GATE I PSUs

DATA STRUCTURES

Text Book:

Theory with worked out Examples and Practice Questions

Data Structures

(Solutions for Text Book Practice Questions)

1. Ans: 1010

Sol: Loc. of A (i) $=\mathrm{L}_{0}+(\mathrm{i}-\mathrm{lb}) * \mathrm{C}$
Loc of A [0] = $1000+(0+5) \times 2=1010$
02. Ans: 1024 and 1024

Sol: (i) By RMO, the loc. of

$$
\begin{aligned}
& \mathrm{A}[\mathrm{i}, \mathrm{j}]=\mathrm{L}_{0}+\left[\left(\mathrm{i}-\mathrm{b}_{1}\right)\left(\mathrm{u}_{2}-\mathrm{b}_{2}+\mathrm{l}\right)+\left(\mathrm{j}-\mathrm{b}_{2}\right)\right]^{*} \mathrm{C} \\
& \begin{aligned}
\mathrm{A}[0,5] & =1000+[(0+2) \times 5+(5-3)] \times 2 \\
& =1000+24=1024
\end{aligned}
\end{aligned}
$$

(ii) By CMO, the loc of
$\mathrm{A}[\mathrm{i}, \mathrm{j}]=\mathrm{L}_{0}+\left[\left(\mathrm{j}-\mathrm{b}_{2}\right)\left(\mathrm{u}_{1}-\mathrm{b}_{1}+1\right)+\left(\mathrm{i}-\mathrm{b}_{1}\right)\right]^{*} \mathrm{C}$
$\mathrm{A}[0,5]=1000+[(5-3) \times 5+(0+2)] \times 2$ $=1024$
03. Ans: (a)

Sol: In general

$$
\begin{aligned}
\mathrm{RMO} & =\mathrm{L}_{0}+(\mathrm{i}-1) \mathrm{r}_{2}+(\mathrm{j}-1) \\
& =100+(\mathrm{i}-1) 15+(\mathrm{j}-1) \\
& =100+15 \mathrm{i}-15+\mathrm{j}-1 \\
& =15 \mathrm{i}+\mathrm{j}+84
\end{aligned}
$$

4. Ans: (c)

Sol: Lower triangular matrix

$\mathrm{RMO}=\mathrm{L}_{0}+$ the number of elements in
($\mathrm{i}-1$) rows + one dimensional elements

$$
\begin{aligned}
& =\mathrm{L}_{0}+(1+2+\ldots \ldots .+\mathrm{i}-1)+(\mathrm{j}-1) \\
& =\mathrm{L}_{0}+\mathrm{i} \frac{(i-1)}{2}+(\mathrm{j}-1)
\end{aligned}
$$

5. Ans: (c)

Sol: CMO:

Storage:

$$
\begin{array}{cc}
a_{11} & a_{21} \\
a_{31} & a_{41}
\end{array} a_{22} a_{32} a_{42}\left|a_{33} a_{43}\right| a_{44}
$$

Retrieval:

loc of $A[i, j]=L_{0}+2 D+1 D$

$$
=\mathrm{L}_{0}+[(\mathrm{j}-1) \operatorname{cols}+(\mathrm{i}-\mathrm{i} \ell \mathrm{~b})]
$$

In each col., $\mathrm{i} l \mathrm{~b}=\mathrm{j}$.
Loc. of $A[i, j]=L_{0}+[(j-1)$ cols $+(i-j)]$
In ($\mathrm{j}-1$) cols
The no. of elements is

$$
\begin{aligned}
n+(n-1) & +\ldots+(n-(j-1-1)) \\
& =(j-1) n-[1+2+\ldots+j-2] \\
& =n(j-1)-\frac{(j-1)(j-2)}{2}
\end{aligned}
$$

loc. of $A[i, j]$

$$
=L_{0}+\left[n(j-1)-\frac{(j-1)(j-2)}{2}+(i-j)\right]
$$

6. Ans: (d)

Sol: RMO:

Storage:

$a_{11} a_{12}\left|a_{21} a_{22} a_{23}\right| a_{32} a_{33} a_{34} \mid a_{43} a_{44}$
$\begin{array}{llllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$

Retrieval:

loc of $A[i, j]=L_{0}+2 D+1 D$
$=\mathrm{L}_{0}+$ number of elements in $(\mathrm{i}-1)$ rows

$$
+(j-j \ell b)
$$

Row	jlb
4	3
3	2
2	1
except	$1^{\text {st }}$
row $^{\text {th }}$	$(\mathrm{i}-1)$

loc. of $A[i, j]=L_{0}+[(3 i-4)+j-(i-1)]$

$$
=L_{0}+(2 i+j-3)
$$

7. Ans: (a)

Sol: CMO:

Storage:

$a_{11} a_{21}\left|a_{12} a_{22} a_{32}\right| a_{23} a_{33} a_{43} \mid a_{34} a_{44}$
$\begin{array}{llllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$

