GATE I PSUs

Computer Science \& Information Technology

DISCRETE MATHEMATICS

Text Book:

Theory with worked out Examples and Practice Questions

Discrete Mathematics

(Solutions for Text Book Practice Ouestions)

Chapter

1

Mathematical Logic

01. Ans: (d)

Sol: The contrapositive of $(A \rightarrow B)$ is $(\sim B \rightarrow \sim A)$. and $(A \rightarrow B) \equiv(\sim B \rightarrow \sim A)$.
The statement given in option(d) is contrapositive of p .
\therefore The statement given in option(d) is equivalent to p.
02. Ans: (a)

Sol: $\mathbf{S}_{\mathbf{1}}$: The given argument is

1. $\mathrm{r} \rightarrow(\mathrm{q} \rightarrow \mathrm{p})$

$$
\begin{aligned}
& \text { 2. } \sim p \\
& \quad \therefore(\sim r \vee \sim q)
\end{aligned}
$$

3. $(r \wedge q) \rightarrow p$
(1), equivalence
4. $\sim(\mathrm{r} \wedge \mathrm{q})$ (3) and (2), modus tollens
5. $(\sim r \vee \sim q)$
(4), demorgan's law
$\therefore \mathrm{S}_{1}$ is valid
\mathbf{S}_{2} : When p has truth value false, q has truth value false and r has truth value true; we have, all the primeses are true but conclusion is false.
$\therefore \mathrm{S}_{2}$ is not valid.
6. Ans: (b)

Sol: Quine's method:

Case1:

When a has truth value true, the given formula becomes

$$
\begin{aligned}
& \mathrm{c} \wedge(\sim \mathrm{~b} \wedge \sim \mathrm{c}) \\
& \Leftrightarrow(\mathrm{c} \wedge \sim \mathrm{c}) \wedge \sim \mathrm{b} \\
& \Leftrightarrow \mathrm{~F} \wedge \sim \mathrm{~b} \\
& \Leftrightarrow \mathrm{~F}
\end{aligned}
$$

Case2:

When a has truth value false, the given formula becomes

$$
\begin{aligned}
& b \wedge \sim(b \vee c) \\
\Leftrightarrow & (b \wedge \sim b) \wedge \sim c \\
\Leftrightarrow & F \wedge \sim c \\
\Leftrightarrow & F
\end{aligned}
$$

\therefore The given formula is a contradiction.
04. Ans: (a)

Sol: Let $\mathrm{S}_{1}=(\mathrm{P} \rightarrow \mathrm{Q})$
where, $\mathrm{P}=((\mathrm{a} \vee \mathrm{b}) \rightarrow \mathrm{c})$ and

$$
\mathrm{Q}=(\mathrm{a} \wedge \mathrm{~b}) \rightarrow \mathrm{c}
$$

Here, Q is false only when a is true, b is true and c is false.

For these truth values P is also false.
$\therefore \mathrm{S}_{1}$ is valid
Let $S_{2}=(R \rightarrow S)$
where, $\mathrm{R}=(\mathrm{a} \wedge \mathrm{b}) \rightarrow \mathrm{c}$ and

$$
S=(a \vee b) \rightarrow c
$$

Here, when a is true, b is false and c is false; we have, R is true and S is false.
i.e., $(R \rightarrow S)$ is false.
$\therefore \mathrm{S}_{2}$ is not valid

05. Ans: (c)

Sol: $\mathbf{S}_{\mathbf{1}}$: The given formula is equivalent to the following argument.

1. $\sim \mathrm{p} \rightarrow(\mathrm{q} \rightarrow \sim \mathrm{w})$	premise
2. $(\sim \mathrm{s} \rightarrow \mathrm{q})$	premise
3. $\sim \mathrm{t}$	premise
4. $(\sim \mathrm{p} \vee \mathrm{t})$	premise
$\therefore \therefore(\mathrm{w} \rightarrow \mathrm{s})$	conclusion

We can derive the conclusion from the premises as follows.
5. $\sim \mathrm{p} \quad$ (3), (4), Disjunctive syllogism
6. $(\mathrm{q} \rightarrow \sim \mathrm{w})$
(1), (5), Modues ponens
7. $(\sim s \rightarrow \sim w)$
(2), (6), Transitivity
8. $(\mathrm{w} \rightarrow \mathrm{s}) \quad$ (7), Contra positive equivalence
\therefore The given formula is valid
S_{1} : The given formula can be written as $\{(\mathrm{q} \rightarrow \mathrm{t}) \wedge(\mathrm{s} \rightarrow \mathrm{r}) \wedge(\mathrm{q} \vee \mathrm{s})\} \rightarrow(\mathrm{t} \vee \mathrm{r})$ which is valid by the rule of constructive dilemma.

06. Ans: (c)

Sol: (a) When p has truth value false and r has truth value true, then all the premises are true and conclusion is false.
\therefore The argument is not valid.
(b) When p has truth value false, q is true and r is true: then all the premises are true and conclusion is false.
\therefore The argument is not valid.
(c) The given argument is written as

1. $\{p \rightarrow(q \rightarrow r)$
2. $(\mathrm{p} \wedge \mathrm{q})\}$
$\therefore \mathrm{r}$
3. $(p \wedge q) \rightarrow r(1)$, equivalence
4. r
(2) and (3), modus ponens
\therefore The argument is valid
(d) When p has truth value false and q has truth value false, then both the premises are true and conclusion is false.

The argument is not valid.
07. Ans: (d)

Sol: \mathbf{S}_{1} : The contra-positive of $(\mathrm{P} \rightarrow \mathrm{Q})$ is $(\sim \mathrm{Q} \rightarrow \sim \mathrm{P})$
The contra-positive of $\{(\sim \mathrm{r}) \vee(\sim \mathrm{s})\} \rightarrow \mathrm{q}$ is

$$
\begin{aligned}
\sim \mathrm{q} & \rightarrow \sim\{(\sim \mathrm{r}) \vee(\sim \mathrm{s})\} \\
\Leftrightarrow & \sim \mathrm{q} \rightarrow(\mathrm{r} \wedge \mathrm{~s}) \quad \text { Demorgan's Law } \\
\Leftrightarrow & \mathrm{q} \vee(\mathrm{r} \wedge \mathrm{~s}) \quad(\because(\mathrm{P} \rightarrow \mathrm{Q}) \cong(\sim \mathrm{P} \vee \mathrm{Q}))
\end{aligned}
$$

Similarly, we can verify other statements.
08. Ans: (b)

Sol: From the truth table

$$
\begin{aligned}
(p * q) & \Leftrightarrow(p \wedge \sim q) \\
\text { Now, }(p \rightarrow q) & \Leftrightarrow(\sim p \vee q) \\
& \Leftrightarrow \sim(p \wedge \sim q) \\
& \Leftrightarrow \sim(p * q)
\end{aligned}
$$

9. Ans: (d)

Sol: The given formula can be written as

$$
\begin{aligned}
& (\overline{\mathrm{p}} \cdot \mathrm{q})+(\mathrm{p} \cdot \overline{\mathrm{q}})+(\mathrm{p} \cdot \mathrm{q}) \\
= & (\overline{\mathrm{p}} \cdot \mathrm{q})+\mathrm{p} \cdot(\overline{\mathrm{q}}+\mathrm{q}) \\
& (\text { By distributive law }) \\
= & (\overline{\mathrm{p}} \cdot \mathrm{q})+\mathrm{p} \\
= & (\mathrm{p}+\overline{\mathrm{p}}) \cdot(\mathrm{p}+\mathrm{q}) \\
& (\text { By distributive law }) \\
= & \mathrm{p}+\mathrm{q}
\end{aligned}
$$

10. Ans: (c)

Sol: Quine's Method:
Case 1: When p is true, given formula

$$
\begin{aligned}
\{T \wedge(& F \vee \sim q) \wedge(F \vee q \vee r) \wedge \sim r\} \\
& \Leftrightarrow \sim q \wedge(q \vee r) \wedge \sim r \\
& \Leftrightarrow \sim(q \vee r) \wedge(q \vee r) \\
& \Leftrightarrow F
\end{aligned}
$$

Case 2: When p is false, the given formula is also false
\therefore The given formula is not satisfiable.

11. Ans: (a)

Sol: $\mathrm{S}_{1}=((\mathrm{P} \rightarrow \mathrm{Q}) \rightarrow \mathrm{P}) \rightarrow \mathrm{Q}$
$\Leftrightarrow \sim\{\sim(\sim \mathrm{P} \vee \mathrm{Q}) \vee \mathrm{P}\} \vee \mathrm{Q}$
$\Leftrightarrow\{(\sim \mathrm{P} \vee \mathrm{Q}) \wedge \sim \mathrm{P}\} \vee \mathrm{Q}$
$\Leftrightarrow(\sim P \vee Q \vee Q) \wedge(\sim P \vee Q)$
$\Leftrightarrow(\sim \mathrm{P} \vee \mathrm{Q}) \wedge(\sim \mathrm{P} \vee \mathrm{Q})$
$\Leftrightarrow(\sim \mathrm{P} \vee \mathrm{Q})$
$\Leftrightarrow(\mathrm{P} \rightarrow \mathrm{Q})$
$\mathrm{S}_{2}=\mathrm{P} \rightarrow(\mathrm{Q} \rightarrow(\mathrm{P} \rightarrow \mathrm{Q}))$
$\Leftrightarrow \mathrm{P} \rightarrow \mathrm{T} \quad[\because \mathrm{Q} \rightarrow(\mathrm{P} \rightarrow \mathrm{Q})$ is a tautology]
$\Leftrightarrow \mathrm{T}$
$\therefore \mathrm{S}_{1} \Rightarrow \mathrm{~S}_{2}$
12. Ans: (c)

Sol: $\mathbf{S}_{\mathbf{1}}$: Conditional proof:

1. $(\mathrm{a} \vee \mathrm{b}) \rightarrow \mathrm{c}$
$\begin{array}{ll}\text { 2. } \mathrm{c} \rightarrow(\mathrm{d} \wedge \mathrm{e}) & \text { premise } \\ (\mathrm{a} \rightarrow \mathrm{d}) & \text { conclusion }\end{array}$
2. a
new premise to apply conditional proof
3. $a \vee b$
(3), addition
4. c
(1), (4), modus pones
5. $d \wedge e$
(2), (5), modus pones
6. d
(6), simplification
$\mathbf{S}_{\mathbf{2}}$: Indirect proof:
7. $(\mathrm{p} \rightarrow \mathrm{q}) \quad$ premise
8. $\sim(p \wedge q)$
$=$ premise
9. p new premise to apply indirect proof
10. q (1), (3), modus pones
11. $\sim \mathrm{p}$
(2), (4), conjunctive syllogism
12. F
(3), (5), contradiction
$\therefore \mathrm{S}_{2}$ is valid
13. Ans: (c)

Sol: Quine's method:
Case 1: When P is true, the given formula has truth value true.

Case 2: When P is false, the given formula has truth value true; whether Q is false or Q is true.
\therefore The given formula is a tautology.

14. Ans: (d)

Sol: (a) Let $\mathrm{A}=(\mathrm{p} \rightarrow \mathrm{q}) \rightarrow \mathrm{r}$ and

$$
\mathrm{B}=\mathrm{p} \rightarrow(\mathrm{q} \rightarrow \mathrm{r})
$$

Here, B is false only when p is true, q is true and r is false.
For this set of truth values, A is also false.
$\therefore \mathrm{A} \rightarrow \mathrm{B}$ is a tautology.
(b) Let $\mathrm{A}=\mathrm{p} \rightarrow(\mathrm{r} \vee \mathrm{q})$ and

$$
B=(p \rightarrow r) \vee(p \rightarrow q)
$$

Here, B is false only when p is true, q is false and r is false.

For this set of truth values, A is also false.
$\therefore \mathrm{A} \rightarrow \mathrm{B}$ is a tautology.
(c) Let $A=p \rightarrow(r \wedge q)$ and

$$
B=(p \rightarrow r) \vee(p \rightarrow q)
$$

Here, B is false only when p is true, q is false and r is false.
For this set of truth values, A is also false.
$\therefore \mathrm{A} \rightarrow \mathrm{B}$ is a tautology.
(d) Let $\mathrm{A}=\mathrm{p} \rightarrow(\mathrm{q} \rightarrow \mathrm{r})$ and

$$
B=(p \rightarrow q) \rightarrow r
$$

When p is false, q is true and r is false; then A is true and B is false.
$\therefore \mathrm{A} \rightarrow \mathrm{B}$ is not a tautology.

15. Ans: (c)

Sol: S1: $\sim(p \vee q) \rightarrow(p \rightarrow q)$
Let us represent this as $\mathrm{A} \rightarrow \mathrm{B}$, where
$A=\sim(p \vee q)$ and $B=(p \rightarrow q)$

Here, B is false only when p is true and q is false.
For this set of truth values, A is also false.
$\therefore \mathrm{S} 1$ is a tautology
S2: $\sim(q \rightarrow \sim p) \rightarrow(p \rightarrow \sim q)$
Let us represent this as $\mathrm{A} \rightarrow \mathrm{B}$. where $A=\sim(q \rightarrow \sim p)$ and $B=(p \rightarrow \sim q)$
Here, B is false only when p is true and q is true.
For this set of truth values, A is true.
$\therefore \mathrm{S} 2$ is not a tautology
S3: $\sim(p \rightarrow q) \rightarrow(p \vee q)$
Let us represent this as $\mathrm{A} \rightarrow \mathrm{B}$.
Here, B is false only when p is false and q is false.
In this case, A is also false.

. S3 is a tautology

S4: $(p \wedge \sim q) \rightarrow(p \leftrightarrow q)$
Let us represent this as $\mathrm{A} \rightarrow \mathrm{B}$.
Here, A is true only when p is true and q is false.
In this case, B is false.
$\therefore \mathrm{S} 4$ is not a tautology
16. Ans: (b)

Sol: The truth table of a propositional function in n variables contain 2^{n} rows. In each row the function can be true or false.
By product rule, number of non equivalent propositional functions (different truth tables) possible $=2^{\left(2^{n}\right)}$.

If we put $\mathrm{n}=3$, we get 256 .
17. Ans: (b)

Sol: In the given formula, if we replace ($\mathrm{c} \rightarrow \sim \mathrm{d}$) with ($\sim \mathrm{c} \vee \sim \mathrm{d}$), then the given formula is a substitution instance of destructive dilemma.
\therefore The given formula is valid.

18. Ans: (c)

Sol: If $(p \rightarrow q)$ is false then p is true and q is false.
(a) $((\sim p) \wedge q) \leftrightarrow(p \vee q)$
replacing p with true and q with false,
we have $(\mathrm{F} \wedge \mathrm{F}) \leftrightarrow(\mathrm{T} \vee \mathrm{F})$
$\Leftrightarrow \mathrm{F} \leftrightarrow \mathrm{T}$
$\Leftrightarrow F$
(b) $(\mathrm{p} \leftrightarrow \mathrm{q})$
replacing p with true and q with false, we have

$$
(\mathrm{T} \leftrightarrow \mathrm{~F}) \Leftrightarrow \mathrm{F}
$$

(c) $(p \vee q) \vee r$
replacing p with true and q with false, we have

$$
(T \vee F) \vee r \Leftrightarrow T
$$

(d) $(p \wedge q) \vee r$
replacing p with true and q with false, we have

$$
(\mathrm{T} \wedge \mathrm{~F}) \vee \mathrm{r} \Leftrightarrow \mathrm{r}
$$

19. Ans: (b)

Sol: $\mathbf{S}_{\mathbf{1}}$: When a is false and b is false, then the given formula has truth value false.
$\therefore \mathrm{S}_{1}$ is not valid
$\mathbf{S}_{\mathbf{2}}:(\mathrm{a} \leftrightarrow \mathrm{b})$ is equivalent to $((\mathrm{a} \wedge \mathrm{b}) \vee(\neg \mathrm{a} \wedge \neg \mathrm{b}))$
$\therefore \mathrm{S}_{2}$ is valid
20. Ans: (a)

Sol: $\mathbf{S}_{\mathbf{1}}$: Let us denote the given formula by $\mathrm{P} \Rightarrow \mathrm{Q}$ Here, Q is false only when a is true, b is true and c is false.

For these truth values, P also has truth value false.
$\therefore \mathrm{S}_{1}$ is valid.
\mathbf{S}_{2} : When a is true, b is false and c is false; the given formula has truth value false. $\therefore \mathrm{S}_{2}$ is not valid.
21. Ans: (c)

Sol: $\mathbf{S}_{\mathbf{1}}: \mathrm{p} \rightarrow(\mathrm{q} \wedge \mathrm{r})$

$$
\begin{aligned}
& \Leftrightarrow \sim p \vee(q \wedge r) \\
& \Leftrightarrow(\sim p \vee q) \wedge(\sim p \vee r) \\
& \Leftrightarrow(p \rightarrow q) \wedge(p \rightarrow r) \\
S_{2}: & {[(p \vee q) \rightarrow r] } \\
5 & \Leftrightarrow \sim(p \vee q) \vee r \\
& \Leftrightarrow(\sim p \wedge \sim q) \vee r \\
& \Leftrightarrow(\sim p \vee r) \wedge(\sim q \vee r) \\
& \Leftrightarrow[(p \rightarrow r) \wedge(q \rightarrow r)]
\end{aligned}
$$

22. Ans: (a)

Sol: $[p \rightarrow(q \vee r)]$
$\Leftrightarrow \sim p \vee q \vee r$
$\Leftrightarrow \sim(p \wedge \sim q) \vee r$
$\Leftrightarrow[(\mathrm{p} \wedge \sim \mathrm{q}) \rightarrow \mathrm{r}]$
\therefore The given formula is valid.

6
CSIT-Postal Coaching Solutions
23. Ans: (c)

Sol: $\mathbf{S}_{1}: p \rightarrow(q \wedge r)$
$\Leftrightarrow \sim p \vee(q \wedge r)$
The dual is $\sim \mathrm{p} \wedge(\mathrm{q} \vee \mathrm{r})$
$\mathbf{S}_{\mathbf{2}}: \mathrm{p} \leftrightarrow \mathrm{q}$
$\Leftrightarrow(\mathrm{p} \wedge \mathrm{q}) \vee(\sim \mathrm{p} \wedge \sim \mathrm{q})$
The dual is $\quad(\sim p \vee \sim q) \wedge(q \vee p)$

24. Ans: (a)

Sol: $((a \wedge b) \rightarrow c)$
$\Leftrightarrow \sim(a \wedge b) \vee c$
$\Leftrightarrow \sim a \vee \sim b \vee c$
$\Leftrightarrow(\sim a \vee c) \vee(\sim b \vee c)$
$\Leftrightarrow((\mathrm{a} \rightarrow \mathrm{c}) \vee(\mathrm{b} \rightarrow \mathrm{c}))$
25. Ans: (c)

Sol: Argument1: Let
p : there was a ball game
q : travelling was difficult.
r : they arrived on time
The given argument in symbolic form is

1. $\mathrm{p} \rightarrow \mathrm{q}$
2. $r \rightarrow \sim q$
3. r
$\sim p$
premise premise premise conclusion

Proof:

4. $\sim q$
(2), (3), modus pones
5. $\sim p$
(1), (4), modus tollens
\therefore The argument is valid

Argument2:

Let p : jack misses many classes through illness
q : he fails high school.
r : he is uneducated.
s : jack reads a lot of books
t : jack is smart
The given argument in symbolic form is

1. $\mathrm{p} \rightarrow \mathrm{q}$
2. $\mathrm{q} \rightarrow \mathrm{r}$
3. $s \rightarrow \sim r$
4. $\mathrm{p} \wedge \mathrm{s}$
$\therefore \mathrm{t}$
premise premise premise premise conclusion

Proof:

5. $\mathrm{p} \rightarrow \mathrm{r} \quad$ (1), (2), transitivity
6. p
(4), simplification
7. s
(4), simplification
8. r
(5), (6), modus ponens
9. $\sim r$
(3), (7), modus ponens
(8) and (9) contradict each other.
\therefore The premises are inconsistent.
Hence, the argument is valid.

26. Ans: (b)

Sol: $(\mathrm{p} \wedge(\sim \mathrm{r} \vee \mathrm{q} \vee \sim \mathrm{q})) \vee((\mathrm{r} \vee \mathrm{t} \vee \sim \mathrm{r}) \wedge \sim \mathrm{q})$
$\Leftrightarrow(p \wedge T) \vee(T \wedge \sim q)$
$\Leftrightarrow p \vee \sim q$
27. Ans: (a)

Sol: $(p \vee(p \wedge q) \vee(p \wedge q \wedge \sim r)) \wedge((p \wedge r \wedge t) \vee t)$
In boolean algebra notation

$$
\begin{aligned}
& (\mathrm{p}+(\mathrm{p} \cdot \mathrm{q})+(\mathrm{p} \cdot \mathrm{q} \cdot \sim \mathrm{r})) \cdot((\mathrm{p} \cdot \mathrm{r} \cdot \mathrm{t})+\mathrm{t}) \\
& =\mathrm{p} \cdot(1+\mathrm{q}+\overline{\mathrm{r}}) \cdot \mathrm{t}(\mathrm{p} \cdot \mathrm{r}+1) \\
& =\mathrm{p} \cdot \mathrm{t} \\
& =\mathrm{p} \wedge \mathrm{t}
\end{aligned}
$$

28. Ans: (a)

Sol: The given formula is equivalent to the following argument

1. p
2. $(\mathrm{p} \rightarrow \mathrm{q})$
3. $(\mathrm{s} \vee \mathrm{r})$
4. $(\mathrm{r} \rightarrow \sim \mathrm{q})$
$\therefore(\mathrm{s} \vee \mathrm{t})$
premise
premise
premise
premise
conclusion

Proof:

5. q
(1), (2), modus pones
6. $\sim \mathrm{r}$
(4), (5), modus tollens
7. s
(3), (6), disjunctive syllogism
8. $\mathrm{s} \vee \mathrm{t}$
(7), addition

The argument is valid.
\therefore The given formula is valid.
29. Ans: (a)

Sol: The given formula is equivalent to the following argument

1. $((\sim p \vee q) \rightarrow r)$
premise
2. $(r \rightarrow(s \vee t))$
3. $(\sim \mathrm{s} \wedge \sim \mathrm{u})$
4. $(\sim \mathrm{u} \rightarrow \sim \mathrm{t})\}$
$\therefore \mathrm{p}$

$$
\begin{aligned}
& \text { premise } \\
& \text { premise } \\
& \text { premise } \\
& \text { conclusion }
\end{aligned}
$$

Proof:

5. $\sim s$
(3), simplification
6. ~u
(3), simplification
7. ~
(4), (6), modus ponens
8. $\sim \mathrm{s} \wedge \sim \mathrm{t}$
(5), (7), conjunction
9. $\sim(\mathrm{s} \vee \mathrm{t})$
(8), equivalence
10. $\sim r$
(2), (9), modus tollens
11. $\sim(\sim p \vee q)$
(1), (10), modus tollens
12. $\mathrm{p} \wedge \sim \mathrm{q}$
(11), equivalence
13. p
(12), simplification

The argument is valid.
\therefore The given formula is valid.
30. Ans: (a)

Sol: The argument is valid by the rule of constructive dilemma.

31. Ans: (a)

Sol: The given formula is equivalent to the following argument

1. $(\sim \mathrm{p} \leftrightarrow \mathrm{q})$ premise
2. $(\mathrm{q} \rightarrow \mathrm{r})$ premise
3. ($\sim \mathrm{r})$ premise
$\therefore \mathrm{p}$ conclusion

Proof:

4. $\sim q$
(2), (3), modus tollens
5. $(\sim \mathrm{p} \rightarrow \mathrm{q})$
(1), simplification
6. p
(4), (5), modus tollens

The argument is valid.
\therefore The given formula is valid.
32. Ans: (c)

Sol: $\mathbf{S}_{\mathbf{1}}:(\mathrm{a} \wedge \mathrm{b}) \vee \mathrm{c}$

$$
\begin{aligned}
& =(a \cdot b)+c \\
& =(a+c) \cdot(b+c)
\end{aligned}
$$

$$
\begin{aligned}
& =\{(\mathrm{a}+\mathrm{c})+(\mathrm{b} \cdot \overline{\mathrm{~b}})\} \cdot\{(\mathrm{a} \cdot \overline{\mathrm{a}})+(\mathrm{b}+\mathrm{c})\} \\
& =(\mathrm{a}+\mathrm{b}+\mathrm{c}) \cdot(\mathrm{a}+\overline{\mathrm{b}}+\mathrm{c}) \cdot(\overline{\mathrm{a}}+\mathrm{b}+\mathrm{c})\} \\
& =(\mathrm{a} \vee \mathrm{~b} \vee \mathrm{c}) \wedge(\mathrm{a} \vee \sim \mathrm{~b} \vee \mathrm{c}) \wedge(\sim \mathrm{a} \vee \mathrm{~b} \vee \mathrm{c})
\end{aligned}
$$

which is the required conjunctive normal form.
$\mathbf{S}_{\mathbf{2}}: \mathrm{a} \wedge(\mathrm{b} \leftrightarrow \mathrm{c})$

$$
\begin{aligned}
& =\mathrm{a} \wedge\{(\mathrm{~b} \wedge \mathrm{c}) \vee(\sim \mathrm{b} \wedge \sim \mathrm{c})\} \\
& =(\mathrm{a} \wedge \mathrm{~b} \wedge \mathrm{c}) \vee(\mathrm{a} \wedge \sim \mathrm{~b} \wedge \sim \mathrm{c})
\end{aligned}
$$

Which is the required disjunctive normal form.
33. Ans: (c)

Sol: (I). p: It is not raining
q : Rita has her umbrella.
r: Rita does not get wet.
The given argument in symbolic form is
3. $\sim p \vee r$
$\therefore \mathrm{r}$
premise premise conclusion

The argument is valid, by the rule of dilemma.
(II). p: Superman were able to prevent evil q : Superman were willing to prevent evil
r: Superman would prevent evil
s: Superman would be impotent.
t: Superman would be malevolent.
u: Superman exist.
The given argument in symbolic form is

1. $(\mathrm{p} \wedge \mathrm{q}) \rightarrow \mathrm{r}$
2. $\sim \mathrm{p} \rightarrow \mathrm{s}$
3. $\sim \mathrm{q} \rightarrow \mathrm{t}$
4. $\sim \mathrm{r}$
5. $u \rightarrow(\sim s \wedge \sim t)$
$\therefore \sim u$
premise
premise
premise
premise
premise
conclusion

Proof:

6. $\sim(p \wedge q)$
(1), (4), modus tollens
7. $\sim p \vee \sim q$
(6), demorgan's law
8. $(\mathrm{s} \vee \mathrm{t})$
(2), (3),
constructive dilemma
(5), (8), modus tollens
9. ~u
\therefore The argument is valid.

First Order Logic

34. Ans: (c)

Sol: A statement is a predicate if we can replace every variable in the statement by any instance in its domain to form a proposition. S_{1} is false for any real number.
$\therefore \mathrm{S}_{1}$ is a predicate
S_{2} is true for some real numbers which are odd integers.
$\therefore \mathrm{S}_{2}$ is a predicate
35. Ans: (b)

Sol: $\mathrm{P}(\mathrm{x}, \mathrm{y})=(\mathrm{x} \vee \mathrm{y}) \rightarrow \mathrm{z}$
$\sim P(x, y)=(x \vee y) \wedge \sim z$
The negation of $\forall x \exists y P(x, y)$ is $\exists x \quad \forall y$ $((\mathrm{x} \vee \mathrm{y}) \wedge \sim \mathrm{z})$
36. Ans: (d)

Sol: 1. If we choose $\mathrm{y}=17-\mathrm{x}$ then ϕ is true.
2. When $x=17$, there is no positive integer y which satisfies ϕ
3. When $x=17$, there is no positive integer y which satisfies ϕ
4. If we choose $y=17-x$ then ϕ is true.

37. Ans: (a)

Sol: In general, the universal quantifier take the connective \rightarrow and the existential quantifier take the connective \wedge.
The given formula in symbolic form, can be written as

$$
\forall \mathrm{n}[(\mathrm{n}>1) \rightarrow \exists \mathrm{x}\{\mathrm{p}(\mathrm{x}) \wedge(\mathrm{n}<\mathrm{x}<2 \mathrm{n})\}]
$$

38. Ans: (a)

Sol: The given statement can be expressed as

$$
\forall \mathrm{n}[(\mathrm{n}>1) \rightarrow \exists \mathrm{x}\{\mathrm{p}(\mathrm{x}) \wedge(\mathrm{n}<\mathrm{x}<2 \mathrm{n})\}]
$$

Its negation is

$$
\begin{aligned}
& \sim\{\forall \mathrm{n}[(\mathrm{n}>1) \rightarrow \exists \mathrm{x}\{\mathrm{p}(\mathrm{x}) \wedge(\mathrm{n}<\mathrm{x}<2 \mathrm{n})\}] \\
& \Leftrightarrow \exists \mathrm{n} \sim[(\mathrm{n}>1) \rightarrow \exists \mathrm{x}\{\mathrm{p}(\mathrm{x}) \wedge(\mathrm{n}<\mathrm{x}<2 \mathrm{n})\}] \\
& \Leftrightarrow \exists \mathrm{n}[(\mathrm{n}>1) \wedge \sim \exists \mathrm{x}\{\mathrm{p}(\mathrm{x}) \wedge(\mathrm{n}<\mathrm{x}<2 \mathrm{n})\}] \\
& \Leftrightarrow \exists \mathrm{n}[(\mathrm{n}>1) \wedge \forall \mathrm{x} \sim\{\mathrm{p}(\mathrm{x}) \wedge(\mathrm{n}<\mathrm{x}<2 \mathrm{n})\}] \\
& \Leftrightarrow \exists \mathrm{n}[(\mathrm{n}>1) \wedge \forall \mathrm{x}\{\mathrm{p}(\mathrm{x}) \rightarrow \sim(\mathrm{n}<\mathrm{x}<2 \mathrm{n})\}] \\
& \Leftrightarrow \exists \mathrm{n}[(\mathrm{n}>1) \wedge \forall \mathrm{x}\{\mathrm{p}(\mathrm{x}) \rightarrow((\mathrm{x} \leq \mathrm{n}) \vee \\
& (\mathrm{x} \geq 2 \mathrm{n}))\}]
\end{aligned}
$$

39. Ans: (d)

Sol: I) Let $\mathrm{D}(\mathrm{x}): \mathrm{x}$ is a doctor
$C(x)$: x is a college graduate
$\mathrm{G}(\mathrm{x})$: x is a golfer

The given argument can be written as

1) $\forall_{x}\{D(x) \rightarrow C(x)\}$
2) $\exists_{\underline{x}}\{D(x) \wedge \sim G(x)\}$
$\therefore \exists_{\mathrm{x}}\{\mathrm{G}(\mathrm{x}) \wedge \sim \mathrm{C}(\mathrm{x})\}$
3) $\{\mathrm{D}(\mathrm{a}) \wedge \sim \mathrm{G}(\mathrm{a})\}$
2), Existential Specification
4) $\{\mathrm{D}(\mathrm{a}) \rightarrow \mathrm{C}(\mathrm{a})\}$
5) $D(a)$
6) $\sim G(a)$
1), Universal Specification
3), Simplification
7) C (a)
3), Simplification
8) $\{\mathrm{C}(\mathrm{a}) \wedge \sim \mathrm{G}(\mathrm{a})\}$
), 5), Modus ponens
9) $\exists_{x}\{G(x) \wedge \sim C(x)\}$
8), Existential

Generalization
The argument is not valid
II) Let $\mathrm{M}(\mathrm{x}) \mathrm{x}$ is a mother
$N(x) x$ is a male
$P(x)$: x is a politician
The given argument is

1) $\forall_{x}\{M(x) \rightarrow \sim N(x)\}$
2) $\exists_{\underline{x}}\{N(x) \wedge P(x)\}$
$\therefore \exists_{\mathrm{x}}\{\mathrm{P}(\mathrm{x}) \wedge \sim \mathrm{M}(\mathrm{x})\}$
3) $N($ a $) \wedge P$ (a) 2), Existential Specification
4) $M($ a) $\rightarrow \sim N$ (a) 1), Universal Specification
5) $\mathrm{N}(\mathrm{a})$
3), Simplification
6) P (a)
3), Simplification
7) $\sim M(a)$
4), 5), Modus tollens
8) $\{P(\mathrm{a}) \wedge \sim \mathrm{M}(\mathrm{a})\}$
6), 7), Conjunction
9) $\exists_{x}\{P(x) \wedge \sim M(x)\}$
8), Existential

Generalization
\therefore The argument is valid.
40. Ans: (c)

Sol: $\mathbf{S}_{\mathbf{1}}$: L.H.S $=\exists \mathrm{x}[\mathrm{P}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{x})]$
$\Rightarrow \mathrm{P}(\mathrm{a}) \vee \mathrm{Q}(\mathrm{a}) \quad$ [Existential specification]
$\Rightarrow \exists \mathrm{x}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{a}) \quad$ [Existential Generalization]
$\Rightarrow(\exists \mathrm{xP}(\mathrm{x}) \vee \exists \mathrm{xQ}(\mathrm{x}))$ [Existential Generalization]
\therefore L.H.S. \Rightarrow R.H.S
Now, R.H.S $=(\exists \mathrm{x} P(\mathrm{x}) \vee \exists \mathrm{x} \mathrm{Q}(\mathrm{x}))$
$\Rightarrow P(a) \vee \exists \mathrm{x}(\mathrm{x}) \quad$ [Existential Specification]
$\Rightarrow \mathrm{P}(\mathrm{a}) \vee \mathrm{Q}(\mathrm{b}) \quad$ [Existential Specification]
$\Rightarrow \mathrm{P}(\mathrm{a}) \vee \mathrm{Q}(\mathrm{b}) \vee \mathrm{P}(\mathrm{b}) \vee \mathrm{Q}(\mathrm{a}) \quad$ [Addition]
$\Rightarrow[P(a) \vee \mathrm{Q}(\mathrm{a})] \vee[\mathrm{P}(\mathrm{b}) \vee \mathrm{Q}(\mathrm{b})]$
[By commutative and associative laws]
$\Rightarrow \exists \mathrm{x}[\mathrm{P}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{x})] \vee \exists \mathrm{x}[\mathrm{P}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{x})]$
[By Existential Generalization]
$\Rightarrow \exists \mathrm{x}[\mathrm{P}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{x})] \quad$ [By Idempotent law]
\therefore R.H.S. \Rightarrow L.H.S.
Hence, L.H.S. \Leftrightarrow R.H.S.
$\mathbf{S}_{\mathbf{2}}$: Try your self (Similar to \mathbf{S}_{1})

41. Ans: (a)

Sol: S_{1} : Proof by contradiction

1. $(\forall \mathrm{xP}(\mathrm{x}) \vee \forall \mathrm{x} \mathrm{Q}(\mathrm{x})) \quad$ Premise
2. $\sim\{\forall \mathrm{x}[\mathrm{P}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{x})]\} \quad$ New premise for indirect proof
3. $\exists \mathrm{x}[\sim \mathrm{P}(\mathrm{x}) \wedge \sim \mathrm{Q}(\mathrm{x})]$
(2), equivalence
4. $[\sim \mathrm{P}(\mathrm{a}) \wedge \sim \mathrm{Q}(\mathrm{a})]$
(3),existential generalization
5. $\sim \mathrm{P}(\mathrm{a})$
(4), simplification
6. $\sim \mathrm{Q}(\mathrm{a})$
(4), simplification
7. $\exists \mathrm{x} \sim \mathrm{P}(\mathrm{x})$
(5), existential generalization
8. $\exists \mathrm{x} \sim \mathrm{Q}(\mathrm{x})$
(6), existential generalization
9. $\exists \mathrm{x} \sim \mathrm{P}(\mathrm{x}) \wedge \exists \mathrm{x} \sim \mathrm{Q}(\mathrm{x})$
(7),(8), conjunction
10. $\sim(\forall x P(x) \vee \forall x Q(x))$
(9), equivalence
(1) and (10), contradict each other.
$\therefore \mathrm{S}_{1}$ is valid
$\mathbf{S}_{2}: \forall \mathrm{x}[\mathrm{P}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{x})] \Rightarrow(\forall \mathrm{x} P(\mathrm{x}) \vee \forall \mathrm{x} \mathrm{Q}(\mathrm{x}))$
We can disprove the above statement by counter example:
Let the universe be $\{\mathrm{a}, \mathrm{b}\}$. Suppose $\mathrm{P}(\mathrm{a})$ is true, $\mathrm{P}(\mathrm{b})$ is false, $\mathrm{Q}(\mathrm{a})$ is false and $\mathrm{Q}(\mathrm{b})$ is true.

