GATE I PSUs

COMPUTER ORGANIZATION

Text Book:

Theory with worked out Examples and Practice Questions

Computer Organization

(Solutions for Text Book Practice Questions)

Chapter
1

Computer Arithmetic

1. Ans: (b)

Sol: $\begin{array}{lllllllll}128 & 64 & 32 & 16 & 8 & 4 & 2 & 1\end{array}$
$\begin{array}{llllllll}1 & 1 & 0 & 0 & 0 & 1 & 1 & 1\end{array}$ $\begin{array}{llllllll}0 & -1 & 0 & 0 & +1 & 0 & 0-1\end{array}$
02. Ans: (d)

Sol: Sign extension is used for converting smaller size signed data to larger size by padding the sign bit to left.
03. Ans: (a)

Sol:

$$
\underbrace{1111}_{\begin{array}{c}
\text { Guard } \\
\text { bits }
\end{array}} \underbrace{1000}_{\mathrm{C}} \underbrace{0011}_{3} \underbrace{1101}_{\mathrm{D}} \underbrace{1000}_{8}
$$

4. Ans: (d)

Sol: In non normalized form, 0.239×2^{13} is
$0.00111101_{2} \times 2^{13}$
$e=13, b=64$, so $E=77=1001101$
$\mathrm{M}=00111101$
$0100110100111101=4 \mathrm{D} 3 \mathrm{D}$

05. Ans: (d)

Sol: Implicit Normalized form is $1.11101 \times 2{ }^{10}$
$M=11101000, e=10 \quad b=64$
$\mathrm{E}=74=1001010$
$\mathrm{S}_{\mathrm{S}}^{01001010} \underbrace{00}_{\mathrm{E}} \underbrace{1101000=}_{\mathrm{M}} 4 \mathrm{AE} 8$
06. Ans: (b)

Sol: Refer gate PYQ book
07. Ans: (d)

Sol: Refer gate PYQ book
08. Ans: (a)

Sol: Refer gate PYQ book
09. Ans: (b) \& (c)

Sol: All 32 bit ' 0 's represent +0 but not ± 0; Option ' a ' is false but ' b ' is True, Option ' c ' is True because it is used to represent ± 0, $\pm \infty$ and NAN.

10. Ans: (b)

Sol: Refer gate PYQ book

	2	SIT-Postal Coaching Solutions

Chapter
2

Memory Organization

Memory Basics

1. Ans: (d)

Sol: A memory has 16 bit Address i.e. it's
Starting Address $=0000 \mathrm{H}$
Ending Address $=$ FFFFH
\therefore Maximum number of memory locations it can address is $2^{16}=64 \mathrm{~K}$

$$
\begin{aligned}
& =64 \times 1024 \\
& =65536 .
\end{aligned}
$$

02. Ans: (d)

Sol: Number of memory locations \times size of one location.

03. Ans: (c)

Sol: DRAM needs refresh logic Circuit to avoid the discharge of capacitor but capacitor is not needed in SRAM.

04. Ans: (b)

Sol: $2048 \times 8=2^{11} \times 8$
\therefore Number of Address lines $=11$
05. Ans: (a)

Sol: Number of chips needed

$$
\begin{aligned}
& =\frac{\text { Target size }}{\text { Basic size }} \\
& =\frac{64 \times 8}{16 \times 4} \\
& =8
\end{aligned}
$$

6. Ans: (c)

Sol: $\mathrm{T}=200 \mathrm{~ns}$
\therefore word frequency

$$
=\frac{1}{200 \times 10^{-9}}=5 \times 10^{6} \mathrm{words} / \mathrm{sec}
$$

7. Ans: (a)

Sol: ROM is used for function table with large size because after program; ROM content is not possible to destroy and design cost is cheap.
08. Ans: (c)

Sol: Remain same because it is non-volatile memory
09. Ans: (d)

Sol: 16 * 16 * 8 bits $=2 \mathrm{~K}$ bits
10. Ans: (d)

Sol: Address size is 16 bit and data size is also 16 bit so memory space $=2^{16} \times 16=64 \mathrm{~K} \times 16$.

Cache Concept

1. Ans: (c)

Sol: Memory size $=4 \mathrm{~K} \times 16=2^{12} \times 16$
\therefore Number of Address lines $=12$
Data lines $=16$
02. Ans: 31

Sol: Word size = 16 bit,
So memory size $=2^{31}$ words $=2^{32}$ bytes

$$
=4 \mathrm{~GB}
$$

$\therefore 31$ address bits are needed.

03. Ans: 14

Sol: $\mathrm{HC}+(1-\mathrm{H}) \mathrm{M}=(0.8 \times 5)+(0.2 \times 50)$

$$
=14 \mathrm{~ns}
$$

04. Ans: (b)

Sol: Number of cache blocks $=2 \mathrm{c}$

$$
\text { Associativity }=2
$$

Mapping expression is $\mathrm{k} \bmod \mathrm{S}$
Where, $\mathrm{k}=\mathrm{M} . \mathrm{M}$ block Number and
S = Number of cache sets
Number of Cache sets

$$
\begin{aligned}
& =\frac{\text { Number of cache blocks }}{\text { Associativity }} \\
& =\frac{2 \mathrm{c}}{2}=\mathrm{c}
\end{aligned}
$$

$\therefore \mathrm{k} \bmod \mathrm{c}$

05. Ans: (b)

Sol: Physical Address formats for the given Block number and Tag number 6 are
Tag Block word word Ranges

10	00	xxxx $\rightarrow 128$ to 147
10	01	xxxx $\rightarrow 144$ to 159
00	10	xxxx $\rightarrow 32$ to 47
01	11	xxxx $\rightarrow 112$ to 127
128	64	3216
8421		