Retrieval:

loc. of $A[i, j]=L_{0}+2 D+1 D$

$$
=\mathrm{L}_{0}+(\mathrm{j}-1) \operatorname{cols}+(\mathrm{i}-\mathrm{i} \ell \mathrm{~b})
$$

Since i is Varying

Col	$\mathbf{i l b}$
4	3
3	2
2	1
except	$1^{\text {st }}$ column
$j^{\text {th }}$	$j-1$
\therefore loc of $A[i, j]$ $=L_{0}+[3(j-1)-1+i-(j-1)]$ $=$ $L_{0}+[2 j+i-3]$	

8. Ans: (b)

Sol: Storage \& Retrieval:
$a_{21} a_{32} a_{43}\left|a_{11} a_{22} a_{33} a_{44}\right| a_{12} a_{23} a_{34}$
$\begin{array}{llllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$ If $\mathrm{i}-\mathrm{j}=1$
loc of $A[i, j]=L_{0}+0+(i-i \ell b)$

$$
\begin{aligned}
& \text { or } \\
& (\mathrm{j}-\mathrm{j} \mathrm{j} \mathrm{~b})
\end{aligned}
$$

$$
\begin{aligned}
& \text { i.e., } \\
& \begin{aligned}
\text { loc. of } A[i, j]= & L_{0}+0 \\
& +(i-2) \\
& \text { or } \\
& (j-1)
\end{aligned}
\end{aligned}
$$

If $\mathrm{i}-\mathrm{j}=0$
loc. of $A[i, j]=L_{0}+(n-1)$

$$
\begin{gathered}
+(\mathrm{i}-1) \\
\text { or } \\
(\mathrm{j}-1)
\end{gathered}
$$

If $\mathrm{i}-\mathrm{j}=-1 / /$ upper diagonal
loc. of $A[i, j]=L_{0}+2 n-1$

$$
\begin{gathered}
+(\mathrm{i}-1) \\
\quad \text { or } \\
(\mathrm{j}-2)
\end{gathered}
$$

9. Ans: (a)

Sol: A sample 5×5 S-matrix is given below.

The compact representation is
$[1,8,3,2,1, \quad 6,1,7,4,3, \quad 9,6,5,4,1,3,1]$.
10. Ans: 9

Sol: $2 \mathrm{n}-1=10-1=9$

1	2	3	4
	1	2	3
6	5	1	2
7	6	5	1

DCE	3	Data Structures

11. Ans: 990698

Sol: Computing number of elements in frame

Before reaching $50^{\text {th }}$ frame we need to complete $1 \ldots 49$ frame i.e. total 49 frame.
Each frame is consists of 100×100 elements
Hence total $49 \times 100 \times 100=490000$ elements are arranged in frames.

Number of elements in Rows

In the $49^{\text {th }}$ row we have already completed 1 to 48 i.e. total 48 rows
Each row is consists of 100 elements
Hence total $48 \times 100=4800$ elements are arranged for $49^{\text {th }}$ row.

Number of elements in column

In the $50^{\text {th }}$ frame and $49^{\text {th }}$ row we have 1 to 49 i.e. 49 elements are already arranged.
Total number of element that are arranged is $=490000+4800+49=494849$.
Address of $A[50][49][50]$ is
$1000+494849 \times 2=990698$
12. Ans: 1398

Sol: A[20][10]
Before reaching $20^{\text {th }}$ row, number of rows completed is 19
Total number of elements in 19 rows
$1+2+3+\ldots .+19=\frac{19 \times 20}{2}=190$
We are at $10^{\text {th }}$ column, number of element completed is 9
Total number of element completed is $190+$ $9=199$
Address of a[20][10] is
$=1000+199 \times 2=1398$

Chapter

2

Stacks \& Queues

1. (i). Ans: (a) (ii). Ans: (c)

Sol: Given array size m, say 9
Number of stacks n, say 3

$$
\begin{aligned}
& 0 \leq i<n \quad T[i]=B[i]=i \cdot\left[\frac{m}{n}\right]-1 \\
& i=0 \Rightarrow T[0]=B[0]=0\left[\frac{9}{3}\right]-1=0-1=-1
\end{aligned}
$$

$$
\mathrm{i}=1 \Rightarrow \mathrm{~T}[1]=\mathrm{B}[1]=1\left[\frac{9}{3}\right]-1=3-1=2
$$

$$
\mathrm{i}=2 \Rightarrow \mathrm{~T}[2]=\mathrm{B}[2]=2\left[\frac{9}{3}\right]-1=2[3]-1=5
$$

$$
\text { when } \mathrm{i}=3 \Rightarrow \mathrm{~B}[3]=\mathrm{m}-1=9-1=8
$$

(i) Push $=$ overflow $=$ size

(1) ACE	4	CSIT-Postal Coaching Solutions

$$
\begin{aligned}
&\left.\begin{array}{r}
\mathrm{T}[0]=\mathrm{B}[1] \\
\mathrm{T}[1]=\mathrm{B}[2] \\
\mathrm{T}[2]=\mathrm{B}[3]
\end{array}\right\} \text { overflow cases } \\
& \therefore \mathrm{T}[\mathrm{i}]=\mathrm{B}[\mathrm{i}+1]
\end{aligned}
$$