For these values the given statement is false.
$\therefore \mathrm{S}_{2}$ is not valid

42. Ans: (a)

Sol: The given statement can be written as

$$
\exists \mathrm{x}\{\mathrm{~S}(\mathrm{x}) \wedge \mathrm{M}(\mathrm{x}) \wedge \sim \mathrm{H}(\mathrm{x})\}
$$

It's negation is

$$
\forall \mathrm{x}\{\sim \mathrm{~S}(\mathrm{x}) \vee \sim \mathrm{M}(\mathrm{x}) \vee \mathrm{H}(\mathrm{x})\}
$$

(By demorgan's law)

$$
\Leftrightarrow \forall \mathrm{x}\{\{\mathrm{~S}(\mathrm{x}) \wedge \mathrm{M}(\mathrm{x})\} \rightarrow \mathrm{H}(\mathrm{x})\}
$$

$(\because(\mathrm{P} \vee \mathrm{Q})=(\sim \mathrm{P} \rightarrow \mathrm{Q}))$
43. Ans: (d)

Sol: I Let $U=\{\mathrm{a}, \mathrm{b}\}$ be the universe of discourse, such that
$\mathrm{P}(\mathrm{a})$ is true, $\mathrm{P}(\mathrm{b})$ is false
$\mathrm{Q}(\mathrm{a})$ is false, and $\mathrm{Q}(\mathrm{b})$ is true
Now, L.H.S of I is true
And R.H.S of I is false
\therefore The statement I is not valid.
II. Let $\mathrm{U}=\{\mathrm{a}, \mathrm{b}\}$ be the universe of discourse, such that
$\mathrm{P}(\mathrm{a})$ is true and $\mathrm{P}(\mathrm{b})$ is false
$\mathrm{Q}(\mathrm{a})$ is false and $\mathrm{Q}(\mathrm{b})$ is true
Now,
The antecedent of II is true and consequent is false
\therefore The statement II is not valid.

44. Ans: (c)

Sol: I. The premises are

1. $\forall \mathrm{x}[\mathrm{P}(\mathrm{x}) \rightarrow\{\mathrm{Q}(\mathrm{x}) \wedge \mathrm{S}(\mathrm{x})\}]$
2. $\forall x\{P(x) \wedge R(x)\}$

3. $\mathrm{P}(\mathrm{a}) \rightarrow\{\mathrm{Q}(\mathrm{a}) \wedge \mathrm{S}(\mathrm{a})\}$	(1) universal

4. $\mathrm{P}(\mathrm{a}) \wedge \mathrm{R}(\mathrm{a})$
(2) universal specification
5. $\mathrm{P}(\mathrm{a})$
(4), simplification
6. $Q(a) \wedge S(a)$
(3),(5) modus ponens
7. $\mathrm{S}(\mathrm{a})$
(6), simplification
8. R(a)
(4), simplification
9. $R(a) \wedge S(a)$
(8), (7), Conjunction
10. $\forall \mathrm{x}\{\mathrm{R}(\mathrm{x}) \wedge \mathrm{S}(\mathrm{x})\}$
(9) U.G
\therefore Argument I is valid.
II. The given argument contains only universal quantifier. We can drop the quantifiers in the argument.

Now the premises are

1. $\{\mathrm{P}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{x})\}$
2. $\{\sim P(x) \wedge Q(x)\} \rightarrow R(x)$

The conclusion is $\{\sim \mathrm{R}(\mathrm{x}) \rightarrow \mathrm{P}(\mathrm{x})\}$.
Let us apply conditional proof
3. $\sim R(x)$ new premise
4. $\{\mathrm{P}(\mathrm{x}) \vee \sim \mathrm{Q}(\mathrm{x})\}$
(2),(3), modus tollens
5. $\{\mathrm{P}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{x})\} \wedge\{\mathrm{P}(\mathrm{x}) \vee \sim \mathrm{Q}(\mathrm{x})\}$
(2, (4), conjunction
6. $\mathrm{P}(\mathrm{x}) \vee\{\mathrm{Q}(\mathrm{x}) \wedge \sim \mathrm{Q}(\mathrm{x})\}$ (5), Dist. Law
7. $P(x) \vee F$
8. $\mathrm{P}(\mathrm{x})$
\therefore Argument II is valid.

45. Ans: (b)

Sol: The given statements can be represented by the following venn diagram

Interesting People

Uninteresting People

From venn diagram, option(c) does not follow.

46. Ans: (a)

Sol: The given statements can be expressed as

$$
\exists \mathrm{x}\{\mathrm{D}(\mathrm{x}) \wedge \sim \mathrm{S}(\mathrm{x})\}
$$

It's negation is

$$
\forall \mathrm{x}\{(\mathrm{D}(\mathrm{x}) \rightarrow \mathrm{S}(\mathrm{x})\}
$$

47. Ans: (c)

Sol: \mathbf{S}_{1} :

$$
\exists \mathrm{x}\{\mathrm{P}(\mathrm{x}) \rightarrow \mathrm{Q}(\mathrm{x})\}
$$

$$
\begin{array}{ll}
\Leftrightarrow & \exists \mathrm{x}\{\sim \mathrm{P}(\mathrm{x}) \vee \mathrm{R}(\mathrm{x})\} \\
\Leftrightarrow & \{\exists \mathrm{x} \sim \mathrm{P}(\mathrm{x}) \vee \exists \mathrm{xR}(\mathrm{x})\} \\
\Leftrightarrow & \{\forall \mathrm{xP}(\mathrm{x}) \rightarrow \exists \mathrm{xQ}(\mathrm{x})\} \\
\therefore & \mathrm{S}_{1} \text { is true }
\end{array}
$$

$\mathbf{S}_{\mathbf{2}}: \quad \exists \mathrm{x} \quad \forall \mathrm{y} \quad \mathrm{P}(\mathrm{x}, \mathrm{y})$
$\Rightarrow \quad \forall \mathrm{y} \mathrm{P}(\mathrm{a}, \mathrm{y})$ for some a
$\Rightarrow \quad \mathrm{P}(\mathrm{a}, \mathrm{b})$ is true for all b
$\Rightarrow \quad \exists \mathrm{x} \mathrm{P}(\mathrm{x}, \mathrm{b})$ is true for all b
$\Rightarrow \quad \forall \mathrm{y} \exists \mathrm{x} \mathrm{P}(\mathrm{x}, \mathrm{y})$ is true
$\therefore \quad \mathrm{S}_{2}$ is true
48. Ans: (c)

Sol: $\exists_{\mathrm{y}} \forall_{\mathrm{x}} \mathrm{P}(\mathrm{y}, \mathrm{x}) \rightarrow \forall_{\mathrm{y}} \exists_{\mathrm{x}} \mathrm{P}(\mathrm{x}, \mathrm{y})$
$\Leftrightarrow \exists_{\mathrm{x}} \forall_{\mathrm{y}} \mathrm{P}(\mathrm{x}, \mathrm{y}) \rightarrow \forall_{\mathrm{y}} \exists_{\mathrm{x}} \mathrm{P}(\mathrm{x}, \mathrm{y})$
($\because \mathrm{x}$ and y are dummy variables)
Which is valid as per the relationship diagram shown below

The remaining options are not true as per the diagram.
49. Ans: (d)

Sol: S_{1} is true

Once we select any integer n, the integer m $=5-\mathrm{n}$ does exist and
$\mathrm{n}+\mathrm{m}=\mathrm{n}+(5-\mathrm{n})=5$
$\mathbf{S}_{\mathbf{2}}$ is true, because if we choose $\mathrm{n}=1$ the statement $\mathrm{nm}=\mathrm{m}$ is true for any integer m .
$\mathbf{S}_{\mathbf{3}}$ is false, for example, when $\mathrm{m}=0$ the statement is false for all n
S_{4} is false, here we cannot choose $n=-m$, because m is fixed.
50. Ans: (a)

Sol: $\mathbf{S}_{\mathbf{1}}$: L.H.S $\Leftrightarrow \exists \mathrm{x}(\mathrm{A}(\mathrm{x}) \rightarrow \mathrm{B}(\mathrm{x}))$

$$
\begin{aligned}
& \Leftrightarrow \exists \mathrm{x}(\sim \mathrm{~A}(\mathrm{x}) \vee \mathrm{B}(\mathrm{x})), \mathrm{E}_{16} \\
& \Leftrightarrow \exists \mathrm{x} \sim \mathrm{~A}(\mathrm{x}) \vee \exists \mathrm{xB} \mathrm{~B}(\mathrm{x}), \mathrm{E}_{23} \\
& \Leftrightarrow \forall \mathrm{xA}(\mathrm{x}) \rightarrow \exists \mathrm{xB}(\mathrm{x}), \mathrm{E}_{16} \\
& =\text { R.H.S }
\end{aligned}
$$

$\mathbf{S}_{2}:$ L.H.S $\Leftrightarrow\{\forall \mathrm{x} \sim \mathrm{A}(\mathrm{x}) \vee \forall \mathrm{xB}(\mathrm{x}))$

$$
\begin{aligned}
& \Rightarrow \forall \mathrm{x}(\sim \mathrm{~A}(\mathrm{x}) \vee \mathrm{B}(\mathrm{x})) \\
& \Rightarrow \forall \mathrm{x}(\mathrm{~A}(\mathrm{x}) \rightarrow \mathrm{B}(\mathrm{x}))=\mathrm{R} . \mathrm{H} . \mathrm{S}
\end{aligned}
$$

But converse is not true
$\therefore \mathrm{S}_{2}$ is false
S_{3} valid equivalence
S_{4} is not valid (converse is not true)
51. Ans: (b)

Sol: (a) The given formula is valid by conditional proof, if the following argument is valid.
(1) $\forall_{\mathrm{x}}\{\mathrm{P}(\mathrm{x}) \rightarrow \mathrm{Q}(\mathrm{x})\}$
(2) $\forall{ }_{x} P(x)$ new premise to apply C.P

$$
\therefore \nabla_{\mathrm{x}} \mathrm{Q}(\mathrm{x})
$$

Proof:

(3) $\mathrm{P}(\mathrm{a}) \rightarrow \mathrm{Q}(\mathrm{a})$
(4) $\mathrm{P}(\mathrm{a})$
(1) , U.S
(2), U.S
(5) $\mathrm{Q}(\mathrm{a})$
(3), (4), M.P
(6) $\forall_{\mathrm{x}} \mathrm{Q}(\mathrm{x})$
(5) , U.S
\therefore The given formula is valid (C.P)
(b) The statement need not be true.

Let c and d are two elements in the universe of discourse, such that $\mathrm{P}(\mathrm{c})$ is true and $\mathrm{P}(\mathrm{d})$ is false and $\mathrm{Q}(\mathrm{c})$ is false and $\mathrm{Q}(\mathrm{d})$ is false.

Now, the L.H.S of the given statement is true but R.H.S is false.
\therefore The given statement is not valid.
(c) $\forall_{\mathrm{x}}(\mathrm{P}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{x})) \Rightarrow\left(\forall_{\mathrm{x}} \mathrm{P}(\mathrm{x}) \vee \exists_{\mathrm{x}} \mathrm{Q}(\mathrm{x})\right)$

Indirect proof:

1) $\forall_{x}(P(x) \vee Q(x)) \quad$ Premise
2) $\sim\left(\forall_{x} P(x) \vee \exists_{x} Q(x)\right)$

New premise to apply Indirect proof
3) $\exists_{x} \sim P(x) \wedge \forall_{x} \sim Q(x)$
(2), Demorgan's law
4) $\exists_{x} \sim P(x)$
(3), Simplification
5) $\forall_{x} \sim Q(x)$
(3), Simplification
6) ~ P (a)
(4), E.S
7) $\sim Q(a)$
(5), U.S
8) ($\sim P(a) \wedge \sim Q(a))$
(6), (7),Conjunction
9) $\sim(P(a) \vee Q(a))$
(8), Demorgan's law
10) $(\mathrm{P}(\mathrm{a}) \vee \mathrm{Q}(\mathrm{a}))$
(1), U.S
11) F
(9), (10), Conjunction
\therefore valid (Indirect proof)
S_{2} : The argument is

1) $\forall_{x} \forall_{y}(\mathrm{P}(\mathrm{x}, \mathrm{y}) \rightarrow \mathrm{W}(\mathrm{x}, \mathrm{y}))$
2) $\sim W(a, b)$
$\therefore \sim \mathrm{P}(\mathrm{a}, \mathrm{b})$
(d) $\forall_{x}\{P(x) \vee \mathrm{Q}(\mathrm{x})\}$ follows from $\left(\forall_{\mathrm{x}} \mathrm{P}(\mathrm{x}) \vee \forall_{\mathrm{x}} \mathrm{Q}(\mathrm{x})\right)$
\therefore The given statement is valid.
52. Ans: (b)

Sol: S_{1} is false. For $\mathrm{x}=0$. There is no integer y such that ' 0 is a divisor of y '
S_{2} is true. If we choose, $x=1$, then the statement is true for any integer y
S_{3} is true. If we choose, $x=1$, then the statement is true for any integer y
S_{4} is false, because there is no integer y which is divisible by all integers.
53. Ans: (a) \& (c)

Sol: There is at most one bear.
$(\neg(\exists x(\exists y((B)(x) \wedge B(y)) \wedge(x \neq y)))))$. There does not exist two different bears.
$(\forall x(\forall y((B(x) \wedge B(y)) \rightarrow(x=y))))$. If there are two bears, they must be the same.

54. Ans: (b) \& (c)

Sol: A is a knave and B is a knight.
Assume A is knight then "The two of us are both knights" is true so, B is knight, but now we have contradiction because of B says " A is a knave".

	14	CSIT-Postal Coaching Solutions

1. Ans: 31

Sol:

$$
\begin{aligned}
& x+y+11+8=50 \\
& x+y=31
\end{aligned}
$$

2. Ans: 2

Sol:

$$
\begin{gathered}
13-x+11-x+2-x+3+2+4+x=31 \\
35-2 x=31 \\
2 x=4 \\
x=2
\end{gathered}
$$

3. Ans: 249

Sol:

$n(5)=\frac{400}{5}=80$
$\mathrm{n}(6)=\frac{400}{6}=66$
$\mathrm{n}(8)=\frac{400}{8}=50$
$n(5 \cap 6)=\frac{400}{30}=13$
$n(5 \cap 8)=\frac{400}{40}=10$
$\mathrm{n}(6 \cap 8)=\frac{400}{24}=16$
$n(5 \cap 6 \cap 8)=\frac{400}{120}=3$
$400-151=249$
04. Ans: (b)

Sol:

$30-(x+y)+(35-(x+z))+(35-(y+z))$
$+x+y+z+15=80$
$x+y+z=35$
$30-(x+y)+35-(x+z)+35-(y+z)$
$=80-(x+y+z+15)$
$=30$
$\begin{aligned} 30 & -(x+y)+35-(x+z)+35-(y+z)+x+y+z \\ & =30+35=65\end{aligned}$
05. Ans: 86

06. Ans: (c)

Sol: If n is even, then number of bit strings of length n which are palindromes $=2^{\frac{n}{2}}$.
If n is odd, then number of bit strings of length n which are palindromes $=2^{\frac{n+1}{2}}$
\therefore Required number of bit strings $=2^{\left\lceil\frac{\mathrm{n}}{2}\right\rceil}$.
07. Ans: 3439

Sol: Number of integers between 1 and 10,000 without digit $7=\left(9^{4}-1\right)+1$
Required number of integers $=10,000-9^{4}$

$$
=3439
$$

8. Ans: 64

Sol: In a binary matrix of order 3×3 we have ' 9 ' elements each element we can choose ' 2 ' ways.
By using symmetric relations we have $2^{\frac{\mathrm{n}(\mathrm{n}-1)}{2}} \times 2^{\mathrm{n}}$ matrices are possible

$$
\begin{aligned}
& \therefore 2^{\frac{3(3-1)}{2}} \times 2^{3} \\
& \quad=64
\end{aligned}
$$

9. Ans: 188

Sol: An English movie and a telugu movie can be selected in $(6)(8)=48$ ways
A telugu movie and a hindi movie can be selected in (8).(10) $=80$ ways
A hindi movie and an English movie can be selected in $(10)(6)=60$ movies
Required number of ways $=48+80+60$

$$
=188
$$

10. Ans: 262

Sol: The total number of integers 1 through 1000 with atleast one repeated digit

$$
\begin{aligned}
& =1000-\left({ }^{9} \mathrm{C}_{1}+{ }^{9} \mathrm{C}_{1} \times{ }^{9} \mathrm{C}_{1}+{ }^{9} \mathrm{C}_{1} \times{ }^{9} \mathrm{C}_{1} \times{ }^{8} \mathrm{C}_{1}\right) \\
& =1000-738 \\
& =262
\end{aligned}
$$

11. Ans: 2187

Sol: Number of 4 digit integers with digit ' 0 ' appearing exactly once

$$
\begin{aligned}
& =\left({ }^{9} \mathrm{C}_{1}+{ }^{9} \mathrm{C}_{1} \times{ }^{9} \mathrm{C}_{1} \times 1\right)+\left({ }^{9} \mathrm{C}_{1} \times{ }^{9} \mathrm{C}_{1} \times{ }^{9} \mathrm{C}_{1} \times 1\right) \\
& \\
& +\left({ }^{9} \mathrm{C}_{1}+{ }^{9} \mathrm{C}_{1} \times{ }^{9} \mathrm{C}_{1} \times 1\right) \\
& \quad=729+729+729 \\
& \quad=2187
\end{aligned}
$$

12. Ans: 2940

Sol: Consider an integer with 5 digits.
Digit 3 can appear in 5 ways
Digit 4 can appear in 4 ways
Digit 5 can appear in 3 ways
Each of the remaining digits we can choose in 7 ways.
By product rule,
Required number of integers

$$
=(5)(4)(3)(7)(7)=2940
$$

13. Ans: (a)

Sol: Since it is a single elimination tournament so we need $(\mathrm{n}-1)$ matches to decide winner.
14. Ans: (c)

Sol: Let P, Q are subsets of S so that $\mathrm{P} \cap \mathrm{Q}=\phi$.

So each element of P, Q are having ' 3 ' possibilities

Case (i) : Elements are in P but not in Q
Case (ii) : Elements are in Q but not in P
Case (iii): Elements are not in P and not in Q
\therefore Number of possibilities $=3^{n}$

15. Ans: $\mathbf{1 5 1 2 0 0}$

Sol: Required number of ways
$=$ Number of ways we can map the 6 persons to 6 of the 10 books
$=\mathrm{P}(10,6)$
$=151200$
16. Ans: 2880

Sol: First girls can sit around a circle in $\angle 4$ ways. Now there are 5 distinct places among the girls, for the 4 boys to sit.

Therefore, the boys can sit in $\mathrm{P}(5,4)$ ways.
By product rule,
Required number of ways $=\angle 4 . P(5,4)$

$$
=2880
$$

17. Ans: 1152

Sol: Consider 8 positions in a row marked 1, 2, $3, \ldots . ., 8$

Case 1: Boys can sit in odd numbered positions in $\angle 4$ ways and girls can sit in even numbered positions in $\angle 4$ ways.

Case 2: Boys can sit in even numbered positions in $\angle 4$ ways and girls can sit in odd numbered positions in $\angle 4$ ways.

Required number of ways

$$
=\angle 4 . \angle 4+\angle 4 . \angle 4=1152
$$

18. Ans: 325

Sol: Number of signals we can generate using 1 flag $=5$
Number of signals we can generate using two flags $=\mathrm{P}(5,2)=5.4=20$ and so on.

Required number of signals

$$
=5+\mathrm{P}(5,2)+\mathrm{P}(5,3)+\mathrm{P}(5,4)+\mathrm{P}(5,5)
$$

$=325$

19. Ans: (a)

Sol: Each book we can give in 10 ways.
By product rule, required number of ways

$$
=10^{6}
$$

20. Ans: 243

Sol: Each digit of the integer we can choose in 3 ways.

By product rule,
Required number of integers $=3^{5}$

$$
=243
$$

21. Ans: 12600

Sol: Required number of permutations

$$
=\frac{\angle 10}{\angle 2 \cdot \angle 3 \cdot \angle 4}=12,600
$$

22. Ans: 360

Sol: Required number of strings $=$ Number of permutations possible with seven 0 's, two 1 's and one 2

$$
=\frac{\angle 10}{\angle 7 . \angle 2 . \angle 1}=360
$$

23. Ans: 2520

Sol: Required number of ways

$$
\begin{aligned}
& =\text { number of ordered partitions } \\
& =\frac{\angle 10}{\angle 3 \cdot \angle 2 \cdot \angle 5}=2520
\end{aligned}
$$

24. Ans: 945

Sol: Required number of ways $=$ Number of unordered partitions of a set into 5 subjects of same size $=\frac{\angle 10}{(\angle 2 \cdot \angle 2 \cdot \angle 2 \cdot \angle 2 \cdot \angle 2) \cdot \angle 5}$

$$
=945
$$

25. Ans: 150

Sol: Required number of ways $=$ Number of onto functions possible from persons to rooms

$$
\begin{aligned}
& =3^{5}-\mathrm{C}(3,1) 2^{5}+\mathrm{C}(3,2) \cdot 1^{5} \\
& =243-3(32)+3 \\
& =150
\end{aligned}
$$

26. Ans: 5400

Sol: Suppose we are choosing 4 men from 6 men then ${ }^{6} \mathrm{C}_{4}$.

And each men pair with women.
First men can choose any one women of 6 women and second men can choose any one
women of 5 women by continuing this process,
Total number of ways $={ }^{6} \mathrm{C}_{4} \times(6 \times 5 \times 4 \times 3)$

$$
=5400
$$

27. Ans: 45

Sol: For maximum number of points of intersection, we have to draw 10 lines so that no three lines are concurrent. In that case, each point corresponds to a pair of distinct straight lines.
\therefore Maximum number of points of intersection $=$ number of ways we can choose two straight lines out of 10 straight lines $=C(10,2)=45$
28. Ans: 120

Sol: The 3 zeros can appear in the sequence in $C(10,3)$ ways. The remaining 7 positions of the sequence can be filled with ones in only one way.
Required number of binary sequences

$$
\begin{aligned}
& =\mathrm{C}(10,3) \cdot 1 \\
& =120
\end{aligned}
$$

29. Ans: 35

Sol: Consider a string of 6 ones in a row. There are 7 positions among the 6 ones for placing 4 zeros. The 4 zeros can be placed in $\mathrm{C}(7,4)$ ways.

Required number of binary sequences

$$
\begin{aligned}
=\mathrm{C}(7,4) & =\mathrm{C}(7,3) \\
& =35
\end{aligned}
$$

30. Ans: 126

Sol: Number of 5 digit integers are possible so that in each of these integers every digit is less than the digit on its right $={ }^{10} \mathrm{C}_{5}-{ }^{9} \mathrm{C}_{4}$

31. Ans: (b)

Sol: We have 2 n persons.
Number of handshakes possible with 2 n persons $=\mathrm{C}(2 \mathrm{n}, 2)$

If each person shakes hands with only his/her spouse, then number of handshakes possible $=\mathrm{n}$
Required number of handshakes

$$
=\mathrm{C}(2 \mathrm{n}, 2)-\mathrm{n}=2 \mathrm{n}(\mathrm{n}-1)
$$

32. Ans: 1092

Sol: In a chess board, we have 9 horizontal lines and 9 vertical lines. A rectangle can be formed with any two horizontal lines and any two vertical lines.
Number of rectangles possible

$$
=\mathrm{C}(9,2) \cdot \mathrm{C}(9,2)=(36)(36)=1296
$$

Number of squares in a chess board

$$
=1^{2}+2^{2}+3^{2}+\ldots+8^{2}=204
$$

Every square is also a rectangle.
Required number of rectangles which are not squares $=1296-204=1092$

33. Ans: (a)

Sol: Let $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ be the dates of the five days of January that the student will spend in the hospital, in increasing order. Note that the requirement that there are no two
consecutive numbers among the a_{i}, and $1 \leq$ $\mathrm{a}_{1}<\mathrm{a}_{2}-1<\mathrm{a}_{3}-2<\mathrm{a}_{4}-3<\mathrm{a}_{2}-4 \leq 27$. In other words, there is an obvious bijection between the set of 5 element subsets of $\{1,2, \ldots .31\}$ containing no two consecutive elements and the set of 5 element subsets of $\{1,2, \ldots . . ., 27\}$.
\therefore Required number of ways $=\mathrm{C}(27,5)$.
34. Ans: 210

Sol: We can choose 6 persons in $\mathrm{C}(10,6)$ ways We can distinct 6 similar books among the 6 persons in only one ways
\therefore Required number of ways

$$
\begin{aligned}
& =C(10,6) .1 \\
& =C(10,4)=210
\end{aligned}
$$

35. Ans: 14656

No range

Sol: Number of committees with all males $=C(12,5)$
Number of committees with all females
$=\mathrm{C}(8,5)$
Required number of committees
$=\mathrm{C}(20,5)-\mathrm{C}(12,5)-\mathrm{C}(8,5)$
$=14656$
36. Ans: (c)

Sol:

The number of triangles formed by joining the vertices of n - sided polygon ${ }^{\mathrm{n}} \mathrm{C}_{3}$ Number of triangles having one side common with that of the polygon $(n-4) n$
Number of triangles having two sides common with that of polygon $=n$

The number of triangles having no side common with that polygon $=x$

Total number of triangles $=(n-4) n+n+x$

$$
\begin{aligned}
& \Rightarrow{ }^{n} C_{3}-(n-4) n-n=x \\
& \Rightarrow x=\frac{n(n-1)(n-2)}{6}-n^{2}+3 n \\
& \Rightarrow x=\frac{n(n-4)(n-5)}{6}
\end{aligned}
$$

37. Ans: 1001

Sol: Required number of ways $=\mathrm{V}(5,10)$

$$
\begin{aligned}
\mathrm{V}(\mathrm{n}, \mathrm{k}) & =\mathrm{C}(\mathrm{n}-1+\mathrm{k}, \mathrm{k}) \\
\Rightarrow \mathrm{V}(5,10) & =\mathrm{C}(14,10) \\
& =\mathrm{C}(14,4) \\
& =1001
\end{aligned}
$$

38. Ans: 455

Sol: To meet the given condition, let us put 1 ball in each box, The remaining 12 balls we can distribute in $V(4,12)$ ways.
Required number of ways $=\mathrm{V}(4,12) .1$

$$
=C(15,12)=C(15,3)=455
$$

39. Ans: 1695

Sol: let $\mathrm{w}=\mathrm{x}_{1}+12$

$$
\begin{aligned}
& x=x_{2}+12 \\
& y=x_{3}+12 \\
& z=x_{4}+12
\end{aligned}
$$

where $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4} \geq 0$
Given $12 \leq w+x+y+z \leq 14$
Let $\mathrm{w}+\mathrm{x}+\mathrm{y}+\mathrm{z}+\mathrm{t}=14$ where $\mathrm{t}>0$

$$
\begin{aligned}
& w+x+y+z+t=13 \\
& w+x+y+z+t=12
\end{aligned}
$$

So, total number of solutions

$$
\begin{aligned}
& ={ }^{18} \mathrm{C}_{4}+{ }^{17} \mathrm{C}_{4}+{ }^{16} \mathrm{C}_{4} \\
& =1695
\end{aligned}
$$

40. Ans: 10

Sol: $\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}=8$

$$
\begin{aligned}
& \mathrm{x}_{1} \geq 3 \\
& \mathrm{x}_{2} \geq-2 \\
& \text { Let } \quad \mathrm{x}_{3} \geq 4 \\
& \mathrm{x}_{1}=\mathrm{P}+3 \\
& \mathrm{x}_{2}=\mathrm{Q}-2 \\
& \mathrm{x}_{3}=\mathrm{R}+4
\end{aligned}
$$

$\mathrm{P} \geq 0, \mathrm{Q} \geq 0, \mathrm{R} \geq 0$

$$
\begin{array}{r}
\mathrm{P}+3+\mathrm{Q}-2+\mathrm{R}+4=8 \\
\mathrm{P}+\mathrm{Q}+\mathrm{R}=3
\end{array}
$$

Number of solutions $={ }^{5} \mathrm{C}_{2}=10$
41. Ans: 63

Sol: Let $\mathrm{X}_{1}=$ units digit, $\mathrm{X}_{2}=$ tens digit and $\mathrm{X}_{3}=$ hundred digit
Number of non negative integer solutions to the equation
$\mathrm{X}_{1}+\mathrm{X}_{2}+\mathrm{X}_{3}=10$ is
$\mathrm{V}(3,10)=\mathrm{C}(12,10)=\mathrm{C}(12,2)=66$
We have to exclude the 3 cases
where $\mathrm{X}_{\mathrm{i}}=10(\mathrm{i}=1,2,3)$
Required number of integers $=66-3=63$

42. Ans: (b)

Sol: We can treat each student and the adjacent empty seat as a single width-2 unit.
Together, these units take up 2 k seats, leaving $\mathrm{n}-2 \mathrm{k}$ extra empty seats to distribute among the students.
The students can sit in alphabetical order in only one way.
Now, there are $\mathrm{k}+1$ distinct spaces among the students to arrange ($\mathrm{n}-2 \mathrm{k}$) empty chairs.

The required number of ways
$=\mathrm{V}(\mathrm{k}+1, \mathrm{n}-2 \mathrm{k})$
$=\mathrm{C}(\mathrm{k}+\mathrm{n}-2 \mathrm{k}, \mathrm{n}-2 \mathrm{k})$
$=\mathrm{C}(\mathrm{n}-\mathrm{k}, \mathrm{k})$
43. Ans: 210

Sol: Let $\mathrm{x}=\mathrm{x}^{\prime}+1, \mathrm{y}=\mathrm{y}^{\prime}+1, \mathrm{z}=\mathrm{z}^{\prime}+1$ and $\mathrm{w}=\mathrm{w}^{\prime}+1$

Then the given inequality becomes
$\left(\mathrm{x}^{\prime}+\mathrm{y}^{\prime}+\mathrm{z}^{\prime}+\mathrm{w}^{\prime}\right) \leq 6$
where $x^{\prime}, y^{\prime}, z^{\prime}$ and w^{\prime} are non-negative integers.

The number of solutions to the inequality are same as the number of non-negative integer solutions to equation

$$
\left(x^{\prime}+y^{\prime}+z^{\prime}+w^{\prime}+v^{\prime}\right)=6
$$

The required number of solutions
$=\mathrm{C}(\mathrm{n}-1+\mathrm{k}, \mathrm{k})$
Where $\mathrm{n}=5$ and $\mathrm{k}=6$

$$
\begin{aligned}
& =C(10,6) \\
& =210
\end{aligned}
$$

44. Ans: 10800

Sol: The six symbols can be arranged in $\angle 6$ ways. To meet the given condition,

Let us put 2 blanks between every pair of symbols.

The number of ways we can arrange the remaining two blanks $=\mathrm{V}(5,2)$

$$
=C(5-1+2,2)=15
$$

Required number of ways $=\angle 6$.(15)

$$
=(720) .(15)=10,800
$$

45. Ans: (d)

Sol: Average number of letters received by an

$$
\text { apartment }=\mathrm{A}=\frac{410}{50}
$$

$$
=8.2
$$

Here, $\lceil A\rceil=9$ and $\lfloor\mathrm{A}\rfloor=8$
By pigeonhole principle, S_{1} and S_{2} are necessarily true.
S_{5} follows from S_{1} and S_{6} follows from S_{2}. S_{3} and S_{4} need not be true.
46. Ans: (c)

Sol: Average number of passengers per bus
$=\frac{2000}{30}=66.66$
By Pigeon hole principle, some buses contain atleast 67 passengers and some buses contain atmost 66 passengers.
i.e., some buses contain atleast 14 empty seats.
\therefore Both S_{1} and S_{2} are true.

47. Ans: 97

Sol: If we have n pigeon holes, then minimum number of pigeons required to ensure that atleast ($k+1$) pigeons belong to same pigeonhole $=k n+1$
For the present example, $\mathrm{n}=12$ and $\mathrm{k}+1=9$
Required number of persons $=\mathrm{kn}+1$

$$
=8(12)+1=97
$$

48. Ans: 26

Sol: By Pigeonhole principle,
Required number of balls $=\mathrm{kn}+1$

$$
=5(5)+1=26
$$

49. Ans: 39

Sol: The favorable colors to draw 9 balls of same color are green, white and yellow.

We have to include all red balls and all green balls in the selection of minimum number of balls. For the favorable colors we can apply pigeonhole principle.

