

India’s	Best	Online	Coaching	Platform	for	GATE,	ESE,	PSUs,	SSC‐JE,	SSC,	Banks,	Groups	&	PSC	Exams	

Enjoy	a	smooth	online	learning	experience	in	various	languages	at	your	convenience	

01. Ans: (a)

Sol: Comments are deleted during lexical

analysis, by ignoring comments.

02. Ans: (a)

Sol: The expansion of macro is done as the input,

tokens are generated during the lexical

analysis phase.

03. Ans: (a)

Sol: As soon as an identifier identifies as

lexemes the scanner checks whether it is a

reserved word.

04. Ans: (c)

Sol: Type checking is a semantic feature.

05. Ans: (d)

Sol: A compiler that runs on one machine and

generates code for another machine is called

cross compiler.

06. Ans: (b)
Sol: The object code which is obtained from

Assembler is in Hexadecimal, which is not

executable, but it is relocated.

07. Ans: (b) & (c)
Sol: Syntax analysis can be expanded but the

CFG describes the syntax becomes

cumbersome.

08. Ans: (b), (c) & (d)

Sol: The identifiers are entered into the symbol

table during lexical analysis phase.

09. Ans: (a) & (d)

Sol: As I/O to an external device is involved

most of the time is spent in lexical analysis

10. Ans: 20

11. Ans: 7

12. Ans: (b)

Sol: if, (, x , > =, y,), {, x, =, x, +, y, ; , },

else, {, x, =, x, –, y, ; , }, ; ,

13. Ans: (a), (b) & (c)

Sol: All are tokens only.

14. Ans: (b)

Sol: The specifications of lexical analysis we

write in lex language, when it run through

lex compiler it generates an output called

lex.yy.c.

Lexical	Analysis 2
Chapter

Compiler	Design	
	(Solutions	for	Text	Book	Practice	Questions)	

2 CSIT-Postal Coaching Solutions

Regular	Live	Doubt	clearing	Sessions			|				Free	Online	Test	Series	|	ASK	an	expert	

Affordable	Fee		|			Available	1M	|3M	|6M	|12M	|18M	and	24	Months	Subscription	Packages	

15. Ans: (c)

Sol: In $50000; $ is an illegal symbol identified

in lexical analysis phase

16. Ans: (c)

Sol: Syntax tree is input to semantic analyzer.

Character stream is input to lexical analyzer.

Intermediate representation is input to code

generation. Token stream is input to syntax

analyzer.

17. Ans: (a) & (b)

Sol:
2

cbb

2

c

2

caba

2

c

5

bbaac

1

aa

3

abc

3

abc

2

cbb

5

bac

2

ca

2

c

5

bbaac

1

aa

3

abc

3

abc

18. Ans: (b)

01. Ans: (b)

Sol: As + is left associative the left most +

should be reduced first

02. Ans: (d)

Sol:

 So the sentence has an infinite number of

derivations.

03. Ans: (a)

Sol: The grammar which is both left and right

recursive is always ambiguous grammar.

04. Ans: (d)

Sol:

Hence option (d) is correct.

Parsing	Techniques 3
Chapter

S

S S

S S a

a a

S

S S

S S

S S

or

l321 kkkk SS....SSSSSS

aaa 321 kkk 

S

S

S

S

a b

b a

a b

b

3 Compiler Design

 India’s	Best	Online	Coaching	Platform	for	GATE,	ESE,	PSUs,	SSC‐JE,	SSC,	Banks,	Groups	&	PSC	Exams	

Enjoy	a	smooth	online	learning	experience	in	various	languages	at	your	convenience	

05. Ans: 2

Sol:

06. Ans: (c)

Sol:

07. Ans: (d)

Sol: S Ad  Sad is indirect left recursion.