(ii) $\mathrm{POP}=$ underflow $=$ initial

	0	1	2
B	-1	2	5
T	-1	2	5
0			

$\begin{array}{lll}1 & 4 & 7 \\ 2 & 5 & 8\end{array}$
02. Ans: (b)

Sol:

Stack operation	Push (10)	Push (20)	Pop	Push (10)	Push (20)	Pop	Pop	Pop	Push (20)	Pop
Stack	10	10\|20	10	10 10	10 10 20	10\|10	10	—	20	
Pop list			20	20	20	20, 20	$\begin{gathered} 20,20 \\ 10 \end{gathered}$	$\begin{gathered} 20,20 \\ 10,10 \end{gathered}$	$\begin{gathered} 20,20 \\ 10,10 \end{gathered}$	$\begin{gathered} 20,20,10 \\ 10,20 \end{gathered}$

The sequence of popped out values $\Rightarrow 20,20,10,10,20$

$$
\left.\begin{array}{l}
\mathrm{T}[0]=\mathrm{B}[0] \\
\mathrm{T}[1]=\mathrm{B}[1] \\
\mathrm{T}[2]=\mathrm{B}[2]
\end{array}\right\} \text { underflow cases } \therefore \mathrm{T}[\mathrm{i}]=\mathrm{B}[\mathrm{i}]
$$

An instance of array having two stacks is shown above. Stack1 occupied from 1 to MAXSIZE and stack2 occupied from MAXSIZE to 1 . Above shown array is filled completely. So condition for 'stack full' is
Top $1=\operatorname{Top} 2-1$
04. Ans: (c)

Sol: Stack S is

$\mathrm{f}(0)=0$
$\mathrm{f}\left(\mathrm{S}_{4}\right)=\max \{\mathrm{f}(0), 0\}+2=2$
$\mathrm{f}\left(\mathrm{S}_{3}\right)=\max \left\{\mathrm{f}\left(\mathrm{S}_{4}\right), 0\right\}+-3=-1$
$\left\{\because \mathrm{S}_{3}=\operatorname{push}\left(\mathrm{S}_{4},-3\right)\right\}$
$\mathrm{f}\left(\mathrm{S}_{2}\right)=\max \left\{\mathrm{f}\left(\mathrm{S}_{3}\right), 0\right\}+2=2$
$\mathrm{f}\left(\mathrm{S}_{1}\right)=\max \left\{\mathrm{f}\left(\mathrm{S}_{2}\right), 0\right\}+(-1)=1$
$\mathrm{f}(\mathrm{S})=\max \left\{\mathrm{f}\left(\mathrm{S}_{1}\right), 0\right\}+2=3$
$f(S)=3$

05. Ans: (b)

Sol: Stack insertion order $\Rightarrow 1,2,3,4,5$. The only possible output sequence $3,4,5,2,1$

That occurs when

$$
\begin{aligned}
& \text { Push (1) } \\
& \text { Push (2) } \\
& \text { Push (3) } \\
& \text { Pop (3) } \rightarrow 3
\end{aligned}
$$

$(\because$ There is no constraint on the order of deletion operations)

Push (4)

$$
\text { Pop }(4) \longrightarrow 3,4
$$

Push (5)
Pop $(5) \longrightarrow 3,4,5$
Pop $(2) \longrightarrow 3,4,5,2$
Pop $(1) \longrightarrow 3,4,5,2,1$
Other remaining combinations are not possible

06. Ans: 321

Sol: Invocation tail (3)
$\mathrm{T}(3)=3$
$\mathrm{T}(2)=2$
$\mathrm{T}(1)=1$
$\mathrm{T}(0)=$ stop
Output: 321
07. Ans: 1213121

Sol:

Head(x-1) printf (x) $\operatorname{Head}(x-1)$

Head(3)

Head(2) printf(x) Head(2)

Output: 1213121
08.

Sol: (i) Ans: 13
13
fib (7)

8

fib (6) fib (5)
5

fib (5) fib ${ }^{3}(4)$

(ii) Ans: 67

Sol: Number of calls for evaluating
$\mathrm{f}(\mathrm{n})=2 \times \mathrm{f}(\mathrm{n}+1)-1$
The total number of calls in
Fibonacci (8) $=2 \mathrm{f}(9)-1$

$$
=2 \times 34-1=68-1=67
$$

(iii) Ans: 54

\mathbf{n}	0	1	2	3	4	5	6	7	8	9	10
Fib(n)	0	1	1	2	3	5	8	13	21	34	55
Call:	1	1	3	5	9			41	35		
Add:				2	4						

Additions $=\mathrm{f}(\mathrm{n}+1)-1$
$\mathrm{f}(9)=\mathrm{f}(10)-1=55-1=54$
09.

