GATE I PSUs

Computer Science \& Information Technology

COMPUTER NETWORKS

Text Book:

Theory with worked out Examples and Practice Questions

Computer Networks

(Solutions for Text Book Practice Ouestions)

Chapter
1

Concept of Layering

1. Ans: (b)

Sol: Data link layer has error, flow, access control, framing as functionalities. Bit synchronization is part of physical layer.
02. Ans: (c)

Sol: Given At each layer, n bits of information is added/appended.

$$
=\mathrm{nh}
$$

Total message $=$ original message + overhead

$$
=\mathrm{m}+\mathrm{nh}
$$

$\%$ of overhead $=\frac{\mathrm{nh}}{\mathrm{m}+\mathrm{nh}} \times 100$
03. Ans: (b)
$\begin{aligned} & \text { Sol: } \text { Packet } \Rightarrow 3 \Rightarrow \text { NPDU } \Rightarrow \\ & \Rightarrow \text { Frame } \Rightarrow 2 \Rightarrow \text { DPDU } \Rightarrow \mathrm{H}_{3} \text { H }{ }^{\mathrm{H}_{3}} \mathrm{~T}\end{aligned}$
04. Ans: (a)

05. Ans: (c)

Sol: Network Layer-4 times
Data Link Layer - 6 times

Layer visited
Layer 7-2 times
Layer 6-2 times
Layer 5-2 times
Layer 4-2 times
Layer 3-4 times \rightarrow Network Layer
Layer 2-6 times \rightarrow Data Link Layer
Layer 1-6 times

06. Ans: (a)

Sol: Data link layer ensures reliable transport of data over a Physical point to point link.
Network layer routes data from one network node to next.

Transport layer allows end to end communication between two processes.
07. Ans: (c)

Sol: Fragment: Network layer (fragmentation)
Segment: Transport layer (segmentation)
There is a restriction on the message length in the subnet, so breaking the lengthy message starts at transport layer. India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, SSC, Banks, Groups \& PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

T~ACE	2	CSIT-Postal Coaching Solutions

8. Ans: (b) \& (d)

Sol: The PDUs of Physical layer are bits. Segments are the PDUs of Transport Layer.
09. Ans: (a), (c) \& (d)

Sol: FTP is a out band protocol as it uses a control connection and a data connection in parallel. Control connection is used to send information such as user identification, password, commands to 'put' and 'get' files. Data connection is used to send the file. Because of this control connection (separate) FTP is "out-of-band".

Chapter

2

Network Performance Parameters

1. Ans: (a)

Sol: Given data
$\mathrm{B}=4 \mathrm{Mbps}$
$\mathrm{d}=100 \mathrm{~km}$
$\mathrm{L}=2 \mathrm{MB}$
$\mathrm{T}_{\mathrm{P}}=$?
As the question have given fiber link, the speed of propagation is $2 * 10^{8} \mathrm{~m} / \mathrm{s}$
$\therefore \mathrm{T}_{\mathrm{p}}=\frac{\mathrm{d}}{\mathrm{v}}=\frac{100 \times 10^{3}}{2 \times 10^{8}}=0.5 \mathrm{~ms}$

02. Ans: 4.9 Mbps

Sol: Given data
$\mathrm{L}=1 \mathrm{Mb}$
$\mathrm{B}=1 \mathrm{Gbps}$
$\mathrm{R}=200 \mathrm{~ms}$
Throughput $=$?
$\mathrm{T}_{\mathrm{x}}=\frac{\mathrm{L}}{\mathrm{B}}=\frac{10^{6}}{10^{9}}=1 \mathrm{~ms}$
\therefore Throughput $=\frac{\text { Total data size }}{\text { Total time }}=\frac{10^{6}}{(1+200) \times 10^{-3}}$

$$
=\frac{1000}{201} \mathrm{Mbps}=4.9 \mathrm{Mbps}
$$

3. Ans: $\mathbf{1 0 1 m s}$ (or) 0.101 sec

Sol: Given data
$\mathrm{L}=1000 \mathrm{~kb}$
$\mathrm{B}=1 \mathrm{Gbps}$
$\mathrm{R}=100 \mathrm{~ms}$
Total Time $=$?
$\mathrm{T}_{\mathrm{x}}=\frac{\mathrm{L}}{\mathrm{B}}=\frac{10^{6}}{10^{9}}=1 \mathrm{~ms}$
\therefore Total Time $=\mathrm{T}_{\mathrm{X}}+2 \mathrm{~T}_{\mathrm{P}}=1 \mathrm{~ms}+100 \mathrm{~ms}$

$$
=101 \mathrm{~ms} \text { (or) } 0.101 \mathrm{sec} .
$$

4. Ans: 8 ms

Sol: Given data
$\mathrm{L}=1 \mathrm{~KB}$
$\mathrm{B}=1 \mathrm{Mbps}$
$\mathrm{T}_{\mathrm{P}}=20 \mathrm{~ms}$
$\mathrm{T}_{\mathrm{X}}=$?

$$
\mathrm{T}_{\mathrm{x}}=\frac{\mathrm{L}}{\mathrm{~B}}=\frac{8 \times 10^{3}}{10^{6}}
$$

$$
=8 \mathrm{~ms}
$$

5. Ans: $13.88 \mu \mathrm{~s}$

Sol: Given data
$d=2500$ meters
$\mathrm{v}=1.8 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$\mathrm{T}_{\mathrm{P}}=$?

$$
\begin{aligned}
\mathrm{T}_{\mathrm{P}}=\frac{\mathrm{d}}{\mathrm{~V}}=\frac{25 \times 10^{2}}{1.8 \times 10^{8}} & =\frac{250}{18} \mu \mathrm{~S} \\
& =13.88 \mu \mathrm{~s}
\end{aligned}
$$

6. Ans: 250KB

Sol: Given data
$\mathrm{B}=25 \mathrm{Mbps}$
$\mathrm{T}_{\mathrm{P}}=40 \mathrm{~ms}$
$\mathrm{B} \times \mathrm{D}=$?
$\mathrm{T}_{\mathrm{P}}=40 \mathrm{~ms} \Rightarrow \mathrm{RTT}=80 \mathrm{~ms}$
As the link is duplex link
$B \times D=B \times R=25 \times 10^{6} \times 80 \times 10^{-3}=250 K B$
07. Ans: 21\%

