'B'
$\frac{\mathrm{F}_{\mathrm{AB}}}{\sin (60+75)}=\frac{\mathrm{F}_{\mathrm{BC}}}{\sin (60+45)}=\frac{200}{\sin (120)}$
$\mathrm{F}_{\mathrm{BC}}=223.07 \mathrm{~N}$
From Sine rule at "C".
$\frac{\mathrm{F}_{\mathrm{CD}}}{\sin (75+45)}=\frac{\mathrm{F}_{\mathrm{BC}}}{\sin (60+75)}=\frac{\mathrm{P}}{\sin 105}$
$\mathrm{P}=\frac{223.07 \times \sin 105}{\sin 135}$
$\mathrm{P}=304.71 \mathrm{~N}$

\mathscr{A}	4	GATE - Text Book Solutions

4. Ans: (d)

Sol:

$$
\tan \theta=\frac{125}{275} \Rightarrow \theta=24.45^{0}
$$

$\mathrm{T} \sin \theta=\mathrm{mg}$.
$\mathrm{T} \sin 24.45=(35 \times 9.81)$
$\mathrm{T}=829.5 \mathrm{~N}$
$\mathrm{R}_{\mathrm{x}}=\mathrm{T} \cos 24.45=755.4 \mathrm{~N}$
$R_{y}=0$
05. Ans: (c)

Sol:

$$
\begin{aligned}
& \mathrm{T}+2 \mathrm{~T}+\mathrm{T}=\mathrm{mg} \\
& 4 \mathrm{~T}=\mathrm{mg} \\
& \mathrm{~m}=4 \mathrm{~T} / \mathrm{g}
\end{aligned}
$$

6. Ans: (b)

Sol:

For body, $\sum \mathrm{F}_{\mathrm{y}}=0$

$$
\begin{aligned}
& \mathrm{N}-\mathrm{W}+\mathrm{T}=0 \\
& \Rightarrow \mathrm{~N}=\mathrm{W}-\mathrm{T}
\end{aligned}
$$

$\sum F_{y}=0$ for entire system

$$
\begin{align*}
& \mathrm{R}_{\mathrm{A}}+\mathrm{T}-(\mathrm{W}-\mathrm{T})=0 \\
& \mathrm{R}_{\mathrm{A}}=\mathrm{W}-2 \mathrm{~T} \tag{1}
\end{align*}
$$

For equilibrium

$$
\begin{aligned}
& \sum \mathrm{M}_{\mathrm{A}}=0 \\
& \mathrm{~T} \times \mathrm{L}=(\mathrm{W}-\mathrm{T}) \mathrm{a} \\
& \mathrm{TL}=\mathrm{Wa}-\mathrm{Ta} \\
& \mathrm{TL}+\mathrm{Ta}=\mathrm{Wa} \\
& \mathrm{~T}(\mathrm{~L}+\mathrm{a})=\mathrm{Wa} \\
& \Rightarrow \mathrm{~T}=\frac{\mathrm{Wa}}{\mathrm{~L}+\mathrm{a}}
\end{aligned}
$$

T substitute in equation (1)

$$
\begin{aligned}
\mathrm{R}_{\mathrm{A}} & =\mathrm{W}-2\left(\frac{\mathrm{Wa}}{\mathrm{~L}+\mathrm{a}}\right) \\
& =\frac{\mathrm{W}(\mathrm{~L}+\mathrm{a})-2 \mathrm{Wa}}{\mathrm{~L}+\mathrm{a}} \\
& =\frac{\mathrm{WL}+\mathrm{Wa}-2 \mathrm{Wa}}{\mathrm{~L}+\mathrm{a}} \\
& =\frac{\mathrm{WL}-\mathrm{Wa}}{\mathrm{~L}+\mathrm{a}} \\
\mathrm{R}_{\mathrm{A}} & =\frac{\mathrm{W}(\mathrm{~L}-\mathrm{a})}{\mathrm{L}+\mathrm{a}}
\end{aligned}
$$

ACE	5	Engineering Mechanics

7. Ans: (c)

Sol:

$\sum \mathrm{F}_{\mathrm{y}}=0$
$600-R_{C}+R_{D}-600=0$
$\Rightarrow \mathrm{R}_{\mathrm{C}}=\mathrm{R}_{\mathrm{D}}=\mathrm{R}$
$\sum \mathrm{M}=0$
$600 \times 5=\mathrm{R} \times 3$
$\Rightarrow \mathrm{R}=1000 \mathrm{~N}=\mathrm{R}_{\mathrm{C}}=\mathrm{R}_{\mathrm{D}}$
08. Ans: (a)

Sol: F.B.D

$\sum \mathrm{M}_{\mathrm{A}}=0$
$\operatorname{Tan} \theta=\frac{8}{4}$

$$
\theta=63.43
$$

$\mathrm{T} \sin \theta \times 4(\cup)-200 \times 2(\cup)-100 \times 6(\cup)=0$

$$
\Rightarrow \mathrm{T}=279.5 \mathrm{~N}
$$

Now, $\sum \mathrm{F}_{\mathrm{x}}=0$,

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{AH}}-\mathrm{T} \cos \theta=0 \\
& \mathrm{R}_{\mathrm{AH}}=125 \mathrm{~N} \\
& \sum \mathrm{~F}_{\mathrm{y}}=0 \\
& \mathrm{R}_{\mathrm{AV}}-200-100+\mathrm{T} \sin \theta=0 \\
& \Rightarrow \mathrm{R}_{\mathrm{VA}}=50 \mathrm{~N}
\end{aligned}
$$

9. Ans: 400 N

Sol:

$\Sigma \mathrm{F}_{\mathrm{y}}=0$
$\mathrm{N}_{\mathrm{B}}-\mathrm{W}=0$
$\mathrm{N}_{\mathrm{B}}=600 \mathrm{~N}$
$\Sigma \mathrm{M}_{\mathrm{A}}=0$
$\mathrm{P} \times 3+\mathrm{W} \times 2-\mathrm{N}_{\mathrm{B}} \times 4=0$
$\mathrm{P}=\frac{4 \mathrm{~N}_{\mathrm{B}}-2 \mathrm{~W}}{3}$
$\mathrm{P}=\frac{4 \times 600-2 \times 600}{3}=400 \mathrm{~N}$

ACE	6	GATE - Text Book Solutions

Chapter
 3

Friction

1. Ans: (c)

Sol: The FBD of the above block shown

$$
\begin{aligned}
& \Sigma \mathrm{Y}=0 \Rightarrow \mathrm{~N}+\mathrm{T}-\mathrm{W}=0 \\
& \mathrm{~N}=\mathrm{W}-\mathrm{T}=981-\mathrm{T} \\
& \mathrm{~F}=\mu \mathrm{N}=0.2(981-\mathrm{T}) \\
& \Sigma \mathrm{X}=0 \Rightarrow 100-\mathrm{F}=0 \\
& \mathrm{~F}=100=0.2(981-\mathrm{T}) \\
& \quad \Rightarrow \mathrm{T}=481 \mathrm{~N}
\end{aligned}
$$

2. Ans: (c)

Sol: Given $\operatorname{Tan} \theta=\frac{3}{4}$

$$
\begin{aligned}
& \sin \theta=3 / 5 \\
& \cos \theta=4 / 5
\end{aligned}
$$

Free body diagram for block (2)

Free body diagram for block (1)

From FBD of block (2)

$$
\begin{align*}
\Sigma \mathrm{F}_{\mathrm{x}} & =0 \\
\mathrm{~F}_{2} & =\mathrm{T} \cos \theta \\
\mathrm{~F}_{2} & =\frac{4}{5} \mathrm{~T}=0.8 \mathrm{~T} \tag{1}
\end{align*}
$$

$\Sigma \mathrm{F}_{\mathrm{y}}=0$
$\mathrm{N}_{2}+\mathrm{T} \sin \theta-\mathrm{W}_{2}=0$
$\mathrm{N}_{2}=\mathrm{W}_{2}-\mathrm{T} \sin \theta$
$\mathrm{N}_{2}=50-0.6 \mathrm{~T}$
But $F_{2}=\mu N_{2}$
$\Rightarrow \mathrm{F}_{2}=0.3(50-0.6 \mathrm{~T})$

$$
\begin{equation*}
F_{2}=15-0.18 \mathrm{~T} \tag{2}
\end{equation*}
$$

From (1) \& (2)

$$
\begin{aligned}
0.8 \mathrm{~T} & =15-0.18 \mathrm{~T} \\
\Rightarrow 0.98 \mathrm{~T} & =15 \\
\Rightarrow \quad \mathrm{~T} & =15.31 \mathrm{~N} \\
\therefore \mathrm{~N}_{2}= & 50-0.6 \mathrm{~T} \\
= & 50-0.6(15.31)=40.81 \mathrm{~N}
\end{aligned}
$$

$\mathrm{F}_{2}=\mu \mathrm{N}_{2}=0.3 \times 40.81=12.24 \mathrm{~N}$
From FBD of block (1)

$$
\begin{aligned}
& \Sigma \mathrm{F}_{\mathrm{y}}=0 \\
& \mathrm{~N}_{1}-\mathrm{N}_{2}-\mathrm{W}_{1}=0 \\
& \mathrm{~N}_{1}=\mathrm{N}_{2}+\mathrm{W}_{1}=40.81+200=240.81 \mathrm{~N} \\
& \mathrm{~F}_{1}=\mu \mathrm{N}_{1} \Rightarrow \mathrm{~F}_{1}=0.3 \times 240.81 \\
& \mathrm{~F}_{1}=72.24 \mathrm{~N}
\end{aligned}
$$

	Regular Live Doubt clearing Sessions \| Free Online Test Series	ASK an expert		
	Affordable Fee \\| Available 1M	$3 \mathrm{M}\|6 \mathrm{M}\| 12$	18M and 24 Months Subscription Packages	

$$
\begin{aligned}
& \Sigma \mathrm{F}_{\mathrm{x}}=0 \\
& \mathrm{P}-\mathrm{F}_{1}-\mathrm{F}_{2}=0 \\
& \mathrm{P}=\mathrm{F}_{1}+\mathrm{F}_{2}=72.24+12.24 \\
& \mathrm{P}=84.48 \mathrm{~N}
\end{aligned}
$$

3. Ans: (b)

Sol: Free Body Diagram

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{A}}=\mu \mathrm{N}_{\mathrm{A}}=\frac{1}{3} \mathrm{~N}_{\mathrm{A}} \\
& \mathrm{~F}_{\mathrm{B}}=\mu \mathrm{N}_{\mathrm{B}}=\frac{1}{3} \mathrm{~N}_{\mathrm{B}}
\end{aligned}
$$

$$
\Sigma \mathrm{M}_{\mathrm{B}}=0
$$

$$
-100 \times 30(U)+\left(\mathrm{N}_{\mathrm{A}} \times 20\right)(U)+\left(\mathrm{F}_{\mathrm{a}} \times 12\right)(U)=0
$$

$$
-3000+\mathrm{N}_{\mathrm{A}} \times 20+\frac{1}{3} \mathrm{~N}_{\mathrm{A}} \times 12=0
$$

$$
\Rightarrow \mathrm{N}_{\mathrm{A}}=125 \mathrm{~N}
$$

$$
\Sigma \mathrm{F}_{\mathrm{y}}=0
$$

$$
\mathrm{N}_{\mathrm{A}}-\mathrm{N}_{\mathrm{B}}-100=0
$$

$$
\Rightarrow \mathrm{N}_{\mathrm{B}}=25 \mathrm{~N}
$$

$$
\Sigma \mathrm{F}_{\mathrm{x}}=0
$$

$$
\mathrm{P}=\mathrm{F}_{\mathrm{A}}+\mathrm{F}_{\mathrm{B}}=\frac{1}{3}\left(\mathrm{~N}_{\mathrm{A}}+\mathrm{N}_{\mathrm{B}}\right)
$$

$$
=\frac{1}{3}(125+25)=50 \mathrm{~N}
$$

04. Ans: (d)

Sol: F.B.D of both the books are shown below.

where, f is the friction between the two books.
f_{1} is the friction between the lower book and ground.
Now, maximum possible acceleration of upper book.

$$
\begin{aligned}
\mathrm{a}_{\max }=\frac{\mathrm{f}_{\max }}{\mathrm{m}_{2}} & =\frac{\mu \mathrm{m}_{2} \mathrm{~g}}{\mathrm{~m}_{2}}=\mu \times \mathrm{g} \\
& =0.3 \times 9.81=2.943 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

For slip to occur, acceleration $\left(a_{1}\right)$ of lower book. i.e,

$$
\begin{aligned}
\mathrm{a}_{1} & \geq \mathrm{a}_{\max } \\
\frac{\mathrm{F}-\mathrm{f}-\mathrm{f}_{1}}{\mathrm{~m}_{1}} & \geq 2.943
\end{aligned}
$$

$$
\mathrm{F}-2.943-0.3 \times 2 \times 9.81 \geq 2.943
$$

$$
\left[\because \mathrm{f}=\mathrm{f}_{\max }=2.943\right. \text { and }
$$

$$
\left.\mathrm{f}_{1}=\mu \times\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{g}=0.3 \times 2 \times 9.81\right]
$$

$\mathrm{F} \geq 11.77 \mathrm{~N}$
$\mathrm{F}_{\min }=11.77 \mathrm{~N}$

05. Ans: (d)

Sol: $\operatorname{Tan} \theta=\frac{3}{4} \Rightarrow \sin \theta=\frac{3}{5}$

$$
\cos \theta=\frac{4}{5}
$$

FBD for bar AB (2)

FBD for block (1)

Given $\mathrm{W}=280 \mathrm{~N}, \quad \mathrm{~W}_{1}=400 \mathrm{~N}$
Now, $\Sigma \mathrm{M}_{\mathrm{B}}=0$
$-\mathrm{W} \times 4(\cup)+\mathrm{N}_{2} \times 8(\cup)-\mathrm{F}_{2} \times 6(U)=0$
$-280 \times 4+\mathrm{N}_{2} \times 8-\mu \mathrm{N}_{2} \times 6=0$
$\Rightarrow \mathrm{N}_{2}=200 \mathrm{~N}$
But, $\mathrm{F}_{2}=\mu \mathrm{N}_{2}=0.4 \times 200=80 \mathrm{~N}$
From FBD of block (1)

$$
\begin{aligned}
& \Sigma \mathrm{F}_{\mathrm{y}}=0 \\
& \mathrm{~N}_{1}-\mathrm{N}_{2}-\mathrm{W}_{1}=0 \\
& \mathrm{~N}_{1}=\mathrm{N}_{2}+\mathrm{W}_{1} \\
& \quad=200+400
\end{aligned}
$$

$$
\mathrm{N}_{1}=600 \mathrm{~N}
$$

But, $\mathrm{F}_{1}=\mu \mathrm{N}_{1}=0.4 \times 600$

$$
\mathrm{F}_{1}=240 \mathrm{~N}
$$

$\Sigma \mathrm{F}_{\mathrm{x}}=0$
$\mathrm{P}=\mathrm{F}_{1}+\mathrm{F}_{2}=240+80$
$\mathrm{P}=320 \mathrm{~N}$
06. Ans: (a)

Sol: Given, $\mathrm{W}_{\mathrm{A}}=200 \mathrm{~N}, \mu_{\mathrm{A}}=0.2$

$$
\mathrm{W}_{\mathrm{B}}=300 \mathrm{~N}, \mu_{\mathrm{B}}=0.5
$$

FBD for block 'B'.
$\Sigma F_{y}=0$
$\mathrm{N}_{\mathrm{B}}=\mathrm{W}_{\mathrm{B}} \cos \theta$