Required number of balls $=6+8+(\mathrm{kn}+1)$
Where
$k+1=9$
and

$$
\mathrm{n}=3
$$

$=6+8+(8 \times 3+1)=39$
50. Ans: 4

Sol: Suppose $x \geq 6$,
Minimum number of balls required $=\mathrm{kn}+1=16$
where $\mathrm{k}+1=6$ and $\mathrm{n}=3$.

$$
\Rightarrow 5(3)+1=16
$$

Which is impossible

$$
\therefore \mathrm{x}<6
$$

Now, minimum number of balls required

$$
=x+(k n+1)=15
$$

where $\mathrm{k}+1=6$ and $\mathrm{n}=2$

$$
\begin{aligned}
& \Rightarrow \mathrm{x}+5(2)+1=15 \\
& \Rightarrow \mathrm{x}=4
\end{aligned}
$$

51. Ans: 7

Sol: For sum to be 9, the possible 2-element subsets are $\{0,9\},\{1,8\},\{2,7\},\{3,6\},\{4,5\}$ If we treat these subsets as pigeon holes, then any subset of S with 6 elements can have at least one of these subsets.
Since we need two such subsets, the required value of $\mathrm{k}=7$.
52. Ans: 7

Sol: If we divide a number by 10 the possible remainders are $0,1,2, \ldots, 9$.
Here, we can apply pigeonhole principle. The 6 pigeonholes are
$\{0\},\{5\},\{1,9\},\{2,8\},\{3,7\},\{4,6\}$
In the first two sets both $\mathrm{x}+\mathrm{y}$ and $\mathrm{x}-\mathrm{y}$ are divisible by 10 . In the remaining sets either $\mathrm{x}+\mathrm{y}$ or $\mathrm{x}-\mathrm{y}$ divisible by 10 .
\therefore The minimum number of integers we have to choose randomly is 7 .

53. Ans: 20

Sol: Let P_{i} for $1 \leq \mathrm{i} \leq 4$ be the set of printers, and C_{j} for $1 \leq j \leq 8$ be the set of computers. Connect C_{k} to P_{k} for $1 \leq \mathrm{k} \leq 4$. Again, connect C_{k} for $5 \leq \mathrm{k} \leq 8$ to P_{i} for $1 \leq \mathrm{i} \leq 4$. Clearly, one requires 20 cables. Assume that there are fewer than 20 connections between computers and printers. Hence, some printers would be connected to at most $\left\lfloor\frac{19}{4}\right\rfloor=4$ computers. Thus, the remaining 3 printers are not enough to allow the other 4 computers to simultaneously access different printers.

54. Ans: 48

Sol: The prime factors of 210 are 7, 3, 5 and 2
Required number of positive integers

$$
\begin{aligned}
& =\phi(210) \\
& =210\left[\frac{(7-1)(3-1)(5-1)(2-1)}{7 \times 3 \times 5 \times 2}\right]=48
\end{aligned}
$$

55. Ans: $\mathbf{4 3 2}$

Sol: The distinct prime factors of 1368 are 19, 3 and 2.
Required number of +ve integers

$$
=\phi(1368)
$$

$$
\begin{aligned}
& =1368\left[\frac{(19-1)(3-1)(2-1)}{19 \times 3 \times 2}\right] \\
& =432
\end{aligned}
$$

56. Ans: $\mathbf{3 1 6}$

Sol: 317 is a prime number.
The only prime factor of 317 is 317 itself.
Required number of positive integers

$$
\begin{aligned}
& =\phi(317) \\
& =317\left[\frac{(317-1)}{317}\right]=316
\end{aligned}
$$

57. Ans: (d)

Sol: In this case, m is relatively prime to p^{k} if and only if m is not divisible by p .

Required number of integers $=$ Euler function of $\mathrm{p}^{\mathrm{k}}=\phi\left(\mathrm{p}^{\mathrm{k}}\right)=\frac{\mathrm{p}-1}{\mathrm{p}} \cdot \mathrm{p}^{\mathrm{k}}=\mathrm{p}^{\mathrm{k}-1}(\mathrm{p}-1)$.
58. Ans: 265

Sol: Required number of $1-1$ functions
$=$ number of derangements possible with 6 elements
$=\mathrm{D}_{6}=\angle 6\left(\frac{1}{\angle 2}-\frac{1}{\angle 3}+\frac{1}{\angle 4}-\frac{1}{\angle 5}+\frac{1}{\angle 6}\right)$
$=265$
59. Ans: (a)

Sol: The required number
$=$ The number of derangements with n objects
$=D_{n}=\sum_{\mathrm{i}=0}^{\mathrm{n}}(-1)^{\mathrm{i}} \frac{\mathrm{n}!}{\mathrm{i}!}$
60. Ans: (i) 44 (ii) 76 (iii) 20
(iv) 89 (v) 119 (vi) 0

Sol: (i) Number of ways we can put 5 letters, so that no letter is correctly placed
$=\mathrm{D}_{5}=\angle 5\left(\frac{1}{\angle 2}-\frac{1}{\angle 3}+\frac{1}{\angle 4}-\frac{1}{\angle 5}\right)$
$=44$
(ii) Number of ways in which we can put 5 letters in 5 envelopes $=\angle 5$
Number of ways we can put the letters so that no letter is correctly placed $=\mathrm{D}_{5}$ Required number of ways $=\angle 5-D_{5}$

$$
\begin{aligned}
& =120-44 \\
& =76
\end{aligned}
$$

(iii) Number of ways we can put the 2 letters correctly $=\mathrm{C}(5,2)=10$

The remaining 3 letters can be wrongly placed in D_{3} ways.
Required number of ways $=C(5,2) D_{3}$

$$
\begin{aligned}
& =(10) 2 \\
& =20
\end{aligned}
$$

(iv) Number of ways in which no letter is correctly placed $=\mathrm{D}_{5}$
Number of ways in which exactly one letter is correctly placed $=C(5,1) D_{4}$ Required number of ways

$$
\begin{aligned}
& =D_{5}+C(5,1) D_{4} \\
& =44+5(9)=89
\end{aligned}
$$

(v) There is only one way in which we can put all 5 letters in correct envelopes.

Required number of ways $=\angle 5-1=119$
(vi) It is not possible to put only one letter in wrong envelope.
Required number of ways $=0$
61. Ans: (i) 1936 (ii) 14400

Sol: (i) The derangements of first 5 letters in first 5 places $=\mathrm{D}_{5}$
Similarly, the last 5 letters can be deranged in last 5 places in D_{5} ways.

The required number of derangements

$$
\begin{aligned}
=\mathrm{D}_{5} \mathrm{D}_{5} & =(44)(44) \\
& =1936
\end{aligned}
$$

(ii) Any permutation of the sequence in which the first 5 letters are not in first 5 places is a derangement. The first 5 letters can be arranged in last 5 places in $\angle 5$ ways. Similarly, the last 5 letters of the given sequence can be arranged in first 5 places in $\angle 5$ ways.

Required number of derangements

$$
=\angle 5 . \angle 5=14400
$$

62. Ans: 216

Sol: First time, the books can be distributed in $\angle 4$ ways.
Second time, we can distribute the books in D_{4} ways.

Required number of ways $=\angle 4 . D_{4}=216$
63. Ans: (a)

Sol: Let $T(n)=$ Maximum number of pieces form by ' n ' cuts

n	0	1	2	3	4	5	6	7
$\mathrm{P}(\mathrm{n})$	1	2	4	7	11	16	22	29

Observe that difference between successive outputs of $\mathrm{P}(\mathrm{n})$
i.e., $1,2,4,7,11,16,22,29$ are

$$
1+1+2+3+4+5+6+7
$$

This pattern can be expressed as giving $\mathrm{P}(\mathrm{n})$ in terms of $\mathrm{P}(\mathrm{n}-1)$

$$
\therefore \mathrm{P}(\mathrm{n})=\mathrm{P}(\mathrm{n}-1)+\mathrm{n}
$$

$\mathrm{n}=1,2,3 \ldots .$.
64. Ans: (b)

Sol:
No. of nodes

The number of nodes doubles every time the depth increases by 1
At depth ' d ' we have maximum number of nodes $=2{ }^{\text {d }}$
$\mathrm{n}(\mathrm{d})=$ Maximum number of nodes in a binary tree of depth 'd'

$$
\mathrm{n}(\mathrm{~d})=\mathrm{n}(\mathrm{~d}-1)+2^{\mathrm{d}}
$$

65. Ans: (c)

Sol: Let $a_{n}=$ number of n-digit quaternary sequences with even number of zeros
Case 1: If the first digit is not 0 , then we can choose first digit in 3 ways and the remaining digits we can choose in $\mathrm{a}_{\mathrm{n}-1}$ ways.

By product rule, number of quaternary sequences in this case is $3 a_{n-1}$.
Case 2: If the first digit is 0 , then the remaining digits should contain odd number of zeros.
Number of quaternary sequences in this case is $\left(a_{n-1}-4^{n-1}\right)$
\therefore By sum rule, the recurrence relation is

$$
\begin{aligned}
& \Rightarrow a_{n}=3 a_{n-1}+\left(4^{n-1}-a_{n-1}\right) \\
& \Rightarrow a_{n}=2 a_{n-1}+4^{n-1}
\end{aligned}
$$

66. Ans: (a)

Sol: Case 1: If the first digit is 1 , then number of bit strings possible with 3 consecutive zeros, is a
Case 2: If the first bit is 0 and second bit is 1, then the number of bit strings possible with 3 consecutive zeros is a_{n-2}.
Case 3: If the first two bits are zeros and third bit is 1 , then number of bit strings with 3 consecutive zeros is a_{n-3}
Case 4: If the first 3 bits are zeros, then each of the remaining $\mathrm{n}-3$ bits we can choose in 2 ways. The number of bit strings with 3 consecutive zeros in this case is $2^{\mathrm{n}-3}$.
\therefore The recurrence relation for a_{n} is

$$
a_{n}=a_{n-1}+a_{n-2}+a_{n-3}+2^{n-3} .
$$

67. Ans: (a)

Sol: Case(i): If the first bit is 1 , then the required number of bit strings is a_{n-1}

Case(ii): If the first bit is 0 , then all the remaining bits should be zero
The recurrence relation for a_{n} is

$$
a_{n}=a_{n-1}+1
$$

68. Ans: (a)

Sol: The recurrence relation is

$$
\begin{equation*}
\mathrm{a}_{\mathrm{n}}-\mathrm{a}_{\mathrm{n}-1}=2 \mathrm{n}-2 \tag{1}
\end{equation*}
$$

The characteristic equation is $t-1=0$
Complementary function $=\mathrm{C}_{1} .1^{\mathrm{n}}$
Here, 1 is a characteristic root with multiplicity 1.
Let particular solution $=\left(c n^{2}+d n\right)$
Substituting in (1),
$\left(\mathrm{cn}^{2}+\mathrm{dn}\right)-\left\{\mathrm{c}(\mathrm{n}-1)^{2}+\mathrm{d}(\mathrm{n}-1)\right\}=2 \mathrm{n}-2$
$\mathrm{n}=1 \Rightarrow \mathrm{c}+\mathrm{d}=0$
$\mathrm{n}=0 \Rightarrow-\mathrm{c}+\mathrm{d}=-2$

$$
\Rightarrow \mathrm{c}=1 \quad \text { and } \quad \mathrm{d}=-1
$$

$\therefore \mathrm{P} . \mathrm{S}=\mathrm{n}^{2}-\mathrm{n}$
The solution is

$$
\begin{equation*}
\mathrm{a}_{\mathrm{n}}=\mathrm{C}_{1}+\mathrm{n}^{2}-\mathrm{n} \tag{1}
\end{equation*}
$$

Using the initial condition, we get $\mathrm{C}_{1}=1$
Substituting C_{1} value in equation (1), we get
$\therefore \mathrm{a}_{\mathrm{n}}=\mathrm{n}^{2}-\mathrm{n}+2$

69. Ans: 8617

Sol: $a_{n}=a_{n-1}+3\left(n^{2}\right)$

$$
\begin{aligned}
& \mathrm{n}=1 \Rightarrow \mathrm{a}_{1}=\mathrm{a}_{0}+3\left(1^{2}\right) \\
& \begin{aligned}
\mathrm{n}=2 \Rightarrow \mathrm{a}_{2} & =\mathrm{a}_{1}+3\left(2^{2}\right) \\
& =\mathrm{a}_{0}+3\left(1^{2}+2^{2}\right)
\end{aligned} \\
& \begin{aligned}
\mathrm{n}=3 \Rightarrow \mathrm{a}_{3} & =\mathrm{a}_{2}+3\left(3^{2}\right) \\
& =\mathrm{a}_{0}+3\left(1^{2}+2^{2}+3^{2}\right)
\end{aligned} \\
& \mathrm{a}_{\mathrm{n}}=\mathrm{a}_{0}+3\left(1^{2}+2^{2}+\ldots+\mathrm{n}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =7+\frac{1}{2} n(n+1)(2 n+1) \\
\mathrm{a}_{20} & =7+\frac{1}{2}(20)(21)(41)=8617
\end{aligned}
$$

70. Ans: (c)

Sol:

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{n}}=\mathrm{n} \mathrm{a}_{\mathrm{n}-1} \\
& \mathrm{n}=1, \mathrm{a}_{1}=1 \cdot \mathrm{a}_{0}=1.1 \\
& \mathrm{n}=2, \mathrm{a}_{2}=2 \cdot \mathrm{a}_{1}=2.1 \\
& \mathrm{n}=3, \mathrm{a}_{3}=3 \cdot \mathrm{a}_{2}=3.2 .1
\end{aligned}
$$

In general, $\mathrm{a}_{\mathrm{n}}=\mathrm{n} .(\mathrm{n}-1) \ldots .3 .2 .1$

$$
\mathrm{a}_{\mathrm{n}}=\mathrm{n}!
$$

71. Ans: (b)

Sol: $a_{n}=a_{n-1}+(2 n+1) \quad$ where $a_{0}=1$
$\mathrm{n}=1, \mathrm{a}_{1}=\mathrm{a}_{0}+2(1)+1=1+2(1)+1=(1+1)^{2}$
$\mathrm{n}=2, \mathrm{a}_{2}=\mathrm{a}_{1}+2(2)+1=2^{2}+2(2)+1=(2+1)^{2}$
In general, $\mathrm{a}_{\mathrm{n}}=(\mathrm{n}+1)^{2}$
72. Ans: (a)

Sol: $\mathrm{a}_{\mathrm{n}}=\mathrm{a}_{\mathrm{n}-1}+\frac{1}{\mathrm{n}(\mathrm{n}+1)}=\mathrm{a}_{\mathrm{n}-1}+\left[\frac{1}{\mathrm{n}}-\frac{1}{\mathrm{n}+1}\right]$

$$
\begin{aligned}
& \mathrm{n}=1, \mathrm{a}_{1}=\mathrm{a}_{0}+\left[1-\frac{1}{2}\right]=1+\left[1-\frac{1}{2}\right]\left[\because \mathrm{a}_{0}=1\right] \\
& \mathrm{n}=2, \\
& \mathrm{a}_{2}=\mathrm{a}_{1}+\left[\frac{1}{2}-\frac{1}{3}\right]=1+\left[1-\frac{1}{2}\right]+\left[\frac{1}{2}-\frac{1}{3}\right]=1+\left[1-\frac{1}{3}\right]
\end{aligned}
$$

In general $a_{n}=1+\left[1-\frac{1}{n+1}\right]$

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{n}}=1+\left[\frac{\mathrm{n}}{\mathrm{n}+1}\right] \\
& \mathrm{a}_{\mathrm{n}}=\frac{2 \mathrm{n}+1}{\mathrm{n}+1}
\end{aligned}
$$

73. Ans: (c)

Sol: $\mathrm{f}(\mathrm{n})=3 \mathrm{f}\left(\left\lceil\frac{\mathrm{n}}{3}\right\rceil\right)$

$$
\begin{aligned}
& =3\left(3 \mathrm{f}\left(\left\lceil\frac{\mathrm{n}}{3^{2}}\right\rceil\right)\right) \\
& =3^{2} \mathrm{f}\left(\left\lceil\frac{\mathrm{n}}{3^{2}}\right\rceil\right) \\
& \vdots \\
& =3^{\mathrm{k}} \mathrm{f}\left(\left\lceil\frac{\mathrm{n}}{3^{\mathrm{k}}}\right\rceil\right) \quad \operatorname{Let}\left\lceil\frac{\mathrm{n}}{3^{\mathrm{k}}}\right\rceil=1 \\
& =3^{\log _{3} \mathrm{n}} \mathrm{f}(1) \quad 3^{\mathrm{k}}=\mathrm{n} \\
& =3^{\left\lceil\log _{3} \mathrm{n}\right\rceil} \quad \mathrm{k}=\left\lceil\log _{3} \mathrm{n}\right\rceil
\end{aligned}
$$

\therefore Solution $\mathrm{f}(\mathrm{n})=3^{\left\lceil\log _{3} \mathrm{n}\right\rceil}$

74. Ans: (b)

Sol: The characteristic equation is $\mathrm{t}^{2}-\mathrm{t}-1=0$

$$
\Rightarrow \mathrm{t}=\frac{1 \pm \sqrt{5}}{2}
$$

The solution is

$$
\mathrm{a}_{\mathrm{n}}=\mathrm{C}_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{\mathrm{n}}+\mathrm{C}_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{\mathrm{n}}
$$

Using the initial conditions, we get $\mathrm{C}_{1}=\frac{1}{\sqrt{5}}$ and $C_{2}=-\frac{1}{\sqrt{5}}$
75. Ans: (a)

Sol: $a_{n}-2 a_{n-1}=32^{n}$

$$
\text { Replace ' } n \text { ' by } n+1
$$

$(E-2) a_{n}=3.2^{n+1}$
C.F $=C_{1} .2^{n}$

$$
\begin{aligned}
\text { P.S } & =6\left[\frac{1}{(E-2)} 2^{n}\right] \\
& =6\left[{ }^{n} C_{1} 2^{n-1}\right] \\
& =3 n 2^{n-1}
\end{aligned}
$$

\therefore General solution $\mathrm{a}_{\mathrm{n}}=\mathrm{C}_{1} 2^{\mathrm{n}}+3 \mathrm{n} 2^{\mathrm{n}-1}$
76. Ans: (a)

Sol: $\quad a_{n}-3 a_{n-1}+2 a_{n-2}=2^{n}$

$$
\begin{aligned}
& a_{n+2}-3 a_{n+1}+2 a_{n}=2^{n+2} \\
& \left(E^{2}-3 E+2\right) a_{n}=2^{n+2} \\
& \begin{aligned}
\phi(E) & =E^{2}-3 E+2 \\
\quad & =E^{2}-2 E-E+2 \\
\quad & =(E-2)-1(E-2)
\end{aligned}
\end{aligned}
$$

$$
=(E-2)(E-1)
$$

$$
\mathrm{a}_{\mathrm{n}}=\mathrm{C}_{1} \cdot 2^{\mathrm{n}}+\mathrm{C}_{1} 1^{\mathrm{n}}
$$

$$
\left(E^{2}-3 E+2\right) a_{n}=2^{n+2}
$$

$$
(E-2)(E-1) a_{n}=2^{n+2}
$$

$$
\text { C.F }\left(a_{n}\right)=C_{1} \cdot 2^{n}+C_{2} \cdot 1^{n}
$$

$$
P . S=\frac{1}{(E-2)(E-1)} 2^{n+2}
$$

$$
=2^{2}\left[\frac{2^{\mathrm{n}}}{(\mathrm{E}-2)}\right]
$$

$$
=2^{2}\left({ }^{n} C_{1} 2^{n-1}\right)
$$

$$
=2 \mathrm{n} \cdot 2^{\mathrm{n}}
$$

$$
\mathrm{a}_{\mathrm{n}}=\mathrm{C}_{1} \cdot 2^{\mathrm{n}}+\mathrm{C}_{2}+2 \mathrm{n} 2^{\mathrm{n}}
$$

77. Ans: (a)

Sol: $\quad a_{n}-6 a_{n-1}+9 a_{n-2}=3^{n}$
$\left(E^{2}-6 E+9\right) a_{n}=3^{n+2}$
$(E-3)^{2} a_{n}=3^{n+2}$
C. $F=\left(C_{1}+C_{2} n\right) 3^{n}$

$$
\begin{aligned}
\text { P.S } & =3^{2}\left[\frac{1}{(E-3)^{2}} 3^{\mathrm{n}}\right] \\
& =3^{2}\left[{ }^{n} C_{2} 3^{\mathrm{n}-2}\right] \\
& ={ }^{n} C_{2} 3^{\mathrm{n}} \\
& =\frac{\mathrm{n}(\mathrm{n}-1)}{2} \times 3^{\mathrm{n}}
\end{aligned}
$$

$$
\mathrm{a}_{\mathrm{n}}=\left(\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{n}\right) 3^{\mathrm{n}}+\frac{\mathrm{n}(\mathrm{n}-1)}{2} \times 3^{\mathrm{n}}
$$

78. Ans: (d)

Sol: The recurrence relation can be written as

$$
\left(E^{2}-2 E+1\right) a_{n}=2^{n+2}
$$

The auxiliary equation is

$$
\begin{aligned}
\mathrm{t}^{2}-2 \mathrm{t}+1 & =0 \\
\mathrm{t} & =1,1
\end{aligned}
$$

C.F. $=\left(\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{n}\right)$
P.S. $=\frac{2^{n+2}}{(E-1)^{2}}=4\left[\frac{2^{n}}{(E-1)^{2}}\right]$
$=4 \frac{2^{\mathrm{n}}}{(2-1)^{2}}=2^{\mathrm{n}+2}$
\therefore The solution is

$$
\mathrm{a}_{\mathrm{n}}=\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{n}+2^{\mathrm{n}+2}
$$

79. Ans: (a)

Sol:

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{n}}-3 \mathrm{a}_{\mathrm{n}-1}=\mathrm{n}+3 \\
& \mathrm{a}_{\mathrm{n}+1}-3 \mathrm{a}_{\mathrm{n}}=\mathrm{n}+4 \\
& \text { C. } \mathrm{F}=\mathrm{C}_{1} \cdot 3^{\mathrm{n}} \\
& \text { P.S }=\mathrm{A}_{0}+\mathrm{A}_{1} \mathrm{n}
\end{aligned}
$$

$\mathrm{A}_{0}+\mathrm{A}_{1} \mathrm{n}-3\left[\mathrm{~A}_{0}+\mathrm{A}_{1} \mathrm{n}-\mathrm{A}_{1}\right]=\mathrm{n}+3$
Put $\mathrm{n}=0$
$\mathrm{A}_{0}-3 \mathrm{~A}_{0}+3 \mathrm{~A}_{1}=3 \Rightarrow-2 \mathrm{~A}_{0}+3 \mathrm{~A}_{1}=3$.
\qquad
$\mathrm{n}=1$
$\mathrm{A}_{0}+\mathrm{A}_{1}-3 \mathrm{~A}_{0}-3 \mathrm{~A}_{1}+3 \mathrm{~A}_{1}=4$
$-2 \mathrm{~A}_{0}+\mathrm{A}_{1}=4$ \qquad
$-2 \mathrm{~A}_{0}=4-\mathrm{A}_{1}$

$$
(1) \Rightarrow 4-\mathrm{A}_{1}+3 \mathrm{~A}_{1}=3
$$

$$
4+2 \mathrm{~A}_{1}=3
$$

$$
\mathrm{A}_{1}=-\frac{1}{2}
$$

$$
-2 \mathrm{~A}_{0}=4-\left(-\frac{1}{2}\right)
$$

$$
-2 \mathrm{~A}_{0}=\frac{9}{2}
$$

$$
A_{0}=-\frac{9}{4}
$$

$$
\mathrm{C}_{1} 3^{\mathrm{n}}-\frac{\mathrm{n}}{2}-\frac{9}{4}
$$

80. Ans: (a)

Sol: $a_{n}-2 a_{n-1}+a_{n-2}=3 n+5$
$(E-1)^{2} a_{n}=3 n+11$
C. $\mathrm{F}=\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{n}$
$P . S=\left(A_{0}+A_{1} n\right) n^{2}=A_{0} n^{2}+A_{1} n^{3}$
$\mathrm{A}_{0} \mathrm{n}^{2}+\mathrm{A}_{1} \mathrm{n}^{3}-2\left(\mathrm{~A}_{0}(\mathrm{n}-1)^{2}+\mathrm{A}_{1}(\mathrm{n}-1)^{3}\right)$
$+\mathrm{A}_{0}(\mathrm{n}-2)^{2}+\mathrm{A}_{1}(\mathrm{n}-2)^{3}=3 \mathrm{n}+5$
Put $\mathrm{n}=0$
$-2 \mathrm{~A}_{0}+2 \mathrm{~A}_{1}+4 \mathrm{~A}_{0}-8 \mathrm{~A}_{1}=5$
$2 \mathrm{~A}_{0}-6 \mathrm{~A}_{1}=5$ \qquad
$\mathrm{n}=1$
$\mathrm{A}_{0}+\mathrm{A}_{1}+\mathrm{A}_{0}-\mathrm{A}_{1}=8$

$$
\mathrm{A}_{0}=4
$$

From (*) $\quad 6 \mathrm{~A}_{1}=8-5$

$$
\begin{array}{r}
\mathrm{A}_{1}=\frac{1}{2} \\
\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{n}+4 \mathrm{n}^{2}+\frac{1}{2} \mathrm{n}^{3}
\end{array}
$$

81. Ans: (a)

Sol: Replacing n by $n+1$, the given relation can be written as
$a_{n+1}=4 a_{n}+3(n+1) 2^{n+1}$
$\Rightarrow(\mathrm{E}-4) \mathrm{a}_{\mathrm{n}}=6(\mathrm{n}+1) 2^{\mathrm{n}}$
The characteristic equation is

$$
t-4=0 \Rightarrow t=4
$$

complementary function $=\mathrm{C}_{1} 4^{\mathrm{n}}$
Let particular solution is
$\mathrm{a}_{\mathrm{n}}=2^{\mathrm{n}}(\mathrm{cn}+\mathrm{d})$ where c and d are undetermined coefficients.
Substituting in the given recurrence relation, we have
$2^{\mathrm{n}}(\mathrm{c} \mathrm{n}+\mathrm{d})-42^{\mathrm{n}-1}\{\mathrm{c}(\mathrm{n}-1)+\mathrm{d}\}=3 \mathrm{n} 2^{\mathrm{n}}$
$\Rightarrow(\mathrm{c} \mathrm{n}+\mathrm{d})-2\{\mathrm{c}(\mathrm{n}-1)+\mathrm{d}\}=3 \mathrm{n}$
Equating coefficients of n and constants on both sides, we get
$\mathrm{c}=-3$ and $\mathrm{d}=-6$
\therefore Particular solution $=2^{n}(-3 n-6)$
Hence the solution is
$\mathrm{a}_{\mathrm{n}}=\mathrm{C}_{1} 4^{\mathrm{n}}-(3 \mathrm{n}+6) 2^{\mathrm{n}}$
$\mathrm{x}=0 \Rightarrow 4=\mathrm{C}_{1}-6 \Rightarrow \mathrm{C}_{1}=10$
$\mathrm{a}_{\mathrm{n}}=10\left(4^{\mathrm{n}}\right)-(3 \mathrm{n}+6) 2^{\mathrm{n}}$
82. Ans: (a)

Sol: $a_{n+2}-2 a_{n+1}+a_{n}=n^{2} 2^{n}$
$\left(E^{2}-2 E+1\right) a_{n}=n^{2} 2^{n}$
Characterstic roots $\mathrm{t}_{1}=\mathrm{t}_{2}=1$
$\therefore \mathrm{C} . \mathrm{F}=\left(\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{n}\right)$
here $\mathrm{F}(\mathrm{n})=\mathrm{n}^{2} 2^{\mathrm{n}}=\mathrm{b}^{\mathrm{n}} \cdot \mathrm{n}^{\mathrm{k}}$ where $\mathrm{b}=2, \mathrm{k}=2$
\therefore Let P. $\mathrm{S}=\mathrm{a}_{\mathrm{n}}=\left(\mathrm{A}_{0}+\mathrm{A}_{1} \mathrm{n}+\mathrm{A}_{2} \mathrm{n}^{2}\right) 2^{\mathrm{n}}$
Substitute ' a_{n} ' in equation
$\Rightarrow\left(\mathrm{A}_{0}+\mathrm{A}_{1} \mathrm{n}+\mathrm{A}_{2} \mathrm{n}^{2}\right) 2^{\mathrm{n}}-2^{\mathrm{n}+2}$

$$
\begin{aligned}
& \left(\mathrm{A}_{0}+\mathrm{A}_{1}(\mathrm{n}+1)+\mathrm{A}_{2}(\mathrm{n}+1)^{2}\right)+2^{\mathrm{n}+2} \\
& \left(\mathrm{~A}_{0}+\mathrm{A}_{1}(\mathrm{n}+2)+\mathrm{A}_{2}(\mathrm{n}+2)^{2}\right)=\mathrm{n}^{2} 2^{\mathrm{n}} \\
\Rightarrow & \left(\mathrm{~A}_{0}+\mathrm{A}_{1} \mathrm{n}+\mathrm{A}_{2} \mathrm{n}^{2}\right)-2^{2} \\
& \left(\mathrm{~A}_{0}+\mathrm{A}_{1}(\mathrm{n}+1)+\mathrm{A}_{2}(\mathrm{n}+1)^{2}\right)+2^{2} \\
& \left(\mathrm{~A}_{0}+\mathrm{A}_{1}(\mathrm{n}+2)+\mathrm{A}_{2}(\mathrm{n}+2)^{2}\right)=\mathrm{n}^{2} 2^{\mathrm{n}}
\end{aligned}
$$

Put $\mathrm{n}=0$
$\mathrm{A}_{0}-4 A_{0}-4 \mathrm{~A}_{1}-4 \mathrm{~A}_{2}+4 A_{0}+8 \mathrm{~A}_{1}+16 \mathrm{~A}_{2}=0$
$\Rightarrow 12 \mathrm{~A}_{2}+4 \mathrm{~A}_{1}+\mathrm{A}_{0}=0$
Put $\mathrm{n}=1$
$\mathrm{A}_{0}-\mathrm{A}_{1}+\mathrm{A}_{2}-4 \mathrm{~A}_{0}+4 \not X_{0}+4 \mathrm{~A}_{1}+4 \mathrm{~A}_{2}=1$
$\mathrm{A}_{0}+3 \mathrm{~A}_{1}+5 \mathrm{~A}_{2}=1$
Put $\mathrm{n}=-2$
$\mathrm{A}_{0}-2 \mathrm{~A}_{1}+4 X_{2}-4 \not X_{0}+4 \mathrm{~A}_{1}-4 \mathrm{~A}_{2}+4 X_{0}=4$

$$
\begin{equation*}
2 \mathrm{~A}_{1}+\mathrm{A}_{0}=4 \tag{3}
\end{equation*}
$$

By solving (1), (2), (3) we get
$\mathrm{A}_{0}=20, \mathrm{~A}_{1}=-8, \mathrm{~A}_{2}=1$
$\therefore \mathrm{a}_{\mathrm{n}}=\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{n}+2^{\mathrm{n}}\left(\mathrm{n}^{2}-8 \mathrm{n}+20\right)$

83. Ans: (a)

Sol: Let $\sqrt{\mathrm{a}_{\mathrm{n}}}=\mathrm{x}_{\mathrm{n}}$ (say)
The recurrence relation is

$$
\mathrm{x}_{\mathrm{n}}-\mathrm{x}_{\mathrm{n}-1}-2 \mathrm{x}_{\mathrm{n}-2}=0
$$

Replacing n by $\mathrm{n}+2$, we have

$$
\begin{aligned}
x_{n+2}-x_{n+1}-2 x_{n} & =0 \\
\left(E^{2}-E+2\right) x_{n} & =0
\end{aligned}
$$

The characteristic equation is

$$
\begin{aligned}
& \mathrm{t}^{2}-\mathrm{t}+2=0 \\
& \mathrm{t}=2,-1
\end{aligned}
$$

The solution is
$\mathrm{x}_{\mathrm{n}}=\sqrt{\mathrm{a}_{\mathrm{n}}}=\mathrm{c}_{1} 2^{\mathrm{n}}+\mathrm{c}_{2} \cdot(-1)^{\mathrm{n}}$
$\mathrm{n}=0 \Rightarrow 1=\mathrm{c}_{1}+\mathrm{c}_{2}$
$\mathrm{n}=1 \Rightarrow 1=2 \mathrm{c}_{1}-\mathrm{c}_{2}$
Solving, we get $\mathrm{c}_{1}=\frac{2}{3}$ and $\mathrm{c}_{2}=\frac{1}{3}$

$$
\begin{aligned}
& \sqrt{\mathrm{a}_{\mathrm{n}}}=\frac{2}{3}\left(2^{\mathrm{n}}\right)+\frac{1}{3}(-1)^{\mathrm{n}} \\
& \therefore \mathrm{a}_{\mathrm{n}}=\left[\frac{2^{\mathrm{n}+1}+(-1)^{\mathrm{n}}}{3}\right]^{2}
\end{aligned}
$$

84. Ans: (a)

Sol: $\mathrm{T}(\mathrm{n})=7 \mathrm{~T}\left(\frac{\mathrm{n}}{3}\right)+2 \mathrm{n}, \quad \mathrm{T}(1)=\frac{5}{2}$

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) & =7 \mathrm{~T}\left(\frac{\mathrm{n}}{3}\right)+2 \mathrm{n} \\
& =7\left(7 \mathrm{~T}\left(\frac{\mathrm{n}}{3^{2}}\right)+2 \frac{\mathrm{n}}{3}\right)+2 \mathrm{n} \\
& =7^{2} \mathrm{~T}\left(\frac{\mathrm{n}}{3^{2}}\right)+\frac{14 \mathrm{n}}{3}+2 \mathrm{n} \\
& =7^{2}\left[7 \mathrm{~T}\left(\frac{\mathrm{n}}{3}\right)+\frac{2 \mathrm{n}}{3^{2}}\right]+\frac{14 \mathrm{n}}{3}+2 \mathrm{n}
\end{aligned}
$$

$$
=7^{3} \mathrm{~T}\left(\frac{\mathrm{n}}{3^{3}}\right)+7^{2} \frac{2 \mathrm{n}}{3^{2}}+\frac{7.2 \mathrm{n}}{3}+2 \mathrm{n}
$$

$$
=7^{\mathrm{k}} \mathrm{~T}\left(\frac{\mathrm{n}}{3^{\mathrm{k}}}\right)+\left(\frac{7^{\mathrm{k}-1}}{3^{\mathrm{k}-1}}+\frac{7^{\mathrm{k}-2}}{3^{\mathrm{k}-2}}+\ldots \ldots+1\right) 2 \mathrm{n}
$$

$$
\text { Let } \frac{\mathrm{n}}{3^{\mathrm{k}}}=1
$$

$$
\mathrm{k}=\log _{3} \mathrm{n}
$$

$=7^{\mathrm{k}}\left(\frac{5}{2}\right)+2 \mathrm{n}\left(\frac{3}{4}\left(\frac{7}{3}\right)^{\mathrm{k}}-1\right)$
$T(n)=\frac{-3 n}{2}+4.7 \log _{3} n$
[By substituting k value]