Sol: Given data
$\mathrm{L}=2 \mathrm{~KB}$
$\mathrm{T}_{\mathrm{P}}=30 \mathrm{~ms}$
$\mathrm{B}=1 \mathrm{Mbps}$
$\eta=$?
$\mathrm{T}_{\mathrm{X}}=\frac{\mathrm{L}}{\mathrm{B}}=\frac{8 \times 10^{3} \times 2}{10^{6}}$

$$
=16 \mathrm{~ms}
$$

\therefore Throughput $=\frac{8 \times 2 \times 10^{3}}{(16+60) \times 10^{-3}}$

$$
=\frac{16}{76} \times 10^{6} \mathrm{bps}=0.21 \mathrm{Mbps}
$$

we know that, $\eta=\frac{T}{B} \Rightarrow \eta=\frac{0.21}{1}$

$$
=21 \%
$$

8. Ans: (d)

Sol: Given:
$B=10^{6} \mathrm{bps}$
Distance $=10000 \mathrm{~km}$
$\mathrm{T}_{\mathrm{P}}=2 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$\mathrm{L}=50000 \mathrm{~B}$
$\mathrm{p}=\mathrm{T}_{\mathrm{x}}=\frac{\mathrm{L}}{\mathrm{B}}=\frac{50000 \times 8}{100 \times 10^{4}}$

$$
=\frac{400}{10^{3}} \times \frac{10^{3}}{10^{3}}=400 \mathrm{~ms}
$$

$=\frac{10^{4} \times 10^{3}}{2 \times 10^{5} \times 10^{3}}$
$=\frac{10^{5} \times 10^{2}}{2 \times 10^{5} \times 10^{3}}$
$=\frac{100}{2} \mathrm{~ms}$
$=50 \mathrm{~ms}$

+ ACE	4	CSIT-Postal Coaching Solutions

Chapter
3

LAN Technologies

01. Ans: (a)

Sol: In Manchester encoding, we use two signal changes to represent a bit.Therefore always baud rate is twice the bit rate. Hence bit rate is half the baud rate.
02. Ans: (a)

Sol: Ethernet uses Manchester encoding in which bit has two signal segments, so $10 \mathrm{Mbps}=10 \times \mathrm{M} \times 2$ signal segments per seconds $=20$ mega baud.
03. Ans: 10000

Sol: $\mathrm{B}=1 \mathrm{Gbps}$
$\mathrm{d}=1 \mathrm{~km}$
$\mathrm{v}=200000 \mathrm{~km} / \mathrm{sec} ; \quad \mathrm{L}=$?
$\frac{\mathrm{L}}{\mathrm{B}}=2 * \frac{\mathrm{~d}}{\mathrm{v}} \Rightarrow \mathrm{L}=2 \times \frac{\mathrm{d}}{\mathrm{v}} \times \mathrm{B}$
$=2 \times \frac{10^{3}}{2 \times 10^{3} \times 10^{5}} \times 10^{9}$
$=10,000$ bits or 1250 bytes.
04. Ans: (d)

Sol: $\mathrm{B}=100 \mathrm{Mbps}$
$\mathrm{d}=1 \mathrm{~km}$
$\mathrm{L}=1250$ bytes
$\mathrm{v}=$?
In CSMA/CD,
$\mathrm{L}=2 \times \frac{\mathrm{d}}{\mathrm{v}} \times \mathrm{B}$

$$
\begin{aligned}
\Rightarrow \mathrm{v} & =\frac{2 \mathrm{~dB}}{2} \\
\Rightarrow \mathrm{v} & =\frac{2 \times 10^{3} \times 10^{2} \times 10^{6}}{10^{4}}=\frac{2 \times 10^{4}}{10^{4}} \\
& =2 \times 10^{7} \\
& =2 \times 10^{4} \mathrm{~km} / \mathrm{sec} \\
& =20,000 \mathrm{~km} / \mathrm{sec} .
\end{aligned}
$$

5. Ans: 200

Sol: L = ?
$\mathrm{B}=20 \mathrm{Mbps}$
$\mathrm{T}_{\mathrm{p}}=40 \mathrm{micro} \mathrm{sec}$
$\mathrm{L}=2 \times \frac{\mathrm{d}}{-} \times \mathrm{B}$
$\mathrm{L}=2 \times \mathrm{T}_{\mathrm{P}} \times \mathrm{B}$
$=2 \times 40 \times 10^{-6} \times 20 \times 10^{6}$
$=1600$ bits (or) 200 bytes.
06. Ans: (b)

Sol: Collision number for A is 1 , and for B it is 2 .

Possible numbers for ' A ' from
backoff algorithm is $(0,1)$,
for B they are $(0,1,2,3)$
Going by the Combinations,
A will have 5 chances and
B has 1 chance out of 8 .
Rest of the two is Undecided.
$\mathrm{n}=1, \mathrm{~A}=(0,1), \mathrm{B}=(0,1)$

	5	Computer Networks

\mathbf{A}	\mathbf{B}	Remark
0	0	Collision
0	1	$\mathrm{~A}=1 / 4$
1	0	$\mathrm{~B}=1 / 4$
1	1	Collision

$\mathrm{n}=2, \mathrm{~A}=(0,1), \mathrm{B}=(0,1,2,3)$

\mathbf{A}	\mathbf{B}	Remark
0	0	Collision
0	1	A
0	2	A
0	3	A
1	0	B
1	1	Collision
1	2	A
1	3	A

$\therefore \mathrm{A}=\frac{5}{8}=0.625, \mathrm{~B}=\frac{1}{8}=0.125$
Hence Probability for ' A ' in $5 / 8=0.625$.
07. (a) Ans: 137.5 (b) Ans: 125

Sol: (a)
Frame Transmission time $=1000 / 10 \times 10^{6}$

$$
=100 \mu \mathrm{~s}
$$

At time $\mathrm{t}=0$ both A \& B transmit
At time $\mathrm{t}=12.5 \mu \mathrm{~s}$ a detects collision
At time $\mathrm{t}=25 \mu \mathrm{~s}$
Last bit of B's aborted transmission arise at A.
At $t=37.5 \mu$ first bit of A's retransmissions arrives at B.

