

Computer Science & Information Technology

DATA STRUCTURES

Text Book: Theory with worked out Examples and Practice Questions

Data Structures

(Solutions for Text Book Practice Questions)

Chapter 1	А	rrays		(i-1) rows + one dimensional elements = $L_0 + (1+2++i-1) + (j-1)$						
				$= L_0 + i \frac{(l-1)}{2} + (j-1)$						
01. A	ans: 1010		05.	Ans: (c)						
Sol: L	oc. of A (i) = $L_0 +$	(i–lb) * C	Sol: CMO:							
L	oc of A $[0] = 1000$	$+(0+5) \times 2 = 1010$		Storage:						
				$a_{11} a_{21} a_{31} a_{41} a_{22} a_{32} a_{42} a_{33} a_{43} a_{44}$						
02. A	Ins: 1024 and 1024	GINEE	RINC	0 1 2 3 4 5 6 7 8 9						
Sol: (i) By RMO, the loo	2. of		Retrieval:						
	$A[i, j] = L_0 + [(i-b_1)]$	$(u_2-b_2+1)+(j-b_2)]*C$		loc of $A[i, j] = L_0 + 2D + 1D$						
	A[0, 5] = 1000 -	$+ [(0+2) \times 5 + (5-3)] \times 2$		$= L_0 + [(j-1) \operatorname{cols} + (i-i\ell b)]$						
G	= 1000 +	24 - 1024		In each col., $i/b = j$.						
(1	1) By CMO, the loc Λ [i i]-L $+$ [(i b.	(1, b+1) + (1, b)		Loc. of $A[i, j] = L_0 + [(j-1) \operatorname{cols} + (i-j)]$						
	$A[1, j] = L_0^{-1} [0] = 0_2^{-1}$	$\pm [(5, 2) \times 5 \pm (0 \pm 2)] \times 2$		In $(j-1)$ cols The no. of elements is						
	A[0, 3] = 1000 = 1024	$+[(3-3) \times 3 + (0+2)] \times 2$								
	- 1024			$n + (n - 1) + \dots + (n - (i - 1 - 1))$						
03. A	ns: (a)			-(i-1)n - [1+2++i-2]						
Sol: In	general	Since	e 199	5 $(j + 1)(i + 2)$						
R	$MO = L_0 + (i-1)$	$r_2 + (j - 1)$		$= n(j-1) - \frac{(j-1)(j-2)}{2}$						
	= 100 + (i - 1)) 15 + (j-1)		loc of A[i i]						
	= 100 + 15 i -	15 + j - 1		$\mathbf{L} = \begin{bmatrix} (j-1) & (j-1)(j-2) \\ (j-1)(j-2) & (j-1) \end{bmatrix}$						
	= 15 i + j + 84			$= L_0 + \left[n(j-1) - \frac{2}{2} + (1-j) \right]$						
04. A	ans: (c)		0.0							
Sol: L	ower triangular ma	ıtrix	06.	Ans: (d)						
	(a 0 0	0	501:							
	b c 0	0		Storage:						
		-0		$a_{11} a_{12} a_{21} a_{22} a_{23} a_{32} a_{33} a_{34} a_{43} a_{44}$						
				0 1 2 3 4 3 0 / 0 7 Retrieval:						
~				$\log of A[i, i] = L_i + 2D + 1D$						
R	$MO = L_0 + \text{the nur}$	nber of elements in								
	ace	India's Best Online Coaching Pl	atform for	GATE, ESE, PSUs, SSC-JE, SSC, Banks, Groups & PSC Exams						
		Enjoy a smooth online l	arning experience in various languages at your convenience							