Sol: $\operatorname{Ackerman}(\mathrm{m}, \mathrm{n})=$
$\left\{\begin{array}{lr}n+1 & \text { if } m=0 \\ \operatorname{Ackerman}(m-1,1) & \text { if } n=0 \\ \operatorname{Ackerman}(m-1, \operatorname{Ackerman}(m n-1)) & \text { otherwise }\end{array}\right.$

(i) Ans: 9

Sol: $\operatorname{Ackerman}(2,3)=A(1, A(2,2))=A(1,7)$

$$
\mathrm{A}(2,2)=\mathrm{A}(1, \mathrm{~A}(2,1))=\mathrm{A}(1,5)=7
$$

$\mathrm{A}(2,1)=\mathrm{A}(1, \mathrm{~A}(2,0))=\mathrm{A}(1,3)=5$
$\mathrm{A}(2,0)=\mathrm{A}(1,1)=3$
$\mathrm{A}(1,1)=\mathrm{A}(0, \mathrm{~A}(1,0))=\mathrm{A}(0,2)=2+1=3$
$\mathrm{A}(1,0)=\mathrm{A}(0,1)=2$
$\mathrm{A}(0,1)=1+1=2$
$\mathrm{A}(1,3)=\mathrm{A}(0, \mathrm{~A}(1,2))=\mathrm{A}(0,4)=4+1=5$
$\mathrm{A}(1,2)=\mathrm{A}(0, \mathrm{~A}(1,1))=\mathrm{A}(0,3)=3+1=4$
$A(1,5)=A(0, A(1,4))$

$$
=\mathrm{A}(0, \mathrm{~A}(0, \mathrm{~A}(1,3)))
$$

$$
=\mathrm{A}(0, \mathrm{~A}(0,5))
$$

$$
=\mathrm{A}(0,6)=6+1=7
$$

$$
\begin{aligned}
\mathrm{A}(1,7) & =\mathrm{A}(0, \mathrm{~A}(1,6)) \\
& =\mathrm{A}(0, \mathrm{~A}(0, \mathrm{~A}(1,5))) \\
& =\mathrm{A}(0, \mathrm{~A}(0,7)) \\
& =\mathrm{A}(0,8)=9
\end{aligned}
$$

$\operatorname{Ackerman}(2,3)=9$
(ii) Ans: 13

Sol: $\operatorname{Ackerman}(2,5)=A(1, A(2,4))$

$$
\begin{aligned}
& =\mathrm{A}(1, \mathrm{~A}(1, \mathrm{~A}(2,3))) \\
& =\mathrm{A}(1, \mathrm{~A}(1,9)) \\
\mathrm{A}(1,9) & =\mathrm{A}(0, \mathrm{~A}(1,8)) \\
& =\mathrm{A}(0, \mathrm{~A}(0, \mathrm{~A}(1,7))) \\
& =\mathrm{A}(0, \mathrm{~A}(0,9)) \\
& =\mathrm{A}(0,10) \\
& =11
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{A}(1,11) & =\mathrm{A}(0, \mathrm{~A}(1,10)) \\
& =\mathrm{A}(0, \mathrm{~A}(0, \mathrm{~A}(1,9))) \\
& =\mathrm{A}(0, \mathrm{~A}(0,11)) \\
& =\mathrm{A}(0,12) \\
& =13
\end{aligned}
$$

$\operatorname{Ackerman}(2,5)=13$
(iii) Ans: 4

Sol: $\operatorname{Ackerman}(0,3)=4$
(iv) Ans: 5

Sol: $\operatorname{Ackerman}(3,0)=\mathrm{A}(2,1)$

$$
\begin{aligned}
& \mathrm{A}(2,1)=\mathrm{A}(1, \mathrm{~A}(2,0)) \\
& \mathrm{A}(2,0)=\mathrm{A}(1,1) \\
& \mathrm{A}(1,1)=\mathrm{A}(0, \mathrm{~A}(1,0)) \\
& \mathrm{A}(1,0)=\mathrm{A}(0,1)=2 \\
& \mathrm{~A}(1,1)=\mathrm{A}(0,1)=3 \\
& \mathrm{~A}(2,0)=3 \\
& \mathrm{~A}(2,1)=\mathrm{A}(1,3) \\
& \mathrm{A}(1,3)=5 \quad \text { from (i) } \\
& \mathrm{A}(2,1)=5
\end{aligned}
$$

$\operatorname{Ackerman}(3,0)=5$
10.