At 37.5μ s A's packet is completely arrives B.
$100+37.5=137.5$
(b) $\mathrm{T}_{\mathrm{x}}=\frac{1000}{10 \times 10^{6}}=100 \mu \mathrm{~s}$

Since, the question have mentioned "without purging," no need of considering $\mathrm{T}_{\text {purge }}$ time

$$
\begin{aligned}
\therefore \mathrm{At} \mathrm{t} & =\mathrm{T}_{\mathrm{CD}}+\mathrm{T}_{\mathrm{x}}+\mathrm{T}_{\mathrm{P}} \\
& =(12.5+100+12.5) \mu \mathrm{s} \\
& =125 \mu \mathrm{~s}
\end{aligned}
$$

A's packet completely delivered to B.
08. Ans: 0.4404

Sol: All k-stations
For a stations $\mathrm{P}(1-\mathrm{P})^{\mathrm{k}}$
For some stations among k-station

$$
=\mathrm{k} \cdot \mathrm{P}(1-\mathrm{P})^{\mathrm{k}-1}
$$

$$
\begin{array}{lccl}
\mathbf{S}_{1} & \mathbf{S}_{\mathbf{2}} & \mathbf{S}_{3} & \mathbf{S}_{\mathbf{4}} \\
\mathbf{P} & \mathbf{1 - P} & \mathbf{1 - P} & \mathbf{1 - P}
\end{array}
$$

For $\mathrm{S}_{1} \quad(0.1)(0.8) \quad(0.7) \quad(0.6)=0.0336$
For $\mathrm{S}_{2}(0.9)(0.2) \quad(0.7) \quad(0.6)=0.0756$
For $S_{3}(0.9)(0.8) \quad(0.3) \quad(0.6)=0.1296$
For $\mathrm{S}_{4} \quad(0.9) \quad(0.8) \quad(0.7) \quad(0.4)=\underline{\underline{0.2016}} \underline{\underline{0.4404}}$

Probability for any one station among S_{1}, S_{2}, S_{3}, S_{4} to send a frame without collision $=0.4404$.

09. Ans: 81 to 85

Sol: $\mathrm{B}=10 \mathrm{Mbps}$
Slot time $=51.2 \mu \mathrm{sec}, \mathrm{L}=512$ bytes
Number of slots $=1.716$
Transmission time $=\frac{L}{B}$

$$
\begin{aligned}
& =\frac{512 \times 8(\mathrm{bits})}{10 \times 10^{6}} \\
& =4.096 \times 10^{-4}
\end{aligned}
$$

Contention width $=$ no. of slots \times slot time

$$
=1.716 \times 51.2=87.85 \mu \mathrm{sec}
$$

$$
=87.85 \times 10^{-6} \text { seconds }
$$

$\eta=\frac{\frac{L}{B}}{\text { contention width }+\frac{L}{B}}$
$\eta=\frac{4.096 \times 10^{-4}}{4.096 \times 10^{-4}+87.85 \times 10^{-6}}=82.3 \%$
10. Ans: (c)

Sol: When the transmission delay is high and propagation delay is low the number of collisions decreases. When the collision decreases throughput increases.
11. Ans: (a), (c) \& (d)

Sol: Option (a) is FALSE, as in Ethernet, the station is need not to stop to sense the channel prior to frame transmission.

Option (b) is TRUE; a signal is jammed to inform all the other devices or stations about collision that has occurred so that further data transmission is stopped.
Option (c) is FALSE; once collision is detected, a station should stop its packet transmission.

Option d is FALSE; the Binary Exponential Back Off algorithm reduces the probability of collision on retransmissions.
12. Ans: (a) \& (c)

Sol: WAN uses technologies such as MPLS, ATM, X. 25 Frame relay for data connection over greater distances. LAN uses technologies such as Ethernet and token ring to connect to other networks.

Chapter
4

Switching (Circuit, Packet)

1. Ans: (a)

Sol: Given data
Circuit setup time = 'S' sec
Bandwidth = bit rate = 'b' bps
Path $=$ ' k '-hop
Propagation delay $=$ ' d ' sec per hop
Connection release $=$ not given
Packet size = 'p' bits
Message size $=$ ' x ' bits
$\mathrm{k}=3$
k - hop path (hop means jump)
$\mathrm{T}_{\mathrm{P}}=\frac{\mathrm{d}}{\mathrm{V}}=\frac{\mathrm{m}}{\mathrm{m} / \mathrm{s}}=\mathrm{sec}$
Total delay $=\mathrm{I}+\mathrm{II}+\mathrm{III}$
I. Circuit setup time $=\mathrm{S}$
II. $\mathrm{T}_{\mathrm{X}}=\frac{\mathrm{L}}{\mathrm{B}}=\frac{\text { messagesize }}{\text { bit rate }}=\frac{\mathrm{x}}{\mathrm{b}}$
III. $\mathrm{T}_{\mathrm{P}}=$ one hop \rightarrow propagation time $={ }^{`} \mathrm{~d}$ ' sec

For k hop \rightarrow propagation time ?

$$
=\mathrm{k} \times \mathrm{d}
$$

\therefore Total delay $=\mathrm{S}+\mathrm{x} / \mathrm{b}+\mathrm{k} . \mathrm{d}$
(1) (2)
(3)

02. Ans: (d)

Sol:

- The last packet is getting retransmitted at $\mathrm{k}-1$ hops so the delay is $(\mathrm{k}-1) \frac{\mathrm{p}}{\mathrm{b}}$.
- There is no set of time (NOS)
- Transmission delay is x / b

$$
=\frac{\mathrm{p}_{1}+\mathrm{p}_{2}+. .+\mathrm{p}_{\mathrm{n}}}{\mathrm{~b}}
$$

- Message

For k hop \rightarrow propagation time?

$$
=\mathrm{k} \times \mathrm{d}
$$

- Total time $=x / b+k \cdot d+(k-1) \frac{p}{b}$

3. Ans: (a) \& (c)

Sol: In datagram (Connectionless Packet Switching) switching, packets may be delivered out of order. But, both Circuit Switching and Virtual Circuit Switching (Connection oriented Packet Switching) ensured in order delivery.

04. Ans: (a) \& (b)

Sol: In Circuit Switching (Connection Oriented Switching), bandwidth is fixed as connection is established prior to Data transfer.