$\therefore 150$ and 132 are available

06. Ans: (c)

Sol: The cache and main memory are divided into blocks of 64 bytes each. The direct mapped cache consists of 32 blocks (mod block $\mathrm{i} / 32$). The array is stored from main
memory locations 1100 H . The array is placed in MM from 68 Block onwards. The total array consists of 2500 bytes, so they require a total of 40 blocks. In the cache all the 32 blocks are filled and the remaining 8 blocks are replacing the previous blocks. A total of 40 data misses will occur during first access. During the second access once again the 16 blocks are replaced for conflict misses, so 16 cache misses occur.
Total numbers of cache misses

$$
=40+16=56
$$

7. Ans: (a)

Sol: The lines 4 to 11 gets conflict misses frequently.
08. Ans: (a)

Sol:
Tag Line offset Word offset

1110	001000000001	1111

$\mathrm{Tag}=\mathrm{E}_{16} \quad$ line $=201_{16}$
09. Ans: (d)

Sol: Direct-Mapping
Total Blocks $=256$
Number of Tag bits $=19$
Tag Directory size $=(19+1+1) \times 256$

$$
=5376
$$

10. Ans: 20

Sol: \quad Associativity $=4$
Cache Size $=16 \mathrm{~KB}$
Block size $=8$ words $=32$ bytes
Word size $=32$ bits
\therefore Number of cache blocks

$$
=\frac{16 \mathrm{~KB}}{32 \mathrm{~B}}=\frac{2^{14} \mathrm{~B}}{2^{5} \mathrm{~B}}=2^{9}
$$

\therefore Number of cache sets $=\frac{2^{9}}{2^{2}}=2^{7}$
\therefore Block size $=8 \times 4$ Bytes $=32 B=2^{5} B$

Physical Address size $=32$ bits

Physical Address format:

20	7	5
Tag Offset	Set Offset	Byte Offset
\longleftrightarrow		

Number of cache sets $=\frac{2^{14}}{4}=2^{12}$

13. Ans: (c)

Sol: Number of tag comparators needed

$$
=\text { Associativity }=4
$$

Size of each comparator

$$
=\text { number of tag bits }=16
$$

14. Ans: (d)

Sol: If associativity is doubled, then number of tag bits will be increased and set offset size is reduced and size of MUX is directly proportional to associativity only Physical address size and Data bus size are not altered.
15. Ans: (c)

Sol: Number of cache blocks $=\frac{256 \mathrm{~KB}}{32 \mathrm{~B}}=2^{13}$
Associativity $=4$
Number of Sets $=\frac{2^{13}}{4}=2^{11}$
\therefore Tag size $=32-11-5=16$.
16. Ans: (a)

Sol: Number of blocks $=256 \mathrm{~KB} / 32 \mathrm{~B}=8 \mathrm{~K}$
Number of Sets with 4-way set-associative

$$
=8 \mathrm{~K} / 4=2 \mathrm{~K}
$$

$8 \mathrm{~K}(16+1+2+1)$-bits $=160 \mathrm{Kbits}$

$$
=2^{14}=16 \mathrm{~K}
$$

11. Ans: (b)

Sol:

\therefore Number of tag bits $=6$
12. Ans: (a)

Sol: Physical Address $=32$ bits
Cache size $=256 \mathrm{~KB}=2^{18} \mathrm{~B}$
Associativity $=4$
Block size $=16 \mathrm{~B}$
Number of cache blocks $=2{ }^{18} \mathrm{~B} / 2^{4} \mathrm{~B}$
17. Ans: (d)

Sol: The cache consists of 4 sets with each set consists of 4 blocks.

Set 0 contains the blocks with \mid main memory block / $4 \mid=0$
Set 1 contains the blocks with \mid main memory block / 4 $\mid=1$
Set 2 contains the blocks with \mid main memory block / $4 \mid=2$
Set 3 contains the blocks with \mid main memory block / $4 \mid=3$
Set 0: $0,4,8,246,48,32,92$
Set 1: 1, 129, 73
Set 2:
Set 3: 255, 3, 159, 63, 155
So 216 will not be in cache if LRU is used.

18. Ans: (b)

Sol: Cache accepts only 8 blocks and it uses LRU.
$\mathrm{H}=$ Hit, $\mathrm{M}=$ Miss Block arrival Address

0	*	45
1	$\underline{ }$	2
2	2	
3	8	
4	19	3
5	¢	7
6	1	
7	35	

Cache Block number 5 consists 7
19. Ans: (c)

Sol: All blocks are mapped to set 0 only, but each set permits only 2 blocks

Total Number of misses $=4$
$\begin{array}{lllll}8 & 12 & 0 & 12 & 8\end{array}$
$\begin{array}{lllll}\mathrm{M} & \mathrm{M} & \mathrm{M} & \mathrm{H} & \mathrm{M}\end{array}$
20. Ans: 24

Sol:

It uses 8 way set associative
\therefore Tag size $=24$ bits.

21. Ans: (b)

Sol: Number of bits required for addressing a byte in physical memory $=\mathrm{P}$

Number of bits required for addressing a byte in cache $=\mathrm{N}$
In Direct Map, Tag field size $=\mathrm{P}-\mathrm{N}$
In K-way Block Set Associative mapping,
Tag field size $=(\mathrm{P}-\mathrm{N})+\log _{2} \mathrm{~K}$
22. Ans: 76

Sol: When a block is referred first time in cache memory, it is known as compulsory miss and it will be loaded in the cache memory, when a same block is referred in future i.e. $2^{\text {nd }}$ time onwards; then it is considered as conflict miss.