	ACE Engineering Publications	2	CSIT-Postal Coaching Solutions
07. Sol:	$= L_{0} + \text{number of elements in } (i-1) \text{ rows} + (j-j\ell b)$ Row j/b 4 3 3 2 2 1 except 1 st row i th (i-1) loc. of A[i, j] = L_{0} + [(3i-4) + j-(i-1)] = L_{0} + (2i + j - 3) Ans: (a) CMO: Storage: a ₁₁ a ₂₁ a ₁₂ a ₂₂ a ₃₂ a ₂₃ a ₃₃ a ₄₃ a ₃₄ a ₄₄ 0 1 2 3 4 5 6 7 8 9 Retrieval:	2	i.e., i
	Retrieval: loc. of A[i, j] = L ₀ + 2D + 1D = L ₀ + (j-1)cols + (i - ilb) Since i is Varying Col ilb 4 3 3 2 2 1 except 1 st column j th j-1 \therefore loc of A[i, j] = L ₀ + [3(j-1)-1+i-(j-1)] = L ₀ + [2j+i-3]		09. Ans: (a) Sol: A sample 5×5 S-matrix is given below. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$
08. Sol:	Ans: (b) Storage & Retrieval: $a_{21} a_{32} a_{43} a_{11} a_{22} a_{33} a_{44} a_{12} a_{23} a_{34}$ $0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9$ If $i - j = 1$ loc of $A[i, j] = L_0 + 0 + (i - i\ell b)$ or $(j - j\ell b)$		10. Ans: 9 Sol: $2n - 1 = 10 - 1 = 9$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$

 Regular Live Doubt clearing Sessions |
 Free Online Test Series | ASK an expert

 Affordable Fee |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

ace online

ţ.	ACE Engineering Publications	3	Data Structures
11. Sol:	 Ans: 990698 ol: Computing number of elements in frame Before reaching 50th frame we need to 		Chapter Stacks & Queues
	complete 149 frame i.e. total 49 <i>frame</i> . Each frame is consists of 100×100 elements Hence total 49 × $100 \times 100 = 490000$ elements are arranged in <i>frames</i> . Number of elements in Rows In the 49 th row we have already completed to 48 i.e. total 48 rows Each row is consists of 100 elements Hence total 48 × 100 = 4800 elements ar	0 0 1 E R 1/	01. (i). Ans: (a) (ii). Ans: (c) Sol: Given array size m, say 9 Number of stacks n, say 3 $0 \le i < n$ $T[i] = B[i] = i \cdot \left[\frac{m}{n}\right] - 1$ $i = 0 \Rightarrow T[0] = B[0] = 0 \left[\frac{9}{3}\right] - 1 = 0 - 1 = -1$ $i = 1 \Rightarrow T[1] = B[1] = 1 \begin{bmatrix} 9 \\ 3 \end{bmatrix} = 1 = 2, 1 = 2$
	arranged for 49^{th} row. Number of elements in column In the 50^{th} frame and 49^{th} row we have 1 to 49 i.e. 49 elements are already arranged. Total number of element that are arranged i = $490000 + 4800 + 49 = 494849$. Address of $A[50][49][50]$ i $1000 + 494849 \times 2 = 990698$	o s s	$i = 1 \implies T[1] = B[1] = T[\frac{1}{3}] - 1 = 3 - 1 = 2$ $i = 2 \implies T[2] = B[2] = 2\left[\frac{9}{3}\right] - 1 = 2[3] - 1 = 5$ when $i = 3 \implies B[3] = m - 1 = 9 - 1 = 8$ (i) Push = overflow = size $A = \frac{1}{2}$ $B = \frac{1}{-1} \frac{2}{2} \frac{3}{5} \frac{m-1}{8}$
12. Sol:	Ans: 1398 A[20][10] Before reaching 20 th row, number of row completed is 19 Total number of elements in 19 rows	s	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$1 + 2 + 3 + \dots + 19 = \frac{19 \times 20}{2} = 190$ We are at 10 th column, number of element completed is 9 Total number of element completed is 190 - 9 = 199 Address of a[20][10] is = 1000+199×2=1398	.t +	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

