

ESE | GATE | PSUs

CE | ME | EE | EC | IN | PI

(B)

ENGINEERING MATHEMATICS

Text Book : Theory with worked out Examples and Practice Questions

Linear Algebra

(Solutions for Text Book Practice Questions)

01. Ans: 0 03. Ans: 0 **Sol:** $|A^{2023} - A^{2024}| = |A^{2023} (A-I)|$ Sol: Given A & B are symmetric matrices $= |A|^{2023} |A-I|$ \Rightarrow AB – BA is a skew – symmetric matrix $|\mathbf{A} - \mathbf{I}| = \begin{vmatrix} 8 & 6 \\ 8 & 6 \end{vmatrix} = 0$ $\therefore \det(AB - BA) = 0$ 04. Ans: 11 $\therefore |A^{2023} - A^{2024}| = 0$ **Sol:** We know that $|adjA| = |A|^{n-1}$ $G \Rightarrow (12-12) - \alpha (4-6) + 3 (4-6) = 4^2$ 02. Ans: 27 $\Rightarrow 2\alpha - 6 = 16$ Sol: $|A| = \begin{vmatrix} 1 & -1 & 1 & -1 \\ 2 & 1 & -1 & 1 \\ 3 & 2 & 1 & -1 \\ 4 & 3 & 2 & 1 \end{vmatrix}$ $\Rightarrow 2\alpha = 22$ $\therefore \alpha = 11$ $C_2 \rightarrow C_2 + C_1$ 05. Ans: (a & d) $C_3 \rightarrow C_3 - C_1$ Sol: We know that $(ABC)^{-1} = C^{-1} B^{-1} A^{-1}$ (Property) $C_4 \rightarrow C_4 + C_1$ $(CBA)^{-1} = A^{-1} B^{-1} C^{-1}$ $|\mathbf{A}| = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 2 & 3 & -3 & 3 \\ 3 & 5 & -2 & 2 \end{vmatrix}$ 06. Ans: (a) Since Sol: Given |A| = 2 $|adjadj(adjA^{-1})| = |A^{-1}|^{(n-1)^3} = |A|^{-(n-1)^3}$ $|\mathbf{A}| = \begin{vmatrix} 3 & -3 & 3 \\ 5 & -2 & 2 \\ 7 & -2 & 5 \end{vmatrix}$ $=|A|^{-(3-1)^3}=2^{-8}$ $=\frac{1}{256}$ $C_2 \rightarrow C_2 + C_1 \& C_3 \rightarrow C_3 - C_1$ 07. Ans: (a) $|\mathbf{A}| = \begin{vmatrix} 3 & 0 & 0 \\ 5 & 3 & -3 \\ 7 & 5 & -2 \end{vmatrix}$ **Sol:** det (A) = 2(12-2) - (16-1) + 4(8-3)det (A) = 20 - 15 + 20 = 25Cofactor of $a_{11} = 2$ is 10 |A| = 3(-6 + 15) = 27Regular Live Doubt clearing Sessions | Free Online Test Series | ASK an expert ace online Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

Engineering Publications	2 Linear Algebra
Cofactor of $a_{12} = 1$ is -15	10. Ans: (a & d)
Cofactor of $a_{13} = 4$ is 5	Sol: Please Refer ACE Previous maths solution
Cofactor of $a_{21} = 4$ is 4	booklet
Cofactor of $a_{22} = 3$ is 4	
Cofactor of $a_{23} = 1$ is -3	11. Ans: (a)
Cofactor of $a_{31} = 1$ is -11	Sol: If rank $(A_{3\times3}) < 3$ then $ A = 0$
Cofactor of $a_{32} = 2$ is 14	$(1-x^2) - x(x-x^2) + x(x^2-x) = 0$
Cofactor of $a_{33} = 4$ is 2	$(1-x^2) - x^2(1-x) - x^2(1-x) = 0$
$\begin{bmatrix} 10 & -15 & 5 \end{bmatrix}$	$(1+x)(1-x)-2x^{2}(1-x) = 0$
Cofactor of A = $\begin{vmatrix} 4 & 4 & -3 \end{vmatrix}$	$\Rightarrow (1-x)[1+x-2x^2] = 0$
	$\Rightarrow 1 - \mathbf{x} = 0 \And -2\mathbf{x}^2 + \mathbf{x} + 1 = 0$
$adjA = \begin{bmatrix} 10 & 4 & -11 \\ -15 & 4 & 14 \end{bmatrix}$	$\Rightarrow x = 1 \& x = 1, \frac{-1}{2}x$
5 -3 2	$\therefore x = 1, \frac{-1}{2}$
$\therefore A^{-1} \frac{adjA}{d} = \frac{1}{25} \begin{bmatrix} 10 & 4 & -11 \\ -15 & 4 & 14 \end{bmatrix}$	$\mathbf{C} \mathbf{C} \mathbf{C}^2$ 12. Ans: 5
$\begin{bmatrix} A \end{bmatrix} \begin{bmatrix} 25 \\ 5 \end{bmatrix} \begin{bmatrix} 5 \\ -3 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix}$	Sol: For linearly dependent vectors,
1^{-1} $2/5$ $4/25$ $-11/25$ $14/25$	$-\det(\mathbf{A}) = 0$
$A = \begin{bmatrix} -3/5 & 4/25 & 14/25 \\ 1/5 & -3/25 & 2/25 \end{bmatrix}$	
	$\begin{vmatrix} 2 & 3 & 1 \\ 2 & 6 & 4 \end{vmatrix} = 0$
08. Ans: (c)	
Sol: Please Refer ACE Previous maths solution	(12-6)-(8-a)+(12-3a)=0
booklet	6 - 8 + a + 12 - 3a = 0
COOKICI	-2a + 10 = 0
09. Ans: (b)	$\therefore a = 5$
Sol: Please Refer ACE Previous maths solution	
booklet	13. Ans: (a, d)
	Sol: Let $X_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{bmatrix}$ and $x_2 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$

ace online

Engineering Publications	3 Linear Algebra
$X_{1}^{T}X_{2} = \frac{1}{2} - \frac{1}{2} = 0$ Here X ₁ and X ₂ are orthogonal vectors $Let A = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$ $ A = \frac{1}{2} + \frac{1}{2} = 1$ $ A \neq 0$ X ₁ and X ₂ are linearly independent vectors. $\therefore \text{ Orthogonal vectors are linearly independent But linearly independent vectors need not b orthogonal.For exampleLet X_{1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \text{ and } X_{2} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}X1 and X2 are linearly independent since on can not be expressed as the other.But X_{1}^{T}X_{2} \neq 0.$	15. Ans: 4 Sol: Number of linearly independent solutions is given by n-r = 1 5 - Rank (P) = 1 Rank (P) = 4 16. Ans: (b) Sol: Please Refer ACE Previous maths solution booklet 17. Ans: (a) Sol: The augmented matrix is given by $(A/B) = \begin{pmatrix} 1 & -2 & 5 & b_1 \\ 4 & -5 & 8 & b_2 \\ -3 & 3 & -3 & b_3 \end{pmatrix}$ $R_2 \rightarrow R_2 + 4R_1$ $R_3 \rightarrow R_3 + 3R_1$ $(A/B) = \begin{pmatrix} 1 & -2 & 5 & b_1 \\ 4 & -5 & 8 & b_2 \\ -3 & 3 & -3 & b_3 \end{pmatrix}$
14. Ans: 3 Sol: For infinite solutions of homogeneous system of equations, We have det(M) = 0 $\alpha(\beta\gamma-1) - (\gamma - 1) + (1 - \beta) = 0$ $\alpha\beta\gamma - \alpha - \gamma + 1 + 1 - \beta = 0$ $3 - (\alpha + \beta + \gamma) = 0$ ($\because \alpha\beta\gamma = 1$) 3 - trace(M) = 0 \therefore Trace (M) = 3	18. Ans: (a) Sol: Given $AX = B$ B is a linear combination of columns of A. \Rightarrow The system of equation is consistent And A has three linearly independent columns $\Rightarrow A \neq 0$ \therefore The system of equations has unique solution.

ACE Engineering Publications

Linear Algebra

19. Ans: (d)

Sol: The augmented matrix is

$(A/B) = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 2 & 0 & 3 & 1 \\ r & s & 0 & s - 1 \end{bmatrix}$ $R_2 \rightarrow R_2 \rightarrow 2R_1$ $R_3 \rightarrow R_3 - rR_1$ $[A|B] = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & -4 & 3 & -1 \\ 0 & s - 2r & 0 & s - r - 1 \end{bmatrix}$

$$\mathbf{R}_3 \rightarrow 4\mathbf{R}_3 + (\mathbf{s} - 2\mathbf{r})\mathbf{R}_2$$

$$\begin{bmatrix} A | B \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 & | & 1 \\ 0 & -4 & 3 & | & - \\ 0 & 0 & 3(s - 2r - 4) | 13s - 2r - 4 \end{bmatrix}$$

If s = 2r = 2 then,

Rank (A) = rank (A|B) < number of unknowns.

: The system of equations has infinitely many solutions for s = 2r = 2.

20. Ans: (c)

Sol: Trace of matrix = sum of eigen values Trace of matrix = 9 Sum of eigen values of option (c) = 9 ∴ Option (c) is correct.

21. Ans: 15

ace online

Sol: If 2 + i is an eigen value of P then 2 – I is another eigen value of P det (P) = (2+i)(2-i)(3) = 15.

22. Ans: 78

4

Sol: Let $\lambda_1 \& \lambda_2$ be eigen values of P

 $\lambda_{1} + \lambda_{2} = 1$ (1) $\lambda_{1} \quad \lambda_{2} = -6$ (2) From (1) & (2) $\lambda_{1} = 3 & \lambda_{2} = -2$ The eigen value of P⁴ - P³ is $\lambda^{4} - \lambda^{3}$ For $\lambda_{1} = 3$, P⁴ - P³ = 54 For $\lambda_{2} = -2$, P⁴ - P³ = 24 Trace (P⁴ - P³) = 54 + 24 = 78

23. Ans: (a)

Sol: Magnitude of eigen value of orthogonal matrix is 1

Eigen values of skew-symmetric matrix are either purely imaginary (or) zeros by using above properties, Option (A) is correct.

24. Ans: (b & c)

Sol: Please Refer ACE Previous maths solution booklet

25. Ans: (a & d)

Sol: Let
$$Y = \begin{bmatrix} 1 & 0 \end{bmatrix} \quad Y^{T} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

 $Y^{T}Y = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$
Let $P = Y^{T}Y$
 $P^{T} = (Y^{T}Y)^{T} = Y^{T}(Y^{T})^{T} = Y^{T}Y$
 $P^{T} = P$
 $P = Y^{T}Y$ is a symmetric matrix

	ACE Engineering Publications		5	Linear Algebra
d	let $(\mathbf{Y}^{\mathrm{T}}\mathbf{Y}) = 0$			For $\lambda = 2$, $\lambda^3 + 2\lambda + 1 = 13$
	Y ^T Y is not invertib	le		For $\lambda = 3$, $\lambda^3 + 2\lambda + 1 = 34$
R	$\operatorname{Rank}(\mathbf{Y}^{\mathrm{T}}\mathbf{Y}) = 1$			$M^3 + 2M + 1$ has three different eigen
-				values.
]	$\mathbf{Y}\mathbf{Y}^{T} = \begin{bmatrix} \mathbf{I} & 0 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} = \begin{bmatrix} \mathbf{I} \end{bmatrix}$	+0]=1		So, it has three linearly independent eigen
E	Eigen values of $Y^T Y$	are 1, 0		vectors.
.:	: Options (a) & (d) a	are correct.		
				29. Ans: 2
26. A	Ans: 1		3	Sol: Please Refer ACE Previous maths solution
Sol: P	Please Refer ACE P	revious maths solution		booklet
b	ooklet	NGINE		30. Ans: (a)
		144		Sol: Please Refer ACE Previous maths solution
27. A	Ans: 7	र र		booklet
Sol: (A	$A - \lambda I)X = 0$			
Γ	$8-\lambda$ -6 2			31. Ans: (a)
	$-6 x - \lambda -4$	-2 = 0	1	Sol: $(A - \lambda I)X = 0$
L	$2 -4 3 - \chi$			$\begin{bmatrix} -2 - \lambda & 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$
2	$2(8-\lambda) + 12 + 2 = 0$			$\begin{vmatrix} 2 & 1-\lambda & 2 \\ 1 & 2 & 6 & 2 \end{vmatrix} \begin{vmatrix} \mathbf{x}_2 \\ \mathbf{x}_2 \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \end{vmatrix}$
	$-2\lambda + 30 \Longrightarrow \lambda = 15$			$\begin{bmatrix} 1 & 2 & 0 - \lambda \end{bmatrix} \begin{bmatrix} x_3 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$
_	$-12 - 2(x - \lambda) - 4 = 0$	Sinc	ce 1	199 For $\lambda = -3$, we have
_	$-12 - 2x + 2\lambda - 4 = 0$			$\begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$
_	$-2\mathbf{x} + 14 = 0$			$\begin{vmatrix} 2 & 4 & 2 \\ 1 & 2 & 0 \end{vmatrix} \mathbf{x}_2 = \begin{vmatrix} 0 \\ 0 \end{vmatrix}$
	: x = 7			
				$R_2 \rightarrow R_2 \rightarrow 2R_1$
28. A	Ans: 3			$\mathbf{R}_3 \to \mathbf{R}_3 \to \mathbf{R}_1$
Sol: C	Given M is a singu	ilar matrix one of the	e	$\begin{vmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \end{vmatrix} $ $\begin{bmatrix} x_1 \\ 0 \\ 0 \end{vmatrix} $
e	angen value of M	s 0. Other two eiger	n	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 7 \end{bmatrix} \begin{bmatrix} x_2 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
v	values are 2 & 3 λ^3 +	$2\lambda + 1$ is an eigen value	e	$\mathbf{y} + 2\mathbf{y} + \mathbf{y} = 0 \tag{1}$
0	of $M^2 + 2M + 1$			$x_1 + 2x_2 + x_3 = 0$ (1) $7x_2 = 0$
F	for $\lambda = 0$, $\lambda^3 + 2\lambda + 1$	1 = 1		
L	ace online	Regular Live Doubt Affordable Fee Availa	clearin able 1M	Ing Sessions Free Online Test Series ASK an expert M 3M 6M 12M 18M and 24 Months Subscription Packages

ACE Engineering Publications

$x_{3} = 0$ $(1) \Rightarrow x_{1} + 2x_{2} = 0$ $\Rightarrow x_{1} = -2x_{2}$ $\frac{x_{1}}{x_{2}} = \frac{-2}{1} \Rightarrow x_{1} = -2 \& x_{2} = 1$

Option (a) is correct.

32. Ans: 6

Sol: $|A - \lambda I| = 0$

$$\begin{vmatrix} 1-\lambda & 0 & 2\\ 1 & -2-\lambda & 0\\ 0 & 0 & -3-\lambda \end{vmatrix} = 0$$

$$\Rightarrow (1-\lambda) \{(-2-\lambda)(-3-\lambda)\} = 0$$

$$\Rightarrow (1-\lambda) \{\lambda^2 + 5\lambda + 6\} = 0$$

$$\Rightarrow -\lambda^3 - 4\lambda^2 - \lambda + 6 = 0$$

$$\Rightarrow \lambda^3 + 4\lambda^2 + \lambda - 6 = 0$$

By cayley - Hamilton theorem we have

$$A^3 + 4A^2 + A - 6I = 0$$

Multiplying both sides by A^{-1}

$$A^{-1} (A^3 + 4A^2 + A - 6I) = 0$$

$$A^2 + 4A + I - 6A^{-1} = 0$$

$$6A^{-1} = A^2 + 4A + I = aA^2 + bA + CI$$

$$\Rightarrow a = 1, b = 4, c = 1$$

$$\therefore a + b + c = 6$$

33. Ans: (c)

Sol: Eigen values of A are

$$\lambda = 0, 1, \frac{2}{3}$$

ace online

The characteristic equation is

$$\lambda(\lambda - 1)\left(\lambda - \frac{2}{3}\right) = 0$$
$$\lambda\left(\lambda^2 - \frac{5}{3}\lambda + \frac{2}{3}\right) = 0$$
$$\lambda^3 - \frac{5}{3}\lambda^2 + \frac{2}{3}\lambda = 0$$

6

By cayley-Hamilton theorem, we have

$$A^{3} - \frac{5}{3}A^{2} + \frac{2}{3}A = 0$$
$$\Rightarrow A^{3} = \frac{5}{3}A^{2} - \frac{2}{3}A$$
$$\therefore A^{3} = \frac{1}{3}(5A^{2} - 2A)$$

34. Ans: (a & c)
Sol: Given
$$x_1 + x_2 + x_3 = 0$$

 $\Rightarrow x_1 = -x_2 - x_3$
Putting $x_2 = c_1$ and $x_3 = c_2$
 $x_1 = -c_1 - c_2$
 $X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -c_1 - c_2 \\ c_1 \\ c_2 \end{bmatrix} = -c_1 \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} - c_2 \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ Here
 $X = -c_1 x_1 - c_2 x_2$
Where $X_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$ and $X_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$
Thus

(i) x_1 and x_2 span the given plane

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

Linear Algebra

Engineering Publications	7	Linear Algebra
(ii) x_1 and x_2 are linearly independent	,	35. Ans: (d)
because they are not scalar multiple of	5	Sol: Please Refer ACE Previous maths solution
each other		booklet
: It forms a basis		

Dimension = 2

Calculus

(Solutions for Text Book Practice Questions)

- 01. Ans: (A) Sol: $\lim_{x \to \frac{5}{4}} (x - [x]) = \lim_{x \to \frac{5}{4}} x - \lim_{x \to \frac{5}{4}} [x]$ $= \frac{5}{4} - 1 = \frac{1}{4}$
- 02. Ans: (d)
- Sol: Please Refer ACE Previous Maths Solution Booklet

03. Ans: (d)

Sol: $\lim_{x \to 2^{+}} \frac{x^{2} + x - 6}{|x - 2|} = \lim_{x \to 2^{+}} \frac{(x + 3)(x - 2)}{|x - 2|} =$ $\lim_{x \to 2^{-}} \frac{(x + 3)(x - 2)}{|x - 2|} = \lim_{x \to 2^{-}} \frac{(x + 3)(x - 2)}{-(x - 2)} = -5$ $\lim_{x \to 2^{+}} \frac{(x + 3)(x - 2)}{|x - 2|} = \lim_{x \to 2^{+}} \frac{(x + 3)(x - 2)}{(x - 2)} = 5$ Since $\lim_{x \to 2^{-}} \frac{x^{2} + x - 6}{|x - 2|} \neq \lim_{x \to 2^{+}} \frac{x^{2} + x - 6}{|x - 2|}$ $\lim_{x \to 2^{+}} \frac{x^{2} + x - 6}{|x - 2|} = \text{does not exist}$

04. Ans: 2

Sol:
$$\lim_{x \to 0} \frac{x \sin x}{1 - \cos x} = \lim_{x \to 0} \frac{\left(\frac{\sin x}{x}\right)}{\left(\frac{1 - \cos x}{x^2}\right)} = \frac{1}{\frac{1}{2}} = 2$$

05. Ans: (a)

Sol: Please Refer ACE Previous Maths Solution Booklet

06. Ans: 0.5

- Sol: Please Refer ACE Previous Maths Solution Booklet
- 07. Ans: (c)
- Sol: Please Refer ACE Previous Maths Solution Booklet

08. Ans: 0.5

Sol: Please Refer ACE Previous Maths Solution Booklet

09. Ans: 0.25

Sol: Please Refer ACE Previous Maths Solution Booklet

10. Ans: (a)

Sol: Please Refer ACE Previous Maths Solution Booklet

11. Ans: (c)

- Sol: Please Refer ACE Previous Maths Solution Booklet
- 12. Ans: (b)
- Sol: Please Refer ACE Previous Maths Solution Booklet