Sol: (a) After $\mathrm{N}+1$ calls we have the first move. So after 4 calls we have the first move.
(b) After total calls - 1 calls, we have the last move.
(c) Total moves $2^{\mathrm{N}}-1=7$
(d) Total invocations $=2^{\mathrm{N}+1}-1$

$$
=2^{4}-1=15
$$

11. Ans: (b)

Sol: Postfix expression A B C D + * F /+DE * +

12. Ans: (a)

Sol: $a=-b+c * d / e+f \uparrow g \uparrow h-i * j$

Prefix:

$a=-b+c * d / e+(\uparrow f \uparrow g h)-i * j$
$a=-b+* c d / e+(\uparrow f \uparrow g h)-i * j$
$\mathrm{a}=-\mathrm{b}+/ *_{\mathrm{cde}}+\uparrow \mathrm{f} \uparrow \mathrm{gh}-*_{\mathrm{ij}}$
$\mathrm{a}=+-\mathrm{b} / * \mathrm{cde}+\uparrow \mathrm{f} \uparrow \mathrm{gh}-*_{\mathrm{ij}}$
$\mathrm{a}=++-\mathrm{b} / * \mathrm{cde} \uparrow \mathrm{f} \uparrow \mathrm{gh}-*_{\mathrm{ij}}$
$\mathrm{a}=-++-\mathrm{b} / * \mathrm{cde} \uparrow \mathrm{f} \uparrow \mathrm{gh} \mathrm{*}_{\mathrm{ij}}$
$\Rightarrow=\mathrm{a}-++-\mathrm{b} /{ }^{*} \mathrm{cde} \uparrow \mathrm{f} \uparrow \mathrm{gh} *_{\mathrm{ij}}$
13. Ans: (a)

Sol: Infix expression: $[a+(b \times c)]-(d \wedge(e \wedge f))$
Postfix expression: abc $\times+$ def $\wedge \wedge-$
14. Ans: (a)

Sol:

\Rightarrow The top two elements are 6,1
15. Ans: (c)

Sol: $10,5,+, 60,6, /, *, 8,-$

15

60
15

Value of the postfix expression is 142
16. Ans: (c)

Sol: (i) ab
(ii) b
(iii) byz
(iv) yz

Output is $\Rightarrow \mathrm{yz}$
17. Ans: (b)

Sol:

18. Ans: (i) 322 and (ii) 326

Sol:

Until first ' 0 ' is encountered, stack contains

$$
\left[\begin{array}{l}
9 \\
6 \\
5
\end{array}\right]
$$

So $5+6+9=20$ is enqueued in $\mathrm{Q}_{2} @$ loc 326
Until second ' 0 ' is encountered, stack contains

$$
7 \begin{aligned}
& 7 \\
& 5
\end{aligned}
$$

So $5+7=12$ is enqueued in $\mathrm{Q}_{2} @$ loc 328
Then simply 2 and 6 are pushed in stack

So the location of 6 and 20 are 322 and 326
19. Ans (c)

Sol: Suppose that array contains

Initial configuration:

1	2	3	4	5	6
a	b				c
\uparrow					
		\uparrow			
	R			F	

Delete element

enqueue (x) and enqueue (y) :

$\therefore(\mathrm{R}, \mathrm{F})=(4,1)$
Option (c).

ACE	10	CSIT-Postal Coaching Solutions

20. Ans: (b)

Sol: The given recursive procedure simply reverses the order of elements in the queue. Because in every invocation the deleted element is stored in ' i ' and when the queue becomes empty.
Then the insert () function call will be executed from the very last invoked function call. So, the last deleted element will be inserted first and the procedure goes on.
21. Ans: (a), (b) \& (c)

Sol: DCBA is possible push D, pop D, Push C, pop c, push B, pop B, push A, pop A.
BCAD is possible push D,C,B pop B Pop C, push A, pop A, pop D
A B C D is possible push $\mathrm{D}, \mathrm{C}, \mathrm{A}$ pop A,B,C,D
CABD is not possible push D, Push C, Pop C, push B, Push A, Pop A, : Last element is B so pop B will happen therefore this sequence is not possible so answer should be (a), (b), (c).

22. Ans: (a)

Sol: The front is the pointer in the queue from where dequeue happens. So we dequeue the element using the front. After dequeuing the front pointer moves by one, hence this is a circular array then we have to take the mod of the array length to again start from the first index after reaching the last index of the array.
Count-- // represents the number of elements is there in the queue. So after dequeuing, we also decrease the count. Return r will return the element value. Option (a) fills all these parameters that is correct.

