

Computer Science & Information Technology

COMPILER DESIGN

Text Book: Theory with worked out Examples and Practice Questions

Compiler Design

(Solutions for Text Book Practice Questions)

Lexical Analysis

01. Ans: (a)

Chapter

2

Sol: Comments are deleted during lexical analysis, by ignoring comments.

02. Ans: (a)

Sol: The expansion of macro is done as the input, tokens are generated during the lexical analysis phase.

03. Ans: (a)

Sol: As soon as an identifier identifies as lexemes the scanner checks whether it is a reserved word.

04. Ans: (c)

Sol: Type checking is a semantic feature.

05. Ans: (d)

Sol: A compiler that runs on one machine and generates code for another machine is called cross compiler.

06. Ans: (b)

Sol: The object code which is obtained from Assembler is in Hexadecimal, which is not executable, but it is relocated.

07. Ans: (b) & (c)

- **Sol:** Syntax analysis can be expanded but the CFG describes the syntax becomes cumbersome.
- 08. Ans: (b), (c) & (d)
- **Sol:** The identifiers are entered into the symbol table during lexical analysis phase.

09. Ans: (a) & (d)

- **Sol:** As I/O to an external device is involved most of the time is spent in lexical analysis
- 10. Ans: 20
- 11. Ans: 7

Since

12. Ans: (b)

Sol: if, (, x , > =, y,), {, x, =, x, +, y, ;, }, else, {, x, =, x, -, y, ;, }, ;,

- 13. Ans: (a), (b) & (c)
- Sol: All are tokens only.

14. Ans: (b)

Sol: The specifications of lexical analysis we write in lex language, when it run through lex compiler it generates an output called lex.yy.c.

CSIT-Pos

CSIT-Postal Coaching Solutions

15. Ans: (c)

Sol: In \$50000; \$ is an illegal symbol identified in lexical analysis phase

16. Ans: (c)

Sol: Syntax tree is input to semantic analyzer. Character stream is input to lexical analyzer. Intermediate representation is input to code generation. Token stream is input to syntax analyzer.

17. Ans: (a) & (b)

- abc abc aa bbaac c caba c cbb Sol: 3 2 3 1 5 2 2 2 abc abc aa bbaac c ca bac cbb 3 2 2 3 1 5 2 5
- 18. Ans: (b)

Parsing Techniques

01. Ans: (b)

Sol: As + is left associative the left most + should be reduced first

So the sentence has an infinite number of derivations.

03. Ans: (a)

Sol: The grammar which is both left and right recursive is always ambiguous grammar.

Sol:

Hence option (d) is correct.

Engineering Publications	3 Compiler Design
05. Ans: 2 Sol: E + E + E + E + E + E + E + E + E + E +	12. Ans: 144 Sol: $3-2*4$2*3$2$ 1*4\$2*3\$2 1*16*9 16*9 = 144
06. Ans: (c) Sol: $\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$	 13. Ans: (b) Sol: Rule 'a' evaluates to 4096 Rule 'b' evaluates to 65536 Rule 'c' evaluates to 32 14. Ans: (c) Sol: A bottom up parsing technique builds the derivation tree in bottom up and simulates a rightmost derivation in reverse
07. Ans: (d) Sol: $S \rightarrow Ad \rightarrow Sad$ is indirect left recursion	on. 15. Ans: (a), (b) & (c)
08. Ans: (c) Sol: The production of the form $A \rightarrow A$	Sol: Operator precedence parser is a shift reduce parser. A α/β is
left recursive and can be elimin replacing with $A \rightarrow \beta A^1$ $A^1 \rightarrow \alpha A^1/\epsilon$	ated by 16. Ans: (c) Sol: first(s) = first(A) \cup first(a) \cup first (Bb) = {d} \cup {f, a} \cup {e, b}={a,b,d,e,f}
 09. Ans: (d) Sol: ↑ is least precedence and left associa + is higher precedence and right associa 10. Ans: (a) & (c) 	tive tive $= \{f, \in\} - \{\in\} \cup \text{ follow } (S)$ $= \{f\} \cup \{\$\}$ $= \{f, \$\}$
11. Ans: (b) & (d) Sol: -> *, + = *	 18. Ans: (c) Sol: first(A) = {a, c}, follow(A) = {b, c} first(A) ∩ follow(A) = {c}
India's Best OnlineEnjoy a smooth	Coaching Platform for GATE, ESE, PSUs, SSC-JE, SSC, Banks, Groups & PSC Exams oth online learning experience in various languages at your convenience