ACE	8	CSIT-Postal Coaching Solutions

| Chapter |
| :---: | :---: |
| 5 |\quad Data Link Layer

1. Ans: (b) i/p string

2. Ans: (c)

Sol: 1011) $01011011000(01000011$

03. Ans: (a)

Sol:

1	2	3	4	5	6	7	8	9	10	11
$\underline{1}$	$\underline{0}$	$\underline{1}$	$\underline{1}$	$\underline{0}$	$\underline{1}$	$\underline{0}$	$\underline{1}$	$\underline{1}$	$\underline{1}$	$\underline{1}$
2^{0}	2^{1}		2^{2}				2^{3}			

$3=1+2$	$1 \Rightarrow 10011$	Even parity 1
$5=1+4$		0
$6=2+4$	$4 \Rightarrow 010$	1
$7=1+2+4$		
$9=1+8$	$8 \Rightarrow 111$	1
$10=2+8$	8	

Hamming code $=\underline{10110101111}$
04. Ans: 4.76

Sol: $\mathrm{L}=1000$ bits
$\mathrm{d}=100 \times 10^{3} \mathrm{~m}$
$\mathrm{V}=2 \times 10^{8} \mathrm{~m} / \mathrm{sec}$
$\mathrm{B}=20 \mathrm{Mbps}=20 \times 10^{6} \mathrm{bps}$
$\mathrm{T}_{\mathrm{X}}=\frac{\mathrm{L}}{\mathrm{B}}=\frac{1000 \mathrm{bits}}{20 \times 10^{6} \mathrm{bps}}=50 \mu \mathrm{sec}$
$\mathrm{T}_{\mathrm{P}}=\frac{\mathrm{d}}{\mathrm{V}}=\frac{100 \times 10^{3} \mathrm{~m}}{2 \times 10^{8} \mathrm{~m} / \mathrm{sec}}=500 \mu \mathrm{sec}$
$\mathrm{a}=\frac{\mathrm{T}_{\mathrm{P}}}{\mathrm{T}_{\mathrm{X}}}=\frac{500}{50}=10$
Efficiency $(\eta)=\frac{1}{1+2 \mathrm{a}}$

$$
=\frac{1}{1+2 \times 10}=\frac{1}{21}=0.047=4.7 \%
$$

5. Ans: 47.6

Sol: Given data
$\left.\begin{array}{l}\mathrm{L}=1000 \mathrm{bits} \\ \mathrm{B}=20 \mathrm{Mbps}\end{array}\right\} \mathrm{T}_{\mathrm{X}}=\frac{\mathrm{L}}{\mathrm{B}}=\frac{1000}{20 \times 10^{6}}=50 \mu \mathrm{~s}$
$\left.\begin{array}{c}\mathrm{d}=100 \mathrm{~km} \\ \mathrm{v}=2 \times 10^{8} \mathrm{~m} / \mathrm{s}\end{array}\right\} \mathrm{T}_{\mathrm{P}}=\frac{\mathrm{d}}{\mathrm{v}}=\frac{10^{2} \times 10^{3}}{2 \times 10^{2} \times 10^{6}}=500 \mu \mathrm{\beta}$
$\therefore \mathrm{a}=\frac{\mathrm{T}_{\mathrm{P}}}{\mathrm{T}_{\mathrm{X}}}=\frac{500 \mu \mathrm{~s}}{50 \mu \mathrm{~s}}=10$
$\mathrm{w}=10$
Case(1): If $w \geq 1+2$ a then $\eta=100 \%$

$$
\Rightarrow 10 \geq 1+2(10) \Rightarrow 10 \geq 21 \text { False }
$$

Case (2):

$$
\eta=\frac{w}{1+2 a}=\frac{10}{21}=0.476 \text { (or) } 47.6 \%
$$

6. Ans: 160

Sol: $B=4 \mathrm{Kbps}$
Propagation delay $=20 \mathrm{msec}$
$\eta=50 \%$
RTT $=2 \times$ Propagation delay
$=40 \mathrm{msec}$

$$
\text { if } \begin{aligned}
\mathrm{N}=50 \text { then } \mathrm{L} & =\mathrm{BR} \\
& =4 \times 10^{3} \times 40 \times 10^{-3} \\
& =160 \text { bits }
\end{aligned}
$$

07. Ans: 10.8

Sol: $B=1.5 \mathrm{Mbps}$

$$
\text { RTT }(\text { Round Trip Time })=45 \mathrm{~ms}
$$

$$
\begin{aligned}
\mathrm{BR} & =1.5 \times 10^{6} \times 45 \times 10^{-3} \text { bits } \\
& =15 \times 45 \times 10^{2} \text { bits } \\
& =67500 \text { bits }
\end{aligned}
$$

$\mathrm{L}=8192$ bits
Link utilization $=\frac{L}{L+B R}$

$$
=\frac{8192}{8192+67500}=\frac{8192}{75692}=0.108=10.8 \%
$$

08. Ans: 2500

Sol: $\mathrm{B}=80 \mathrm{kbps}$
$\mathrm{L}=1000$ bytes
$\mathrm{T}_{\mathrm{p}}=100 \mathrm{~ms}$
$\mathrm{T}_{\mathrm{x}}=\mathrm{L} / \mathrm{B}=100 \mathrm{~ms}$
$\mathrm{T}_{\mathrm{ax}}=$ ack size/ bandwidth $=100 \mathrm{~ms}$
Efficiency $=T_{x} /\left(T_{x}+2 T_{p}+T_{a x}\right)=\frac{100}{400}=0.25$
Throughput $=$ efficiency $*$ bandwidth

$$
\begin{aligned}
& =0.25 * 10^{4} \text { bytes } \\
& =2500 \text { bytes }
\end{aligned}
$$

09. Ans: 89.33

Sol: $B=1 \mathrm{Mbps}$
$\mathrm{T}_{\mathrm{p}}=0.75 \mathrm{~ms}$
$\mathrm{T}_{\text {proc }}=0.25 \mathrm{~ms}$
Payload $=1980$ B
Ack $=20 \mathrm{~B}$
$\mathrm{OH}=20 \mathrm{~B}$
$\mathrm{L}=$ Payload $+\mathrm{OH}=1980+20$
$=2000$ Bytes
$\mathrm{T}_{\mathrm{x}}=\frac{\mathrm{L}}{\mathrm{B}}$

$$
=\frac{2000 \times 8}{1 \times 10^{6}}=16 \mathrm{~ms}
$$

$$
\mathrm{T}_{\mathrm{ax}}=\frac{20 \times 8}{1 \times 10^{6}}
$$

$$
=160 \mu \mathrm{sec}
$$

$$
=0.16 \mathrm{msec}
$$

	10	CSIT-Postal Coaching Solutions

Total time $=T_{x}+T_{p}+T_{\text {proc }}+T_{a x}+T_{p}+T_{\text {aproc }}$

$$
\begin{aligned}
& =16 \mathrm{~ms}+0.75 \mathrm{~ms}+0.25 \mathrm{~ms} \\
& \quad+0.16 \mathrm{~ms}+0.75 \mathrm{~ms} \\
& =17.91 \mathrm{~ms} \\
& \eta=\frac{\mathrm{T}_{\mathrm{x}}}{\text { Total Time }} \\
& =\frac{16}{17.91}=89.33 \%
\end{aligned}
$$

