

GATE | PSUs

MECHANICAL ENGINEERING

Theory of Machines & Vibrations

Text Book: Theory with worked out Examples

and Practice Questions

Theory of Machines & Vibrations

(Solutions for Text Book Practice Questions)

Chapter 1

Analysis of Planar Mechanisms

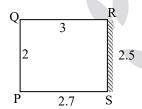
01. Ans: (a, c)

Sol:

- The pair shown has two degree of freedom one is translational (motion along axis of bar and the rotation (rotation about axis). Both motions are independent. Therefore the pair has incomplete constraint.
- Kinematic pair is a joint of two links having relative motion between them. The pair shown form a kinematic pair.

02. Ans: (c)

Sol:



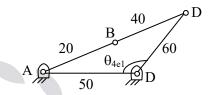
The given dimensions of the linkage satisfies Grashof's condition to get double rocker. We need to fix the link opposite to the shortest link. So by fixing link 'RS' we get double rocker.

03. Ans: (d)

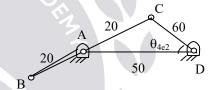
Sol: At toggle position velocity ratio is 'zero' so mechanical advantage is ' ∞ '.

04. Ans: (d)

Sol: The two extreme positions of crank rocker mechanisms are shown below figure.



$$\theta_{4e_1} = \cos^{-1} \left(\frac{50^2 + 60^2 - 60^2}{2 \times 50 \times 60} \right) = 65.37^0$$

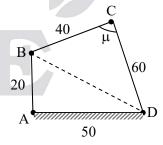


$$\theta_{4e_2} = \cos^{-1} \left(\frac{60^2 + 50^2 - 20^2}{2 \times 60 \times 50} \right) = 18.19^{\circ}$$

05. Ans: (a)

Sol: 5

Since



Where, $\mu = Transmission$ angle

$$BD = \sqrt{20^2 + 50^2} = 53.85 \, cm$$

By cosine rule

$$\cos \mu = \frac{BC^2 + CD^2 - BD^2}{2BC \times CD}$$

$$=\frac{40^2 + 60^2 - 53.85^2}{2 \times 40 \times 60} = 0.479$$

$$\mu = 61.37^{\circ}$$

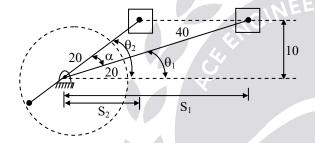
06. Ans: (c)

Sol: Two extreme positions are as shown in figure below.

Let r = radius of crank = 20 cm

l = length of connecting rod = 40 cm

h = 10 cm



Stroke =
$$S_1 - S_2$$

 $S_1 = \sqrt{(\ell + r)^2 - h^2} = \sqrt{60^2 - 10^2} = 59.16$ cm
 $S_2 = \sqrt{(\ell - r)^2 - h^2} = \sqrt{20^2 - 10^2} = 17.32$ cm
Stroke = $S_1 - S_2 = 59.16 - 17.32 = 41.84$ cm

07. Ans: (b)

Sol:
$$\theta_1 = \sin^{-1}\left(\frac{h}{\ell + r}\right) = \sin^{-1}\left(\frac{10}{60}\right) = 9.55^{\circ}$$

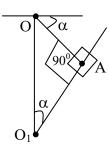
$$\theta_2 = \sin^{-1}\left(\frac{h}{\ell - r}\right) = \sin^{-1}\left(\frac{10}{20}\right) = 30^{\circ}$$

$$\alpha = \theta_2 - \theta_1 = 20.41^{\circ}$$
Quick return ratio

$$(QRR) = \frac{180 + \alpha}{180 - \alpha} = 1.2558$$

08. Ans: (c)

Sol:



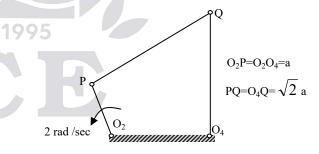
OO₁ = 40 cm, OA = 20 cm

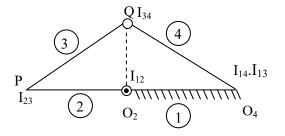
$$\sin \alpha = \frac{OA}{OO_1} = \frac{20}{40} = \frac{1}{2}$$

 $\Rightarrow \alpha = 30^{\circ}$
QRR = $\frac{180 + 2\alpha}{180 - 2\alpha} = \frac{180 + 60}{180 - 60}$
 $\Rightarrow QRR = 2$

09. Ans: (c)

Sol: $\angle O_4O_2P = 180^\circ$ sketch the position diagram for the given input angle and identify the Instantaneous Centers.





 I_{13} is obtained by joining I_{12} I_{23} and I_{14} I_{3}

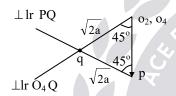
$$\frac{\omega_3}{\omega_2} = \frac{I_{12} I_{23}}{I_{13} I_{23}} = \frac{a}{2a}$$

$$\frac{\omega_3}{2} = \frac{1}{2}$$

 $\omega_3 = 1 \text{ rad /sec}$

Alternate Method:

The position diagram is isosceles right angle triangle and the velocity triangle is similar to the position diagram.



Velocity (Diagram)

$$V_{qp} = \omega_3 l_3 \Rightarrow \sqrt{2}a = \omega_3 \times \sqrt{2}a$$

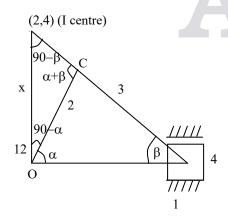
$$\omega_3 = 1$$

$$V_q = l_4 \omega_4 \Rightarrow \sqrt{2}a = \sqrt{2}a \omega_4$$

 $\Rightarrow \omega_4 = 1 \text{rad/sec}$

10. Ans: (b)

Sol:



$$OC = r$$

Velocity of slider
$$V_S = (12 - 24) \times \omega_2$$

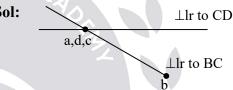
$$\frac{x}{\sin(\alpha+\beta)} = \frac{r}{\sin(90-\beta)}$$

$$x = \frac{r \sin(\alpha + \beta)}{\sin(90 - \beta)}$$

$$V_S = r \omega_2 \sin (\alpha + \beta) \times \sec \beta$$
$$= V_C \sin (\alpha + \beta) \times \sec \beta$$

11. Ans: (a)

Sol:



Velocity diagram

$$V_C = 0 = dc \times \omega_{CD}$$

$$\omega_{\rm CD} = 0$$

Note: If input and coupler links are collinear, then output angular velocity will be zero.

12. Ans: (c)

1995

Since

Sol: In a four bar mechanism when input link and output links are parallel then coupler velocity(ω_3) is zero.

$$\Rightarrow l_2 \omega_2 = l_4 \omega_4$$

$$l_4 = 2l_2$$
 (Given)

$$\Rightarrow \omega_4 = \omega_2 / 2 = 2/2 = 1 \text{ rad/s}$$

 ω_2 , ω_4 = angular velocity of input and output link respectively.

Fixed links have zero velocity.

At joint 1, relative velocity between fixed link and input link = 2-0=2

Rubbing velocity at joint 1 = Relative velocity × radius of pin = $2 \times 10 = 20$ cm/s At joint 2, rubbing velocity = $(\omega_2 + \omega_3) \times r$

$$= (2+0)\times 10 = 20 \text{ cm/s}$$

+ve sign means ω_2 and ω_3 are moving in opposite directions.