 Regular Live Doubt clearing Sessions
 |
 Free Online Test Series | ASK an expert

 Affordable Fee
 |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

	ACE Engineering Publications	9		Calculus
13.	Ans: (b)		Sol:	Please Refer ACE Previous Maths Solution
Sol:	Please Refer ACE Previous Maths Solution			Booklet
	Booklet			
			17.	Ans: 2.64
14.	Ans: (d)		Sol:	Please Refer ACE Previous Maths Solution
Sol:	Let, $f(x) = x^2 - 2x + 2$ and $[a,b] = [1,3]$			Booklet
	Then, $f'(x) = 2x - 2$			
	By a mean value theorem		18.	Ans: (c)
	$\exists c \in (1,3) \Rightarrow f'(c) = \frac{f(3) - f(1)}{3 - 1}$		Sol:	$\frac{f^{1}(c)}{g^{1}(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$
	\Rightarrow c-1 = 1	ERI	ING	$f(\mathbf{x}) = ln\mathbf{x} \cdot f^{l}(\mathbf{x}) = 1$
	\therefore c = 2 (or) x = 2			$I(X) - hIX, I'(X) - \frac{-}{X}$
	54			f(a) = f(1) = ln(1) = 0
15.	Ans: (d)			f(b) = f(e) = lne = 1
Sol:	Rolle's Theorem states that in the 3 ^r	rd		$f^{1}(c) = \frac{1}{c}$
	condition that there exists a point C in given	n		c
	range such that			$g(x) = \frac{1}{x}, \qquad g^{1}(x) = \frac{-1}{x^{2}}$
	$f^{i}(c) = 0$			1
	$f(x) = x^3 - 4x$		<	$g(a) = g(1) = \frac{1}{1} = 1$
	$f^{1}(x) = 3x^{2} - 4$ Sir	nce	1995	
	$f^{i}(c) = 0$			$g(b) = g(e) = -\frac{1}{e}$
	$3c^2 - 4 = 0 \Longrightarrow C = \frac{\pm 2}{\sqrt{3}}$			$\mathbf{g}^{1}(\mathbf{c}) = \frac{-1}{\mathbf{c}^{2}}$
	Both $\frac{2}{\sqrt{3}} \& \frac{-2}{\sqrt{3}}$ lies in the given range			$\frac{1/c}{-1/c^2} = \frac{1-0}{\frac{1}{2}-1} = \frac{e}{1-e}$
	[-2, 2]			e
	So $C = \frac{\pm 2}{\sqrt{3}}$ is the point at which the tangent	nt		$-c = \frac{e}{1-e}$
	of $f(x)$ is parallel to $X - axis$.			$c = \frac{e}{e - 1}$
16.	Ans: 19			

Regular Live Doubt clearing Sessions Free Online Test Series | ASK an expert Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

	Engineering Publications	10	Calculus
19. Sol:	Ans: (b) Taylor series expansion for function f(x)	: Coefficient of $x^4 = \frac{f^{IV}(0)}{4!} = \frac{2}{24} = \frac{1}{12}$
	around x = 0 is $f(x) = f(0) + xf^{1}(0) + \frac{x^{2}}{2!}f^{11}(0) + \frac{x^{3}}{3!}f^{111}(0) + \dots + $	-	 21. Ans: (c) Sol: Please Refer ACE Previous Maths Solution Booklet 22. Ans: 4 Sol: Please Refer ACE Previous Maths Solution Booklet 23. Ans: (d)
	$f^{111}(x) = \frac{0}{(1+x)^4}, f^{111}(0) = 6$ $f^{iv}(x) = \frac{-24}{(1+x)^5}, f^{iv}(0) = -24$ $f(x) = -1 + (x \times 1) + \frac{x^2}{2!} \times -2 + \frac{x^3}{3!} \times 6 + \frac{x^4}{4!} \times -24 + \dots - \frac{x^2}{2!} \times -2 + \frac{x^3}{3!} \times 6 + \frac{x^4}{4!} \times -24 + \dots - \frac{x^4}{4!} = -1 + x - x^2 + x^3 - x^4 + \dots - \dots$		Sol: Please Refer ACE Previous Maths Solution Booklet 24. Ans: (a) Sol: Given $u = x^{-2} tan\left(\frac{y}{x}\right) + 3y^3 sin^{-1}\left(\frac{x}{y}\right)$ = f(x, y) + 3 g(x,y) Where $f(x, y)$ is homogeneous with deg m = -2 and $g(x, y)$ is homogeneous with deg
20. Sol:	Ans: (a) Coefficient of $x^4 = \frac{f^{IV}(0)}{4!}$ Given $f(x) = \log(\sec x)$ $\Rightarrow f'(x) = \frac{1}{\sec x} \sec x \tan x = \tan x$		n = 3 $\Rightarrow x^{2}. u_{xx} + 2xy u_{xy} + y^{2} u_{yy}$ = m(m-1) f(x,y) + n(n-1) g(x,y) = -2(-2-1) f(x,y) + 3[3(3-1)g(x,y)] = 6 [f(x,y) + 3 g(x,y)] = 6u
	$\Rightarrow f''(x) = \sec^2 x$ $\Rightarrow f'''(x) = 2 \sec^2 x \tan x$ $\Rightarrow f^{IV}(x) = 2[\sec^2 x \sec^2 x + \tan x]$		 25. Ans: 4 Sol: Please Refer ACE Previous Maths Solution Booklet 26. Ans: 2
	$\Rightarrow f^{IV}(0) = 2$		Sol: Please Refer ACE Previous Maths Solution Booklet

A ace online

ک	Engineering Publications	11		Calculus
27.	Ans: (c)		32.	Ans: 1
Sol:	Please Refer ACE Previous Maths Solution	n	Sol:	Please Refer ACE Previous Maths Solution
	Booklet			Booklet
28.	Ans: (a)		33.	Ans: 2
Sol:	Please Refer ACE Previous Maths Solution	n	Sol:	Please Refer ACE Previous Maths Solution
	Booklet			Booklet
29.	Ans: (c)		34.	Ans: 8
	$\partial(\mathbf{u}, \mathbf{v}, \mathbf{w}) \begin{vmatrix} \mathbf{u}_{\mathbf{x}} & \mathbf{u}_{\mathbf{y}} & \mathbf{u}_{\mathbf{z}} \end{vmatrix} \begin{vmatrix} 3 & 2 & -1 \end{vmatrix}$		Sol:	Please Refer ACE Previous Maths Solution
Sol:	$\frac{\partial(x, y, x)}{\partial(x, y, z)} = \begin{vmatrix} v_x & v_y & v_z \\ w_x & w_y & w_z \end{vmatrix} = \begin{vmatrix} 1 & -1 & 1 \\ 1 & 2 & -1 \end{vmatrix}$	ER	Nc	Booklet
	= 3(1-2) - 2(-1-1) - 1(2+1)		35.	Ans: (c)
	=-2		Sol:	Please Refer ACE Previous Maths Solution
	$\therefore \frac{\partial(\mathbf{x}, \mathbf{y}, \mathbf{z})}{\partial(\mathbf{u}, \mathbf{v}, \mathbf{w})} = \frac{1}{\underline{\partial(\mathbf{u}, \mathbf{v}, \mathbf{w})}} = \frac{-1}{2}$			Booklet
	$\partial(\mathrm{x},\mathrm{y},\mathrm{z})$		36.	Ans: (a)
30.	Ans: (b), (d)		Sol:	Given $f(x, y) = 2(x^2 - y^2) - x^4 + y^4$
Sol:	Please Refer ACE Previous Maths Solution	n		Consider $f_x = 4x - 4x^3 = 0$
	Booklet			\Rightarrow x = 0, 1, -1
21			<	Consider $f_y = -4y + 4y^3 = 0$
31.		nce	1995	\Rightarrow y = 0, 1, -1
Sol:	$f'(x) = 6\left(\frac{4}{3}\right)x^{\frac{1}{3}} - 3\left(\frac{1}{3}\right)x^{-2/3} = \frac{8x - 1}{x^{2/3}}$			Now, $r = f_{xy} = 4 - 12x^2$, $s = f_{xy} = 0$
				and $t = f_{yy} = -4 + 12y^2$
	Critical points are $x = 0, \frac{1}{8}$			At (0,1), we have $r > 0$ and $(rt - s^2) > 0$
	$f(-1) = 6(-1)^{4/3} - 3(-1)^{1/3} = 9$			\therefore f(x, y) has minimum at (0,1)
	f(0) = 0			At (-1, 0), we have $r < 0$ and $(rt - s^2) > 0$
	1(0) = 0			\therefore f(x, y) has a maximum at (-1, 0)
	$f\left(\frac{1}{8}\right) = 6\left(\frac{1}{8}\right)^{4/3} - 3\left(\frac{1}{8}\right)^{1/3} = \frac{-9}{8}$		37.	Ans: (c)
	f(1) = 6 - 3 = 3		Sol:	$f(x, y) = 1 - x^2 y^2$
	Clearly from the above values absolut	e		$p = -2xy^2$
	minimum is $-9/8$, absolute maximum is 9			$q = -2yx^2$
	Regular Live Dou	bt clear	ring Sessio	ons Free Online Test Series ASK an expert
	Affordable Fee Ava	ailable 1	LM 3M 6	M 12M 18M and 24 Months Subscription Packages

Χ¢	Engineering Publications		12	Calculus
	$r = -2y^2$			Differentiating both sides, we get
	s = -4xy			$x \cos(\pi x) \cdot \pi + \sin(\pi x) = f(x) \cdot 2x$
	$t = -2x^2$			Putting $x = 4$
	At (0, 0)			$4\pi\cos(4\pi) = f(4).8$
	$r=0, \qquad s=0,$	t = 0		$f(A) = \pi$
	$rt-s^2=0$			$ 1(4) = \frac{1}{2}$
	f(a+h, b+k)			13 Ans: (d)
	$\mathbf{f}(\mathbf{a},\mathbf{b}) < \mathbf{f}(\mathbf{a}+\mathbf{h},$	b+k)		43. Ans. (u) Sol. Please Defer ACE Previous Maths Solution
	f(0, 0) < f(h, k)			Booklet
	So point (0, 0)	is point of maxima		DOORICI
38	Ans: (a & a)			44. Ans: (b)
Sol.	Plassa Pafar A	CE Provious Mathe Solution		Sol: Please Refer ACE Previous Maths Solution
501.	Rooklet	CE Trevious Mattis Solution	1	Booklet
	DOOKICI			45 Ans: (a)
39.	Ans: (a)			43. Ans. (a) Sol: Please Refer ACE Previous Mathe Solution
Sol:	Please Refer A	CE Previous Maths Solution	1	Booklet
	Booklet			
40	Ang. (d)			46. Ans: (c)
40.	Ans: (u)			Sol: Please Refer ACE Previous Maths Solution
Sol:	$\int x[x^2] dx$			Booklet
		√2 1.5 1		
	$= \int_{0}^{\infty} x \left[x^{2} \right] dx +$	$\int_{1} x \left[x^{2} \right] dx + \int_{\overline{2}} x \left[x^{2} \right] dx$		47. Ans: 1.7
	$\sqrt{2}$ 1.	$\frac{5}{5}$ 3		Sol: Please Refer ACE Previous Maths Solution
	$=0+\int_{0}^{\infty} x dx + \int_{\sqrt{2}}^{\infty} x dx$	$\int_{\frac{1}{2}}^{2} 2x dx = -\frac{1}{4}$		Booklet
14				48. Ans: (c)
41.	Ans: (a)			Sol: Please Refer ACE Previous Maths Solution
Sol:	Please Refer A	CE Previous Maths Solution	1	Booklet
	BOOKlet			
42.	Ans: (a)	2		49. Ans: (c)
Sol:	Given that, x si	$n(\pi x) = \int_{0}^{x^{2}} f(t) dt$		Sol: Please Refer ACE Previous Maths Solution
				Booklet
	ace	India's Best Unline Coaching Platfori	n for G	GATE, ESE, PSUS, SSUJE, RRB-JE, SSU, Banks, Groups & PSU Exams

Engineering Publications	13	Calculus
50. Ans: (b)Sol: Please Refer ACE Previous Maths S Booklet	solution	$\frac{1}{r}$ dr = dt Limits of t are from 0 to 1
51. Ans: 64Sol: Please Refer ACE Previous Maths S Booklet	Solution	$2\int_{\theta=0}^{2\pi}\int_{t=0}^{1}tdtd\theta = 2\int_{\theta=0}^{2\pi}\frac{t^2}{2}\Big _0^1d\theta$ $= \theta\Big _0^{2\pi} = 2\pi$
52. Ans: (b)Sol: Please Refer ACE Previous Maths S Booklet	Solution	55. Ans: (2) Sol: Please Refer ACE Previous Maths Solution Booklet
53. Ans: (c)Sol: Please Refer ACE Previous Maths S Booklet	Solution	56. Ans: 0Sol: Please Refer ACE Previous Maths Solution Booklet
54. Ans: (2π) Sol:	- Since dθ	57. Ans: (d) Sol: Please Refer ACE Previous Maths Solution Booklet 58. Ans: (d) Sol: $y = \log \sec x$, $\frac{dy}{dx} = \tan x$ Length of curve $= \int_{0}^{\pi/4} \sqrt{1 + \tan^{2} x} dx$ $= \int_{0}^{\pi/4} \sec x dx = \log (\sec x + \tan x) \Big _{0}^{\pi/4}$ $= \log (\sqrt{2} + 1)$
$= \int_{\theta=0}^{\infty} \int_{r=1}^{2} \frac{2}{r} dr d\theta$ Let $\ell n(r) = t$ Regular L Affordable Fo	Live Doubt clear	ring Sessions Free Online Test Series ASK an expert

		14		Calculus
59. Sol:	Ans: (a) Y = 4ax		63. A Sol: P B	. ns: (b) lease Refer ACE Previous Maths Solution ooklet
	(0,0) a X		64. A Sol: P B	. ns: (d) lease Refer ACE Previous Maths Solution ooklet
			65. A Sol: P	.ns: 10 lease Refer ACE Previous Maths Solution
	$y^2 = 4ax$ The required volume = $\int_{a}^{a} \pi v^2 dx$		бб. А	.ns: 5
	y ² = 4ax $I = \int_{x=0}^{a} \pi (4ax) dx$	C	Sol: P B 67. A	lease Refer ACE Previous Maths Solution ooklet .ns: (b)
	$I = \pi 4a \frac{x^2}{2} \Big _{0}^{a}$ = $\frac{4a\pi}{2}a^2 = 2\pi a^3$	C	68. A	ooklet
	$-\frac{1}{2}a - 2\pi a$		Sol: u	$\hat{z} = y\hat{i} + xy\hat{j}$
60.	Ans: (b)		V	$\mathbf{x} = \mathbf{x}^2 \mathbf{i} + \mathbf{x} \mathbf{y}^2 \mathbf{j}$
Sol:	Please Refer ACE Previous Maths Solution Booklet	n	นี่	$\times \vec{\mathbf{v}} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \mathbf{y} & \mathbf{xy} & 0 \\ \mathbf{x}^2 & \mathbf{xy}^2 & 0 \end{vmatrix}$
61. Sol:	Ans: (b) Please Refer ACE Previous Maths Solution Booklet	n		$= i (0 - 0) - j(0 - 0) + k (xy^{3} - yx^{3})$ $= k (xy^{3} - yx^{3})$
62. Sol:	Ans: (c) Please Refer ACE Previous Maths Solution Booklet	n	V	$V \times (\vec{u} \times \vec{v}) = \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 0 & 0 & (xy^3 - x^3y) \end{vmatrix}$
	India's Best Online Coaching Platfor	m for G	ATE, ESE, PS	Us, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams
	Online Enjoy a smooth onlin	e learni	ing experien	ce in various languages at your convenience

		15	Calculus
	$= i (3xy^{2} - x^{3}) - j (y^{3} - 3x^{2}y) + 0$ = (3xy^{2} - x^{3})i - (y^{3} - 3x^{2}y)j		= 3 (Volume of Cylinder) = 3 $(\pi (4^2) (2)) = 96 \pi$
69.	Ans: (c)		76. Ans: 264
Sol:	Please Refer ACE Previous Maths Solution Booklet	n	Sol: Using Gauss–Divergence Theorem, $\iint_{S} xy \ dy \ dz + yz \ dzdx + zx \ dx \ dy = \iiint_{V} \ div \ \overline{F} \ dv$
70.	Ans: 22		$= \iiint (y+z+x) dv$
Sol:	Please Refer ACE Previous Maths Solution Booklet	n	$= \int_{x=0}^{V} \int_{y=0}^{3} \int_{z=0}^{4} (x + y + z) dz dy dx$
71.	Ans: (b)	ER	$N_{G} = \int_{x=0}^{4} \int_{y=0}^{3} [4x + 4y + 8] dy dz$
Sol:	Please Refer ACE Previous Maths Solution Booklet	n	$= \int_{x=0}^{4} \left[12x + 18 + 24 \right] dx = 264$
72.	Ans: 2		Ż
Sol:	Please Refer ACE Previous Maths Solution Booklet	n	s h
73.	Ans: 9.42		0 y
Sol:	Please Refer ACE Previous Maths Solution	n	x
	Sin	nce	1995
74.	Ans: 8		Sol: Please Refer ACE Previous Maths Solution
Sol:	Please Refer ACE Previous Maths Solution	n	Booklet
	Booklet		78. Ans: (b)
75.	Ans: (d)		Sol: $\oint \vec{F} \cdot d\vec{r} = \oint x^3 dx + (x + y - z)dy + yzdz$
Sol:	The given surface is a closed surface.		
	$\oint \overline{\mathbf{F}} \ \overline{\mathbf{N}} \ \mathrm{ds} = \iiint \nabla \bullet \overline{\mathbf{F}} \ \mathrm{dv}$		z = 0, dz = 0
	s = V $\nabla \bullet \overline{E} - 2$		By Using Green's Theorem $\int x^3 dx + (2 + x) dy$
	$\int \int \frac{1}{2} dv = 3 \int \int \frac{1}{2} dv$		$\int \int dx + (2 + y) dy$
			$= \int \int 1.dxdy = \pi$
	Ace Regular Live Doul Affordable Fee Ava	bt clear ilable 1	ing Sessions Free Online Test Series ASK an expert .M 3M 6M 12M 18M and 24 Months Subscription Packages

|--|--|--|--|

16

Calculus

79. Ans: (b)

1255 C

Sol: Please Refer ACE Previous Maths Solution Booklet

80. Ans: -6.58

Sol: Please Refer ACE Previous Maths Solution Booklet

81. Ans: (a)

Sol: Please Refer ACE Previous Maths Solution Booklet

82. Ans: (c)

Sol: Given function is odd function

$$b_{n} = \frac{2}{\ell} \int_{0}^{\ell} f(x) \sin\left(\frac{n\pi x}{\ell}\right) dx$$
$$= \frac{2}{\pi} \int_{0}^{\pi} 2\sin nx \, dx$$
$$= \frac{4}{\pi} \left(\frac{-\cos nx}{n}\right)_{0}^{n}$$
$$b_{n} = \frac{4}{\pi n} \left(-(-1)^{n} + 1\right)$$
$$\sum_{n=1}^{\infty} \frac{4}{\pi n} \left(1 - (-1)^{n}\right) \sin(nx)$$
$$\frac{8}{\pi} \sin x + \frac{8}{3\pi} \sin 3x + \frac{8}{5\pi} \sin 5x + -$$
$$Let \ x = \frac{\pi}{2}$$

$$\frac{8}{\pi} + \frac{-8}{3\pi} + \frac{8}{5\pi} + \dots - \dots$$

$$\frac{8}{\pi} \left(1 - \frac{1}{3} + \frac{1}{5} - \dots - \right) = 2$$
$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} - 1 - \dots - = \frac{\pi}{4}$$

83. Ans: (c)

Sol: Please Refer ACE Previous Maths Solution Booklet

Sol:
$$f(x) = \pi x - x^2$$

 $f(x) = \sum_{n=1}^{\infty} b_n \sin nx$
 $b_n = \frac{2}{\pi} \int_0^{\pi} (\pi x - x^2) \sin nx \, dx$
 $b_1 = \frac{2}{\pi} \int_0^{\pi} [(\pi x - x^2) \sin x] \, dx$
 $\frac{2}{\pi} \Big[(\pi x - x^2)(-\cos x) - (\pi - 2x)(-\sin x) \Big]_0^{\pi} = \frac{8}{\pi}$

85. Ans: (b)

Sol: $f(x) = (x - 1)^2$

The half range cosine series is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(n\pi x)$$
$$a_n = \frac{2}{\pi} \int_0^{\pi} (x - 1)^2 \cos(n\pi x) dx$$
$$\frac{2}{\pi} \left[(x - 1)^2 \cdot \left(\frac{\sin n\pi x}{n\pi} \right) + 2(x - 1) \cdot \frac{\cos n\pi x}{n^2 \pi^2} - 2 \frac{\sin n\pi x}{n^3 \pi^3} \right]_0^1$$
$$= \frac{4}{n^2 \pi^2}$$

	ACE Engineering Publications
--	---------------------------------

								A	nsw	er K	ey								
1	А	2	D	3	D	4	2	5	A	6	0.5	7	С	8	0.5	9	0.25	10	Α
11	С	12	В	13	В	14	D	15	С	16	19	17	С	18	С	19	В	20	A
21	С	22	4	23	D	24	Α	25	4	26	2	27	С	28	Α	29	С	30	B, D
31	A&D	32	1	33	2	34	8	35	С	36	А	37	С	38	А	39	А	40	D
															&D				
41	Α	42	А	43	D	44	В	45	Α	46	С	47	1.7	48	С	49	С	50	В
51	64	52	В	53	С	54	2π	55	2	56	0	57	D	58	D	59	A	60	В
61	В	62	С	63	В	64	D	65	10	66	5	67	В	68	D	69	С	70	22
71	В	72	2	73	9.42	74	8	75	D	76	264	77	0	78	В	79	В	80	-6.58
81	Α	82	С	83	С			Sir	B		G A		OFN.						