For first iteration, 4 conflict misses and for each iteration from $2^{\text {nd }}$ time onwards 8 conflict misses occur.
Total number of conflict misses occur for 10 times $=4+(8 \times 9)=76$.

Conflict misses in first iteration

$0,128,256,128,(0), 128,(256), 128,1$,
129, 257, 129, (1), 129, (257), 129.
Total 4 times

Conflict misses in second time iteration

(0), 128, (256), 128, (0), 128, (256), 128, (1), 129, (257), 129, (1), 129, (257), 129, Total 8 times

23. Ans: (a)

Sol: First cache organization: 32 KB with 2-way set associative cache.
The size of address $=32$ bits.

Tag (18-bits)	Set offset (9-bits)	Word offset (5-bits)

Multiplexer latency $=0.6 \mathrm{~ns}$ and k -bit comparator latency is $(\mathrm{K} / 10) \mathrm{ns}$
The hit latency of this cache $=0.6+(18 / 10)$

$$
=2.4 \mathrm{~ns} .
$$

24. Ans: (d)

Sol: Second cache organization: 32 KB with direct mapped cache.
The size of address $=32$ bits.

Tag (17-bits)	Set offset (10-bits)	Word offset (5-bits)

Only one TAG comparator \& no multiplexer The hit latency of this cache $=(17 / 10)$

$$
=1.7 \mathrm{~ns}
$$

25. Ans: (a), (b) \& (c)

Sol: Option (d) is false because Associative memory is costliest memory, hence it is used to design Tag memory in cache design but not for Main memory design.
26. Ans: 1.68

Sol: Time taken for fetching instructions to execute:
$90 \times 1 \mathrm{~ns}+10 \times 5 \mathrm{~ns}=140 \mathrm{~ns}$

Time taken by executing instructions: For memory operand read operations.

$$
\begin{aligned}
& =\text { hit }+\operatorname{miss}=54 \times 1 \mathrm{~ns}+6 \times 5 \mathrm{~ns} \\
& =54 \mathrm{~ns}+30 \mathrm{~ns}=84 \mathrm{~ns}
\end{aligned}
$$

For memory operand write operation

$$
\begin{aligned}
=\text { hit }+ \text { miss } & =36 \times 2 \mathrm{~ns}+4 \times 10 \mathrm{~ns} \\
& =72 \mathrm{~ns}+40 \mathrm{~ns} \\
& =112 \mathrm{~ns}
\end{aligned}
$$

Total time taken for 100 instructions $(140+84+112) \mathrm{ns}=336 \mathrm{~ns}$
Total number of memory references for fetching the instructions and operand read, write operations $=100+60+40=200$
The average access time is

$$
=\frac{336}{200} \mathrm{~ns}=1.68 \mathrm{~ns}
$$

27. Ans: 0.85

Sol: Refer gate PYQ book

28. Ans: 160

Sol: cache size $=8$ words
word size $=4 \mathrm{~B}$
cache size $=8 * 4 B=32 B$
Memory clock rate $=60-\mathrm{MHz}$
Memory cycle time $=\frac{1}{60 M H z}$

$$
=\frac{1}{60 * 10^{6}} \sec \text { onds }
$$

No. of cycles needed to transfer 1 block (8 words)
$\Rightarrow \quad 1$ cycle for address
+3 cycles to fetch 8 words
$+8 * 1=8$ cycles to transmit
$\Rightarrow 12$ - cycles
Time required to access and transfer 8 words
$(32 B)$ from memory $=12 \times \frac{1}{60 \times 10^{6}}$ sec onds

$$
=\frac{1}{5 \times 10^{6}} \sec \text { onds }
$$

$\operatorname{In} \frac{1}{5 \times 10^{6}}$ secondamountof dataaccessed $=32$ bytes
In 1 second amount of data accessed
$=\frac{32 \mathrm{~B}}{\frac{1}{5 \times 10^{6}} \sec \text { onds }}$
$=32 \times 5 \times 10^{6}$ Bytes $/$ second
$=160 \times 10^{6}$ Bytes $/$ second
29. Ans: (a)

Sol: Word size $=32$-bits $=4$ Bytes

Main memory size $=16 \mathrm{MB}=16 \mathrm{M} \times 1 \mathrm{~B}=$ $2^{24} \times 1 \mathrm{~B}$

Main memory address $=24$-bits
Cache size $=64 \mathrm{~kb}$
Block size $=256$ Bytes $=2^{8}$ Bytes \Rightarrow Byte offset

$$
=8 \text {-bits }
$$

Number of blocks in cache $=\frac{64 \mathrm{~kb}}{256 \mathrm{~B}}=256$
Number of sets in cache $=\frac{256}{4}=64=2^{6}$
\Rightarrow set offset $=6$-bits
In set associative mapping, main memory address is divided into 3 fields as follows:

$\mathrm{A} 4=0 \times 5 \mathrm{E} 4880=$	0101111001	001000	10000000

A1 and A4 maps to same set
A2 and A3 maps to same set

30. Ans: 59 to 60

Sol: Number of rows in a chip $=2^{14}=16384$
One refresh time $=50 \times 10^{-9} \mathrm{sec}$
Chip refresh time $=16384 \times 50 \times 10^{-9} \mathrm{sec}$

$$
\begin{aligned}
& =819200 \times 10^{-9} \mathrm{sec} \\
& =0.8192 \mathrm{msec}
\end{aligned}
$$

Given refresh period $=2 \mathrm{msec}$
Amount of time required for $\mathrm{RD} / \mathrm{WR}$ operation

$$
\begin{aligned}
& =2-0.8192 \\
& =1.1808 \mathrm{msec}
\end{aligned}
$$

Amount of time used for RD/WR operation in percentage

$$
=\frac{1.1808 \mathrm{msec}}{2 \mathrm{msec}} \times 100=59.04
$$

\therefore Closest integer value $=59$

31. Ans: (a)

Sol: Based on given system design A_{13} and A_{12} should be 0 (zero) ;
$\mathrm{A}_{15} \mathrm{~A}_{14}$ and A_{11} should be ' 1 ' (one); to enable chip select (CS).