08. Ans: (c)

Sol: The production of the form A → A / is

left recursive and can be eliminated by

replacing with

 A → βA1

 A1 →  A1/

09. Ans: (d)

Sol: ↑ is least precedence and left associative

+ is higher precedence and right associative

10. Ans: (a) & (c)

11. Ans: (b) & (d)

Sol: – > *, + = *

12. Ans: 144

Sol: 3–2*4$2*3$2

 1*4$2*3$2

 1*16*9

 16*9

 = 144

13. Ans: (b)

Sol: Rule ‘a’ evaluates to 4096

 Rule ‘b’ evaluates to 65536

 Rule ‘c’ evaluates to 32

14. Ans: (c)

Sol: A bottom up parsing technique builds the

derivation tree in bottom up and simulates a

rightmost derivation in reverse

15. Ans: (a), (b) & (c)

Sol: Operator precedence parser is a shift reduce

parser.

16. Ans: (c)

Sol: first(s) = first(A)  first(a)  first (Bb)

 = {d}  {f, a} {e, b}={a,b,d,e,f}

17. Ans: (c)

Sol: Follow(A) = first (C)

 = {f, } – {}  follow (S)

 = {f}  {$}

 = {f, $}

18. Ans: (c)

Sol: first(A) = {a, c}, follow(A) = {b, c}

 first(A)  follow(A) = {c}

E

E E

E

E E

E E E E

+

+

+

+ id

id id id id

id

S

a S b S

S b a




S



S

a b S S


S a b



S



4 CSIT-Postal Coaching Solutions

Regular	Live	Doubt	clearing	Sessions			|				Free	Online	Test	Series	|	ASK	an	expert	

Affordable	Fee		|			Available	1M	|3M	|6M	|12M	|18M	and	24	Months	Subscription	Packages	

19. Ans: (d)

Sol: Follow(B) = First(C)First(x)Follow (D)

 = {y, m} {x}  Follow(A) First(B)

 = {y, m, x}  {$}  {w, x}

 = {w, x, y, m, $}

20. Ans: (a)

Sol: Follow(S) = {$}

 Consider S  [SX]

 Follow(S) = First (X)

 = {+,–, b}  {]}

 = {+, – , b,]}

 Consider X  + SY

Follow(S) = First (Y)

 = {–}  Follow(X)

 = {–}  {c,]}

 = {–, c,]}

 Consider Y → – S X c

 Follow(S) = First(X)

 = {+, –, b}  First(c)

 = {+, –, b, c}

  Follow(S) = {+, – , b, c,], $}

21. Ans: (c)

Sol: Follow(T) = {+, $}

 First(S) = {a, +, }

  Follow(T)  First (S) = {+}

22. Ans: (d)

Sol: Follow(A)=first(B)Follow(S)Follow(B)

 ={e}  {f}  {c, d}={c,d,e,$}.

23. Ans: (a)

Sol: First(A)= {*, +, id, }

 Follow(A) = {d, $}

24. Ans: (a)

Sol: A left recursive grammar cannot be LL(1).

25. Ans: (c)

Sol: The grammar is not LL(1), as on input

symbol a there is a choice.

 The grammar is not LL(2), as input ab there

is a choice.

 The grammar is LL(3) as on input abc there

is no choice.

26. Ans: (c)

Sol: To distinguish between

 S → if expr then stmt

 & S → if expr then stmt else stmt

 We need a look ahead of 5 symbols.

27. Ans: (c)

Sol: * has a higher precedence than +.

Consider

28. Ans: (c)

Sol: M[B,y] contains both B→yA and B→ ε

E

E + T

T * F

F

T

F id

id id

5 Compiler Design

 India’s	Best	Online	Coaching	Platform	for	GATE,	ESE,	PSUs,	SSC‐JE,	SSC,	Banks,	Groups	&	PSC	Exams	

Enjoy	a	smooth	online	learning	experience	in	various	languages	at	your	convenience	

29. Ans: (c)

Sol: A →  production is added in ‘A’ row and

Follow(A) column.