17

 Regular Live Doubt clearing Sessions
 Free Online Test Series
 ASK an expert

 Affordable Fee
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

Probability

(Solutions for Text Book Practice Questions)

01. Ans: (0.6548) (0.653 to 0.655)

Sol: Nine members = 4 Btech + 3 Mtech + 2 PHD The probability of removing 2 students from the same category & third one from any other

$$=\frac{C_{2}^{4}(C_{1}^{2}+C_{1}^{3})+C_{2}^{3}\times(C_{1}^{4}+C_{1}^{2})+C_{2}^{2}(C_{1}^{3}+C_{1}^{4})}{C_{3}^{9}}$$

$$= \frac{6(2+3)+3\times(4+2)+1\times(3+4)}{84}$$
$$= \frac{55}{84} = 0.6548$$

02. Ans: (b)

Sol: Total outcome = 6^6

Possible arrangements of six faces of 6 dices = 6!

The probability of throwing six perfect dice

& getting six different faces $=\frac{6!}{6^6}$

03. Ans: (10)

Sol: Please Refer ACE Previous Maths Solution Booklet

04. Ans: (c)

Sol: Given : $P(j) \alpha j$

	P(j)) = k	j, j =	1, 2	2, 3, 4	4, 5,	6
X = j	1	2	3	4	5	6	
P(X=j)	k	2k	3k	4k	5k	6k	
			7		$\zeta = i$) = 1	•

21 k = 1 $k = \frac{1}{21}$

 \therefore P(odd number of dots)

$$= P(X = 1) + P(X = 3) + P(X = 5)$$
$$= k + 3k + 5k = 9 k$$
$$= \frac{9}{21} = \frac{3}{7}$$

05. Ans: (a)

Sol: Total cases for arranging six boys and six girls in a row = 12!

Assume six girls as one unit.

We have a total of six boys + 1 unit = 7

They can be arranged among themselves in

7! ways and six girls can be arranged among themselves in 6! ways.

Favourable cases = $6! \times 7!$

 $\therefore \text{ Required probability } = \frac{6! \times 7!}{12!}$

Conditional Probability

06. Ans: (b)

Sol:

P(E U F) = 0.8P(E) = 0.4P(E/F) = 0.3

	Engineering Publications	19		Probability
	$P(E/F) = \frac{P(E \cap F)}{P(E)}$		Baye's Theorem	
	$P(E/F) = \frac{P(E) + P(F) - P(E \cup F)}{P(F)}$		09. Ans: $(0.2553) (0.24 \text{ to } 0.26)$ Sol:	
	$0.3 = \frac{0.4 + P(F) - 0.8}{P(F)}$		Not infected Infected (I)	l
	0.3 P(F) = P(F) - 0.4		70 3	0
	0.7 P(F) = 0.4			Not Showing
	$P(F) = \frac{4}{7}$		Showing Symptoms	Symptoms (NS)
07.	Ans: (a)	ER	NGACAD 6	24
501:			The person selected at ran	dom not shown
	Case (1) Let first ball drawn is blue & secon	nd	any symptoms of COVI	D–19 then the
	ball drawn is also blue		probability that the person	n infected with
	$P_{1} = \frac{C_{1}^{b}}{C_{1}^{b+r}} \times \frac{C_{1}^{b-1}}{C_{1}^{b+r-1}} = \frac{b(b-1)}{(b+r)(b+r-1)}$		$COVID - 19$ $P(I \cap NS)$	24
	Case (ii) Let first bal drawn is red & Secon	nd	$= P(I/NS) = \frac{(VI)}{P(NS)} =$	70 + 24
	ball drawn is blue		24 0.2572	
	$P_{2} = \frac{C_{1}^{r}}{C_{1}^{b+r}} \times \frac{C_{1}^{b}}{C_{1}^{r+b-1}} = \frac{br}{(b+r)(r+b-1)}$ Sin	nce	$=\frac{1}{94}=0.2553$	
	So the probability that the second ball draw	vn	10. Ans: (0.375 to 0.375)	
	is blue = $P_1 + P_2$		Sol: $P(T) =$ Probability that pers	son speaks truth
			3	-
	b(b-1) + br = b(b-1+r) = b		$=\frac{-}{4}$	
	$=\frac{b(b-1)+br}{(b+r)(b+r-1)} = \frac{b(b-1+1)}{(b+r)(b+r-1)} = \frac{b}{b+1}$	r	P(F) = Probability that pers	son speaks false
			1	
08	Ans: (b)		$=\frac{1}{4}$	
50. Sali	Please Refer ACE Previous Mathe Solution	on	P(E/T) = Probability of fair	die outcome is 5
	Booklet	511	given that persons speaks tru	th $=\frac{1}{6}$

D7	ace
	online

Engineering Publications	20 Probability
P(E/F) = Probability of fair die outcome is given that person speaks false	$=\frac{2}{9}+\frac{8}{81}+\frac{32}{729}+$
= 1 - P(E / T) $= 1 - \frac{1}{2} - \frac{5}{2}$	$=\frac{2}{9}\left(1+\frac{4}{9}+\frac{16}{81}+\right)$
P = The probability that the outcome is really5 is	$= \frac{2}{9} \times \frac{1}{\left(1 - \frac{4}{9}\right)} = \frac{2}{9} \times \frac{9}{5} = \frac{2}{5}$
$= \frac{P(T)P(E/T)}{P(T)P(E/T) + P(F)P(E/F)}$ $= \frac{\frac{3}{4} \times \frac{1}{6}}{4}$	 12. Ans: (c, d) Sol: Please Refer ACE Previous Maths Solution Booklet
$ = \left(\frac{3}{4} \times \frac{1}{6}\right) + \left(\frac{1}{4} \times \frac{5}{6}\right) $ $ = \frac{3}{3+5} = \frac{3}{8} = 0.375 $	Random Variables 13. Ans: 0.1875 (Range 0.17 to 0.19) Sol: Please Refer ACE Previous Maths Solution Booklet
Independent Events 11. Ans: (d) Sol: P(X) = probability that the number greate	14. Ans: (b) Sol: P(2 white + 1 Black ball) = $\frac{C_2^5 \times C_1^7}{C_3^{12}} = \frac{7}{22}$
than four appears $=\frac{2}{6}=\frac{1}{3}$	P (2 Black + 1 White ball) = $\frac{C_2^7 \times C_1^5}{C_3^{12}} = \frac{21}{44}$
$P^{1}(X) =$ Probability that the number less that equal to 4 appears	P (3 White balls) = $\frac{C_3^5}{C_3^{12}} = \frac{1}{22}$
$= 1 - P(X) = 1 - \frac{1}{3} = \frac{2}{3}$ Probability of Number of trials is even $= P^{1}(X)P(X) + (P^{1}(X))^{3} P(X) + (P^{1}(X))^{5} P(X)$	P (3 Black balls) = $\frac{C_3^7}{C_3^{12}} = \frac{7}{44}$ Total expectation =
$+$ $= \left(\frac{2}{3} \times \frac{1}{3}\right) + \left(\left(\frac{2}{3}\right)^3 \times \frac{1}{3}\right) + \left(\left(\frac{2}{3}\right)^5 \times \frac{1}{3}\right) +$	$\frac{120}{22}(60) + \frac{144}{44}(30) + (2 \times 20 + 10)\frac{122}{22} + (20 + 2 \times 10) \times \frac{21}{44}$
	$=\frac{120+210+700+640}{44}=\frac{1870}{44}=42.5$

ace	
online	

 Regular Live Doubt clearing Sessions
 Free Online Test Series | ASK an expert

 Affordable Fee
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

Engineering Publications	21	Probability
EXAMPLE 15. Ans: (0.35) Sol: Please Refer ACE Previous Maths Solution Booklet 16. Ans: (c) Sol: $E(Area) = E(2x^2)$ $= 2 E(x^2)$ $= 2 \int_{-\infty}^{\infty} x^2 f(x) dx = 2 \int_{x=0}^{2} \frac{x^2}{2} dx$ $= \frac{2}{2} \frac{x^3}{3} \Big _{0}^{2} = \frac{1}{3} (8) = \frac{8}{3}$ <u>Binomial Distribution</u>	21 m	Probability $= C_{2}^{3} \times \left(\frac{1}{6}\right)^{2} \times \left(1 - \frac{1}{6}\right)^{1} = C_{2}^{3} \times \frac{1}{36} \times \frac{5}{6}$ $= 3 \times \frac{1}{36} \times \frac{5}{6} = \frac{5}{72}$ $X = P (6 \text{ appeared at least once})$ $= 1 - \left(C_{0}^{3} \times p^{0} q^{3}\right)$ $= 1 - \left(C_{0}^{3} \times \left(\frac{5}{6}\right)^{3}\right) = 1 - \frac{125}{216} = \frac{91}{216}$ $P(y/x) = \frac{P(y \cap x)}{p(x)} = \frac{P(y)}{P(x)} = \frac{5/72}{91/216}$ $= 0.1648$ Poisson Distribution
17. Ans: 0.275 (Range 0.26 to 0.28) Sol: $p = 0.8$, q = 1 - p = 1 - 0.8 = 0.2 The probability of full occupancy exactly for r = 5 days in a week ($n = 7$) $= C_r^n (p)^2 (q)^{n-r}$ $= C_5^7 \times (0.8)^5 (0.2)^2$ $= \frac{7!}{5! \times 2!} \times (0.8)^5 \times (0.2)^2$ $= \frac{7 \times 6}{2} \times (0.8)^5 \times 0.04 = 0.27525$ 18. Ans: 0.1648	or	19. Ans: (0.2593) Sol: No. of sides coloured Red = 2 No. of sides coloured Blue = 2 No. of sides coloured Green = 2 P = Probability to get red face in one throw $= \frac{2}{6} = \frac{1}{3}$ $q = 1 - p = 1 - \frac{1}{3} = \frac{2}{3}$ The Probability of obtaining red colour on the top face of the die at least twice $= \left[C_2^3 \left(\frac{1}{3}\right)^2 \times \left(\frac{2}{3}\right)^1\right] + \left[C_3^3 \left(\frac{1}{3}\right)^3 \times \left(\frac{2}{3}\right)^0\right]$
Sol: $P(6) = \frac{1}{6}$ Y = P (6 appeared exactly twice)		$= \left(3 \times \frac{1}{9} \times \frac{2}{3} \right) + \left(1 \times \frac{1}{27} \right)$ $= \frac{6+1}{27} = \frac{7}{27} = 0.2593$
		27 27

A ace online

ACE Engineering Publications	22	
20. Ans: (12)		
Sol: P(X) = $\frac{\lambda^{x} e^{-\lambda}}{x!}$, x = 0, 1, 2,		

Normal Distribution

 $= e^{-ln2} \cdot e^{-ln2} = e^{-2ln2} = e^{\ell n \left(\frac{1}{4}\right)} = \frac{1}{4}$

23. Ans: (0.2)

Sol: The area under normal curve is 1 and the curve is symmetric about mean.

$$\therefore P(100 < X < 120) = P(80 < X < 120) = 0.3$$

Now,
$$P(X < 80) = 0.5 - P(80 < X < 120)$$

= 0.5 - 0.3 = 0.2

24. Ans: (a) Sol: The standard normal variable Z is given by

$$Z = \frac{x - \mu}{\sigma}$$

When x = 438
$$Z = \frac{438 - 440}{1} = -2$$

When
$$x = 441$$

$$Z = \frac{441 - 440}{1} = 1$$

The percentage of rods whose lengths lie between 438 mm and 441 mm

$$= P(438 < x < 441)$$

= P(-2 < Z < 1)
= P(-2 < Z < 0) + P(0 < Z < 1)

$$P(X) = \frac{\lambda^{x} e^{-\lambda}}{x!}, \quad x = 0, 1, 2, \dots, n$$

$$P(y) = \frac{\lambda^{y} e^{-\lambda}}{y!}, \quad y = 0, 1, 2, \dots, n$$

$$P(X = 1) = P(X = 2)$$

$$\lambda e^{-\lambda} = \frac{\lambda^{2} e^{-\lambda}}{2}$$

$$\Rightarrow \lambda_{x} = 2$$

$$P(Y = 3) = P(Y = 4)$$

$$\frac{\lambda^{3} e^{-\lambda}}{3!} = \frac{\lambda^{4} e^{-\lambda}}{4!} \Rightarrow \frac{1}{6} = \frac{\lambda}{24}$$

$$\lambda_{y} = 4$$

$$Var(2X - Y) = (2)^{2} var(X) + (-1)^{2} var(Y)$$

$$= 4 \times 2 + (1) \times 4 = 12$$

21. Ans: (c)

Sol: Please Refer ACE Previous Maths Solution Booklet

22. Ans: (a)

Sol: E[cos
$$\pi x$$
] = $\sum_{k=0}^{\infty} \frac{e^{-\lambda} \lambda^k}{k!} \cos(k\pi)$
= $\sum_{k=0}^{\infty} \frac{e^{-\lambda} \lambda^k}{k!} (-1)^k$

In Poisson Theorem \rightarrow mean= expectation = $ln 2 = \lambda$

 $= e^{-\ell n 2} \left[1 - \frac{\ell n 2}{1!} + \frac{(\ell n 2)^2}{2!} - \frac{(\ell n 2)^3}{3!} + \dots - - \right]$

 $E[\cos \pi x] = \sum_{k=0}^{\infty} \frac{e^{-\ell n 2} (\ell n 2)^{k}}{k!} (-1)^{k}$

ACE Engineering Publications	23	Probability				
$= \frac{0.9545}{2} + \frac{0.6826}{2} = 0.81855 \approx 81.85\%$		Let X be a random variable uniformly distributed in [0, L]				
25. Ans: (0.804 to 0.806) Sol: The probability of population H Alzheimer's disease is p = 0.04, q = 0.96, n = 3500	has	Mean $E(X) = \frac{0+L}{2} = \frac{L}{2}$ $var(X) = \frac{(L-0)^2}{12} = \frac{L^2}{12}$				
$\mu = np = (3500) (0.04) = 140$		28. Ans: (0.39 to 0.41)				
$\sigma^2 = npq = (3500) (0.04) (0.96)$		Sol: $x \sim UNIF(-5, 5)$				
$\sigma^2 = 134.4, \sigma \approx 11.59$ Let X = number of people havi	ino	$f(x) = \frac{1}{10}, -5 < x < 5$				
Alzheimer's disease	EER	$N_G = 0$, elsewhere				
$P(X < 156) = P\left(\frac{X - \mu}{\sigma} < \frac{150 - \mu}{\sigma}\right)$		P[100t2 + 20tx + 2x+3 = 0 has complex solutions]				
$= P\left(Z < \frac{150 - 140}{11.59}\right)$		$= P\{[(20x)^2 - 4(100)(2x + 3)] \le 0\}$ $= P\{[400x^2 - 800x - 1200] \le 0\}$				
= P(Z < 0.86)		$= P\{(x^2 - 2x - 3) \le 0\}$				
$\overline{\mathbf{Z}} = 0, \overline{\mathbf{Z}} = 0.86$		$= P\{[(x-3) (x + 1) \le 0\}$ = P(-1 < x < 3)				
= 0.5 + Area between $z = 0 & z = 0.86$		$= \int_{-1}^{1} \frac{1}{10} dx = \frac{1}{10} (x)_{-1}^{5} = \frac{1}{10} = 0.4$				
= 0.5 + 0.3051 = 0.8051	nce	1995				
26. Ans: (b)		29. Ans: 0.125 Sol:				
Sol: Please Refer ACE Previous Maths Soluti	ion	(0, 3/2) +				
Booklet		(0, 1)-				
Uniform Distribution						
 27. Ans: (c) Sol: 0 L 2L To get a shorter piece, it can be broken anywhere between 0 and L. 		(0, 1/2) $x+y=1/2$ $(1/2, 0) (1, 0) (3/2, 0)$				
India's Best Online Coaching Plat	tform for	r GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams				
Enjoy a smooth on	nline lear	rning experience in various languages at your convenience				

Probability

Area represents
$$\left[x + y < \frac{1}{2}\right]$$

 $P\left(x + y < \frac{1}{2}\right) = Area shaded in above figure.$
 $= \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8} = 0.125$

Exponential Distribution

30. Ans: 0.367

Sol: For exponential distribution

$$f(x) = \theta e^{-\theta x} \qquad x \ge 0$$

= 0 Otherwise
$$Mean = E(x) = \frac{1}{\theta}$$

$$p\left(x > \frac{1}{\theta}\right) = \int_{1/\theta}^{\infty} f(x) dx$$

$$= \int_{1/\theta}^{\theta} \theta e^{-\theta x} dx$$

$$= \theta \left[\frac{e^{-\theta x}}{-\theta}\right]_{x=\frac{1}{\theta}}^{\infty}$$

$$= -1 \times (0 - e^{-1})$$

$$= e^{-1} = 0.367$$

31. Ans: 0.1 to 0.1

Sol:
$$\frac{1}{\lambda_1} = 1 \Longrightarrow \lambda_1 = 1$$

 $\frac{1}{\lambda_2} = \frac{1}{2} \Longrightarrow \lambda_2 = 2$
 $\frac{1}{\lambda_3} = \frac{1}{3} \Longrightarrow \lambda_3 = 3$

$$\frac{1}{\lambda_4} = \frac{1}{4} \Longrightarrow \lambda_4 = 4$$

The distribution $y = min(x_1, x_2, x_3, x_4)$ is also an exponential distribution with mean

$$\frac{1}{\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4} = 0.1$$

32. Ans: 0.0024 to 0.0026

Sol: $\lambda = 2$

$$P(x > 3) = \int_{3}^{\infty} \lambda e^{-\lambda x} dx = \lambda \left(\frac{-e^{-\lambda x}}{\lambda}\right)_{3}^{\infty}$$
$$= (-e^{-\infty}) - (-e^{-3\lambda})$$
$$= e^{-3(2)} = e^{-6} = 0.0025$$

Statistics

Sol: Mean =
$$\frac{5 \times 4 + 15 \times 5 + 25 \times 7 + 35 \times 10 + 45 \times 12 + 55 \times 8 + 65 \times 4}{4 + 5 + 7 + 10 + 12 + 8 + 4} = 37.2$$

For median

Class	f	Cf	
0-10	4	4	
10 - 20	5	9	
20-30	7	16	
30-40	10	26	\rightarrow Median class
40 - 50	12	38	
50 - 60	8	46	
60 - 70	4	50	
Here : N =	$\Sigma f = 50$	$\frac{N+1}{2}$	= 25.5

l = lower limit of the class interval of the median class = 30

ace	Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert
online	Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages

	25	Probability
m = Cumulative frequency preceding the	.	34. Ans: 4
median class = 16		Sol: Please Refer ACE Previous Maths Solution
f = frequency of the median class $= 10$		Booklet
C = size of the class = 10		
$\left(\mathbf{N} \right)$		Correlation and Regression Analysis
median = $\ell + \left\{ \frac{2}{2} - m \right\}_{C}$		(Only for EE, CE, IN)
f		25 Apg. (a)
		55. Ans: (a)
$\frac{50}{2} - 16$ 10 20		Sol: Please Refer ACE Previous Maths Solution
$=30+\{\frac{2}{10}\}10=39$		Booklet
	ERI	36. Ans: 1
For Mode :		Sol: Please Refer ACE Previous Maths Solution
Class Freq		Booklet
		2
10-20 5 20-30 7		37. Ans: 0.18
30-40 10		Sol: Given: $b_{yx} = 1.6$ and $b_{xy} = 0.4$
$40-50$ 12 \rightarrow Modal class		$r = \sqrt{b_{yx} b_{xy}}$
50-60 8		16.04
60-70 4		$r = \sqrt{1.6 \times 0.4}$
l = lower limit of the modal class = 40		$\mathbf{r} = 0.8$
f = frequency of modal class = 12	nce	Now, $b_{yx} = r \frac{\sigma_y}{\sigma_y}$
f_{-1} = frequency preceding the modal class		σ _x
f_1 = frequency succeeding the modal class		$1.6 = 0.8 \frac{\sigma_y}{\sigma_y}$
C = size of the class = 10		σ _x
$f_{-1} = 10, f_1 = 8$		$\frac{\sigma_{y}}{\sigma_{y}} = \frac{1.6}{2} = \frac{2}{2}$
$\Delta_1 = f - f_{-1} = 12 - 10 = 2$		$\sigma_x 1.8 1$
$\Delta_2 = f - f_1 = 12 - 8 = 4$		$\Rightarrow \sigma_x = 1$ and $\sigma_y = 2$
Δ_1		The angle between two regression lines is
mode = $\ell + \left(\frac{1}{\Delta_1 + \Delta_2}\right)C$		$(1-r^2)$ $(\sigma_x \sigma_y)$
. (2).		$\tan \theta = \left(\frac{1}{r}\right) \left(\frac{1}{\sigma_{x}^{2} + \sigma_{y}^{2}}\right)$
$=40 + \left(\frac{2}{2+4}\right) = 43.33$		

Probability

$$= \left\{ \frac{1 - (0.8)^2}{0.8} \right\} \left\{ \frac{(1)(2)}{(1)^2 + (2)^2} \right\} = 0.18$$

38. Ans: (a, b, c, d)

Sol: Y = 5X - 15 ----- (i) (given regression line) The regression coefficient of y on x is $b_{yx} = 5$ so option (b) is correct.