A ace online

The sequence of popped out values \Rightarrow 20, 20, 10, 10, 20

Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

Engineering Publications												7	Data Structures				
08. Sol: (i) Ans: 13													09. Sol: Ackerman(m , n) =				
Sol: (i) Ans: 13 13 fib (7) 8 fib (6) fib (6) fib (5) 5 fib (6) fib (6) fib (5) 5 fib (6) fib (4) 3 fib (3) 2 1 fib (3) fib (2) fib (2) fib (1) fib (0) fib (0)						2 3)	1: fib) 3 fib (3 (7) fib 4)	5 (5)		Sol: Ackerman(m, n) = $\begin{cases} n+1 & \text{if } m = 0 \\ Ackerman(m-1,1) & \text{if } n = 0 \\ Ackerman(m-1, Ackerman(m,n-1)) & \text{otherwise} \end{cases}$ (i) Ans: 9 Sol: Ackerman(2, 3) = A(1, A(2, 2)) = A(1, 7) A(2,2) = A(1, A(2,1)) = A(1, 5) = 7 A(2,1) = A(1, A(2,0)) = A(1, 3) = 5 A(2, 0) = A(1,1) = 3 A(1, 1) = A(0, A(1, 0)) = A(0, 2) = 2 + 1 = 3 A(1, 0) = A(0, 1) = 2 A(0, 1) = 1 + 1 = 2 A(1,3) = A(0,A(1, 2)) = A(0, 4) = 4 + 1 = 5 A(1,2) = A(0,A(1, 1)) = A(0, 3) = 3 + 1 = 4 A(1,5) = A(0, A(1, 4))						
Sol:	Numb	er o	ofc	alls	foi	· ev	alua	atin	g				= A(0, A(0, A(1, 3))) $= A(0, A(0, 5))$				
	f(n) =	2 >	<f (1<="" th=""><th>n+1</th><th>)-</th><th>1</th><th></th><th></th><th></th><th></th><th></th><th></th><th colspan="5">= A(0, 6) = 6 + 1 = 7</th></f>	n+1)-	1							= A(0, 6) = 6 + 1 = 7				
	The to	tal	nur	nbe	er o	f ca	lls i	in					A(1, 7) = A(0, A(1, 6))				
	Fibona	acci	i (8)) =	2 f((9) -	- 1						= A(0, A(0, A(1, 5)))				
				=	2 ×	34	- 1	=	68 –	1 =	67		= A(0, A(0, 7))				
													= A(0, 8) = 9				
(iii) Ans: 54													Ackerman(2, 3) = 9				
[n	0	1	2	3	4	5	6	7	8	9	10	(ii) Ans: 13				
	Fib(n)	0	1	-	2	3	5	8	13	21	34	55	Sol: Ackerman $(2, 5) = A(1, A(2, 4))$				
		1	1	2	5	0	5	0	13 //1	21		55	= A(1, A(1, A(2, 3)))				
		1		3	5	У •			41	33			= A(1, A(1, 9))				
	Add:				2	4							A(1, 9) = A(0, A(1, 8))				

Additions =
$$f(n+1) - 1$$

 $f(9) = f(10) - 1 = 55 - 1 = 54$

ace online India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

= A(0, A(0, A(1, 7)))

= A(0, A(0, 9))

= A(0, 10)