Engineering Publications	4	CSIT-Postal Coachin	g Solutions
19. Ans: (d)	2	8. Ans: (a)	
Sol: Follow(B) = First(C) \cup First(x) \cup Follow (D)	5	bl: First(A)= $\{*, +, id, \in\}$	
$= \{y, m\} \cup \{x\} \cup Follow(A) \cup First(B)$)	$Follow(A) = \{d, \$\}$	
$= \{y, m, x\} \cup \{\$\} \cup \{w, x\}$			
$= \{w, x, y, m, \$\}$	2	. Ans: (a)	
	5	bl: A left recursive grammar cannot	: be LL(1).
20. Ans: (a)			
Sol: $Follow(S) = \{\}\}$	2	5. Ans: (c)	•
Consider $S \rightarrow [SX]$		DI: The grammar is not LL(1),	as on input
Follow(S) = First(X)		symbol a there is a choice.	
$= \{+,-,b\} \cup \{]\}$		The grammar is not $LL(2)$, as in is a choice	iput ab there
$= \{+, -, b,]\}$		The grammar is $LL(3)$ as on in	out abc there
Consider $X \rightarrow + SY$		is no choice.	
Follow(S) = First (Y)		5. Ans: (c)	
$= \{-\} \cup Follow(X)$		ol: To distinguish between	
$= \{-\} \cup \{c,]\}$		$S \rightarrow if expr then stmt$	
$= \{-, c,]\}$		& S \rightarrow if expr then stmt else stm	nt
Consider $Y \rightarrow -S X c$		We need a look ahead of 5 symb	ols.
Follow(S) = First(X)			
$= \{+, -, b\} \cup \text{First}(c)$	2	/. Ans: (c)	
$= \{+, -, b, c\}$	5	l: * has a higher precedence than +	
:. Follow(S) = $\{+, -, b, c,], \}$		Consider	
		Ę	
21. Ans: (c)			
Sol: Follow(1) = $\{+, \}$		$\downarrow^{\Gamma} \downarrow^{+} \downarrow$	
$First(S) = \{a, +, \varepsilon\}$		$\begin{array}{ccc} T & T & F \\ \downarrow & \downarrow & \downarrow \end{array}$	
$\therefore \text{ Follow}(1) \cap \text{First}(S) = \{+\}$		F F id	
22 Ans: (d)		↓ ↓ id id	
Sol. Follow(Δ)=firet(B)=Follow(S)=Follow(B)			
$= \int e^{1 + i} \int e^{1 + i} e^{-i} de^{0}$	2	8. Ans: (c)	
$- \{ \mathbf{c} \} \cup \{ \mathbf{i} \} \cup \{ \mathbf{c}, \mathbf{u} \} - \{ \mathbf{c}, \mathbf{u}, \mathbf{c}, \mathbf{p} \}.$	5	bl: M[B,y] contains both $B \rightarrow yA$ and	d B $\rightarrow \epsilon$