10. Ans: (d)

Sol: 512 bytes $\times 8$ bits $/ \mathrm{B}=4096$ bits per frame $4096 / 64000 \mathrm{bps}=64 \mathrm{msec}$ to send one frame Round trip delay $=540 \mathrm{msec}$

Window size 1: send 4096 bits per 540 msec $4096 \mathrm{bits} / 540 \mathrm{msec}=7.585 \times 103 \mathrm{bps}$ throughput

Window size 7: $7585 \times 7=53096 \mathrm{bps}$
Window size 9 and greater:
$7585 \times 9=68265 \mathrm{bps}$ but the maximum capacity is 64 kbps so for window size greater than 9 the maximum throughput is 64 kbps
11. Ans: 21

Sol: Given data
$\left.\begin{array}{l}\mathrm{L}=1000 \mathrm{bits} \\ \mathrm{B}=20 \mathrm{Mbps}\end{array}\right\} \mathrm{T}_{\mathrm{x}}=\frac{\mathrm{L}}{\mathrm{B}}=\frac{10^{3}}{20 \times 10^{6}}=50 \mu \mathrm{~s}$
$\left.\begin{array}{l}\mathrm{d}=100 \mathrm{~km} \\ \mathrm{v}=2 \times 10^{8} \mathrm{~m} / \mathrm{s}\end{array}\right\} \mathrm{T}_{\mathrm{P}}=\frac{\mathrm{d}}{\mathrm{v}}=\frac{10 \times 10^{3}}{2 \times 10^{8}}=500 \mu \mathrm{~S}$
$\mathrm{a}=\frac{\mathrm{T}_{\mathrm{p}}}{\mathrm{T}_{\mathrm{x}}}=10$
as the question has given that $\eta=100 \%$
$\Rightarrow \mathrm{w}=1+2 \mathrm{a} \Rightarrow \mathrm{w}=1+2(10)=21$
12. Ans: 16

Sol: $\mathrm{w}=3$
Total 9 packets
Every fifth packet lost

$$
w=3 \quad w=3 \quad w=3
$$

Total 16 attempts
13. Ans: (d)

Sol: B = 1 Mbps
Latency delay (or)
Propagation delay $=1.25 \mathrm{sec}$
$\mathrm{L}=1 \mathrm{~KB}$
(1) $\mathrm{RTT}=2 \times 1.25$

$$
=2.5 \mathrm{sec}
$$

(2) $1 \mathrm{sec}=1 \times 10^{6}$ bits $2.5 \mathrm{sec}=$?
(3) $\mathrm{w}_{\mathrm{p}}=\frac{\mathrm{w} \text { bits }}{(\mathrm{pkt} \mathrm{size})}$

$$
=\frac{2.5 \times 10^{6}}{1024 \times 8}=305
$$

(4) sequence no. $=w_{p}=305$

$$
\begin{aligned}
& \therefore 2^{\mathrm{k}}=305 \\
& \therefore \mathrm{k}=9 \text { bits for GBN }
\end{aligned}
$$

for $\mathbf{S R}$

$\mathrm{W}_{\mathrm{p}}=610$
so $\mathrm{k}=10$ bits
14. Ans: (c)

Sol: $\mathrm{d}=3000 \mathrm{~km}$
$\mathrm{B}=1.536 \mathrm{Mbps}$
$\mathrm{L}=64$ bytes
Propagation delay $=6 \mu \mathrm{sec} / \mathrm{km}$
\therefore Propagation delay for 3000 km
$\Rightarrow 3000 \times 6 \mu \mathrm{sec}$
(1) $\mathrm{RTT}=2 \times 18000 \mu \mathrm{sec}$

$$
\begin{aligned}
& =36000 \times 10^{6} \\
& =36 \mathrm{msec}
\end{aligned}
$$

(2) $1 \mathrm{sec} \rightarrow 1.536 \times 10^{6}$ bits $36 \mathrm{~ms} \rightarrow$?
(3) $\mathrm{w}_{\mathrm{p}}=\frac{\mathrm{w} \text { bits }}{(\text { pktsize })}$

$$
=\frac{1.536 \times 10^{6} \times 36 \times 10^{-3}}{64 \times 8}=108
$$

(4) Sequence number $w_{p}=108$
(5) $2^{\mathrm{k}}=\mathrm{w}_{\mathrm{p}} \Rightarrow 2^{\mathrm{k}}=108$

$$
\begin{gathered}
\Rightarrow 2^{\mathrm{k}}=2^{7} \\
\Rightarrow \mathrm{k}=7
\end{gathered}
$$

15. Ans: 4

Sol: Given data
$\left.\begin{array}{l}\mathrm{B}=128 \times 10^{3} \mathrm{bps} \\ \mathrm{L}=1 \mathrm{~KB}\end{array}\right\} \mathrm{T}_{\mathrm{x}}=\frac{\mathrm{L}}{\mathrm{B}}=\frac{8 \times 10^{3}}{128 \times 10^{3}}=62.5 \mathrm{~ms}$

$$
\begin{gathered}
T_{P}=150 \mathrm{~ms} \\
\eta=100 \%
\end{gathered}
$$

In SR protocol, if $\eta=100 \%$ then $w=1+2 \mathrm{a}$
$\Rightarrow \mathrm{w}=1+2(2.4) \Rightarrow \mathrm{w}=5.8 \approx 6$
$\Rightarrow \frac{2^{n}}{2}=6 \Rightarrow 2^{\mathrm{n}}=12 \approx 2^{4} \Rightarrow \mathrm{n}=4$
16. Ans: (a), (c)