= 11

Engineering Publications	8 CSIT-Postal Coaching Solutions
A(1, 11) = A(0, A(1, 10))	12. Ans: (a)
= A(0, A(0, A(1, 9)))	Sol: $a = -b + c * d/e + f \uparrow g \uparrow h - i * j$
= A(0, A(0, 11))	Prefix:
= A(0, 12)	$a = -b + c * d/e + (\uparrow f \uparrow gh) - i * j$
= 13	$a = -b + *cd/e + (\uparrow f\uparrow gh) - i * i$
Ackerman(2, 5) = 13	$a = -b + /*cde + \uparrow f \uparrow gh - *ii$
	$a = \pm \frac{b}{cde} + \frac{f}{dh} = *ii$
(iii) Ans: 4	$a = ++ b/*cde^{f^{a}} b = ij$
Sol: Ackerman $(0, 3) = 4$	a = + + -b/cdc + i + gi = -ij
	$a + + - b/ \cdot cde + 1 + gn \cdot 1j$
(iv) Ans: 5	$\Rightarrow = a - + + - b/* cde + f + gh*_{1j}$
Sol: Ackerman $(3, 0) = A(2, 1)$	13 Ans: (a)
A(2,1) = A(1, A(2, 0))	Sol: Infix expression: $[a+(b\times c)]-(d \wedge (e \wedge f))$
A(2, 0) = A(1, 1)	Destfix expression: [u+(u+u)] (u+(u+u))
A(1, 1) = A(0, A(1, 0))	Postfix expression. abe ~ +dei ///~
A(1, 0) = A(0, 1) = 2	
A(1, 1) = A(0, 1) = 3	14. Ans: (a)
A(2, 0) = 3	
A(2, 1) = A(1, 3)	
A(1, 3) = 5 from (i)	
A(2, 1) = 5	
Ackerman(3, 0) = 5	$1995^{2}^{3}^{3}^{3}^{3}^{3}^{3}^{2}^{3}^{3}^{3}^{3}^{3}^{3}^{3}^{3}^{3}^{3$
	= 8 = 6
10.	\Rightarrow The top two elements are 6, 1
Sol: (a) After N +1 calls we have the first move.	
So after 4 calls we have the first move.	15. Ans: (c)
(b) After total calls -1 calls, we have the	Sol: 10, 5, +, 60, 6, /, *, 8, -
last move.	
(c) Total moves $2^{N} - 1 = 7$	10 10 10 10 10 10 15 15
(d) Total invocations = $2^{N+1} - 1$	
$= 2^4 - 1 = 15$	15
11. Ans: (b)	60
Sol: Postfix expression A B C D + * F /+DE * +	15
Regular Live Doubt	clearing Sessions Free Online Test Series ASK an expert
Affordable Fee Availa	ble 1M 3M 6M 12M 18M and 24 Months Subscription Packages

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

online

ACE Engineering Publications

CSIT-Postal Coaching Solutions

20. Ans: (b)

Sol: The given recursive procedure simply reverses the order of elements in the queue. Because in every invocation the deleted element is stored in 'i' and when the queue becomes empty.

Then the insert () function call will be executed from the very last invoked function call. So, the last deleted element will be inserted first and the procedure goes on.

21. Ans: (a), (b) & (c)

Sol: DCBA is possible push D, pop D, Push C, pop c, push B, pop B, push A, pop A.BCAD is possible push D,C,B pop B Pop C, push A, pop A, pop D

A B C D is possible push D,C,A pop A,B,C,D

CABD is not possible push D, Push C, Pop C, push B, Push A, Pop A, : Last element is B so pop B will happen therefore this sequence is not possible so answer should be (a), (b), (c).

22. Ans: (a)

Sol: The front is the pointer in the queue from where dequeue happens. So we dequeue the element using the front. After dequeuing the front pointer moves by one, hence this is a circular array then we have to take the mod of the array length to again start from the first index after reaching the last index of the array.

Count-- // represents the number of elements is there in the queue. So after dequeuing, we also decrease the count. Return r will return the element value. Option (a) fills all these parameters that is correct.

> ace online

Sol: while (P) or while (P!= Null) while P is pointing to somebody

04. Ans: (d)

Sol: Recursive routine for 'Count'

 Regular Live Doubt clearing Sessions
 |
 Free Online Test Series | ASK an expert

 Affordable Fee
 |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

Engineering Publications	11		Data Structures						
05. Ans: (b)									
Sol: Either causes a null pointer dereference o	r	09.	Ans: (d)						
append list m to the end of list n.		Sol:	Cur. Next = new Node (X, Cur. Next)						
			(i) Struct Node $* n = Get Node ();$						
06. Ans: (b)			(ii) $n \rightarrow data = X$;						
Sol: Before			(iii) $n \rightarrow Next = Cur \rightarrow Next$;						
f			(iv) $Cur \rightarrow Next = n$						
After		10.	Ans: (a)						
$b \rightarrow a$		Sol:	Linked stack push () = insert front ()						
$f \int r \gamma q$			Initial Do()						
Logic			NULL						
a b c			f J						
	ç		Do(a)						
07. Ans: (b)									
Sol: This is recursive routine for reversing a	a								
SLL.	C		TINE						
08. Ans: (a)									
Sol: Before		Sol:	Operation Left most Right most Middle						
$p \rightarrow a \rightarrow b \rightarrow c$			Insert 3 3 4						
			Delete 1 1 2						
$q \rightarrow v \rightarrow w \rightarrow x \rightarrow y \rightarrow z$									
After		12. Ans: (b)							
		Sol: Inserts to the left of middle node in do							
			linked list.						
f The second sec	-								
concatenation of two single linked lists by									
choosing alternative nodes.									