$\mathrm{N}_{\mathrm{B}}=300 \cos \theta$
But, $F_{B}=\mu N_{B}=0.5 \times 300 \cos \theta$

$$
=150 \cos \theta
$$

$\Sigma \mathrm{F}_{\mathrm{x}}=0$
$\mathrm{T}+\mathrm{W}_{\mathrm{B}} \sin \theta-\mathrm{F}_{\mathrm{B}}=0$
$\mathrm{T}=\mathrm{F}_{\mathrm{B}}-\mathrm{W}_{\mathrm{B}} \sin \theta$
$\mathrm{T}=150 \cos \theta-300 \sin \theta$
FBD for block 'A'

$\Sigma \mathrm{F}_{\mathrm{y}}=0$
$\mathrm{N}_{\mathrm{A}}-\mathrm{W}_{\mathrm{A}} \cos \theta=0$
$\mathrm{N}_{\mathrm{A}}=200 \cos \theta$
$\mathrm{F}_{\mathrm{A}}=\mu \mathrm{N}_{\mathrm{A}}=0.2 \times 200 \cos \theta$

But, $\mathrm{F}_{\mathrm{A}}=40 \cos \theta$
$\Sigma \mathrm{F}_{\mathrm{x}}=0$
$\mathrm{T}+\mathrm{F}_{\mathrm{A}}-\mathrm{W}_{\mathrm{A}} \sin \theta=0$
$\mathrm{T}=\mathrm{W}_{\mathrm{A}} \sin \theta-\mathrm{F}_{\mathrm{A}}$
$\mathrm{T}=200 \sin \theta-40 \cos \theta$
But from equation (1)

$$
\begin{aligned}
& \mathrm{T}=150 \cos \theta-300 \sin \theta \\
& \therefore 150 \cos \theta-300 \sin \theta=200 \sin \theta-40 \cos \theta \\
& 190 \cos \theta=500 \sin \theta \\
& \tan \theta=\frac{190}{500} \\
& \Rightarrow \theta=20.8^{\circ}
\end{aligned}
$$

7. Ans: (d)

Sol: FBD for the block

$\Sigma \mathrm{F}_{\mathrm{y}}=0$
$\mathrm{N}-\mathrm{W} \sin 45-\mathrm{P} \sin 45=0$
$\mathrm{N}=\frac{500}{\sqrt{2}}+\frac{\mathrm{P}}{\sqrt{2}}$

But, $\mathrm{F}=\mu \mathrm{N}=0.25\left(\frac{500}{\sqrt{2}}+\frac{\mathrm{P}}{\sqrt{2}}\right)$
$\Sigma \mathrm{F}_{\mathrm{x}}=0$
$\mathrm{P} \cos 45+\mathrm{F}-\mathrm{W} \sin 45=0$
$\mathrm{P} \cos 45+0.25\left(\frac{500}{\sqrt{2}}+\frac{\mathrm{P}}{\sqrt{2}}\right)-500 \times \frac{1}{\sqrt{2}}=0$
$\Rightarrow \mathrm{P}=300 \mathrm{~N}$
08. Ans: (a)

Sol: FBD of block
$\mathrm{F}_{1}=\mu \mathrm{N}_{1}$
$\mathrm{F}_{2}=\mu \mathrm{N}_{2}$
$\Sigma \mathrm{F}_{\mathrm{x}}=0$
$\mathrm{N}_{2}-\mathrm{F}_{1}=0$
$\Rightarrow \mathrm{N}_{2}=\mathrm{F}_{1}\left(\because \mathrm{~F}_{1}=\mu \mathrm{N}_{1}\right)$
$\mathrm{N}_{2}=\mu \mathrm{N}_{1}$
$\Sigma \mathrm{F}_{\mathrm{y}}=0$
$\mathrm{N}_{1}+\mathrm{F}_{2}-\mathrm{W}=0$
$\mathrm{N}_{1}+\mu \mathrm{N}_{2}-\mathrm{W}=0$
$\mathrm{N}_{1}+\mu^{2} \mathrm{~N}_{1}-\mathrm{W}=0 \quad\left(\because \mathrm{~N}_{2}=\mu \mathrm{N}_{1}\right)$
$\mathrm{N}_{1}\left(1+\mu^{2}\right)=\mathrm{W}$
$\mathrm{N}_{1}=\frac{\mathrm{W}}{1+\mu^{2}}$
$\mathrm{N}_{2}=\frac{\mu \mathrm{W}}{1+\mu^{2}}$
Couple $=\left(\mathrm{F}_{1}+\mathrm{F}_{2}\right) \times \mathrm{r}$
$=\mu \mathrm{r}\left(\mathrm{N}_{1}+\mathrm{N}_{2}\right)$
$=\frac{\mu \mathrm{r} \times \mathrm{W}(1+\mu)}{1+\mu^{2}} \quad(\because \mu=\mathrm{f})$
09. Ans: 64 N-m

Sol: FBD of shoe bar :

FBD of Drum Brake :
$\sum \mathrm{M}_{\mathrm{B}}=0$

$\mathrm{V}_{\mathrm{C}} \times 480+\mathrm{F}_{\mathrm{C}} \times 100-1000 \times 800=0$
$\mathrm{F}_{\mathrm{C}}=\mu \mathrm{V}_{\mathrm{C}}=0.2 \mathrm{~V}_{\mathrm{C}}$
$480 \mathrm{~V}_{\mathrm{C}}+0.2 \mathrm{~V}_{\mathrm{C}} \times 100=800000$
$500 \mathrm{~V}_{\mathrm{C}}=800000$
$\mathrm{V}_{\mathrm{C}}=1600 \mathrm{~N}$
$\mathrm{F}_{\mathrm{C}}=0.2 \mathrm{~V}_{\mathrm{C}}=0.2 \times 1600=320 \mathrm{~N}$
$\mathrm{M}=0.2 \times \mathrm{F}_{\mathrm{C}}=0.2 \times 320=64 \mathrm{~N}-\mathrm{m}$
10. Ans: (a)

Sol: $\quad \beta=2 \theta$

$$
\cos \theta=\frac{6}{12}
$$

$$
\Rightarrow \theta=60
$$

$$
\beta=360-2 \theta
$$

$$
\beta=240=\frac{4 \pi}{3}
$$

$$
2 \alpha+2 \theta=180
$$

$$
2 \alpha=180-120
$$

$$
\alpha=30=\frac{\pi}{6}
$$

FBD

(When W moves upwards)
For $\mathrm{P}_{\text {min }}$ calculation,
$\mathrm{W}>\mathrm{T}$

$$
\begin{aligned}
& \frac{\mathrm{W}}{\mathrm{~T}_{1}}=\mathrm{e}^{\mu \alpha} \\
& \mathrm{T}_{\mathrm{I}}=\frac{1000}{\mathrm{e}^{\frac{\pi}{6} \times \frac{1}{\pi}}}=846.48 \mathrm{~N}
\end{aligned}
$$

$\therefore \frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\mathrm{e}^{\mu \beta}$

$$
\mathrm{T}_{2}=\frac{848.48}{\mathrm{e}^{\frac{1}{\pi} \times \frac{4 \pi}{3}}}=223.12 \mathrm{~N}
$$

$$
\frac{\mathrm{T}_{2}}{\mathrm{P}_{\min }}=\mathrm{e}^{\mu \alpha}
$$

$$
\Rightarrow P_{\min }=\frac{223.12}{\mathrm{e}^{\frac{1}{\pi} \times \frac{\pi}{6}}}
$$

$$
\mathrm{P}_{\min }=188.86 \mathrm{~N} \approx 189 \mathrm{~N}
$$

For $\mathrm{P}_{\text {max }}$ calculation

$$
\frac{\mathrm{T}_{1}}{\mathrm{~W}}=\mathrm{e}^{\mathrm{\mu} \alpha}
$$

A) ACM	11	Engineering Mechanics

$$
\begin{aligned}
& \mathrm{T}_{1}=1000 \times \mathrm{e}^{\frac{1}{\pi} \pi \frac{\pi}{6}} \\
& \mathrm{~T}_{1}=1181.36 \mathrm{~N} \\
& \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}=\mathrm{e}^{\mu \beta}
\end{aligned}
$$

$$
\mathrm{T}_{2}=1181.36 \times \mathrm{e}^{\frac{1}{\pi} \times \frac{4 \pi}{3}}=4481.65 \mathrm{~N}
$$

$$
\frac{\mathrm{P}_{\max }}{\mathrm{T}_{2}}=\mathrm{e}^{\mu \alpha}
$$

$$
\begin{aligned}
& P_{\max }=4481.68 \times \mathrm{e}^{\frac{1}{\pi} \times \frac{\pi}{6}} \\
& P_{\max }=5300 \mathrm{~N}
\end{aligned}
$$

11. Ans: (b)

Sol: Given $\quad \mu=0.2, \quad \tan \theta=\frac{3}{4}$

$$
\Rightarrow \cos \theta=\frac{4}{5}
$$

$$
\sin \theta=\frac{3}{5}
$$

Fig: FBD (1)

Fig: FBD (2)

From FBD (1)
$\Sigma \mathrm{F}_{\mathrm{y}}=0$
$\mathrm{N}_{2}-\mathrm{W}_{2} \cos \theta=0$
$\mathrm{N}_{2}=\mathrm{W}_{2} \cos \theta=\mathrm{W} \times 0.8$
$\mathrm{N}_{2}=0.8 \mathrm{~W}$
$\therefore \mathrm{F}_{2}=\mu \mathrm{N}_{2}=0.2 \times 0.8 \mathrm{~W}$
$\mathrm{F}_{2}=0.16 \mathrm{~W}$
$\Sigma \mathrm{F}_{\mathrm{x}}=0$
$\mathrm{T}_{1}-\mathrm{W}_{2} \sin \theta-\mathrm{F}_{2}=0$
$\mathrm{T}_{1}=\mathrm{F}_{2}+\mathrm{W}_{2} \sin \theta=0.16 \mathrm{~W}+0.6 \mathrm{~W}$
$\mathrm{T}_{1}=0.76 \mathrm{~W}$

From FBD (2)

$$
\Sigma \mathrm{F}_{\mathrm{y}}=0
$$

$$
\mathrm{N}_{2}+\mathrm{W}_{1} \cos \theta=\mathrm{N}_{1}
$$

$$
\mathrm{N}_{1}=\mathrm{N}_{2}+\mathrm{W}_{1} \cos \theta
$$

$$
\mathrm{N}_{1}=0.8 \mathrm{~W}+1000 \times \frac{4}{5}
$$

$$
\mathrm{N}_{1}=0.8 \mathrm{~W}+800
$$

$$
\mathrm{F}_{1}=\mu \mathrm{N}_{1}=0.2(0.8 \mathrm{~W}+800)
$$

$$
=0.16 \mathrm{~W}+160
$$

$$
\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=\mathrm{e}^{\mu \beta}
$$

$\mathrm{T}_{2}=\mathrm{T}_{1} \mathrm{e}^{\mu \beta}=0.76 \mathrm{~W} \mathrm{e}^{0.2 \times \pi}$
$\mathrm{T}_{2}=1.42 \mathrm{~W}$
$\Sigma \mathrm{F}_{\mathrm{x}}=0$
$\mathrm{T}_{2}+\mathrm{F}_{1}+\mathrm{F}_{2}=\mathrm{W}_{1} \sin \theta$

$$
1.42 \mathrm{~W}+0.16 \mathrm{~W}+160+0.16 \mathrm{~W}=1000 \times \frac{3}{5}
$$

$1.74 \mathrm{~W}=440$
$\Rightarrow \mathrm{W}=252.87 \mathrm{~N}$

ACE	12	GATE - Text Book Solutions

12. Ans: (d)

Sol:

At equilibrium
$2 \mu \mathrm{R}=2000$
$\Rightarrow \mathrm{R}=\frac{2000}{2 \times 0.1}=10,000 \mathrm{~N}$
Taking moment about pin

$$
\begin{aligned}
10,000 \times 150 & =\mathrm{F} \times 300 \\
\Rightarrow \mathrm{~F} & =5000 \mathrm{~N}
\end{aligned}
$$

13. Ans: (b)

Sol:

$\Sigma \mathrm{Y}=0$
$\Rightarrow \mathrm{N}=9.81 \mathrm{~N}$
$\mathrm{F}_{\mathrm{s}}=\mu \mathrm{N}=0.1 \times 9.81=0.98 \mathrm{~N}$
The External force applied $=0.8 \mathrm{~N}<\mathrm{F}_{\mathrm{s}}$ \Rightarrow Frictional force $=$ External applied force $=0.8 \mathrm{~N}$
14. Ans: (b)

Sol:

Fig: FBD (2) Fig: FBD (3)
From FBD (3)
$\Sigma \mathrm{F}_{\mathrm{y}}=0$
$\mathrm{T}_{2}-200=0$
$\Rightarrow \mathrm{T}_{2}=200$

From FBD (2)
$\frac{T_{1}}{T_{2}}=e^{\mu \beta}$
$\mathrm{T}_{1}=\mathrm{T}_{2} \mathrm{e}^{\mu \beta}=200 \times \mathrm{e}^{0.3 \times \frac{\pi}{2}}$
$\mathrm{T}_{1}=320.39 \mathrm{~N}$
From FBD (1)
$\Sigma \mathrm{F}_{\mathrm{y}}=0$
$\mathrm{N}-\mathrm{W}=0$
$\mathrm{N}=1000 \mathrm{~N}$
$\mathrm{F}=\mu \mathrm{N}$
$=0.3 \times 1000$
$\mathrm{F}=300 \mathrm{~N}$
$\Sigma \mathrm{F}_{\mathrm{x}}=0, \mathrm{~T}_{1}+\mathrm{F}-\mathrm{P}=0$
$320.39+300=\mathrm{P}$
$\Rightarrow \mathrm{P}=620.39$
$\Rightarrow \mathrm{P}=620.4 \mathrm{~N}$

ACE	13	Engineering Mechanics

Chapter
 4
 Kinematics of Particle Rectilinear and Curvilinear Motion

1. Ans: (d)

Sol: $\mathrm{x}=2 \mathrm{t}^{3}+t^{2}+2 t$

$$
\begin{aligned}
& V=\frac{d x}{d t}=6 t^{2}+2 t+2 \\
& a=\frac{d v}{d t}=12 t+2
\end{aligned}
$$

$$
\text { At } t=0 \Rightarrow V=2 \text { and } a=2
$$

2. Ans: (a)

Sol: $V=k x^{3}-4 x^{2}+6 x$
$\mathrm{V}_{\mathrm{at} \mathrm{x}=2 \text { if } \mathrm{k}=1}=2^{3}-4(2)^{2}+6(2)=4$

$$
\begin{aligned}
a & =\frac{d V}{d t}=k \cdot 3 x^{2} \frac{d x}{d t}-8 x \frac{d x}{d t}+6 \frac{d x}{d t} \\
a & =3 x^{2}(V)-8 x(V)+6(V) \\
& =3(2)^{2} \times 4-(8 \times 2 \times 4)+6(4) \\
& =8 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

3. Ans: (d)

Sol: Given,

$$
\begin{aligned}
a & =6 \sqrt{V} \\
\frac{d V}{d t} & =6 \sqrt{V} \\
\int \frac{d V}{\sqrt{V}} & =\int 6 d t \\
2 \sqrt{V} & =6 t+C_{1}
\end{aligned}
$$

Given, at $\mathrm{t}=2 \mathrm{sec}, \mathrm{V}=36$
$\Rightarrow 2 \sqrt{36}=6(2)+C_{1}$

$$
\begin{aligned}
& \Rightarrow C_{1}=0 \\
& 2 \sqrt{V}=6 t \\
& V=9 t^{2}
\end{aligned}
$$

But $V=\frac{d s}{d t}=9 t^{2}$

$$
\int \mathrm{ds}=\int 9 \mathrm{t}^{2} \mathrm{dt}
$$

$$
S=3 t^{3}+C_{2}
$$

At, $\mathrm{t}=2 \mathrm{sec}, \mathrm{S}=30 \mathrm{~m}$
$\Rightarrow 30=3(2)^{3}+C_{2}$
$\Rightarrow \mathrm{C}_{2}=6$
$\therefore S=3 \mathrm{t}^{3}+6$
At $\mathrm{t}=3 \mathrm{sec}$
$S=3(3)^{3}+6$
$\mathrm{S}=87 \mathrm{~m}$
04. Ans: (a)