Hence, address range will differ for address bits A_{10} to A_{0}.

32. Ans: (d)

Sol: Cache size $=16 \mathrm{~KB}$
Block Size $=16 B=2^{4} B \Rightarrow$ Block offset $=4$ - bits

Main memory address $=32$ - bits
In fully associative cache main memory address format

Main Memory address

$$
32-(4)=28-\text { bits }
$$

In fully associative cache, there is no any index.

Hence,

$$
\begin{aligned}
& \mathrm{Tag}=28 \mathrm{bits} \\
& \text { Index }=0 \mathrm{bits}
\end{aligned}
$$

33. Ans: (a), (b) \& (d)

Sol: Refer gate PYQ book
34. Ans: (c)

Sol: Refer gate PYQ book

Chapter
3

Secondary Memories

1. Ans: $(P=12.5),(Q=2500000)$

Sol: $T=200, R P M=2400, R P S=40$
Track capacity $=62500$ bits
One revolution time is 25 ms
\therefore Average latency time $=12.5 \mathrm{~ms}$
$\therefore \mathrm{P}=12.5 \mathrm{~ms}$
$\mathrm{Q}=$ Data Transfer rate $=$ no. of bits $/ \mathrm{sec}$.
In one second it can complete 40 tracks.
$\therefore \mathrm{Q}=40 \times 62500$ bits $/ \mathrm{sec}$ $=2500000 \mathrm{bits} / \mathrm{sec}$
02. Ans: (b)

Sol: Given seek time $=10 \mathrm{~ms}$
$R P M=6000, R P S=100$.
One revolution takes 10 ms
\therefore Average rotational Delay $=5 \mathrm{~ms}$
Transfer delay is neglected.
$\mathrm{T}_{\text {access }} /$ one library $=\mathrm{t}_{\text {seek }}+\mathrm{t}_{\text {rotational }}+\mathrm{t}_{\text {transfer }}$

$$
\begin{aligned}
& =10 \mathrm{~ms}+5 \mathrm{~ms}+0 \\
& =15 \mathrm{~ms}
\end{aligned}
$$

So, for 100 libraries loading;
it takes $(15 \mathrm{~ms} \times 100)=1500 \mathrm{~ms}$

$$
=1.5 \mathrm{sec}
$$

03. Ans: 14020

Sol: Seek time $=4$ milli seconds per each sector Reading
$R P M=10000$ i.e.,
1 Track rotation time $=6 \mathrm{~ms}$
\therefore Average rotational delay is 3 ms .
One Track has 600 sectors.
So, one sector transfer time is

$$
\frac{6 \mathrm{~ms}}{600}=0.01 \mathrm{~ms}
$$

\therefore One sector Access time $=0.01+4+3$

$$
=7.01 \mathrm{~ms}
$$

So, 2000 sectors time $=2000 \times 7.01$

$$
=14,020 \mathrm{~ms}
$$

4. Ans: 6.1

Sol: Transfer rate $=50 \times 10^{6}$ Bytes $/ \mathrm{sec}$
So, 0.5 KB takes 0.1 ms
$R P M=15000 ; R P S=250$
1 rotation takes 4 milliseconds
Average rotational delay is 2 ms ;
Seek time is 4 ms
\therefore Average time $=$ transfer time + seek time

+ rotational delay

$$
=0.1 \mathrm{~ms}+4 \mathrm{~ms}+2 \mathrm{~ms}
$$

$$
=6.1 \mathrm{~ms}
$$

5. Ans: (c)

Sol: The address $(400,16,29)$ corresponds to the Sector number
$=($ cylinder number \times number of sectors/cylinder $)$

+ (surface number \times number of sectors/track)
+ Present sector number
$=(400 \times 20 \times 63)+(16 \times 63)+29$
$=505037$

6. Ans: (c)

Sol: $\frac{1039}{63 \times 20}: 0^{\text {th }}$ cylinder
$\frac{1039}{63}: 16^{\text {th }}$ surface and remainder gives
sector number: $31(0,16,31)$
07. Ans: (d)

Sol: Size of the data to be transferred $=42,797 \mathrm{~KB}$
One sector capacity $=512 \mathrm{~B}$
\therefore Number of Sectors to store 42797 KB

$$
=\frac{42797 \times 1024}{512}=85,594
$$

One cylinder has $64 \times 16=1024$ sectors
83 cylinders can store 83×1024

$$
=84,992 \text { sectors }
$$

\therefore Remaining number of sectors $=602$
602 sectors occupy more than half of one cylinder capacity

But the given cylinder has started with $<1200,9,40>$ means more than half of that cylinder, so next cylinder is also needed for storing complete data.
\therefore Last cylinder number

$$
\begin{aligned}
& =1200+83+\text { next one } \\
& =1284
\end{aligned}
$$

8. Ans: (a), (b) \& (d)

Sol: Option (c) is false because DVD memory is cheaper than flash memory

Chapter

4

CPU Organization

1. Ans: (c)

Sol: Stack works on LIFO.
02. Ans: (d)

Sol: R1 \rightarrow M [100]
$\mathrm{M}[100] \rightarrow \mathrm{R} 2$
$\mathrm{M}[100] \rightarrow \mathrm{R} 3$
The above instructions are used for transferring R_{1} content to R_{2} and R_{3} through memory address 100 .
So, option (d) is correct.
03. Ans: (a)

Sol: Address field in the instruction is used to specify Memory Address or One of the processor Register Address.
For example to specify R_{5} in a processor which is having 16 bit Register from R_{0} to R_{15}, it's Address field is '0101' and for implied Register; no address is specified in the instruction.
04. Ans: (d)

Sol: Max one address instruction $=2^{6}=64$
But number of one address instructions used

$$
=32 \text {. }
$$

Max Number of zero address instructions

$$
=32 \times 128=4096
$$

5. Ans: (c)

Sol: If 63 one address instructions are used then Number of zero address instructions

$$
=(64-63) \times 128=128
$$

6. Ans: (d)

Sol: Max. number of two address instructions $=$ 2^{4}.