30. Ans: (d)

Sol: S→aSbs and S→ both appear in ‘S’ row

and ‘a’ column.

31. Ans: 0

Sol: The grammar is LL(1) Since the parse table

is free from multiple entries

32. Ans: (c)

Sol: Follow(S) = {$, a}

 Follow(A) = {a}

 S→ is entered into M[S, follow(S)]

 = S→

 A→S is entered into M[S, follow(A)]

 = A→S

33. Ans: (a) & (d)

Sol: An operator grammar is -free grammar and

no two non terminals are adjacent.

34. Ans: (c)

Sol: An operator grammar is ‘’ free grammar

and no two non-terminals are adjacent.

35. Ans: (b)
Sol: The precedence relation between two

adjacent terminals is =.

36. Ans: (d)
Sol: As per normal HLL rules exponentiation is

right associative where as –, +, * are left

associative.

37. Ans: (d)

Sol: Lead(S) = {a}  {c}  Lead (B)  {d}

 = { a,c,d,e}

38. Ans: (b)

Sol: Trail(E) = {+}  Trail(T)

 = {+, *}  Trail(F)

 = {+, *,), id}

39. Ans: (b)

Sol: Lead (E) >+ and lead (E) contains {+, ↑, id}

40. Ans: (d)

Sol: Possible relations with ‘c’ are d>c and c >$

only.

41. Ans: (b)

Sol: The grammar E  E + E/a can have an

operator precedence parser but not an LR

parser.

42. Ans: (a)

Sol: The grammar

 E → E + T | T, T → i

 is left recursive. So it is not LL(1) but is

LR(0). So (a) is true & (b) is false.

 The grammar

 S → a | aA

 A → b

 has the LR(0) machine

 Hence not LR(1) but is SLR(1).

 S → .a
 S → .aA

 S → a.
 S → a.A
 A → .b

a

6 CSIT-Postal Coaching Solutions

Regular	Live	Doubt	clearing	Sessions			|				Free	Online	Test	Series	|	ASK	an	expert	

Affordable	Fee		|			Available	1M	|3M	|6M	|12M	|18M	and	24	Months	Subscription	Packages	

43. Ans: (d)

Sol: The grammar

 E → E +E | E  E | i

 Can have a shift reduce parser if we use the

precedence and associativity of operations.

The operator precedence technique works

with some ambiguous grammars.

44. Ans: (d)

Sol: The grammar

S → a | A, A → a

is neither LL(1) nor LR(0) & is ambiguous.

No ambiguous grammar can be LL or LR.

45. Ans: (a), (b) & (c)

Sol: No ambiguous grammar can be LR(1).

46. Ans: (c)

Sol: The grammar

 S → Aa | Bb

A → 

B →  is LL(1) but not LR(0)

 The LR(0) machine has a conflict.

 The grammar is

 S → a | ab

 Is LR(2) & not LR(1).

47. Ans: (a), (b) & (c)
Sol: Every LR(0) grammar is SLR(1)

 Every SLR(1) grammar is LALR(1)

 Every LALR(1) grammar is LR(1)
 The grammar S → a is both LL(1) & LR(0)

trivially.

48. Ans: (b)

Sol: Every LL(1) is LR(1)

49. Ans: (a)

Sol: The LR(0) machine for the grammar

50. Ans: (b)

Sol: The LR(0) machine

 E → FR

 R → E/
 F → id

51. Ans: (b)

Sol:

S → .Aa
S → .Bb

A → . 

B → . 

S → A.a S → Aa.

S → B.b S → Bb.

A → .

B → .
conflict

A

B



a

b E → .FR
F → .id

E → F.R
R → .*E
R → . 

E → FR.

R → .

F →id. R → *.E
E → .FR
F → .id

R → *E.
E

F *



R

F

id

id

<life> → . <session> <session>
<session> → . play <session>
<session> → . rest

<life> → <session> <session>
<session> → . play <session>
<session> → . rest

<life> → <session> <session>.