Sol: Given, $a=-8 S^{-2}$
$\Rightarrow \frac{\mathrm{dV}}{\mathrm{dt}}=\frac{\mathrm{d}^{2} \mathrm{~s}}{\mathrm{dt}^{2}}=-8 \mathrm{~s}^{-2}=\mathrm{a}$
We know that, $\int \mathrm{Vdv}=\int \mathrm{ads}$
$\frac{\mathrm{V}^{2}}{2}=\int-8 \mathrm{~s}^{-2} \mathrm{ds}$
$\frac{\mathrm{V}^{2}}{2}=\frac{8}{\mathrm{~S}}+\mathrm{C}_{1}$
Given, at $\mathrm{S}=4 \mathrm{~m}, \mathrm{~V}=2 \mathrm{~m} / \mathrm{sec}$
$\Rightarrow \frac{2^{2}}{2}=\frac{8}{4}+\mathrm{C}_{1}$
$\Rightarrow \mathrm{C}_{1}=0$
$\therefore \frac{\mathrm{V}^{2}}{2}=\frac{8}{\mathrm{~S}}$

$$
\begin{aligned}
& \mathrm{V}=\frac{4}{\sqrt{\mathrm{~s}}} \\
& \Rightarrow \frac{\mathrm{ds}}{\mathrm{dt}}=\frac{4}{\sqrt{\mathrm{~s}}} \\
& \Rightarrow \int \sqrt{\mathrm{~s}} \mathrm{ds}=\int 4 \mathrm{dt} \\
& \\
& \frac{2}{3} \mathrm{~s}^{3 / 2}=4 \mathrm{t}+\mathrm{C}_{2} \\
& \text { At } \mathrm{t}=1, \mathrm{~S}=4 \\
& \Rightarrow \frac{2}{3}(4)^{3 / 2}=4(1)+\mathrm{C}_{2} \\
& \Rightarrow \mathrm{C}_{2}=\frac{16}{3}-4=\frac{4}{3} \\
& \therefore \frac{2}{3} \mathrm{~s}^{3 / 2}=4 \mathrm{t}+\mathrm{C}_{2} \\
& \Rightarrow \frac{2}{3} \mathrm{~s}^{3 / 2}=4 \mathrm{t}+\frac{4}{3} \\
& \mathrm{At}=2 \mathrm{sec} \\
& \frac{2}{3} \mathrm{~s}^{3 / 2}=4(2)+\frac{4}{3} \\
& \Rightarrow \mathrm{~s}=5.808 \mathrm{~m} \\
& \mathrm{a}=\frac{-8}{\mathrm{~s}^{2}}=\frac{-8}{5.808^{2}}=-0.237 \mathrm{~m} / \mathrm{sec}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \int \mathrm{dx}=\int\left(\frac{4 \mathrm{t}^{3}}{3}-2 \mathrm{t}+\mathrm{C}_{1}\right) \mathrm{dt} \\
& \mathrm{x}=\frac{4 \mathrm{t}^{4}}{3 \times 4}-2 \cdot \frac{\mathrm{t}^{2}}{2}+\mathrm{C}_{1} \mathrm{t}+\mathrm{C}_{2} \\
& \mathrm{x}=\frac{\mathrm{t}^{4}}{3}-\mathrm{t}^{2}+\mathrm{C}_{1} \mathrm{t}+\mathrm{C}_{2}
\end{aligned}
$$

Given condition,

$$
\begin{aligned}
& \text { At } \mathrm{t}=0, \mathrm{x}=-2 \mathrm{~m} \\
& \quad \Rightarrow-2=\mathrm{C}_{2} \\
& \text { At } \mathrm{t}=2, \mathrm{x}=-20 \mathrm{~m} \\
& \Rightarrow-20=\frac{2^{4}}{3}-2^{2}+4(2)+(-2) \\
& \Rightarrow \mathrm{C}_{1}=\frac{-29}{3} \\
& \therefore \mathrm{x}=\frac{t^{4}}{3}-\mathrm{t}^{2}-\frac{29}{3} \mathrm{t}-2 \\
& \therefore \text { at } \mathrm{t}=4 \mathrm{sec} \\
& \mathrm{x}=\frac{4^{4}}{3}-4^{2}-\frac{29}{3}(4)-2 \\
& =28.67 \mathrm{~m}
\end{aligned}
$$

6. Ans: (b)

Sol:
05. Ans: (c)

Sol: Given, $\mathrm{a}=4 \mathrm{t}^{2}-2$

$$
\begin{aligned}
& \frac{\mathrm{dv}}{\mathrm{dt}}=4 \mathrm{t}^{2}-2 \\
& \mathrm{dv}=\left(4 \mathrm{t}^{2}-2\right) \mathrm{dt} \\
& \mathrm{v}=\frac{4 \mathrm{t}^{3}}{3}-2 \mathrm{t}+\mathrm{C}_{1} \\
& \frac{\mathrm{dx}}{\mathrm{dt}}=\frac{4 \mathrm{t}^{3}}{3}-2 \mathrm{t}+\mathrm{C}_{1}
\end{aligned}
$$

Let S_{A} be the distance traveled by "A"
Let S_{B} be the distance traveled by "B"

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{A}}=\mathrm{S}_{\mathrm{B}}+384 \\
& \mathrm{u}_{\mathrm{A}} \mathrm{t}+\frac{1}{2} \mathrm{a}_{\mathrm{A}} \mathrm{t}^{2}=\mathrm{u}_{\mathrm{B}} \mathrm{t}+\frac{1}{2} \mathrm{a}_{\mathrm{B}} \mathrm{t}^{2}+384 \\
& 20 \mathrm{t}+\frac{1}{2} 5 \mathrm{t}^{2}=60 \mathrm{t}-\frac{1}{2} 3 \mathrm{t}^{2}+384 \\
& 4 \mathrm{t}^{2}-40 \mathrm{t}-384=0 \\
& \mathrm{t}=16 \mathrm{sec} \quad \text { (or) } \mathrm{t}=-6 \mathrm{sec} \\
& \therefore \mathrm{t}=16 \mathrm{sec}
\end{aligned}
$$

07. Ans: (b)

Sol: Take, $\mathrm{y}=\mathrm{x}^{2}-4 \mathrm{x}+100$
Initial velocity, $V_{0}=4 \hat{\mathrm{i}}-16 \hat{\mathrm{j}}$
If V_{x} is constant
$\mathrm{V}_{\mathrm{y}}, \mathrm{a}_{\mathrm{y}}$ at $\mathrm{x}=16 \mathrm{~m}$
$\mathrm{V}_{\mathrm{x}}=\mathrm{V}_{1 \mathrm{x}}=\frac{\mathrm{dx}}{\mathrm{dt}}=4$
$V_{y}=\frac{d y}{d t}=2 x \frac{d x}{d t}-4 \frac{d x}{d t}$
$\left(V_{y}\right)=2 x(4)-4(4)$
$V_{y}=8 x-16$
$\left(\mathrm{V}_{\mathrm{y}}\right)_{\mathrm{atx}=16}=8(16)-16=112 \mathrm{~m} / \mathrm{sec}$

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{y}}=\frac{\mathrm{dV}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}\left(2 \mathrm{x} \mathrm{~V}_{\mathrm{x}}-4 \mathrm{~V}_{\mathrm{x}}\right) \\
& \quad\left(\because \mathrm{V}_{\mathrm{x}}=\text { constant }\right) \\
&= 2 \mathrm{~V}_{\mathrm{x}} \frac{\mathrm{dx}}{\mathrm{dt}}=2 \mathrm{~V}_{\mathrm{x}} \cdot \mathrm{~V}_{\mathrm{x}} \\
& \mathrm{a}_{\mathrm{y}}=2 \mathrm{~V}_{\mathrm{x}}^{2}
\end{aligned}
$$

$\left(\mathrm{a}_{\mathrm{y}}\right)_{\mathrm{x}=16}=2 \times 4^{2}=32 \mathrm{~m} / \mathrm{sec}^{2}$

08. Ans: (c)

Sol:

Let at distance of " x_{1} ' ball (1) crossed ball (2)

$$
\begin{align*}
& \therefore x_{1}+x_{2}=36 \mathrm{~m} \\
& x_{1}=0(t)+\frac{1}{2}{g t^{2} \quad\left(\because s=u t+\frac{1}{2} \mathrm{at}^{2}\right)}_{\left.x_{1}=\frac{1}{2} g t^{2}-\cdots-1\right)}^{x_{2}=18(t)-\frac{1}{2} g t^{2}}
\end{align*}
$$

$(\because \mathrm{a}=-\mathrm{g}$ moving upward $)$
$\mathrm{x}_{1}+\mathrm{x}_{2}=36$
$\Rightarrow \frac{1}{2} \mathrm{gt}^{2}+18 \mathrm{t}-\frac{1}{2} \mathrm{gt}^{2}=36$
$\Rightarrow 18 \mathrm{t}=36$
$\Rightarrow \mathrm{t}=2 \mathrm{sec}$
$\therefore \mathrm{x}_{1}=\frac{1}{2}(9.81) \cdot 2^{2}$
$=19.62 \mathrm{~m}$ (from the top)
$\mathrm{x}_{2}=36-19.62$
$=16.38 \mathrm{~m}$ (from the bottom)
09. Ans: (b)

Sol:
$\mathrm{V}=\mathrm{u}+\mathrm{at}$
$\mathrm{V}=0+9.81(5)$
$\mathrm{V}=49.05 \mathrm{~m} / \mathrm{sec}$

$\mathrm{V}=$ velocity with which stone strike the glass
Velocity loss $=20 \%$ of V

$$
=\frac{49.05 \times 20}{100}=9.81 \mathrm{~m} / \mathrm{sec}
$$

\therefore Initial velocity for further movement in

$$
\text { glass }=49.05-9.81=39.24 \mathrm{~m} / \mathrm{sec}
$$

Distance traveled for 1 sec of time is given by

$$
\begin{aligned}
& \mathrm{S}=\mathrm{ut}+\frac{1}{2} \mathrm{at}^{2} \\
& \mathrm{~S}=39.24(1)+\frac{1}{2}(9.81)(1)^{2} \\
& \mathrm{~S}=44.145 \mathrm{~m}
\end{aligned}
$$

10. Ans: (a)

Sol:

$$
a_{x}=-4 \mathrm{~m} / \sec ^{2}, \quad a_{y}=-20 \mathrm{~m} / \sec ^{2}
$$

$$
\begin{aligned}
& V_{x}=V_{0} \cos 30=100 \times \frac{\sqrt{3}}{2}=86.6 \mathrm{~m} / \mathrm{sec} \\
& V_{y}=V_{0} \sin 30=100 \times \frac{1}{2}=50 \mathrm{~m} / \mathrm{sec} \\
& y=V_{0 y} t+\frac{1}{2} a_{y} t^{2} \\
& -60=50 t+\frac{1}{2}(-20) \mathrm{t}^{2} \\
& 10 \mathrm{t}^{2}-50 \mathrm{t}-60=0 \\
& \mathrm{t}=6 \quad \text { (or }) \quad-1 \mathrm{sec} \\
& \therefore \mathrm{t}=6 \sec \\
& \mathrm{x}=\mathrm{V}_{0} \mathrm{t}+\frac{1}{2} \mathrm{a}_{\mathrm{x}} \mathrm{t}^{2} \\
& \mathrm{x}=(86.6 \times 6)+\frac{1}{2}(-4) 6^{2}
\end{aligned}
$$

$$
x=447.6 \mathrm{~m} \simeq 448 \mathrm{~m}
$$

11. Ans: (a)

Sol: Given, $V=20 \mathrm{~m} / \mathrm{sec}$

$$
\mathrm{x}=20 \mathrm{~m}, \mathrm{y}=8.0 \mathrm{~m}
$$

$$
\begin{aligned}
\mathrm{V}_{\mathrm{x}} & =\mathrm{V} \cos \theta, \quad \mathrm{~V}_{\mathrm{y}}=\mathrm{V} \sin \theta \\
\mathrm{x} & =\mathrm{V}_{\mathrm{x}} \mathrm{t}+\frac{1}{2} a \mathrm{t}^{2}(\because \mathrm{a}=0, \text { along } \mathrm{x} \text { direction }) \\
\mathrm{x} & =\mathrm{V} \cos \theta \mathrm{t} \\
20 & =20 \cos \theta \mathrm{t}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{t}=\frac{1}{\cos \theta}-\cdots--(1) \\
& \mathrm{y}=\mathrm{V}_{\mathrm{y}} \mathrm{t}-\frac{1}{2} \mathrm{gt}^{2} \\
& 8.0=\mathrm{V} \sin \theta \mathrm{t}-\frac{1}{2} \mathrm{gt}^{2} \\
& 8.0=20 \sin \theta \times \frac{1}{\cos \theta}-\frac{1}{2} \times 9.81 \times\left(\frac{1}{\cos \theta}\right)^{2} \\
& 8=20 \tan \theta-4.9 \sec ^{2} \theta \\
& 8=20 \tan \theta-4.9\left(1+\tan ^{2} \theta\right) \\
& 4.9 \tan ^{2} \theta-20 \tan \theta+12.9=0 \\
& \tan \theta_{1}=3.28, \tan \theta_{2}=0.803 \\
& \theta_{1}=73.04 ; \theta_{2}=38.76
\end{aligned}
$$

12. Ans: (d)

Sol: Range $=$ maximum height

$$
\begin{aligned}
& \frac{\mathrm{V}_{0}^{2} \sin 2 \theta}{\mathrm{~g}}=\frac{\mathrm{V}_{0}^{2} \sin ^{2} \theta}{2 \mathrm{~g}} \\
& \sin 2 \theta=\frac{\sin ^{2} \theta}{2} \\
& \Rightarrow 2 \sin \theta \cos \theta=\frac{\sin ^{2} \theta}{2} \\
& \Rightarrow \tan \theta=4 \\
& \therefore \theta=\tan ^{-1}(4)=76^{\circ}
\end{aligned}
$$

13. Ans: (a)

Sol:

$$
\begin{aligned}
& \mathrm{V}_{1 \mathrm{x}}=100-\mathrm{t}^{3 / 2} \\
& \mathrm{~V}_{2 \mathrm{y}}=0 \Rightarrow 100+10 \mathrm{t}-2 \mathrm{t}^{2}=0 \\
& \quad(\mathrm{t}-10)(\mathrm{t}+5)=0 \\
& \mathrm{t}
\end{aligned}=10 \mathrm{sec} .
$$

Radius of curvature, $r=\frac{\mathrm{V}^{2}}{\mathrm{a}_{\mathrm{N}}}$

$$
\begin{aligned}
& \text { Where } \begin{aligned}
& \mathrm{a}_{\mathrm{N}}=\mathrm{a}_{\mathrm{y}}=\left(\frac{d V_{\mathrm{y}}}{\mathrm{dt}}\right)_{\mathrm{att}=10 \mathrm{sec}} \\
&=(10-4 \mathrm{t})_{\mathrm{t}=10} \\
& \mathrm{a}_{\mathrm{N}}=-30 \mathrm{~m} / \mathrm{sec}^{2} \\
& \mathrm{r}=\frac{\mathrm{V}_{2 \mathrm{x}}^{2}}{\mathrm{a}_{\mathrm{N}}}=\frac{68.37^{2}}{30}=155.8 \mathrm{~m}
\end{aligned}
\end{aligned}
$$

14. Ans: (a)

Sol:

Given, $\mathrm{v}=100 \mathrm{~m} / \mathrm{sec}$

$$
\begin{aligned}
\mathrm{v}_{1 \mathrm{x}} & =\mathrm{v} \cos 60^{\circ} \\
& =100 \times 1 / 2 \\
\mathrm{v}_{1 \mathrm{x}} & =50 \mathrm{~m} / \mathrm{sec} \\
\mathrm{v}_{1 \mathrm{y}} & =\mathrm{v} \sin 60^{\circ} \\
& =100 \times \frac{\sqrt{3}}{2} \\
\mathrm{v}_{1 \mathrm{y}} & =86.6 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{v}_{2 \mathrm{y}} & =\mathrm{v}_{1 \mathrm{y}}-\mathrm{gt} \quad(\text { use } \mathrm{V}=\mathrm{u}+\mathrm{at}) \\
& =86.6-9.8(1) \\
\mathrm{v}_{2 \mathrm{y}} & =76.8 \mathrm{~m} / \mathrm{sec} \\
\mathrm{v}_{2 \mathrm{x}} & =\mathrm{v}_{1 \mathrm{x}}=50 \mathrm{~m} / \mathrm{sec} \\
\mathrm{v}_{\mathrm{att} \mathrm{t}=1} & =\sqrt{\mathrm{v}_{2 \mathrm{x}}^{2}+\mathrm{v}_{2 \mathrm{y}}^{2}} \\
& =\sqrt{50^{2}+76.8^{2}} \\
& =91.6 \mathrm{~m} / \mathrm{sec} \\
\alpha & =\tan ^{-1}\left(\frac{\mathrm{v}_{\mathrm{y}}}{\mathrm{v}_{\mathrm{x}}}\right)=\tan ^{-1}\left(\frac{76.8}{50}\right) \\
\alpha & =56.9 \mathrm{rad} / \mathrm{sec} \\
\mathrm{a}_{\mathrm{N}} & =\mathrm{gcos} \alpha=9.81 \times \cos 56.9^{\circ} \\
& =5.35 \mathrm{~m} / \mathrm{sec}^{2} \\
\mathrm{r} & =\frac{\mathrm{V}^{2}}{\mathrm{a}_{\mathrm{N}}}=\frac{91.6^{2}}{5.35}=1568.62 \mathrm{~m}
\end{aligned}
$$

Chapter
 5
 Kinematics of Rigid Bodies Fixed Axis Rotation and General Plane Motion

1. Ans: (a)
2. Ans: (d)

Sol:

$$
\begin{aligned}
\mathrm{v}_{1 \mathrm{x}} & =\mathrm{v} \cos 30=43.3 \mathrm{~m} / \mathrm{sec} \\
\mathrm{a}_{\mathrm{N}} & =\mathrm{g}=\mathrm{a} \\
\mathrm{r} & =\frac{\mathrm{V}_{1 \mathrm{x}}^{2}}{\mathrm{a}_{\mathrm{N}}}=\frac{43.3^{2}}{9.81}=191.13 \mathrm{~m}
\end{aligned}
$$

Sol:

$$
\begin{aligned}
\tan \theta & =\frac{3}{4} \\
\theta & =\operatorname{Tan}^{-1} 3 / 4=36.6^{0}
\end{aligned}
$$

$$
a_{\mathrm{y}}=\mathrm{a}_{\mathrm{T}} \cos \theta-a_{\mathrm{N}} \sin \theta
$$

Note: Velocity will always act in the tangential direction
$\mathrm{V}_{\mathrm{x}}=\mathrm{V} \sin \theta$

$$
\mathrm{V}=\frac{2}{\sin 36.6}=3.33 \mathrm{~m} / \mathrm{sec}
$$

$$
\therefore \mathrm{a}_{\mathrm{N}}=\frac{\mathrm{V}^{2}}{\mathrm{r}}=\frac{3.33^{2}}{10}
$$

$$
\mathrm{a}_{\mathrm{N}}=1.111 \mathrm{~m} / \mathrm{sec}^{2}
$$

$$
\mathrm{a}_{\mathrm{y}}=\mathrm{a}_{\mathrm{T}} \cos \theta-\mathrm{a}_{\mathrm{N}} \sin \theta
$$

$$
4=a_{T} \cos 36.6-1.111 \sin 36.6
$$

$$
\Rightarrow \mathrm{a}_{\mathrm{T}}=5.83 \mathrm{~m} / \mathrm{sec}^{2}
$$

$$
\mathrm{a}_{\mathrm{T}}=\mathrm{r} \alpha
$$

$$
\alpha=\frac{\mathrm{a}_{\mathrm{T}}}{\mathrm{r}}=\frac{5.83}{10}=0.583 \mathrm{rad} / \mathrm{sec}^{2}
$$

02. Ans: (c)

Sol: Given $\omega=4 \sqrt{\mathrm{t}}$
$\theta=2$ radians at $\mathrm{t}=1 \mathrm{sec}$
$\theta=? \alpha=$? at $\mathrm{t}=3 \mathrm{sec}$
$\omega=\frac{\mathrm{d} \theta}{\mathrm{dt}} \Rightarrow \int \mathrm{d} \theta=\int \omega \mathrm{dt}$
$\theta=\int 4 \sqrt{\mathrm{t}} \mathrm{dt}$
$\theta=\frac{8}{3} \mathrm{t}^{3 / 2}+\mathrm{c} .$.
From given condition, at $\mathrm{t}=1, \theta=2 \mathrm{rad}$
(1) $\Rightarrow 2=\frac{8}{3}(1)^{3 / 2}+\mathrm{c}_{1} \Rightarrow \mathrm{c}_{1}=\frac{-2}{3}$
$\therefore \theta=\frac{8}{3} \mathrm{t}^{3 / 2}-\frac{2}{3}$
At $\mathrm{t}=3 \mathrm{sec}, \theta=\frac{8}{3}(3)^{3 / 2}-\frac{2}{3}$
$\theta_{\mathrm{t}=3}=13.18 \mathrm{rad}$
$\alpha=\frac{\mathrm{d} \omega}{\mathrm{dt}}=\frac{\mathrm{d}(4 \sqrt{\mathrm{t}})}{\mathrm{dt}}=\frac{2}{\sqrt{\mathrm{t}}}$
$\alpha_{t=3}=\frac{2}{\sqrt{3}}=1.15 \mathrm{rad} / \mathrm{sec}^{2}$
03. Ans: (b)

Sol: $\mathrm{r}=2 \mathrm{~cm}, \omega=3 \mathrm{rad} / \mathrm{sec}, \quad \mathrm{a}=30 \mathrm{~cm} / \mathrm{s}^{2}$

$$
\mathrm{a}_{\mathrm{N}}=\mathrm{r} \omega^{2}=2(3)^{2}=18 \mathrm{~cm} / \sec ^{2}
$$

Since total acceleration $a=\sqrt{a_{T}^{2}+a_{N}^{2}}$
$\Rightarrow \mathrm{a}^{2}=\mathrm{a}_{\mathrm{T}}^{2}+\mathrm{a}_{\mathrm{N}}^{2}$

$$
\begin{aligned}
30^{2} & =\mathrm{a}_{\mathrm{T}}^{2}+18^{2} \\
\mathrm{a}_{\mathrm{T}} & =24 \mathrm{~cm} / \mathrm{sec}^{2} \\
\mathrm{a}_{\mathrm{T}} & =\mathrm{r} \alpha=24 \\
\alpha & =\frac{24}{2}=12 \mathrm{rad} / \mathrm{sec}^{2}
\end{aligned}
$$

04. Ans: (d)

Sol: Given angular acceleration, $\alpha=\pi \mathrm{rad} / \mathrm{sec}^{2}$
Angular displacement in time t_{1} and t_{2}

$$
=\pi \mathrm{rad}=\theta_{2}-\theta_{1}
$$

$\omega_{\mathrm{t} 2}=2 \pi \mathrm{rad} / \mathrm{sec}$
$\omega_{\mathrm{t} 1}=$?
$\omega_{\mathrm{t1}}^{2}-\omega_{0}^{2}=2 \alpha \theta_{1}$
$\omega_{\mathrm{t} 2}^{2}-\omega_{0}^{2}=2 \alpha \theta_{2}$
$\omega_{\mathrm{t} 2}^{2}-\omega_{\mathrm{t} 1}^{2}=2 \alpha\left(\theta_{2}-\theta_{1}\right)$
$4 \pi^{2}-\omega_{\mathrm{t} 1}^{2}=2 \pi^{2}$
$\omega_{\mathrm{t} 1}^{2}=2 \pi^{2}$
$\omega_{\mathrm{t} 1}=\pi \sqrt{2} \mathrm{rad} / \mathrm{s}$
05. Ans: (c)

Sol: Given retardation

$$
\begin{aligned}
\alpha & =-3 \mathrm{t}^{2} \\
\frac{\mathrm{~d} \omega}{\mathrm{dt}} & =-3 \mathrm{t}^{2} \\
\int \mathrm{~d} \omega & =\int-3 \mathrm{t}^{2} \mathrm{dt} \\
\omega & =-\mathrm{t}^{3}+\mathrm{c}_{1}
\end{aligned}
$$

From given condition at $\mathrm{t}=0$,

$$
\begin{aligned}
\omega & =27 \mathrm{rad} / \mathrm{sec} \\
27 & =-0^{3}+\mathrm{c}_{1} \\
\Rightarrow \mathrm{c}_{1} & =27 \\
\therefore \omega & =-\mathrm{t}^{3}+27
\end{aligned}
$$

Wheel stops at $\omega=0$,

$$
\begin{aligned}
& \Rightarrow 0=-\mathrm{t}^{3}+27 \\
& \Rightarrow \mathrm{t}=3 \mathrm{sec}
\end{aligned}
$$

06. Ans: (c)

Sol: angular speed, $\omega=5 \mathrm{rev} / \mathrm{sec}$

$$
\begin{aligned}
& =5 \times 2 \pi \mathrm{rad} / \mathrm{sec} \\
\omega & =10 \pi \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

Radius, $r=0.1 \mathrm{~m}$
If ω is constant, $\mathrm{d} \omega=0$
$\Rightarrow \alpha=0 \Rightarrow \mathrm{a}_{\mathrm{T}}=0\left(\right.$ since $\left.\mathrm{a}_{\mathrm{T}}=\mathrm{r} \alpha\right)$
Since $\mathrm{a}_{\mathrm{T}}=0$
$a=\sqrt{a_{N}^{2}+a_{T}^{2}}$

$$
\begin{aligned}
a=a_{N} & =\frac{v^{2}}{r}=\frac{(r \omega)^{2}}{r}=r \omega^{2} \\
& =0.1 \times(10 \pi)^{2}=10 \pi^{2} \mathrm{~m} / \mathrm{sec}^{2}
\end{aligned}
$$

07. Ans: 40

Sol:

Tangential acceleration

$$
\mathrm{a}_{\mathrm{T}}=\mathrm{r} \alpha=2 \times 12=24 \mathrm{~m} / \mathrm{s}^{2}
$$

Normal acceleration, $\mathrm{a}_{\mathrm{N}}=\mathrm{r} \omega^{2}$

$$
=2 \times 4^{2}=32 \mathrm{~m} / \mathrm{s}^{2}
$$

The resultant acceleration

$$
\begin{aligned}
\mathrm{a} & =\sqrt{\mathrm{a}_{\mathrm{T}}^{2}+\mathrm{a}_{\mathrm{N}}^{2}} \\
& =\sqrt{24^{2}+32^{2}}=40 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

08. Ans: (b)

Sol:

$V_{A}=r_{\mathrm{o}_{1} \mathrm{~A}} \times \omega$
$\Rightarrow 12=\mathrm{r}_{\mathrm{o}_{\mathrm{A}} \mathrm{A}} \times 6$
$\mathrm{r}_{\mathrm{o}_{\mathrm{i}} \mathrm{A}}=2 \mathrm{~m}$

$$
\begin{aligned}
& 4=2+r_{o_{1} B} \\
& r_{O_{1} B}=2 \mathrm{~m} \\
& \therefore V_{B}=r_{o_{1} B} \times \omega=2 \times 6 \\
& V_{B}=12 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

9. Ans: (a)

Sol: Instantaneous centre will have zero velocity because the instantaneous centre is the point of contact between the object and the floor.
10. Ans: (a)

Sol:

$\mathrm{V}_{\mathrm{a}}=1 \mathrm{~m} / \mathrm{s}$
$\mathrm{V}_{\mathrm{a}}=$ along vertical
$\mathrm{V}_{\mathrm{b}}=$ along horizontal
So instantaneous center of V_{a} and V_{b} will be perpendicular to A and B respectively

$$
I A=O B=l \times \cos \theta=1 \times \cos 60^{\circ}=\frac{1}{2} m
$$

$$
I B=O A=l \times \sin \theta=1 \times \sin 60^{\circ}=\frac{\sqrt{3}}{2} m
$$

$$
\mathrm{V}_{\mathrm{a}}=\omega \times \mathrm{IA}
$$

$$
\Rightarrow \omega=\frac{\mathrm{V}_{\mathrm{a}}}{\mathrm{IA}}=2 \mathrm{rad} / \mathrm{sec}
$$

11. Ans: (d)

Sol: The velocity directions instantaneous centre can be located as shown. By knowing velocity (magnitude) of Q we can get the angular velocity of the link, from this we can get the velocity of ' P using sine rule.
' I ' is the instantaneous centre.
From sine rule

$$
\begin{aligned}
& \frac{P Q}{\sin 45}=\frac{I Q}{\sin 70}=\frac{I P}{\sin 65} \\
& \frac{I P}{I Q}=\frac{\sin 65^{\circ}}{\sin 70^{\circ}} \\
& \mathrm{V}_{\mathrm{Q}}=\mathrm{IQ} \times \omega=1 \\
& \Rightarrow \omega=\frac{\mathrm{V}_{\mathrm{Q}}}{\mathrm{IQ}} \\
& \begin{aligned}
\mathrm{V}_{\mathrm{P}} & =\mathrm{IP} \times \omega=\frac{\mathrm{IP}}{\mathrm{IQ}} \times \mathrm{V}_{\mathrm{Q}}
\end{aligned}=\frac{\sin 65^{\circ}}{\sin 70^{\circ}} \times 1 \\
&
\end{aligned}
$$

ACE	22	GATE - Text Book Solutions

Chapter
 6
 Kinetics of Particle and Rigid Bodies

1. Ans: (a)

Sol:

For the left cord,
$\Sigma \mathrm{F}_{\mathrm{y}}=0$

$$
\begin{equation*}
\mathrm{T}=\left(\frac{\mathrm{W}}{\mathrm{~g}}\right) \mathrm{a}+\mathrm{W} \tag{1}
\end{equation*}
$$

2. Ans: (b)

Sol: $u=0, \quad v=1.828 \mathrm{~m} / \mathrm{sec}, \quad \mathrm{S}=1.825 \mathrm{~m}$,

$$
\begin{gathered}
v^{2}-u^{2}=2 a s \\
1.828^{2}-0=2 a \times 1.828 \\
\mathrm{a}=\frac{1.828}{2} \\
\mathrm{a}=0.914 \mathrm{~m} / \mathrm{sec}^{2}
\end{gathered}
$$

$$
\begin{aligned}
& \\
& \text { Direction of } \\
& \text { Inertial force } \\
& \qquad\left(\frac{\mathrm{W}}{\mathrm{~g}}\right) \mathrm{a}^{\star} \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \mathrm{W}
\end{aligned}
$$

For equilibrium, $\Sigma \mathrm{F}_{\mathrm{y}}=0$

$$
\begin{aligned}
T & =W+\left(\frac{W}{g}\right) a \\
& =4448+\frac{4448}{9.81} \times 0.194
\end{aligned}
$$

3. Ans: (a)

Sol:

For the right cord
$\Sigma \mathrm{F}_{\mathrm{y}}=0$
$\mathrm{T}+\left(\frac{\mathrm{W}+\mathrm{Q}}{\mathrm{g}}\right) \mathrm{a}=(\mathrm{W}+\mathrm{Q}) \ldots$
From (1) \& (2)

$$
\begin{aligned}
\left(\frac{\mathrm{W}}{\mathrm{~g}}\right) \mathrm{a}+\mathrm{W} & =\mathrm{W}+\mathrm{Q}-\left(\frac{\mathrm{W}+\mathrm{Q}}{\mathrm{~g}}\right) \mathrm{a} \\
\left(\frac{\mathrm{~W}}{\mathrm{~g}}\right) \mathrm{a}+\mathrm{W} & =\mathrm{W}+\mathrm{Q}-\left(\frac{\mathrm{W}}{\mathrm{~g}}\right) \mathrm{a}-\left(\frac{\mathrm{Q}}{\mathrm{~g}}\right) \mathrm{a} \\
\mathrm{Q}-\frac{\mathrm{Qa}}{\mathrm{~g}} & =\frac{2 \mathrm{Wa}}{\mathrm{~g}} \\
\mathrm{Q}\left(\frac{\mathrm{~g}-\mathrm{a}}{\mathrm{~g}}\right) & =\frac{2 \mathrm{Wa}}{\mathrm{~g}} \Rightarrow \mathrm{Q}=\frac{2 \mathrm{Wa}}{\mathrm{~g}-\mathrm{a}}
\end{aligned}
$$

$$
\mathrm{T}=4862.42 \mathrm{~N}
$$

$$
\tan \theta=\frac{3}{4}
$$

$$
\theta=\tan ^{-1}(3 / 4)=36.86
$$

$$
\left(\mathrm{F}_{\mathrm{net}}\right)_{\mathrm{x}}=\mathrm{ma}
$$

$\mathrm{P}_{\mathrm{x}}-\mathrm{F}=\left(\frac{\mathrm{W}}{\mathrm{g}}\right) \mathrm{a}$
$\operatorname{Pcos} 36.86-\mathrm{F}=\left(\frac{\mathrm{W}}{\mathrm{g}}\right) \mathrm{a}$
$0.8 \mathrm{P}-\mathrm{F}=\left(\frac{2224}{\mathrm{~g}}\right)(0.2 \mathrm{~g})$
$0.8 \mathrm{P}-\mathrm{F}=444.8$
$0.8 \mathrm{P}-\mathrm{F}=444.8+\mathrm{F}$
$\mathrm{P}=556+1.25 \mathrm{~F}$
$\Sigma \mathrm{F}_{\mathrm{y}}=0$
$\mathrm{N}+\mathrm{P}_{\mathrm{y}}-\mathrm{W}=0$
$\mathrm{N}=\mathrm{W}-\mathrm{P}_{\mathrm{y}}\left(\right.$ since $\left.\mu=\frac{\mathrm{F}}{\mathrm{N}}\right)$
$\mathrm{F}=\mu \mathrm{N}$
$\mathrm{F}=\mu\left(\mathrm{W}-\mathrm{P}_{\mathrm{y}}\right)$
$=0.2(2224-\mathrm{P} \sin 36.86)$
$\mathrm{F}=444.8-0.12 \mathrm{P}$
From (1) \& (2)

$$
\mathrm{P}=556+1.25(444.8-0.12 \mathrm{P})
$$

$1.15 \mathrm{P}=1112$
$\mathrm{P}=966.95$
$\mathrm{P}=967 \mathrm{~N}$
04. Ans: (d)

Sol:

From static equilibrium condition
$\Sigma \mathrm{F}_{\mathrm{y}}=0$
$\mathrm{N}-\mathrm{W}=0$
$\mathrm{N}=\mathrm{W}=44.48 \mathrm{~N}$
From dynamic equilibrium condition
$\Sigma \mathrm{F}_{\mathrm{x}}=0$
$\mathrm{F}=\mathrm{ma}$
$\mu \mathrm{N}=\frac{\mathrm{W}}{\mathrm{g}} \mathrm{a}$
$\mu=\frac{a}{g}$
$a=\mu \mathrm{g}$
Since $v^{2}-u^{2}=2$ as

$$
\begin{align*}
& 0-(9.126)^{2}=2(-a) \times 13.689 \\
& a=3.042 \mathrm{~m} / \mathrm{s}^{2} \quad \ldots \ldots \ldots(2) \tag{2}
\end{align*}
$$

From (1) \& (2)
$3.042=\mu(9.81)$
$\Rightarrow \mu=0.31$
05. Ans: (a)

Sol:

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups \& PSC Exams
$\Sigma \mathrm{F}_{\mathrm{y}}=0$ (static equilibrium)
$\mathrm{N}-\mathrm{W} \cos \theta=0$
$\mathrm{N}=\mathrm{W} \cos \theta=\mathrm{mg} \cos \theta$
Since $\mathrm{F}=\mu \mathrm{N}=\mu \mathrm{mgcos} \theta$
$\Sigma \mathrm{F}_{\mathrm{x}}=0$ (Dynamic equilibrium)
$\mathrm{F}+\mathrm{ma}-\mathrm{W} \sin \theta=0$
$\mathrm{F}=\mathrm{mg} \sin \theta-\mathrm{ma}$
From (1) \& (2)
$\mu \mathrm{mg} \cos \theta=\mathrm{mgsin} \theta-\mathrm{ma}$
$\Rightarrow \mathrm{a}=\mathrm{g} \sin \theta-\mu \mathrm{g} \cos \theta$
$\Rightarrow \mathrm{a}=\mathrm{g} \cos \theta(\tan \theta-\mu)$

Given, $\mathrm{PQ}=\mathrm{s}$
$\mathrm{s}=\mathrm{ut}+\frac{1}{2} a \mathrm{t}^{2}$

$$
\begin{aligned}
s & =0(t)+\frac{1}{2} a t^{2} \Rightarrow t=\sqrt{\frac{2 s}{a}} \\
& =\sqrt{\frac{2 s}{g \cos \theta(\tan \theta-\mu)}}
\end{aligned}
$$

6. Ans: (a)

Sol:

$$
\begin{equation*}
\mathrm{T}_{\mathrm{A}}=2 \mathrm{~T}_{\mathrm{B}} \tag{1}
\end{equation*}
$$

Work done by $\mathrm{A} \& \mathrm{~B}$ equal

$$
\begin{align*}
\mathrm{T}_{\mathrm{A}} \mathrm{~S}_{\mathrm{A}} & =\mathrm{T}_{\mathrm{B}} \mathrm{~S}_{\mathrm{B}} \\
2 \mathrm{~T}_{\mathrm{B}} \mathrm{~S}_{\mathrm{A}} & =\mathrm{T}_{\mathrm{B}} \mathrm{~S}_{\mathrm{B}} \\
2 \mathrm{~S}_{\mathrm{A}} & =\mathrm{S}_{\mathrm{B}} \\
2 \mathrm{a}_{\mathrm{A}} & =\mathrm{a}_{\mathrm{B}} \tag{2}
\end{align*}
$$

For 'B' body

$$
\begin{equation*}
\mathrm{T}_{\mathrm{B}}=\mathrm{m}_{\mathrm{B}} \mathrm{a}_{\mathrm{B}}+\mathrm{m}_{\mathrm{B}} \mathrm{~g} \tag{3}
\end{equation*}
$$

For 'A' body

$$
\begin{equation*}
\mathrm{T}_{\mathrm{A}}=\mathrm{m}_{\mathrm{A}} \mathrm{~g}-\mathrm{m}_{\mathrm{A}} \mathrm{a}_{\mathrm{A}} \tag{4}
\end{equation*}
$$

(2), (3) \& (4) sub in (1)
$m_{A} g-m_{A} a_{A}=2\left(m_{B}\left(2 a_{A}\right)+m_{B} g\right)$
$m_{A} g-m_{A} a_{A}=4 m_{B} a_{A}+2 m_{B} g$
$\mathrm{m}_{\mathrm{A}} \mathrm{a}_{\mathrm{A}}+4 \mathrm{~m}_{\mathrm{B}} \mathrm{a}_{\mathrm{A}}=\mathrm{m}_{\mathrm{A}} \mathrm{g}-2 \mathrm{~m}_{\mathrm{B}} \mathrm{g}$

$$
\begin{aligned}
\mathrm{a}_{\mathrm{A}} & =\frac{\mathrm{m}_{\mathrm{A}} \mathrm{~g}-2 \mathrm{~m}_{\mathrm{B}} \mathrm{~g}}{\mathrm{~m}_{\mathrm{A}}+4 \mathrm{~m}_{\mathrm{B}}} \\
& =\frac{150-2(50)}{\frac{150}{10}+4\left(\frac{50}{10}\right)} \\
& =\frac{50}{15+20}=\frac{50}{35}=1.42 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

07. Ans: 4.905 m/s

Sol: $\mu_{\mathrm{S}}=0.4 ; \mu_{\mathrm{K}}=0.2$
FBD of the block

W.r.t free body diagram of the block:

$\mathrm{F}_{\mathrm{S}}=\mu_{\mathrm{S}} \mathrm{N}$;
$\mathrm{F}_{\mathrm{K}}=\mu_{\mathrm{K}} \mathrm{N}$
$\Sigma \mathrm{F}_{\mathrm{y}}=0$
$\mathrm{N}-\mathrm{W}=0$
$\mathrm{N}=\mathrm{W}=200 \mathrm{~N}$
Limiting friction or static friction

$$
\left(\mathrm{F}_{\mathrm{S}}\right)=0.4 \times 200=80 \mathrm{~N}
$$

Kinetic Friction

$$
\left(\mathrm{F}_{\mathrm{K}}\right)=0.2 \times 200=40 \mathrm{~N}
$$

The block starts moving only when the force, P exceeds static friction, F_{S}

Thus, under static equilibrium
$\Rightarrow \sum \mathrm{F}_{\mathrm{x}}=0$
$\Rightarrow \mathrm{P}-\mathrm{F}_{\mathrm{S}}=0 \Rightarrow 10 \mathrm{t}=80$
$t=\frac{80}{10}=8 \mathrm{sec}$
\therefore The block starts moving only when $\mathrm{t}>8$ seconds

During 8 seconds to 10 seconds of time:

According to Newton's second law of motion

Force $=$ mass \times acceleration
$\left(\mathrm{P}-\mathrm{F}_{\mathrm{K}}\right)=\mathrm{m} \times \frac{\mathrm{dv}}{\mathrm{dt}} \Rightarrow(10 \mathrm{t}-40)=\frac{200}{9.81} \times \frac{\mathrm{dv}}{\mathrm{dt}}$
$\int_{8}^{10}(10 \mathrm{t}-40) \mathrm{dt}=\frac{200}{9.81} \int_{0}^{\mathrm{v}} \mathrm{dv}$
$\left[5 t^{2}-40 t\right]_{\beta}^{10}=20.387 \times V \Rightarrow(180-80)=20.387 \times V$
Velocity $(\mathrm{V})=4.905 \mathrm{~m} / \mathrm{s}$
08. Ans: $1.198 \mathrm{~m} / \mathbf{s}^{2}$

Sol:

W.r.t. FBD of the crate:

$$
\begin{aligned}
\mathrm{W}_{\mathrm{X}}=\mathrm{W} \sin 10^{\circ} & =981 \times \sin 10^{\circ} \\
& =170.34 \mathrm{~N}
\end{aligned}
$$

$$
\mathrm{W}_{\mathrm{Y}}=\mathrm{W} \cos 10^{\circ}=981 \times \cos 10^{\circ}=966.09 \mathrm{~N}
$$

$$
\Sigma \mathrm{F}_{\mathrm{Y}}=0 \Rightarrow \mathrm{~N}-\mathrm{W}_{\mathrm{Y}}=0
$$

$$
\mathrm{N}=\mathrm{W}_{\mathrm{Y}}=966.09 \mathrm{~N} ;
$$

$$
F=\mu N=0.3 \times 966.09=289.828 \mathrm{~N}
$$

$$
\sum \mathrm{F}_{\mathrm{X}}=0 \Rightarrow \mathrm{P}+\mathrm{W}_{\mathrm{X}}-\mathrm{F}=0
$$

$$
\Rightarrow P+289.828-170.34=0
$$

$$
\mathrm{P}=119.488 \mathrm{~N}
$$

$$
\mathrm{P}=\mathrm{ma}=119.488 \mathrm{~N}
$$

$$
\Rightarrow \mathrm{a}=\frac{119.488}{100}=1.198 \mathrm{~m} / \mathrm{s}^{2}
$$

9. Ans: 57.67 m

Sol:
$\mathrm{W}_{\mathrm{x}}=\mathrm{W} \sin 45$

$$
=98.1 \times \sin 45=69.367 \mathrm{~N}
$$

$\mathrm{W}_{\mathrm{y}}=\mathrm{W} \cos 45=69.367 \mathrm{~N}$

$\sum F_{Y}=0$
$\mathrm{N}-\mathrm{W}_{\mathrm{Y}}=0$
$\mathrm{N}=\mathrm{W}_{\mathrm{Y}}=69.367 \mathrm{~N}$
$\mathrm{F}=\mu_{\mathrm{K}} \mathrm{N}=0.5 \times 69.367=34.683 \mathrm{~N}$
$\sum \mathrm{F}_{\mathrm{x}}=0$ (Dynamic Equilibrium
D' Alembert principle)
$\mathrm{W}_{\mathrm{x}}-\mathrm{F}-\mathrm{ma}=0$
$69.367-34.683-10 \times a=0$
$a=3.468 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{S}=\mathrm{ut}+\frac{1}{2} \mathrm{at}^{2}$
$\because t$ is unknown we can not use this equation
So use $V^{2}-u^{2}=2$ as
$\mathrm{V}=20 \mathrm{~m} / \mathrm{s}^{2} ; \quad \mathrm{u}=0 ; \quad \mathrm{a}=3.468 \mathrm{~m} / \mathrm{s}^{2}$
$V^{2}=2 a s$
$\mathrm{S}=\frac{\mathrm{V}^{2}}{2 \times \mathrm{a}}=\frac{20^{2}}{2 \times 3.468}=57.67 \mathrm{~m}$
10. Ans: $2.053 \mathrm{rad} / \mathrm{s}^{2}$

Sol:

$$
\begin{aligned}
& \mathrm{M}=\mathrm{I} \alpha \\
& \mathrm{M}=29.43 \times 3=88.29 \mathrm{~N}-\mathrm{m} \\
& \begin{aligned}
\mathrm{I}= & \mathrm{I}_{0}+\mathrm{Ad}^{2}=\frac{\mathrm{m} \ell^{2}}{12}+\mathrm{md}^{2}=\frac{3 \times 8^{2}}{12}+3 \times 3^{2} \\
& =16+27=43 \mathrm{~kg}-\mathrm{m}^{2}
\end{aligned} \\
& \begin{array}{l}
\alpha=\frac{\mathrm{M}}{\mathrm{I}}=\frac{88.29}{43}=2.053 \mathrm{rad} / \mathrm{s}^{2}
\end{array}
\end{aligned}
$$

11. Ans: (d)

Sol:

$$
\begin{aligned}
& \Sigma \mathrm{F}_{\mathrm{y}}=0 \\
& \mathrm{~V}_{\mathrm{A}}+\mathrm{ma}=\mathrm{W} \\
& \mathrm{~V}_{\mathrm{A}}=\mathrm{m}(\mathrm{~g}-\mathrm{a}) \ldots(1) \\
& \text { Where, } \mathrm{a}=\frac{\mathrm{L}}{2} \alpha
\end{aligned}
$$

Since, $M=\mathrm{I} \alpha$
$\mathrm{W} \times \frac{\mathrm{L}}{2}=\left(\frac{\mathrm{mL}^{2}}{12}+\mathrm{m}\left(\frac{\mathrm{L}}{2}\right)^{2}\right) \alpha$
$\mathrm{mg} \times \frac{\mathrm{L}}{2}=\frac{4 \mathrm{~mL}^{2}}{12} \times \frac{2 \mathrm{a}}{\mathrm{L}}$
$\mathrm{a}=\frac{3}{4} \mathrm{~g} \ldots$.
from (1) \& (2)
$\mathrm{V}_{\mathrm{A}}=\mathrm{m}\left(\mathrm{g}-\frac{3}{4} \mathrm{~g}\right)=\frac{\mathrm{mg}}{4}$
$\mathrm{V}_{\mathrm{A}}=\frac{\mathrm{W}}{4}$