85. Ans: (a)

Sol: $\{1,-2,4,-8,16, \ldots \ldots \ldots\}$
$=1-2 x+4 x^{2}-8 x^{3}+16 x^{4} \ldots \ldots \ldots$
$=\frac{1}{1-(-2 x)}$
$\left[\because S_{\infty}=\frac{a}{1-r}\right.$, where $\left.a=1, r=2 x\right]=(1+2 x)^{-1}$
86. Ans: (a)

Sol: Required generating function

$$
\begin{aligned}
& =f(x)=0+x+3 x^{2}+9 x^{3}+27 x^{4}+\ldots \ldots \\
& =x\left(1+3 x+3^{2} x^{2}+3^{3} x^{3}+\ldots \ldots \infty\right) \\
& =x \sum_{n=0}^{\infty} 3^{n} x^{n}=x .(1-3 x)^{-1}
\end{aligned}
$$

87. Ans: (a)

Sol: Generating function of $<a_{0}, a_{1}, a_{2}, \ldots \ldots .>$

$$
\begin{aligned}
& =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =\sum_{n=0}^{\infty}(n+1)(n+2) x^{n} \quad\left[\because a_{n}=(n+1)(n+2)\right] \\
& =2 \sum_{n=0}^{\infty} \frac{(n+1)(n+2)}{2} x^{n} \\
& =2(1-x)^{-3} \\
& {\left[\because \sum_{n=0}^{\infty} \frac{(n+1)(n+2)}{2}=(1-x)^{-3}\right]}
\end{aligned}
$$

88. Ans: (d)

Sol: Required generating function

$$
\begin{aligned}
f(x) & =0+0 x+1 x^{2}-2 x^{3}+3 x^{4}-4 x^{5}+\ldots \\
& =x^{2}\left(1-2 x+3 x^{2}-4 x^{3}+\ldots \infty\right) \\
& =x^{2}(1+x)^{-2}(\text { Binomial theorem })
\end{aligned}
$$

89. Ans: (c)

Sol: The generating function is

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}) & =1+0 \cdot \mathrm{x}+1 \cdot \mathrm{x}^{2}+0 \cdot \mathrm{x}^{3}+1 \cdot \mathrm{x}^{4}+\ldots \ldots \infty \\
& =1+\left(\mathrm{x}^{2}\right)+\left(\mathrm{x}^{2}\right)^{2}+\ldots \ldots . . \infty \\
& =\left(1-\mathrm{x}^{2}\right)^{-1}
\end{aligned}
$$

90. Ans: (a)

Sol: $\left(x^{4}+2 x^{5}+3 x^{6}+4 x^{7}+\ldots . \infty\right)^{5}$

$$
\begin{aligned}
& =x^{20}\left(1+2 x+3 x^{2}+4 x^{3}+\ldots \ldots \infty\right)^{5} \\
& =x^{20} \cdot\left[(1-x)^{-2}\right]^{5} \\
& =x^{20}[1-x]^{-10} \\
& =x^{20} \sum_{n=0}^{\infty} C(n+9, n) x^{n}
\end{aligned}
$$

Coefficient of $x^{27}=C(16,7)$

$$
=C(16,9)
$$

91. Ans: (b)

Sol: Required number of ways
$=$ Number of non negative integer solutions to the equation
$\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}=15$ where $1 \leq \mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \leq 7$
$=$ coefficient of x^{15} in the expansion of $f(x)$
where, $f(x)=\left(x+x^{2}+\ldots . .+x^{7}\right)^{3}$

$$
\begin{gathered}
=x^{3}\left(1+x+x^{2}+\ldots . .+x^{6}\right)^{3} \\
=x^{3}\left(\frac{1-x^{7}}{1-x}\right)^{3} \\
=x^{3}\left(1-3 x^{7}+3 x^{14}-x^{21}\right)(1-x)^{-3} \\
=\left(x^{3}-3 x^{10}+3 x^{17}-x^{24}\right) \sum_{n=0}^{\infty} \frac{(n+1)(n+2)}{2} x^{n}
\end{gathered}
$$

Coefficient of $x^{15}=\frac{(13)(14)}{2}-3\left(\frac{(6) \cdot(7)}{2}\right)$

$$
=91-63=28
$$

92. Ans: 60

Sol: If one person chooses 12 books then second person has to take remaining books Number of ways we choose 12 books can be found by solving $x+y+z=12$

Where, $0 \leq \mathrm{x} \leq 7$

$$
\begin{aligned}
& 0 \leq y \leq 8 \\
& 0 \leq z \leq 9
\end{aligned}
$$

i. e. coefficient of x^{12} in the following
$=\left(1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}+x^{7}\right)$

$$
\left(1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}+x^{7}+x^{8}\right)
$$

$$
\left(1+x+x^{2}+\ldots .+x^{9}\right)
$$

$$
=\left(\frac{1-x^{8}}{1-x}\right)\left(\frac{1-x^{9}}{1-x}\right)\left(\frac{1-x^{10}}{1-x}\right)
$$

$=\left(1-x^{8}\right)\left(1-x^{9}\right)\left(1-x^{10}\right) \sum_{n=0}^{\infty} \frac{(n+1)(n+2)}{2} x^{n}$
$=\left(1-x^{9}-x^{8}+x^{17}\right)\left(1-x^{10}\right) \sum_{n=0}^{\infty} \frac{(n+1)(n+2)}{2} x^{n}$
$=\left(1-x^{10}-x^{9}+x^{19}-x^{8}+x^{18}+x^{17}-x^{27}\right)$ $\sum_{n=0}^{\infty} \frac{(n+1)(n+2)}{2} x^{n}$
Coefficient of x^{12} in the above expansion

$$
\begin{aligned}
& =91-6-10-15 \\
& =60
\end{aligned}
$$

93. Ans: (a) \& (d)

Sol: We can show that $0 \leq \mathrm{S}(\mathrm{n}) \leq \mathrm{T}(\mathrm{n})$ by induction on n.
The base case $n=0$ is given.
Now suppose $0 \leq S(n) \leq T(n)$; we will show the same holds for $n+1$.
First observe $S(n+1)=a S(n)+f(n) \geq 0$ as each variable on the right-hand
side is non-negative. To show $T(n+1) \geq S(n$ $+1)$, observe
$\mathrm{T}(\mathrm{n}+1)=\mathrm{bT}(\mathrm{n})+\mathrm{g}(\mathrm{n})$
$\geq a T(n)+f(n)$
$\geq \mathrm{aS}(\mathrm{n})+\mathrm{f}(\mathrm{n})$
$=\mathrm{S}(\mathrm{n}+1)$.

94. Ans: (a)

Sol: Take $\mathrm{n}=3$ and $\mathrm{X}=\{1,4,7,10\}$
Clearly, option B, C, D are false for this example.

Option (a) is true.
By the Pigeonhole Principle, if we have $\mathrm{n}+1$ natural numbers, then at least two of them must belong to the same congruence class modulo n ; in other words, they have the same reminder when you divide them by n. So we have at least one pair x, y such that $x=k_{1} n+r$ and $y=k_{2} n+r$ for some integers $\mathrm{k}_{1}, \mathrm{k}_{2}$. Therefore $\mathrm{x}-\mathrm{y}=\left(\mathrm{k}_{1}-\mathrm{k}_{2}\right) \mathrm{n}$ which shows the desired result.

Chapter
3

Graph Theory

Basic concepts

1. Ans: (b)

Sol: By sum of degrees theorem,

$$
\delta(\mathrm{G}) \leq \frac{2|\mathrm{E}|}{|\mathrm{V}|} \leq \Delta(\mathrm{G})
$$

where $\delta(\mathrm{G})$ is minimum of the degrees of all vertices in G and $\Delta(\mathrm{G})$ is maximum of the degrees of all vertices in G.
$\Rightarrow 3 \leq \frac{2|\mathrm{E}|}{|\mathrm{V}|} \leq 5$
$\Rightarrow 33 \leq 2|\mathrm{E}| \leq 55$
$\Rightarrow 16.5 \leq|\mathrm{E}| \leq 27.5$
$\Rightarrow 17 \leq|\mathrm{E}| \leq 27 \quad(\because|\mathrm{E}|$ is an integer $)$

02. Ans: (d)

Sol: Let d be the common degree of the vertices of G, and let v be the number of vertices of G.

Then, by sum of degrees theorem,

$$
\mathrm{v} . \mathrm{d}=44
$$

$\Rightarrow \mathrm{v}=\frac{44}{\mathrm{~d}} \quad(\mathrm{~d}=1,2,4,11,22,44)$
$\Rightarrow \mathrm{v}=44,22,11,4,2$
As G is simple, the last 3 cases are not possible.
If $\mathrm{v}=44$ then, v is not a connected graph.
\therefore A possible number of vertices is 11 or 22 .
03. Ans: 19

Sol: By sum of degrees theorem,
If degree of each vertex is k, then
k. $|\mathrm{V}|=2 .|\mathrm{E}|$
$4|\mathrm{~V}|=2(38)$
$\therefore|\mathrm{V}|=19$
04. Ans: (c)

Sol: By Sum of degrees theorem,

$$
\begin{aligned}
& \mathrm{k} \cdot|\mathrm{~V}|=2|\mathrm{E}| \\
\Rightarrow|\mathrm{E}|= & \frac{\mathrm{k} \cdot|\mathrm{~V}|}{2}
\end{aligned}
$$

Here, $|E|$ is an integer
$\frac{|\mathrm{V}|}{2}$ is an integer $(\because \mathrm{k}$ is odd $)$
$\Rightarrow|E|=$ a multiple of k
05. Ans: (e)

Sol: (a) $\{2,3,3,4,4,5\}$
Here, sum of degrees
$=21$, an odd number.
\therefore The given sequence cannot represent a simple non directed graph
(b) $\{2,3,4,4,5\}$

In a simple graph with 5 vertices, degree
of every vertex should be ≤ 4.
\therefore The given sequence cannot represent a simple non directed graph.
(c) $\{1,3,3,4,5,6,6\}$

Here we have two vertices with degree
6. These two vertices are adjacent to all
the other vertices. Therefore, a vertex with degree 1 is not possible.
Hence, the given sequence cannot represent a simple non directed graph.
(d) $\{0,1,2, \ldots . ., n-1\}$

Here, we have n vertices, with one vertex having degree $n-1$. This vertex is adjacent to all the other vertices. Therefore, a vertex with degree 1 is not possible.
Hence, the given sequence, cannot represent a simple non directed graph.
A graph with the degree sequence $\{2,3,3,3,3\}$ is shown below.

06. Ans: (b)

Sol: \mathbf{S}_{1} : Let us denote the vertices by $\mathrm{V}_{1}, \mathrm{~V}_{2}$,, V_{8}
V_{8} is isolated vertex
The vertices V_{1}, V_{2}, V_{3} and V_{4} are adjacent to V_{7}.
\therefore Degree of V_{7} should be atleast 4
$\therefore \mathrm{S}_{1}$ cannot represent a simple non directed graph.
We can also verify this using Havel-Hakimi result.
$\mathbf{S}_{\mathbf{2}}=\{6,5,5,4,3,3,2,2,2\}$

Applying Havel-Hakimi result, S_{2} becomes

$$
\{4,4,3,2,2,1,2,2\}
$$

Arranging the vertices in the descending order.

$$
\{4,4,3,2,2,2,2,1\}
$$

Applying Havel-Hakimi result, we have

$$
\{3,2,1,1,2,2,1\}
$$

Arranging the vertices in the descending order.

$$
\{3,2,2,2,1,1,1\}
$$

Applying Havel-Hakimi result, we have

$$
\{1,1,1,1,1,1\}
$$

which can be represented by a simple nondirected graph.
\therefore The sequence S_{2} also can be represented by a simple non-directed graph.

07. Ans: 8

Sol: By sum of degrees theorem,
$(5+2+2+2+1)=2|E|$
$\Rightarrow|\mathrm{E}|=7$
\therefore Number of edges in $\mathrm{G}=7$

$$
\begin{aligned}
& |\mathrm{E}(\mathrm{G})|+|\mathrm{E}(\overline{\mathrm{G}})|=\left|\mathrm{E}\left(\mathrm{~K}_{6}\right)\right| \\
\Rightarrow & 7+|\mathrm{E}(\overline{\mathrm{G}})|=\mathrm{C}(6,2) \\
\Rightarrow & |\mathrm{E}(\overline{\mathrm{G}})|=8
\end{aligned}
$$

08. Ans: 12

Sol: G is a tree
By sum of degrees theorem,

$$
\begin{aligned}
& \mathrm{n} .1+2(2)+4(3)+3(4)=2|\mathrm{E}| \\
& \begin{aligned}
& \therefore \mathrm{n}+28=2(|\mathrm{v}|-1) \\
&=2(\mathrm{n}+2+4+3-1) \\
& \Rightarrow \mathrm{n}+28=2 \mathrm{n}+16 \\
& \Rightarrow \mathrm{n}= 12
\end{aligned}
\end{aligned}
$$

9. Ans: 18

Sol: A simple graph with 10 vertices and minimum number of edges is a tree.
A tree with 10 vertices has 9 edges.
By Sum of degrees theorem, Sum of degrees of all vertices in $\mathrm{G}=2$
(Number of edges in G) $=2 \times 9=18$

10. Ans: 8

Sol: G has 8 vertices with odd degree.
For any vertex $\mathrm{v} \in \mathrm{G}$,
Degree of v in $G+$ degree of v in $\bar{G}=8$
If degree of v in G is odd, then degree of v in \bar{G} is also odd. If degree of v in G is even, then degree of v in $\overline{\mathrm{G}}$ is also even.
\therefore Number of vertices with odd degree in $\overline{\mathrm{G}}=8$

11. Ans: 27

Sol: By sum of degrees theorem, if degree of each vertex is atmost K ,
then

$$
\left.\begin{array}{rlrl}
& & \mathrm{K}|\mathrm{~V}| & \geq 2|\mathrm{E}| \\
& \Rightarrow & 5 & (11)
\end{array}\right) \geq 2|\mathrm{E}|
$$

12. Ans: (d)

Sol: (a) Let G be any graph of the required type.
Let p be the number of vertices of degree 3.

Thus, $(12-\mathrm{p})$ vertices are of degree 4.
Hence, according to sum of degrees theorem, $3 p-4(12-p)=56$.
Thus, $\mathrm{p}=-8$ (Which is impossible)
\therefore Such a graph does not exist.
(b) Maximum number of edges possible in a simple graph with 10 vertices
$C(10,2)=45$
(c) Maximum number of edges possible in a bipartite graph with 9 vertices $=\left\lfloor\frac{9^{2}}{4}\right\rfloor$

$$
=20
$$

Such a graph does not exist.
(d) A connected graph with n vertices and $\mathrm{n}-1$ edges is a tree. A tree is a simple graph.
13. Ans: (b)

Sol: G is a simple graph with 5 vertices.
For any vertex v in G,
$\operatorname{deg}(\mathrm{v})$ in $\mathrm{G}+\operatorname{deg}(\mathrm{v})$ in $\overline{\mathrm{G}}=4$
\therefore The degree sequence $\overline{\mathrm{G}}$ is

$$
\begin{aligned}
& \{4-3,4-2,4-2,4-1,4-0\} \\
& \quad=\{1,2,2,3,4\}=\{4,3,2,2,1\}
\end{aligned}
$$

14. Ans: 455

Sol: Maximum number of edges possible with 6 vertices is $C(6,2)=15$. Out of these edges, we can choose 12 edges in $\mathrm{C}(15,2)$ ways.
\therefore Number of simple graphs possible
$=\mathrm{C}(15,12)=\mathrm{C}(15,3)=\frac{15 \cdot 14.13}{1.2 \cdot 3}=455$

15. Ans: (a)

Sol: We know that,
Number of edges in G + Number of edges in $\overline{\mathrm{G}}=$ Number of edges in the complete graph K_{p}.
$\Rightarrow \mathrm{q}+$ Number of edges in $\overline{\mathrm{G}}=\frac{\mathrm{p}(\mathrm{p}-1)}{2}$
\Rightarrow Number of edges in $\overline{\mathrm{G}}=\frac{\mathrm{p}(\mathrm{p}-1)}{2}-\mathrm{q}$

16. Ans: (c)

Sol: Given that, G is a connected graph.
\Rightarrow Between every pair of vertices in G, a path exists.
\therefore By transitivity, there exists an edge between every pair of vertices in G.
$\Rightarrow \mathrm{G}$ is a complete graph
\therefore Number of edges in $\mathrm{G}=\mathrm{C}(\mathrm{n}, 2)$.

17. Ans: (d)

Sol: The complement of W_{n} contains an isolated vertex and $\overline{\mathrm{C}}_{\mathrm{n}-1}$ as components.
Number of edges in

$$
\begin{aligned}
\overline{\mathrm{C}}_{\mathrm{n}-1} & =\frac{(\mathrm{n}-1)(\mathrm{n}-2)}{2}-(\mathrm{n}-1) \\
& =\frac{(\mathrm{n}-1)(\mathrm{n}-4)}{2}
\end{aligned}
$$

18. Ans: (a)

Sol: Let $\mathrm{x}=$ Number of vertices with degree 4 \& $\mathrm{y}=$ Number of vertices with degree 5
By sum of degrees theorem
$4 \mathrm{x}+5 \mathrm{y}+14=2(\mathrm{n}-1)$
Also $\mathrm{x}+\mathrm{y}+14=\mathrm{n}$
Solving (1) \& (2), we get $\mathrm{y}=(40-2 \mathrm{n})$

Coloring

19. Ans: 2

Sol: The graph is bipartite,
Therefore, chromatic number $=2$
(or apply Welch - powel's algorithm).

20. Ans: 3

Sol: The graph has cycles of length 3 .

$$
\begin{equation*}
\therefore \chi(\mathrm{G}) \geq 3 \tag{1}
\end{equation*}
$$

If we apply Welch-powel's algorithm, then 3 - coloring is possible

21. Ans: 4

Sol: The graph is planar,
By 4 - color theorem

$$
\begin{equation*}
\chi(\mathrm{G}) \leq 4 \tag{1}
\end{equation*}
$$

The graph has 4 mutually adjacent vertices $\{\mathrm{a}, \mathrm{b}, \mathrm{d}, \mathrm{e}\}$
$\therefore \chi(\mathrm{G}) \geq 4$

From (1) and (2), we have

$$
\chi(\mathrm{G})=4
$$

22. Ans: 4

Sol: G is planar graph
By 4 color theorem, $\chi(\mathrm{G}) \leq 4$
G has 4 mutually adjacent vertices $\left\{\mathrm{V}_{1}, \mathrm{~V}_{3}, \mathrm{~V}_{4}, \mathrm{~V}_{6}\right\}$
$\therefore \chi(\mathrm{G}) \geq 4$
Hence, $\chi(\mathrm{G})=4$

23. Ans: 7

Sol: G is a star graph
$\therefore \chi(\mathrm{G})=2$
The graph $\overline{\mathrm{G}}$ is shown below

Here, the vertices $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$, e form a complete graph

$$
\begin{aligned}
& \therefore \chi(\overline{\mathrm{G}})=5 \\
& \text { Now, } \quad \chi(\mathrm{G})+\chi(\overline{\mathrm{G}})=7
\end{aligned}
$$

24. Ans: 3

Sol: Applying welch-powel's algorithm we can see that 3 - colouring is possible

Vertex	d	a	b	c	e	f	g
Color	C_{1}	C_{2}	C_{3}	C_{3}	C_{2}	C_{2}	C_{3}

$\therefore \chi(\mathrm{G}) \leq 3$
since, G has cycles of odd length,
$\chi(\mathrm{G}) \geq 3$
From (1) and (2), we have $\chi(\mathrm{G})=3$.
25. Ans: 2

Sol: In the given graph, all the cycles are of even length.
$\therefore \mathrm{G}$ is a bipartite graph and every bipartite graph is 2-colorable
\therefore Chromatic number of $\mathrm{G}=2$.
26. Ans: 5

Sol: \bar{G} is a disconnected graph with two components, one component is the complete graph K_{5} and the other component is the trivial graph with only an isolated vertex
\therefore Chromatic number of $\overline{\mathrm{G}}=5$
27. Ans: (b)

Sol: $\alpha=\mathrm{n}-2\lfloor\mathrm{n} / 2\rfloor+2$
$\beta=\mathrm{n}-2\lceil\mathrm{n} / 2\rceil+4$
$\alpha+\beta=2 n-2\{\lfloor n / 2\rfloor+\lceil n / 2\rceil\}+6$

$$
=2 n-2 n+6=6
$$

28. Ans: (c)

Sol: Chromatic number of $\mathrm{K}_{\mathrm{n}}=\mathrm{n}$
If we delete an edge in K_{10}, then for the two vertices connecting that edge we can assign same color.
\therefore Chromatic number $=9$

29. Ans: 3

Sol: Here, $G=\mathrm{K}_{3,3}$
$\overline{\mathrm{G}}$ has two components where each component is a complete graph K_{3}.
\therefore Chromatic number of $\overline{\mathrm{G}}=3$
30. Ans: (c)

Sol: We know that $\alpha=\left\lfloor\frac{\mathrm{n}}{2}\right\rfloor$
$\beta=\mathrm{n}-2\left\lfloor\frac{\mathrm{n}}{2}\right\rfloor+2$
$2 \alpha+\beta=2\left\lfloor\frac{\mathrm{n}}{2}\right\rfloor+\mathrm{n}-2\left\lfloor\frac{\mathrm{n}}{2}\right\rfloor+2=\mathrm{n}+2$

31. Ans: (d)

Sol: The chromatic number of any bipartite graph (with atleast one edge) is 2 .
\therefore Option (d) is false.
(a) K_{n} has n mutually adjacent vertices.
$\therefore \mathrm{K}_{\mathrm{n}}$ requires atleast n colours
\therefore The vertex chromatic number of complete graph $\mathrm{K}_{\mathrm{n}}=\mathrm{n}$
(b) The vertex chromatic number of cycle graph $C_{n}=2$ if n is even

$$
=3 \text { if } \mathrm{n} \text { is odd }
$$

$$
=\mathrm{n}-2\left\lfloor\frac{n}{2}\right\rfloor+2
$$

(c) The vertex chromatic number of wheel graph $W_{n}=3$ if n is odd

$$
\begin{aligned}
& =4 \text { if } \mathrm{n} \text { is even } \\
& =\mathrm{n}-2\left\lceil\frac{n}{2}\right\rceil+4
\end{aligned}
$$

32. Ans: (d)

Sol:
(a) The chromatic number of any bipartite graph (with atleast one edge) is 2.
(b) A star graph with n vertices is a bipartite graph $\mathrm{K}_{1, \mathrm{n}-1}$
\therefore Chromatic number $=2$
(c) A tree is a bipartite graph
\therefore Chromatic number $=2$
(d) If G is a simple graph in which all the cycles are of even length, then G is a bipartite graph
\therefore The vertex chromatic number of $G=2$
Hence, option (d) is false.

Matchings

33. Ans: (d)

Sol: (a) In $K_{2 n}$, each vertex is adjacent to remaining $2 \mathrm{n}-1$ vertices.
One vertex we can match in $2 n-1$ ways. Next vertex in $2 n-3$ ways.

And another vertex in $2 n-5$ ways, and so on.

Number of perfect matchings in

$$
\begin{aligned}
\mathrm{K}_{2 \mathrm{n}} & =(2 \mathrm{n}-1) \cdot(2 \mathrm{n}-3) \cdot(2 \mathrm{n}-5) \ldots \ldots \ldots \cdot(5)(3)(1) \\
& =\frac{2 n!}{2^{n} n!}
\end{aligned}
$$

(b) In $K_{n, n}$, we divide the vertices into two groups such that each vertex of a group is adjacent to all the vertices of the other group.
One vertex of a group we can match in n ways, next vertex in $n-1$ ways and so on.
\therefore Number of perfect matchings in
$K_{n, n}=n(n-1)(n-2) \ldots \ldots . .1$
$=\mathrm{n}$!
(c) If n is even then the possible perfect matchings are

$$
\begin{array}{ll}
& V_{1}-V_{2}, V_{2}-V_{3}, \ldots \ldots ., V_{n-1}-V_{n} \\
\text { And } \quad & V_{2}-V_{3}, V_{3}-V_{4}, \ldots \ldots ., V_{n}-V_{1}
\end{array}
$$

\therefore Number of perfect matchings in C_{n} $(\mathrm{n}$ is even $)=2$
(d) In $W_{2 n}$ there is a vertex (Hub) which is adjacent to all the other vertices.

This vertex we can match in $2 \mathrm{n}-1$ ways.
\therefore Number of perfect matchings in $\mathrm{W}_{2 \mathrm{n}}=2 \mathrm{n}-1$

Hence, option (d) is false.
34. Ans: (d)

Sol: (a) A tree can have atmost one perfect matching.
\therefore Option (a) is false
(b) In a star graph, perfect matching is not possible if $n>2$.
\therefore Option (b) is false
(c) In a complete bipartite graph $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$, a perfect matching exists iff $\mathrm{m}=\mathrm{n}$
\therefore Option (c) is false
(d) Number of perfect matchings in $K_{3,3}=3$!

$$
=6
$$

35. Ans: (c)

Sol: S_{1} is true (By definition of $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$)
S_{2} is not true because,
A graph G has a perfect matching
\Rightarrow Number of vertices in G is even
But converse is not true.
S_{3} is not true because,
A bipartite graph G with vertex partition
$\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}\right\}$ has a complete matching $\Rightarrow\left|\mathrm{V}_{1}\right|<\left|\mathrm{V}_{2}\right|$.

But converse is not true.
36. Ans: (d)

Sol: (a) If n is even, then K_{n} has a perfect matching. Therefore, matching number is $\frac{\mathrm{n}}{2}$. If n is odd number, then we can match only ($\mathrm{n}-1$) vertices. Therefore matching number is $\left(\frac{\mathrm{n}-1}{2}\right)$.

Hence, matching number $=\left\lfloor\frac{\mathrm{n}}{2}\right\rfloor$
(b) If n is even, then C_{n} has a perfect matching. Therefore, matching number is $\frac{\mathrm{n}}{2}$. If n is odd number, then we can match only ($\mathrm{n}-1$) vertices. Therefore matching number is $\left(\frac{n-1}{2}\right)$.

Hence, matching number $=\left\lfloor\frac{\mathrm{n}}{2}\right\rfloor$
(c) If n is even, then W_{n} has a perfect matching. Therefore, matching number is $\frac{\mathrm{n}}{2}$. If n is odd number, then we can match only ($\mathrm{n}-1$) vertices. Therefore matching number is $\left(\frac{\mathrm{n}-1}{2}\right)$.
Hence, matching number $=\left\lfloor\frac{\mathrm{n}}{2}\right\rfloor$
(d) In a complete bipartite graph, the vertices are partitioned into two groups
so that no two vertices in the same group are adjacent.
\therefore Matching number of $\mathrm{K}_{\mathrm{m}, \mathrm{n}}=$ minimum of $\{\mathrm{m}, \mathrm{n}\}$
Hence, option (d) is false.

37. Ans: (d)

Sol: (a) Every star Graph with n vertices is a complete bipartite graph of the form $\mathrm{K}_{1, \mathrm{n}-1}$.
\therefore Matching number $=1$
(b) In a complete bipartite graph, the vertices are partitioned into two groups so that no two vertices in the same group are adjacent.
\therefore Matching number of $\mathrm{K}_{\mathrm{m}, \mathrm{n}}=$ minimum of $\{\mathrm{m}, \mathrm{n}\}$

Hence, Matching number of $\mathrm{K}_{\mathrm{m}, \mathrm{m}}=\mathrm{m}$
(c) Refer, option (b)
(d) Matching number of a tree with n vertices ≥ 1
\therefore Option (d) is false.

38. Ans: (a)

Sol: If G is a complete bipartite graph with n vertices ($\mathrm{n} \geq 2$) and minimum number of edges, then
$\mathrm{G}=\mathrm{K}_{1, \mathrm{n}-1}$ (star graph)
\therefore Matching number $=1$
39. Ans: 13

Sol: A disconnected graph with 10 vertices and maximum number of edges has two components K_{9} and an isolated vertex.
Matching number of $\mathrm{K}_{9}=\left\lfloor\frac{9}{2}\right\rfloor=4$
\therefore Matching number of $\mathrm{G}=4$
Chromatic number of $\mathrm{G}=9$
40. Ans: 4

Sol:

The graph has 9 vertices. The maximum number of vertices we can match is 8 .

A matching in which we can match 8 vertices is $\{\mathrm{a}-\mathrm{b}, \mathrm{c}-\mathrm{d}, \mathrm{e}-\mathrm{f}, \mathrm{g}-\mathrm{h}\}$
\therefore Matching number of the graph $=4$

41. Ans: 2

Sol: The given graph is $\mathrm{K}_{2,4}$
\therefore Matching number $=2$

42. Ans: 2

Sol: The given graph is

If we delete the edge $\{a, b\}$ then the resulting graph is a star graph. If we match a with b, then in the remaining vertices we can match only two vertices.
\therefore Matching number $=2$
43. Ans: 3

Sol: Let us label the vertices of the graph as shown below

There are 3 maximal matchings as given below
$\{\mathrm{a}-\mathrm{d}, \mathrm{b}-\mathrm{c}\},\{\mathrm{a}-\mathrm{c}, \mathrm{b}-\mathrm{d}\}$ and $\{\mathrm{c}-\mathrm{d}\}$
44. Ans: 3

Sol: The given graph is

The maximal matchings are
$\{\mathrm{a}-\mathrm{b}, \mathrm{c}-\mathrm{d}\},\{\mathrm{a}-\mathrm{c}, \mathrm{b}-\mathrm{d}\},\{\mathrm{a}-\mathrm{d}, \mathrm{b}-\mathrm{c}\}$

45. Ans: 10

Sol: The graph has 3 maximal matching's 6 matching's with one edge and a matching with no edges.
\therefore Number of matching's $=10$
46. Ans: (a)

Sol: If n is even, then a bipartite graph with maximum number of edges is $\mathrm{k}_{\mathrm{n} / 2, \mathrm{n} / 2}$
\therefore Matching number of $G=\frac{n}{2}$
If n is odd, then a bipartite graph with maximum number of edges $=\mathrm{k}_{\mathrm{m}, \mathrm{n}}$

Where $\mathrm{m}=\frac{\mathrm{n}-1}{2}$ and $\mathrm{n}=\frac{\mathrm{n}+1}{2}$
\therefore Matching number of G
$=\left[\begin{array}{l}\frac{\mathrm{n}}{2}, \text { if } \mathrm{n} \text { is even } \\ \frac{\mathrm{n}-1}{2}, \text { if } \mathrm{n} \text { is odd }\end{array}\right.$
\therefore Matching number of $G=\left\lfloor\frac{\mathrm{n}}{2}\right\rfloor$

Connectivity

47. Ans: (a)

Sol: If G has n vertices and k components, then

$$
\begin{aligned}
& (\mathrm{n}-\mathrm{k}) \leq|\mathrm{E}| \leq \frac{(\mathrm{n}-\mathrm{k})(\mathrm{n}-\mathrm{k}+1)}{2} \\
& \Rightarrow 7 \leq|\mathrm{E}| \leq 28
\end{aligned}
$$

48. Ans: 4

Sol: Here, $G=K_{4,5}$
Vertex connectivity of $G=$ Minimum of $\{4,5\}=4$
49. Ans: (c)

Sol: If G is a simple graph with maximum number of edges, then G should have two components $\mathrm{K}_{\mathrm{n}-1}$ and an isolated vertex.
\therefore Number of edges in $K_{n-1}=\frac{(n-1)(n-2)}{2}$.
50. Ans: 0

Sol: Here, G is a cycle graph.
Every edge of G is part of a cycle in ' G '.
\therefore ' G^{\prime} ' has no cut edge
51. Ans: (b)

Sol: In a connected graph G, if all vertices are of even degree then G has Euler circuit.
\Rightarrow Every edge is part of a cycle in G.
$\Rightarrow \mathrm{G}$ has no cut edge
$\therefore \mathrm{S}_{2}$ is true.
S_{1} is false.
We have the following counter example.

Here, all vertices in the graph are of even degree.

But c is a cut vertex of the graph.

52. Ans: (d)

Sol: If $|E|<(n-1)$, then G is disconnected If $|\mathrm{E}|>\frac{(\mathrm{n}-1)(\mathrm{n}-2)}{2}$, then G is connected. then G may or may not be connected.

53. Ans: (d)

Sol: The given graph is a complete graph K_{6}, with 6 vertices of odd degree.
$\therefore \mathrm{G}$ is not traversable

54. Ans: 3

Sol: d is the cut vertex of G
\Rightarrow vertex connectivity of $\mathrm{G}=1$
G has no cut edge.
$\Rightarrow \lambda(\mathrm{G}) \geq 2$ \qquad
By deleting the edges $d-e$ and $d-f$, we can disconnect G .
\therefore Edge connectivity $=\lambda(G)=2$

55. Ans: 105

Sol: If G is a simple graph with n vertices and k components then $|\mathrm{E}| \leq \frac{(\mathrm{n}-\mathrm{k})(\mathrm{n}-\mathrm{k}+1)}{2}$
Here $\mathrm{n}=20$ and $\mathrm{k}=5$
\therefore Maximum number of edges possible
$=\frac{(20-5)(20-6)}{2}=105$

56. Ans: (a)

Sol: If G is any graph having p vertices and $\delta(G) \geq \frac{p-1}{2}$, then G is connected.
57. Ans: (b)

Sol: If a component has n vertices, then maximum number of edges possible in that component $=\mathrm{C}(\mathrm{n}, 2)$
\therefore The maximum number of edges possible

$$
\text { in } \begin{aligned}
\mathrm{G} & =\mathrm{C}(5,2)+\mathrm{C}(6,2)+\mathrm{C}(7,2)+\mathrm{C}(8,2) \\
& =10+15+21+28 \\
& =74
\end{aligned}
$$

58. Ans: 9

Sol: In a tree, each edge is a cut set.
Number of edges in a tree with 10 vertices $=9$
\therefore Number of cut sets possible on a tree with 10 vertices $=9$
59. Ans: 1, 2

Sol: The graph can be labeled as

c is a cut vertex of the graph G.
\therefore vertex connectivity of $G=\mathrm{K}(\mathrm{G})=1$
G has no cut edge.
\Rightarrow Edge connectivity $=\lambda(G) \geq 2$
We have, $\lambda(\mathrm{G}) \leq \delta(\mathrm{G})=2$
From (1) and (2), we have

$$
\lambda(G)=2
$$

60. Ans: 2, 2

Sol: The graph G can be labeled as

G has no cut edge and no cut vertex. By deleting the edges $\{d, e\}$ and $\{b, h\}$ we can disconnect G .

$$
\therefore \lambda(\mathrm{G})=2
$$

By deleting the vertices b and d, we can disconnect G.

$$
\therefore \mathrm{K}(\mathrm{G})=2
$$

61. Ans: 1,3

Sol: The graph G can be labeled as

The vertex d is a cut vertex of G .
$\therefore \mathrm{K}(\mathrm{G})=1$
We have $\lambda(\mathrm{G}) \leq \delta(\mathrm{G})=3$
G has no cut edge and by deleting any two edges of G we cannot disconnect G.

$$
\therefore \lambda(\mathrm{G})=3
$$

62. Ans: (a)

Sol: If G is disconnected then $\overline{\mathrm{G}}$ is always connected. (Theorem)
If G is connected then \bar{G} may or may not be connected (we can prove this by counter example).
\therefore Option (a) is true.
63. Ans: (c)

Sol: $\mathbf{S}_{\mathbf{1}}$: This statement is true.