Y = 10X - 35 ----- (ii) (given regression line)

$$x = \frac{y}{10} + \frac{35}{10} = 0.1y + 3.5$$

The regression coefficient of x on y is

 $b_{xy} = 0.1$ so option (a) is also correct.

Correlation coefficient $r = \sqrt{b_{xy}b_{yx}}$

 $=\sqrt{0.1\times5}$

 $r = \sqrt{\frac{5}{10}} = \frac{1}{\sqrt{2}}$

So option (c) is also correct. Equate both equation (i) & (ii) line $5x - 15 = 10x - 35 \rightarrow \overline{x} = 4, \ \overline{y} = 5$ So means of $\overline{x} = 4$ & $\overline{y} = 5$ So option (d) is also correct.

Joint Distribution (only For EC)

39. Ans: (0.32 to 0.34)

Sol: Please Refer ACE Previous Maths Solution Booklet

Differential Equation

(Solutions for Text Book Practice Questions)

First Order Differential Equations

Differential Equation

10. Ans: (a)

ACE

Sol: Please Refer ACE previous maths solution booklet

11. Ans: (d)

Sol: Given that $(y + x^2) dx + (ax+by^3) dy = 0$ is an exact differential equation.

> Comparing the given differential equation with general differential equation of the form M(x,y)dx+N(x,y)dy = 0,

we get
$$M = x^2 + y$$
 and $N(x,y) = ax + by^3$.

Mdx+Ndy = 0 is exact Differential

Equation if $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$

Consider $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$

 $\Rightarrow 1 = a$

 \therefore The given differential equation is exact for a = 1 and for all values of b.

12. Ans: (b)

Sol: Given that

$$(2y)dx + (2x logx-xy)dy=0$$
 ____(1)
(:: M dx +N dy = 0)

$$\Rightarrow$$
 M = 2y and N = 2x logx - xy

Here, $\frac{\partial M}{\partial y} = 2 \neq \frac{\partial N}{\partial x} = 2[x.\frac{1}{x} + \log x] - y$ = 2 + 2 log x - y

 \Rightarrow The given D.E (1) is not an exact D.E.

 $\frac{M_{y} - N_{x}}{N} = \frac{2 - [2 + 2\log x - y]}{2x\log x - xv}$ Consider $=\frac{-(2\log x-y)}{x(2\log x-y)}=\frac{-1}{x}$ $\Rightarrow I.F = e^{\int \frac{-1}{x} dx} = e^{-\log x} = e^{\log x^{-1}} = x^{-1} = \frac{1}{x}$ Now, $\left(\frac{1}{x}\right)[(2y)dx + (2x\log x - xy)dy] = \left(\frac{1}{x}\right)(0)$ $\Rightarrow \left(\frac{2y}{x}\right) dx + (2\log x - y) dy = 0$ $\Rightarrow \int \left(\frac{2y}{x}\right) dx + \int (0-y) dy = c$ $\therefore 2y \log x - \frac{y^2}{2} = c$ is a general solution of (1) 13. Ans: (d) **Sol:** Given that $(y+xy^2) dx + (x-x^2y) dy = 0$ (1) (:: M dx + Ndy = 0) \Rightarrow M = y +xy² and N = x-x²y Here, $\frac{\partial M}{\partial y} = 1 + 2xy \neq \frac{\partial N}{\partial x} = 1 - 2xy$

 \Rightarrow The given D.E (1) is not an exact D.E Consider I.F =

$$\frac{1}{M.x - N.y} = \frac{1}{(xy + x^2y^2) - (xy - x^2y^2)} = \frac{1}{2x^2y^2}$$

Now, $\left(\frac{1}{2x^2y^2}\right) [(y + xy^2)dx + (x - x^2y)dy] = \left(\frac{1}{2x^2y^2}\right) (0)$

ace	Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert				
Online	Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages				

28

	neering Publications	29		Differential Equation
\Rightarrow	$\left[\frac{1}{2x^2y} + \frac{1}{2x}\right] dx + \left[\frac{1}{2xy^2} - \frac{1}{2y}\right] dy = 0$ $\int \left[\frac{1}{2x^2y} + \frac{1}{2x}\right] dx + \int \left[0 - \frac{1}{2y}\right] dy = c$			$\therefore \frac{-x^3}{3y^3} + \log(y) = c \text{ is a general solution}$ of (1)
⇒ ∴ 1	$\frac{-1}{2xy} + \frac{1}{2}\log x - \frac{1}{2}\log y = c$ $\log \left(\frac{x}{y}\right) - \frac{1}{yy} = c \text{ is a required general}$		15. Sol:	Ans: (b) Given D.E is $(xe^{x} + e^{x}) dx + (ye^{y} - xe^{x}) dy = 0 \dots (1)$
S	(y) xy olution of (1).			$(\because Mdx + Mdy = 0)$
14. Ansi Sol: Giv \Rightarrow 1 Her \Rightarrow 7 Con \overline{M} . Nov $\left(\frac{-}{y}\right)$	s: (a) $(x^{2}y)dx + [-x^{3} - y^{3}] dy = 0 \dots (1)$ $(\therefore Mdx + Ndy = 0)$ $M = x^{2}y \text{ and } N = -x^{3} - y^{3}$ $\text{re } \frac{\partial M}{\partial y} = x^{2} \neq \frac{\partial N}{\partial x} = -3x^{2}$ The given D.E (1) is not an Exact D.E nsider $I.F = \frac{1}{x + Ny} = \frac{1}{(x^{2}y)x + [-x^{3} - y^{3}]y} = \frac{-1}{y^{4}}$ w, $\frac{1}{4} \left[(x^{2}y)dx + (-x^{3} - y^{3})dy \right] = \left(-\frac{1}{y^{4}} \right) (0)$		VG ,	$\Rightarrow M = xe^{x} + e^{x} \text{ and } N = ye^{y} - xe^{x}$ Here, $M_{y} = 0 \neq N_{x} = -e^{x} - xe^{x}$ $\Rightarrow The given D.E (1) \text{ is not exact D.E}$ Consider $\frac{N_{x} - M_{y}}{M} = \frac{(-e^{x} - xe^{x}) - 0}{xe^{x} + e^{x}} = \frac{-(xe^{x} + e^{x})}{xe^{x} + e^{x}} = -1$ $\Rightarrow I.F = e^{\int f(y)dy} = e^{\int -dx} = e^{-y}$ Now, $(e^{-y}) [(xe^{x} + e^{x}) dx + (ye^{y} - xe^{x})dy] = (e^{-y}) (0)$ $\Rightarrow \int [xe^{x}e^{-y} + e^{x}e^{-y}] dx + \int [y - 0] dy = c$ $\Rightarrow (xe^{x} - e^{x})e^{-y} + e^{x}e^{-y} + \frac{y^{2}}{2} = c$ $\therefore xe^{x-y} + \frac{y^{2}}{2} = c \text{ is a solution of (1)}$
\Rightarrow	$\left(\frac{-x^2}{y^3}\right)dx + \left(\frac{x^3}{y^4} + \frac{1}{y}\right)dy = 0$ $\int \frac{-x^2}{y^3}dx + \int \left(0 + \frac{1}{y}\right)dy = c$		16. Sol:	Ans: (c) Given that $x dx + ydy + 2(x^2+y^2) dx = 0 \dots (1)$ $\Rightarrow \frac{xdx + ydy}{x^2 + y^2} + 2dx = 0$

A ace online

Engineering Publications	30	Differential Equation
$\Rightarrow \frac{1}{2} \left[\frac{2xdx + 2ydy}{x^2 + y^2} \right] + 2dx = 0$ $\Rightarrow \frac{1}{2} \left[\frac{d(x^2 + y^2)}{x^2 + y^2} \right] + 2dx = 0$ $\Rightarrow \frac{1}{2} \int \frac{1}{(x^2 + y^2)} d(x^2 + y^2) + \int 2dx = c$ $\therefore \frac{1}{2} \log(x^2 + y^2) + 2x = c$		Consider $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ $x^n = y(n+2)x^{n+1} - (n+1)x^n$ $\Rightarrow 1 = -(n+1)$ (\because coefficient of x^n) $\therefore n = -2$ 19. Ans: (c) Sol: Please Refer ACE previous maths solution booklet
17. Ans: (b)		20. Ans: (c)
Sol: Given $x dy - y dx + 2x^3 dx = 0$ (1)		Sol: Please Refer ACE previous maths solution
$\Rightarrow \frac{xdy - ydx}{x^2} + 2xdx = 0$		booklet
$\Rightarrow d\left(\frac{y}{x}\right) + 2xdx = 0$ $\Rightarrow \int d\left(\frac{y}{x}\right) + 2\int x dx = 0$ $\therefore \frac{y}{x} + x^{2} = c \text{ is a general solution of (1).}$	0	21. Ans: (a) & (d) Sol: Given that $\frac{dy}{dx} = \frac{x^3y^2 - 2y}{x}$ $\Rightarrow \frac{dy}{dx} + \left(\frac{2}{x}\right)y = \frac{x^2y^2}{x}$ (1) $(\because \frac{dy}{dx} + P(x).y = Q(x).y^n)$
18. Ans: (-2)		1 dv (2)(1)
Sol: Given $(x_1^2, x_2^3) dx_1 + (x_2^2, x_3) dx_4 = 0$ (1)		$\Rightarrow \frac{1}{y^2} \frac{dy}{dx} + \left(\frac{2}{x}\right) \left(\frac{1}{y}\right) = x^2 \dots (2)$
(y-2x) dx + (x y - x) dy = 0(1) If x^n is an I.F then after multiplication with x^n , the given equation (1) becomes exact.	ı	Let $\frac{1}{y} = z(3)$
Now, $x^{n} [(y-2x^{3})dx + (x^{2}y-x)dy] = (x^{n}) (0)$)	Then $\frac{-1}{y^2}\frac{dy}{dx} = \frac{dz}{dx}$ (4)
$\Rightarrow (x^n y - 2x^{3+n})dx + (x^{n+2}y - x^{n+1})dy = 0$		y ux ux Using (3) & (1) (2) becomes
$\Rightarrow M = x^{n}y - 2x^{3+n} \& N = x^{n+2} y - x^{n+1}$ for	r	-dz (2)
Exact D.E M dx +N dy = 0 .		$\frac{-\alpha z}{dx} + \left(\frac{z}{x}\right)z = x^2$

			31		Differential Equation
	$\Rightarrow \frac{dz}{dx} + \left(\frac{-2}{x}\right)z$ $\Rightarrow \frac{dz}{dx} + P(x).z$ $\Rightarrow I.F = e^{\int \frac{-2}{x} dx} = 0$ Now, the gene by $z \cdot \frac{1}{x^2} = \int (-x)$ $\Rightarrow \frac{z}{x^2} = -x + c$	$f = (-x^{2})$ $= Q(x))$ $= e^{-2\log x} = e^{\log x^{-2}} = \frac{1}{x^{2}}$ ral solution of (5) is given $f^{2}(\frac{1}{x^{2}})dx + c$ $= EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE$	31	NG	Differential Equation $\Rightarrow I.F = e^{\int \frac{1}{x} dx} = e^{\log x} = x$ Now, the general solution of (1) is given by $z.x = \int e^{x} dx + c$ $\Rightarrow (\log y)(x) = xe^{x} - e^{x} + c$ $\therefore x.\log(y) = e^{x}(x - 1) + c$ is a required solution of (1) Higher order
	$\therefore \frac{1}{2} = -x^3 + cx^2$	is a required solution of (1)			Differential Equations
	y y			23.	Ans: (b)
22	Ans: (c)			Sol:	Please Refer ACE previous maths solution
	dy	1 X			booklet
Sol:	Given $x \frac{dx}{dx} + y$	$\log y = xy e^{x}$		•	
	$\Rightarrow \frac{dy}{dx} + \frac{y}{x} \log y$	$= ye^x$		24. Sol:	Ans: (a) Please Refer ACE previous maths solution
	1 dv	(1)		<	booklet
	$\Rightarrow \frac{1}{y} \frac{dy}{dx} + (\log y)$	$\left(\frac{1}{x}\right) = e^x \dots \dots$	ce 1	995 25.	Ans: 0.368
	$(::f'(y)\frac{dy}{1}+f(y)\frac{dy}{1})$	$\mathbf{y})\mathbf{P}(\mathbf{x}) = \mathbf{Q}(\mathbf{x}))$		Sol:	Please Refer ACE previous maths solution
	dx Let $\log v = z$	(2)			booklet
	1 dy d	Z (2)		20	
	Then $\frac{-y}{y dx} = \frac{-y}{dx}$	(3)		20. Solu	Ans: (D)
	Using (2) & (3)	. (1) becomes		501;	booklet
	$\frac{\mathrm{d}z}{\mathrm{d}x} + \left(\frac{1}{x}\right)z = \mathrm{e}^{x}$	(4)		27.	Ans: (d)
		dy $b(x)$		Sol:	Please Refer ACE previous maths solution
		$(\cdot \frac{dx}{dx} + P(x) z = Q(x))$			booklet
	ace	India's Best Online Coaching Platfor	m for G	ATE, ES	E, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams
	J online	Enjoy a smooth onlin	e learni	ing expe	erience in various languages at your convenience

ACE Engineering Publications

Differential Equation

28. Ans: (4.54)

Sol: Please Refer ACE previous maths solution booklet

29. Ans: (a)

Sol: Given that $f(D)y = 0 \dots (1)$ where $f(D) = D^4 + 8D^2 + 16$ $\Rightarrow A.E \text{ is } m^4 + 8m^2 + 16 = 0$ $\Rightarrow (m^2 + 4)^2 = 0$ $\Rightarrow m = 0 \pm 2i, 0 \pm 2i$ \therefore The general solution (G.S) of (1) is $y = e^{0x}[(c_1+c_2x) \cos(2x) + (c_3 + c_4x) \sin(2x)]$

30. Ans: (a)

Sol: Please Refer ACE previous maths solution booklet

31. Ans: (b)

Sol: Given that $f(D) \ y = Q(x) \dots (1)$ where $f(D) = D^2 - 3D + 2 & Q(x) = e^{3x}$ C.F: A.E is $m^2 - 3m + 2 = 0$ $\Rightarrow m = 1, 2$ $\therefore y_c = c_1 e^x + c_2 e^{2x}$ P.I Given $Q(x) = e^{3x}$ ($\because Q(x) = ke^{ax}$) \Rightarrow Given $f(D) = f(a) = f(3) = (3)^2 - 3(3) + 2 = 2 \neq 0$ Regular Live Double

Now,
$$y_p = \frac{1}{f(a)}Q(x)$$

 $\therefore y_p = \frac{e^{3x}}{2}$

Hence, the general solution (G.S) of (1) is

$$y = y_c + y_p = (c_1 e^x + c_2 e^{2x}) + \left(\frac{e^{3x}}{2}\right)$$

32. Ans: (b)

- **Sol:** Please Refer ACE previous maths solution booklet
- 33. Ans: (d)

Sol: Given
$$f(D)y = Q(x) \dots (1)$$
,
where $f(D) = D^2 + 6D + 9 & Q(x) = 5e^{-3x}$
 $(\because Q(x) = ke^{ax})$
Here, $f(D) = f(a) = f(-3) = 9 - 18 + 9 = 0$
 $\Rightarrow f'(D) = f'(a) = f'(-3) = 2 (-3) + 6 = 0$
 $(\because f'(D) = 2D + 6)$
 $\Rightarrow f'(D) = f''(a) = f''(-3) = 2 \neq 0$
 $(\because f''(D) = 2)$
Now, $y_p = x^2 \left[\frac{1}{f''(a)} Q(x) \right]$
 $\therefore y_p = x^2 \left[\frac{5e^{-3x}}{2} \right] = \frac{5}{2}x^2e^{-3x}$
34. Ans: (a)

Sol: Given $f(D)y = Q(x) \dots (1)$

	Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert
online	Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages

Engineering Publications	33	Differential Equation
where $f(D) = D^2 + 2D + 2$		Here $f(D) = \phi(D^2) = \phi(-a^2) = \phi(-4) = -4$
& Q(x) =		+4=0
$\sin h(x) = \frac{e^{x} - e^{-x}}{2} = \left(\frac{e^{x}}{2}\right) + \left(\frac{-e^{-x}}{2}\right) = Q_{1}(x) + C_{1}(x)$	-	$\Rightarrow f'(D) = \phi'(D^2) = \phi'(-a^2) = \phi'(-4) = 2D$
Q ₂ (x)		$\neq 0$
<u>For Q₁(x):</u>		Now $\mathbf{v} = \mathbf{x} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$
Here, $Q_1(x) = \frac{1}{2}e^x$ (:: $Q_1(x) = ke^{ax}$)		Now, $y_p = x \left[\frac{\phi'(-a^2)}{\phi'(-a^2)} \right]$
2 ⇒ $f(D) = f(a) = f(1) = 1 + 2(1) + 2 = 5 \neq 0$		$\Rightarrow y_p = x \left[\frac{1}{2D} \sin(2x) \right]$
$\therefore y_{p_1} = \frac{1}{f(a)}Q_1(x) = \frac{1}{5}\left(\frac{1}{2}e^x\right) = \frac{e^x}{10}$	ERIA	$\therefore y_p = \frac{-x}{4}\cos(2x)$
<u>For Q₂(x):</u>		37. Ans: (a)
Here, $Q_2(x) = \left(\frac{-1}{2}\right)e^{-x}$ (:: $Q_2(x) = ke^{ax}$)		Sol: Please Refer ACE previous maths solution
		booklet
$\Rightarrow f(D) = f(a) = f(-1) = 1 - 2 + 2 = 1 \neq 0$		
$\therefore \mathbf{y}_{\mathbf{n}} = \frac{1}{2} \mathbf{Q}_{2}(\mathbf{x}) = \frac{1}{2} \left(\frac{-1}{2} e^{-\mathbf{x}} \right) = \left(\frac{-1}{2} \right) e^{\mathbf{x}}$		38. Ans: (a)
$f_{P2} = f(a) = 1(2) (2)$		Sol: Given $f(D) y = Q(x)(1)$
Hence, $v_{x} = v_{x} + v_{x} = \frac{e^{x}}{1} - \frac{1}{1}e^{-x}$		where $f(D) = D^2 + 1$ and $Q(x) = x$
$y_{p_{p}} y_{p_{1}} y_{p_{2}} = 10^{2}$	ce 1	with $y(0) = 1$ (2)
		& $y'(0) = 1$ (3)
35. Ans: (a)		<u>C.F:</u>
Sol: Please Refer ACE previous maths solution	1	A.E is $m^2 + 1 = 0$
booklet		\Rightarrow m = 0 ± i
		$\therefore y_c = c_1 \cos(x) + c_2 \sin(x)$
36. Ans: (b)		<u>P.I:</u>
Sol: Given $f(D) = Q(x) \dots (1)$, where $f(D) = D^2 + 4$		Now, $y_p = \frac{1}{f(D)}Q(x) = \frac{1}{D^2 + 1}(x)$
& $Q(x) = \sin (2x)$ (:: $Q(x) = k \sin (ax)$)		$\Rightarrow y_{p} = \frac{1}{\left[1 + D^{2}\right]}(x) = \left[1 + (D^{2})\right]^{-1}(x)$
India's Best Online Coaching Platfo	orm for G	GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams

Enjoy a smooth online learning experience in various languages at your convenience

The second se	ACE
	Engineering Publications

Differential Equation

$$\Rightarrow y_{p} = [1-(D^{2}) + (D^{2})^{2} - (D^{2})^{3} + \dots]$$
(x)

$$\Rightarrow y_{p} = x - D^{2}(x) + D^{4}(x) - D^{6}(x) + \dots$$

$$\Rightarrow y_{p} = x$$

$$\therefore \text{ The G.S of (1) is } y = y_{c} + y_{y} = c_{1}cos(x) + c_{2}sin(x) + x....(4)$$

$$\Rightarrow y' = -c_{1}sin(x) + c_{2}cos(x) + 1....(5)$$
Using (2), (4) becomes

$$1 = c_{1} + 0 + 0 \dots (6)$$
Using (3), (5) becomes

$$1 = 0 + c_{2} + 1 \quad (or) \ c_{2} = 0....(7)$$

$$\therefore \text{ The solution of (1) from (4),(6)&(7) is}$$

$$y = y(x) = x + cosx$$

39. Ans: (c)

Sol: Given $f(D) = Q(x) \dots (1)$, where $f(D) = D^4 + 4\lambda^4 & Q(x) = 1 + x + x^2$ Now,

$$y_{p} = \frac{1}{f(D)}Q(x) = \frac{1}{D^{4} + 4\lambda^{4}}(1 + x + x^{2})$$
$$\Rightarrow y_{p} = \frac{1}{4\lambda^{4}\left[1 + \frac{D^{4}}{4\lambda^{4}}\right]}(1 + x + x^{2})$$
$$\Rightarrow y_{p} = \frac{1}{4\lambda^{4}}\left[1 + \left(\frac{D^{4}}{4\lambda^{4}}\right)\right]^{-1}(1 + x + x^{2})$$

$$\Rightarrow y_{p} = \frac{1}{4\lambda^{4}} \left[1 - \left(\frac{D^{4}}{4\lambda^{4}} \right) + \left(\frac{D^{4}}{4\lambda^{4}} \right)^{2} \dots \right] (1 + x + x^{2})$$

$$\Rightarrow y_{p} = \frac{1}{4\lambda^{4}} [(1 + x + x^{2}) - (0) + (0)....]$$
$$\therefore y_{p} = \frac{1 + x + x^{2}}{4\lambda^{4}}$$

40. Ans: (a),(b) & (d) Sol: Given that $f(D)y = Q(x) \dots (1)$ where $f(D) = D^2 - 2D - 1$, $Q(x) = e^x \cos(2x)$ <u>C.F:</u> A.E is $m^2 - 2m - 1 = 0$

$$\Rightarrow m = 1 \pm \sqrt{2}$$

$$\therefore y_{c} = [c_{1} \cosh(\sqrt{2})x + c_{2} \sinh(\sqrt{2})x]e^{x}$$

P.I:
Given
$$Q(x) = e^x \cos(x)$$
 ($\because Q(x) = e^{bx} v(x)$)

Now,
$$y_p = \frac{1}{f(D)} [e^x . \cos(x)]$$

$$\Rightarrow y_p = e^x \left[\frac{1}{f(D+1)} \cos(x) \right]$$

$$\Rightarrow y_p = e^x \left[\frac{1}{(D+1)^2 - 2(D+1) - 1} \cos(x) \right]$$

$$\Rightarrow y_p = e^x \left[\frac{1}{D^2 - 2} \cos(x) \right]$$

$$\Rightarrow y_p = e^x \left[\frac{1}{(-1) - 2} \cos(x) \right]$$

 \therefore The general solution of (1) is given by

 $(:: D^2 = -a^2 = -1^2 = -1)$

	Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert
	Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages

Engineering Publications	35	Differential Equation
$y = y_c + y_p = [c_1 \cosh (\sqrt{2})x + c_2 \sinh (\sqrt{2})x]e^x - \frac{e^x \cos(x)}{3}$		$\Rightarrow y_{p} = x \left[\frac{1}{D^{2} - 2D + 1} \sin(x) \right]$ $- \left[\frac{2D - 2}{(D^{2} - 2D + 1)^{2}} \sin(x) \right]$
41. Ans: (a)		
Sol: Given that $f(D)y = Q(x) \dots (1)$,		\Rightarrow y _p = x $\left \frac{1}{1 - 2D + 1} \sin(x) \right $
where $f(D) = D^2 - 4D + 4$ & $Q(x) = e^{2x} x^3$		$\begin{bmatrix} -1 - 2D + 1 \end{bmatrix}$
$(\because Q(x) = e^{bx} .v(x))$		$-\left[\frac{2D-2}{1}\left\{\frac{1}{(-1-2D+1)^{2}}\sin(x)\right\}\right]$
Now, $y_p = \frac{1}{f(D)} [e^{2x} x^3]$		$\mathbf{y}_{p} = \mathbf{x} \left[\frac{1}{2D} \sin(\mathbf{x}) \right] - \left[\frac{2D-2}{1} \left\{ \frac{1}{4D^{2}} \sin \mathbf{x} \right\} \right]$
$\Rightarrow y_{p} = e^{2x} \left[\frac{1}{f(D+2)} x^{3} \right]$		$\Rightarrow y_{p} = x \left[\frac{1}{2} \cos(x) \right] - \left[\frac{2D-2}{1} \left\{ \frac{1}{4(-1)} \sin(x) \right\} \right]$
$\Rightarrow y_{p} = e^{2x} \left[\frac{1}{(D+2)^{2} - 4(D+2) + 4} (x^{3}) \right]$		$\Rightarrow y_{p} = \frac{x \cos(x)}{2} + \frac{1}{4} [2 \cos x - 2 \sin(x)]$
$\Rightarrow y_{p} = e^{2x} \left[\frac{1}{D^{2}} (x^{3}) \right]$: $y_{p} = \frac{x \cos(x)}{2} + \frac{1}{2}\cos(x) - \frac{1}{2}\sin(x)$
$\therefore y_{p} = \frac{e^{2x} \cdot x^{5}}{20}$		Method of Variation of Parameters
42. Ans: (a) Since	ce 1	43. 5 Ans: (a)
Sol: Given $f(D)y = Q(x)(1)$		Sol: Given that $f(D)y = Q(x) \dots (1)$
where $f(D) = D^2 - 2D + 1 & Q(x) = x. \sin(x)$		where $f(D) = D^2 + 1 \& Q(x) = cosec(x)$
Now,		<u>C.F:</u>
$\mathbf{v}_{r} = \frac{1}{1} [\mathbf{x} \cdot \mathbf{V}(\mathbf{x})]$		A.E is $m^2 + 1 = 0$
f(D)		\Rightarrow m = 0 ± i
$= \mathbf{x} \left \frac{1}{f(\mathbf{D})} \mathbf{V}(\mathbf{x}) \right - \left \frac{f'(\mathbf{D})}{(f(\mathbf{D}))^2} \mathbf{V}(\mathbf{x}) \right $		$\therefore y_c = c_1 \cos(x) + c_2 \sin(x)$
$\begin{bmatrix} I(D) & \rfloor & \begin{bmatrix} (I(D)) & \rfloor \end{bmatrix}$		Let $y_c = c_1 u(x) + c_2 v(x) = c_1 \cos(x) + c_2$
		sin (x)
		Then $W(u,v) =$
India's Best Online Coaching Platfor	m for G	ATE, ESE, PSUS, SSC-IE, RRR-IE, SSC, Banks, Grouns & PSC Exame
Conline Enjoy a smooth online	e learni	ing experience in various languages at your convenience

Г

 $|\mathbf{u} \ \mathbf{v}| | \cos(\mathbf{x}) \sin(\mathbf{x})|$

Differential Equation

$$|u' v'|^{=} |-\sin(x) \cos(x)|^{=1}$$
P.I:
Let $y_p = c_1(x)$. $u(x) + c_2(x).v(x)$ be the required particular integral of (1)
Then $c_1(x) =$
 $-\int \frac{Q(x).V(x)}{W} \& c_2(x) = \int \frac{Q(x).u(x)}{W} dx$
 $\Rightarrow c_1(x) = -\int \frac{\csc(x).\sin(x)}{1} dx = -x$
and $c_2(x) = \int \frac{\csc(x).\cos(x)}{1} dx = \int \cot(x) dx$
 $= \log(\sin x)$
 $\therefore y_p = (-x). \cos(x) + [\log(\sin x)]\sin(x)$
Hence, the general solution of (1) is

 $y = y_c + y_p$

44. Ans: (b)

Sol: Given that $f(D)y = Q(x) \dots (1)$

where $f(D) = D^2 - 6D + 9 \& Q(x) = \frac{e^{3x}}{x^2}$

<u>C.F:</u>

ace online

A.E is $m^2 - 6m + 9 = 0$ $\Rightarrow m = 3, 3$ $\Rightarrow y_c = (c_1 + c_2 x)e^{3x}$ Let $y_c = c_1 ..u(x) + c_2 v(x) = c_1 .e^{3x} + c_2 x e^{3x}$ Then W = W(u,v) =

$$\begin{vmatrix} u & v \\ u' & v' \end{vmatrix} = \begin{vmatrix} e^{3x} & xe^{3x} \\ 3e^{3x} & (3xe^{3x} + e^{3x}) \end{vmatrix}$$

$$\Rightarrow W = 3xe^{6x} + e^{6x} - 3xe^{6x} = e^{6x}$$

P.I:
Let $y_p = c_1(x) . u(x) + c_2(x) v(x)$ be the P.I
of (1)
Then
 $c_1(x) = -\int \frac{Q(x) . v(x)}{W} dx \& c_2(x) = \int \frac{Q(x)u(x)}{W} dx$
 $\Rightarrow c_1(x) = -\int \frac{e^{3x} x^{-2} xe^{3x}}{e^{6x}} dx = -\log x$ and
 $c_2(x) = \int \frac{e^{3x} . x^{-2} . e^{3x}}{e^{6x}} dx = \int \frac{1}{x^2} dx = \frac{-1}{x}$
 $\therefore y_p = (-\log x)(e^{3x}) + (\frac{-1}{x})(x e^{3x})$
Hence, the G.S of (1) is given by
 $y = y_c + y_p = (c_1 + c_2x) e^{3x} + [(\log x)e^{3x} + e^{3x}]$

Euler – Cauchy's Form

45. Ans: 09

Sol: Please Refer ACE previous maths solution booklet

46. Ans: (a)

Sol: Please Refer ACE previous maths solution booklet

 Regular Live Doubt clearing Sessions
 Free Online Test Series | ASK an expert

 Affordable Fee |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

	37	Differential Equation
Partial Differential Equation	ons	Method of Separation
47. Ans: (c)		of Variables
Sol: Please Refer ACE previous maths so booklet	olution	51. Ans: (b)Sol: Please Refer ACE previous maths solution
48. Ans: (b)		booklet
Sol: Please Refer ACE previous maths so	olution	52. Ans: (a)
bookiet		Sol: Given $\frac{\partial u}{\partial x} = 2\frac{\partial u}{\partial t} + u$ (1)
49. Ans: (a)	NEER IN	V c with $u(x,0) = 6e^{-3x}$ (2)
Sol: A partial differential equation of the	form	Let $u(x, t) = X(x).T(t)$ (3) be the
(A)		solution of (1)
$\frac{\partial^2 u}{\partial x^2} + (B)\frac{\partial^2 u}{\partial x \partial y} + (C)\frac{\partial^2 u}{\partial y^2} + (D)\frac{\partial u}{\partial x}$		Then $\frac{\partial u}{\partial t} = X.T' \& \frac{\partial u}{\partial x} = X'T \dots (4),$
$+(E)\frac{\partial u}{\partial y}+(F)u=Q$	(1)	where $T' = \frac{dT}{dt}$ & $X' = \frac{dX}{dx}$
is said to be		Put (4) in (1), we get
(i) elliptic type if $B^2 - 4AC < 0$		X'T=2XT'+XT
(ii) parabolic type if $B^2 - 4AC = 0$		X' 2T'
(iii) hyperbolic type $B^2 - 4AC > 0$	Since 1	$995 \Rightarrow \frac{1}{X} = \frac{1}{T} + 1$
For the given differential equatio	n, we	Let $\frac{X'}{2T'} + 1 = k$ where k is a constant
have $A = y^2$, $B = 2xy$ and $C = x^2$	2.	X T
Consider $B^2 - 4AC = (2xy)^2 - 4(y^2) (x$	(1)	Then $\frac{X'}{X} = k$ and $\frac{2T'}{T} + 1 = k$
\Rightarrow B ² -4AC = 0		
∴The given P.D.E is parabolic type.		$\Rightarrow \frac{1}{X} \frac{dX}{dx} = k \text{ and } \frac{1}{T} \frac{dT}{dt} = \frac{(k-1)}{2}$
50. Ans: (c)		
Sol: Please Refer ACE previous maths so	olution	$\Rightarrow \int \frac{1}{N} dX = k \int dx + c' \& \int \frac{1}{T} dT = \left(\frac{k-1}{2}\right) \int dt + c''$
booklet		\cdot
India's Post Online Coastin	ng Platform for C	ATE ESE DElle SSC. IE DDD IE SSC Danks Guoung & DSC Frome
A Online Enjoy a smo	oth online learni	ing experience in various languages at your convenience

Engineering Publications	
$\Rightarrow \log X = kx + c' \& \log T = \frac{(k-1)}{2}k + c''$	
$\Rightarrow X = e^{kx+c'} \& T = e^{\frac{(k-1)t}{2}+c''} \dots (5)$	
Now the solution of (1) from (3) & (5) is	
given by	
$u(x,t) = (e^{kx+c'}) (e^{(\frac{k-1}{2})t} + c'')$	
$\Rightarrow u(x,t) = e^{[kx + \frac{(k-1)}{2}t] + (c' + c'')} \dots \dots (6)$	
$\therefore u(x,0) = 6e^{-3x}$	
$\Rightarrow e^{kx+(c+c')} = 6e^{-3x}$	
$\Rightarrow k = -3 \& e^{(c+c')} = 6(7)$	
:. The solution of (1) from (6) & (7) is	
given by $u(x,t) = 6e^{-3x-2t}$	

Lagranges Linear Equation and Standard Types (Only for EC, EE and IN Branches)

53. Ans: (d)

Sol: Given (tanx) p + (tany) q = (tanz) - (1)

 $(\because P p + Q q = R)$

 \Rightarrow P = tanx, Q = tany & R = tan(z).

Consider Lagrange's auxiliary equation for

(1)

$$\Rightarrow \frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$$
$$\Rightarrow \frac{dx}{\tan x} = \frac{dy}{\tan y} = \frac{dz}{\tan z} \dots \dots (2)$$

Taking the first two fractions of (2), we get (3)

$$\frac{dx}{\tan x} = \frac{dy}{\tan y}$$

$$\Rightarrow \int \cot(x)dx = \int \cot(y)dy + \log(c_1)$$

$$\Rightarrow \log(\sin x) = \log(\sin y) + \log(c_1)$$

$$\therefore \quad \frac{\sin x}{\sin(y)} = c_1 \dots (3)$$

Taking the last two fractions of (2), we get

$$\frac{dy}{\tan y} = \frac{dz}{\tan z}$$

$$\Rightarrow \int \cot(y) dy = \int \cot(z) dz + \log(c_2)$$

$$\Rightarrow \log(\sin y) = \log(\sin z) + \log c_2$$

$$\therefore \frac{\sin(y)}{\sin(z)} = c_2 \dots \dots (4)$$

Hence the required general solution of (1)

is

$$\frac{\sin(x)}{\sin(y)} = \phi\left(\frac{\sin y}{\sin z}\right)$$

54. Ans: (a)

Sol: Given that

$$[x(y-z)]p+[y(z-x)]q=z(x-y)....(1)$$

 $\Rightarrow P=x(y-z), Q = y(z-x) \& R = z(x-y)$

Consider

$$\frac{\mathrm{dx}}{\mathrm{x}(\mathrm{y}-\mathrm{z})} = \frac{\mathrm{dy}}{\mathrm{y}(\mathrm{z}-\mathrm{x})} = \frac{\mathrm{dz}}{\mathrm{z}(\mathrm{x}-\mathrm{y})} \dots (2)$$

Let $\ell = \frac{1}{\mathrm{x}}, \mathrm{m} = \frac{1}{\mathrm{y}} \& \mathrm{n} = \frac{1}{\mathrm{z}}$

Then $\ell P + mQ + nR = 0$

 Regular Live Doubt clearing Sessions
 Free Online Test Series | ASK an expert

 Affordable Fee
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

Differential Equation

ا		39		Differential Equation
55. Sol:	$\Rightarrow \int (\ell dx + mdy + ndz) = \log c_1$ $\Rightarrow \int \frac{1}{x} dx + \frac{1}{y} dy + \frac{1}{z} dz = \log c_1$ $\Rightarrow \log x + \log y + \log z = \log c_1$ $\therefore \boxed{xyz = c_1} \dots (3)$ Let $\ell = 1, m = 1$ and $n = 1$ Then $\ell P + mQ + nR = 0$ $\Rightarrow \int (\ell dx + mdy + ndz) = c_2$ $\Rightarrow \int (\ell dx + mdy + ndz) = c_2$ $\Rightarrow \int (\ell dx + mdy + ndz) = c_2$ $\therefore x + y + z = c_2 \dots (4)$ Hence, the general solution of (1) from (3) & (4) is $\phi(xyz, x + y + z) = 0$ Ans: (c) Give that $pq = k \dots (1)$ Let $p = a \dots (2)$, where 'a' is an arbitrary constant Put (2) in (1), we get aq = k $\Rightarrow q = \frac{k}{a} \dots (3)$ Consider $dz = pdx + qdy$ $\Rightarrow dz = a dx + \frac{k}{a} dy$	39 R //	56. Sol: VG 57. Sol: 995	Differential Equation Ans: (d) Given that $p^2 = qz \dots (1)$ Let $q = ap \dots (2)$ Put (2) in (1), we get $p^2 = apz$ $\Rightarrow p^2 - apz = 0$ $\Rightarrow p(p - az) = 0$ Consider $p - az = 0$ $\Rightarrow p = az$ $\Rightarrow q = ap = a(az) = a^2 z$ Consider $dz = p dx + q dy$ $\Rightarrow dz = az dx + a^2 zdy$ $\Rightarrow \int \frac{1}{z} dz = \int adx + \int a^2 dy + c$ $\therefore \log(z) = ax + a^2y + c$ is a solution of (1) Ans: (a) Given that $x(1+y)p=y(1+x)q\dots (1)$ $\Rightarrow \frac{x}{1+x}p = \frac{y}{1+y}q$ Let $\frac{x}{1+x}p = \frac{y}{1+y}q = a$, where 'a' is an arbitrary constant. Then $\frac{x}{1+x}p = a$ and $\frac{y}{1+y}q = a$
	Consider $dz = pdx + qdy$ $\Rightarrow dz = a dx + \frac{k}{a} dy$ $\Rightarrow \int dz = \int a dx + \int \frac{k}{a} dy + c$ $\therefore z = ax + \left(\frac{k}{a}\right)y + c$ is a required solution of (1)			arbitrary constant. Then $\frac{x}{1+x} p = a$ and $\frac{y}{1+y} q = a$ $\Rightarrow P = \frac{a(1+x)}{x}$ and $q = \frac{a(1+y)}{y}$ Consider dx = p dx + q dy

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams ace online

Enjoy a smooth online learning experience in various languages at your convenience

ACE Engineering Publications

- $\Rightarrow \int dz = \int \frac{a(1+x)}{x} dx + \int \frac{a(1+y)}{y} dy + c$ $\therefore z = a[x + \log x] + a[y + \log y] + c \text{ is a a solution of (1)}$
- 58. Ans: (b)
- Sol: Please Refer ACE previous maths solution booklet

Solution of Wave, Heat and Laplace Equations (Only for CE, ME and PI branches)