12. Ans: (d)

Sol: $\mathrm{I}=5 \mathrm{~kg} . \mathrm{m}^{2}$
$\mathrm{R}=0.25 \mathrm{~m}$
$\mathrm{F}=8 \mathrm{~N}$
Mass moment of inertia, $\mathrm{I}_{\mathrm{x}}=\mathrm{I}_{\mathrm{y}}=\frac{\mathrm{mr}^{2}}{4}$
$\mathrm{I}_{\mathrm{z}}=\frac{\mathrm{mr}^{2}}{2}$
$\mathrm{M}=\mathrm{I} \alpha$
$8 \times 0.25=5 \times \alpha$
$\alpha=0.4$
$\omega^{2}-\omega_{0}^{2}=2 \alpha \theta$
$\omega^{2}-0^{2}=2(0.4) \times \pi \quad$ (since for half revolution $\theta=\pi$)
$\omega=1.58 \mathrm{rad} / \mathrm{sec}$
13. Ans: $\mathbf{4 . 6}$ seconds

Sol: $M=60 \mathrm{~N}-\mathrm{m}$
$\mathrm{L}=2 \mathrm{~m}, \quad \omega_{0}=0$,
$\omega=200 \mathrm{rpm}=\frac{200 \times 2 \pi}{60}$
$\omega=20.94 \frac{\mathrm{rad}}{\mathrm{sec}}$
Moment, $\mathrm{M}=\mathrm{I} \alpha$

$$
\begin{aligned}
60 & =\frac{\mathrm{mL}^{2}}{12} \times \alpha \\
\Rightarrow 60 & =\frac{40 \times 2^{2}}{12} \times \alpha \\
\alpha & =4.5 \mathrm{rad} / \mathrm{sec}^{2} \\
\omega & =\omega_{0}+\alpha \mathrm{t} \\
20.94 & =4.5 \mathrm{t} \\
\Rightarrow \quad \mathrm{t} & =4.65 \mathrm{sec}
\end{aligned}
$$

14. Ans: (a)

Sol:

$\mathrm{a}=$ linear acceleration,
$\mathrm{k}=$ radius of gyration
For vertical translation motion

$$
\begin{equation*}
\mathrm{mg}-\mathrm{T}=\mathrm{ma} \tag{1}
\end{equation*}
$$

\qquad
For rotational motion
$\mathrm{T} \times \mathrm{r}=\mathrm{I} \alpha$

$$
\mathrm{Tr}=\mathrm{mk}^{2} \alpha=\mathrm{mk}^{2} \times \frac{\mathrm{a}}{\mathrm{r}}
$$

$\Rightarrow \mathrm{T}=\frac{\mathrm{mk}^{2}}{\mathrm{r}^{2}} \times \mathrm{a}$

$$
\begin{equation*}
\mathrm{mg}-\frac{\mathrm{mk}^{2}}{\mathrm{r}^{2}} \times \mathrm{a}=\mathrm{ma} \Rightarrow \mathrm{a}=\frac{\mathrm{gr}^{2}}{\left(\mathrm{k}^{2}+\mathrm{r}^{2}\right)} \tag{2}
\end{equation*}
$$

ACE	28	GATE - Text Book Solutions

Chapter
 7

Work-Energy Principle and Impulse Momentum Equation

1. Ans: (a)

Sol:

$\mathrm{W}_{1}=4.448 \mathrm{~N}$,
$\mathrm{u}_{1}=$?

The loss of KE of shell converted to do the work in lifting the sand box and shell to a height of " $L-L \cos 30^{\circ}$ ",
i.e., $\mathrm{Wd}=\frac{1}{2} \mathrm{mV}^{2}$

Where $\mathrm{d}=L-L \cos 30^{\circ}$

$$
=3.048-3.048 \times \cos 30=0.41 \mathrm{~m}
$$

$266.58 \times 0.41=\frac{1}{2}\left(\frac{266.58}{9.81}\right) \times \mathrm{V}^{2}$
$\Rightarrow \mathrm{V}=2.83 \mathrm{~m} / \mathrm{sec}$
Where V is the velocity of block \& shell

By momentum equation

$$
\mathrm{m}_{1} \mathrm{u}_{1}+\mathrm{m}_{2} \mathbf{u}_{2}=\mathrm{m}_{1} \mathrm{v}_{1}+\mathrm{m}_{2} \mathrm{v}_{2}
$$

Where $\mathrm{v}_{1}=\mathrm{v}_{2}=\mathrm{V}$ \& $\mathrm{u}_{1}=?, \mathrm{u}_{2}=0$

$$
\begin{aligned}
& \frac{4.448}{9.81} \times u_{1} \\
&=\frac{4.448+262.132}{9.81} \times 2.83 \\
& \Rightarrow u_{1}=169.6 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

$\mathrm{u}_{1} \& \mathrm{u}_{2}=$ Initial velocity of shell and block respectively
$V_{1} \& V_{2}=$ Final velocity of block \& shell
02. Ans: (b)

Sol:

Strain energy in spring = Area under the force displacement curve.

$$
=\frac{1}{2} \mathrm{~F} \times \mathrm{s}=\frac{1}{2}(\mathrm{ks}) \times \mathrm{s}=\frac{1}{2} \mathrm{ks}^{2}
$$

$$
\frac{1}{2} \mathrm{ks}^{2}=\text { Gain of } \mathrm{KE}
$$

$$
\frac{1}{2} \mathrm{ks}^{2}=\frac{1}{2} \mathrm{mv}^{2}
$$

$$
\Rightarrow \mathrm{v}^{2}=\frac{\mathrm{ks}^{2}}{\mathrm{~m}}=\frac{\mathrm{ks}^{2}}{\mathrm{w}} \mathrm{~g}
$$

$$
\mathrm{v}=\sqrt{\frac{\mathrm{kg}}{\mathrm{w}}} \cdot \mathrm{~s} \quad\left(\because \mathrm{~m}=\frac{\mathrm{w}}{\mathrm{~g}}\right)
$$

03. Ans: (a)

Sol: Given, $m=2 \mathrm{~kg}$
Position at any time is given as

$$
x=t+5 t^{2}+2 t^{3}
$$

At $\mathrm{t}=0, \mathrm{x}=0$,
At $\mathrm{t}=3 \mathrm{sec}$,

$$
x=3+5\left(3^{2}\right)+2\left(3^{3}\right)=102 m
$$

Velocity, $V=\frac{\mathrm{dx}}{\mathrm{dt}}=1+10 \mathrm{t}+6 \mathrm{t}^{2}$
Initial velocity i.e., $t=0, \quad$ is $v_{i}=1 \mathrm{~m} / \mathrm{s}$
Final velocity i.e., at $t=3 \mathrm{sec}$,
is $\mathrm{v}_{\mathrm{f}}=1+10(3)+6(3)^{2}=85 \mathrm{~m} / \mathrm{s}$
Work done $=$ change in KE

$$
\begin{aligned}
& =\frac{1}{2} \mathrm{mv}_{\mathrm{f}}^{2}-\frac{1}{2} \mathrm{mv}_{\mathrm{i}}^{2} \\
& =\frac{1}{2} \times 2\left(85^{2}-1^{2}\right)=7224 \mathrm{~J}
\end{aligned}
$$

04. Ans: (a)

Sol: Given force $\mathrm{F}=\mathrm{e}^{-2 \mathrm{x}}$

$$
\begin{aligned}
\text { Work done } & =\int_{x_{1}}^{x_{2}} \operatorname{Fdx} \\
& =\int_{0.2}^{1.5} \mathrm{e}^{-2 \mathrm{x}} \mathrm{dx}=\left[\frac{\mathrm{e}^{-2 \mathrm{x}}}{-2}\right]_{0.2}^{1.5}=0.31 \mathrm{~J}
\end{aligned}
$$

05. Ans: (b)

Sol: $F=4 x-3 x^{2}$
Potential Energy at $\mathrm{x}=1.7=$ work required to move object from 0 to 1.7 m

$$
\mathrm{PE}=\int_{0}^{1.7} \mathrm{Fdx}
$$

$$
\begin{aligned}
& =\int_{0}^{1.7}\left(4 \mathrm{x}-3 \mathrm{x}^{2}\right) \mathrm{dx} \\
& =\left[4\left(\frac{\mathrm{x}^{2}}{2}\right)-3\left(\frac{\mathrm{x}^{3}}{3}\right)\right]_{0}^{1.7} \\
& =\left[2 \mathrm{x}^{2}-\mathrm{x}^{3}\right]_{0}^{1.7} \\
& =2(1.7)^{2}-(1.7)^{3}=0.867 \mathrm{~J}
\end{aligned}
$$

06. Ans: (c)

Sol:

Where $\mathrm{w}=$ weight per unit meter $\mathrm{dw}=\mathrm{a}$ small work done in moving small elemental "dx" of chain through a d/s "x"

Work done $=$ change in KE

$$
\begin{aligned}
& \left(\int_{0}^{b} d w \times x\right)+(w(L-b) \times b)=\frac{1}{2}\left(\frac{w L}{g}\right) v^{2} \\
& \int_{0}^{b} w d x \cdot x+w(L-b) b=\frac{1}{2} \frac{w L v^{2}}{g} \\
& \frac{w b^{2}}{2}+w(L-b) b=\frac{1}{2} \frac{w L v^{2}}{g} \\
& \frac{w^{2}}{2}+w L b-w b^{2}=\frac{1}{2} \frac{w L v^{2}}{g} \\
& w L b-\frac{w b^{2}}{2}=\frac{1}{2} \frac{w L v^{2}}{g}
\end{aligned}
$$

$$
\begin{gathered}
b\left(L-\frac{b}{2}\right)=\frac{1}{2} \frac{L v^{2}}{g} \\
v^{2}=2 g b\left(1-\frac{b}{2 L}\right) \\
v=\sqrt{g b\left(2-\frac{b}{L}\right)}
\end{gathered}
$$

7. Ans: (d)

Sol:

$$
\mathrm{m}_{1}=1 \mathrm{~kg}, \mathrm{~m}_{2}=2 \mathrm{~kg},\left(\text { since } \mathrm{g}=10 \mathrm{~m} / \mathrm{sec}^{2}\right)
$$

Velocities before impact
$\mathrm{v}_{1}=40 \mathrm{~m} / \mathrm{sec}, \mathrm{v}_{2}=-10 \mathrm{~m} / \mathrm{s}$
Velocities after impact
$\mathrm{u}_{1}=$? $\mathrm{u}_{2}=$?
Coefficient of restitution $\mathrm{e}=0.6$
From momentum equation

$$
\begin{aligned}
& \mathrm{m}_{1} \mathrm{v}_{1}+\mathrm{m}_{2} \mathrm{v}_{2}=\mathrm{m}_{1} \mathrm{u}_{1}+\mathrm{m}_{2} \mathrm{u}_{2} \\
& \Rightarrow 1(40)+2(-10)=1\left(\mathrm{u}_{1}\right)+2\left(\mathrm{u}_{2}\right) \\
& \Rightarrow \mathrm{u}_{1}+2 \mathrm{u}_{2}=20 \ldots \ldots \ldots \ldots \ldots \ldots
\end{aligned}
$$

$e=\frac{u_{2}-u_{1}}{v_{1}-v_{2}}=\frac{\text { relative velocity of Seperation }}{\text { relative velocity of approach }}$

$$
0.6=\frac{\mathrm{u}_{2}-\mathrm{u}_{1}}{40-(-10)}
$$

$$
\begin{equation*}
\Rightarrow \mathrm{u}_{2}-\mathrm{u}_{1}=30 \tag{2}
\end{equation*}
$$

From $1 \& 2$

$$
\begin{aligned}
& \mathrm{u}_{1}=-13.33 \mathrm{~m} / \mathrm{sec} \\
& \mathrm{u}_{2}=16.66 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

08. Ans: (b)

Sol: Given, $m_{1}=3 \mathrm{~kg}, \mathrm{~m}_{2}=6 \mathrm{~kg}$
Velocities before impact

$$
\mathrm{u}_{1}=4 \mathrm{~m} / \mathrm{s}, \quad \mathrm{u}_{2}=-1 \mathrm{~m} / \mathrm{s}
$$

Velocities after impact

$$
\mathrm{v}_{1}=0 \mathrm{~m} / \mathrm{s}, \quad \mathrm{v}_{2}=?
$$

From momentum equation

$$
\begin{aligned}
& m_{1} u_{1}+m_{2} u_{2}=m_{1} v_{1}+m_{2} v_{2} \\
& 3(4)+6(-1)=3(0)+6\left(v_{2}\right) \\
& \Rightarrow 6=6 \mathrm{v}_{2} \\
& \Rightarrow \mathrm{v}_{2}=1 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Coefficient of restitution,

$$
e=\frac{v_{2}-v_{1}}{u_{1}-u_{2}}
$$

$$
e=\frac{1-0}{4-(-1)}=\frac{1}{5}
$$

9. Ans: (c)

Sol:

$\mathrm{KE}=\frac{1}{2} \mathrm{mV}^{2}+\frac{1}{2} \mathrm{I} \omega^{2}$
Where, $\omega=\frac{\mathrm{V}}{2 \mathrm{R}}$

$$
\mathrm{I}=\frac{1}{2} \mathrm{~m}\left((2 \mathrm{R})^{2}+\mathrm{R}^{2}\right)=\frac{5}{2} \mathrm{mR}^{2}
$$

$$
\begin{aligned}
& \therefore \quad \begin{aligned}
\mathrm{KE} & =\frac{1}{2} \mathrm{mV}^{2}+\frac{1}{2}\left(\frac{5}{2} \mathrm{mR}^{2}\right)\left(\frac{\mathrm{V}}{2 \mathrm{R}}\right)^{2} \\
& =\frac{1}{2} \mathrm{mV}^{2}+\frac{5}{4} \mathrm{mR}^{2} \times \frac{\mathrm{V}^{2}}{4 \mathrm{R}^{2}} \\
& =\frac{1}{2} \mathrm{mV}^{2}+\frac{5}{16} \mathrm{mV}^{2} \\
\mathrm{KE} & =\frac{13 \mathrm{mV}^{2}}{16}
\end{aligned}
\end{aligned}
$$

10. Ans: (a)

Sol:

A

Method I :

By conservation of linear momentum, we get
$\Rightarrow 1 \times 10=(20+1) \times \mathrm{V}_{\mathrm{cm}}$
(where, $\mathrm{V}_{\mathrm{cm}}=$ velocity of centre of mass)
$\Rightarrow \mathrm{V}_{\mathrm{cm}}=\frac{10}{21} \mathrm{~m} / \mathrm{s}$
Applying angular momentum conservation about an axis passing through the contact point (A) and perpendicular to the plane of paper, we get

$$
1 \times 10 \times 1=\mathrm{I}_{\mathrm{cm}} \omega+21 \times \frac{10}{21} \times 1
$$

[Angular momentum about any axis passing through A can be written as, $\left.\overrightarrow{\mathrm{L}}_{\mathrm{A}}=\overrightarrow{\mathrm{L}}_{\mathrm{cm}}+\mathrm{m}\left(\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{V}}_{\mathrm{cm}}\right)\right]$
$\Rightarrow \omega=0 \mathrm{rad} / \mathrm{sec}$

Method II :

Applying angular momentum conservation about an axis passing through centre of wheel and perpendicular to the plane of paper.

$$
\begin{aligned}
& \therefore 0=\mathrm{I}_{\mathrm{cm}} \omega \\
& \Rightarrow \omega=0 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

11. Ans: (a)

Sol:

$\mathrm{m}_{1}=\mathrm{m} \rightarrow$ mass of bullet
$\mathrm{m}_{2}=\mathrm{M} \rightarrow$ mass of block
$\mathrm{u}_{1}=\mathrm{V} \rightarrow$ bullet initial velocity
$\mathrm{u}_{2}=0 \rightarrow$ block initial velocity
$\mathrm{v}_{1}=\mathrm{v}_{2}=\mathrm{v} \rightarrow$ velocity of bullet and block after impact.