Proof:

Suppose G is not connected G has atleast 2 connected components.

Let G_{1} and G_{2} are two components of G .
Let u and v are any two vertices in G
We can prove that there exists a path between u and v in G.
Case1: u and v are in different components of G.
Now u and v are not adjacent in G.
$\therefore u$ and v are adjacent in $\overline{\mathrm{G}}$
Case2: u and v are in same components G_{1} of G . Take any vertex $\mathrm{w} \in \mathrm{G}_{2}$.
Now u and v are adjacent to w in G.
\therefore There exists a path between u and v in G. Hence, $\overline{\mathrm{G}}$ is connected.
$\mathbf{S}_{\mathbf{2}}$: The statement is false we can give a counter example.

Here, G is connected and $\overline{\mathrm{G}}$ is also connected.
\mathbf{S}_{3} : Suppose G is not connected
Let G_{1} and G_{2} are two connected components of G .

Let $\mathrm{v} \in \mathrm{G}_{1}$
$\Rightarrow \operatorname{deg}(\mathrm{v}) \geq \frac{\mathrm{n}-1}{2} \quad\left(\because \delta(\mathrm{G})=\frac{\mathrm{n}-1}{2}\right)$

Now $\left|\mathrm{V}\left(\mathrm{G}_{1}\right)\right| \geq\left(\frac{\mathrm{n}-1}{2}+1\right)$
Similarly, $\left|V\left(G_{2}\right)\right| \geq \frac{\mathrm{n}+1}{2}$
Now, $|\mathrm{V}(\mathrm{G})|=\left|\mathrm{V}\left(\mathrm{G}_{1}\right)\right|+\left|\mathrm{V}\left(\mathrm{G}_{2}\right)\right|$
$\Rightarrow|\mathrm{V}(\mathrm{G})| \geq \mathrm{n}+1$
which is a contradiction
$\therefore \mathrm{G}$ is connected.
$\mathbf{S}_{\mathbf{4}}$: If G is connected, then the statement is true. If G is not connected, then the two vertices of odd degree should lie in the same component.
By the sum of degrees of vertices theorem.
\therefore There exists a path between the 2 vertices.
64. Ans: (c)

Sol: The graph G can be labeled as

The number of vertices with odd degree is 0 .
$\therefore \mathrm{S}_{1}$ and S_{2} are true
C is a cut vertex of G .
\therefore Hamiltonian cycle does not exists.
By deleting the edges $\{\mathrm{a}, \mathrm{c}\}$ and $\{\mathrm{c}, \mathrm{e}\}$, there exists a Hamiltonian path $\mathrm{a}-\mathrm{b}-\mathrm{c}-\mathrm{d}-\mathrm{e}$

65. Ans: (a)

Sol: The graph G can be labeled as

The number of vertices with odd degree $=2$
\therefore Euler path exists but Euler circuit does not exist.
There exists a cycle passing through all the vertices of G.
$\mathrm{a}-\mathrm{b}-\mathrm{c}-\mathrm{d}-\mathrm{e}-\mathrm{a}$ is the Hamiltonian cycle of G. The Hamiltonian path is $\mathrm{a}-\mathrm{b}-\mathrm{c}-\mathrm{d}-\mathrm{e}$.
66. Ans: (b)

Sol: The number of vertices with odd degree $=0$ $\therefore \mathrm{S}_{1}$ and S_{2} are true.
To construct Hamiltonian cycle, we have to delete two edges at each of the vertices a and f. Then, we are left with 4 edges and 6 vertices.
$\therefore \mathrm{G}$ has neither Hamiltonian cycle nor Hamiltonian path.

67. Ans: (b)

Sol: S_{1} is false. We can prove it by giving a counter example.
Consider the graph G shown below

' e ' is a cut vertex of G. But, G has no cut edge
S_{2} is false. We can prove it by giving a counter example.

For the graph K_{2} shown below,

The edge $\{\mathrm{a}, \mathrm{b}\}$ is a cut edge. But K_{2} has no cut vertex.

68. Ans: 33

Sol: If G has K components, then

$$
\begin{aligned}
|\mathrm{E}| & =|\mathrm{V}|-\mathrm{K} \\
\Rightarrow \quad 26 & =|\mathrm{V}|-7 \\
\Rightarrow|\mathrm{~V}| & =33
\end{aligned}
$$

69. Ans: (c)

Sol: The forest F can be converted into a tree by adding $(\mathrm{k}-1)$ edges to F .
\therefore Number of edges in $F=(n-1)-(k-1)$

$$
=(\mathrm{n}-\mathrm{k})
$$

70. Ans: (b)

Sol: A 2-regular graph G has a perfect matching iff every component of G is an even cycle.
$\therefore \mathrm{S}_{2}$ and S_{4} are true.
S_{1} need not be true. For example the complete graph K_{2} has a perfect matching but K_{2} has no cycle.
S_{3} need not be true. For example G can have two components where each component is K_{2}.
71. Ans: 36

Sol: The maximum number of edges possible in
$\mathrm{G}=\frac{(\mathrm{n}-\mathrm{k})(\mathrm{n}-\mathrm{k}+1)}{2}$
Where, $\mathrm{n}=12$ and $\mathrm{k}=4=36$
72. Ans: (b)

Sol: G has exactly two vertices of odd degree.
Therefore, Euler path exists in G but Euler circuit does not exist.
In Hamiltonian cycle, degree of each vertex is 2 . So, we have to delete 2 edges at vertex ' d ' and one edge at each of the vertices ' a ' and ' g '. Then we are left with 8 vertices and 6 edges. Therefore, neither Hamiltonian cycle exists nor Hamiltonian path exists.

73. Ans: (b)

Sol: S1 is not true. A triangle is a counter example.
A triangle contains Euler circuit and the number of edges is 3 (odd)
S2 is true. The some of all degrees is even.
\therefore The some degrees is atleast 28 .
The statement S 2 follows by Pigeonhole principle. $\left(\left\lceil\frac{28}{9}\right\rceil=4\right)$
74. Ans: (d)

Sol: S1 is false. A counter example is shown below.

The above graph has Euler circuit (because all the vertices are of even degree) but the graph has no Hamiltonian cycle (because a cut vertex exists).
S 2 is false. A counter example is a complete graph on 2 n vertices ($\mathrm{n} \geq 2$).

75. Ans: (b)

Sol: G has cycles of odd length
\therefore Chromatic number of

$$
\begin{equation*}
\mathrm{G}=\chi(\mathrm{G}) \geq 3 \tag{1}
\end{equation*}
$$

For the vertices c and h we can use same color C_{1}
The remaining vertices from a cycle of length 6.
A cycle of even length require only two colors for its vertex coloring.
For vertices a, d and f we can apply same color C_{2}
For the vertices $\{b, e, g\}$ we can use same color C_{3}

$$
\therefore \chi(\mathrm{G})=3
$$

A perfect matching of the graph is

$$
\mathrm{a}-\mathrm{b}, \mathrm{c}-\mathrm{d}, \mathrm{e}-\mathrm{f}, \mathrm{~g}-\mathrm{h}
$$

\therefore Matching number $=4$
Hence, Chromatic number of G + Matching number of $G=3+4=7$

76. Ans: (c)

Sol: S_{1} need not be true. Consider the graph

Here, we have 6 vertices with degree 2, but the graph is not connected.
S_{2} need not be true. For the graph given above, Euler circuit does not exist, because it is not a connected graph.

A simple graph G with n vertices is necessarily connected if $\delta(\mathrm{G}) \geq \frac{\mathrm{n}-1}{2}$.
$\therefore \mathrm{S}_{3}$ is true.

77. Ans: (a)

Sol: Vertex connectivity of $\mathrm{G}=\mathrm{k}(\mathrm{G}) \leq \delta(\mathrm{G})$

$$
\Rightarrow \delta(\mathrm{G}) \geq 3
$$

By sum of degrees theorem
$3|V| \leq 2|E|$
$\Rightarrow|\mathrm{E}| \geq 15$
\therefore Minimum number of edges necessary $=15$
78. Ans: (a)

Sol: Because, G is connected and every vertex has even degree.

Euler-Circuit exists in G.
Fix some particular circuit and consider a partition of V into two sets S and T .

There must be atleast one edge between S and T , since G is connected.
But if there is only one edge, then euler path can't return to S or T once it leaves.
\therefore It follows that there are atleast two edges between S and T .

	Regular Live Doubt clearing Sessions	Free Online Test Series \| ASK an expert					
	Affordable Fee \\| Available 1M	3M	6M	12M	18M and 24 Months Subscription Packages		

79. Ans: (d)

Sol: In a connected graph, Euler circuit exists iff all vertices are of even degree
(a) If n is odd then all vertices in K_{n} are of even degree ($n-1$ is even)
\therefore In a complete graph $\mathrm{K}_{\mathrm{n}}(\mathrm{n} \geq 3)$, Euler circuit exists $\Leftrightarrow \mathrm{n}$ is odd
(b) If m and n are even, then all vertices in $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ are of even degree
\therefore In a complete bipartite graph $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ ($m \geq 2$ and $n \geq 2$), Euler circuit exists $\Leftrightarrow m$ and n are even
(c) In cycle graph degree of each vertex is 2 (even)
\therefore In a cycle graph $\mathrm{C}_{\mathrm{n}}(\mathrm{n} \geq 3)$, Euler circuit exists for all n
(d) In wheel graph W_{n}, we have $\mathrm{n}-1$ vertices with degree 3 (odd).
\therefore In a wheel graph $\mathrm{W}_{\mathrm{n}}(\mathrm{n} \geq 4)$, Euler circuit does not exist.
80. Ans: All options are true

Sol: (a) The complete graph K_{n} can be considered as a polygon with n vertices with all internal diagonals.

The polygon is a Hamiltonian cycle.
\therefore In a complete graph $\mathrm{K}_{\mathrm{n}}(\mathrm{n} \geq 3)$, Hamiltonian cycle exists for all n
(b) If $\mathrm{m}=\mathrm{n}$, then we can construct Hamiltonian cycle in $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$.
\therefore In a complete bipartite graph $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ ($\mathrm{m} \geq 2$ and $\mathrm{n} \geq 2$), Hamiltonian cycle exists $\Leftrightarrow \mathrm{m}=\mathrm{n}$
(c) The cycle graph C_{n} has a Hamiltonian cycle which is C_{n} itself.
\therefore In a cycle graph $\mathrm{C}_{\mathrm{n}} \quad(\mathrm{n} \geq 3)$, Hamiltonian cycle exists for all n
(d) In a wheel graph $\mathrm{W}_{\mathrm{n}}(\mathrm{n} \geq 4)$, Hamiltonian cycle exists $\Leftrightarrow \mathrm{n}$ is even.
\therefore All the options are true.
81. Ans: (d)

Sol: (a) Number of edge disjoint Hamiltonian cycles in $\mathrm{K}_{\mathrm{n}}=\frac{\mathrm{n}-1}{2} \quad$ (Result)
(b) If G is a simple graph with n vertices and degree of each vertex is atleast $\frac{\mathrm{n}}{2}$, then Hamiltonian cycle exists in G (Dirac's theorem)
(c) Number of Hamiltonian cycles in

$$
\mathrm{K}_{\mathrm{n}, \mathrm{n}}=\frac{\mathrm{n}!(\mathrm{n}-1)!}{2}
$$

Number of Hamiltonian cycles in $\mathrm{K}_{4,4}=\frac{4!(4-1)!}{2}=72$
(d) The statement is false, for example,

Here, the above G is a simple graph with 5 vertices and 7 edges, but Hamiltonian cycle does not exist.

ACE	48	CSIT-Postal Coaching Solutions

82. Ans: (b), (c) \& (d)

Sol: $G(10,10)$ is 4 -colorable(when both edges are added in different partitions), has an guaranteed independent set of size 9 (when both edges are added in different partitions), has vertex cover of size 11 (when both edges are added in different partitions) and has maximum matching of size 10 (in all cases).
83. Ans: (a), (c) \& (d)

Sol: (b) is false. By degree sum formula, we have:
$12+12+8=2 \mathrm{E}$
$E=15 . S o$, this graph cannot be a tree.

Chapter
 4
 Set Theory

1. Ans: (a)

Sol: Let $|\mathrm{X}|=\mathrm{m}$
$\Rightarrow \mathrm{n}=2^{\mathrm{m}}$
Number of elements in $Y=m+2$
Number of subsets in $\mathrm{Y}=2^{\mathrm{m}+2}$

$$
=4 \times 2^{m}=4 n
$$

2. Ans: (d)

Sol: $\mathbf{S}_{\mathbf{1}}$: Let $\mathrm{A}=\{1\}$ and $\mathrm{B}=\{\mathrm{A}\}$
and $\mathrm{C}=\mathrm{B}$
Now, $\mathrm{A} \in \mathrm{B}$ and $\mathrm{B} \subseteq \mathrm{C}$
But A $\nsubseteq \mathrm{C}$
S_{1} is false
$\mathbf{S}_{\mathbf{2}}:$ Let $\mathrm{A}=\{1\}, \mathrm{B}=\{1,2\}$ and $\mathrm{C}=\{\mathrm{B}\}$
Now, $A \subseteq B$ and $B \in C$
But A $\nsubseteq \mathrm{C}$
$\therefore \mathrm{S}_{2}$ is false
03. Ans: (c)

Sol: Consider the venn diagram, with seven regions $1,2,3,4,5,6,7$.

$$
\begin{aligned}
\mathrm{S} 1: \mathrm{A} \cup(\mathrm{~B}-\mathrm{C}) & =\{1,2,4,5\} \cup\{2,3\} \\
& =\{1,2,3,4,5\}
\end{aligned}
$$

$$
\begin{aligned}
(\mathrm{A} \cup \mathrm{~B})-(\mathrm{C}-\mathrm{A}) & =\{1,2,3,4,5,6\}-\{6,7\} \\
& =\{1,2,3,4,5\}
\end{aligned}
$$

$$
\therefore A \cup(B-C)=(A \cup B)-(C-A)
$$

S2: $A \cap(B-C)=\{1,2,4,5\} \cap\{2,3\}$

$$
=\{2\}
$$

$$
\begin{aligned}
(\mathrm{A} \cap \mathrm{~B})-(\mathrm{A} \cap \mathrm{C}) & =\{2,5\}-\{4,5\} \\
& =\{2\}
\end{aligned}
$$

$\therefore \mathrm{A} \cap(\mathrm{B}-\mathrm{C})=(\mathrm{A} \cap \mathrm{B})-(\mathrm{A} \cap \mathrm{C})$

04. Ans: (b)

Sol: Given that
$A \subseteq B \subseteq S$
The venn-diagram is shown here

Here, each element of S can appear in ways.
i.e., $x \in A$ or $x \in(B-A)$ or $x \in(S-B)$

In all 3 cases, $\mathrm{A} \subseteq \mathrm{B} \subseteq \mathrm{S}$.
By product rule, the n elements of S can appear in 3^{n} ways.
\therefore Required number of ordered pairs $=3^{\text {n }}$
05. Ans: (d)

Sol: We can show that each element of X can appear in A and B in two ways.

Let $\mathrm{x} \in \mathrm{X}$

Case 1:

If x is even number then it can appear in two ways i.e., either $\mathrm{x} \in(\mathrm{A}-\mathrm{B})$ or $\mathrm{x} \in(\mathrm{B}-\mathrm{A})$

Case 2:

If x is odd number then it can appear in two ways i.e., $x \in(A \cap B)$ or $x \in(\overline{A \cup B})$
\therefore By product rule, required number of subsets $=2^{2 n}$
06. Ans: (d)

Sol: (a) Let $A \oplus B=A$

$$
\begin{aligned}
& \Rightarrow \mathrm{A} \oplus \mathrm{~B}=\mathrm{A} \oplus \phi \\
& \Rightarrow \quad \mathrm{~B}=\phi \quad \text { (Cancellation law) }
\end{aligned}
$$

(b) $(\mathrm{A} \oplus \mathrm{B}) \oplus \mathrm{B}$

$$
\begin{aligned}
= & A \oplus(B \oplus B) \quad \text { (Associative law) } \\
& =A \oplus \phi \\
& =A
\end{aligned}
$$

(c) $\mathrm{A} \oplus \mathrm{C}=\mathrm{B} \oplus \mathrm{C}$

$$
\Rightarrow \mathrm{A}=\mathrm{B} \quad \text { (Cancellation law) }
$$

(d) $\mathrm{LHS}=\mathrm{A} \oplus \mathrm{B}=(\mathrm{A} \cup \mathrm{B})-(\mathrm{A} \cap \mathrm{B})$

$$
\begin{aligned}
\text { RHS } & =(A \cup B) \cap(A-B) \\
& =(A-B)
\end{aligned}
$$

$$
\therefore \text { L.H.S } \neq \text { R.H.S }
$$

7. Ans: (c)

Sol: (a) Let $A=\{1\}, B=\{2\}, C=\{3\}$
Now $(A \cap B)=(B \cap A)=\phi$
But $\mathrm{A} \neq \mathrm{B}$
\therefore (a) is not true
(b) Let $\mathrm{A}=\{1\}, \mathrm{B}=\{2\}, \mathrm{C}=\{1,2\}$

Now $\mathrm{A} \cup \mathrm{C}=\mathrm{B} \cup \mathrm{C}=\mathrm{C}$
But $\mathrm{A} \neq \mathrm{B}$
\therefore (b) is not true
(c) Let $\mathrm{x} \in \mathrm{A}$.

Consider the two cases
Case1: $x \in C$

$$
\begin{align*}
& \Rightarrow \mathrm{x} \notin(\mathrm{~A} \Delta \mathrm{C}) \quad(\because \mathrm{x} \in(\mathrm{~A} \Delta \mathrm{C})) \\
& \Rightarrow \mathrm{x} \notin(\mathrm{~B} \Delta \mathrm{C}) \quad(\because \mathrm{A} \Delta \mathrm{C}=\mathrm{B} \Delta \mathrm{C}) \\
& \Rightarrow \mathrm{x} \in \mathrm{~B} \ldots \ldots \ldots(1) \tag{1}
\end{align*}
$$

Case2: $x \notin C$

$$
\begin{align*}
& \Rightarrow \mathrm{x} \in(\mathrm{~A} \Delta \mathrm{C}) \\
& \Rightarrow \mathrm{x} \in(\mathrm{~B} \Delta \mathrm{C}) \\
& \Rightarrow \mathrm{x} \in \mathrm{~B} \quad(\because \mathrm{x} \notin \mathrm{C}) \ldots \ldots . .(2) \tag{2}\\
& \therefore \mathrm{A} \subseteq \mathrm{~B} \quad(\text { Form (1) and (2)) }
\end{align*}
$$

Similarly we can show that $\mathrm{B} \subseteq \mathrm{A}$.

$$
\therefore \mathrm{A}=\mathrm{B}
$$

Hence, (c) is true
(d) Let $\mathrm{A}=\{1,2\}$

B $=\{2,3\}$
$\mathrm{C}=\{1,3\}$
Here, $\mathrm{A}-\mathrm{C}=\{2\}=\mathrm{B}-\mathrm{C}$
But, $\mathrm{A} \neq \mathrm{B}$
\therefore Option (d) is not true
08. Ans: (c)

Sol: $\mathrm{U}=\{1,2, \ldots \ldots . . \mathrm{n}\}$
$A=\{(x, X) \mid x \in X$ and $X \subseteq U\}$
Number of non empty subsets of
$\mathrm{U}=\mathrm{C}(\mathrm{n}, 1)+\mathrm{C}(\mathrm{n}, 2)+\ldots \ldots .+\mathrm{C}(\mathrm{n}, \mathrm{n})$
Number of elements in $\mathrm{A}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k} \mathrm{C}(\mathrm{n}, \mathrm{k})$
Using Binomial Theorem, we have

$$
\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{kc}(\mathrm{n}, \mathrm{k})=\mathrm{n} \cdot 2^{\mathrm{n}-1}
$$

\therefore Both I and II are true.

09. Ans: 3 No range

Sol: The elements related to 1 are 1 and 5 .
Hence, equivalence class of $1=[1]=\{1,5\}$
We pick an element which does not belong to [1] say 2 . The elements related to 2 are 2 , 3 and 6 , hence $[2]=\{2,3,6\}$
The only element which does not belong to [1] or [2] is 4 . The only element related to 4 is 4 .

Thus [4] = \{4\}
Hence, required number of equivalence classes $=3$
10. Ans: (d)

Sol: We know that, if R is anti-symmetric relation then any subset of R is also antisymmetric.
Further $(R \cap S)$ and $(R-S)$ are subsets of R.
Hence, $(R \cap S)$ and $(R-S)$ are always antisymmetric.
If $(\mathrm{a}, \mathrm{b}) \in \mathrm{R}$ then only $(\mathrm{b}, \mathrm{a}) \in \mathrm{R}^{-1}$
$\therefore \mathrm{R}^{-1}$ is always anti-symmetric.
Let $\mathrm{A}=\{1,2,3\}$ and $\mathrm{R}=\{(1,1),(2,2),(3,3)$, $(1,2),(2,3)\}$
Then $\overline{\mathrm{R}}=\{(2,1),(3,2),(1,3),(3,1)\}$.
Here, R is anti-symmetric but $\overline{\mathrm{R}}$ is not antisymmetric.
\therefore Option (d) is correct.
11. Ans: 10

Sol: Symmetric closure of $\mathrm{R}=\{(1,1),(2,2)$, $(2,3),(3,2),(4,2),(2,4),(4,4)\}$

Transitive symmetric closure of $\mathrm{R}=\{(1,1)$, $(2,2),(2,3),(2,4),(3,2),(3,3),(3,4)$, $(4,2),(4,3),(4,4)\}$.
\therefore Required number of ordered pairs $=10$

12. Ans: 12

Sol: The Hasse diagram is shown below.

\therefore Required number of edges $=12$

13. Ans: (b)

Sol: S1 need not be true. We have the following counter example.
$\mathrm{R}=\{(1,2),(2,1)\}$
The transitive closure of
$\mathrm{R}=\{(1,2),(2,1),(1,1),(2,2)\}$
Which is not irreflexive.
$S 2$ is true. Suppose that $(a, b) \in R^{*}$; then there is a path from a to b in (the digraph for) R. Given such a path, if R is symmetric, then the reverse of every edge in the path is also in R ; Therefore there is a path from b to a in R (following the given path backwards). This means that (b, a) is in R^{*} whenever (a, b) is, exactly what we needed to prove.
14. Ans: (a)

Sol: R is reflexive because $|\mathrm{x}-\mathrm{x}|=0<1$ whenever $\mathrm{x} \in R$.
R is symmetric, for if $x R y$, where x and y are real numbers, then $|\mathrm{x}-\mathrm{y}|<1$.
$\Rightarrow|y-x|=|x-y|<1$,
$\Rightarrow \mathrm{yRx}$.
However, R is not an equivalence relation because it is not transitive.

For example, $\mathrm{x}=2.8, \mathrm{y}=1.9$ and $\mathrm{z}=1.1$,
Here, $|\mathrm{x}-\mathrm{y}|=|2.8-1.9|=0.9<1$,
$|y-z|=|1.9-1.1|=0.8<1$
but $\quad|x-z|=|2.8-1.1|=1.7>1$.
i.e., $2.8^{\mathrm{R}} 1.9,1.9^{\mathrm{R}} 1.1$, but 2.8 is not related to 1.1.

15. Ans: (a)

Sol: Let $\mathrm{S}=\{1,2$, \qquad $n\}$

If a relation R on S is symmetric and antisymmetric then R is any subset of the diagonal relation

$$
\Delta_{\mathrm{A}}=\{(1,1),(2,2), \ldots \ldots \ldots .,(\mathrm{n}, \mathrm{n})\} .
$$

Any subset of Δ_{A} is also transitive.
\therefore The required number of relations

$$
\begin{aligned}
& =\text { Number of subset of } \Delta_{\mathrm{A}} \\
& =2^{\mathrm{n}}
\end{aligned}
$$

Relations

16. Ans: (d)

Sol: R_{2} is reflexive because for all
$\mathrm{a} \in \mathrm{N}, \frac{a}{a}=1=2^{0}$, this $(\mathrm{a}, \mathrm{a}) \in \mathrm{R}$.
R_{2} is not symmetric because if $(a, b) \in R_{2}$, then $\frac{a}{b}=2^{i}$, where $\mathrm{i} \geq 0$.

But $\frac{b}{a}=2^{-i}$, where $-\mathrm{i} \leq 0$.
$\therefore(b, a) \notin R$

17. Ans: (c)

Sol: R can be represented by a square matrix of order n with all the diagonal elements as 1 .

Since, R is symmetric,
number of elements above the principal diagonal $=$ number of elements below the principal diagonal.
\therefore Number of elements in $\mathrm{R}=2 \mathrm{k}+\mathrm{n}$
where k is number of elements above the diagonal
Hence, if n is even then number of elements in R is even and
if n is odd then number of elements in R is odd

18. Ans: (a)

Sol: $\mathbf{S}_{\mathbf{1}}$: Suppose both R and S are reflexive
Let $a \in A$
If $\{(a, a) \in R$ and $(a, a) \in S\}$ then $(a, a) \in(R \cup S)$.
$\therefore(R \cup S)$ is reflexive
$\mathbf{S}_{\mathbf{2}}$: Suppose both R and S are symmetric
Let $(x, y) \in(R \cup S)$
$\Rightarrow(\mathrm{x}, \mathrm{y}) \in \mathrm{R}$ or $(\mathrm{x}, \mathrm{y}) \in \mathrm{S}$
$\Rightarrow(y, x) \in R \quad$ or $(y, x) \in S$
$\Rightarrow(\mathrm{y}, \mathrm{x}) \in(\mathrm{R} \cup \mathrm{S})$
$\therefore(R \cup S)$ is symmetric
\mathbf{S}_{3} : Suppose both R and S are transitive

Let $\mathrm{R}=\{(\mathrm{a}, \mathrm{b})\}$ and $\mathrm{S}=\{(\mathrm{b}, \mathrm{a})\}$
Here, R and S are transitive but $(R \cup S)$ is not transitive
19. Ans: (b)

Sol: If S is any set, then a sub division $\left\{S_{1}, S_{2}, \ldots \ldots ., S_{n}\right\}$ of S is called a partition of S if $\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \ldots \ldots . . \cup \mathrm{S}_{\mathrm{n}}=\mathrm{S}$ and $\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots \ldots . . ., \mathrm{S}_{\mathrm{n}}$ are non-empty disjoint subsets of S .
P_{2} is the only one that is not a partition of S , because in which

$$
\{7,4,3,8\} \cap\{1,5,10,3\} \neq \phi
$$

20. Ans: (d)

Sol: P_{4} is a refinement of both P_{1} and P_{3}, because P_{4} itself is a partition of S and every element of P_{4} is a subset of one of the elements in P_{1} and P_{3}
21. Ans: 10

Sol: The number of refinements of a partition P is the number of ways to further partition cells in P. The cell $\{1,2,3\}$ has 5 ways, $\{4,5\}$ has 2 ways, and $\{6\}$ has one way. Therefore, the total number of refinements of P is $5 \times 2 \times 1=10$.

22. Ans: (c)

Sol: S_{1} is true, by definition of anti-symmetric relation.
S_{2} is true, by definition of transitive relation.

23. Ans: (b)

Sol: $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}) \mid \mathrm{a}$ divides b$\}$
$\mathrm{R}^{-1}=\{(\mathrm{a}, \mathrm{b}) \mid \mathrm{b}$ divides a$\}$
Symmetric closure of $\mathrm{R}=\mathrm{R} \cup \mathrm{R}^{-1}$ $=\{(\mathrm{a}, \mathrm{b}) \mid \mathrm{a}$ divides b or b divides a$\}$

24. Ans: (b)

Sol: The smallest relation containing R and $S=R \cup S$

$$
\begin{aligned}
=\{ & (1,1),(1,2),(2,1),(2,2),(3,3),(3,4), \\
& (4,3),(4,4),(4,5),(5,4),(5,5)\}
\end{aligned}
$$

Here, $\mathrm{R} \cup \mathrm{S}$ is reflexive, symmetric and transitive.

The smallest equivalence relation containing R and $S=R \cup S$

The partition corresponding to $R \cup S=\{\{1,2\},\{3,4,5\}\}$

25. Ans: (d)

Sol: For any two elements $x, y \in A$, the corresponding equivalence classes are either disjoint or identical.
i.e. if $x^{R} y$ then $[x]=[y]$
and if x is not related to y, then $[x] \cap[y]=\{ \}$.
26. Ans: 1

Sol: The only relation on A, which is both equivalence and partial order is the diagonal relation on A .
i.e., $R=\{(1,1),(2,2),(3,3)\}$

27. Ans: (a)

Sol: R is reflexive, because

$$
\begin{aligned}
& \quad(\mathrm{x}-\mathrm{x}) \text { is an even integer } \\
& \Rightarrow \quad \mathrm{x}^{\mathrm{R}} \mathrm{x} \quad \forall \mathrm{x} \in \mathrm{Z} \\
& \text { Let } \mathrm{x}^{\mathrm{R}} \mathrm{y} \\
& \Rightarrow(\mathrm{x}-\mathrm{y}) \text { is an even integer } \\
& \Rightarrow(\mathrm{y}-\mathrm{x}) \text { is an even integer } \\
& \Rightarrow \mathrm{y}^{\mathrm{R}} \mathrm{x} \quad \forall \mathrm{x}, \mathrm{y} \in \mathrm{Z}
\end{aligned}
$$

$\therefore \mathrm{R}$ is symmetric
Let $x^{R} y$ and $y^{R} z$
$\Rightarrow(\mathrm{x}-\mathrm{y})$ and $(\mathrm{y}-\mathrm{z})$ are even integers
Now, $(x-z)=(x-y)+(y-z)=$ an even integer
$\Rightarrow R$ is transitive
$\therefore \mathrm{R}$ is an equivalence relation
R is not a partial order, because R is not anti-symmetric.
For example, $2{ }^{\mathrm{R}} 4$ and $4{ }^{\mathrm{R}} 2$
28. Ans: 48

Sol: If a relation is neither reflexive nor irreflexive then diagonal pairs can appear in $\left(2^{3}-2\right)$ ways.

If the relation is symmetric then non diagonal pairs can appear in 2^{3} ways.
By product rule
Required number of relations $=\left(2^{\mathrm{n}}-2\right) \cdot 2^{\frac{\mathrm{n}(\mathrm{n}-1)}{2}}$, where $\mathrm{n}=3$

$$
\begin{aligned}
& =6 .(8) \\
& =48
\end{aligned}
$$

29. Ans: (c)

Sol: The diagonal relation on A is
$\Delta_{\mathrm{A}}=\{(1,1),(2,2),(3,3)\}$.
Δ_{A} is an equivalence relation as well as a partial order on A .
The relation is not a total order.
For example, the elements 2 and 3 are not comparable.
30. Ans: (b)

Sol: S_{1} need not be true.
We can give the following counter example.
Let $\mathrm{A}=\{1,2\}$ and
$\mathrm{R}=\{(1,1),(2,2),(1,2)\}$
and $\mathrm{S}=\{(1,1),(2,2),(2,1)\}$
Here, R and S are partial orders, but $R \cup S$ is not a partial order.
S_{2} is true.
If R and S are any two reflexive relations on a set A, then $(R \cap S)$ is also reflexive.
If R and S are any two anti-symmetric relations on a set A, then ($R \cap S$) is also anti-symmetric.
If R and S are any two transitive relations on a set A, then $(R \cap S)$ is also transitive.
Hence, If R and S are any two partial orders on a set A, then $(R \cap S)$ is also partial order

31. Ans: 0

Sol: On a set with 2 elements, if a relation is reflexive and symmetric then it is also transitive.
\therefore There is no relation which is reflexive and symmetric but not transitive.
32. Ans: (b)

Sol: The Hasse diagram is shown below.

The poset is a bounded lattice with upper bound 12 and lower bound 1 .

The poset is a distributive lattice because it has no sub lattice isomorphic to L_{1}^{*} or L_{2}^{*} shown below.

L_{1}^{*}

The poset is not a complemented lattice because complements do not exist for the element 2,4 and 6.
33. Ans: (c)

Sol: The relation R is reflexive, anti-symmetric and transitive.
$\therefore \mathrm{R}$ is a partial order.
The Hasse diagram of the poset [A $\times \mathrm{A} ; \mathrm{R}]$ is shown below.

From the Hasse diagram we can see that LUB and GLB exist for every pair of ordered pairs.
\therefore The poset is a lattice.

34. Ans: (c)

Sol: As per the Hasse diagram given in the above example,
The upper bound $=I=36$
The lower bound $=\mathrm{O}=1$
In a lattice, 2 elements a and b are complements of each other if least upper bound (LUB) of a and $b=I$ and greatest lower bound (GLB) of a and $b=O$.
(a) LUB of $2 \& 18=$ LCM of 2 and $18=18 \neq \mathrm{I}$
\therefore Complement of 2 is not 18 .
(b) The LUB of 3 and $12=$ LCM of 3 and $12=12 \neq \mathrm{I}$
\therefore Complement of 3 is not 12 .
(c) The LUB of 4 and $9=$ LCM of 4 and $9=36=\mathrm{I}$

The GLB of 4 and $9=G C D$ of 4 and $9=1=\mathrm{O}$
\therefore Complement of $4=9$.
(d) LUB of $6 \& 1=$ LCM of 6 and $1=6 \neq \mathrm{I}$
\therefore Complement of 6 is not 1 .
35. Ans: (c)

Sol: The set A with respect to R is a totally ordered set and therefore a distributive lattice.

The Hasse diagram is shown below.

The upper bound of the lattice does not exist.
\therefore Option (c) is true.
36. Ans: (b)

Sol: In the lattice $[\mathrm{P}(\mathrm{A}) ; \subseteq]$,
Complement of $\mathrm{X}=\mathrm{A}-\mathrm{X} \quad \forall \mathrm{X} \in \mathrm{P}(\mathrm{A})$
$B=\{2,3,5,7\}$
\therefore Complement of $\mathrm{B}=\mathrm{A}-\mathrm{B}$

$$
=\{1,4,6,8,9,10\}
$$

37. Ans: (a)

Sol: Let x and y be any two elements of S.
Then, the set $\{x, y\}$ is a subset of S.
So, it has a minimum element z.
if $z=x$ then $x R y$
if $z=y$ then $y R x$
$\therefore \mathrm{x}$ and y are comparable.
$\Rightarrow \mathrm{S}$ is a totally ordered set.
The maximum element of S may not exist.
\therefore Other options need not be true.