59. Ans: (b)

Sol: Given that $\frac{\partial u}{\partial t} = \frac{1}{\pi^2} \frac{\partial^2 u}{\partial x^2}$(1) $(\because \frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2})$ with B.C's : u(0,t) = 0 ($\because u(0,t) = 0$) u(1,t) = 0 ($\because u(l,t) = 0$) and I.C: $u(x,0) = \sin(\pi x)$ ($\because u(x,0) = f(x)$) Now, $a_n = \frac{2}{\ell} \int_0^{\ell} f(x) . \sin\left(\frac{n\pi x}{\ell}\right) dx$

$$\Rightarrow a_4 = \frac{2}{1} \int_0^1 \sin(\pi x) . \sin(4\pi x) dx$$
$$\Rightarrow a_4 = \int_0^1 2\sin(4\pi x) . \sin(\pi x) dx$$

$$\Rightarrow a_4 = \int_0^1 \cos(4\pi x - \pi x) - \cos(4\pi x + \pi x) dx$$
$$\Rightarrow a_4 = \int_0^1 [\cos(3\pi x) - \cos(5\pi x)] dx$$
$$\Rightarrow a_4 = \left[\frac{\sin(3\pi x)}{3\pi} - \frac{\sin(5\pi x)}{5\pi}\right]_0^1$$
$$\Rightarrow a_4 = \left[\frac{\sin(3\pi)}{3\pi} - \frac{\sin(5\pi)}{5\pi}\right] - [0 - 0]$$
$$\therefore a_4 = 0$$

- 60. Ans: 0.395
- **Sol:** Please Refer ACE previous maths solution booklet

61. Ans: (a)
Sol: Given
$$\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2} \dots (1)$$

 $\left(\because \frac{\partial^2 u}{\partial t^2} = C^2 \frac{\partial^2 u}{\partial x^2} \right)$
with B.C's: $u(0,t) = 0$ ($\because u(0,t) = 0$)
 $u(\pi,t) = 0$ ($\because u(\pi,t) = 0$)
& I.C : $u(x,0) = \sin(x)$ ($\because u(x,0) = f(x)$)
 $\frac{\partial}{\partial t}u(x,0) = 0$
 $\left(\because \frac{\partial}{\partial t}u(x,0) = 0 \right)$

Now, the formula of general solution of (1) is given by

A ace	Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert
Online	Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages

40

	ACE Engineering Publications		41		Dif	ferential Equation
	$u(x,t) = \sum_{n=1}^{\infty} a_n \cdot s$ $\Rightarrow u(x,t) = \sum_{n=1}^{\infty} a_n \cdot s$ $\Rightarrow u(x,t) = \sum_{n=1}^{\infty} a_n$ Put t = 0 in above $u(x,0) = \sum_{n=1}^{\infty} a_n \cdot s$ $\Rightarrow \sin(x) = a_1 \cdot s$ $+ \dots$ $\Rightarrow a_1 = 1, a_2 = 0$ $\therefore \text{ The solution}$ $u(x,t) = a_1 \cdot \sin(x)$ $+ \dots$ $= \sin(x)$ Hence, $u\left(\frac{3\pi}{2}, \frac{\pi}{2}\right) = \sin(x)$	$in\left(\frac{n\pi x}{\ell}\right).cos\left(\frac{n\pi ct}{\ell}\right)$ $a_{n}.sin(nx).cos(2nt)(2)$ $dve, we get$ $sin(nx)$ $in(x) + a_{2} sin(2x) + a_{3}sin(3x)$ $a_{3} = 0, \dots (3)$ $a_{3} = 0,$		NG	interpredict boxes = 0 = 0 $interpredict = 0 = 0 = 0$ Now, the formula of the	$g(x) = 4x e^{-x^{2}}$ general solution of (1) $f(x) = \frac{1}{2c} \int_{x-ct}^{x+ct} g(s) ds$ $-\frac{1}{2} \int_{x-t}^{x+t} 4s \cdot e^{-s^{2}} ds$ $-2s) e^{-s^{2}} ds$ $\int_{x-t}^{x+t} e^{-(x+t)^{2}}$ $e^{0} - e^{-2^{2}} = 1 - e^{-4}$
(\mathbf{a})				Sol:	Given that $u_{tt} = u_{xx}$	(1)
62.	Ans: (a) $a^2 u = a$	2,1			(::	$u_{tt} = c^2 u_{xx})$
Sol:	Given $\frac{\partial^2 \mathbf{u}}{\partial t^2} = \frac{\partial^2 \mathbf{u}}{\partial t^2}$	$\frac{u}{x^2}$ (1) Since	ce 1	99:	with B.C's: $u(0,t) = 0$)
	$\left(\dots \frac{\partial^2}{\partial x} \right)$	$\frac{d^2 u}{dt} = C^2 \frac{\partial^2 u}{\partial t^2}$			(::1	u(0,t) = 0
	(° d	$t^2 = \partial x^2$			$\mathbf{u}(\pi,\mathbf{t})=0$	$(\because \mathbf{u}(l,\mathbf{t})=0)$
	with I.C's: $u(x, (\because u))$	0) = 0 f(x,0) = f(x)			& I.C's: $u(x,0) = 0$	$(\because u(x,0)=0)$
	$\frac{\partial}{\partial t}u(x,0) = 4xe$	-x ²			$\frac{\partial u(x,0)}{\partial t} = 2\sin(x)$	
	$\int \partial t \left(\because \frac{\partial}{\partial t} \right)$	-u(x,0) = g(x)			$\left(\because \frac{\partial \mathbf{u}}{\partial \mathbf{u}} \right)$	$\frac{(\mathbf{x},0)}{\partial \mathbf{t}} = \mathbf{f}(\mathbf{x})$
		,			Then the solution of	(1) is given by
	ace	India's Best Online Coaching Platfor	m for G	ATE, ES	SE, PSUs, SSC-JE, RRB-JE, SSC,	Banks, Groups & PSC Exams
		Enjoy a smooth onlin	e learni	ing exp	erience in various languages	at your convenience

$\begin{aligned} & \text{Weightering Publications} \\ & u(x,t) = \sum_{n=1}^{\infty} b_n . \sin\left(\frac{n\pi x}{\ell}\right) . \sin\left(\frac{n\pi ct}{\ell}\right) \\ & \Rightarrow u(x,t) = \sum_{n=1}^{\infty} b_n . \sin(nx) . \sin(nt) . \dots . (2) \\ & \Rightarrow \frac{\partial u(x,t)}{\partial t} = \sum_{n=1}^{\infty} b_n . \sin(nx) . \cos(nt) . (n) \\ & \Rightarrow \frac{\partial}{\partial t} u(x,0) = \sum_{n=1}^{\infty} n b_n . \sin(nx) \\ & \Rightarrow 2 \sin x = b_1 \sin(x) + 2b_2 \sin(2x) + 3b_3 \sin(3x) + \dots . \\ & \Rightarrow b_1 = 2, b_2 = 0, b_3 = 0, \dots . (3) \\ & \therefore \text{ The solution of (1) from (2) & (3) is given by} \\ & u(x,t) = b_1 \sin(x) . \sin(t) + b_2 \sin(2x) . \cos(2t) \end{aligned}$

 $+ \ldots = 2 \sin(x) \sin(t)$

64. Ans: (b)

Sol: Please Refer ACE previous maths solution booklet

65. Ans: (b)

Sol: Please Refer ACE previous maths solution booklet

66.

Sol:
$$L{f(t)} = \int_{0}^{5} e^{-st} 2dt + \int_{5}^{10} e^{-st} 0dt + \int_{10}^{\infty} e^{-st} e^{4t} dt$$

$$= 2\left(\frac{e^{-st}}{-s}\right)^{5} + \left(\frac{e^{(4-s)t}}{4-s}\right)_{10}^{\infty}$$

$$= \frac{-2}{s} \left(e^{-5s} - 1 \right) + \left(0 - \frac{e^{10(4-s)}}{4-s} \right)$$
$$= \frac{2}{s} + \frac{-2e^{-5s}}{s} + \frac{e^{-10(s-4)}}{s-4}, \ s > 4$$

Sol: Let f(t) = cost

$$L{f(t)} = \frac{s}{s^2 + 1} = f(s)$$

$$L\{e^{-at} f(t)\} = f(s+a)$$

Now
$$L\left\{e^{-4t}\cos t\right\} = f\left(s+4\right) = \frac{s+4}{\left(s+4\right)^2 + 1}$$

8. Ans: (c)
Sol: Let
$$f(t) = \sin 6t$$

 $L\{f(t)\} = \frac{6}{s^2 + 36} = f(s)$
 $f^1(s) = \frac{-6}{(s^2 + 36)^2}(2s) = \frac{-12s}{(s^2 + 36)^2}$
We know that $L\{t^n f(t)\} = (-1)^n f^n(s)$

Now L{t. sin6t}= $(-1)^{1} f^{1}(s)$

$$= -\frac{(-12s)}{(s^2 + 36)^2} = \frac{12s}{(s^2 + 36)^2}$$

69.

Sol: we have
$$L\{t\sin 6t\} = \frac{12s}{(s^2 + 36)^2} = f(s)$$

By first shifting theorem

Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packa	jes

42

ACE 43 **Differential Equation** $L\left\{e^{-t}(t\sin 6t)\right\} = f(s+1) = \frac{12(s+1)}{\left[(s+1)^2 + 36\right]^2}$ $= -\log\left(\frac{s-a}{s+b}\right) = \log\left(\frac{s+b}{s-a}\right)$ 72. 70. Ans: (a) $f(t) = u(t-4)(t-4)^2 + 4u(t-4)$ Sol: given **Sol:** let $f(t) = \cos \omega t$ Let $g(t) = t^2$ $L{f(t)} = \frac{s}{s^2 + \omega^2} = f(s)$ $L{g(t)} = \frac{2!}{a^3} = g(s)$ By first shifting theorem L $\{e^{-3t} f(t)\} =$ $L{f(t)} = e^{-4s}g(s) + 4\frac{e^{-4s}}{s}$ $f(s+a) = \frac{s+3}{(s+3)^2 + \omega^2} = g(s)$ Now (\because By second shifting theorem) Now by Laplace transform of integrals $L\left\{\int_{0}^{\infty} e^{-3t} \cos \omega t\right\} = \frac{g(s)}{s} = \frac{s+3}{s[(s+3)^{2}+\omega^{2}]}$ $\Rightarrow L{f(t)} = e^{-4s} \frac{2!}{s^3} + 4 \frac{e^{-4s}}{s} = e^{-4s} \left(\frac{2}{s^3} + \frac{4}{s}\right)$ 71. Ans: (a) 73. Ans: (c) **Sol:** Let $f(t) = e^{at} - e^{-bt}$ Sol: Please Refer ACE previous maths solution booklet $L\{f(t)\} = L\{e^{at} - e^{-bt}\} = \frac{1}{s-a} - \frac{1}{s+b} = f(s)$ 74. By Laplace transform of division with't' **Sol:** $\int e^{-2t} \cos 3t \, dt = L \{\cos 3t\}$ Since $L\left\{\frac{f(t)}{t}\right\} = \int_{0}^{\infty} f(s) ds$ $=\frac{s}{s^2+9}=\frac{2}{(2^2+9)}=\frac{2}{13}$ (:: s = 2) $\therefore L\left\{\frac{e^{at} + e^{-bt}}{t}\right\} = \int_{0}^{\infty} \left(\frac{1}{s-a} - \frac{1}{s+b}\right) ds$ $= \left[\log(s-a) - \log(s+b) \right]_{a}^{\infty}$ 75. Ans: (b) Sol: Please Refer ACE previous maths solution $= \left| \log \left(\frac{s-a}{s+b} \right) \right|^{\infty} = \left| \log \left(\frac{1-a/s}{1+b/s} \right) \right|^{\infty}$ booklet $= \log 1 - \log \left(\frac{1 - a/s}{1 + b/s} \right)$ 76. Ans: (a) India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams ace online Enjoy a smooth online learning experience in various languages at your convenience

		44	Differential Equation
Sol:	$L^{-1}\left\{\frac{s+5}{(s+1)(s+3)}\right\} = L^{-1}\left\{\frac{-1}{s+3} + \frac{2}{s+1}\right\}$ (By partial fraction)		$\therefore L^{-1}\left\{\frac{e^{-as}}{s}\right\} = u(t-a) \text{ or } H(t-a)$
	$= -e^{-3t} + 2e^{-t} = 2e^{-t} - e^{-3t}$		80. Ans: (d)
77.	Ans: (a)		Sol: Let $f(s) = \frac{1}{s^2} \Longrightarrow L^{-1}{f(s)} = t$
Sol:	Let $f(s) = \frac{1}{2(s-1)} = \frac{-1}{2} + \frac{1}{2} + \frac{1}{2}$		By first shifting theorem
	$L^{-1}\left\{\frac{1}{2(-1)}\right\} = L^{-1}\left\{\frac{-1}{-1} + \frac{1}{2} + \frac{1}{-1}\right\}$		$L^{-1}\left\{\frac{1}{(s+1)^{2}}\right\} = te^{-t}$
	$\left(s^{2}(s+1)\right)$ $\left(s s^{2} s+1\right)$		By second shifting theorem
	$= -1 + t + e^{-t} = t - 1 + e^{-t}$		$L^{-1}{e^{-as}f(s)} = f(t-a) H(t-a)$
78	Ans: (9)		
Sol:	1115. (u)		$4L^{-1}\left\{e^{-2s}, \frac{e^{-2s}}{(1-2)^2}\right\} = 4e^{-(t-2)} \cdot (t-2)H(t-2)$
	$L^{-1}\left\{\frac{s+4}{s^2+9} + \frac{3}{s^2} + \frac{4}{s-3}\right\} = L^{-1}\left\{\frac{s+4}{s^2+9}\right\} + L^{-1}\left\{\frac{s}{s^2}\right\}$	$\left\{\frac{3}{s^2}\right\}$	81. Ans: (b)
	$+ L^{-1}\left\{\frac{4}{s-3}\right\}$	C	Sol: Let $f(s) = log\left(\frac{s-a}{s-b}\right) = log(s-a) - log(s-b)$
	$= L^{-1}\left\{\frac{s}{s^{2}+9}\right\} + \frac{1}{12}L^{-1}\left\{\frac{3}{s^{2}+9}\right\}$		$f^{1}(s) = \frac{1}{s-a} - \frac{1}{s-b}$
	$+L^{-1}\left\{\frac{3}{2}\right\}+4L^{-1}\left\{\frac{1}{2}\right\}$		$L^{-1}{f^{l}(s)}=e^{at}-e^{bt}$
	$\left(s^{2}\right)$ $\left(s-3\right)$		$\Rightarrow (-1)t f(t) = e^{at} - e^{bt}$
	$=\cos 3t + \frac{1}{12}\sin 3t + 3t + 4e^{3t}$		$\Rightarrow f(t) = -\frac{1}{t} (e^{at} - e^{bt})$
79.			$\therefore f(t) = \frac{e^{bt} - e^{at}}{2}$
Sol:	Unit step function is		t t
	$u(t-a) = H(t-a) = \begin{cases} 0 & \text{for } t < 0 \\ 1 & \text{for } t > 0 \end{cases}$		82. Ans: (a)
	-as		Sol: Given D.E. is $f'(t) + 5 f(t) = 1$ for $t > 0$
	We have $L\{u(t-a)\} = \frac{e^{-a}}{s}(s > 0)$		$(\because u(t) = 1 \text{ for } t \ge 0)$

 Regular Live Doubt clearing Sessions
 Free Online Test Series | ASK an expert

 Affordable Fee |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

Engineering Publications	45	Differential Equation
$\Rightarrow L\{ f'(t) 5f(t)\} = L\{1\}$		$=\frac{1}{5}(1+4e^{-5t})$
$\Rightarrow L\{f'(t)\}+5f(t)\}=\frac{1}{s}$		$f(t) = 0.2 + 0.8e^{-5t}$
$\Rightarrow sf(s) - f(0) + 5L\{f(t)\} = \frac{1}{s}$		83. Ans: (a)
$\Rightarrow sL\{(t+1)\}-1+5L\{f(t)\}=\frac{1}{s}$		Sol: Given, D.E is $f^{11}(t) - f(t) = 1$
$\Rightarrow L\{f(t)\}(s+5)-1=\frac{1}{s}$		$\Rightarrow L\{f^{11}(t) - f(t)\} = L\{1\}$
$\Rightarrow L{f(t)} = \frac{s+1}{s(s+5)}$	RIA	$\Rightarrow \{s^2 f(s) - f(0) - f^1(0)\} - L\{f(t)\} = \frac{1}{s}$
⇒ ENGINE		$\Rightarrow L\{f(t)\}(s^2-1) = \frac{1}{s}$
$f(t) = L^{-1}\left\{\frac{s+1}{s(s+5)}\right\} = L^{-1}\left\{\frac{1}{5s} + \frac{-4}{-5(s+5)}\right\}$		$\Rightarrow L{f(t)} = \frac{1}{s(s^2 - 1)}$
$=\frac{1}{5}(1)+\frac{4}{5}e^{-5t}$		$\therefore L{f(t)} = \frac{1}{s(s+1)(s-1)}$

 India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams

 Enjoy a smooth online learning experience in various languages at your convenience

Since 1995

Complex Variables

(Solutions for Text Book Practice Questions)

Analytic Function

01. Ans: (a, b, c) Sol: Let $u+iv = w = f(z) = (x + e^{-x} \sin y - 4) +$ $i(y+e^{-x}\cos y)$ Then $u = x + e^{-x} \sin(y) - 4$ and $v = y + e^{-x}$ $\cos(y)$ \Rightarrow u_x = 1 - e^{-x} sin y, u_y = e^{-x} cos (y), \Rightarrow v_x = - e^{-x} cos(y) and v_y = 1 + e^{-x} (-sin y) Here, $u_x = v_y$ and $v_x = -u_y$ at every point and also u, v, u_x , u_y , v_x , v_y are continuous at every point \Rightarrow w = f(z) = u+ iv is differentiable at every point. \Rightarrow w = f(z) = u + iv is analytic at every point. \therefore Options (a), (b) and (c) are correct. 02. Ans: (a) Sol: Let u + iv = f(z) = xzThen $u + iv = f(z) = x(x + iv) = x^2 + ixv$ \Rightarrow u = x² and v = xv \Rightarrow u_x = 2x, u_y = 0, v_x = y, v_y = x Here, $u_x = v_y$ and $v_x = -u_y$ satisfy only at origin and u, v, u_x, u_y, v_x, v_y are also continuous at origin. f(z) = u + iv is differentiable only at origin. \therefore Option (a) is correct.

03. Ans: (d) Sol: Let $w = f(z) = \overline{z}$ Then u + iv = f(z) = x - iv u = x and v = -y $u_x = 1$, $u_y = 0$, $v_x = 0$, $v_y = -1$ Here, $u_x = v_y$ will not satisfy at any point $\Rightarrow f(z) = u + iv$ is not differentiable at any point $\therefore f(z) = u + iv$ is not analytic at any point.