At joint 3, rubbing velocity = $(\omega_4 + \omega_3) \times r$

$$= (1+0) \times 10 = 10 \text{ cm/s}$$

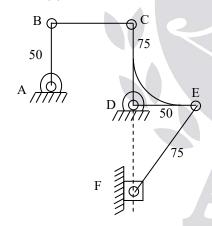
At joint 4, rubbing velocity

=
$$(\omega_4 - 0) \times r$$

= $(1 - 0) \times 10 = 10$ cm/s

13. Ans: (a)

Sol:



Considering the four bar mechanism ABCD, $l_2||\ l_4$

$$\therefore \ell_2 \omega_2 = \ell_4 \omega_4 \Longrightarrow \omega_4 = \frac{50 \times 3}{75} = 2 \text{ rad/sec}$$

CDE being a ternary link angular velocity of DE is same as that of the link DC (ω_4).

For the slider crank mechanism DEF, crank is perpendicular to the axis of the slider.

∴ Slider velocity = DE×
$$\omega_4$$

= 50×2
= 100 cm/sec (upward)

14. Ans: (a)

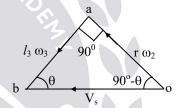
Sol: Here as angular velocity of the connecting rod is zero so crank is perpendicular to the line of stroke.

$$V_s$$
 = velocity of slider = $r\omega_2$
2 = 1 × ω_2 $\Rightarrow \omega_2$ = 2 rad/sec

15. Ans: (d)

Sol:

Since



Here the crank is perpendicular to connecting rod

Velocity of rubbing = $(\omega_2 + \omega_3) \times r$

Where, r = radius of crank pin

From the velocity diagram $V_{AB} = ab = ?$

$$oa = \omega_2 \times r = 10 \times 0.3 = 3 \text{ m/sec}$$

 Δ oab is right angle Δ .

$$\tan \theta = \frac{\text{oa}}{\text{ab}} = \frac{40}{30} \implies \theta = 53.13^{\circ}$$

$$\tan\theta = \frac{r\omega_2}{\ell\omega_3}$$

where,
$$n = \frac{\ell}{r}$$

$$\omega_3 = \frac{\omega_2}{n^2} = \frac{10}{\left(\frac{4}{3}\right)^2} = \frac{90}{16} = 5.625 \text{(CW)}$$

$$V_{rb} = (\omega_2 + \omega_3) \times r$$

= (10+ 5.625) × 2.5 = 39 cm/s

16. Ans: (d)

Sol: As for the given dimensions the mechanism is in a right angle triangle configuration and the crank AB is perpendicular to the lever CD. The velocity of B is along CD only which is purely sliding component

:. Velocity of the slider

$$=AB\times\omega_{AB}=10\times250=2.5\,m/\sec$$

17. Ans: (a)

Sol: QRR =
$$\frac{180 + 2\alpha}{180 - 2\alpha} = \frac{2}{1} \Rightarrow \alpha = 30^{\circ}$$

 $\sin \alpha = \frac{OS}{OP} \Rightarrow OS = \frac{OP}{2} = 250 \text{mm}$

18. Ans: (b)

Sol: Maximum speed during forward stroke occurs when PQ is perpendicular to the line of stroke of the tool i. e. PQ, OS & OQ are in straight line

$$\Rightarrow V = 250 \times 2 = 750 \times \omega_{PQ}$$

$$\Rightarrow \omega_{PQ} = \frac{2}{3}$$

19. Ans: (d)

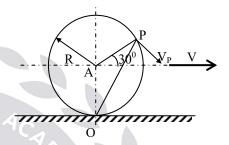
$$V_Q = V_P + V_{PQ}$$
 V_{PQ}

Ans: (a)

Sol: For rigid thin disc rolling on plane without slip. The 'I' centre lies on the point of contact.