 Regular Live Doubt clearing Sessions
 Free Online Test Series
 ASK an expert

 Affordable Fee
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

A ace online

155 - FR	ACE				
K)	Engineering Publications		5		Compiler Design
29.	Ans: (c)			37.	Ans: (d)
Sol:	$A \rightarrow \varepsilon$ production is	s added in 'A' row and	1	Sol:	$Lead(S) = \{a\} \cup \{c\} \cup Lead(B) \cup \{d\}$
	Follow(A) column.				$=$ { a,c,d,e}
30.	Ans: (d)			38.	Ans: (b)
Sol:	$S{\rightarrow}aSbs$ and $S{\rightarrow}\epsilon$ I	both appear in 'S' row	7	Sol:	$Trail(E) = \{+\} \cup Trail(T)$
	and 'a' column.				$= \{+, *\} \cup \text{Trail}(F)$
					$= \{+, *,), id\}$
31.	Ans: 0			39	Ans: (b)
Sol:	The grammar is LL(I) Since the parse table	e '	Sol	Lead (E) >+ and lead (E) contains $\{\pm \uparrow id\}$
	is free from multiple	entries	RI	VC	
32	Ans: (c)	ENC		40.	Ans: (d)
Sol:	Follow(S) = $\{\$, a\}$	<u> </u>		Sol:	Possible relations with 'c' are $d>c$ and $c >$ \$
~ • • • •	Follow(A) = $\{a\}$	1 Y			only.
	$S \rightarrow \in$ is entered	into $M[S, follow(S)]$	1		
		$= S \rightarrow \in$		41.	Ans: (b)
	$A \rightarrow S$ is entered	into M[S, follow(A)	1	Sol:	The grammar $E \rightarrow E + E/a$ can have an
		$= A \rightarrow S$			operator precedence parser but not an LR
33	Ans: (a) & (d)			<	parser.
Sol·	An operator gramma	r is s-free grammar and	ŧ _ 1	60	
501.	no two non terminals	are adjacent		42. S. I.	Ans: (a)
		, are adjucent.		501:	$E \rightarrow E + T + T + T \rightarrow i$
34.	Ans: (c)				$E \rightarrow E + 1 \mid 1, 1 \rightarrow 1$ is left recursive. So it is not II(1) but is
Sol:	An operator gramm	ar is 'ε' free gramma	r		I R(0) So (a) is true & (b) is false
	and no two non-term	inals are adjacent.			The grammar
25					$S \rightarrow a \mid aA$
35. Sol:	Ans: (D) The precedence	relation between two			$A \rightarrow b$
	adjacent terminals is	=.			has the LR(0) machine
20	Amas (d)				
30. Sol:	Ans: (d) As per normal HLL	rules exponentiation is	5		$\begin{array}{c c} S \rightarrow .a \\ \hline S \rightarrow .a \\ \hline S \rightarrow .a \\ \hline \end{array} \qquad \begin{array}{c c} S \rightarrow a. \\ \hline S \rightarrow a. \\ \hline S \rightarrow a. \\ \hline \end{array}$
	right associative wh	here as -, +, * are lef	t		$\begin{vmatrix} & S \rightarrow .aA \\ & A \rightarrow .b \end{vmatrix}$
	associative.				Hence not LR(1) but is SLR(1).
		India's Best Online Coaching	 Platfor	m for	GATE, ESE, PSUs, SSC-JE, SSC, Banks, Groups & PSC Exams
	D online	Enjoy a smooth online	e learni	ing ex	perience in various languages at your convenience

 India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, SSC, Banks, Groups & PSC Exams

 Enjoy a smooth online learning experience in various languages at your convenience

ACE 9 The given grammar is LR(0) as there are no Chapter 4 conflicts. Every LR(0) grammar is SLR(1), LALR(1) and LR(1). Given grammar is left recursive and it is not LL(1). 01. Ans: (c) 66. Ans: (d)

Sol: The grammar is LL(1)

Every LL(1) is LR (1)

67. Ans: (b)

68. Ans: (b)

Sol: SLR(1) & LALR(1) have the same number of states. LR(1) may have more.

69. Ans: 10

Sol: The number of states in both SLR(1) and LALR(1) are same.

70. Ans: (c)

Sol: YACC uses LALR(1) parse table as it uses less number of states requires less space and takes less time for the construction of parse tree.

Syntax Directed Translation Schema

Sol: SDT is part of Semantic Analysis

02. Ans: (a) & (b)

Sol: The attribute 'val' is synthesized and the SDT is S-attributed and every 'S'-attributed is L-attributed definition

- 03. Ans: (a) & (c)
- **Sol:** $P \rightarrow YQ\{Q.q = g(P.p,Y.y)\}$

Q is taking values from parents and Left siblings. \rightarrow L-attributed

Since Left siblings are involved not S-attributed.

04. Ans: (c)

Sol: The SDD is used to convert the given binary number to decimal number and the answer is 5.625

Regular Live Doubt clearing Sessions|Free Online Test Series | ASK an expertAffordable Fee|Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

ACE Engineering Publications

Chapter 5

Intermediate Code Generation

01. Ans: (c)

Sol: The purpose of using intermediate codes in compilers is to reuse machine independent code for other compilers.

02. Ans: (a), (b) & (c)

Sol: The final result is the machine language code. The others are all standard intermediate forms.