$$
\begin{aligned}
\mathrm{F}_{\mathrm{d}} & =\mu \mathrm{N} \\
(\mathrm{M}+\mathrm{m}) \mathrm{a} & =\mu(\mathrm{M}+\mathrm{m}) \mathrm{g} \\
\Rightarrow \mathrm{a} & =\mu \mathrm{g}
\end{aligned}
$$

From momentum equation
$\mathrm{m}_{1} \mathrm{u}_{1}+\mathrm{m}_{2} \mathrm{u}_{2}=\mathrm{m}_{1} \mathrm{v}_{1}+\mathrm{m}_{2} \mathrm{v}_{2}$
$\mathrm{mV}+\mathrm{m}(0)=(\mathrm{m}+\mathrm{M}) \mathrm{V}$
$\mathrm{v}=\frac{\mathrm{mV}}{\mathrm{m}+\mathrm{M}}$
Now from $v^{2}-u^{2}=2$ as

$\mathbf{*}$ ACE	32	GATE - Text Book Solutions

$$
\begin{aligned}
& 0-\left(\frac{\mathrm{mV}}{\mathrm{~m}+\mathrm{M}}\right)^{2}=2 \mu \mathrm{gs} \\
& \mathrm{~V}=\frac{\mathrm{m}+\mathrm{M}}{\mathrm{~m}} \sqrt{2 \mu \mathrm{gs}}
\end{aligned}
$$

12. Ans: (a)

Sol:

$\mathrm{u}_{\mathrm{A}}=0, \quad \mathrm{u}_{\mathrm{B}}=0$
From momentum equation
$\mathrm{m}_{\mathrm{A}} \mathrm{u}_{\mathrm{A}}+\mathrm{m}_{\mathrm{B}} \mathrm{u}_{\mathrm{B}}=\mathrm{m}_{\mathrm{A}} \mathrm{V}_{\mathrm{A}}+\mathrm{m}_{\mathrm{B}} \mathrm{V}_{\mathrm{B}}$
$0=222.4 \mathrm{~V}_{\mathrm{A}}+133.44 \mathrm{~V}_{\mathrm{B}}$
$\frac{1}{2} \mathrm{ks}^{2}=\frac{1}{2} \mathrm{~m}_{\mathrm{A}} \mathrm{v}_{\mathrm{A}}{ }^{2}+\frac{1}{2} \mathrm{~m}_{\mathrm{B}} \mathrm{v}_{\mathrm{B}}{ }^{2}$
$10.6 \times 10^{3} \times 0.15^{2}=\frac{222.4}{9.81} \mathrm{v}_{\mathrm{A}}^{2}+\frac{133.44}{9.81} \mathrm{v}_{\mathrm{B}}^{2}$

From $1 \& 2$

$$
\begin{gathered}
\mathrm{v}_{\mathrm{A}}=-1.98 \mathrm{~m} / \mathrm{s}, \\
\mathrm{v}_{\mathrm{B}}=3.3 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Chapter
 8
 Virtual Work

1.

Sol:

Let $\mathrm{R}_{\mathrm{A}} \& \mathrm{R}_{\mathrm{B}}$ be the reactions at support A \& B respectively.

Let δ_{y} displacement be given to the beam at B without giving displacement at ' A '

The corresponding displacement at C \& D are $\frac{2}{7} \delta_{y}$ and $\frac{4}{7} \delta_{\mathrm{y}}$

By virtual work principle,
$\mathrm{R}_{\mathrm{A}} \times 0-25 \times \frac{2}{7} \delta_{\mathrm{y}}-25 \times \frac{4}{7} \delta_{\mathrm{y}}+\mathrm{R}_{\mathrm{B}} \times \delta_{\mathrm{y}}=0$
$\Rightarrow\left(\frac{-150}{7}+\mathrm{R}_{\mathrm{B}}\right) \delta_{\mathrm{y}}=0$
Since $\delta_{y} \neq 0, R_{B}-\frac{150}{7}=0$
$\mathrm{R}_{\mathrm{B}}=\frac{150}{7} \mathrm{kN}$

Now let us give virtual displacement at A as $\delta_{\mathrm{y}}{ }^{\prime}$,
Therefore corresponding displacement at C
$\& \mathrm{D}$ are $\frac{5}{7} \delta_{y}^{\prime} \& \frac{3}{7} \delta_{y}^{\prime}$

\therefore By virtual work principle,
$\mathrm{R}_{\mathrm{A}} \times \delta^{\prime}{ }_{\mathrm{y}}-25 \times \frac{5}{7} \delta^{\prime}{ }_{\mathrm{y}}-25 \times \frac{3}{7} \delta^{\prime}{ }_{\mathrm{y}}+\mathrm{R}_{\mathrm{B}} \times 0=0$
$\left(\mathrm{R}_{\mathrm{A}}-\frac{125}{7}-\frac{75}{7}\right) \delta_{\mathrm{y}}^{\prime}=0$
$\delta_{y^{\prime}} \neq 0$,
$\mathrm{R}_{\mathrm{A}}-\frac{200}{7}=0$
$\mathrm{R}_{\mathrm{A}}=\frac{200}{7} \mathrm{kN}$

02. Ans: 750 N

Ans: For equilibrium total virtual work $=0$
Let us displace point A by ' $d x$ ' the displacement of point B is ' 3 dx '

Work by force $\mathrm{P}=-\mathrm{Pdx}$
Work by force $250 \mathrm{~N}=250 \times 3 \mathrm{dx}$

$$
\begin{aligned}
250 \times 3 \mathrm{dx}-\mathrm{Pdx} & =0 \\
\Rightarrow \quad \mathrm{P} & =750 \mathrm{~N}
\end{aligned}
$$

Chapter
 9

1. Ans: (b)

Sol: At joint

Analysis of Trusses

Sat

02. Ans: (d)

Sol:

$$
\begin{aligned}
& \sum F_{y}=0 \\
& R_{E}+R_{F}=0 \\
& \sum M_{F}=0 \\
& \mathrm{P} \times 2 \mathrm{a}+2 \mathrm{P} \times \mathrm{a}+\mathrm{R}_{\mathrm{E}} \times \mathrm{a}=0 \\
& \mathrm{R}_{\mathrm{E}}=-4 \mathrm{P}(\text { downward }) \\
& \mathrm{R}_{\mathrm{F}}=4 \mathrm{P} \text { (upward) }
\end{aligned}
$$

$\sum \mathrm{F}_{\mathrm{x}}=0$
$\mathrm{P}-\mathrm{F}_{\mathrm{CD}}=0$
$\mathrm{P}=\mathrm{F}_{\mathrm{CD}}$
(Positive indicate CD in tension)
03. Ans: (d)

Sol:

Taking moments about point ' P '
$\mathrm{R}_{\mathrm{Q}} \times 3 \mathrm{~h}-30 \times 2 \mathrm{~h}-60 \times \mathrm{h}=0$
$\mathrm{R}_{\mathrm{Q}} \times 3 \mathrm{~h}=120 \mathrm{~h}$
$\mathrm{R}_{\mathrm{Q}}=40 \mathrm{kN}$
$\therefore \mathrm{R}_{\mathrm{P}}+\mathrm{R}_{\mathrm{Q}}=60+30$
$\mathrm{R}_{\mathrm{P}}=90-40$

R_{P}
$\mathrm{R}_{\mathrm{P}}=50 \mathrm{kN}$

At joint ' P '
$\sum \mathrm{F}_{\mathrm{y}}=0$
$\mathrm{R}_{\mathrm{p}}=\mathrm{F}_{\mathrm{PR}} \sin 45^{\circ}$
$F_{P R}=\frac{R_{p}}{\sin 45}$

$$
=\frac{50}{1 / \sqrt{2}}
$$

$\mathrm{F}_{\mathrm{PR}}=50 \sqrt{2}$ (compression)
$\sum \mathrm{F}_{\mathrm{x}}=0$
$\mathrm{F}_{\mathrm{PT}}=\mathrm{F}_{\mathrm{PR}} \cos 45$
$\mathrm{F}_{\mathrm{PT}}=50 \sqrt{2} \times \frac{1}{\sqrt{2}}$
$\mathrm{F}_{\mathrm{PT}}=50 \mathrm{kN}$ (Tension)

$\sum \mathrm{M}_{\mathrm{u}}=0$
$\mathrm{F}_{\mathrm{RS}} \times \mathrm{h}(\cup)+60 \times \mathrm{h}(\cup)-\mathrm{R}_{\mathrm{P}} \times 2 \mathrm{~h}(\cup)=0$
$\mathrm{F}_{\mathrm{RS}} \times \mathrm{h}+60 \mathrm{~h}-100 \mathrm{~h}=0$
$\mathrm{F}_{\text {RS }} \mathrm{h}=40 \mathrm{~h}$
$\mathrm{F}_{\mathrm{RS}}=40 \mathrm{kN}$ (Compression)
$\sum \mathrm{F}_{\mathrm{y}}=0$
$\mathrm{F}_{\mathrm{SU}}+\mathrm{R}_{\mathrm{P}}-60=0$
$\mathrm{F}_{\mathrm{SU}}+50-60-30=0$
$\mathrm{F}_{\mathrm{SU}}=40 \mathrm{kN}$ (Tension)

04. Ans: (b)

Sol:

Force in member PQ considering joint \mathbf{P}
PQ $\cos 45=P R \cos 30$
$\mathrm{PQ}=1.224 \mathrm{PR}$
$\mathrm{PQ} \sin 45+\mathrm{PR} \sin 30=\mathrm{F}$
$1.224 \mathrm{PR} \times 0.707+0.5 \mathrm{PR}=\mathrm{F}$
$\mathrm{PR}=0.732 \mathrm{~F}$
Now, considering joint \mathbf{R}
$\xrightarrow[------\rightarrow P R \cos 30]{ }$

PRsin30

$$
\begin{aligned}
\mathrm{QR}=\mathrm{PR} \cos 30 & =0.732 \mathrm{~F} \times \cos 30 \\
& =0.63 \mathrm{~F}(\text { Tensile })
\end{aligned}
$$

05. Ans: (a)

Sol: $\quad \sum \mathrm{F}_{\mathrm{y}}=0 \Rightarrow \mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}=\mathrm{P} \times \mathrm{L}$
$\sum \mathrm{M}_{\mathrm{B}}=0 \Rightarrow \mathrm{R}_{\mathrm{A}} \times 3 \mathrm{~L}=\operatorname{PL} \times \frac{3 \mathrm{~L}}{2}$
$\Rightarrow R_{A}=\frac{P L}{2}, R_{B}=\frac{P L}{2}$
FBD at Point A:

$$
\sum \mathrm{F}_{\mathrm{y}}=0
$$

$$
\begin{aligned}
& \Rightarrow \mathrm{T}_{\mathrm{AE}} \sin 45=\mathrm{R}_{\mathrm{A}}=\frac{\mathrm{PL}}{2} \\
& \Rightarrow \mathrm{~T}_{\mathrm{A}}=\frac{\mathrm{PL}}{\sqrt{2}} \\
& \sum F_{x}=0 \Rightarrow T_{A C}=T_{A E} \cos 45=\frac{P L}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { FBD at Point } \mathrm{C}: \\
& \qquad \mathrm{F}_{\mathrm{y}}=0 \\
& \Rightarrow \mathrm{~T}_{\mathrm{EC}}=0 \\
& \mathrm{~T}_{\mathrm{AC}}=\mathrm{T}_{\mathrm{CD}}=\frac{\mathrm{PL}}{2}
\end{aligned}
$$

06. Ans : 20 kN

Sol:

$$
\tan \theta=\frac{0.5}{1.0} \Rightarrow \theta=\tan ^{-1}\left(\frac{0.5}{1}\right)=26.56^{\circ}
$$

From the Lami's triangle

$$
\begin{aligned}
& \frac{10}{\sin 26.56^{0}}=\frac{\mathrm{F}_{\mathrm{BC}}}{\sin 90^{0}}=\frac{\mathrm{F}_{\mathrm{AB}}}{\sin 63.44^{0}} \\
& \mathrm{~F}_{\mathrm{AB}}=\frac{10}{\sin 26.56} \times \sin 63.44=20 \mathrm{kN}
\end{aligned}
$$

$$
\mathrm{F}_{\mathrm{BC}}=\frac{10}{\sin 26.56} \times \sin 90=22.36 \mathrm{kN}
$$

7. Ans: (a)

Sol:

Adopting method of sections-section $\mathrm{x}-\mathrm{x}$ adopted and RHS taken

$$
\theta=\tan ^{-1}\left(\frac{2.0}{1.5}\right)=53.13^{\circ}
$$

$\Sigma \mathrm{F}_{\mathrm{y}}=0$ (W.r.t. RHS of the section x -x)
$\mathrm{V}_{1}+\mathrm{F}_{2}-\mathrm{V}_{2}-\mathrm{F}_{\mathrm{y}}=0$
\Rightarrow Fsin $53.13=30+3-24$

$$
\mathrm{F}=11.25 \mathrm{kN} \text { (Tension) }
$$

\therefore Force in member

$$
\mathrm{QS}=11.25 \mathrm{kN}(\text { Tension })
$$

8. Ans: (c)

Sol:

$\sum M_{B}=0$
$\mathrm{W} \times \mathrm{h}(\cup)-\mathrm{W} \times \mathrm{h}(\cup)-\mathrm{W}(2 \mathrm{~h})(\cup)+\mathrm{R}_{\mathrm{A}} \times 3 \mathrm{~h}(\cup)=0$
$\mathrm{Wh}-\mathrm{Wh}-2 \mathrm{~Wh}+3 \mathrm{hR}_{\mathrm{A}}=0$
$3 \mathrm{hR}_{\mathrm{A}}=2 \mathrm{~Wh}$
$\mathrm{R}_{\mathrm{A}}=\frac{2 \mathrm{~W}}{3}$
$\therefore \mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}=2 \mathrm{~W}$
$\mathrm{R}_{\mathrm{B}}=2 \mathrm{~W}-\frac{2 \mathrm{~W}}{3}=\frac{4 \mathrm{~W}}{3}$
$\sum \mathrm{F}_{\mathrm{y}}=0$ (at the joint C)
$\mathrm{F}_{\mathrm{CF}} \sin 45-\mathrm{W}+\mathrm{R}_{\mathrm{A}}=0$
$\mathrm{F}_{\mathrm{CF}} \sin 45-\mathrm{W}+\frac{2 \mathrm{~W}}{3}=0$
$\mathrm{F}_{\mathrm{CF}} \times \frac{1}{\sqrt{2}}=\frac{\mathrm{W}}{3}$
$\Rightarrow \mathrm{F}_{\mathrm{CF}}=\frac{\mathrm{W} \sqrt{2}}{3}$

09. Ans: (c)

Sol:

$\sum \mathrm{M}_{\mathrm{A}}=0$
$5 \times 3(U)+5 \times 6(U)-\mathrm{R}_{\mathrm{HB}} \times 3=0$
$15+30=\mathrm{R}_{\mathrm{H}} \times 3$
$\mathrm{R}_{\mathrm{HB}}=\frac{45}{3}$
$\mathrm{R}_{\mathrm{HB}}=15 \mathrm{kN}$
$\sum F_{X}=0$
$\therefore \mathrm{R}_{\mathrm{HA}}+\mathrm{R}_{\mathrm{HB}}=0$
$R_{H A}=-R_{H B}$
$\mathrm{R}_{\mathrm{HA}}=-15 \mathrm{kN}$
(Negative indicate R_{HA} is left side)
At joint 'B'

$\sum \mathrm{F}_{\mathrm{x}}=0$
$\mathrm{F}_{\mathrm{BD}}=15 \mathrm{kN}$
$\sum \mathrm{F}_{\mathrm{y}}=0$
$\mathrm{F}_{\mathrm{AB}}=0$

Chapter
 10
 Power Screw, Belt drive, Lagrange's equation

Power Screw

01. Ans: (b)

Sol: The best threads for a power screw are ball bearing threads.
02. Ans: (b)

Sol: ACME threads :

- Acme threads can be used to take a load in both directions.
- They are strong, smooth have less wear, and easy to manufacture compared to square thread.