<session>→ play. <session>
<session> → .<session> <session>
<session> → .play <session>
<session> → .rest

<life> → <session> <session>.

<session> → rest.

<session>

<session>
<session> <session> play

rest
rest

rest

play

 S1→.S
 S→.SB
 S→.A
 A→.a

7 Compiler Design

 India’s	Best	Online	Coaching	Platform	for	GATE,	ESE,	PSUs,	SSC‐JE,	SSC,	Banks,	Groups	&	PSC	Exams	

Enjoy	a	smooth	online	learning	experience	in	various	languages	at	your	convenience	

52. Ans: 7

Sol:

53. Ans: 6

Sol:

54. Ans: 2

Sol:

55. Ans: (b)

Sol: An input ‘a’ the set has

A→Ba.c, B→a. C→.

56. Ans: (d)

Sol: The grammar is ambiguous.

There are two derivation trees for the

sentence i + i + i. As the grammar is

ambiguous it cannot be LL or LR. So, (a),

(b), (c), are ruled out. The answer is (d).

57. Ans: 2

Sol: The LR(0) items of the grammar is

 Reduce – Reduce conflict.

58. Ans: (a)

Sol:

Consider the partial LR(1) machine shown

above. The states Ⓧ & Ⓨ have a common

core. However if we merge the states to
obtain the LALR(1) machine we will end up
with conflicts. So the grammar is LR(1) but
not LALR(1).

S1→.S
S.AA
A.aA
A.b

SA.A
A.aA
A.b

S1.S

Aa.A
A.aA
A.b

Ab.

AaA.

SAA.

b

a

A

S

A

a

b

A
 a

b

(4)

(5)

(5)

(4)

(6)

(7)

(2)

(3)

(4)

(5)

(1)
 A

A + A

A + A

i

i

Or

A

A + A

A + A

i

i

i i

S1 → .S, $
S → . aAd, $
S → .bBd, $
S → .aBe, $
S → .bAe,

S → a.Ad, $
S → a.Be, $
A → .c, d
B → .c, e

A → c., d
B → c., e

b

c
b

S → b.Bd, $
S → b.Ae,$
B → .c, d
A → .c, e

A → c., e
B → c., d

Ⓨ

Ⓧ

c

S1 → . S
S → . AaAb
S → . BbBa
A → . d

B → .d

A → d.I
B → d.

d

E1 → . E
E → . E + T
E → . T
T → . T * F
T → .F
F → . id

T

E

E → T.
T → T.*
F

E1 → E.
E→E.+T

S – R
conflict

+

E→E+T.
T→T.*F S – R

conflict

T

E→E+.T
T→.T*F
T→.F
F→.id

S1→.S
S→.aBb
S→.d

S→a.Bb
B→.BeS
B→.S
B→.f
S→.aBb
S→.d

I0

a

8 CSIT-Postal Coaching Solutions

Regular	Live	Doubt	clearing	Sessions			|				Free	Online	Test	Series	|	ASK	an	expert	

Affordable	Fee		|			Available	1M	|3M	|6M	|12M	|18M	and	24	Months	Subscription	Packages	

59. Ans: (a)

Sol:

Consider the partial LR(1) machine above.

The states Ⓧ&Ⓨ have a common core but

different look ahead sets. If we merge

Ⓧ&Ⓨ So obtain the LALR(1) a conflict

arise.

60. Ans: (b)

Sol: LR(1) items of the grammar is

 Item 3 has Shift-Reduce conflict.

61. Ans:(d)

Sol:

As there is no conflict the grammar is in

LALR(1).