38. Ans: 11

Sol: The Hasse diagram is shown below.

\therefore The number of edges in the diagram $=11$.
39. Ans: (a)

Sol: If $R \cup R^{-1}=A \times A$, then the given relation R is a total order (linear order).
\therefore The poset $[A ; R]$ is a totally ordered set.
Every totally ordered set is a distributive lattice.

The poset $[\mathrm{A} ; \mathrm{R}]$ is not a complemented lattice, because in a totally ordered set, complements exists only for upper bound and lower bounds.
40. Ans: (d)

Sol: S_{1} is false
Proof by counter example:
For the lattice shown below

Each element has atmost one complement, but the lattice is not distributive.
$\therefore \mathrm{S}_{1}$ is false.
For the lattice shown below.

The lattice is complemented. But the sub lattice $\{\mathrm{a}, \mathrm{c}, \mathrm{e}\}$ is not complemented.
$\therefore \mathrm{S}_{2}$ is false
41. Ans: (b)

Sol: The given expression is an upper bound of y, so it is at least y.

On the other hand, y is a common upper bound for y and $\mathrm{x} \wedge \mathrm{y}$, so it is indeed their least upper bound.
42. Ans: (d)

Sol: S_{1} : L.H.S $=x \vee(\mathrm{y} \wedge \mathrm{z})$

$$
\begin{aligned}
& =x \vee O \\
& =x
\end{aligned}
$$

$$
\begin{aligned}
\text { R.H.S } & =(x \vee y) \wedge z \\
& =I \wedge z \\
& =z
\end{aligned}
$$

L.H.S \neq R.H.S
S_{2} : L.H.S $=\mathrm{x} \vee(\mathrm{y} \wedge \mathrm{z})$

$=I \wedge I$
$=\mathrm{I}$
\therefore L.H.S \neq R.H.S
43. Ans: (d)

Sol: (a) f is not $1-1$ and therefore not a bijection.
For example, $\mathrm{f}(1)=\mathrm{f}(-1)=1$
(b) $g(x)$ is not 1-1 and hence not a bijection.

For example, $g(1)=g(-1)=1$
(c) $\mathrm{h}(\mathrm{x})$ is not $1-1$ and hence not a bijection.

For example, $\mathrm{h}(1.1)=\mathrm{h}(1.2)=1$
(d) Let $\phi(a)=\phi(b)$
$\Rightarrow a^{3}=b^{3}$
$\Rightarrow \mathrm{a}=\mathrm{b}$
$\Rightarrow \phi$ is one-to-one
Let $\phi(\mathrm{x})=\mathrm{x}^{3}=\mathrm{y}$

$$
\Rightarrow \mathrm{x}=\mathrm{y}^{\frac{1}{3}}
$$

For each real number y, there exists a real number x such that $\mathrm{x}=\mathrm{y}^{\frac{1}{3}}$.
$\Rightarrow \phi$ is on-to
$\therefore \phi$ is a bijection.

44. Ans: (c)

Sol: Let $\mathrm{f}(\mathrm{A})=\mathrm{g}(\mathrm{B})=\mathrm{h}(\mathrm{C})=\mathrm{D}$
We can choose D in $\mathrm{C}(\mathrm{n}, \mathrm{k})$ ways.
Now, there are k ! injections for each of the sets A, B and C.
By productive rule,
Required number of triples of functions $=\mathrm{C}(\mathrm{n}, \mathrm{k}) .(\mathrm{k}!)^{3}$
45. Ans: (a)

Sol: S_{1} : Let $\mathrm{f}(\mathrm{x})=\mathrm{x}$
Then $f(x)=f(y)$
$\Rightarrow \mathrm{x}=\mathrm{y}$
$\Rightarrow f$ is one to one
S_{2} : Let $\mathrm{A}=\phi$, then there is not function at all from B to A, surjection or not.

46. Ans: (c)

Sol: Here, A and B are finite sets and $|A|=|B|$
\therefore Every one-to-one function from A to B is on-to, and hence a bijection.
For every bijection $\mathrm{f}, \mathrm{f}^{1}$ exists.
$\therefore \mathrm{S}_{1}$ and S_{2} are true
47. Ans: (c)

Sol: S1: Let $\mathrm{x} \in \mathrm{f}^{-1}(\mathrm{~S} \cup \mathrm{~T})$

$$
\begin{aligned}
& \Rightarrow \mathrm{f}(\mathrm{x}) \in(\mathrm{S} \cup \mathrm{~T}) \\
& \Rightarrow \mathrm{f}(\mathrm{x}) \in \mathrm{S} \quad \text { or } \mathrm{f}(\mathrm{x}) \in \mathrm{T} \\
& \Rightarrow \mathrm{x} \in \mathrm{f}^{-1}(\mathrm{~S}) \text { or } \mathrm{x} \in \mathrm{f}^{-1}(\mathrm{~T}) \\
& \Rightarrow \mathrm{x} \in\left\{\mathrm{f}^{-1}(\mathrm{~S}) \cup \mathrm{f}^{-1}(\mathrm{~T})\right\} \\
& \Rightarrow \mathrm{f}^{-1}(\mathrm{~S} \cup \mathrm{~T}) \subseteq\left\{\mathrm{f}^{-1}(\mathrm{~S}) \cup \mathrm{f}^{-1}(\mathrm{~T})\right\}
\end{aligned}
$$

By retracing the steps, we can show that $\left\{\mathrm{f}^{-1}(\mathrm{~S}) \cup \mathrm{f}^{-1}(\mathrm{~T})\right\} \subseteq \mathrm{f}^{-1}(\mathrm{~S} \cup \mathrm{~T})$ $\therefore \mathrm{f}^{-1}(\mathrm{~S} \cup \mathrm{~T})=\mathrm{f}^{-1}(\mathrm{~S}) \cup \mathrm{f}^{-1}(\mathrm{~T})$
Hence, S1 is true.
S2: The proof is similar to that of S1. Please try yourself.
48. Ans: (d)

Sol: Let $\mathrm{f}(\mathrm{x}, \mathrm{y})=(2 \mathrm{x}-\mathrm{y}, \mathrm{x}-2 \mathrm{y})=(\mathrm{u}, \mathrm{v})$
$\Rightarrow 2 x-y=u \quad \& x-2 y=v$
By solving $u=\left(\frac{2 x-y}{3}\right) \& v=\left(\frac{x-2 y}{3}\right)$

$$
\therefore \mathrm{f}^{-1}(\mathrm{x}, \mathrm{y})=\left(\frac{2 \mathrm{x}-\mathrm{y}}{3}, \frac{\mathrm{x}-2 \mathrm{y}}{3}\right)
$$

49. Ans: (b)

Sol: (i) If S is a bit string with all ones, then $\mathrm{f}(\mathrm{S})$ does not exists.
$\therefore \mathrm{f}$ is not a function.
(ii) The number of 1 bits in a bit string is a non negative integer.
\therefore For each bit string S we can assign only one non negative integer in the codomain.
$\therefore \mathrm{f}$ is a function.
50. Ans: (a)

Sol: $\mathbf{S}_{\mathbf{1}}$: Let $\mathrm{f}(\mathrm{a})=\mathrm{f}(\mathrm{b})$
Where a and b are integers.
$\Rightarrow \mathrm{a}^{3}=\mathrm{b}^{3}$
$\Rightarrow \mathrm{a}=\mathrm{b}$
$\Rightarrow \mathrm{f}$ is $1-1$
$f(x)=x^{3}$ is not on-to. For example, the integer 2 in the codomain is not mapped by any integer of the domain.
$\therefore \mathrm{f}(\mathrm{x})=\left\lceil\frac{\mathrm{n}}{2}\right\rceil$ is not $1-1$.
For ex. $\quad f(1)=f(2)$
However, $f(x)$ is on-to function, because each integer in the co-domain is mapped by atleast one element of the domain.

51. Ans: (a)

Sol: Let $\mathrm{f}(\mathrm{a})=\mathrm{f}(\mathrm{b})$
$\Rightarrow \frac{\mathrm{a}-2}{\mathrm{a}-3}=\frac{\mathrm{b}-2}{\mathrm{~b}-3}$
$\Rightarrow(\mathrm{a}-2)(\mathrm{b}-3)=(\mathrm{a}-3)(\mathrm{b}-2)$
$\Rightarrow \mathrm{a}=\mathrm{b}$
$\therefore \mathrm{f}$ is $1-1$
Let $f(x)=\frac{x-2}{x-3}=y$
$\Rightarrow \mathrm{x}-2=(\mathrm{x}-3) \mathrm{y}$
$\Rightarrow \mathrm{x}-\mathrm{xy}=2-3 \mathrm{y}$
$\Rightarrow \mathrm{x}=\frac{2-3 \mathrm{y}}{1-\mathrm{y}} \in \mathrm{A}$
\therefore For each $\mathrm{y} \in \mathrm{B}$, there exists an element $x \in A$, such that $f(x)=y$.
$\therefore \mathrm{f}$ is on-to
Hence, f is a bijection.

52. Ans: (a)

Sol: $(\mathrm{fog}) \mathrm{x}=\mathrm{f}\{\mathrm{g}(\mathrm{x})\}$

$$
\begin{aligned}
& =f\left(\frac{x}{1-x}\right) \\
& =\frac{\left(\frac{x}{1-x}\right)}{\left(\frac{x}{1-x}\right)+1}=x
\end{aligned}
$$

$\Rightarrow(\mathrm{fog}) \mathrm{x}=\mathrm{x}$
$\Rightarrow(f o g)$ is an identity function
$\Rightarrow(\mathrm{fog})^{-1} \mathrm{x}=(\mathrm{fog}) \mathrm{x}=\mathrm{x}$
53. Ans: (d)

Sol: $(d) f(x)=\frac{1}{\sqrt{|x|-x}}$
Case 1: when $x \geq 0$

$\therefore \mathrm{f}(\mathrm{x})$ is not defined when $\mathrm{x} \geq 0$.
Case 2: when $\mathrm{x}<0$

$$
|x|=-x
$$

$\therefore|\mathrm{x}|-\mathrm{x}=-2 \mathrm{x}>0$
\therefore Domain of $\mathrm{f}(\mathrm{x})=(-\infty, 0)$

54. Ans: (a)

Sol: (a) If f: A \rightarrow B then $\mathrm{f}^{-1}: \mathrm{B} \rightarrow \mathrm{A}$

$$
\text { fof }^{-1}: B \rightarrow B
$$

$\therefore \mathrm{fof}^{-1}=\mathrm{I}_{\mathrm{B}}$
\therefore Option (a) is false.

55. Ans: (d)

Sol: Let us show that f is injective.
Let x, y be elements of A such that $f(x)=f(y)$
Then, $x=I_{A}(x)=g(f(x))=g(f(y))=I_{A}(y)=y$
$\therefore \mathrm{f}$ is one-to-one function
Let us show that g is surjective
Let x be any element of A
Then, $f(x)$ is an element of B
Such that $g(f(x))=I_{A}(x)=x$
$\Rightarrow \mathrm{g}$ is a on-to function
56. Ans: (c)

Sol: The order of element $\mathrm{a}=$ the smallest positive integer n such that $\mathrm{a}^{\mathrm{n}}=\mathrm{e}$ (identity).
(a) The element 1 is identity element of the group
\therefore order of $1=1$
(b) $2^{1}=2,2^{2}=4,2^{3}=1$
\therefore order of $2=3$
(c) $3^{1}=3,3^{2}=2,3^{3}=6,3^{4}=4,3^{5}=5,3^{6}=1$
\therefore order of $3=6$
Hence, option (C) is not true
(d) $4^{1}=4,4^{2}=2,4^{3}=1$
\therefore order of $4=3$
57. Ans: (c)

Sol: $\mathrm{A} \oplus \mathrm{B}=(\mathrm{A}-\mathrm{B}) \cup(\mathrm{B}-\mathrm{A})$
we have $\mathrm{A} \oplus \mathrm{B} \in \mathrm{P}(\mathrm{S}), \quad \forall \mathrm{A}, \mathrm{B} \in \mathrm{P}(\mathrm{S})$
\therefore * is a closed operation
We have $(\mathrm{A} \oplus \mathrm{B}) \oplus \mathrm{C}=\mathrm{A} \oplus(\mathrm{B} \oplus \mathrm{C})$
$\therefore{ }^{*}$ is associative on $\mathrm{P}(\mathrm{S})$
we have, $\mathrm{A} \oplus \phi=\mathrm{A}, \forall \mathrm{A} \in \mathrm{P}(\mathrm{S})$
$\therefore \phi$ is identity element in $\mathrm{P}(\mathrm{S})$ w.r.t. $*$.
We have, $\mathrm{A} \oplus \mathrm{A}=\phi, \forall \mathrm{A} \in \mathrm{P}(\mathrm{S})$
\therefore For each element of $\mathrm{P}(\mathrm{S})$, inverse exists, because inverse of $\mathrm{A}=\mathrm{A}, \forall \mathrm{A} \in \mathrm{P}(\mathrm{S})$.
$\therefore\left(\mathrm{P}(\mathrm{S}),{ }^{*}\right)$ is a group.
58. Ans: 1

Sol: Let e be the identity element.

$$
\begin{array}{ll}
& \mathrm{a} * \mathrm{e}=\mathrm{a} \\
\Rightarrow \quad & \frac{\mathrm{ae}}{2}=\mathrm{a} \\
\Rightarrow \quad & \mathrm{e}=2
\end{array}
$$

Let a^{-1} is inverse of a

$$
a^{*} a^{-1}=e
$$

$$
\Rightarrow \quad \frac{\mathrm{aa}^{-1}}{2}=2
$$

$$
\Rightarrow \quad \mathrm{a}-1=\frac{4}{\mathrm{a}}
$$

$$
\text { Inverse of } 4=\frac{4}{4}=1
$$

59. Ans: (c)

Sol: Let e be the identity element.

$$
\begin{gathered}
\text { Now } \mathrm{a} * \mathrm{e}=\mathrm{a} \\
\Rightarrow 2 \mathrm{a} \mathrm{e}=\mathrm{a} \\
\Rightarrow \mathrm{e}=\frac{1}{2}
\end{gathered}
$$

Let inverse of $\frac{2}{3}$ is x

$$
\frac{2}{3} * x=\frac{1}{2}
$$

$$
\begin{aligned}
& \Rightarrow 2\left(\frac{2}{3} \cdot x\right)=\frac{1}{2} \\
& \Rightarrow x=\frac{3}{8}
\end{aligned}
$$

60. Ans: (b)

Sol: Let e be the identity element.
$\therefore \mathrm{a} * \mathrm{e}=\mathrm{a}$
$\Rightarrow \mathrm{a}+\mathrm{e}+\mathrm{a} . \mathrm{e}=\mathrm{a}$
$\Rightarrow \mathrm{e}=0$
Let $\mathrm{a}^{-1}=$ inverse of a
$\mathrm{a}^{*} \mathrm{a}^{-1}=\mathrm{e}$
$\Rightarrow \mathrm{a}+\mathrm{a}^{-1}+\mathrm{aa}^{-1}=0(\because 0$ is identity element $)$
$\Rightarrow \mathrm{a}^{-1}=\frac{-\mathrm{a}}{\mathrm{a}+1}$
\therefore Inverse of -1 does not exist.
Hence, option (b) is false.
61. Ans: (d)

Sol: (d) $\mathrm{G}=\{1,-1, \mathrm{i},-\mathrm{i}\}$
(i) G is closed with respect to multiplication.
(ii) Multiplication is associative on G.
(iii) 1 is identity element in G with respect to multiplication.
(iv) The inverse elements of $1,-1, i,-i$ are 1 , $-1,-i, i$ respectively.
$\therefore \mathrm{G}$ is group with respect to multiplication.
62. Ans: (d)

Sol: (d) The cube roots of unity, $\mathrm{G}=\left\{1, \omega, \omega^{2}\right\}$ is a group with respect to multiplication.
The inverse of $\omega=\omega^{2}$
\therefore The statement is false.
63. Ans: (c)

Sol: $5 \oplus_{6} 2=1$
\Rightarrow Inverse of 5 is not 2 .

64. Ans: (c)

Sol: Order of $(-i)=4$, because the smallest integer n such that $(-\mathrm{i})^{\mathrm{n}}=1$ is $\mathrm{n}=4$
65. Ans: (a)

Sol: (a) $\mathrm{G}=\{1,3,5,7\}$ is a group with respect to

$$
\begin{aligned}
& \mathrm{H}_{1}=\{1,3\} \text { and } \mathrm{H}_{2}=\{1,5\} \\
& \mathrm{H}_{1} \cup \mathrm{H}_{2}=\{1,3,5\}
\end{aligned}
$$

Here, H_{1} and H_{2} are subgroups of G , but $\mathrm{H}_{1} \cup \mathrm{H}_{2}$ is not a subgroup of G .
66. Ans: (d)

Sol: (d) Every subgroup of a cyclic group is cyclic (theorem)
67. Ans: (d)

Sol: (d) $2^{2}=2 \otimes_{7} 2=4$

$$
2^{3}=4 \otimes_{7} 2=1
$$

2 is not a generator of G , because we cannot generate 3,5 and 6 with 2 .

68. Ans: (c)

Sol: The identity element of G is 0 . In the sets given in options (b) and (d), the identity element is missing.

The set $\{0,4\}$ is not closed w.r.t \oplus.
The set $\{0,2,4\}$ is closed w.r.t \oplus.
\therefore The set in option (c) is a subgroup of G.

69. Ans: 4

Sol: Number of generators in $G=\phi(10)=4$ where ϕ is Euler function.
70. Ans: (d)
71. Ans: (a)

Sol: Any group with 4 elements is abelian.
\Rightarrow The rows and columns of the table are identical
\Rightarrow First column is $\left[\begin{array}{llll}b & d & a & c\end{array}\right]^{T}$ and second column is $\left[\begin{array}{llll}d & c & b & a\end{array}\right]^{T}$.
Now, the modified table is

$*$	a	b	c	d
a	b	d	a	c
b	d	c	b	a
c	a	b	\times	\times
d	c	a	\times	\times

In the composition table of a group, one of the rows of entries should coincide with the top row.
\therefore The third row is $\mathrm{a} b \mathrm{c} d$
Hence, the identity element is c.
Further, we can show that fourth row is c a d b and
$\mathrm{a}^{-1}=\mathrm{d}, \mathrm{b}^{-1}=\mathrm{b}, \mathrm{c}^{-1}=\mathrm{c}$ and $\mathrm{d}^{-1}=\mathrm{a}$.
72. Ans: (a), (b) \& (c)

Sol: (d) is false. For eg, $\mathrm{A}=\{1,2\}$,
$B=\{1\}, C=\{2\}$ then $(A-B)-C=$ Empty
But $(\mathrm{A}-\mathrm{B})-(\mathrm{B}-\mathrm{C})=\{2\}$
Remaining statements are true.
73. Ans: (a), (c) \& (d)

Sol: B is Not Onto because negative values cannot have pre-image.
(a), (c), (d) are Onto.

Chapter
5

Probability and Statistics

1. Ans: (a)

Sol:

Let x and y are two numbers in the interval $(0,1)$
We have to choose x and y such that $\mathrm{x}^{2}+\mathrm{y}^{2}<1$.
Required probability $=\frac{\text { Area of the shaded region }}{\text { Area of thesquare }}$

$$
=\frac{\pi / 4}{1}=\frac{\pi}{4}
$$

2. Ans: (a)

Sol: A non-decreasing sequence can be described by a partition $\mathrm{n}=\mathrm{n}_{0}+\mathrm{n}_{1}+\mathrm{n}_{2}$
where n_{i} is number of times the digit i appear in the sequence.
There are $(\mathrm{n}+1)$ choices for n_{0} and given n_{0} there are $\mathrm{n}-\mathrm{n}_{0}+1$ choices for n_{1}.
So, the total number of possibilities is

$$
\begin{aligned}
& \sum_{\mathrm{n}_{0}=0}^{\mathrm{n}}\left(\mathrm{n}-\mathrm{n}_{0}+1\right)=(\mathrm{n}+1) \cdot(\mathrm{n}+1)-\sum_{\mathrm{n}_{0}=0}^{\mathrm{n}} \mathrm{n}_{0} \\
& =(\mathrm{n}+1) \cdot(\mathrm{n}+1)-\frac{\mathrm{n}^{2}+\mathrm{n}}{2}
\end{aligned}
$$

$$
=\frac{(\mathrm{n}+1)(\mathrm{n}+2)}{2}
$$

Required probability $=\frac{n^{2}+3 n+2}{2\left(3^{n}\right)}$
03. Ans: (d)

Sol: Number of ways, we can choose $\mathrm{R}=\mathrm{C}(\mathrm{n}, 3)$
We have to count number of ways we can choose R, so that median $(R)=$ median (S).

Each such set R contains median S , one of the $\left(\frac{n-1}{2}\right)$ elements of S less than median (S), and one of the $\left(\frac{n-1}{2}\right)$ elements of S
greater than median (S).
So, there are $\left(\frac{n-1}{2}\right)^{2}$ choices for R.
$\begin{aligned} \text { Required probability } & =\frac{\left(\frac{n-1}{2}\right)^{2}}{C(n, 3)} \\ & =\frac{3(n-1)}{2 n(n-2)}\end{aligned}$

04. Ans: (a)

Sol: For each $i \in\{1,2, \ldots \ldots ., n\}$,
let A_{i} heads be the event that the coin comes up heads for the first time and continues to come up heads there after.

Then, the desired event is the disjoint union of A_{i}.

Since, each A_{i} occurs with probability $2^{-\mathrm{n}}$.
The required probability $=\mathrm{n} .2^{-\mathrm{n}}$

05. Ans: (b)

Sol: Probability of the event that we never get the consecutive heads or tails

$$
=\mathrm{P}(\mathrm{HT} \mathrm{HT} \mathrm{HT} \ldots .)+\mathrm{P}(\mathrm{TH} \mathrm{TH} \mathrm{TH})
$$

$$
\begin{aligned}
& =\left(\frac{1}{3}\right)^{\mathrm{n}}\left(\frac{2}{3}\right)^{\mathrm{n}}+\left(\frac{1}{3}\right)^{\mathrm{n}}\left(\frac{2}{3}\right)^{\mathrm{n}} \\
& =2\left(\frac{1}{3}\right)^{\mathrm{n}}\left(\frac{2}{3}\right)^{\mathrm{n}}
\end{aligned}
$$

The required probability $=1-2\left(\frac{1}{3}\right)^{\mathrm{n}}\left(\frac{2}{3}\right)^{\mathrm{n}}=$

$$
=\frac{3^{n}-2^{n+1}}{3^{2 n}}
$$

06. Ans: (c)

Sol: Number of ways of selecting three integers

$$
={ }^{20} \mathrm{C}_{3}
$$

We know that, product of three integers is even, if atleast one of the number is even.

Number of ways of selecting 3 odd integers

$$
={ }^{10} \mathrm{C}_{3}
$$

\therefore Required probability

$$
=1-\frac{{ }^{10} \mathrm{C}_{3}}{{ }^{20} \mathrm{C}_{3}}=1-\frac{2}{19}=\frac{17}{19}
$$

Conditional probability

7. Ans: (c)

Sol: Given that $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=1$
$\Rightarrow \frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}=1$
$\Rightarrow \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{B})$ \qquad

$$
\begin{aligned}
\mathrm{P}\left(\mathrm{~B}^{\mathrm{C}} \mid \mathrm{A}^{\mathrm{C}}\right) & =\frac{\mathrm{P}\left(\mathrm{~B}^{\mathrm{C}} \cap \mathrm{~A}^{\mathrm{C}}\right)}{\mathrm{P}\left(\mathrm{~A}^{\mathrm{C}}\right)}=\frac{1-\mathrm{P}(\mathrm{~A} \cup \mathrm{~B})}{1-\mathrm{P}(\mathrm{~A})} \\
& =\frac{1-\{\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})\}}{1-\mathrm{P}(\mathrm{~A})} \\
& =\frac{1-\mathrm{P}(\mathrm{~A})}{1-\mathrm{P}(\mathrm{~A})}[\text { from }(1)] \\
& =1
\end{aligned}
$$

8. Ans: (a)

Sol: Let $\mathrm{A}=$ Getting electric contract and $\mathrm{B}=$ Getting plumbing contract
$\mathrm{P}(\mathrm{A})=\frac{2}{5} ; \mathrm{P}(\overline{\mathrm{B}})=\frac{4}{7} ; \mathrm{P}(\mathrm{B})=\frac{3}{7}$
$\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\frac{2}{3}$;
$\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{2}{5}+\frac{3}{7}-\frac{2}{3}=\frac{17}{105}$
09. Ans: (d)

Sol: $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
$\mathrm{P}(\mathrm{A})=\frac{33}{100}$
$P(B)=\frac{14}{100}$
$\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{4}{100}$
($\mathrm{A} \cap \mathrm{B}$) is not empty set.
Therefore, A and B are not mutually exclusive.
$\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \neq \mathrm{P}(\mathrm{A}) . \mathrm{P}(\mathrm{B})$
Therefore, A and B are not independent.
10. Ans: 0.2

Sol: To find the number of favourable cases consider the following partition of the given set $\{1,2, \ldots, 100\}$

$$
\begin{aligned}
& \mathrm{S}_{1}=\{1,6,11, \ldots \ldots ., 96\} \\
& \mathrm{S}_{2}=\{2,7,12, \ldots . . ., 97\} \\
& \mathrm{S}_{3}=\{3,8,13, \ldots . ., 98\} \\
& \mathrm{S}_{4}=\{4,9,14, \ldots \ldots ., 99\} \\
& \mathrm{S}_{5}=\{5,10,15, \ldots ., 100\}
\end{aligned}
$$

Each of the above sets has 20 elements. If one of the two numbers selected from S_{1} then the other must be chosen from S_{4}.
If one of the two numbers selected from S_{2} then the other must be chosen from S_{3}.
Number of favourable cases
$=\mathrm{C}(20,1) \cdot \mathrm{C}(20,1)+\mathrm{C}(20,1) \cdot \mathrm{C}(20,1)+\mathrm{C}(20,2)$
$=400+400+190=990$
\therefore Required probability $=\frac{990}{\mathrm{C}(100,2)}$

$$
=\frac{990}{50 \times 99}=0.2
$$

11. Ans: 0.66

Range 0.65 to 0.67

Sol: Let $\mathrm{N}=$ the number of families
Total No. of children $=\left(\frac{\mathrm{N}}{2} \times 1\right)+\left(\frac{\mathrm{N}}{2} \times 2\right)$

$$
=\frac{3 \mathrm{~N}}{2}
$$

$\begin{aligned} \therefore \text { The Required Probability } & =\frac{\left(\frac{\mathrm{N}}{2} \times 2\right)}{\frac{3 \mathrm{~N}}{2}} \\ & =\frac{2}{3}=0.66\end{aligned}$

12. Ans: $\mathbf{0 . 1 2 5}$

Sol: Total number of outcomes $=6^{3}$
Number of outcomes in which sum of the numbers is $10=$ Number of non-negative integer solutions to the equation $\mathrm{a}+\mathrm{b}+\mathrm{c}=10$ where $1 \leq \mathrm{a}, \mathrm{b}, \mathrm{c} \leq 6$
$=$ Co-efficient of x^{10} in the function
$\left(x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right)^{3}$
$\left(x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right)^{3}=x^{3}\left(1+x+x^{2}+x^{3}+x^{4}+x^{5}\right)^{3}$
$=x^{3}\left(1-x^{6}\right)^{3}(1-x)^{-3}$
$=x^{3}\left(1-3 x^{6}+3 x^{12}-x^{18}\right) \sum_{0}^{\infty} \frac{(n+1)(n+2)}{2} \cdot x^{n}$
$=\left(\mathrm{x}^{3}-3 \mathrm{x}^{9}+3^{18}-\mathrm{x}^{21}\right) \sum_{0}^{\infty} \frac{(\mathrm{n}+1)(\mathrm{n}+2)}{2} \cdot \mathrm{x}^{\mathrm{n}}$
Co-efficient of $x^{10}=36-3 \times 3=27$
\therefore Required probability $=\frac{27}{216}=0.125$

13. Ans: (a)

Sol: If A and B be disjoint events then $A \cap B=\{ \}$
Probability of $\mathrm{A} \cap \mathrm{B}=0$
If A and B are independent then
$\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})$
From (1) and (2)
$\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})=0$
$\Rightarrow \operatorname{Pr}(\mathrm{A})=0$ or $\operatorname{Pr}(\mathrm{B})=0$
14. Ans: 2.916
range 2.9 to 2.92
Sol: $E(X)=\frac{1}{6}(1+2+3+4+5+6)=3.5$

$$
\begin{aligned}
& \mathrm{E}\left(\mathrm{X}^{2}\right)=\frac{1}{6}\left(1^{2}+2^{2}+3^{3}+4^{4}+5^{2}+6^{2}\right)=\frac{91}{6} \\
& \begin{aligned}
\therefore \text { Variance } & =\mathrm{E}\left(\mathrm{X}^{2}\right)-\{\mathrm{E}(\mathrm{X})\}^{2} \\
& =\frac{91}{6}-(3.5)^{2}=2.916
\end{aligned}
\end{aligned}
$$

15. Ans: (c)

Sol: Total number of counters

$$
=1+2+\ldots \ldots .+\mathrm{n}=\frac{\mathrm{n}(\mathrm{n}+1)}{2}
$$

Probability of choosing counter k and winning $\mathrm{k}^{2}=\frac{2 \mathrm{k}}{\mathrm{n}(\mathrm{n}+1)}$

$$
\begin{aligned}
\text { Expectation } & =\sum_{\mathrm{k}=1}^{\mathrm{n}}\left\{\mathrm{k}^{2} \cdot \frac{2 \mathrm{k}}{\mathrm{n}(\mathrm{n}+1)}\right\} \\
& =\frac{2}{\mathrm{n}(\mathrm{n}+1)} \cdot \frac{\mathrm{n}^{2}(\mathrm{n}+1)^{2}}{4}=\frac{\mathrm{n}(\mathrm{n}+1)}{2}
\end{aligned}
$$

16. Ans: (b)

Sol: The probability that she gives birth between 8 am and 4 pm in a day $=\frac{1}{3}$
By Total theorem of probability,
The required probability

$$
=\left(\frac{1}{3} \times \frac{3}{4}\right)+\left(\frac{2}{3} \times \frac{1}{4}\right)=\frac{5}{12}
$$

Random Variables

17. Ans: 0.75 (No range)

Sol: Total probability $=\int_{-\infty}^{\infty} \mathrm{f}(\mathrm{x}) \mathrm{dx}=1$

$$
\begin{aligned}
& \Rightarrow \int_{0}^{2} \mathrm{cx} \mathrm{dx}=1 \\
& \Rightarrow \mathrm{c}=\frac{1}{2} \\
& \mathrm{P}(\mathrm{X}>1)=\int_{1}^{\infty} \mathrm{f}(\mathrm{x}) \mathrm{dx}=\int_{1}^{2} \frac{1}{2} \mathrm{x}(\mathrm{dx})=\frac{3}{4}=0.75
\end{aligned}
$$

18. Ans: 1.944
range 1.94 to 1.95
Sol: The probability distribution for Z is

\mathbf{Z}	0	1	2	3	4	5
$\mathbf{P (Z)}$	$\frac{6}{36}$	$\frac{10}{36}$	$\frac{8}{36}$	$\frac{6}{36}$	$\frac{4}{36}$	$\frac{2}{36}$

$$
\begin{aligned}
& \mathrm{E}(\mathrm{Z})=\Sigma \mathrm{Z} \cdot \mathrm{P}(\mathrm{Z}) \\
& =\frac{1}{36}(0(6)+1(10)+2(8)+3(6)+4(4)+5(2)) \\
& =\frac{70}{36}=\frac{35}{18}=1.944
\end{aligned}
$$

19. Ans: (c)

Sol: $E\left(a^{x}\right)=\sum_{k=0}^{n} a^{k} \cdot P(X=k)$

$$
\begin{aligned}
& =\sum_{\mathrm{k}=0}^{\mathrm{n}} \mathrm{a}^{\mathrm{k}} \mathrm{C}(\mathrm{n}, \mathrm{k})\left(\frac{1}{2}\right)^{\mathrm{k}} \cdot\left(\frac{1}{2}\right)^{\mathrm{n}-\mathrm{k}} \\
& =\frac{1}{2^{\mathrm{n}}} \sum_{\mathrm{k}=0}^{\mathrm{n}} \mathrm{a}^{\mathrm{k}} \mathrm{C}(\mathrm{n}, \mathrm{k}) \mathrm{a}^{\mathrm{k}} \cdot(1)^{\mathrm{n}-\mathrm{k}} \\
& =\left(\frac{\mathrm{a}+1}{2}\right)^{\mathrm{n}}
\end{aligned}
$$

20. Ans: (d)

Sol: Given that mean $=\mathrm{E}(\mathrm{X})=1$
and Variance $=V(X)=5$

$$
\begin{aligned}
\mathrm{E}\left((2+\mathrm{X})^{2}\right) & =\mathrm{E}\left[\mathrm{X}^{2}+4 \mathrm{X}+4\right] \\
& =\mathrm{E}\left(\mathrm{X}^{2}\right)+4 \mathrm{E}(\mathrm{X})+4
\end{aligned}
$$

Given $V(X)=5$
$\Rightarrow \mathrm{E}\left(\mathrm{X}^{2}\right)-(\mathrm{E}(\mathrm{X}))^{2}=5$
$\Rightarrow \mathrm{E}\left(\mathrm{X}^{2}\right)=5+1=6$
$\mathrm{E}\left((2+\mathrm{X})^{2}\right)=6+4(1)+4=14$
21. Ans: (a)

Sol: Total Probability $=\sum_{x=1}^{\infty} \mathrm{P}(\mathrm{X}=\mathrm{x})=1$

$$
\begin{aligned}
& \Rightarrow \sum_{\mathrm{x}=1}^{\infty} \mathrm{K}(1-\beta)^{\mathrm{x}-1}=1 \\
& \Rightarrow \mathrm{~K}\left(1+(1-\beta)+(1-\beta)^{2}+\ldots \ldots \ldots\right)=1 \\
& \Rightarrow \frac{\mathrm{~K}}{1-(1-\beta)}=1 \\
& \Rightarrow \mathrm{~K}=\beta
\end{aligned}
$$

22. Ans: 209

Sol:

\mathbf{x}	2	-3	4	-5	6	-7	8	-9	10	-11	12
$\mathbf{P}(\mathbf{x})$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{1}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

$$
\begin{aligned}
& \mathrm{E}(\mathrm{X})=\sum \mathrm{xP}(\mathrm{x})=(-3) \times \frac{1}{6}+6 \times \frac{1}{2}+9 \times \frac{1}{3}=\frac{11}{2} \\
& \begin{aligned}
& \mathrm{E}\left(\mathrm{X}^{2}\right)=\sum \mathrm{x}^{2} \mathrm{P}(\mathrm{x})=9 \times \frac{1}{6}+36 \times \frac{1}{2}+81 \times \frac{1}{3}=\frac{93}{2} \\
& \begin{aligned}
\therefore \mathrm{E}(2 \mathrm{X}+1)^{2} & =\mathrm{E}\left(4 \mathrm{X}^{2}+4 \mathrm{X}+1\right) \\
& =4 \mathrm{E}\left(\mathrm{X}^{2}\right)+4 \mathrm{E}(\mathrm{X})+1 \\
& =4 \times \frac{93}{2}+4 \times \frac{11}{2}+1 \\
& =209
\end{aligned}
\end{aligned} . \begin{array}{l}
\text { (}
\end{array}
\end{aligned}
$$

23. Ans: (d)

Sol: Let $\mathrm{X}=$ Amount your win in rupees The probability distribution of X is shown below.