Chapter

3

Linked Lists

1. Ans: (d)

2. Ans: (d)

Sol:

03. Ans: (a)

Sol: while (P) or while (P ! = Null)
while P is pointing to somebody
04. Ans: (d)

Sol: Recursive routine for 'Count'

No. of nodes $=4$
05. Ans: (b)

Sol: Either causes a null pointer dereference or append list m to the end of list n .
06. Ans: (b)

Sol: Before

After

Logic

07. Ans: (b)

Sol: This is recursive routine for reversing a SLL.
08. Ans: (a)

Sol: Before

After

concatenation of two single linked lists by choosing alternative nodes.
09. Ans: (d)

Sol: Cur. Next = new Node (X, Cur. Next)
(i) Struct Node * $\mathrm{n}=$ Get Node () ;
(ii) $\mathrm{n} \rightarrow$ data $=\mathrm{X}$;
(iii) $\mathrm{n} \rightarrow \mathrm{Next}=\mathrm{Cur} \rightarrow$ Next ;
(iv) $\mathrm{Cur} \rightarrow \mathrm{Next}=\mathrm{n}$

10. Ans: (a)

Sol: Linked stack push () = insert front ()
Initial Do()

$$
{ }_{\mathrm{f}} \mathrm{NNULL}
$$

Do(a)

Do(b)
11.

Sol:

Operation	Left most	Right most	Middle
Insert	3	3	4
Delete	1	1	2

12. Ans: (b)

Sol: Inserts to the left of middle node in doubly linked list.

13. Ans: (a)

Sol: Before reverse:

After reverse:

14. Ans: (c)

Sol: In the doubly linked list, the maximum pointers will change if we insert them in the intermediate of the linked list. If we insert the element then we have to change the next and previous of inserting node. Next of the previous node and previous of the next node.
15. Ans: (b)

Sol: For counting the number of nodes we have to move the temp pointer.
while(temp!=NULL)//The last node next stores the NULL

If we take the while(temp \rightarrow next!=NULL) the last node will not be counted here.

Chapter
 4
 Trees

1. Ans: (d)

Sol: 1. Traverse the left subtree in postorder.
2. Traverse the right subtree in postorder.
3. Process the root node
02. Ans: (c)

Sol: 1. Traverse the right subtree in postorder.
2. Traverse the left subtree in postorder.
3. Process the root node
03. Ans: (c)

Sol:

$$
B(t)=b d c a e f g
$$

4. Ans: (b)

Sol:

$B(t)=$ egfabcd
05. Ans: 5

Sol:

\therefore Totally 5 distinct trees possible
Note: The number of binary trees can be formulated with unlabeled nodes are
$=\frac{{ }^{2 n} C_{n}}{\mathrm{n}+1}$.
06. Ans: (c)

Sol: Preorder : A B C D E F G
In-order : B D C A F G E
Post-order: D C B GFEA

07. Ans: 3

Sol: Note: If pre-order is given, along with terminal node information \& all right child information the unique pattern can be found. If post-order is given along with terminal information and all left child information, the unique pattern can be identified.

08. Ans: 3

Sol:

09. Ans: 4

Sol: Post 896745231

Height $=4$
10. (a) Ans: 19

Sol: Leaf nodes $(\mathrm{L})=$ Total nodes-internal nodes
$\mathrm{L}=\mathrm{In}+1-\mathrm{I}$
$\mathrm{L}=\mathrm{I}(\mathrm{n}-1)+1$
$\mathrm{L}=20$
$\mathrm{I}=$?
$20=\mathrm{I}(2-1)+1$
$20=I+1$
$\mathrm{I}=19$
10. (b) Ans: 199

Sol: $\mathrm{L}=\mathrm{I}(\mathrm{n}-1)+1$
$\mathrm{L}=200$
$200=\mathrm{I}+1$
$\mathrm{I}=199$
11. Ans: (b)

Sol:

Minimum =3, \quad Maximum $=14$

12. Ans: 2 and 1

13. Ans: (a)

Sol: Before Swap

After swap

14. Ans: (d)

Sol:

15. Ans: 6

Sol: a (b, c (e (f, g, h)),d)

Parent of f, g, h is e. i.e. internal parenthesis has children of parent which is out of parenthesis.

Converted Binary Tree:

16. Ans: 4

Sol: Given are 3 trees

To get the converted binary tree of these given trees
\because parent is not given we have to assume virtual parent

Among siblings

- Keep the leftmost as it is,
- Cut and connect right siblings as shown in diagram

17. Ans: (d)

Sol: Count the number of trees in forest.