62. Ans: (c)

Sol: S→.A,$ S→. A, $

 A→. AB, $/ Follow (A)  A→. AB, $/b

 A→. , $/ Follow (A) A→., $/b

63. Ans: (d)

Sol:

64. Ans: (c)

Sol:

65. Ans: (b)

Sol:

S → .Aa, $
S → . bAc, $
S → .Bc, $
S → .bBa, $
A → .d, a
B → .d, c

S → b.Ac, $
S → b.Ba, $
A → .d, c
B → .d. a

A → d., a
B → d., c

A → d., c
B → d., a

b

d

d Ⓧ

Ⓨ

 ③

② ①

a
A1  .A, $
A  .aA, $/b
A  .Ab, $/b
A  .d, $/b

A  a. A,$/b
A  .aA, $/b
A  .Ab, $/b
A  .d, $/b

A A  aA. $/b
A  A.d, $/b

A  Ab., $/b

b

S  . S, $
S  .Aa, $
S  .bAc, $
S  .dc, $
S  .bda, $
A  .d, a

S  b. Ac, $
S  b. da, $
A  . d, c

S  bd . a, $
A  d ., c

S  d. c, $
A  d . , a

b

d

d

a

I5

I4I1
I0

S→bda.,$

S  dc., $

c
I2

I3

S1  .S. $
S . L=R, $
S . R, $
L→. *R,=/ $
L→.id, = /$
R→.L, $

S  a.S., $
S  S. a, $

S1  .S, $
S .aS, $
S .Sa, $
S→.a, $

S1  S, $
S  S. a, $

S

S  a.S, $
S  a., $
S→.a, s, S→Sa.$, S→.a,$

a
3-Reduce-Conflict S-R Conflict

No. of conflicts=2

S

S1 →. S
S→.
SS+
S→.
SS*
S→. a

S S1 → S.
S→ S.
S+
S→ S.
S*
S→. SS+
S→.SS*
S→.a

S S →
SS.+
S→ SS.*
S→
S.S+
S→ S.S*
S→.SS+
S→.SS*
S→.a

9 Compiler Design

 India’s	Best	Online	Coaching	Platform	for	GATE,	ESE,	PSUs,	SSC‐JE,	SSC,	Banks,	Groups	&	PSC	Exams	

Enjoy	a	smooth	online	learning	experience	in	various	languages	at	your	convenience	

 The given grammar is LR(0) as there are no

conflicts. Every LR(0) grammar is SLR(1),

LALR(1) and LR(1). Given grammar is left

recursive and it is not LL(1).

66. Ans: (d)

Sol: The grammar is LL(1)

 Every LL(1) is LR (1)

67. Ans: (b)

68. Ans: (b)

Sol: SLR(1) & LALR(1) have the same number

of states. LR(1) may have more.

69. Ans: 10

Sol: The number of states in both SLR(1) and

LALR(1) are same.

70. Ans: (c)

Sol: YACC uses LALR(1) parse table as it uses

less number of states requires less space and

takes less time for the construction of parse

tree.

01. Ans: (c)

Sol: SDT is part of Semantic Analysis

02. Ans: (a) & (b)

Sol: The attribute ‘val’ is synthesized and the

SDT is S-attributed and every ‘S’-attributed

is L-attributed definition

03. Ans: (a) & (c)

Sol: P → YQ{Q.q = g(P.p,Y.y)}

Q is taking values from parents and Left

siblings. → L-attributed

Since Left siblings are involved not

S-attributed.

04. Ans: (c)

Sol: The SDD is used to convert the given binary

number to decimal number and the answer is

5.625

Syntax	Directed	Translation	Schema 4
Chapter

S1  .S
S  .(S)
S  .

attribute SDT

attribute SDT

10 CSIT-Postal Coaching Solutions

Regular	Live	Doubt	clearing	Sessions			|				Free	Online	Test	Series	|	ASK	an	expert	

Affordable	Fee		|			Available	1M	|3M	|6M	|12M	|18M	and	24	Months	Subscription	Packages	

05. Ans: (c)

Sol: For input: a + b – c

06. Ans: (c)

Sol:

Bottom up traversal of the parse tree results

the output: 10.

07. Ans: (b)

Sol: counts the pairs of matching parenthesis.