\mathbf{X}	1	-2	3	-4	5	-6
$\mathbf{P (X)}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

The required expectation

$$
\begin{aligned}
=\mathrm{E}(\mathrm{X}) & =\sum[\mathrm{X} . \mathrm{P}(\mathrm{X})] \\
& =\frac{1}{6}(1-2+3-4+5-6)=\frac{-1}{2}
\end{aligned}
$$

24. Ans: 0.1

Sol: $\mathrm{E}(\mathrm{W})=\int_{0}^{10} 0.003 \mathrm{~V}^{2} \mathrm{f}(\mathrm{V}) \mathrm{dV}$

$$
\begin{aligned}
& =\int_{0}^{10} 0.003 \mathrm{~V}^{2} \frac{1}{10} \mathrm{dV} \\
& =0.1 \mathrm{lb} / f t^{2}
\end{aligned}
$$

Where $f(V)=$ probability density function of V
25. Ans: (b)

Sol: By Chebyshev inequality

$$
\operatorname{Pr}(\mu-\mathrm{k} \sigma<\mathrm{X}<\mu+\mathrm{k} \sigma) \geq 1-\frac{1}{\mathrm{k}^{2}}
$$

26. Ans: 0

Sol: Let $\mathrm{X}=$ Number of rupees you win on each throw. The probability distribution of X is $\mathrm{E}(\mathrm{X})=\sum \mathrm{X} \cdot \mathrm{P}(\mathrm{X})=0$
27. Ans: 0.23
range 0.22 to 0.24
Sol: Let $\mathrm{X}=$ number of ones in the sequence

$$
\begin{aligned}
& n=5 \\
& p=\text { probability for digit } 1=0.6 \\
& q=0.4
\end{aligned}
$$

Required probability $=\mathrm{P}(\mathrm{X}=2)$

$$
\begin{aligned}
& =\mathrm{C}(5,2) \cdot(0.6)^{2} \cdot(0.4)^{3} \\
& =0.23
\end{aligned}
$$

Mean $=\Sigma \mathrm{XP}(\mathrm{X})$

x	2	-3	4	-5	6	-7	8	-9	10	-11	12
$\mathbf{P}(\mathbf{x})$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

28. Ans: 0.25
range 0.24 to 0.26
Sol: Given that, mean $=2$ (variance)
$\Rightarrow \quad \mathrm{np}=2(\mathrm{npq})$
further, $n \mathrm{p}+\mathrm{npq}=3$
Solving, $\mathrm{n}=4, \mathrm{p}=\mathrm{q}=\frac{1}{2}$
$\mathrm{P}(\mathrm{X}=3)=\mathrm{C}(4,3) \cdot\left(\frac{1}{2}\right)^{3} \cdot\left(\frac{1}{2}\right)=\frac{1}{4}=0.25$
29. Ans: (d)

Sol: Let $\mathrm{X}=$ Number of times we get negative values.

By using Binomial Distribution,

$$
P(X=k)=C(n, k) p^{k} q^{n-k}
$$

Where $\mathrm{p}=\frac{1}{2}, \mathrm{q}=\frac{1}{2}, \mathrm{n}=5$
Required probability $=\mathrm{P}(\mathrm{X} \leq 1)$

$$
\begin{aligned}
& \quad=\mathrm{P}(\mathrm{X}=0)+\mathrm{P}(\mathrm{X}=1) \\
& ={ }^{5} \mathrm{C}_{0} \times\left(\frac{1}{2}\right)^{5}+{ }^{5} \mathrm{C}_{1} \times\left(\frac{1}{2}\right)^{4}\left(\frac{1}{2}\right) \\
& =\frac{1+5}{32}=\frac{6}{32}
\end{aligned}
$$

30. Ans: (d)

Sol: We can choose four out of six winning in $C(6,4)$ different ways and if the probability of winning a game is p , then the probability of winning four out of six games

$$
\begin{aligned}
& =C(6,4) \mathrm{p}^{4}(1-\mathrm{p})^{2} \\
& =15\left(\mathrm{p}^{4}-2 \mathrm{p}^{5}+\mathrm{p}^{6}\right)
\end{aligned}
$$

31. Ans: 0.5706

Sol: The odds that the program will run is $2: 1$.
Therefore, $\operatorname{Pr}($ a program will run $)=\frac{2}{3}$. Let
B denote the event that four or more programs will run and A_{j} denote that exactly j program will run. Then,

$$
\begin{aligned}
\operatorname{Pr}(\mathrm{B}) & =\operatorname{Pr}\left(\mathrm{A}_{4} \cup \mathrm{~A}_{5} \cup \mathrm{~A}_{6}\right) \\
& =\operatorname{Pr}\left(\mathrm{A}_{4}\right)+\operatorname{Pr}\left(\mathrm{A}_{5}\right)+\operatorname{Pr}\left(\mathrm{A}_{6}\right)
\end{aligned}
$$

$=\mathrm{C}(6,4)\left(\frac{2}{3}\right)^{4}\left(\frac{1}{3}\right)^{2}+\mathrm{C}(6,5)\left(\frac{2}{3}\right)^{5}\left(\frac{1}{3}\right)+\mathrm{C}(6,6)\left(\frac{2}{3}\right)^{5}$ $=0.5706$
32. Ans: 0.224 range 0.2 to 0.3

Sol: Average calls per minute $=\frac{180}{60}=3$
Here, we can use poisson distribution with $\lambda=3$.
Required Probability $=P(X=2)=\frac{\mathrm{e}^{-3} \cdot 3^{2}}{2!}$

$$
=\frac{\mathrm{e}^{-3} \cdot 9}{2}=4.5 \mathrm{e}^{-3}=0.224
$$

33. Ans: 0.168

Sol: $\lambda=$ average number of cars pass that point in a 12 min period $=\frac{15}{60 / 12}=3$
Using the Poisson distribution,
$\operatorname{Pr}(\mathrm{k})=\mathrm{e}^{-\lambda} \frac{\lambda^{\mathrm{k}}}{\mathrm{k}!}$
\therefore Required probability $\operatorname{Pr}(4)=\mathrm{e}^{-3} \frac{3^{4}}{4!}=0.168$
34. Ans: 0.7
range 0.65 to 0.75
Sol: The probability density function of

$$
\mathrm{X}=\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}
\frac{1}{10} \text { for } & 0 \leq \mathrm{x} \leq 10 \\
0 & \text { otherwise }
\end{array}\right.
$$

$$
\mathrm{P}\left\{\left(\mathrm{X}+\frac{10}{\mathrm{X}}\right) \geq 7\right\}=\left\{\mathrm{P}\left(\mathrm{X}^{2}+10 \geq 7 \mathrm{X}\right)\right.
$$

$$
=P\left(X^{2}-7 X+10 \geq 0\right)
$$

$$
=P\{(X-5)(X-2) \geq 0\}
$$

$$
=\mathrm{P}(\mathrm{X} \leq 2 \text { or } \mathrm{X} \geq 5)
$$

$$
=1-\mathrm{P}(2 \leq \mathrm{X} \leq 5)
$$

$$
=1-\int_{2}^{5} f(x) d x
$$

$$
=1-\int_{2}^{5} \frac{1}{10} \mathrm{dx}
$$

$$
=1-\frac{3}{10}=0.7
$$

35. Ans: (a)

Sol: We can use Exponential Distribution with mean $\mu=5$
Let X is waiting time in minutes.
Probability Density function of X is

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}) & =0.2 \mathrm{e}^{-(0.2) \mathrm{x}} & & \text { if } \mathrm{x} \geq 0 \\
& =0 & & \text { if } \mathrm{x}<0
\end{aligned}
$$

The required probability $=\mathrm{P}(0<\mathrm{X}<1)$

$$
=\int_{0}^{1} 0.2 \mathrm{e}^{-(0.2) \mathrm{x}} \mathrm{dx}=0.1813
$$

36. Ans: (a)

Sol: $\sum_{\mathrm{r}=1}^{\infty} \mathrm{P}(\mathrm{X}=\mathrm{r})=1$
$\Rightarrow \mathrm{k}\left(1+(1-\beta)+(1-\beta)^{2}+\ldots \ldots . . \infty\right)=1$
$\Rightarrow \mathrm{k}\left\{\frac{1}{1-(1-\beta)}\right\}=1$
$\Rightarrow \mathrm{k}=\beta$
$\therefore \mathrm{P}(\mathrm{X}=\mathrm{r})=\beta(1-\beta)^{\mathrm{r}-1}$
This function is maximum when $\mathrm{r}=1$.
\therefore mode $=1$
37. Ans: Mean $=34$, \quad Median $=35$,

Modes $=35,36 \& S D=4.14$
Sol: Mean $=\frac{\sum \mathrm{x}_{\mathrm{i}}}{\mathrm{n}}=34$
Median is the middle most value of the data by keeping the data points in increasing order or decreasing order.

Mode $=36$
S.D $=4.14$
38. Ans: 1.095

Sol: $\mu=$ Mean $=\sum_{k=1}^{5}\left\{\mathrm{x}_{\mathrm{k}} \cdot \mathrm{P}(\mathrm{X}=\mathrm{k})\right\}$
$=1(0.1)+2(0.2)+3(0.4)+4(0.2)+5(0.1)=3$
$\mathrm{P}(\mathrm{X} \leq 2)=0.1+0.2=0.3$
$\mathrm{P}(\mathrm{X} \leq 3)=0.1+0.2+0.4=0.7$
\therefore Median $=\frac{2+3}{2}=2.5$
Mode $=$ The value of X at which $P(X)$ is maximum $=3$

Variance $=\sum_{\mathrm{k}=1}^{5} \mathrm{x}_{\mathrm{k}}^{2} \cdot \mathrm{P}(\mathrm{X}=\mathrm{k})-\mu^{2}=10.2-9=1.2$
Standard deviation $=\sqrt{1.2}=1.095$
39. \quad Ans: $k=6, \quad$ Mean $=\frac{1}{2}, \quad$ Median $=\frac{1}{2}$,

Mode $=\frac{1}{2}$ and $S . D=\frac{1}{2 \sqrt{5}}$
Sol: We have $\int_{-\infty}^{\infty} f(x) d x=1$

$$
\begin{aligned}
& \int_{0}^{1} \mathrm{k}\left(\mathrm{x}-\mathrm{x}^{2}\right) \mathrm{dx}=1 \\
& \Rightarrow \mathrm{k}\left[\left(\frac{\mathrm{x}^{2}}{2}\right)_{0}^{1}-\left(\frac{x^{3}}{3}\right)_{0}^{1}\right]=1 \\
& \Rightarrow \mathrm{k}\left(\frac{1}{2}-\frac{1}{3}\right)=1 \Rightarrow \mathrm{k}\left(\frac{3-2}{6}\right)=1 \Rightarrow \mathrm{k}=6 \\
& \text { Mean }=\int_{-\infty}^{\infty} \mathrm{xf}(\mathrm{x}) \mathrm{dx}=\int_{0}^{1} 6\left(\mathrm{x}^{2}-\mathrm{x}^{3}\right) \mathrm{dx} \\
& \quad=6\left[\frac{x^{3}}{3}-\frac{x^{4}}{4}\right]_{0}^{1}=6\left[\frac{1}{3}-\frac{1}{4}\right]=\frac{1}{2}
\end{aligned}
$$

Median is that value ' a ' for which
$P(X \leq a)=\frac{1}{2} \int_{0}^{a} 6\left(x-x^{2}\right) d x=\frac{1}{2}$
$\Rightarrow 6\left(\frac{\mathrm{a}^{2}}{2}-\frac{\mathrm{a}^{3}}{3}\right)=\frac{1}{2}$
$\Rightarrow 3 \mathrm{a}^{2}-2 \mathrm{a}^{3}=\frac{1}{2}$
$\Rightarrow \mathrm{a}=\frac{1}{2}$
Mode a that value at which $f(x)$ is max/min
$\therefore \mathrm{f}(\mathrm{x})=6 \mathrm{x}-6 \mathrm{x}^{2}$
$f^{1}(x)=6-12 x$
For max or $\min ^{1}(\mathrm{x})=0 \Rightarrow 6-12 \mathrm{x}=0$
$\Rightarrow \mathrm{x}=\frac{1}{2} \mathrm{f}^{11}(\mathrm{x})=-12 \quad \mathrm{f}^{11}\left(\frac{1}{2}\right)=-12<0$
\therefore maximum at $\mathrm{x}=1 / 2$
\therefore mode is $1 / 2$

$$
\begin{aligned}
S . D & =\sqrt{E\left(x^{2}\right)-(E(x))^{2}} \\
& =\frac{1}{2 \sqrt{5}}
\end{aligned}
$$

40. Ans: 0.2

Sol: The area under normal curve is 1 and the curve is symmetric about mean.

$\begin{aligned} \therefore \mathrm{P}(100<\mathrm{X}<120) & =\mathrm{P}(80<\mathrm{X}<120) \\ & =0.3\end{aligned}$
Now, $\mathrm{P}(\mathrm{X}<80)=0.5-\mathrm{P}(80<\mathrm{X}<120)$

$$
=0.5-0.3=0.2
$$

41. Ans: 4

Sol: If n missiles are fired then probability of not hitting the target $=[1-(0.3)]^{\mathrm{n}}=(0.7)^{\mathrm{n}}$
\Rightarrow Probability of hitting the target atleast once $=1-(0.7)^{\mathrm{n}}$

We have to fired the smallest +ve integer n so that, $\left\{1-(0.7)^{\mathrm{n}}\right\}>\frac{75}{100}$
$\Rightarrow\left\{1-(0.7)^{\mathrm{n}}\right\}>0.75$
The smallest + ve integer satisfying this inequality is $\mathrm{n}=4$
42. Ans: 0.865 range 0.86 to 0.87

Sol: Let $\mathrm{X}=$ number of cashew nuts per biscuit.
We can use Poisson distribution with mean

$$
=\lambda=\frac{2000}{1000}=2
$$

$\mathrm{P}(\mathrm{X}=\mathrm{k})=\frac{\mathrm{e}^{-\lambda} \cdot \lambda^{\mathrm{k}}}{\angle \mathrm{k}} \quad(\mathrm{k}=0,1,2 \ldots)$
Probability that the biscuit contains no cashew nut $=P(X=0)$

$$
=\mathrm{e}^{-\lambda}=\mathrm{e}^{-2}=0.135
$$

Required probability $=1-0.135=0.865$

43. Ans: (b)

Sol: Let $\mathrm{A}=$ getting red marble both times

$$
B=\text { getting both marbles of same color }
$$

$\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{3}{10} \cdot \frac{2}{10}$
$\mathrm{P}(\mathrm{B})=\frac{7}{10} \cdot \frac{6}{10}+\frac{3}{10} \cdot \frac{2}{10}$
Required probability $=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}=\frac{6}{48}=\frac{1}{8}$

44. Ans: (d)

Sol: Let $\mathrm{E}_{1}=$ The item selected is produced machine C and $E_{2}=$ Item selected is defective
$\mathrm{P}\left(\mathrm{E}_{1} \wedge \mathrm{E}_{2}\right)=\frac{20}{100} \cdot \frac{5}{100}$
$\mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{50}{100} \cdot\left(\frac{3}{100}\right)+\frac{30}{100} \cdot\left(\frac{4}{100}\right)+\frac{20}{100} \cdot\left(\frac{5}{100}\right)$

Required probability
$=P\left(E_{1} / E_{2}\right)=\frac{P\left(E_{1} \wedge E_{2}\right)}{P\left(E_{2}\right)}=\frac{100}{370}=\frac{10}{37}$
45. Ans: (a), (b) \& (c)

Sol: If P and of are independent then, $(\mathrm{P} \cap \mathrm{Q})=\mathrm{P}(\mathrm{P}) .((\mathrm{Q}) \mathrm{O} \neq \mathrm{P}(\mathrm{P} \cap \mathrm{Q}) \therefore \quad$ False statement If $(P \mathrm{Q})=\mathrm{P}(\mathrm{P})+\mathrm{P}(\mathrm{Q})(\mathrm{P} \cap \mathrm{Q})$ Now, $\mathrm{P}(\mathrm{P})+\mathrm{P}(\mathrm{Q}) \geq \mathrm{P}(\mathrm{P} \cap \mathrm{Q})$ Otherwise $(\mathrm{P}(\mathrm{P} \cup \mathrm{Q})$ becomes negative
False statement
Mutually exclusive events need not be independent True $\Rightarrow \mathrm{P}(\mathrm{P} \cap \mathrm{Q}) \geq \mathrm{P}(\mathrm{P})$

T~ACE	71	Discrete Mathematics

Chapter
6

Linear Algebra

01. Ans: 3

Sol: If rank of A is 1 , then A has only one independent row.
The elements in R_{1} and R_{2} are proportional

$$
\begin{aligned}
& \Rightarrow \frac{3}{P}=\frac{P}{3}=\frac{P}{P} \\
& \Rightarrow P=3
\end{aligned}
$$

02. Ans: $\mathbf{2 5}$

Sol: Let $A=\left(\begin{array}{cc}x & y \\ y & 10-x\end{array}\right)$
$\operatorname{Det} \mathrm{A}=\mathrm{x}(10-\mathrm{x})-\mathrm{y}^{2}$
For maximum value of Det $A, y=0$
Now, $A=\left(\begin{array}{cc}x & 0 \\ 0 & 10-x\end{array}\right)$
$\Rightarrow|A|=x(10-x)=10 x-x^{2}$
Let $f(x)=10 x-x^{2}$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=10-2 \mathrm{x}$
$\Rightarrow f^{\prime \prime}(\mathrm{x})=-2$
Consider, $\mathrm{f}^{\prime}(\mathrm{x})=0$
$\Rightarrow \mathrm{x}=5$
At $\mathrm{x}=5, \mathrm{f}^{\prime \prime}(\mathrm{x})=-2<0$
\therefore At $x=5$, the function $f(x)$ has a maximum and is equal to 25 .

03. Ans: (c)

Sol: Given $A=\left[\begin{array}{ccc}1 & -1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$ and $B=A^{-1}$.

The element in the second row and third column of B
$=$ Cofactor of the element in the third row second column of A

$$
=(-1)^{3+2}\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]=-1
$$

\therefore Required element $=\frac{1}{|\mathrm{~A}|}(-2)=\frac{-1}{2}$

04. Ans: (a)

Sol: Here, A^{n} is a zero matrix. [Property]

$$
\therefore \text { rank of } \mathrm{A}^{\mathrm{n}}=0
$$

5. Ans: 46

Sol: Here, $|\operatorname{adj} \mathrm{A}|=|\mathrm{A}|^{2}$
$\Rightarrow 2116=|\mathrm{A}|^{2}$
$\Rightarrow|\mathrm{A}|= \pm 46$
\Rightarrow Absolute value of $|\mathrm{A}|=46$
06. Ans: (b)

Sol: S_{1}) If A and B are symmetric then AB need not be equal to BA

$$
\text { for example, if } \begin{aligned}
A & =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
\text { and } B & =\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]
\end{aligned}
$$

then A and B are symmetric but AB is not equal to BA.
$\therefore \mathrm{S}_{1}$ is false.
S_{2}) If A and B are symmetric then $\mathrm{AB}-\mathrm{BA}$ is a skew-symmetric matrix of order 3 .
$\therefore|\mathrm{AB}-\mathrm{BA}|=0$
(\because determinant of a skew-symmetric matrix of odd order is 0) Hence, S_{2} is true.

07. Ans: (a)

Sol: Each element of the matrix in the principal diagonal and above the diagonal, we can choose in q ways.
Number of elements in the principal diagonal $=\mathrm{n}$
Number of elements above the principal diagonal $=n\left(\frac{n-1}{2}\right)$
By product rule,
number of ways we can choose these elements $=q^{n} \cdot q^{n\left(\frac{n-1}{2}\right)}$
Required number of symmetric matrices $=q{ }^{n}\left(\frac{n+1}{2}\right)$
08. Ans: (b)

Sol: $A=\left[\begin{array}{cccc}n-1 & -1 & \ldots . . & -1 \\ -1 & n-1 & \ldots . . & -1 \\ \ldots . & \ldots . & \ldots . & \ldots . \\ -1 & -1 & \ldots . . & n-1\end{array}\right]$
$\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}+\ldots \ldots . .+\mathrm{R}_{\mathrm{n}-1}$
$\mathrm{A}=\left[\begin{array}{cccc}1 & 1 & \ldots . . & 1 \\ -1 & \mathrm{n}-1 & \ldots . . & -1 \\ \ldots . & \ldots . . & \ldots . & \ldots . \\ -1 & -1 & \ldots . . & \mathrm{n}-1\end{array}\right]$
$\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}+\mathrm{R}_{1}, \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}+\mathrm{R}_{1}, \ldots \ldots ., \mathrm{R}_{\mathrm{n}-1} \rightarrow \mathrm{R}_{\mathrm{n}-1}+\mathrm{R}_{1}$,

$$
\begin{aligned}
\mathrm{A} & =\left[\begin{array}{cccc}
1 & 1 & \ldots . . & 1 \\
0 & \mathrm{n} & \ldots . . & 0 \\
\ldots . & \ldots . . & \ldots . & \ldots . \\
0 & 0 & \ldots . . & \mathrm{n}
\end{array}\right] \\
& =\mathrm{n}^{\mathrm{n}-2}
\end{aligned}
$$

9. Ans: (a)

Sol: S1 is true because, any subset of four linearly independent sequence of vectors is always linearly independent.
S 2 is not necessarily true,
For example, $\mathrm{x}_{1}, \mathrm{x}_{2}$ and x_{3} can be linearly independent and x_{4} is linear combination of $\mathrm{x}_{1}, \mathrm{x}_{2}$ and x_{3}.
10. Ans: (c)

Sol: The given matrix is skew-symmetric.
Determinant of a skew symmetric matrix of odd order is 0 .
\therefore Rank of A <3.
Determinant of a non-zero skew symmetric matrix is ≥ 2
\therefore Rank of $\mathrm{A}=2$
11. Ans: (a)

Sol: Let $\mathrm{A}=\left[\begin{array}{ccc}1 & -2 & 1 \\ 2 & 0 & \alpha \\ -2 & 2 & \alpha\end{array}\right]$
For the system of linear equations to have a unique solution, $\operatorname{det}(\mathrm{A}) \neq 0$.
$\Rightarrow(0-2 \alpha)+2(2 \alpha+2 \alpha)+(4-0) \neq 0$
$\Rightarrow-2 \alpha+8 \alpha+4 \neq 0$
$\Rightarrow 6 \alpha+4 \neq 0$
$\Rightarrow 6 \alpha \neq-4$
$\Rightarrow \alpha \neq \frac{-2}{3}$
\therefore Option (a) is correct.
12. Ans: (c)

Sol: $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & -1 & 4 \\ 4 & 3 & 10\end{array}\right]$
Applying $\mathrm{R}_{2}-2 \mathrm{R}_{1}, \mathrm{R}_{3}-4 \mathrm{R}_{1}$

$$
\sim\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -5 & -2 \\
0 & -5 & -2
\end{array}\right]
$$

Applying $\mathrm{R}_{3}-\mathrm{R}_{1}$

$$
\sim\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -5 & -2 \\
0 & 0 & 0
\end{array}\right]
$$

which is an echelon matrix with two nonzero rows.
\therefore Rank of $A=2$
If rank of A is less than number of variables, then the system $\mathrm{AX}=\mathrm{O}$ has infinitely many non-zero solutions.

If rank of A is less than number of variables, then the system $A X=B$ cannot have unique solution.

Hence, option (c) is not true.

If rank of A is less than order of A, then the matrix A is singular.
$\therefore \mathrm{A}^{-1}$ does not exist
13. Ans: (b)

Sol: $\mathrm{D}=\left|\begin{array}{ccc}\mathrm{k} & 1 & 1 \\ 1 & \mathrm{k} & 1 \\ 1 & 1 & \mathrm{k}\end{array}\right|$
$=\mathrm{k}^{3}+1+1-\mathrm{k}-\mathrm{k}-\mathrm{k}$
$=(\mathrm{k}-1)^{2}(\mathrm{k}+2)$
Thus, the system has a unique solution when

$$
\begin{aligned}
& (\mathrm{k}-1)^{2}(\mathrm{k}+2) \neq 0 \\
\Rightarrow & \mathrm{k} \neq 1 \text { and } \mathrm{k} \neq-2
\end{aligned}
$$

14. Ans: (c)

Sol: The augmented matrix is

$$
\begin{aligned}
& (\mathrm{A} \mid \mathrm{B})=\left[\begin{array}{cccc}
4 & 2 & 1 & 3 \\
6 & 3 & 4 & 7 \\
2 & 1 & 0 & 1
\end{array}\right] \\
& \mathrm{R}_{2} \rightarrow 2 \mathrm{R}_{2}-3 \mathrm{R}_{1}\left[\begin{array}{cccc}
4 & 2 & 1 & 3 \\
0 & 0 & 5 & 5 \\
0 & 0 & -1 & -1
\end{array}\right]
\end{aligned}
$$

$\mathrm{R}_{3} \rightarrow 5 \mathrm{R}_{3}+\mathrm{R}_{2}\left[\begin{array}{llll}4 & 2 & 1 & 3 \\ 0 & 0 & 5 & 5 \\ 0 & 0 & 0 & 0\end{array}\right]$
$\rho(A)=\rho(A \mid B)=2(<$ number of variables $)$.
\therefore The system has infinitely many solutions.
15. Ans: (c)

Sol: Given $\mathrm{AX}=\mathrm{B}$
$\Rightarrow\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & k\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}3 \\ 4 \\ 6\end{array}\right]$
$[\mathrm{A} \mid \mathrm{B}]=\left[\begin{array}{ccc|c}1 & 1 & 1 & 3 \\ 1 & 2 & 3 & 4 \\ 1 & 4 & \mathrm{k} & 6\end{array}\right]$
$\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1} ; \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}$

$$
\sim\left[\begin{array}{ccc|c}
1 & 1 & 1 & 3 \\
0 & 1 & 2 & 1 \\
0 & 3 & \mathrm{k}-1 & 3
\end{array}\right]
$$

$\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-3 \mathrm{R}_{2}$

$$
\sim\left[\begin{array}{ccc|c}
1 & 1 & 1 & 3 \\
0 & 1 & 2 & 1 \\
0 & 0 & \mathrm{k}-7 & 0
\end{array}\right]
$$

If $k-7 \neq 0$ then the system will have unique solution.

If $k=7$, we have rank of $A=\operatorname{rank}$ of $[A \mid B]$
$=2$ ($<$ number of variables)
\therefore The system has infinitely many solutions.
16. Ans: $\mathbf{- 1}$ or 0

Sol: $A=\left[\begin{array}{ccc}k & k & k \\ 0 & k-1 & k-1 \\ 0 & 0 & k^{2}-1\end{array}\right]$
Given that $\mathrm{AX}=0$ has only one independent solution
\Rightarrow Rank of $\mathrm{A}=2 \quad(\because \mathrm{n}-\mathrm{r}=3-\mathrm{r}=1)$
$\Rightarrow \mathrm{k}=-1$ or $\mathrm{k}=0$

17. Ans: (b)

Sol: Given $\mathrm{AX}=\mathrm{B}$
$\mathrm{B}=$ linear combination of independent columns of A
$\Rightarrow \rho(\mathrm{A})=\rho(\mathrm{A} \mid \mathrm{B})=3$
\therefore The system has infinitely many solutions.

18. Ans: (c)

Sol: The augmented matrix of the given system

$$
\text { is }(\mathrm{AB})=\left(\begin{array}{cccc}
3 & 2 & 0 & 1 \\
4 & 0 & 7 & 1 \\
1 & 1 & 1 & 3 \\
1 & -2 & 7 & 0
\end{array}\right)
$$

$$
\mathrm{R}_{1} \leftrightarrow \mathrm{R}_{3}
$$

$$
\sim \sim\left(\begin{array}{cccc}
1 & 1 & 1 & 3 \\
4 & 0 & 7 & 1 \\
3 & 2 & 0 & 1 \\
1 & -2 & 7 & 0
\end{array}\right)
$$

$$
\sim\left(\begin{array}{cccc}
1 & 1 & 1 & 3 \\
0 & -4 & 3 & -11 \\
0 & -1 & -3 & -8 \\
0 & -3 & 6 & -3
\end{array}\right)
$$

$\mathrm{R}_{2} \leftrightarrow \mathrm{R}_{3}$

$$
\sim\left(\begin{array}{cccc}
1 & 1 & 1 & 3 \\
0 & -1 & -3 & -8 \\
0 & -4 & 3 & -11 \\
0 & -3 & 6 & -3
\end{array}\right)
$$

$R_{3}-4 R_{2}, R_{4}-3 R_{2}$

$$
\begin{aligned}
& \sim\left(\begin{array}{cccc}
1 & 1 & 1 & 3 \\
0 & -1 & -3 & -8 \\
0 & 0 & 15 & 21 \\
0 & 0 & 15 & 21
\end{array}\right) \\
\mathrm{R}_{4} & -\mathrm{R}_{3} \\
& \sim\left(\begin{array}{cccc}
1 & 1 & 1 & 3 \\
0 & -1 & -3 & -8 \\
0 & 0 & 15 & 21 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

$\therefore \rho(\mathrm{A})=\rho(\mathrm{AB})=3$

$$
=\text { no. of variables }
$$

Hence, there exists only one solution.

19. Ans: (d)

Sol: If $\mathrm{A}_{\mathrm{n} \times \mathrm{n}}$ has n distinct eigen values, then A has n linearly independent eigen vectors.
If zero is one of the eigen values of A, then
A is singular and A^{-1} does not exist.
If A is singular then rank of $\mathrm{A}<3$ and A cannot have 3 linearly independent rows.
\therefore Only option (d) is correct.
20. Ans: (b)

Sol: $A=\left[\begin{array}{rrr}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$
The characteristic equations is

$$
d^{3}-18 d^{2}+45 d=0
$$

$\Rightarrow d=0,3,15$ are eigen values of A.
21. Ans: (a)

Sol: Since, A is singular, $\lambda=0$ is an eigen value.
Also, rank of $\mathrm{A}=1$.
The root $\lambda=0$ is repeated $n-1$ times.
trace of $\mathrm{A}=\mathrm{n}=0+0+\ldots \ldots . .+\lambda_{\mathrm{n}}$.
$\Rightarrow \lambda_{\mathrm{n}}=\mathrm{n}$
\therefore The distinct eigen values are 0 and n .

22. Ans: (c)

Sol: The characteristic equation is

$$
\begin{aligned}
& (\lambda-1)(\lambda-2)(\lambda-3)=0 \\
& \lambda^{3}-6 \lambda^{2}+11 \lambda-6=0
\end{aligned}
$$

By Caley Hamilton's theorem,

$$
A^{3}-6 A^{2}+11 A-6 I=0
$$

Multiplying by A^{-1},

$$
\left(\mathrm{A}^{2}-6 \mathrm{~A}+11 \mathrm{I}\right)=6 \mathrm{~A}^{-1}
$$

23. Ans: (b)

Sol: Let $A=\left[\begin{array}{ll}10 & -4 \\ 18 & -12\end{array}\right]$
Consider $\quad|\mathrm{A}-\lambda \mathrm{I}|=0$
$\Rightarrow \lambda^{2}-(-2) \lambda+(-120+72)=0$
$\Rightarrow \lambda^{2}+2 \lambda-48=0$
$\therefore \lambda=6,-8$ are eigen values of A .
For $\lambda=6$, the eigen vectors are given by

$$
\begin{aligned}
& {[\mathrm{A}-6 \mathrm{I}] \mathrm{X}=\mathrm{O} } \\
\Rightarrow \quad & {\left[\begin{array}{cc}
4 & -4 \\
18 & -18
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] } \\
\Rightarrow \quad & \mathrm{x}-\mathrm{y}=0 \\
\Rightarrow \quad & \mathrm{x}=\mathrm{y}
\end{aligned}
$$

The eigen vectors are of the form

$$
\mathrm{X}_{1}=\mathrm{k}_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

For $\lambda=-8$, the eigen vectors are given by

$$
[\mathrm{A}+8 \mathrm{I}] \mathrm{X}=\mathrm{O}
$$

$$
\begin{array}{lr}
\Rightarrow & {\left[\begin{array}{ll}
18 & -4 \\
18 & -4
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
\Rightarrow & 18 \mathrm{x}-4 \mathrm{y}=0 \\
\Rightarrow & 9 \mathrm{x}-2 \mathrm{y}=0
\end{array}
$$

The eigen vectors are of the form

$$
X_{1}=\mathrm{k}_{2}\left[\begin{array}{l}
2 \\
9
\end{array}\right]
$$

24. Ans: (c)

Sol: The given matrix is upper triangular. The eigen values are same as the diagonal elements $1,2,-1$ and 0 .