Sol: Given data
$W=5$
L=1000 Bytes
$\left.\begin{array}{l}\mathrm{T}_{\mathrm{x}}=50 \mu \mathrm{~s} \\ \mathrm{~T}_{\mathrm{P}}=200 \mu \mathrm{~S}\end{array}\right\} \mathrm{a}=\frac{\mathrm{T}_{\mathrm{P}}}{\mathrm{T}_{\mathrm{x}}}=\frac{200 \mu \mathrm{~s}}{50 \mu \mathrm{~s}}=4$
(a) Total time $=\mathrm{T}_{\mathrm{x}}+2 \mathrm{~T}_{\mathrm{p}}=(50+2 \times 200) \mu \mathrm{s}$

$$
=450 \mu \mathrm{~s} \rightarrow \text { True }
$$

(b) Throughput

$$
\begin{aligned}
& =\frac{\mathrm{WL}}{\mathrm{~T}_{\mathrm{x}}+2 \mathrm{~T}_{\mathrm{P}}}=\frac{5 \times 1000}{450 \times 10^{-6}} \text { Bytes } / \mathrm{s} \\
& =\frac{5000}{450} \times 10^{6} \text { Bytes } / \mathrm{sec} \\
& =11.11 \times 10^{6} \text { Bytes } / \mathrm{sec} \rightarrow \text { False }
\end{aligned}
$$

(c) efficiency

Case(1): if $W \geq 1+2$ a then $\eta=100 \%$

$$
\Rightarrow 5 \geq 1+2(4) \Rightarrow 5 \geq 9 \text { false }
$$

Case(2): if $\mathrm{W}<1+2 \mathrm{a}$ then

$$
\eta=\frac{\mathrm{W}}{1+2 \mathrm{a}}=\frac{5}{9}=55.55 \% \approx 56 \% \text { True }
$$

(d) As the answer is in micro seconds, but in option (d) it is given in milliseconds So, it is false.
17. Ans: (b) \& (d)

Sol:
1011) $01011011000(01000011$

$$
\begin{aligned}
& \begin{array}{l}
0000 \downarrow \\
\hline \not 01011
\end{array} \\
& \begin{array}{r}
1011 \\
\hline \varnothing 0000
\end{array} \\
& \begin{array}{r}
0000 \\
\hline \varnothing 0001
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
00010 \downarrow \\
\hline \varnothing 11100 \\
10 \\
\hline \varnothing 1
\end{array} \\
& \xrightarrow[\text { ¢ } 101]{1011}
\end{aligned}
$$

Option (b) is true \& option (c) is false \therefore The message that should be transmitted is $\frac{01011011}{\mathrm{msg}} \frac{101}{\mathrm{CRC}}$, which has the length of 11 bits. Hence option (a) is false and option (d) is true.

Chapter
 6
 Network Layer (IPv4/IPv6)

1. Ans: (b)

Sol:
11000010.00101111 .0001 0101. 10000010
$\begin{array}{llllllll}\text { C } & 2 & 2 & \mathrm{~F} & 1 & 5 & 8 & 2\end{array}$

C 2	2 F	15	82
12×16^{1}	2×16^{1}	1×16^{1}	8×16^{1}
$+2 \times 16^{0}$	$+15 \times 16^{0}$	$+5 \times 16^{0}$	$+2 \times 16^{0}$
$=194$	$=47$	$=21$	$=130$

\therefore 194.47.21.130
02. Ans: (b)

Sol:
00010111.00101010 .10000100 .11001000

7	2 A	$8 \quad 4$	C 8
17	2 A	84	C 8
1×16^{1}	2×16^{1}	8×16^{1}	12×16
$+7 \times 16^{0}$	$+10 \times 16^{0}$	$+4 \times 16^{0}$	$+8 \times 16^{0}$
$=23$	$=42$	$=132$	$=200$

$\therefore 23.42 .132 .200$
03. Ans (c)

Sol: In given problem network part is of 20 bits.

(1) ACE	12	CSIT-Postal Coaching Solutions

Among 20 NID bits we are not going to use 2 bits which are fixed for class B prefix so number of networks possible are $2^{20-2}=2^{18}$ and number of hosts possible are $2^{12}-2$.
04. Ans: (c)

Sol:

From NID, 3 bits are reserved for prefix of class C address therefore number of networks all allowed under class C address are $2^{24-3}=2^{21}$.
05. Ans: (b)

Sol:

$255 . \quad 255$.
255.
11111111.1111 1111. 1111 1111. 11110000

Hosts per subnet $=2^{4}-2$
06. Ans: (c)

Sol:

$2^{x}=7$
$\therefore \mathrm{x}=3$
$2^{3}=8$ subnets can be formed
$2^{5}-2=30$ hosts per subnet
11111111.11111111 .11111111 .11100000
255. 255.255 .224
(or)
Given 25 hosts per subnet
$2^{\mathrm{x}}=25$
$\mathrm{x}=5$ hosts per subnet

Subnet mask $\rightarrow / 27$
07. Ans: (d)

Sol:

Class B

$2+14$

64 departments $=2^{6}$

1111 1111. 1111111.11111100 .00000000 255. $255.252 . \quad 0$
08. Ans: 255. 255. 255.128

Sol: As we need to create two hosts, we need to have 7-bit host ID

Given class is B , so
$\mathrm{DMA}=255.255 .0 .0$
$\Rightarrow \frac{255.255 .11111111 .10000000}{\text { NID }} \frac{1}{\text { SID }}$
$\Rightarrow 255$. 255 . 255.128
09. Ans: 24

Sol: class B DMA $=\frac{255.255 .}{\text { NID }} \frac{0.0}{\text { HID }}$
Given LANs $=150$
\Rightarrow No. of extra is to be
added $=\log _{2}^{\mathrm{n}}=\log _{2}^{150} \Rightarrow \log _{2}^{2^{8}}=8$
$\Rightarrow \frac{255.255 .11111111 .00000000}{\text { NID }}=/ 24$
10.

Sol: $\mathrm{SM}=255.255 .255 .192$
$192=11000000$

Class C network has 24-bits NID and 8 bit HID
(a) 2 bits are borrowed from HID
(b) no. of subnets $=2^{2}=4$
(c) no. of systems per subnet $=2^{6}-2$

$$
64-2=62
$$

11. Ans: 158

Sol: Given network 200.10.11.144/27
to find out LA, we need to set (32-n) no.
of right most bits to 1
$\therefore 200.10 .11 .144 / 27$
$\Rightarrow 200.10 .11 .100 \underbrace{10000} / 27$
$\Rightarrow 200.10 .11 .10011111 / 27$
$\Rightarrow 200.10 .11 .159 / 27 \rightarrow$ broadcast(not assignable)
So, the assignable last address is
$\Rightarrow 200.10 .11 .158 / 27$
$4^{\text {th }}$ octet
12. Ans: (a)

Sol: (b) 245.248.128.0/21 and 45.248.128.0/22 \rightarrow same 128 can not be given to two subnets
(c) 245.248.132.0/22 and 45.248.132.0/21 same 132 can not be given to two subnets
(d) 245.248.136.0./24 and 45.248.132.0/21 same / 24 will not be required
13. Ans: (c)