When it uses only ' n ', two address instructions then remaining $\left(2^{4}-n\right)$ with ' 6 ' bit combinations are used for one address instructions.
\therefore Max. number of one address instructions:

$$
\left(2^{4}-n\right) \times 2^{6}
$$

07. Ans: 14

Sol: Number of registers $=64$
Register name size $=\log _{2} 64=6$-bits
Type R-Instruction:

16				Register	Register
Opcode					
6					

4-bits
Max R-type instructions $=2^{4}$
Assume used R-type instruction $=n$ unused opcode $=2^{4}-n$

Max I-type instructions $=\left(2^{4}-\mathrm{n}\right)^{*} 2^{2}$

$$
\begin{aligned}
& =8(\text { given } 8) \\
& =2^{4}-\mathrm{n}=2 \\
\mathrm{n} & =14
\end{aligned}
$$

08. Ans: 16

Sol:

$\log _{2} 40 \quad \log _{2} 24 \quad \log _{2} 24$
65

XXX
$\therefore 32-16=16$
09. Ans: 16383

Sol: Word size $=32$ bit
Number of CPU Registers $=64=2^{6}$
So, for addressing a Register 6 bits are needed.

Instruction Opcode size is 32 -bits.
Number of supporting Instructions $=45$, so minimum 6 bits are needed.

Instruction is having with operation part, Reg1, Reg2 and Immediate operand

6	6	6	14
Operation	R_{1}	R_{2}	Immediate Operand

The Range of unsigned operand with 14-bit is 0 to $2^{14}-1$
\therefore Max unsigned integer is 16383 .
10. Ans: 500

Sol: One instruction needs 34 bits,
So number of bytes needed $=5$
Program size $=100$
\therefore Size of the memory in bytes $=500$
ace
online

11. Ans: (b)

Sol: Relative Addressing mode is used to relocate the program from one memory segment to other segment-without-change in code so, it is known as Position Independence Addressing mode.
12. Ans: (c)

13. Ans: (b)

Sol: In instruction execution cycle, to get the first operand through index addressing mode it takes one machine cycle. To get the second operand through indirect addressing mode B , it takes two more machine cycles because B is the address.
After the addition is completed the result is needed to send to the destination by using the index addressing mode, which requires one more machine cycle.
So a total of four machine cycles are required to execute the above instruction. (Except fetch cycle)

14. Ans: (d)

Sol: Here R2 will act as base or indexed register and 20 is the displacement.
15. Ans: $\mathbf{- 1 6}$

Sol: While executing the $\mathrm{i}+3$ instruction, the PC content will be the starting address of the $\mathrm{i}+4$. If the target of the branch instruction is ' i ' then processor takes 4 instructions addresses back (Backward jump)
Hence the displacement value is $-4 * 4=-16$, because each instruction opcode size is 4 bytes.
16. Ans: (b)

Sol: Absolute Addressing Mode is also known as memory direct Addressing Mode.
17. Ans: (a)

Sol: After issuing an interrupt, while processing L is under execution.

Processor follows the below steps:
Step 1: Completion of current instruction execution
Step 2: Pushes the result of the current instruction status on stack
Step 3: Gets the new address to PC for starting ISR and executes the ISR.
Step 4: Pops the status from stack to continue the interrupted instruction.
18. Ans: (d)

Sol: - Stack grows upword means SP is incremented for PUSH operation and decremented for POP operation.

- One Memory location can store only one word (i.e., one byte)
- After 'CALL' execution; to store PC and PSW content; SP is incremented by '4'
$016 \mathrm{E}_{16}+4=(0172)_{\mathrm{H}}$

19. Ans: (b)

Sol: The Value in register A is rotated through right 8 times. During each rotation operation, if carry flag is set the value of register B is incremented. After 8 rotations B register contains the number of 1 's in register A.
20. Ans: (a)

Sol: Extending the previous question, if the contents of register A is rotated right once again, and then register A will retain its value. Therefore the instruction at X will be RRC A, \#1.

21. Ans: (d)

Sol: The given program is:

Let the data at memory 3000 is 10 .
The contents of R3 are 2000.
The content of memory locations from 2000 to 2010 is 100 .

The number of memory references for accessing the data is

Instruction	Operation	No.of memory references
MOV R1(3000)	$\mathrm{R} 1 \leftarrow \mathrm{M}[3000]$	1
MOV R2, (R3)	$\mathrm{R} 2 \leftarrow \mathrm{M}[\mathrm{R} 3]$	10 (loop is repeated 10 times)
MOV (R3), R2	$\mathrm{M}[\mathrm{R} 3] \leftarrow \mathrm{R} 2$	10 (loop is repeated 10 times)

Total number of memory references are: 21

22. Ans: (a)

Sol: As the memory locations are incremented 10 times from 2000 to 2009 , when the loop is terminated R3 consists of 2010 , whose value will be 100 (previous value) only.

23. Ans: (c)

Sol: The program is loaded from memory location 1000 onwards. The word size is 32 bits and the memory is byte addressable.