The smallest eigen value is $\lambda=-1$. The eigen vectors for $\lambda=-1$ is given by

$$
\begin{aligned}
& (\mathrm{A}-\lambda \mathrm{I}) \mathrm{X}=0 \\
\Rightarrow & (\mathrm{~A}+\mathrm{I}) \mathrm{X}=0 \\
\Rightarrow & {\left[\begin{array}{cccc}
2 & 1 & -1 & 2 \\
0 & 3 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z} \\
\mathrm{w}
\end{array}\right]=0 } \\
\Rightarrow & \mathrm{w}=0, \mathrm{y}=0,2 \mathrm{x}-\mathrm{z}=0 \\
\Rightarrow & \mathrm{X}=\mathrm{k}\left[\begin{array}{llll}
1 & 0 & 2 & 0
\end{array}\right]^{\mathrm{T}}
\end{aligned}
$$

25. Ans: (b)

Sol: Let λ be the third eigen value.
Sum of the eigen values of $\mathrm{A}=$ Trace (A)
$\Rightarrow(-3)+(-3)+\lambda=-2+1+0$
$\Rightarrow \lambda=5$
The eigen vector for $\lambda=5$ is given by

$$
[\mathrm{A}-5 \mathrm{I}] \mathrm{X}=\mathrm{O}
$$

$\Rightarrow\left[\begin{array}{rrr}-7 & 2 & -3 \\ 2 & -4 & -6 \\ -1 & -2 & -5\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
$\Rightarrow \frac{\mathrm{x}}{-24}=\frac{\mathrm{y}}{-48}=\frac{\mathrm{z}}{24}$
$\Rightarrow \frac{\mathrm{x}}{1}=\frac{\mathrm{y}}{2}=\frac{\mathrm{z}}{-1}$
\therefore The third eigen vector $=\mathrm{k}\left[\begin{array}{r}1 \\ 2 \\ -1\end{array}\right]$
26. Ans: 7

Sol: Given $A=\left[\begin{array}{rrr}8 & -6 & 2 \\ -6 & x & -4 \\ 2 & -4 & 3\end{array}\right]$
eigen vector $\mathrm{X}=\left[\begin{array}{r}2 \\ -2 \\ 1\end{array}\right]$
We know that $\mathrm{AX}=\lambda \mathrm{X}$

$$
\begin{aligned}
& {\left[\begin{array}{rrr}
8 & -6 & 2 \\
-6 & \mathrm{x} & -4 \\
2 & -4 & 3
\end{array}\right]\left[\begin{array}{r}
2 \\
-2 \\
1
\end{array}\right]=\lambda\left[\begin{array}{r}
2 \\
-2 \\
1
\end{array}\right]} \\
& {\left[\begin{array}{c}
30 \\
-16-2 \mathrm{x} \\
15
\end{array}\right]=\left[\begin{array}{c}
2 \lambda \\
-2 \lambda \\
\lambda
\end{array}\right]}
\end{aligned}
$$

Clearly eigen value $\lambda=15$
$\Rightarrow-16-2 x=-30$
$\therefore-2 x=-14$
$\mathrm{x}=7$

27. Ans: 2

Sol: If λ is an Eigen values of A, then $\lambda^{4}-3 \lambda^{3}$ is an Eigen value of $\left(A^{4}-3 A^{3}\right)$

Putting $\lambda=1,-1$ and 3 in $\left(\lambda^{4}-3 \lambda^{3}\right)$,
we get the eigen values of $\left(A^{4}-3 A^{3}\right)$

$$
\text { are }-2,4,0
$$

Trace of $\left(A^{4}-3 A^{3}\right)=$ Sum of eigen values of $\left(A^{4}-3 A^{3}\right)=2$

28. Ans: 8

Sol: Given $A=\left[\begin{array}{ccc}1 & 0 & -1 \\ -1 & 2 & 0 \\ 0 & 0 & -2\end{array}\right]$
The characteristic equation is $\lambda^{3}-\lambda^{2}-4 \lambda+4=0$ By Caley-Hamilton's theorem,

$$
\mathrm{A}^{3}-\mathrm{A}^{2}-4 \mathrm{~A}+4 \mathrm{I}=0
$$

adding 2 I on both sides

$$
A^{3}-A^{2}-4 A+6 I=2 I
$$

Let $B=A^{3}-A^{2}-4 A+6 I$
Now B = 2I
$\therefore|B|=|2 I|=8$

29. Ans: 2

Sol: $\left[\begin{array}{rrr}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]=\lambda\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$
$\left[\begin{array}{l}2 \\ 4 \\ 0\end{array}\right]=\lambda\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$
Clearly $\lambda=2$
30. Ans: (d)

Sol: We have, $\mathrm{A}^{\mathrm{T}}=\mathrm{A}(\because \mathrm{A}$ is skew-symmetric)

$$
\Rightarrow \mathrm{A}+\mathrm{A}^{\mathrm{T}}=(\mathrm{A}-\mathrm{A})=\mathrm{O}
$$

Rank of $\left(A+A^{T}\right)=0$
\therefore Number of linearly independent eigen vectors $=n-\operatorname{rank}$ of $\left(A+A^{T}\right)=n$
31. Ans: (a)

Sol: For upper triangular matrix the eigen values are same as the elements in the principal diagonal.

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right] \\
& (I+A)=\left[\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right] \\
& |I+A|=1
\end{aligned}
$$

$\therefore \mathrm{I}+\mathrm{A}$ is non-singular and hence invertible.
32. Ans: 8

Sol: The characteristic equation of M is

$$
\begin{equation*}
\lambda^{3}-12 \lambda^{2}+\mathrm{a} \lambda-32=0 \tag{1}
\end{equation*}
$$

Substituting $\lambda=2$ in (1), we get $\mathrm{a}=36$

Now, the characteristic equation is
$\lambda^{3}-12 \lambda^{2}+36 \lambda-32=0$
$\Rightarrow(\lambda-2)\left(\lambda^{2}-10 \lambda+16\right)=0$
$\Rightarrow \lambda=2,2,8$
\therefore The largest among the absolute values of the eigen values of $\mathrm{M}=8$.
33. Ans: (b)

Sol: $A=\left[\begin{array}{ccc}1 & 2 & -3 \\ -3 & -4 & 13 \\ 2 & 1 & -5\end{array}\right]$
Applying $\mathrm{R}_{2}+3 \mathrm{R}_{1}, \mathrm{R}_{3}-2 \mathrm{R}_{1}$

$$
A \sim\left[\begin{array}{ccc}
1 & 2 & -3 \\
0 & 2 & 4 \\
0 & -3 & 1
\end{array}\right]
$$

Applying $\mathrm{R}_{3}+\frac{3}{2} \mathrm{R}_{2}$

$$
\mathrm{A} \sim\left[\begin{array}{ccc}
1 & 2 & -3 \\
0 & 2 & 4 \\
0 & 0 & 7
\end{array}\right]
$$

$\therefore U=\left[\begin{array}{ccc}1 & 2 & -3 \\ 0 & 2 & 4 \\ 0 & 0 & 7\end{array}\right]$ and $L=\left[\begin{array}{ccc}1 & 0 & 0 \\ -3 & 1 & 0 \\ 2 & \frac{-3}{2} & 1\end{array}\right]$
[The corresponding coefficients in the elementary operations]

34. Ans: (c)

Sol: It is easy to check if a specific list of numbers is a solution. Set $x_{1}=3, x_{2}=4$ and $x_{3}=-1$ and find that

$$
\begin{gathered}
5(3)-(4)+2(-1)=9 \\
-2(3)+6(4)+9(-1)=9 \\
-7(3)+5(4)-3(-1)=2
\end{gathered}
$$

Although the first two equations are satisfied, the third is not, so $(3,4,-1)$ is not a solution of the system. Notice the use of parentheses when making the substitutions. They are strongly recommended as a guard against arithmetic errors.

Moreover, The system is consistent and has unique solution.
35. Ans: (b) \& (c)

Sol: (a) No. The pivots have to occur in descending rows.
(b) Yes. There's only one pivotal column, and it's as required.
(c) Yes. There's only one pivotal column, and it's as required.
(d) No. The pivots have to occur in consecutive rows.

Chapter
7

Calculus

1. Ans: 0.8165 range 0.81 to 0.82

Sol: Let $f(x)=\frac{1+x}{2+x}$
and $g(x)=\frac{1-\sqrt{x}}{1-x}$
$\operatorname{Lt}_{\mathrm{x} \rightarrow 1} \mathrm{f}(\mathrm{x})=\frac{2}{3} \quad$ (finite)
$\operatorname{Lt}_{\mathrm{x} \rightarrow 1} \mathrm{~g}(\mathrm{x})=\frac{1}{2} \quad$ (finite)
Since, both the limits are finite.
The given limit $=\left(\frac{2}{3}\right)^{\frac{1}{2}}=\sqrt{\frac{2}{3}}=0.8165$
02. Ans: (a)

Sol: Required formula $=\underset{R \rightarrow 0}{\operatorname{Lt}} \frac{E}{R}\left(1-e^{-R t / L}\right)$

$$
\begin{aligned}
& =\underset{\mathrm{Rt} \rightarrow 0}{\mathrm{E}\left(\mathrm{e}^{-\mathrm{Rt} / \mathrm{L}}\right) \frac{\mathrm{t}}{\mathrm{~L}}} \\
& (\text { By L.Hospital's Rule }) \\
& =\frac{\mathrm{Et}}{\mathrm{~L}}
\end{aligned}
$$

3. Ans: (c)

Sol: $f(x)$ is in $\frac{0}{0}$ form
By L-Hospital's rule

$$
\operatorname{Lt}_{x \rightarrow a} f(x)=\operatorname{Lt}_{x \rightarrow a}\left[\frac{\sqrt{2 a^{3} x-x^{4}}-a\left(a^{2} x\right)^{\frac{1}{3}}}{a-\left(a x^{3}\right)^{\frac{1}{4}}}\right]
$$

By L-Hospital's rule

$$
\begin{aligned}
& =\operatorname{Lt}_{x \rightarrow a}\left[\frac{\frac{2 a^{3}-4 x^{3}}{2 \sqrt{2 a^{3} x-x^{4}}}-\frac{1}{3} a^{\frac{5}{3}} x^{\frac{-2}{3}}}{-a^{\frac{1}{4}} \frac{3}{4} x^{\frac{-1}{4}}}\right] \\
& =\frac{\left(\frac{-4 a}{3}\right)}{\left(\frac{-3}{4}\right)}=\frac{16 a}{9}
\end{aligned}
$$

4. Ans: (c)

Sol: (a) $f(x)=|x|$ is not differentiable at $x=0$
(b) $f(x)=\cot x$ is neither continuous nor differentiable at $x=0$
(c) $\mathrm{f}(\mathrm{x})=\sec \mathrm{x}$ is differentiable in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and hence in the interval $[-1,1]$
(d) $f(x)=\operatorname{cosec} x$ is neither continuous nor differentiable at $\mathrm{x}=0$
05. Ans: (a)

Sol: we have $\underset{x \rightarrow 1-}{\operatorname{Lt}} \mathrm{f}(\mathrm{x})=\underset{\mathrm{x} \rightarrow+1+}{\operatorname{Lt}} \mathrm{f}(\mathrm{x})=\mathrm{f}(1)$

$$
\begin{aligned}
& \therefore \mathrm{f}(\mathrm{x}) \text { is continuous at } \mathrm{x}=1 \\
& \begin{aligned}
\mathrm{f}^{1}(1-) & =\operatorname{Lt}_{\mathrm{h} \rightarrow 0-}\left[\frac{\mathrm{f}(1+\mathrm{h})-\mathrm{f}(1)}{\mathrm{h}}\right] \\
& =\underset{\mathrm{h} \rightarrow 0-}{\mathrm{Lt}}\left[\frac{(1+\mathrm{h})-1}{\mathrm{~h}}\right]=1 \\
\mathrm{f}^{1}(1+) & =\underset{\mathrm{h} \rightarrow 0+}{\operatorname{Lt}}\left[\frac{\mathrm{f}(1+\mathrm{h})-\mathrm{f}(1)}{\mathrm{h}}\right] \\
& =\underset{\mathrm{h} \rightarrow 0+}{\operatorname{Lt}}\left[\frac{\{2(1+\mathrm{h})-1\}-1}{\mathrm{~h}}\right]=2
\end{aligned}
\end{aligned}
$$

$\therefore \mathrm{f}^{1}(1-) \neq \mathrm{f}^{1}(1+)$
Hence, $\mathrm{f}(\mathrm{x})$ is not differentiable at $\mathrm{x}=1$.
06. Ans: (a)

Sol: Since, f is differentiable at $\mathrm{x}=2$,

$$
\begin{aligned}
& \mathrm{f}^{\prime}(2-)=\mathrm{f}^{\prime}(2+) \\
\Rightarrow & (2 \mathrm{x})_{\mathrm{x}=2}=\mathrm{m} \\
\Rightarrow & \mathrm{~m}=4
\end{aligned}
$$

Since, f is continuous at $x=2$

$$
\left(\mathrm{x}^{2}\right)_{\mathrm{x}=2}=(\mathrm{mx}+\mathrm{b})_{\mathrm{x}}=2
$$

$\Rightarrow 4=2 \mathrm{~m}+\mathrm{b}$
$\Rightarrow \mathrm{b}=-4$
Hence, option (a) is correct.

07. Ans: (c)

Sol: By Lagrange's theorem,

$$
\begin{aligned}
\mathrm{f}^{\prime}(\mathrm{C}) & =\frac{\mathrm{f}(8)-\mathrm{f}(1)}{8-1} \\
1-\frac{4}{\mathrm{C}^{2}} & =\frac{8.5-5}{7} \\
\mathrm{C} & = \pm 2 \sqrt{2}
\end{aligned}
$$

But only, $C=2 \sqrt{2} \in(1,8)$

08. Ans: (a)

Sol: Given $f(x)=3 x^{2}+4 x-5$

$$
f^{\prime}(x)=6 x+4
$$

By Lagrange's Mean Value Theorem, there exist a value $c \in(1,3)$ such that

$$
\begin{aligned}
f^{\prime}(c) & =\frac{f(3)-f(1)}{3-1} \\
& =\frac{32}{2}=16
\end{aligned}
$$

09. Ans: 2.5 range 2.49 to 2.51

Sol: By Cauchy's mean value theorem,

$$
\begin{aligned}
& \frac{f^{\prime}(\mathrm{c})}{\mathrm{g}^{\prime}(\mathrm{c})}=\frac{\mathrm{f}(3)-\mathrm{f}(2)}{\mathrm{g}(3)-\mathrm{g}(2)} \\
\Rightarrow & -\mathrm{e}^{2 \mathrm{c}}=\frac{\mathrm{e}^{3}-\mathrm{e}^{2}}{\mathrm{e}^{-3}-\mathrm{e}^{-2}} \Rightarrow \mathrm{c}=2.5
\end{aligned}
$$

10. Ans: (a)

Sol: The conditions of Cauchy's theorem hold good for $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$.

By Cauchy's theorem, there exists a value c such that
$\mathrm{f}^{\prime}(\mathrm{c})=\mathrm{f}(3)-\mathrm{f}(2)$
$\mathrm{g}^{\prime}(\mathrm{c}) \quad \mathrm{g}(3)-\mathrm{g}(2)$

$$
\frac{\left(\frac{-1}{c^{2}}\right)}{\left(\frac{-2}{c^{3}}\right)}=\frac{\left(\frac{1}{3}-\frac{1}{2}\right)}{\left(\frac{1}{9}-\frac{1}{4}\right)} \Rightarrow c=2.4
$$

11. Ans: (a)

Sol: $f(x)=\cosh x+\cos x$
$f^{\prime}(x)=\sinh x-\sin x \Rightarrow f^{\prime}(0)=0$
$f^{\prime \prime}(x)=\cosh x-\cos x \Rightarrow f^{\prime \prime}(0)=0$
$\mathrm{f}^{\prime \prime \prime}(\mathrm{x})=\sinh \mathrm{x}+\sin \mathrm{x} \Rightarrow \mathrm{f}^{\prime \prime \prime}(0)=0$
$\mathrm{f}^{\prime \prime \prime \prime}(\mathrm{x})=\cosh \mathrm{x}+\cos \mathrm{x} \Rightarrow \mathrm{f}^{\prime \prime \prime \prime}(0)=2>0$
$\therefore \mathrm{f}(\mathrm{x})$ has a minimum at $\mathrm{x}=0$

12. Ans: (b)

Sol: $y^{\prime}=0 \Rightarrow 4 x^{3}-6 x^{2}+2 x=0$
$\Rightarrow \mathrm{x}=0, \frac{1}{2}, 1$ are stationary points

$$
y^{\prime \prime}=12 x^{2}-12 x+2
$$

$\Rightarrow y(x)$ has minimum at $x=0 \& x=1$
\therefore Required Area

$$
=\int_{0}^{1}\left(x^{4}-2 x^{3}+x^{2}+3\right) d x=\frac{91}{30}
$$

13. Ans: 0.785 range 0.78 to 0.79

Sol: $\int_{0}^{\frac{\pi}{4}} \frac{\sin 2 x}{\cos ^{4} x+\sin ^{4} x} d x$

$$
\begin{aligned}
& =2 \int_{0}^{\frac{\pi}{4}} \frac{\tan \mathrm{x}}{\cos ^{2} \mathrm{x}\left(1+\tan ^{4} \mathrm{x}\right)} \mathrm{dx} \\
& =\int_{0}^{1} \frac{2 \mathrm{t}}{1+\mathrm{t}^{4}} \mathrm{dt} \quad(\text { by putting tan } \mathrm{x}=\mathrm{t}) \\
& =\frac{\pi}{4} \\
& =0.785
\end{aligned}
$$

14. Ans: 0.53
range 0.52 to 0.54
Sol: The curve is symmetric about x -axis and intersect x -axis at $\mathrm{x}=0$ and $\mathrm{x}=1$.
\therefore Required area

$$
\begin{aligned}
=2 \int_{0}^{1} y d x & =2 \int_{0}^{1} \sqrt{x}(x-1) d x=\frac{8}{15} \\
= & 0.53
\end{aligned}
$$

15. Ans: 9

Sol: The required area

$$
=\int x d y=\int_{-2}^{4}\left(\frac{1}{2}(y+4)-\frac{1}{4} y^{2}\right) d y=9
$$

16. Ans: (c)

Sol: Let $f(\alpha)=\int_{0}^{1} \frac{x^{\alpha}-1}{\log x} d x$
Differentiating with respect to α, partially
$f^{\prime}(\alpha)=\int_{0}^{1} \frac{1}{\log x}\left(x^{\alpha} \log x\right) d x=\int_{0}^{1} x^{\alpha} d x=\frac{1}{1+\alpha}$
Integrating, $f(\alpha)=\log (1+\alpha)+C .$.
From (i), $f(0)=0$
From (ii), $f(0)=\log (1)+C$
$\Rightarrow 0=\log (1)+C$
$\Rightarrow \mathrm{C}=0$
$\therefore \mathrm{f}(\alpha)=\log (1+\alpha)$
17. Ans: (a)

Sol: Given that, $x \sin (\pi x)=\int_{0}^{x^{2}} f(t) d t$
differentiating both sides
$x \cos (\pi x) \cdot \pi+\sin (\pi x)=f(x) \cdot 2 x$
Putting $x=4$
$4 \pi \cos (4 \pi)=f(4) .8$
$\Rightarrow \mathrm{f}(4)=\frac{\pi}{2}$

18. Ans: (c)

Sol: First of all note that, the integrand $f(x)=x^{m}$ $(\ln x)^{n}$ has no meaning at $x=0$. It can be made continuous on the interval $[0,1]$ for any $\mathrm{m}>0$ and $\mathrm{n}>0$, by putting $\mathrm{f}(0)=0$.

Indeed $\underset{x \rightarrow+0}{\operatorname{Lt}} x^{m}(\ln x)^{n}=\underset{x \rightarrow+0}{\operatorname{Lt}}\left(x^{\frac{m}{n}} \ln x\right)^{n}=0$
Hence, in particular, it follows that the integral I_{n} exists at $\mathrm{m}>0, \mathrm{n}>0$. To compute it we integrate by parts, putting

$$
\begin{array}{ll}
u=(\ln x)^{n}, & d v=x^{m} d x \\
d u=\frac{n(\ln x)^{n-1}}{x} d x, & v=\frac{x^{m+1}}{m+1}
\end{array}
$$

Hence,

$$
\begin{aligned}
\int_{0}^{1} x^{m}(\ln x)^{n} d x=\left.\frac{x^{m+1}(\ln x)^{n}}{m+1}\right|_{0} ^{1} & -\frac{n}{m+1} \int_{0}^{1} x^{m}(\ln x)^{n-1} d x \\
& =-\frac{n}{m+1} I_{n-1}
\end{aligned}
$$

The formula obtained reduces I_{n} to I_{n-1}. In particular, with a natural n , taking into account that

$$
I_{0}=\int_{0}^{1} x^{m} d x=\frac{1}{m+1}
$$

we get,

$$
I_{n}=(-1)^{n} \frac{n!}{(m+1)^{n+1}}
$$

19. Ans: (c)

Sol: $\int_{-\infty}^{\infty} \frac{d x}{\left(1+a^{2}+x^{2}\right)^{\frac{3}{2}}}$

$$
=2 \int_{0}^{\infty} \frac{d x}{\left(1+a^{2}+x^{2}\right)^{\frac{3}{2}}}
$$

$[\because$ Integrand is even function]

$$
=2 \int_{0}^{\infty} \frac{\mathrm{dx}}{\left(\mathrm{~b}^{2}+\mathrm{x}^{2}\right)^{\frac{3}{2}}} \text { Put } \mathrm{x}=\mathrm{b} \tan \theta
$$

$$
=2 \int_{0}^{\frac{\pi}{2}} \frac{\mathrm{~b} \mathrm{sec}^{2} \theta d \theta}{\mathrm{~b}^{3} \sec ^{3} \theta}
$$

$$
=2 \int_{0}^{\frac{\pi}{2}} \frac{\cos \theta \mathrm{~d} \theta}{\mathrm{~b}^{2}}=\frac{2}{\mathrm{~b}^{2}}=\frac{2}{1+a^{2}}
$$

20. Ans: (d)

Sol: $\int_{-\infty}^{0} e^{x+e^{x}} d x$

$$
=\int_{-\infty}^{0} e^{x} e^{e^{x}} d x
$$

Put $\mathrm{e}^{\mathrm{x}}=\mathrm{t}$

$$
=\int_{0}^{1} \mathrm{e}^{\mathrm{t}} \mathrm{dt}=\mathrm{e}-1
$$

21. Ans: (a)

Sol: Let $I=\int_{0}^{\pi} x \sin ^{2} x d x$
$I=\int_{0}^{\pi}(\pi-x) \sin ^{2}(\pi-x) d x$
[By property of definite integrals]

$$
I=\int_{0}^{\pi}(\pi-x) \sin ^{2} x d x
$$

Adding (1) and (2)
$2 I=\int_{0}^{\pi} \pi \sin ^{2} x d x$
$I=\pi \int_{0}^{\frac{\pi}{2}} \sin ^{2} x d x$
$\mathrm{I}=\pi\left(\frac{1}{2}\right)\left(\frac{\pi}{2}\right)=\frac{\pi^{2}}{4}$
22. Ans: (a)

Sol: Given $(f \circ g)(\mathrm{x})=\mathrm{f}[\mathrm{g}(\mathrm{x})]$
In $(-\infty, 0), g(x)=-x$
$\Rightarrow \mathrm{f}[\mathrm{g}(\mathrm{x})]=\mathrm{f}(-\mathrm{x})$
$\Rightarrow \mathrm{f}[\mathrm{g}(\mathrm{x})]=\mathrm{x}^{2}$
$\therefore \mathrm{f}[\mathrm{g}(\mathrm{x})]$ has no points of discontinuities in $(-\infty, 0)$.

23. Ans: (c)

Sol: $y=\underset{x \rightarrow \infty}{\operatorname{Lt}}\left(1+x^{2}\right) e^{-x} \quad \quad\left(\infty^{0}\right.$ form $)$
Taking logarithms

$$
\begin{aligned}
& \log y=\operatorname{Lt}_{x \rightarrow \infty} e^{-x} \cdot \log \left(1+x^{2}\right) \quad(0 . \infty \text { form }) \\
& =\operatorname{Lt}_{\mathrm{x} \rightarrow \infty} \frac{\log \left(1+\mathrm{x}^{2}\right)}{\mathrm{e}^{\mathrm{x}}} \quad\left(\frac{\infty}{\infty} \text { form }\right) \\
& =\operatorname{Lt}_{\mathrm{x} \rightarrow \infty} \frac{\left(\frac{2 \mathrm{x}}{1+\mathrm{x}^{2}}\right)}{\mathrm{e}^{\mathrm{x}}} \\
& \text { (By L Hospital's rule) } \\
& =\operatorname{Lt}_{\mathrm{x} \rightarrow \infty}\left[\frac{2 \mathrm{x}}{\left(1+\mathrm{x}^{2}\right) \mathrm{e}^{\mathrm{x}}}\right] \quad\left(\frac{\infty}{\infty} \text { form }\right) \\
& =\operatorname{Lt}_{x \rightarrow \infty}\left[\frac{2}{\left(1+x^{2} e^{x}+2 x e^{x}\right)}\right] \\
& \text { [} \because \text { By L Hospital's rule] } \\
& =0 \\
& \therefore y=e^{0}=1
\end{aligned}
$$

24. Ans: (a)

Sol: $f(x)=x(x-1)(x-2)$

$$
=x^{3}-3 x^{2}+2 x
$$

$f^{\prime}(x)=3 x^{2}-6 x+2$
Consider $\mathrm{f}^{\prime}(\mathrm{c})=0$
$\Rightarrow 3 \mathrm{c}^{2}-6 \mathrm{c}+2=0$
$\Rightarrow c=\frac{6 \pm \sqrt{36-24}}{6}=1 \pm \frac{1}{\sqrt{3}}$
$\therefore c=\left(1+\frac{1}{\sqrt{3}}\right) \in(1,2)$

$$
=1.577
$$

25. Ans: (b)

Sol: $\operatorname{Lt}_{\mathrm{x} \rightarrow 0} \frac{\int_{0}^{\mathrm{x}^{2}} \sin \sqrt{x} d x}{\mathrm{x}^{3}}$ $\left(\frac{0}{0}\right.$ form $)$

Applying L-Hospital rule,

$$
\begin{aligned}
& =\operatorname{Lt}_{x \rightarrow 0} \frac{\sin x(2 x)}{3 x^{2}} \\
& =\operatorname{Lt}_{x \rightarrow 0} \frac{2 \sin x}{3 x}=\frac{2}{3}
\end{aligned}
$$

26. Ans: (b)

Sol: Given $f(x)=x^{3}-3 x^{2}-24 x+100$ in $[-3,3]$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=3 \mathrm{x}^{2}-6 \mathrm{x}-24, \mathrm{f}^{\prime \prime}(\mathrm{x})=6 \mathrm{x}-6$
Consider $\mathrm{f}^{\prime}(\mathrm{x})=0$
$\Rightarrow 3 \mathrm{x}^{2}-6 \mathrm{x}-24=0$
$\Rightarrow \mathrm{x}=-2,4$ are stationary points
At $\mathrm{x}=-2, \mathrm{f}^{\prime \prime}(-2)<0$
$\Rightarrow \mathrm{f}(\mathrm{x})$ has a maximum at $\mathrm{x}=-2$
At $x=4, \mathrm{f}^{\prime \prime}(4)>0$
$\Rightarrow \mathrm{f}(\mathrm{x})$ has a minimum at $\mathrm{x}=4$
But $x=4 \notin[-3,3]$
\therefore Global minimum of $\mathrm{f}(\mathrm{x})=\min \{\mathrm{f}(-3), \mathrm{f}(3)\}$

$$
=\min \{118,28\}=28
$$

27. Ans: 1

Sol: Let $2 \mathrm{x} \& 2 \mathrm{y}$ be the length $\&$ breadth of the rectangle.

Let $A=2 x \times 2 y=4 x y$ be the area of the rectangle.
Then $\mathrm{A}^{2}=4 \mathrm{x}^{2} \mathrm{y}^{2}=\mathrm{x}^{2}\left(1-\mathrm{x}^{2}\right)=\mathrm{x}^{2}-\mathrm{x}^{4}$
Let $f(x)=x^{2}-x^{4}$
Then $f^{\prime}(x)=2 x-4 x^{3}$ and $f^{\prime \prime}(x)=2-12 x^{2}$
For maximum, we have

$$
\begin{aligned}
& \mathrm{f}^{\prime}(\mathrm{x})=0 \\
\Rightarrow & 2 \mathrm{x}\left(1-2 \mathrm{x}^{2}\right)=0 \\
\Rightarrow & \mathrm{x}=0, \frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}
\end{aligned}
$$

Here $\mathrm{f}^{\prime \prime}(0)>0, \quad \mathrm{f}^{\prime \prime}\left(\frac{1}{\sqrt{2}}\right)<0$

$$
\begin{aligned}
\text { Area } A=4 x y & =4 x \times \frac{\sqrt{1-x^{2}}}{2} \\
& =2 x \sqrt{1-x^{2}}
\end{aligned}
$$

28. Ans: $\mathbf{- 1 3}$

Sol: Given $f(x)=2 x^{3}-x^{4}-10$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=6 \mathrm{x}^{2}-4 \mathrm{x}^{3}, \mathrm{f}^{\prime \prime}(\mathrm{x})=12 \mathrm{x}-12 \mathrm{x}^{2}$ and $\mathrm{f}^{\prime \prime \prime}(\mathrm{x})=12-24 \mathrm{x}$.

Consider $\mathrm{f}^{\prime}(\mathrm{x})=0$
$\Rightarrow 6 \mathrm{x}^{2}-4 \mathrm{x}^{3}=0$
$\Rightarrow \mathrm{x}=0,1.5$ are stationary points
But $x=1.5$ lies outside of $[-1,1]$
At $\mathrm{x}=0, \mathrm{f}^{\prime \prime}(0)=0$ and $\mathrm{f}^{\prime \prime \prime}(0)=12>0$
$\Rightarrow \mathrm{f}(\mathrm{x})$ has a minimum $\mathrm{Tx}=0$
\therefore The minimum value of

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}) \text { in }[-1,1] & =\min \{\mathrm{f}(-1), \mathrm{f}(1), \mathrm{f}(0)\} \\
& =\min \{-13,-9,-10\} \\
& =-13
\end{aligned}
$$

29. Ans: (c)

Sol: Given $f(x)=\left(k^{2}-4\right) x^{2}+6 x^{3}+8 x^{4}$
$\Rightarrow \quad \mathrm{f}^{\prime}(\mathrm{x})=32 \mathrm{x}^{3}+18 \mathrm{x}^{2}+2\left(\mathrm{k}^{2}-4\right) \mathrm{x}$
and $\quad f^{\prime \prime}(x)=96 x^{2}+36 x+2\left(k^{2}-4\right)$
$f(x)$ has local maxima at $x=0$
$\Rightarrow \mathrm{f}^{\prime \prime}(0)<0$
$\Rightarrow 2\left(\mathrm{k}^{2}-4\right)<0$
$\Rightarrow \mathrm{k}^{2}-4<0 \quad$ (or) $\quad(\mathrm{k}-2)(\mathrm{k}+2)<0$
$\therefore-2<\mathrm{k}<2$
30. Ans: (c)

Sol: $\mathrm{f}(\mathrm{x})=\int_{0}^{\mathrm{x}} \frac{\sin \mathrm{t}}{\mathrm{t}} \mathrm{dt}$
$\mathrm{f}^{\prime}(\mathrm{x})=\frac{\sin x}{x}$
$\mathrm{f}^{\prime}(\mathrm{x})=0 \Rightarrow \mathrm{x}=\mathrm{n} \pi$
where $\mathrm{n}=1,2,3, \ldots \ldots$.
$\mathrm{f}^{\prime \prime}(\mathrm{x})=\frac{x \cos x-\sin x}{x^{2}}$
Here $\mathrm{f}^{\prime \prime}(\mathrm{x})$ is negative when n is odd.
$\therefore f(x)$ has a maximum at $\mathrm{x}=\mathrm{n} \pi$, where n is odd
31. Ans: (c)

Sol: $f(x)=\frac{50}{3 x^{4}+8 x^{3}-18 x^{2}+60}$
Let $\mathrm{F}(\mathrm{x})=3 x^{4}+8 x^{3}-18 x^{2}+60$
$F^{\prime}(\mathrm{x})=12 \mathrm{x}^{3}+24 \mathrm{x}^{2}-36 \mathrm{x}$
$\mathrm{F}^{\prime}(\mathrm{x})=0$
$\Rightarrow \mathrm{x}=0,1,-3$

$$
\begin{aligned}
& F^{\prime \prime}(x)=36 x^{2}+48 x-36 \\
& F^{\prime \prime}(1)=48>0
\end{aligned}
$$

$\therefore \mathrm{F}(\mathrm{x})$ has a local minimum at $\mathrm{x}=1$
$\Rightarrow \mathrm{f}(\mathrm{x})$ has a local maximum at $\mathrm{x}=1$

32. Ans: (a)

Sol: $I=\int_{0}^{\pi} x \sin ^{4} x \cos ^{6} x d x$
$=\int_{0}^{\pi}(\pi-x) \sin ^{4}(\pi-x) \cos ^{6}(\pi-x) d x$
$I=\int_{0}^{\pi}(\pi-x) \sin ^{4} x \cos ^{6} x d x$
Adding (1) and (2)
$2 I=\int_{0}^{\pi} \pi \sin ^{4} x \cos ^{6} x d x$
$I=\frac{\pi}{2} \int_{0}^{\frac{\pi}{2}} \sin ^{4} x \cos ^{6} x d x$
$=\frac{\pi}{2} \frac{(3 \times 1)(5 \times 3 \times 1)}{10 \times 8 \times 6 \times 4 \times 2} \frac{\pi}{2}$
$=3 \pi^{2} / 512$
33. Ans: 4

Sol: $\int_{0}^{2 \pi}|x \sin x| d x=k \pi$

$$
\begin{aligned}
& \Rightarrow \int_{0}^{\pi}|\mathrm{x} \sin \mathrm{x}| \mathrm{dx}+\int_{\pi}^{2 \pi}|\mathrm{x} \sin \mathrm{x}| \mathrm{dx}=\mathrm{k} \pi \\
& \Rightarrow \int_{0}^{\pi} \mathrm{x} \sin \mathrm{xdx}-\int_{\pi}^{2 \pi} \mathrm{x} \sin \mathrm{xdx}=\mathrm{k} \pi \\
& \Rightarrow[\mathrm{x}(-\cos \mathrm{x})+\sin \mathrm{x}]_{0}^{\pi}+[\mathrm{x}(\cos \mathrm{x})+\sin \mathrm{x}]_{\pi}^{2 \pi} \\
& =\mathrm{k} \pi \\
& \Rightarrow \pi+3 \pi=\mathrm{k} \pi \\
& \therefore \mathrm{k}=4
\end{aligned}
$$

34. Ans: (a), (c)

Sol: $\quad \mathrm{f}(\mathrm{x})=\mathrm{x}|\mathrm{x}|$

$$
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0}\left(-x^{2}\right)=0
$$

Also,
$\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0}\left(x^{2}\right)=0$
$\Rightarrow \mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{a}=0$
For checking differentiability

$$
\begin{aligned}
& f^{\prime}\left(0^{-}\right)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{n}=\lim _{h \rightarrow 0} \frac{-h^{2}}{n}=0 \\
& f^{\prime}\left(0^{+}\right)=\lim _{h \rightarrow 0^{1}} \frac{f(0+h)-f(0)}{n}=\lim _{h \rightarrow 0} \frac{h^{2}}{n}=0 \\
& \therefore f^{\prime}\left(0^{-}\right)=f^{\prime}\left(0^{+}\right)
\end{aligned}
$$

\therefore The function is differential at $\mathrm{x}=0$
\therefore The $\mathrm{f}(\mathrm{x})=\mathrm{x}|\mathrm{x}|$ is continuous and
differential at $\mathrm{x}=0$.