Sol: For the first network the maximum allowed payload size $=1200$ bytes per frame and for the second network the maximum allowed payload size $=400$ bytes per frame.
Per packet IP overhead is given as 20 bytes.
So first we will calculate the total number of packets formed.
Note: If first network consider:
For first network 2100 bytes will be divided into 2 packets of size 1200 and 900 bytes.
So IP overhead of 1st network

$$
=(2 * 20=40 \text { bytes })
$$

But given is second network.
For second network 2100 bytes will be divided into 6 packets 5 of 400 bytes and 1 of 100 bytes.
So, IP overhead of the 2 nd network

$$
=(6 * 20=120 \text { bytes })
$$

Thus, the maximum IP overhead for the 2 nd network $=120$ bytes
14. Ans: (a)

Sol: Perform AND operation Given IP address and net mask, and compare results with network number. If it matches with network number, then forward packet through that interface. If not matched with any entry then use default route.
Ex: $\quad 128.96 .171 .92$
AND 255.255.254.0

$$
=128.96 .170 .0
$$

Hence packet must be transferred through Interface 0. Sometimes result matches with multiple network number, if so use interface that has longest length subnet mask.
15. Ans: 1

Sol: Perform AND operation between IP and $/ 12, / 14, / 16, / 15$ mask. If result matches with "prefix" given in the table then that should be the interface packet is forwarded. If it matches with multiple masks then use longest length mask.
$\boldsymbol{E x}$: Here it matches with $/ 12 \& / 15$, so use /15.
16. Ans: 26

Sol: For each hop TTL is reduced by 1 (minimum) and there are 6 hops here hence $32-6=26$.

17. Ans: $\mathbf{8 0 0}$ bytes

Sol: Offset 100 means there are 100 fragments before this, 8 bytes for each fragment 800 bytes.

ACE	15	Computer Networks

18. Ans: (c)

Sol: For last fragment always $\mathrm{M}=0$. If HLEN is 10 then header length is 40 bytes (We use scale factor of 4 in HLEN).Therefore total data in fragment is $400-40=360$ bytes.

Since offset is 300 total bytes ahead of this fragment is $8 \times 300=2400$ bytes (we use scale factor of 8 in offset). Therefore it is last fragment, starting byte is 2400 and ending byte is 2759
(Actually $2400+360=2760$ bytes but byte number starts with zero, so it is from 2400 to 2759)
19. Ans: (a), (b)

Sol: Advantages of Supernetting are
(i) Control and reduce network traffic
(ii) Helpful to solve the problem of lacking IP addresses
(iii) Minimizes the routing table
20. Ans: (b) \& (d)

Sol: As M bit is 1, it is not the last fragment.
HLEN $=10$
\rightarrow Header length $=10 \times 4$ bytes $=40$ bytes.
Total Length $=200$ bytes
\rightarrow Header length + Data length $=200$
\rightarrow Data length $=200-40=160$ bytes.
Offset $=100$
\rightarrow the $1^{\text {st }}$ byte value in this fragment

$$
=100 \times 8=800 .
$$

Last byte value in this fragment $=959$ (as data length is 160 bytes).

Chapter

7

Routing Algorithms

01. Ans: (c)

Sol: Going via B gives (11, 6, 14, 18, 12, 8). Going via D gives $(19,15,9,3,9,10)$.
Going via E gives (12, 11, 8, 14, 5, 9).
Taking the minimum for each destination except C gives ($11,6,0,3,5,8$).
The outgoing lines are ($\mathrm{B}, \mathrm{B},-, \mathrm{D}, \mathrm{E}, \mathrm{B}$).
02. Ans: (a)

Sol: RIP is based hop count, hence uses distance vector. OSPF is based on cost, and hence uses link state.

03. Ans: (c)

Sol: RIP uses distance vector routing RIP packets are sent using UDP OSPF doesn't use UDP or TCP and sends directly via IP
OSPF operation is based on LSR
04. Ans: 51
05. Ans: (a) \& (c)

Sol: In DVR, Convergence process is slower as it uses periodic updates. Link State Routing algorithm results more overhead as it needs to execute Dijkstra's algorithm at every router of the in order to construct Shortest Path Tree.
06. Ans: (a) \& (c)

Sol: The standard requirements to achieve successful routing are:

1. Correctness 2. Simplicity 3. Fairness 4. Optimality 5. Robustness 6. Stability 7. Efficiency

ACL	16	CSIT-Postal Coaching Solution

Chapter
8

TCP/UDP \& Sockets, Congestion Control

1. Ans: (c)

Sol: TCP pseudo Header Format

02. Ans: (b)

Sol: Each socket is binded with a port
03. Ans: (d)

Established

Established
(s)

04. Ans: (b)

Sol: RTT = 10 msec
Scap $=24 \mathrm{~KB}$
Ccap $=2 \mathrm{~KB}$

10

$=(10+10+10+10) \mathrm{ms}$
$=40 \mathrm{~ms}$

After 40 ms a full window is transmitted
05. Ans: (c)

Sol:

When timeout occurs threshhold $=\frac{1}{2}(18)=9$
Minimum (Congestion Window, Receiver Window)

1. Minimum $(1,-)$
2. Minimum $(2,-)$
3. Minimum (4, -)
4. Minimum $(8,-)$ cosed

16
9
Since it is crossing threshold,
instead of 16 KB
it sent 9 KB
06. Ans: 10

Sol: $1 \mathrm{sec} \rightarrow 200 \times 10^{6}$ bits
$1 \mathrm{sec} \rightarrow \frac{200 \times 10^{6}}{8}$ Bytes
$1 \mathrm{sec} \rightarrow \frac{200 \times 10^{6}}{8}$ eq no .s
$\frac{8}{200 \times 10^{6}} \mathrm{sec} \leftarrow 1$ seq no.
$\frac{8 \times 2^{28}}{200 \times 10^{6}}$ sec. $\leftarrow 2^{28}$ seq no.
10.76 secs $\leftarrow 2^{28}$ seq no.
07. Ans: 34

Sol: Given, Bandwidth $=10^{9} \mathrm{bps}$
Session start with sequence number $=1234$
Wraparound time calculation $=$?
In TCP sequence number of each byte $=32$ bits
So, 2^{32} bytes are to be transmitted in a warp around time.
$\frac{10^{9}}{8}$ bytes 1 sec
2^{32} bytes ?
$=\frac{2^{32}}{\frac{10^{9}}{8}}=\frac{2^{32}}{125 \times 10^{6}}=\frac{4294967296}{125 \times 10^{6}}=34.35 \mathrm{sec}$