Address	Instruction		Word size
1995			
$1000 \text { to } 1007$	MOV R1, (3000)	$\begin{gathered} \mathrm{R} 1 \leftarrow \mathrm{M}[300 \\ 0] \end{gathered}$	2
1008 to 1011	LOOP: MOV R2, (R3)	$\mathrm{R} 2 \leftarrow \mathrm{M}[\mathrm{R} 3]$	1
1012 to 1015	ADD R2, R1	$\mathrm{R} 2 \leftarrow \mathrm{R} 2+\mathrm{R} 1$	1
1016 to 1019	$\operatorname{MOV}(\mathrm{R} 3), \mathrm{R} 2$	$\mathrm{M}[\mathrm{R} 3] \leftarrow \mathrm{R} 2$	1
1020 to 1023	INC R3	$\mathrm{R} 3 \leftarrow \mathrm{R} 3+1$	1
1024 to 1027	DEC R1	$\mathrm{R} 1 \leftarrow \mathrm{R} 1-1$	1
		Branch on	
1028to 1035	BNZ LOOP	not	2
		zero	
1036 to 1039	HALT	Stop	1

If the interrupt occurs at INC R3 instruction, then first the instruction is executed and the program counter consists of 1024, which is stored in stack.
24. Ans: (a), (c) \& (d)

Sol: Option (b) is false because in PC relative Addressing Mode; the Effective address is placed in PC after computation.
25. Ans: (b)

Sol: Refer gate PYQ book

26. Ans: (d)

Sol: To execute interrupt cycle, the present content of PC will be pushed to stack with the help of MBR and MAR before placing ISR address in PC. (Always only MAR and MBR are used to address Memory in basic computer).

Chapter

5

Pipeline Organization

1. Ans: (c)

Sol: Max. stage delay $=160 \mathrm{~ns}$
Buffer delay $=5 \mathrm{~ns}$
Pipeline clock $=165 \mathrm{~ns}$
$\mathrm{T}_{1000}=(\mathrm{K}+\mathrm{n}-1) \mathrm{T}_{\mathrm{p}}$ clock
$=(4+999) * 165=\left(\frac{165495}{1000}\right) \mu \mathrm{s}$
$=165.5 \mu \mathrm{~s}$
02. Ans: (b)

Sol: For D_{1} processor, maximum $\mathrm{T}_{\text {seg }}=4 \mathrm{~ns}$,
$\mathrm{n}=100, \mathrm{k}=5$
Time $=104 \times 4 \mathrm{~ns}=416 \mathrm{~ns}$
For D_{2} processor,
$\mathrm{n}=100, \mathrm{k}=8, \mathrm{~T}_{\text {seg }}=2 \mathrm{~ns}$
Time $=107 \times 2 \mathrm{~ns}=214 \mathrm{~ns}$
Hence, 202 ns time will be saved
03. Ans: (b)

Sol: $\mathrm{t}_{\mathrm{n}}=12 \mathrm{~ns}$, maximum $\mathrm{T}_{\mathrm{seg}}=6 \mathrm{~ns}$
$\therefore \mathrm{S}=\mathrm{t}_{\mathrm{n}} / \mathrm{t}_{\mathrm{p}}=2$
04. Ans: 1.51

Sol: For Naive pipelined CPU

$\mathrm{K}=5, \mathrm{~T}_{\mathrm{seg}}=20+2=22 \mathrm{~ns}, \mathrm{n}=20$.
Total time needed for 20 instructions

$$
\begin{aligned}
=(5+20-1) \times 22 \mathrm{~ns} & =24 \times 22 \mathrm{~ns} \\
& =528 \mathrm{~ns}
\end{aligned}
$$

For Efficient pipelined processor
$\mathrm{T}_{\text {seg }}=12+2=14 \mathrm{~ns} ; \mathrm{k}=6, \mathrm{n}=20$
Total time for 20 instructions
$(6+20-1) \times 14 \mathrm{~ns}=350 \mathrm{~ns}$.

$$
\begin{aligned}
\text { Speed up }=\frac{\mathrm{t}_{\mathrm{n}}}{\mathrm{t}_{\mathrm{e}}} & =\frac{528}{350} \\
& =1.50857 \\
& \cong 1.51
\end{aligned}
$$

5. Ans: (c)

Sol: $\mathrm{f} \alpha \mathrm{1} / \mathrm{T}$

Minimum clock time gives highest clock frequency for the given pipelined processor.

For P1 Largest clock time is 2 ns .
For P2 Largest clock time is 1.5 ns .
For P3 Largest clock time is 1 ns .
For P4 Largest clock time is 1.1 ns .
So, P3 gives highest peak clock frequency.
06. Ans: (c)

Sol: Efficiency $=\frac{\mathrm{S}}{\mathrm{K}}$
Where $\mathrm{S}=$ speed up, $\mathrm{K}=$ number of stages
$K=\frac{S}{\text { efficiency }}$

$$
=\frac{6.6}{.88}=7.5
$$

So, minimum 8 stages are needed

07. Ans: 3.2

Sol: Non-pipeline CPU frequency $=2.5 \mathrm{GHz}$

$$
\mathrm{T}=0.4 \mathrm{~ns}
$$

\therefore One instruction time $=4 \times 0.4 \mathrm{~ns}$

$$
\mathrm{t}_{\mathrm{n}}=1.6 \mathrm{~ns}
$$

Pipeline CPU frequency $=2 \mathrm{GHz}$
$\therefore \mathrm{T}=0.5 \mathrm{~ns}=\mathrm{t}_{\mathrm{p}}$
Only one clock cycle time is sufficient to execute one instruction.