Sol: Please Refer ACE previous maths solution booklet

05. Ans: (a)

04. Ans: (c)

Sol: Please Refer ACE previous maths solution booklet

06. Ans: (b) Sol: Let u + iv = f(z) = $(x^2 + c_1 y^2 - 2xy) + i (c_2 x^2 - y^2 + 2xy)$ be analytic. Then the C-R equations $u_x = v_y$ and $v_x = -u_y$ will satisfy. ⇒ 2x-2y = -2y + 2xand $2c_2x + 2y = -(2c_1 y - 2x)$ $\therefore c_1 = -1$ and $c_2 = 1$

Engineering Publications	47	Complex Variables
07. Ans: (2) Sol: Please Refer ACE previous ma booklet	aths solution	11. Ans: (a, c) Sol: Given that $v = y^3 + 2y - 3x^2 y$ $\Rightarrow v_x = -6xy, v_y = 3y^2 + 2 - 3x^2$ Consider du = $u_x dx + u_y dy$
08. Ans: (b)Sol: Please Refer ACE previous ma booklet	aths solution	$\Rightarrow du = (v_y)dx + (-v_x)dy$ $(\because u_x = v_y \& v_x = -u_y)$ $\Rightarrow du = (3y^2 + 2 - 3x^2) dx + (6xy) dy$
09. Ans: (2) Sol: Please Refer ACE previous m booklet	aths solution	$\Rightarrow \int du = \int (2dx - 3x^2 dx) + \int d(3xy^2) + k$ $\therefore u = 2x - x^3 + 3xy^2 + k \text{ is a real part of } f(z).$ Consider $f(z) = u + iv$ $\Rightarrow f(z) = (2x - x^3 + 3xy^2 + k) + i (y^3 + 2y - k)$
10. Ans: (c) Sol: Given that $u = u(r, \theta) = r^{2} \cos (2\theta)$ $\Rightarrow u_{r} = 2r\cos(2\theta)$ and $u_{\theta} = -2r^{2} s$ Consider $dv = \frac{\partial v}{\partial r} dr + \frac{\partial v}{\partial \theta} d\theta$ for $\Rightarrow dv = \left(\frac{-1}{r}u_{\theta}\right)dr + (ru_{r})d\theta$ $\left(\because u_{r} = \frac{1}{r}v_{\theta} \& v_{r} = \frac{-1}{r}\right)dv$ $\Rightarrow dv = \left[\frac{-1}{r}\left(-2r^{2}\sin(2\theta)\right)\right]dr + [r(2\theta)]dr + [r(2\theta)]dr$ $\Rightarrow dv = [2r\sin(2\theta)]dr + [2r^{2}\cos(2\theta)]dv$ $\Rightarrow dv = d[r^{2}\sin(2\theta)]dv$ $\Rightarrow \int dv = \int d[r^{2}\sin(2\theta)] + k$ $\therefore v = v(r, \theta) = r^{2}.\sin(2\theta) + k$	b) in (2 θ). $v(r, \theta)$ u_{θ} Since (2θ)]d θ (2θ)]d θ is a required	$3x^{2}y)$ $\therefore f(z) = 2z - z^{3} + (k + i 0) = 2z - z^{3} + c, \text{ where } c = k + i 0, \text{ is a required analytic function.}$ 12. Ans: (c) Sol: Given $u = (x-1)^{3} - 3xy^{2} + 3y^{2}$ $\Rightarrow u_{x} = 3(x-1)^{2} - 3y^{2} \text{ and } u_{y} = -6xy + 6y$ Consider $f^{4}(z) = u_{x} - iu_{y}$ $\Rightarrow f'(z) = [3(x-1)^{2} - 3y^{2}] + i [6xy-6y]$ $\Rightarrow f'(z) = [3(z-1)^{2} - 0] + i(0-0)$ (: x by z & y by 0) $\Rightarrow \int f'(z)dz = \int 3(z-1)^{2}dz + c$ $\therefore f(z) = (z - 1)^{3} + c \text{ is a required analytic function.}$

Engineering Publications	48	Complex Variables
Complex Integrat	ion	$\Rightarrow I = \left(\frac{z^3}{3}\right)_0^{1+i} (\because f(z) \text{ is analytic function})$
13. Ans: (a)		\Rightarrow I = $\frac{(1+i)^3}{2}$
Sol: Let $I = \int_{C} f(z)dz$ Then $I = \int_{z=(0,0)}^{(1,1)} (y - x - 3ix^2)(dx + y)$ The equation of line segment for	i dy) rom a point (0,	⇒ I = $\frac{1^3 + 3(1)^2(i) + 3(1)(i)^2 + (i)^3}{3} = \frac{1 + 3i - 3 - i}{3}$ ∴ I = $\frac{-2 + 2i}{3}$
0) to (1, 1) is given by $\frac{y - y_1}{y_2 - y_1}$ =	$=\frac{\mathbf{X}-\mathbf{X}_{1}}{\mathbf{X}_{2}-\mathbf{X}_{1}}$	15. Ans: (0)
^y A(1,1)		Sol: Let $f(z) = e^{-z^2}$
\xrightarrow{c} x		Here, z^2 is an analytic function every where
0 0, 0		$\Rightarrow -z^2$ is an analytic function every where
$\Rightarrow \frac{y-0}{1-0} = \frac{x-0}{1-0}$		$\Rightarrow e^{-z^{2}} \text{ is an analytic function every where}$ $\Rightarrow f(z) = e^{-z^{2}} \text{ is an analytic function in the}$
\Rightarrow y = x		closed region R bounded by closed curve 'c'
\Rightarrow dy = dx		in the complex plane
Now, I = $\int_{x=0}^{1} (x - x - 3ix^{2}) dx + i$	dx)	\therefore By Cauchy's theorem, we have $\oint f(z)dz = 0$
\Rightarrow I = (1+i) $\int_{1}^{1} (-3ix^2) dx$		16. Ans: (0)
$(3)^1$		Sol: Let $f(z) = \frac{z^2 + \cos(z)}{(z - 4)^3(z + 2)}$
\Rightarrow I = (1+i) $\left(-3i\frac{x}{3}\right)$		Them the singular points of $f(z)$ are given by
\rightarrow I = $i(1+i) = (i+i^2)$		equating the denominator to zero i.e $(z - 4)^3$
$\implies 1i(1+1)(1+1)$		(z+2) = 0
$\therefore I = I - I$		\Rightarrow z = 4, z = -2 are singular points.
14. Ans: (b)		\Rightarrow Both singular points lie out side the given
Sol: Let $I = \int f(z) dz$, where $f(z) = z^2$	2	region R bounded by $c : z-2 =1$.
Then I = $\int_{z=0}^{1+i} z^2 dz$		$\therefore By Cauchy's theorem, we have \int f(z) dz = 0$
R CCC	egular Live Doubt clear	c ring Sessions Free Online Test Series ASK an expert
Affor	dable Fee Available 1	IM 3M 6M 12M 18M and 24 Months Subscription Packages

Engineering Publications	49	Complex Variables
17. Ans: (c)		21. Ans: (c)
Sol: Please Refer ACE previous maths solution	on	Sol: Let $f(z) = \frac{Z}{1-z}$
booklet		Sol. Let $f(z) = \frac{1}{(z+1)(z+2)}$
		Then the singular points of $f(z)$ are $z = -1$ and
18. Ans: (a)		z = -2
Sol: Let $f(z) = \frac{1}{1-z}$		\Rightarrow Both singular points $z = -1$ and $z = -2$ lie
$z^2 e^z$		inside the circle $ z = 4$
Then the singular point of $f(z)$ is $z = 0$		$\begin{pmatrix} z \end{pmatrix} \begin{pmatrix} z \end{pmatrix}$
$\frac{x^2}{x^2} + \frac{y^2}{x^2} = 1$		So, consider $f(z) = \frac{(z+2)}{[z+1)!} + \frac{(z+1)!}{[z+1)!}$
$\left(\frac{1}{2}\right)^2$ $\left(\frac{1}{4}\right)^2$ $\left(\frac{1}{9}\right)^2$		[z - (-1)] $[z - (-2)]$
(9) (4) $(0)_1$	xEKI	$\left(\frac{z}{z}\right)$ $\left(\frac{z}{z+1}\right)$
		$\Rightarrow \oint_{C} f(z) dz = \oint_{C_1} \frac{(z+2)}{[z-(-1)]} dz + \oint_{C_2} \frac{(z+1)}{[z-(-2)]} dz,$
\Rightarrow The singular point z =0 lies inside t	he	where $c_1 \& c_2$ are circles $ z-(-1) =r_1$ and
given region bounded by $c : 9x^2 + 4y^2 = 1$		$ z-(-2) =r_2$ respectively.
So, consider $f(z) = \frac{\phi(z)}{[z - z_o]^n} = \frac{e^{-z}}{[z - 0]^2}$		Y
Now, by cauchy's integral formula, we ha	ve	c
$\oint_{c} f(z) dz = \frac{2\pi i}{(2-1)!} \left[\frac{d}{dz} (e^{-z}) \right]_{z=0}$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\therefore \oint f(z) dz = 2\pi i \left(-e^{-z}\right) = 2\pi i$		
c		
10 Ans: (b)		
19. Ans: (D) Sale Diagon Dafar ACE providus mothe coluti	on	
booklet	on	$\Rightarrow \oint_{C} f(z) dz = 2\pi i \left\lfloor \frac{z}{z+2} \right\rfloor_{z=-1} + 2\pi i \left\lfloor \frac{z}{z+1} \right\rfloor_{z=-2}$
20 April (0.5)		$\Rightarrow \oint f(z) dz = 2\pi i \left(\frac{-1}{-1+2} \right) + 2\pi i \left(\frac{-2}{-2+1} \right)$
20. Alls: (0.3) Soli Diago Dafar ACE providuo mathe coluti	~ n	
booklet	on	$\therefore \oint_{c} f(z) dz = 2\pi i [-1+2] = 2\pi i$

Dr.	ace
	online

ACE Engineering Publications

50

Complex Variables

22. Ans: (d)

Sol: Please Refer ACE previous maths solution booklet

Taylor and Laurent Series

23. Ans: (b)

- Sol: Please Refer ACE previous maths solution booklet
- 24. Ans: (a, b, d)
- **Sol:** Given that $f(z) = z^3 e^{\frac{1}{z}}$

 \Rightarrow f(z) has a singular point at z = 0

Now,
$$f(z) = z^3 e^{\frac{1}{z}}$$

$$\Rightarrow f(z) = z^3 \left[1 + \frac{\left(\frac{1}{z}\right)^1}{1!} + \frac{\left(\frac{1}{z}\right)^2}{2!} + \frac{\left(\frac{1}{z}\right)^3}{3!} + \frac{\left(\frac{1}{z}\right)^4}{4!} + \frac{\left(\frac{1}{z}\right)^5}{5!} + \dots \right]$$

$$\Rightarrow f(z) = \left[z^3 + z^2 + \frac{1}{2}z \right] + \left[\frac{1}{3!} + \frac{1}{4!}z + \frac{1}{5!}z^2 + \dots \right]$$

which is a Laurent series expansion of f(z)about z = 0

The coefficient of $\frac{1}{z^2}$ and $\frac{1}{z} \operatorname{are} \frac{1}{5!} \& \frac{1}{4!}$ respectively.

 \therefore Options (a), (b) and (d) are correct.

25. Ans: (a)

Sol: Let $f(z) = \log(z)$ and $z_0 = 1$

ace online

Then the Taylor series expansion of f(z) about a point $z = z_0$ in the given region $|z-z_0| < r$ is given by

$$f(z) = f(z_0) + (z - z_0)f'(z_0) + \frac{(z - z_0)^2}{2!}f''(z_0) + \frac{(z - z_0)}{3!}f'''(z_0) + \dots(1)$$

Consider $f(z) = \log z$ and
 $f(z_0) = f(1) = \log (1) = 0$
 $\Rightarrow f'(z) = \frac{1}{z}$ and $f'(z_0) = f'(1) = 1$

$$\Rightarrow f''(z) = \frac{-1}{z^2} \text{ and } f''(z_0) = f''(1) = -1$$

$$\Rightarrow f''(z) = \frac{2}{z^3} \text{ and } f''(z_0) = f''(1) = 2$$

Substituting above all in (1), we get

$$f(z) = (0) + (z-1)(1) + \frac{(z-1)^2}{2!}(1) + \frac{(z-1)^3}{3}(2) + \dots$$

$$\therefore \log(z) = (z-1) - \frac{(z-1)^2}{2} + \frac{(z-1)^3}{3} - \frac{(z-1)^4}{4} + \dots$$

which is a Taylor series expansion of f(z)about z = 1 in the region |z-1| < 1

26. Ans: (d)

Sol: Please Refer ACE previous maths solution booklet

Residues

27. Ans: (d)

Sol: Please Refer ACE previous maths solution booklet

28. Ans: (a, b, c)

Sol: Given that
$$f(z) = \frac{\alpha z^2 + \beta}{(z-1)^2(z+2)}$$

 Regular Live Doubt clearing Sessions
 Free Online Test Series | ASK an expert

 Affordable Fee |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

		51		Complex Variables
	\Rightarrow z = 1, and z = -2 are the singular points	of	30.	Ans: (1)
	f(z) and $z = 1 & z = -2$ are poles of order	· 2	Sol:	Given that $f(z) = \frac{e^z}{e^z}$ and singular point
	and one respectively.			sin(z)
	Also given that $\operatorname{Res}(f(z): z = 1) = \frac{5}{9}$			z = 0 \Rightarrow The singular point $z = 0$ is a pole of order
	$\Rightarrow \frac{1}{(2-1)} \operatorname{Lt}_{z \to 1} \left[\frac{d}{dz} \left\{ (z-1)^2 \cdot \frac{\alpha z^2 + \beta}{(z-1)^2 (z+2)} \right\} \right] = \frac{5}{9}$			one. \Rightarrow Now, $R_1 = \text{Res}(f(z) : z = 0) = \frac{\phi(0)}{\psi'(0)}$
	$\Rightarrow \operatorname{Lt}_{z \to i} \left[\frac{\mathrm{d}}{\mathrm{d}z} \left(\frac{\alpha z^2 + \beta}{z + 2} \right) \right] = \frac{5}{9}$			$\left(\because f(z) = \frac{\phi(z)}{\psi(z)}\right)$
	$\Rightarrow \operatorname{Lt}_{z \to 1} \left[\frac{(z+2)(2\alpha z) - (\alpha z^2 + \beta)(1)}{(z+2)^2} \right] = \frac{5}{9}$	ERI	ING	$\Rightarrow \mathbf{R}_1 = \frac{\mathbf{e}^0}{\cos(0)} = \frac{1}{1}$
	$\Rightarrow \frac{6\alpha - (\alpha + \beta)}{9} = \frac{5}{9}$			\therefore R ₁ = 1
	$\Rightarrow \frac{5\alpha - \beta}{9} = \frac{5(1) - (0)}{9}$		31.	Ans: (b)
	$\therefore \alpha = 1 \& \beta = 0$		Sol:	Please Refer ACE previous maths solution
	Hence, options (a), (b) & (c) are true.			booklet
29.	Ans: (b)		32.	Ans: (0)
Sol:	Given $f(z) = \frac{z + \cos(z)}{z + \cos(z)} \left(\because f(z) = \frac{\phi(z)}{z} \right)$	ice	Sol:	Given $f(z) = \frac{\sin(z)}{z}$
	$\left(z - \frac{\pi}{2}\right) \left(z - \frac{\pi}{2}\right)$			\Rightarrow The singular point of f(z) is z = 0
	\Rightarrow f(z) has a singular point at z = $\frac{\pi}{2}$			Now, $f(z) = \frac{1}{z} \left[z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \dots \right]$
	\Rightarrow z = $\frac{\pi}{2}$ is a pole of order one			$\Rightarrow f(z) = 1 - \frac{1}{3!}z^2 + \frac{1}{5!}z^4 - \frac{1}{7!} - z^6 + \dots$
	Now, R, = Res(f(z) : $z = \frac{\pi}{2}$) = $\phi\left(\frac{\pi}{2}\right)$			\therefore The singular point $z = 0$ is a removable singular point of $f(z)$ and the residue of $f(z)$ at
	$\therefore \mathbf{R}_1 = \frac{\pi}{2} + \cos\left(\frac{\pi}{2}\right) = \frac{\pi}{2}$			z = 0 is zero.

٦

ACE Engineering Publications

52

33. Ans: (c)

Sol: Given that $f(z) = z e^{\frac{f}{z}}$ \Rightarrow The singular point of f(z) is z = 0Now, $f(z) = z e^{\frac{7}{z}}$

$$\Rightarrow f(z) = z \cdot \left[1 + \frac{\left(\frac{7}{z}\right)}{1} + \frac{\left(\frac{7}{z}\right)^2}{2!} + \frac{\left(\frac{7}{z}\right)^3}{3!} + \dots \right]$$
$$\Rightarrow f(z) = z + (7) + \left(\frac{7^2}{2}\right) \frac{1}{z} + \left(\frac{7^3}{3!}\right) \frac{1}{z^2} + \dots$$

 \therefore z = 0 is an essential singular point of f(z) and the residue of f(z) at z = 0 is $\frac{49}{2}$

34. Ans: (a, b, c)

Sol: (a) Let $f(z) = \frac{z}{z^2 - 1}$ and singular point be z =

1

Then the singular point z = 1 is a pole of order one.

$$\Rightarrow R_1 = \operatorname{res}(f(z) | z = 1) = \operatorname{Lt}_{z \to 1} \left[(z - 1) \cdot \frac{z}{(z - 1)(z + 1)} \right]$$
$$\Rightarrow R_1 = \frac{1}{1 + 1} = \frac{1}{2}$$

 \therefore Option (a) is a true statement.

(b) Let $f(z) = z^2 \& c : |z| = 1$

Then f(z) is an analytic function everywhere

- \Rightarrow f(z) is analytic inside & on 'C'
- : By cauchy's theorem, we have

$$\oint_C f(z) \, dz = 0$$

ace online Hence, option (b) is a true statement

(c) Let
$$f(z) = \frac{1}{z} = \frac{1}{(z-1)} \left(\because f(z) = \frac{\phi(z)}{(z-z_0)} \right)$$

Then the singular point of f(z) is z = 0

 \Rightarrow The singular point lies inside 'c'.

Now, by cauchy's integral formula, we have

$$\oint_{c} f(z)dz = 2\pi i \phi(0)$$

$$\Rightarrow \oint_{c} f(z)dz = 2\pi i (1)_{z=0} = 2\pi i$$

$$\Rightarrow \frac{1}{2\pi i} \oint_{c} f(z)dz = \frac{1}{2\pi i} (2\pi i) = 1$$

 \therefore Option (c) is a true statement.

(d) Let $f(z) = \overline{z}$ Then $f(z) = \overline{z}$ is not differentiable at any point $\Rightarrow f(z) = \overline{z}$ is not analytic at any point. \therefore Option (d) is not a true statement. Hence, option (a), (b) & (c) are correct

35. Ans: (c)

answer.

Sol: Please Refer ACE previous maths solution booklet

Sequence and Series (Only for EC)

Sol: Let
$$\sum_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} \frac{(z+2)^{n-1}}{(n+1)^3 \cdot 4^n}$$

 Regular Live Doubt clearing Sessions
 |
 Free Online Test Series | ASK an expert

 Affordable Fee |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

Engineering Publications	53 Complex Variables
Then $u_n = \frac{(z+2)^{n-1}}{(n+1)^3 \cdot 4^n} \& u_{n+1} = \frac{(z+2)^n}{(n+2)^3 \cdot 4^{n+1}}$	37. Ans: (0.2) Sol: Let $\Sigma u_n = \Sigma (3+4i)^n . z^n$
$\Rightarrow \frac{u_{n+1}}{u_n} = \frac{(z+2)^n}{(n+2)^3 \cdot 4^{n+1}} \times \frac{(n+1)^3 \cdot 4^n}{(z+2)^{n-1}}$	Then $u_n = (3 + 4i)^n . z^n$ Now, $l = Lt u_n ^{\frac{1}{n}} = Lt (3 + 4i)^n z^n ^{\frac{1}{n}}$
$\Rightarrow \frac{u_{n+1}}{u_n} = \frac{n^3 \left(1 + \frac{1}{n}\right)^3}{n^3 \left(1 + \frac{2}{n}\right)^3} \cdot \frac{(z+2)}{4}$	$\Rightarrow l = \underset{n \to \infty}{\text{Lt}} (3+4i)z $ $\Rightarrow l = 3+4i z = 5 z $
Now, $l = \operatorname{Lt}_{n \to \infty} \left \frac{u_{n+1}}{u_n} \right = \operatorname{Lt}_{n \to \infty} \left \frac{\left(1 + \frac{1}{n}\right)^3}{\left(1 + \frac{2}{n}\right)^3} \cdot \frac{z+2}{4} \right $	The given series is convergent if $l < 1$ $\Rightarrow 5 z < 1$ $\Rightarrow z < \frac{1}{5}$ of $ z - 0 < \frac{1}{5}$
$=\left \frac{z+2}{4}\right $	\therefore The R.O.C of the given series is $ z - 0 < \frac{1}{5}$
\Rightarrow The given series is convergent if $l < 1$ (b)	y and radius of convergence is $R = \frac{1}{5}$
Ratio test)	
$\Rightarrow \left \frac{z+2}{4} \right < 1$	38. Ans: (b, d)Sol: Please Refer ACE previous maths solution
$\Rightarrow z+2 < 4,$	bookle
\therefore The region of convergence (R.O.C) i	se 1995
z+2 < 4 radius of convergence is R = 4 and	d
centre of the circle of convergence is $z_0 = -2$.	

NUMERICAL METHODS

SOLUTIONS OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS (Solutions for Text Book Practice Questions)

01. Ans: (a)

- **Sol:** Please Refer ACE previous maths solution booklet
- 02. Ans: (b)

$$2^{\text{nd}} \text{ approx } \mathbf{x}_2 = \frac{0.5 + 1}{2} = 0.75$$

03.