08. Ans: (c)

Sol: (A (AB))

09. Ans: (c)

Sol: The rightmost derivation is

 E → E +E → E + E + E

 → E + E + E + E

 → E + E + E + E + E

  a + b + c + d + e

10. Ans: (c)

Sol: The leftmost derivation for aaaa is

 S → aS

 → aaS

 → aaaS

 → aaaa

The dependency graph

11. Ans: (a)

Sol: The rightmost derivation is

 S → aB → aa BB →aa Bb → aa bb

S
4 4

S a

3 3

a S

2 2

a S

1
a

E = – + abc

E = + ab – T = c

E = a + T = b

T = a b

c

a

S

S

S

S c

S c

a b

b

AND(A, OR(NOT(A),B))

OR(NOT(A),B)

OR(NOT(A),B)

G

F

Neg(AND(A, OR(NOT(A),B)))

Neg(AND(A, OR(NOT(A),B)))

 F
1

AND(A, OR(NOT(A),B))

()F

A=
F

F 

(F)

A=
F

 F=
B

A B

11 Compiler Design

 India’s	Best	Online	Coaching	Platform	for	GATE,	ESE,	PSUs,	SSC‐JE,	SSC,	Banks,	Groups	&	PSC	Exams	

Enjoy	a	smooth	online	learning	experience	in	various	languages	at	your	convenience	

12. Ans: (c)

Sol: S → aA {print 1}

 S → a {print 2}

 A → Sb {print 3}

 Input: aab

13. Ans: (b)

Sol:

The depth first traversal of a parse tree
generates an output 5, 3, 4, 1.

14. Ans: (a) & (c)
Sol:

15. Ans: (b)

Sol: As the grammar is ambiguous & we do not

specify the precedence of operators either

postfix form may result depending on the

parser implementation.

16. Ans: (a)

Sol: According to the action of shift reduce

parser, the parse tree constructed is

The Depth First Traversal of the above parse

tree is a b * c ↑

S

a A

S b

a

a a b

a s b

a A

S

231

A + A (1)

A + A (1)

a
 (2)

a (2)

a (2)

A + A (1)

A + A (1)

a (2) a (2)

a (2)

A A

E

E ↑ E print (↑)

E E * print (*) c print (c)

print (b) print(a) a b

S

X Y c
Print 1

 Print 4

c Print 5

Y b
L

Print
3S

12 CSIT-Postal Coaching Solutions

Regular	Live	Doubt	clearing	Sessions			|				Free	Online	Test	Series	|	ASK	an	expert	

Affordable	Fee		|			Available	1M	|3M	|6M	|12M	|18M	and	24	Months	Subscription	Packages	

01. Ans: (c)

Sol: The purpose of using intermediate codes in

compilers is to reuse machine independent

code for other compilers.

02. Ans: (a), (b) & (c)

Sol: The final result is the machine language

code. The others are all standard

intermediate forms.

03. Ans: (a), (b) & (c)

Sol: TAC is a statement that contains atmost

three memory references.

04. Ans: (a), (b) & (c)

Sol: TAC can be implemented as a record

structure with fields for operator and

arguments as Quadruples, triples and

indirect triples.

05. Ans: (b)

Sol: The Quadruples is record structure with four

fields.

1. (*, b, c, T1)

2. (+, a, T1, T2)

3. (–, T2, d, T3)

06. Ans: (c)

Sol: (1) (and, b, c, T1)

 (2) (or, a, T1, T2, c, T3)

 (3) (or, T2, c, T3)

07. Ans: (a)

Sol: 1. (+, b, c)

 2. (NEG, (1))

3. (*, a, (2))

08. Ans: 3

Sol: Rewriting the given assignments

 x1 = u1 – t1; → needs two new variables

 y2 = x1  v1; → needs three new variables

 x3 = y2 + w1; → needs four new variables

 y4 = t2 – z1; → needs five new variables

 y5 = y2 + w1 + y4; → needs 3 new variables

atmost

09. Ans: (b)

Sol: All assignments in SSA are to variables with

distinct names

 p3 = a – b

 q4 = P3 * c

 p4 = u * v

 q5 = P4 + q4

10. Ans: (d)

Sol: Peephole optimization expression is the final

code.