$$
\begin{aligned}
S & =\frac{t_{\mathrm{n}}}{\mathrm{t}_{\mathrm{p}}} \\
& =\frac{1.6 \mathrm{~ns}}{0.5 \mathrm{~ns}}=3.2
\end{aligned}
$$

8. Ans: 4

Sol: For ' n ' number of instructions
$\mathrm{t}_{\mathrm{n}}=6 \times \mathrm{nclks}(\mathrm{k}=6)$.
Highest speed up $k=6$ if there is no stall cycle and all stage delays are equal but 25% of instructions need 2 stalls.
$\mathrm{t}_{\mathrm{p}}=(0.75 \mathrm{n} \times 1)+(0.25 \mathrm{n} \times(2+1))$
$=1.5 \mathrm{n} \mathrm{clks}$.
$\therefore \mathrm{S}=\frac{\mathrm{t}_{\mathrm{n}}}{\mathrm{t}_{\mathrm{p}}}=\frac{6 \mathrm{n} \mathrm{clks}}{1.5 \mathrm{n} \mathrm{clks}}=4$
09. Ans: 219

Sol: Number of stages $=5(\mathrm{IF}, \mathrm{ID}, \mathrm{OF}, \mathrm{PO}, \mathrm{WR})$, $\mathrm{k}=5$
$\mathrm{n}=100$, except PO, all stages take one clock In P.O stage

40 instructions take 3 clocks
35 instructions take 2 clocks
and remaining 25 instructions take 1 clk If all instructions requires one clock in all stages, total clocks required $=(\mathrm{k}+\mathrm{n}-1)$

$$
=5+100-1=104
$$

But, 40 instructions requires 3 clocks each i.e. 40 instructions execution requires ' 80 ' more clocks and 35 instructions requires 2 clocks i.e. 35 instructions require 35 more clocks.
So, total number of clocks required

$$
=104+80+35=219
$$

10. Ans: (b)

Sol: Non-pipelined system delay $=30 \mathrm{~ns}$
Max. Pipeline delay $=12 \mathrm{~ns}$
$\mathrm{S}=30 \mathrm{~ns} / 12 \mathrm{~ns}=2.5$
11. Ans: (b)

Sol:

12. Ans: 13

Sol:

	IF	OF	PO	WB
MUL	1	2	5	6
DIV	2	3	10	11
ADD	3	4	11	12
SUB	4	5	12	13

13. Ans: (c)
14. Ans: (d)

Sol: Number of stages $=5$
One stage delay $=2 \mathrm{~ns}$

- While executing more number of instructions only one stage delay is sufficient for executing one instruction when there is no Hazard.
- Number of Non Hazard instructions = 80%
\therefore it's Average time $=0.8 \times 2 \mathrm{~ns}=1.6 \mathrm{~ns}$
For executing one Hazard instruction it takes all stage delays i.e., 10 ns .
\therefore It's average time is $0.2 \times 10 \mathrm{~ns}=2 \mathrm{~ns}$
Average instruction time

$$
=1.6 \mathrm{~ns}+2 \mathrm{~ns}=3.6 \mathrm{~ns}
$$

15. Ans: (c)

Sol: 2 Stall cycles
CPU clock frequency $=1 \mathrm{GHz}$
Out of 10^{9} instructions 20% of instructions are branch instructions, which requires 3 clock cycles. The remaining 80% instructions require only one clock pulse for their completion.

Total execution time
$=10^{9} \times(80 / 100) \times 10^{-9}+10^{9} \times(20 / 100) \times 3 \times 10^{-9}$
$=0.8+0.6=1.4 \mathrm{sec}$

16. Ans: (b)

Sol: Pipeline clock $=$ Max (stage delay + Overhead)

$$
=\operatorname{Max}(5,7,10,8,6)+1=11 \mathrm{~ns}
$$

CPU gets target address after completion of branch instruction in EX stage only.

$$
\begin{aligned}
(\mathrm{n}+\mathrm{k}-1) & \times 11 \mathrm{~ns}+\text { stall delay }(3) \\
& =((8+5-1) \times 11 \mathrm{~ns})+(3 \times 11) \mathrm{ns} \\
& =165 \mathrm{~ns}
\end{aligned}
$$

17. Ans: 1.54

Sol: 'P' has 5 stages

IF	ID/RF	EX	MEM	WB
1	2.2	2	1	0.75

' Q ' has 8 stages

IF	ID	RF1	RF2	EX1	EX2	MEM	WB
1	$2.2 / 3$	$2.2 / 3$	$2.2 / 3$	1	1	1	0.75

P - highest clock cycle time $=2.2 \mathrm{~ns}$.

Q - highest clock cycle time $=1 \mathrm{~ns}$.
In ' P ' pipeline new instruction fetching is stopped for 2 stage delays
Where in 'Q' pipeline new instruction fetching is stopped for 5 stage delays

Number of branch instructions $=20 \%$.
\therefore ' P ' total time is
$(0.8 \times 2.2 \mathrm{~ns})+(0.2 \times(2+1)) 2.2 \mathrm{~ns}=3.08 \mathrm{~ns}$
' Q ' total time is
$0.8 \times 1 \mathrm{~ns}+(0.2 \times(5+1)) \times 1 \mathrm{~ns}=2 \mathrm{~ns}$
$\therefore \frac{\mathrm{P}}{\mathrm{Q}}=\frac{3.08 \mathrm{~ns}}{2 \mathrm{~ns}}$

$$
=1.54
$$

18. Ans: 1.43

Sol: Refer gate PYQ book
19. Ans: (d)

Sol: 1. The $(\mathrm{j}+1)^{\text {th }}$ instruction uses the result of the $\mathrm{j}^{\text {th }}$ instruction as an operand, comes under data dependency and it causes data hazard(RAW).
2. The execution of a conditional jump instruction comes under conditional dependency and it causes control hazard.
3. The $j^{\text {th }}$ and $j+1$ instruction require the ALU at the same time comes under structural hazard(WAR).
20. Ans: (c)
21. Ans: (b)

Sol: It is also known as W.A.R Hazard.
Anti-dependence Hazard creates Hazard (i.e. needs stall) when a low latency instruction is completed before a longer latency instruction that appears earlier in the program only BUT NOT ALWAYS.
22. Ans: (b) \& (c)

Sol: Option (a) is false because RAW is known as True dependency. Option (d) is false because WAR can be minimized by using Three Address instructions but not two Address instructions.