边: ACE	16	CSIT-Postal Coaching Solutions

19. Ans: 6

Sol: Expanded as

$$
\begin{aligned}
& ((1+1)-(0-1))+((1-0)+(1+1)) \\
& \quad=3+3=6
\end{aligned}
$$

20. Ans: - 2

Sol: $(0+0)-(1-0)+(0-1)+(0+0)$

$$
=-1+(-1)=-2
$$

21. Ans: 4

Sol:

22. Ans: (b)

Sol: Preorder $=12,8,6,2,7,9,10,16,15,19$,

$=2,7,6,10,9,8,15,17,20,19,16,12$
23. Ans: 4

Sol:

24. Ans: 67

Sol: 71, 65, 84, 69, 67, 83 insert into empty binary search tree

\therefore Element in the lowest level is 67
25. Ans: 30

Sol: Refer gate PYQ book
26. Ans: (d)

Sol: (a) 53124786

IN : not sorted order
(b) 53126487

(c) 53241678

(d) 53124768

27. Ans: 15

Sol: 1. Jump right
2. Go on descend left

28. Ans: 88

Sol: $\underset{\text { min }}{N(H)}=\left\{\begin{array}{cc}1 & L=H=0 \\ 2 & L=H=1 \\ 1+N(H-1)+N(H-2) & (L=H)>1\end{array}\right.$
$\mathrm{N}(\mathrm{H})=1+\mathrm{N}(\mathrm{H}-1)+\mathrm{N}(\mathrm{H}-2)$
$\mathrm{N}(2)=1+\mathrm{N}(1)+\mathrm{N}(0)$

$$
=1+2+1
$$

$$
=4
$$

$$
\mathrm{N}(3)=1+\mathrm{N}(2)+\mathrm{N}(1)
$$

$$
=1+4+2
$$

$$
=7
$$

$$
\mathrm{N}(8)=1+\mathrm{N}(7)+\mathrm{N}(6)
$$

$$
=1+54+33=88
$$

\mathbf{H}	0	1	2	3	4	5	6	7	8
$\mathbf{N}(\mathbf{H})$	1	2	4	7	12	20	33	54	88

29. Ans: 14

Sol: 21, 26, 30, 9, 4, 14, 28, 18, 15, 10, 2, 3, 7
(21)

(1): ACE	18	CSIT-Postal Coaching Solutions

14
0

30. Ans: 28

Sol:

Delete 14

Delete 15

31. Ans: (a), (b) \& (c)

Sol: The inorder of the binary search tree is always the sorted order.

Inorder: 101520232530353942
To make a unique tree the inorder and the pre-order is sufficient.

A unique tree is:

Post-order traversal is:
151023252035423930
So answer should be (a), (b), (c)
32. Ans: (a), (b) \& (c)

Sol: Every option follows the same tree apart from the option (d). In option (d): 6 come before the 7 which makes store the 6 in place of 7. Hence option (d) will not be the same considering this given tree.

ACE	20	CSIT-Postal Coaching Solutions

Chapter

5

Graphs

1. Ans: 8

Sol:

Following are the 8 different BFs sequences

$$
\begin{array}{llllllll}
\mathrm{V}_{1} & \mathrm{~V}_{2} & \mathrm{~V}_{3} & \mathrm{~V}_{4} & \mathrm{~V}_{5} & \mathrm{~V}_{6} & \mathrm{~V}_{7} & \mathrm{~V}_{8} \\
\mathrm{~V}_{1} & \mathrm{~V}_{2} & \mathrm{~V}_{3} & \mathrm{~V}_{5} & \mathrm{~V}_{4} & \mathrm{~V}_{6} & \mathrm{~V}_{7} & \mathrm{~V}_{8} \\
\mathrm{~V}_{1} & \mathrm{~V}_{3} & \mathrm{~V}_{2} & \mathrm{~V}_{6} & \mathrm{~V}_{7} & \mathrm{~V}_{4} & \mathrm{~V}_{5} & \mathrm{~V}_{8} \\
\mathrm{~V}_{1} & \mathrm{~V}_{3} & \mathrm{~V}_{2} & \mathrm{~V}_{7} & \mathrm{~V}_{6} & \mathrm{~V}_{4} & \mathrm{~V}_{5} & \mathrm{~V}_{8} \\
\mathrm{~V}_{1} & \mathrm{~V}_{2} & \mathrm{~V}_{3} & \mathrm{~V}_{4} & \mathrm{~V}_{5} & \mathrm{~V}_{7} & \mathrm{~V}_{6} & \mathrm{~V}_{8} \\
\mathrm{~V}_{1} & \mathrm{~V}_{2} & \mathrm{~V}_{3} & \mathrm{~V}_{5} & \mathrm{~V}_{4} & \mathrm{~V}_{7} & \mathrm{~V}_{6} & \mathrm{~V}_{8} \\
\mathrm{~V}_{1} & \mathrm{~V}_{3} & \mathrm{~V}_{2} & \mathrm{~V}_{7} & \mathrm{~V}_{6} & \mathrm{~V}_{5} & \mathrm{~V}_{4} & \mathrm{~V}_{8} \\
\mathrm{~V}_{1} & \mathrm{~V}_{3} & \mathrm{~V}_{2} & \mathrm{~V}_{6} & \mathrm{~V}_{7} & \mathrm{~V}_{5} & \mathrm{~V}_{4} & \mathrm{~V}_{8}
\end{array}
$$