11. Ans: (d)

Sol: DAG for the expression a*b*b is

12. Ans: (b)

Sol: DAG is constructed based on precedence

and associativity of operators and option (b)

is the correct representation.

Intermediate	Code	Generation 5
Chapter

a b

*

*

13 Compiler Design

 India’s	Best	Online	Coaching	Platform	for	GATE,	ESE,	PSUs,	SSC‐JE,	SSC,	Banks,	Groups	&	PSC	Exams	

Enjoy	a	smooth	online	learning	experience	in	various	languages	at	your	convenience	

13. Ans: 4
Sol:

Number of nodes = 4

14. Ans: (b)
Sol:

 a = b + c
 c = a + d
 d = b + c
 e = d – b
 a = e + d

Number of nodes = 8
Number of edges = 10

15. Ans: (a)
Sol: In C the storage for array is row major order.

Between X[l] [32] [8] & X [l+1] [32] [8]

there must be 328 integer of type int i.e

3284 = 1024 bytes. So in X[i] [j] [k] for a

variation of index i by 1, 1024 bytes must be
skipped. So the answer must be (a)

16. Ans: (b)
Sol: (1) (+, c, d)
 (2) (–, b, (1))
 (3) (*, e, f)
 (4) (+, (2), (3))

(5) (=, a, (4))

01. Ans: (a)

Sol: It is called reduction in strength

example: replace * by +

02. Ans: (c)

Sol: It is classical example of reduction in

strength

03. Ans: (c)

Sol: Machine dependent optimization based on

the machine properties and machine

dependent optimization is one of it.

04. Ans: (a) & (b)

Sol: Copy propagation generally creates dead

code that can then be eliminated.

Eliminating dead code improves efficiency

of the program by avoiding the execution of

unnecessary statements at run time. If one

variable is assigned to another, replace uses

of the assigned variable with the copied

variable.

05. Ans: (c)

Sol: A fragment of code that resides in the loop

and computes the same value at each

iteration is called loop-invariant code.

Code	optimization 6
Chapter

+ a + e

c d

Nodes = 8
Edges = 10

a

+

–

+

+

+

b c

d

n1

n6

n7 n8

n4

n3

n2

e1 e2

e3

e4

e5

e6
e7

e8

a
e

d

e10
e9

14 CSIT-Postal Coaching Solutions

Regular	Live	Doubt	clearing	Sessions			|				Free	Online	Test	Series	|	ASK	an	expert	

Affordable	Fee		|			Available	1M	|3M	|6M	|12M	|18M	and	24	Months	Subscription	Packages	

06. Ans: (a)

Sol: Eliminating dead code improves efficiency

of the program by avoiding the execution of

unnecessary statements at run time

07. Ans: (c)

Sol: Before compilation a = b + 2*2.5 after

compilation a = b + 5

08. Ans: (b)

Sol: Control flow graph of the above code is

09. Ans: (b)

Sol: b + c is not common sub expression as the

value of b changed between 1st and 3rd

statements.

10. Ans: (b)

Sol: It has many advantages like optimization

and Program analysis is more accurate on

intermediate code than on machine code.

11. Ans: (d)
Sol: x = 4  5  x = 20 is called constant

folding.

12. Ans: (d)

Sol: Two for loops can be optimized here as

code contains loop-invariant computation.

 4*j can be evaluated once so there is scope

of common sub expression elimination in

this code.

The operator * can be replaced by + so there

is scope of strength reduction in this code.

 No dead code in this program segment.

Start

S
1

S2

S3–S9

S 10, 11

end

	CSIT_Compiler Design_Textbook_2023_15.0.pdf
	Page 1