A ace online

13. Ans: (a)

Sol: Before reverse:

14. Ans: (c)
Sol: In the doubly linked list, the maximum pointers will change if we insert them in the intermediate of the linked list. If we insert the element then we have to change the next and previous of inserting node. Next of the previous node and previous of

15. Ans: (b)

the next node.

Sol: For counting the number of nodes we have to move the temp pointer.

while(temp!=NULL)//The last node next stores the NULL

If we take the while(temp \rightarrow next!=NULL) the last node will not be counted here.

01. Ans: (d)

- Sol: 1. Traverse the left subtree in postorder.
 - 2. Traverse the right subtree in postorder.
 - 3. Process the root node

02. Ans: (c)

2. Traverse the left subtree in postorder.
 3. Process the root node

03. Ans: (c)

Sol:

Since

A ace online

 Regular Live Doubt clearing Sessions
 |
 Free Online Test Series | ASK an expert

 Affordable Fee
 |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

A ace online

Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

	Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert
l online	Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages

A ace online

India's

A ace India's

Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

Engineering Publications	23					Da	ta Struo	ctures
04. Ans: (b) Sol: Hash function h(x) = (3x + 4) % 7 h(1) = (3+4) % 7 = 0 h(3) = (9 + 4) % 7 = 6 h(8) = (24 + 4) % 7 = 0 h(10) = (30 + 4) % 7 = 6 Assume Linear probing for collision resolution The table will be like $\underbrace{1}_{0} \underbrace{8}_{1} \underbrace{10}_{2} \underbrace{3}_{3} \underbrace{4}_{5} \underbrace{5}_{6} \underbrace{\frac{3}{6}}_{6}$ 05. Ans: (d) Sol: After inserting all keys, the hash table is $\underbrace{Key \ 43 \ 36 \ 92 \ 87 \ 11 \ 4 \ 71 \ 13 \ 14}_{1}$ $Loc \ 10 \ 3 \ 4 \ 10 \ 0 \ 4 \ 5 \ 2 \ 3}$		07. Sol: NG 08. Sol:	check from table 1 Ans: (0 1 2 3 4 5 6 7 8 9 Ans: (2 3 4 5 6 7 8 9	the next the last ocation (c) \times A (c) $(c$	$\begin{array}{c} \text{xt locat} \\ \text{if nece} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Da tion. We locatio essary. \checkmark C 42 23 34 52 46 33	ta Struc e wrap n to th × D 42 23 23 23 34 46 52	around ne first
0 1 2 3 4 5 6 7 8 9	10	42	V <mark>ariab</mark> l	le part	34	Fi 52	xed par 46	•t 33
87 11 13 36 92 4 71 14	43	42	34	1 2	23	52	46	33
Last element is stored at the position 7		23	42	2 3	34	52	46	33
06. Ans: (c)		23	34	4 4	12	52	46	33
Sol: Resultant hash table.		34	42	2 2	23	52	46	33
In linear probing, we search hash table sequentially starting from the original location. If a location is occupied, we		34	23 3! = 6	3 2	12	52	46	33

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

A ace online

Case (II): To store 33

Since 46 is not getting collided with any other key, it can be moved to the variable part.

Case (I) & Case (II) are mutually exclusive

Case (I) + Case (II) = 24 + 6 = 30

Total 30 different insertion sequences.

- 09. Ans: (a), (b) & (c)
- Sol: Hash table: There is no restriction of depletion, any item can be deleted Priority Queue: It works on the priority and if the priority of 1 is higher then it may be deleted first.

Search tree: There is no restriction on deletion, any item can be deleted from the search tree.

Queue: Queue follows FIFO, in the queue the first item should be deleted first which is 6.

24