Sol: Please Refer ACE previous maths solution booklet

5

04. Ans: (a)

Sol: Let

$$f(x) = x^{3} - 2x - f(2) = -1 < 0$$
$$f(3) = 16 > 0$$

0 1 2 3
By false position method

$$1^{st}$$
 approx $x_1 = \frac{2 \times f(3) - 3 \times f(2)}{f(3) - f(2)}$
 \Rightarrow
 $x_1 = \frac{2 \times 16 - 3 \times (-1)}{16 + 1} = \frac{35}{17} = 2.058$
05.
Sol: Please Refer ACE previous maths as

Sol: Please Refer ACE previous maths solution booklet

06. Ans: (d)
Sol: Let
$$f(x) = x^2 - 2$$

 $f^1(x) = 2x$
Given $x_0 = -1$
By N-R method
 $x_1 = x_0 - \frac{f(x_0)}{f^1(x_0)}$
 $\Rightarrow x_1 = -1 - \frac{f(-1)}{f^1(1)}$
 $\Rightarrow x_1 = -1 - \frac{(-1)}{f^1(1)}$
 $\Rightarrow x_1 = -1.5$
2nd Approximation:
 $x_2 = x_1 - \frac{f(x)}{f^1(x_1)}$

Numerical Methods

$$\Rightarrow x_2 = -1.5 - \frac{f(-1.5)}{f^1(-1.5)}$$

$$\Rightarrow$$
 x₂ = -1.416

If we continue like this the root converges to

$$-\sqrt{2}$$

07. Ans: (a)

Sol: Please Refer ACE previous maths solution booklet

08.

Sol: Please Refer ACE previous maths solution booklet

09. Ans: (a)

Sol: Given N-R iterative formula is

$$x_{n+1} = \frac{x_n^2 + b}{2x_n} - \dots (1)$$

If 'x' is a root at nth approximation, then

- $x_n = x$ then $x_{n+1} = x : x_{n+2} = x, \dots$
- : From (1)

$$x = \frac{x^2 + b}{2x} \Longrightarrow 2x^2 = x^2 + b$$
$$\therefore x^2 - b = 0$$

10. Ans: (b)

Sol: Let
$$f(x) = x^2 - 4x + 4$$

Given initial values are $x_0 = 3$, $x_1 = 2.5$

By secant method

$$x_{2} = \frac{x_{0}f(x_{1}) - x_{1}f(x_{0})}{f(x_{1}) - f(x_{0})}$$

$$\Rightarrow x_2 = \frac{3 \times f(2.5) - 2.5 \times f(3)}{f(2.5) - f(3)}$$
$$= \frac{3 \times (0.25) - 2.5 \times (1)}{0.25 - 1} = \frac{0.75 - 2.5}{-0.75} = 2.33$$

NUMERICAL INTEGRATION

11. Ans: (c)

Sol: Given $y = 2^x$

Number of sub intervals
$$n = 4 : h = 1$$

	x	-1	0	1	2	3
A P	(y)	2 ⁻¹	2^{0}	2 ¹	2 ²	2^{3}
		0.5	1	2	4	8
		y 0	y 1	y ₂	y 3	y 4
D T '111						

By Trapezoidal rule

$$\int_{-1}^{3} y dx = \frac{h}{2} [(y_0 + y_4) + 2(y_1 + y_2 + y_3)]$$
$$= \frac{1}{2} [(0.5 + 8) + 2(1 + 2 + 4)] = \frac{22.5}{2} = 11.25$$

2

12. Sol: Please Refer ACE previous maths solution booklet

13. Ans: (b)

Since

Sol: Let
$$f(x) = xe^{x}$$

 $f^{1}(x) = xe^{x} + e^{x} = e^{x} (x+1)$
 $f^{11}(x) = e^{x}(1) + (x+1) e^{x}$
 $= e^{x} (x+2)$
Here $(a, b) = (1, 2)$
 $h = \frac{b-a}{n} = \frac{1}{n}$

56

Max
$$f^{11}(c) = f^{11}(2)$$

 $1 \le C \le 2 = 4e^2$
We know that absolute error in Trapezoidal
rule $\le \left|\frac{h^2}{12}(b-a) \times \max f^{11}(c)\right| \le C \le 2$
Given $\frac{h^2}{12} \times (b-a) \times \max f^{11}(c) = \frac{1}{3} \times 10^{-6}$
 $1 \le C \le 2$
 $\Rightarrow \frac{1}{12n^2} \times 1 \times 4e^2 = \frac{1}{3} \times 10^{-6}$
 $\Rightarrow \frac{e^2}{n^2} = 10^{-6}$
 $\Rightarrow 10^6 e^2 = n^2$
 $\Rightarrow (10^3 e)^2 = n^2$
 $\therefore n = 1000e$

14. Ans: (d)

Sol: Please Refer ACE previous maths solution booklet

15.

Sol: Please Refer ACE previous maths solution booklet

16. Ans: (d)

Sol: Please Refer ACE previous maths solution booklet

17. Ans: (b)

Sol: Fly wheel energy = $\int_{0}^{T} Td\theta$ (θ in radions)

ace online

$$= \frac{h}{3} [(T_0 + T_6) + 4(T_1 + T_3 + T_5) + 2(T_2 + T_4)]$$

(By Simpson's $\frac{1}{3}$ rule)
∴ Energy
$$= \frac{\pi/3}{3} \begin{bmatrix} (0+0) + 4(1066 + 0 - 355) \\ + 2(-323 + 323) \end{bmatrix}$$
$$= 992.74 \approx 993$$

NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS

18.

Sol: given D.E is
$$\frac{dy}{dx} = xy + x^2$$

 $y(0) = 0.1 \Rightarrow x_0 = 0 : y_0 = 0.1$
 $y(0.2) = ? \Rightarrow x_1 = 0.2 : y_1 = ?$
 $h = 0.2$

we have

$$y^{1} = xy + x^{2} \Rightarrow y_{0}^{1} = x_{0}y_{0} + x_{0}^{2} = 0 + 0 = 0$$

$$y^{11} = (xy^{1} + y) + 2x$$

$$\Rightarrow y_{0}^{11} = x_{0}y_{0}^{1} + y_{0} + 2x_{0}$$

$$= 0 + 0.1 + 0 = 0.1$$

By Taylor series up to h² term

$$y_1 = y(x_1) = y_0 + \frac{h}{1!} y_0^1 + \frac{h^2}{2!} y_0^{11}$$
$$\Rightarrow y(0.2) = 0.1 + \frac{0.2}{1!} (0) + \frac{(0.2)^2}{2!} (0.1)$$

$(\theta \text{ in radions})$	(degree)								
	Torque	0	1066	-323	0	323	-355	0	
	(Nm)								
Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert									

Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

ACE Engineering Publications	57	Numerical Methods
\Rightarrow y(0.2) = 0.1 + 0.2 + 0.002		Here $f(x, y) = y + 2x - x^2$
= 0.302		Given $y(0) = 1 \Longrightarrow x_0 = 0 : y_0 = 1$
		h = 0.1
19.		By modified Euler's method
Sol: Given D.E is $y^1 = x-y$ with $y(0) = 0$		$y = y + \frac{1}{2}(K + K)$
h = 0.1		$y_1 - y_0 + 2$ (1)
Here $f(x, y) = x-y$:		$\mathbf{K}_1 = \mathbf{hf}(\mathbf{x}_0, \mathbf{y}_0)$
$x_0 = 0 : y_0 = 0$		$\Rightarrow K_1 = h(y_0 + 2x_0 - x^2) = 0.1(1) = 0.1$
$x_1 = 0.1 : y_1 = ?$		$K_2 = hf(x_0 + h, y_0 + K_1)$
By forward Euler's method		$\Rightarrow K_2 = h[(y_0 + K_1) + 2(x_0 + h) - (x_0 + h)^2]$
$y_1 = y_0 + hf(x_0, y_0)$	ER	$= (0.1)[(1+0.1)+2(0.1)-(0.1)^2] = 0.129$
\Rightarrow y ₁ = y ₀ + h(x ₀ - y ₀)		: From (1) $y_1 = 1 + \frac{1}{2}(0.1 + 0.129)$
\Rightarrow y(0.1) = 0 + (0.1) (0 - 0)		
= 0		\Rightarrow y(0.1) = 1.1145
$\therefore y(0.1) = 0$		Exact solution is $y(x) = x^2 + e^x$
		$y(0.1) = (0.1)^2 + e^{0.1} = 1.1151$
20.		Absolute error = $ 1.1145 - 1.1151 = 0.00067$
Sol: Please Refer ACE previous maths solution	n	
booklet		24. Ans: (0.1103)
	ce	Sol: Given D.E. is $\frac{dy}{dx} = x + y$
21.		Given $y(0) = 1$ and $h = 0.1$
Sol: Please Refer ACE previous maths solution	n	Here $f(x, y) = x + y$
booklet		$x_0 = 0 : y_0 = 1$
22. Ans: (0.96)		$x_1 = 0.1$
Sol: Given D F is $\frac{dy}{dy} = -2xy^2$		By 4 th order R-K method
$y_{1}^{*} = y_{0} + h(-2x_{0}y_{0}^{2}) = 1$		$y_1 = y_0 + \frac{1}{6} (K_1 + 2K_2 + 2K_3 + K_4)$
$y_1 = y_0 + \frac{1}{2} 0.2 (-2x_0y_0^2 - 2x_1y_1^*)$		(1)
= 1 - 0.04 = 0.96		$\mathbf{K}_1 = \mathbf{hf}(\mathbf{x}_0, \mathbf{y}_0) \Longrightarrow \mathbf{K}_1 = (0.1)(0+1)$
		\Rightarrow K ₁ = 0.1
23. Ans: (0.00067) Sol: Given D.E. is $y^1 = y + 2x - x^2$		

ace online

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

Engineering Publications	58	Numerical Methods						
$K_{2} = hf\left(x_{0} + \frac{h}{2}, y_{0} + \frac{K_{1}}{2}\right)$ $= h\left[\left(x_{0} + \frac{h}{2}\right) + \left(y_{0} + \frac{K_{1}}{2}\right)\right]$		$f(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} y_0 + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} y_1 + \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} y_2$						
$\Rightarrow K_2 = (0.1) \left[\left(0 + \frac{0.1}{2} \right) + \left(1 + \frac{0.1}{2} \right) \right]$ $\Rightarrow K_2 = 0.11$ $(h = K_2)$		$\Rightarrow f(x) = \frac{(x-2)(x-4)}{(-1)(-3)}(3) + \frac{(x-1)(x-4)}{(1)(-2)}(4) + \frac{(x-1)(x-2)}{(3)(2)}(6)$						
$K_{3} = hf\left(x_{0} + \frac{h}{2}, y_{0} + \frac{h^{2}}{2}\right)$ $= h\left[\left(x_{0} + \frac{h}{2}\right) + \left(y_{0} + \frac{K_{2}}{2}\right)\right]$		$\Rightarrow f(x) = \frac{6(x^2 - 6x + 8) - 12(x^2 - 5x + 4)}{6}$ $\Rightarrow f(x) = \frac{-6(x^2 - 3x + 2)}{6}$						
$\Rightarrow K_{3} = (0.1) \left[\left(0 + \frac{0.1}{2} \right) + \left(1 + \frac{0.11}{2} \right) \right]$ $K_{3} = 0.1 \times 1105 = 0.1105$ $K_{4} = hf(x_{0} + h, y_{0} + K_{3})$	C	$\Rightarrow f(x) = \frac{1}{6} = x + 2$ $\therefore f(x) = x + 2$ $f^{1}(x) = 1$ Now $f(3) = 5 : f^{1}(3) = 1$						
$= h[(x_0 + h) + (y_0 + K_3)]$ $\implies K_4 = (0.1)[(0+0.1)+(1+0.1105)]$		(ii) Newton's divided difference interpolation						
:: $K_4 = 0.12105$ From (1)		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$y_1 = y_0 + \frac{1}{6} (K_1 + 2K_2 + K_3 + K_4)$ ∴ $y_1 = y(0.1) = 0.1103$		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
INTERPOLATION (For CE only)		By Newton's divided interpolation $f(x) = y_0 + (x - x_0) f[x_0, x_1] + (x - x_0)(x - x_0)$						
25.		1) $f[x_0, x_1, x_2]$ $f(x_0) = 2 + (x_0 - 1)(1) + (x_0 - 1)(x_0 - 2)(0)$						
Sol: (i) <u>Lagranges interpolation</u>		$\Rightarrow I(X) = 3 + (X - 1)(1) + (X - 1)(X - 2)0$ f(x) = x + 2						
$x_0 = 1$: $x_1 = 2$: $x_2 = 4$		$I(X) = X + 2$ $f^{l}(X) = 1$						
$y_0 = 3$: $y_1 = 4$: $y_2 = 6$		f(x) = 1 Now $f(3) = 5$						
By Lagranges interpolation		$\frac{1}{r^{l}(2) - 3}$						
Romlar Liv	e Doubt clear	$\frac{1}{1} \left(\frac{3}{2} \right) = 1$						
Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages								

AC Engineering Publ	E lications				59	Numerical Methods				
(iii) <u>Nev</u>	vton's ba	ackward in	terpolation			Now $f(1) = \frac{29}{3}$				
X	У	∇y	$\nabla^2 \mathbf{y}$	$\nabla^3 y$	r	$f^{l}(1) = -2$				
x ₀ 4	1 y ₀	$2 = \nabla y$				26.				
x ₁ 6	3 y ₁	$z = v y_1$	$3 = \nabla^2 y_2$			Sol: (i) Newton's forward interpolation				
x ₂ 8	8 y ₂	$5 = \nabla^2 y_3$	$3 = \nabla^2 v_0$	(0)= ∇ ³ y ₃		$ \begin{array}{ c c c c c c c c } \hline x & y & \Delta y & \Delta^2 y & \Delta^3 y \\ \hline x_0 & 4 & 1 & y_0 & & & \\ \hline \end{array} $				
x ₃ 10	16 y ₃	$8 = \nabla y_3$	$\mathbf{y}_{3} = \mathbf{v} \mathbf{y}_{3}$			$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
				NE	ER	$\begin{bmatrix} 8 \\ 8 \\ 10 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \end{bmatrix} \begin{bmatrix} \Delta^2 y_0 \\ \Delta^3 y_0 \end{bmatrix} = \begin{bmatrix} 0 \\ \Delta^3 y_0 \end{bmatrix}$				
Here	h = 2									
v	n – 2	vvv	10			Here $h=2$;				
P = -	$\frac{-x_n}{h} = \frac{1}{2}$	$\frac{x - x_3}{h} = \frac{x}{h}$	$\frac{1-10}{2}$			$P = \frac{X - X_0}{1} = \frac{X - 4}{2}$				
By Ne	ewton's	backward i	nterpolatio	n		h 2 Du Nautan's Formand internalation				
f(x) =	= y ₃ + PV	$7y_3 + \frac{P(P+1)}{2!}$	(-1) $\nabla^2 y_3$			By Newton's Forward Interpolation				
		$+\frac{P(}{P(}$	$\frac{(P+1)(P+2)}{3!}$	$(\underline{y}) \nabla^2 y_3$		$f(x) = y_0 + P\Delta y_0 + \frac{P(P-1)}{2!}\Delta^2 y_0 + \frac{P(P-1)(P-2)}{3!}$				
$\Rightarrow f(x) =$	$=16+\left(\frac{x}{x}\right)$	$\frac{-10}{2}(8) + (\frac{2}{3})$	$\frac{x-10}{2}$ $\left(\frac{x-8}{2}\right)$	$\frac{3}{2} + (3)$	ce +0	$\Rightarrow f(x) = 1 + \left(\frac{x-y}{2}\right)(2) + \frac{(x-4)(x-6)}{4 \times 2!} \times (3) + $				
		2)(2 / 2)		$\Rightarrow f(x) = 1 + (x - 4) + \frac{3}{8}(x^2 - 10x + 24)$				
$\Rightarrow f(x)$	$=16 + \frac{82}{3}$	$\frac{x-80}{2}+\frac{x^2}{2}$	$\frac{-18x+80}{8}$	(3)		$\Rightarrow f(x) = \frac{8 + 8x - 32 + 3x^2 - 30x + 72}{8}$				
$\Rightarrow f(x) = \frac{128 + (32x - 320) + 3x^2 - 54x + 240}{8}$				+ 240		$\Rightarrow f(x) = \frac{3x^2 - 22x + 48}{8}$				
$\Rightarrow f(x)$	$=\frac{3x^2-}{3x^2-}$	$\frac{22x+48}{8}$				$f^{1}(x) = \frac{6x - 22}{8} = \frac{3x - 11}{4}$				
$f^{1}(x) = -$	$\frac{6x-22}{8}$					Now $f(1) = \frac{29}{8}$				
						$f^{l}(1) = -2$				
X ac	e	India's Best	Online Coachi	ng Platfo	orm for	or GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams				
		Enjoy a smooth online lear				arning experience in various languages at your convenience				

60

Numerical Methods

FOR ESE ONLY

27. Ans: (a)

Sol: Given equations can be written as

$$x_1 = \frac{3 - 2x_2 - x_3}{3} \qquad (From equation 3)$$

$$\mathbf{x}_2 = \frac{1 - 2\mathbf{x}_1 - \mathbf{x}_3}{3} \qquad \text{(From equation 2)}$$

$$\mathbf{x}_3 = \frac{5 - \mathbf{x}_1 - 2\mathbf{x}_2}{3} \qquad \text{(From equation 1)}$$

Initial values are $x_1^{(0)} = x_2^{(0)} = x_3^{(0)} = 0$

1st approximations

$$\begin{aligned} x_1^{(1)} &= \frac{3 - 2x_2^{(0)} - x_3^{(0)}}{3} = 1\\ x_2^{(1)} &= \frac{1 - 2x_1^{(1)} - x_3^{(0)}}{3} = \frac{1 - 2(1) - 0}{3} = -\frac{1}{3}\\ x_3^{(1)} &= \frac{5 - x_1^{(1)} - 2x_2^{(1)}}{3} = \frac{5 - 1 + 2\left(\frac{1}{3}\right)}{3}\\ &= \frac{4 + \frac{2}{3}}{3} = \frac{14}{9} = 1.55 \end{aligned}$$

28. Ans: (b)

Let

Sol: Given equation is x = cosx

This equation is in a form $x = \phi(x)$

$$\phi(\mathbf{x}) = \cos \mathbf{x}$$

$$\phi^{1}(\mathbf{x}) = -\sin \mathbf{x}$$
Clearly $|\phi^{1}(\mathbf{x})| < 1 \quad \forall \mathbf{x}$
Given $\mathbf{x}_{0} = \frac{\pi}{4}$

$$1^{\text{st}} \text{ approximation } \mathbf{x}_{1} = \phi(\mathbf{x}_{0})$$

$$\Rightarrow \mathbf{x}_{1} = \cos \mathbf{x}_{0}$$

$$\Rightarrow \mathbf{x}_1 = \cos \pi / 4 = \frac{1}{\sqrt{2}}$$
$$\therefore \mathbf{x}_1 = \frac{1}{\sqrt{2}} = 0.7072$$

29. Ans: (a)

Sol: Since 5 data points given $\Delta^4 y_0 = 0$

$$\Rightarrow (E-1)^{4} y_{0} = 0$$

$$\Rightarrow [(E^{2} - 2E + 1)(E^{2} - 2E + 1)]y_{0} = 0$$

$$\Rightarrow E^{4}y_{0} - 4E^{3}y_{0} + 6E^{2}y_{0} - 4Ey_{0} + y_{0} = 0$$

$$\Rightarrow y_{4} - 4y_{3} + 6y_{2} - 4y_{1} + y_{0} = 0$$

$$\Rightarrow 81 - 4y_{3} + 6 \times 9 - 4 \times 3 + 1 = 0$$

$$\Rightarrow 4y_{3} = 124$$

$$\therefore y_{3} = 31$$

30. Ans: (d)
Sol:
$$\Delta e^{x} = e^{x+h} - e^{x} = e^{x} (e^{h} - 1)$$

 $\Delta^{2} e^{x} = e^{x+h} (e^{h} - 1) - e^{x} (e^{h} - 1)$
 $= (e^{h} - 1) [e^{x+4} - e^{x}]$
 $= (e^{h} - 1)(e^{h} - 1)e^{x} = (e^{h} - 1)^{2}e^{x}$

Continue like this

$$\Delta^{n} e^{x} = (e^{h} - 1)^{n} e^{x}$$

From the options put h = 1

$$\therefore \Delta^n e^x = (e-1)^n e^x$$