Approximate
$10^{9} \simeq 2^{30}$
$\frac{10^{9}}{8} \simeq 2^{27}$
$2^{27} \ldots \ldots \ldots \ldots . .1 \mathrm{sec}$
$2^{32} \ldots \ldots \ldots \ldots \ldots .$.
$\frac{2^{32}}{2^{27}}=2^{5}=32 \mathrm{sec}$

8. Ans: (b)

Sol: Given $\Rightarrow M=\max$ burst $=6 \mathrm{Mbps}$

$$
\begin{aligned}
\rho & =\text { constant rate } \\
& =\text { token arrive rate } 1 \mathrm{Mbps}
\end{aligned}
$$

$\mathrm{C}=8 \mathrm{Mbps}$
$\mathrm{S}=$?
$S=\frac{C}{M-\rho}=\frac{8 \mathrm{Mbits}}{(6-1) \mathrm{Mbits} / \mathrm{sec}}$

$$
=\frac{8}{5} \mathrm{sec}=1.6 \mathrm{sec}
$$

9. Ans: (c)

Sol: Given L = 1000 bytes
$\mathrm{M}=50$ million bytes/sec
$\rho=10$ million bytes $/ \mathrm{sec}$
$\mathrm{C}=1 \times 10^{6}$ bytes
$\mathrm{S}=$?

$$
\begin{aligned}
\mathrm{S} & =\frac{\mathrm{C}}{\mathrm{M}-\rho}=\frac{1 \times 10^{6}}{50 \times 10^{6}-10 \times 10^{6}}=\frac{1}{40} \\
& =25 \mathrm{msec}
\end{aligned}
$$

10. Ans: $\mathbf{1 . 1}$

Sol: Given
Maximum burst rate, $\mathrm{M}=20 \mathrm{MBPS}$
Token arrival rate, $\mathrm{P}=10 \mathrm{MBPS}$
Constant rate(bucket o/p), $\mathrm{P}=10 \mathrm{MBPS}$
Bucket capacity, C = 1 MB
Time for $1 \mathrm{MB}, \mathrm{S}=\frac{\mathrm{C}}{(\mathrm{M}-\mathrm{P})}$

$$
\begin{align*}
& =\frac{1}{(20-10)} \\
& =0.1 \mathrm{sec} \ldots \tag{1}
\end{align*}
$$

\qquad
For the total message of 12 MB

So with the bursty rate (20 Mbps), the transmission of data during 0.1 sec is

$$
=20 \mathrm{MBps} * 0.1 \mathrm{sec}=2 \mathrm{MB}
$$

The remaining message $=12 \mathrm{MB}-2 \mathrm{MB}$

$$
=10 \mathrm{MB}
$$

So time taken required to transmit the remaining data of 10 MB with token arrival rate of 10 MBPS is
data $/$ data rate $=10 \mathrm{MB} / 10 \mathrm{MBps}=1 \mathrm{sec} \ldots(2)$
Total time is $=$ equation (1) + equation (2)

$$
=0.1+1 \mathrm{~s}=1.1 \mathrm{sec}
$$

11. Ans: (d)

Sol: Data in 1st segment is from byte number 230 to byte number 289 , that is 60 bytes As 1st is lost so, TCP will send ACK for the next in-order segment receiver is expecting. So it will be for 230 .
12. Ans: 29.256

Sol: $\mathrm{I}_{\mathrm{RTT}}=30 \mathrm{msec}, \propto=0.9$

$$
\mathrm{N}_{\mathrm{RTT}}=26
$$

$$
\mathrm{EMT}=\alpha\left(\mathrm{I}_{\mathrm{RTT}}\right)+(1-\alpha)\left(\mathrm{N}_{\mathrm{RTT}}\right)
$$

$$
\begin{equation*}
=0.9 \times 30+(1-0.9) \tag{26}
\end{equation*}
$$

$$
=29.6 \mathrm{msec}
$$

for second round

$$
\begin{aligned}
\mathrm{E}_{\mathrm{RTT}} & =\alpha * \mathrm{I}_{\mathrm{RTT}}+(1-\alpha) \mathrm{N}_{\mathrm{RTT}} \\
& =(0.9)(29.6)+(0.1)(32) \\
& =26.64+3.3=29.84 \mathrm{~ms}
\end{aligned}
$$

for third round

$$
\begin{aligned}
\mathrm{E}_{\mathrm{RTT}} & =\alpha * \mathrm{I}_{\mathrm{RTT}}+(1-\alpha) \mathrm{N}_{\mathrm{RTT}} \\
& =(0.9)(29.84)+(0.1)(24) \\
& =26.856+2.4=29.256 \mathrm{~ms}
\end{aligned}
$$

13. Ans: (a), (b) \& (d)

Sol: Header Checksum is part of IPv4 Datagram Header as it calculates the checksum for only Header. But, TCP calculates the checksum for both header and data.

14. Ans: (a) \& (c)

Sol: UDP is message oriented, unreliable connectionless datagram protocol. It is efficient for Broadcasting \& Multicasting. As UDP's Header is very small compared to TCP's Header, it has less overhead than TCP. TCP is Byte Oriented Protocol, but, UDP is message oriented protocol.

Chapter
9

Application Layer Protocols

1. Ans: (b)

Sol: Refer page 119 for the concept of base 64 encoding
02. Ans: (c)

Sol: The concept to be followed.
Step 1: The client(browser) initiates a DNS query for remote server. It may be that they already have this server in their DNS cache, in which case the client may simply send a TCP SYN directly to the application server.
Step 2: The client will next send a connection request to the application server. This will be a TCP SYN packet, the first in the TCP three-way handshake.
Step 3: Next, after the TCP connection has been established, the client will request data from the server. In the web-based application, the client performs an HTTP GET.
03. Ans: (c)

Sol: In DNS we need quick response than reliability hence it uses UDP.
04. Ans: (d)
05. Ans: (a) \& (b)

Sol: POP \& IMAP are called as pull protocols, but not DNS.

DNS Services:

i. Host name to IP address translation
ii. Host aliasing
iii. Mail sever aliasing
iv. Load distribution
06. Ans: (a) \& (c)

Sol: USER \& PASS are commands of FTP. HTTP commands are HEAD, GET, POST, PUT, DELETE, TRACE, OPTIONS. etc.