02. Ans: 7

Sol: Maximum possible recursion depth is 7
$\mathrm{V}_{1} \rightarrow \mathrm{~V}_{2} \rightarrow \mathrm{~V}_{4} \rightarrow \mathrm{~V}_{8} \rightarrow \mathrm{~V}_{7} \rightarrow \mathrm{~V}_{3} \rightarrow \mathrm{~V}_{6}$
03. Ans: 3

Sol: $\mathrm{V}_{1} \rightarrow \mathrm{~V}_{2} \rightarrow \mathrm{~V}_{4} \rightarrow \mathrm{~V}_{8}$
$\mathrm{V}_{1} \rightarrow \mathrm{~V}_{2} \rightarrow \mathrm{~V}_{5} \rightarrow \mathrm{~V}_{8}$
$\mathrm{V}_{1} \rightarrow \mathrm{~V}_{3} \rightarrow \mathrm{~V}_{6} \rightarrow \mathrm{~V}_{8}$
$\mathrm{V}_{1} \rightarrow \mathrm{~V}_{3} \rightarrow \mathrm{~V}_{7} \rightarrow \mathrm{~V}_{8}$
All the paths contain 3 edges.
So distance from V_{1} to V_{8} is 3 .
04. Ans: (a)

Sol: (a) invalid
(b) valid
(c) valid
(d) valid

(b)

Step back only when already explored vertices are there

(d)

05. Ans: (c)

Sol:
(a) valid
(b) valid
(c) invalid
(d) valid

online

N	21	Data Structures

(c)

Step back only when already explored vertices are there

06. Ans: 19

Sol:

Maximum possible recursion depth $=19$
(The dashed link 'nodes' are explored
while stepping backward.)
07. Ans: 8

Sol:

Minimum possible recursion depth $=8$
(The dashed link 'nodes' are explored while stepping backward.)
08. Ans: (d)

Sol:

Traversal: BFS

queue

Dequeue
queue

Dequeue
queue

Dequeue

queue | V_{5} | $\mathrm{~V}_{6}$ | $\mathrm{~V}_{7}$ | $\mathrm{~V}_{8}$ |
| :--- | :--- | :--- | :--- |
| | | | |

	22	CSIT-Postal Coaching Solutions

9. Ans: (d)

Sol: Refer gate PYQ book
10. Ans: (d)

Sol: Refer gate PYQ book
11. Ans: (a), (b) \& (c)

Sol: S1: True. If DFS finds no back edges, then the graph is acyclic. Removing any back edges found doesn't change the traversal order of DFS, so running DFS again on the modified graph would produce no back edges.

S2: True. Each needs to keep track of the vertices that have already been visited.

Chapter
 6
 Hashing

1. Ans: (d)

Sol:

02. Ans: (a)

Sol:

$$
\frac{3+1+1+1+2+1}{9}=1 \text { (average) }
$$

3. Ans: 80

Sol: Slots $=25$
Elements $=2000$
Load factor $=\frac{\text { elements }}{\text { slots }}$

$$
=\frac{2000}{25}=80
$$

04. Ans: (b)

Sol: Hash function
$h(x)=(3 x+4) \% 7$
$h(1)=(3+4) \% 7=0$
$h(3)=(9+4) \% 7=6$
$h(8)=(24+4) \% 7=0$
$h(10)=(30+4) \% 7=6$
Assume Linear probing for collision resolution

The table will be like

05. Ans: (d)

Sol: After inserting all keys, the hash table is

Key	43	36	92	87	11	4	71	13	14
Loc	10	3	4	10	0	4	5	2	$3 i$

0	1	2	3	4	5	6	7	8	9	10
87	11	13	36	92	4	71	14			43

Last element is stored at the position 7
06. Ans: (c)

Sol: Resultant hash table.
In linear probing, we search hash table sequentially starting from the original location. If a location is occupied, we
check the next location. We wrap around from the last table location to the first table location if necessary.
07. Ans: (c)

Sol:

08. Ans: (c)

Sol: Case (I): To store 52

Variable part			Fixed part		
42	23	34	52	46	33
42	34	23	52	46	33
23	42	34	52	46	33
23	34	42	52	46	33
34	42	23	52	46	33
34	23	42	52	46	33
$3!=6$					

Case (II): To store 33

Since 46 is not getting collided with any other key, it can be moved to the variable part.
Case (I) \& Case (II) are mutually exclusive

Case (I) + Case (II) $=24+6=30$
Total 30 different insertion sequences.
09. Ans: (a), (b) \& (c)

Sol: Hash table: There is no restriction of depletion, any item can be deleted Priority Queue: It works on the priority and if the priority of 1 is higher then it may be deleted first.

Search tree: There is no restriction on deletion, any item can be deleted from the search tree.

Queue: Queue follows FIFO, in the queue the first item should be deleted first which is 6 .