Square thread :

- In this thread, the flanks are perpendicular to the axis of the thread.
- 5 This is used for transmitting motion or power, E.g. Fly presses, Screw jack, vice handles, cross-slide and compound slide, etc.
- The efficiency of a square thread is more than that of trapezoidal threads.
- It can transmit load and power in both directions but It is difficult to manufacture.
- There is no radial or side thrust on the nut.
- The wear on the thread is also a serious problem.

03. Ans: (b)

Sol: Screw is subjected to torque, axial compressive load and bending moment also, sometimes.
Screws are generally made of C30 or C40 steel. As the failure of power screws may lead to serious accident, higher factor of safety of 3 to 5 is taken. Threads may fail due to shear, which can be avoided by using nut of sufficient height. Wear is another possible mode of thread failure as the threads of nut and bolt rub against each other. Nuts are made of softer material than screws so that if at all the failure takes place, nut fails and not the screw, which is the costlier member and is also difficult to replace. Plastic, bronze or copper alloys are used for manufacturing nuts. Plastic is used for low load applications and has good friction and wear properties. Bronze and copper alloys are used for high load applications.
Therefore it is essential to design a power screw for maximum shear stress.

04. Ans: (b)

Sol: Under direct compressive stress,

$$
\mathrm{d}_{\mathrm{c}}=\sqrt{\frac{4 \mathrm{~W}}{\pi \sigma_{\mathrm{c}}}}
$$

Under wear consideration, $d_{c}=\sqrt{\frac{2 W}{P_{b} \psi \pi}}$

05. Ans: (c)

Sol: Self locking screw:

If friction angle, $\phi \geq$ helix angle, α
Screw is self locking.
i.e., torque required to lower the load is positive.
If $\phi<\alpha$, The screw is over hauling
i.e., torque required to lower the load is negative
For self locking screw, $\tan \phi>\tan \alpha$

$$
\mu>\frac{\mathrm{L}}{\pi \mathrm{~d}_{\mathrm{m}}}
$$

06. Ans: (c)

Sol:

- A multi-start thread may be used to get larger value of linear displacement per revolution A differential screw may be used to get a very small value of linear displacement per revolution.

7. Ans: (c)

Sol:

- A multi-start thread may be used to get larger value of linear displacement per revolution with no guarantee of self locking.
- Multi-start threads are used for transmitting power and generating movement. Because each partial or complete revolution equals more linear travel based on the number of threads, multi-threaded components can
efficiently handle more power. Multi-start threads can also be used for some fastening purposes.

8. Ans: (b)

Sol:

- Multi-start threads are used for transmitting power and generating movement. Because each partial or complete revolution equals more linear travel based on the number of threads, multi-threaded components can efficiently handle more power. Multi-start threads can also be used for some fastening purposes.
- Hence they secure high efficiency.

9. Ans: (d)

Sol: Square thread,

$$
\eta=\frac{\text { work output }}{\text { work input }}
$$

During one revolution of screw
Work input $=\mathrm{P} \times \pi \mathrm{d}_{\mathrm{m}}$
Work output $=\mathrm{WL}$
$\eta=\frac{W L}{P \pi d_{m}}=\frac{W \tan \alpha}{P} \quad\left[\because \tan \alpha=\frac{L}{\pi d_{m}}\right]$
$\eta=\frac{\text { idealeffort(No friction) }}{\text { Actual effort }}$
$\eta=\frac{W \tan \alpha}{W \tan (\phi+\alpha)}=\frac{\tan \alpha}{\tan (\phi+\alpha)}$

Belt Drives \& Wedge

1. Ans: (d)

Sol: $\quad \mathrm{P}=\frac{\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right) \mathrm{V}}{1000} \quad$ - Flat belt
$\mathrm{V}=$ belt (or) rope drive
$\mathrm{T}_{1} \& \mathrm{~T}_{2}=$ Tensions in high and slack side, $\mathrm{V}=\mathrm{m} / \mathrm{sec}, \quad \mathrm{P}=\mathrm{kW}$

$$
\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\mathrm{e}^{\mu \theta}
$$

2. Ans: (c)

Sol: Condition for maximum power transmitted
(i) $\quad \mathrm{T}_{\mathrm{c}}=\frac{\mathrm{T}_{\text {max }}}{3}$
(ii) $\mathrm{T}_{1}=\frac{2 \mathrm{~T}_{\text {max }}}{3}$
(iii) $\mathrm{V}=\sqrt{\frac{\mathrm{T}_{\text {max }}}{3}}$
03. Ans: (b)

Sol: All the stresses produced in a belt are tensile stresses.
04. Ans: (c)

Sol: Power $=\left(T_{1}-T_{2}\right) V$
Due to centrifugal tension,

Total Tension (safe tension):

Total tension on tight side, $\mathrm{T}_{\mathrm{t} 1}=\mathrm{T}_{1}+\mathrm{T}_{\mathrm{C}}$
Total tension on slack side, $\mathrm{T}_{\mathrm{t} 2}=\mathrm{T}_{2}+\mathrm{T}_{\mathrm{C}}$
$\mathrm{T}_{\mathrm{t} 1}-\mathrm{T}_{\mathrm{t} 2}=\mathrm{T}_{1}-\mathrm{T}_{2}$
Therefore the centrifugal tension has no effect on power transmission.

05. Ans: (a)

Sol: A V-belt marked A-914-50 denotes a standard belt of inside length 914 mm and a pitch length 950 mm .
A belt marked A-914-52 denotes an oversize belt by an amount of $(52-50)=2$ units of grade number.

06. Ans: (a)

Sol:

- Wire ropes make contact at the bottom of the groove of the pulley.
- V-Belt makes contact at the sides of the groove of the pulley.

07. Ans: (c)

Sol: Let, D = diameter of the pitch circle $\mathrm{T}=$ number of teeth on the sprocket

$$
\mathrm{p}=\mathrm{D} \sin \left(\frac{\theta}{2}\right)
$$

We know that, $\theta=\frac{360^{\circ}}{\mathrm{T}}$

$$
\mathrm{p}=\mathrm{D} \sin \left(\frac{360^{\circ}}{2 \mathrm{~T}}\right)=\mathrm{D} \sin \left(\frac{180^{\circ}}{\mathrm{T}}\right)
$$

or $D=p \operatorname{cosec}\left(\frac{180^{\circ}}{T}\right)$
08. Ans: (c)

Sol: $\frac{T_{1}}{T_{2}}=e^{\frac{\mu \theta}{\sin \beta}}$

09. Ans: (c)

Sol: Maximum tensile stress in belt due to tension, $\sigma=\frac{\mathrm{T}_{1}}{\mathrm{bt}}$

Due to bending maximum tensile stress occurs on small pulley side ' d '

$$
\begin{array}{ll}
\frac{\sigma_{b}}{y}=\frac{\mathrm{E}}{\mathrm{r}} & {\left[\mathrm{r}=\frac{\mathrm{d}}{2} ; \mathrm{y}=\frac{\mathrm{t}}{2}\right]} \\
\sigma_{\mathrm{b}}=\frac{\mathrm{Et}}{\mathrm{~d}} &
\end{array}
$$

Total maximum stress induced in belt,

$$
\begin{aligned}
& \sigma_{\max }=\sigma+\sigma_{\mathrm{b}} \\
& \sigma_{\max }=\frac{\mathrm{T}_{1}}{\mathrm{bt}}+\frac{\mathrm{Et}}{\mathrm{~d}}
\end{aligned}
$$

10. Ans: (a)

Sol:

$$
\begin{aligned}
& \theta=180-2 \alpha \\
& \sin \alpha=\frac{D_{1}-D_{2}}{2 C} \\
& \mathrm{~L}_{\text {open }}=\pi(\mathrm{R}+\mathrm{r})+2 \mathrm{C}+\left[\frac{(\mathrm{R}-\mathrm{r})^{2}}{\mathrm{C}}\right] \\
& \mathrm{L}_{\text {closed }}=\pi(\mathrm{R}+\mathrm{r})+2 \mathrm{C}+\left[\frac{(\mathrm{R}+\mathrm{r})^{2}}{\mathrm{C}}\right] \\
& \mathrm{L}=2 \mathrm{C}+\left(\frac{\pi}{2}\right)(\mathrm{D}+\mathrm{d})+\left((\mathrm{D}-\mathrm{d})^{2} / 4 \mathrm{C}\right)
\end{aligned}
$$

11. Ans: (d)

Sol: Creep is given by, $\varepsilon=\frac{T_{1}+T_{2}}{b t E}$
12. Ans: (493.4)

Sol: Given data: $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}, \mu=0.3$

$\mathrm{f}_{1}=\mu \mathrm{N}_{1} ; \mathrm{N}_{1}=\mathrm{R} \cos \theta$
$\mathrm{P}=\mathrm{f}_{1}+\mathrm{R} \sin \theta$
$P=\mu N_{1}+R \sin \theta$
$\mathrm{P}=\mathrm{R}(\mu \cos \theta+\sin \theta)$

$\mathrm{f}_{2}=\mu \mathrm{N}_{2} ; \mathrm{N}_{2}=\mathrm{R} \sin \theta$
$R \cos \theta=f_{2}+100 g$
$100 \mathrm{~g}=-\mu \mathrm{N}_{2}+\mathrm{R} \cos \theta$
$100 \mathrm{~g}=\mathrm{R}(\cos \theta-\mu \sin \theta)$

Dividing (1) and (2),

$$
\begin{aligned}
\frac{P}{100 g} & =\frac{R(\mu \cos \theta+\sin \theta)}{R(\cos \theta-\mu \sin \theta)} \\
P & =\frac{\mu \cos (10)+\sin (10)}{\cos (10)-0.3 \times \sin (10)} \times 100(g) \\
\Rightarrow P & =493.4 \mathrm{~N}
\end{aligned}
$$

13. Ans: (a)

Sol: From free-body diagram of the stone,

$-4905(0.5)+\left(\mathrm{N}_{\mathrm{B}} \cos 7^{\circ}\right)(1)+\left(0.3 \mathrm{~N}_{\mathrm{B}}\right)$ $\sin 7^{\circ}(1)=0$
$\mathrm{N}_{\mathrm{B}}=2383.1 \mathrm{~N}$
Using this result for the wedge, we have
$\Sigma \mathrm{F}_{\mathrm{y}}=0$;
$\mathrm{N}_{\mathrm{C}}-2383.1 \cos 7^{\circ}-0.3(2383.1) \sin 7^{\circ}=0$
$\mathrm{N}_{\mathrm{C}}=2452.5 \mathrm{~N}$
$\Sigma \mathrm{F}_{\mathrm{x}}=0$;
$2383.1 \sin 7^{\circ}-0.3(2383.1) \cos 7^{\circ}+\mathrm{P}-$
$0.3(2452.5)=0$
$\mathrm{P}=1154.9 \mathrm{~N}=1.15 \mathrm{kN}$

LAGRANGE'S EQUATION

1. Ans: (c)

Sol:

(i) PE of spring $=\frac{1}{2} \mathrm{k} \cdot \mathrm{x}^{2}$
(ii) K .E of block $=\frac{1}{2} \times \mathrm{M} \times \mathrm{x}^{2}$
(iii) KE of rod:

Mass of element, $d m=m \times \frac{d y}{b}$

$$
\begin{aligned}
& \mathrm{KE}=\frac{1}{2} \mathrm{dm} \times \mathrm{v}^{2}=\frac{1}{2} \times \mathrm{dm} \times\left\{\mathrm{v}_{\mathrm{x}}^{2}+\mathrm{v}_{\mathrm{y}}^{2}\right\} \\
& \mathrm{v}_{\mathrm{x}}=\dot{\mathrm{x}}_{1}=\frac{\mathrm{d}}{\mathrm{dt}}\left\{\mathrm{x}_{1}\right\}=\frac{\mathrm{d}}{\mathrm{dt}}\{\mathrm{x}+\mathrm{y} \sin \theta\} \\
& \therefore \mathrm{v}_{\mathrm{x}}=\dot{\mathrm{x}}+\mathrm{y} \times \cos \theta \times \dot{\theta} \\
& \mathrm{v}_{\mathrm{y}}=\frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{y}_{1}\right)=\frac{\mathrm{d}}{\mathrm{dt}}(\mathrm{y} \cos \theta)=-\mathrm{y} \sin \theta \times \dot{\theta}
\end{aligned}
$$

$$
\begin{gathered}
\therefore \text { KE of rod }=\int \frac{1}{2} \cdot \mathrm{dm} \times \mathrm{v}^{2} \\
=\int \frac{1}{2} \times \mathrm{m} \times \frac{\mathrm{dy}}{\mathrm{~b}} \times\left\{(\dot{\mathrm{x}}+\mathrm{y} \cos \theta \times \dot{\theta})^{2}+(-\mathrm{y} \sin \theta \times \dot{\theta})^{2}\right\} \\
=\frac{\mathrm{m}}{2 \mathrm{~b}} \int_{0}^{\mathrm{b}}\left\{\dot{\mathrm{x}}^{2}+\mathrm{y}^{2} \times \dot{\theta}^{2}+2 \times \dot{\mathrm{x}} \times \mathrm{y} \times \dot{\theta} \times \cos \theta\right\} \mathrm{dy}
\end{gathered}
$$

$$
\begin{aligned}
& =\frac{\mathrm{m}}{2 \mathrm{~b}} \int_{0}^{\mathrm{b}}\left\{\dot{\mathrm{x}}^{2} \times \mathrm{b}+\dot{\theta}^{2} \times \frac{\mathrm{b}^{3}}{3}+\dot{\mathrm{x}} \times \dot{\theta} \times \cos \theta \times \mathrm{b}^{2}\right\} \\
& =\frac{1}{2} \mathrm{~m} \dot{\mathrm{x}}^{2}+\frac{1}{6} \mathrm{~m} \cdot \dot{\theta}^{2} \times \mathrm{b}^{2}+\frac{1}{2} \times \mathrm{m} \cdot \dot{\mathrm{x}} \cdot \dot{\theta} \times \cos \theta \times \mathrm{b}
\end{aligned}
$$

P.E of $\operatorname{rod}=-\frac{1}{2} \times m \times b \times \cos \theta \times \mathrm{g}$
$\therefore \mathrm{PE}=\mathrm{PE}$ of spring +PE of rod
$P E=\frac{1}{2} k \cdot x^{2}+\left\{-\frac{1}{2} \times m \times g \times b \times \cos \theta\right\}$
$K E=K E$ of block $+K E$ of rod
$K E=\frac{1}{2} \times \mathrm{M} \times \dot{\mathrm{X}}^{2}+\frac{1}{2} \mathrm{~m} \dot{\mathrm{x}}^{2}+\frac{1}{6} \mathrm{~m} \times \dot{\theta}^{2} \times \mathrm{b}^{2}$ $+\frac{1}{2} \times \mathrm{m} \times \dot{\mathrm{x}} \times \dot{\theta} \times \cos \theta \times \mathrm{b}$

Lagrange, $\mathrm{L}=\mathrm{KE}-\mathrm{PE}$
$=\frac{1}{2}\{\mathrm{~m}+\mathrm{M}\} \times \dot{\mathrm{x}}^{2}+\frac{1}{6} \mathrm{~m} \times \dot{\theta}^{2} \times \mathrm{b}^{2}+\frac{1}{2} \times \mathrm{m} \times \dot{\mathrm{x}}$ $\dot{\theta} \times \cos \theta \times \mathrm{b}-\frac{1}{2} \mathrm{k} \cdot \mathrm{x}^{2}+\frac{1}{2} \times \mathrm{m} \times \mathrm{b} \times \cos \theta \times \mathrm{g}$