03. Ans: (a), (b) & (c)

Sol: TAC is a statement that contains atmost three memory references.

04. Ans: (a), (b) & (c)

Sol: TAC can be implemented as a record structure with fields for operator and arguments as Quadruples, triples and indirect triples.

05. Ans: (b)

- **Sol:** The Quadruples is record structure with four fields.
 - $1. (*, b, c, T_1)$
 - 2. $(+, a, T_1, T_2)$
 - 3. (-, T₂, d, T₃)

06. Ans: (c)

- **Sol:** (1) (and, b, c, T₁) (2) (or, a, T₁, T₂, c, T₃)
 - (3) (or, T₂, c, T₃)

07. Ans: (a)

Sol: 1. (+, b, c) 2. (NEG, (1)) 3. (*, a, (2))

08. Ans: 3

Sol: Rewriting the given assignments $x_1 = u_1 - t_1; \rightarrow$ needs two new variables $y_2 = x_1 * v_1; \rightarrow$ needs three new variables $x_3 = y_2 + w_1; \rightarrow$ needs four new variables $y_4 = t_2 - z_1; \rightarrow$ needs five new variables $y_5 = y_2 + w_1 + y_4; \rightarrow$ needs 3 new variables atmost

09. Ans: (b)

Sol: All assignments in SSA are to variables with distinct names

$$p_3 = a - b$$

 $q_4 = P_3 * c$
 $p_4 = u * v$
 $q_5 = P_4 + q_4$

- 10. Ans: (d)
- **Sol:** Peephole optimization expression is the final code.

11. Ans: (d)

Sol: DAG for the expression a*b*b is

12. Ans: (b)

Sol: DAG is constructed based on precedence and associativity of operators and option (b) is the correct representation.

 Regular Live Doubt clearing Sessions
 |
 Free Online Test Series | ASK an expert

 Affordable Fee
 |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

ACE Engineering Publications

13. Ans: 4

Sol: + a + e

Number of nodes = 4

14. Ans: (b)

15. Ans: (a)

Sol: In C the storage for array is row major order. Between X[l] [32] [8] & X [l+1] [32] [8] there must be 32×8 integer of type int i.e 32×8×4 = 1024 bytes. So in X[i] [j] [k] for a variation of index i by 1, 1024 bytes must be skipped. So the answer must be (a)

16. Ans: (b)

- **Sol:** (1) (+, c, d)
 - (2) (–, b, (1))
 - (3) (*, e, f)
 - (4) (+, (2), (3))

(5) (=, a, (4))

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

Chapter 6

Code optimization

01. Ans: (a)

Sol: It is called reduction in strength example: replace * by +

02. Ans: (c)

Sol: It is classical example of reduction in strength

03. Ans: (c)

Sol: Machine dependent optimization based on the machine properties and machine dependent optimization is one of it.

04. Ans: (a) & (b)

Sol: Copy propagation generally creates dead code that can then be eliminated. Eliminating dead code improves efficiency of the program by avoiding the execution of unnecessary statements at run time. If one variable is assigned to another, replace uses of the assigned variable with the copied variable.

05. Ans: (c)

Sol: A fragment of code that resides in the loop and computes the same value at each iteration is called loop-invariant code.

ACE Engineering Publications

14

CSIT-Postal Coaching Solutions

06. Ans: (a)

Sol: Eliminating dead code improves efficiency of the program by avoiding the execution of unnecessary statements at run time

07. Ans: (c)

Sol: Before compilation a = b + 2*2.5 after compilation a = b + 5

08. Ans: (b)

Sol: Control flow graph of the above code is

09. Ans: (b)

Sol: b + c is not common sub expression as the value of b changed between 1^{st} and 3^{rd} statements.

10. Ans: (b)

Sol: It has many advantages like optimization and Program analysis is more accurate on intermediate code than on machine code.

11. Ans: (d)

Sol: $x = 4 * 5 \Rightarrow x = 20$ is called constant folding.

12. Ans: (d)

Sol: Two *for loops* can be optimized here as code contains loop-invariant computation.

4*j can be evaluated once so there is scope of common sub expression elimination in this code.

The operator * can be replaced by + so there is scope of strength reduction in this code. No dead code in this program segment.