Chapter

6

Control Unit Design

1. Ans: (d)

Sol: $\mathrm{S}_{8}=\mathrm{I}_{1} \mathrm{~T}_{4}+\mathrm{I}_{2} \mathrm{~T}_{4}+\mathrm{I}_{3} \mathrm{~T}_{4}+\mathrm{I}_{4} \mathrm{~T}_{4}$

$$
=\mathrm{I} \times \mathrm{T}_{4}=\mathrm{T}_{4}
$$

$\because \mathrm{I}=\left(\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}+\mathrm{I}_{4}\right)$
$\mathrm{S}_{7}=\left(\mathrm{I}_{1} \mathrm{~T}_{3}+\mathrm{I}_{2} \mathrm{~T}_{3}+\mathrm{I}_{3} \mathrm{~T}_{3}+\mathrm{I}_{4} \mathrm{~T}_{3}\right)$

$$
+\left(\mathrm{I}_{3} \mathrm{~T}_{1}+\mathrm{I}_{3} \mathrm{~T}_{2}+\mathrm{I}_{3} \mathrm{~T}_{3}+\mathrm{I}_{3} \mathrm{~T}_{4}\right)+\left(\mathrm{T}_{4} \mathrm{I}_{3}+\mathrm{T}_{4} \mathrm{I}_{4}\right)
$$

$\because \mathrm{S}_{7}=\mathrm{T}_{3}+\mathrm{I}_{3}+\mathrm{T}_{4} \times \mathrm{I}_{4}$
02. Ans: (b)

Sol: Fastest Control unit is hard-wired control unit and vertical micro-programming control unit is slowest.
03. Ans: (d)

Sol: Refer gate PYQ book

04. Ans: (a)

Sol: Total Size of micro-instructions $=26$ bits
Size of micro-operation $=13$ bits
Total inputs for the multiplexer (Status bits) inputs $=8$
So the multiplexer selection lines field (Y)

$$
=3 \text { bits }\left(2^{3}=8\right)
$$

The number of bits in the next address field $\operatorname{size}(X)=13-3=10$ bits
Size of control memory $=2^{10}=1024$
05. Ans: (a), (b), (c) \& (d)
06. Ans: (a), (b) \& (c)
07. Ans: (d)

Sol: All the given characteristics are belonging to RISC processor.
08. Ans: (a), (b), (c) \& (d)

Sol: All statements are true.

Chapter

I/O Organization

1. Ans: (b)
2. Ans: (b)

Sol: $10 \mathrm{KBPS}=10 \mathrm{~KB}$ is transferred in $1 \mathrm{sec}=$ $10^{4} \mathrm{~B}$
1 byte takes $=0.1 \mathrm{~ms}=100 \mu \mathrm{~s}$
\therefore Minimum waiting time needed is $100 \mu \mathrm{~s}$ for system

Programmed I/O takes $100 \mu \mathrm{~s}$
Interrupt driven takes $4 \mu \mathrm{~s}$
\therefore Gain $=\frac{100 \mu \mathrm{~s}}{4 \mu \mathrm{~s}}=25$

03. Ans: (a)

Sol: CPU gives highest priority for high speed devices and least priority for low speed devices. Hard disk has higher priority than others because it is fastest secondary memory.

04. Ans: (d)

Sol: CPU first takes care about it's temperature.

05. Ans: 456

Sol: Terminal Count Register size $=16$ bit.
So, for one transfer operation of 64 KB , the register content will become zero, so, number of times the content of the register to be filled is

$$
\frac{29154 \mathrm{~KB}}{64 \mathrm{~KB}} \cong 456
$$

06. Ans: 80000

Sol: Type of Data transfer is cycle steal i.e. one 8 bit characters / one request
$\mathrm{f}=2 \mathrm{MHz} ; \mathrm{T}=0.5 \mu \mathrm{sec}$
\therefore Clock cycle time $=0.5 \mu \mathrm{sec}$
Hence DMA transfers 8 bits in $0.5 \mu \mathrm{sec}$
i.e 16 bits in $1 \mu \mathrm{sec}$
i.e. in one second, it can transfer 16000000 bits, but only 0.5% processor clocks are used for DMA transfer, Hence the Data transfer rate

$$
=16000000 \times \frac{0.5}{100}
$$

$=80000 \mathrm{bits} / \mathrm{sec}$

07. Ans: (b)

Sol: For vectored hardware interrupt, the interrupting device supplies the respective address with additional hardware.
08. Ans: (b)

Sol: In single line interrupt system contains a single interrupt request line and an interrupt grant line. In this system it may be possible for more than one I/O device request interrupt at the same time. By using 8259 IC it is possible to connect more number of IO devices. So in single interrupt system vectored interrupts are not possible but multiple interrupting devices are possible
09. Ans: 10.2

Sol: Refer gate PYQ book
10. Ans: (a) \& (b)

Sol: Option ' c ' is false because Memory Mapped IO technique is used to connect more
number of IO devices. Option (d) is false because Memory Mapped IO technique uses Memory Read and Memory Write control signals.