21. **Ans:** (a)

Sol:



Here 'O' is the instantaneous centre

$$V_P = \omega \times OP$$

$$V_A = R\omega$$

In
$$\triangle$$
 OAP, $\cos 120^\circ = \frac{R^2 + R^2 - OP^2}{2R \times R}$

$$-0.5 = \frac{2R^2 - OP^2}{2R^2}$$

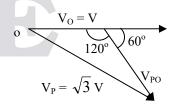
$$OP = \sqrt{3}R$$

$$-0.5 = \frac{2R^2 - OP^2}{2R^2}$$

$$OP = \sqrt{3}R$$

$$V_P = \sqrt{3}R \times \omega = \sqrt{3}V$$

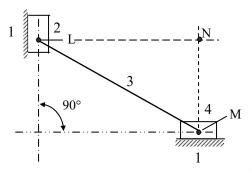
or



$$V_{P} = \vec{V}_{O} + \vec{V}_{PO} = \vec{V} + \overrightarrow{OP} \times \omega$$
$$= \sqrt{V^{2} + V^{2} + 2V^{2} \cos 60} = \sqrt{3} V$$

22. Ans: (d)

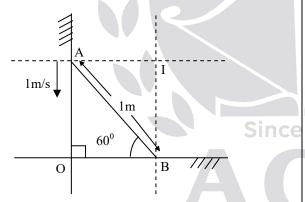
Sol:



By considering the links 1, 2 and 4 as for three centers in line theorem, I_{12} , I_{14} and I_{24} lies on a straight line I_{12} is at infinity along the horizontal direction while I_{14} is at infinity along vertical direction hence I_{24} must be at infinity

23. Ans: (a)

Sol:



$$V_a = 1 \text{ m/s}$$

V_a = Velocity along vertical direction

 V_b = Velocity along horizontal direction

So instantaneous center of link AB will be perpendicular to A and B respectively i.e at I

$$IA = OB = \cos \theta = 1 \times \cos 60^{\circ} = \frac{1}{2} m$$

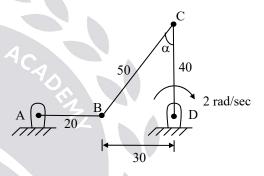
$$IB = OA = \sin \theta = 1 \times \sin 60^{\circ} = \frac{\sqrt{3}}{2} m$$

$$V_a = \omega \times IA$$

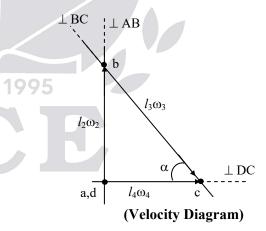
$$\Rightarrow \omega = \frac{V_a}{IA} = \frac{1}{V_2} = 2 \text{ rad/sec}$$

24. Ans: (a)

Sol:



(Position Diagram)



Let the angle between BC & CD is α . Same will be the angle between their perpendiculars.

From Velocity Diagram, $\frac{\ell_2 \omega_2}{\ell_4 \omega_4} = \tan \alpha$

From Position diagram, tan $\alpha=\frac{30}{40}$

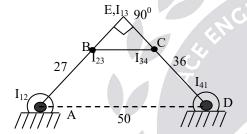
$$\therefore \omega_2 = \omega_4 \times \frac{\ell_4}{\ell_2} \times \tan \alpha = 2 \times \frac{40}{20} \times \frac{30}{40} = 3$$

$$\omega_2 = 3 \text{ rad/sec}$$

Note: DC is the rocker (Output link) and AB is the crank (Input link).

25. Ans: (c)

Sol:



 I_{13} = Instantaneous center of link 3 with respect to link 1

As AED is a right angle triangle and the sides are being integers so AE = 30 cm and

$$DE = 40 \text{ cm}$$

$$BE = 3$$
 cm and $CE = 4$ cm

By 'I' center velocity method,

$$V_{23} = \omega_2 \times (AB) = \omega_3 \times (BE)$$

$$\omega_3 = \frac{1 \times 27}{3} = 9 \, \text{rad/s}$$

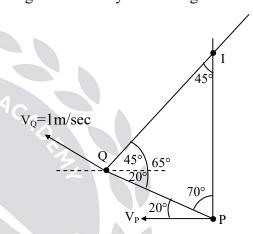
26. Ans: (a)

Sol: Similarly,
$$V_{34} = \omega_3 \times (EC) = \omega_4 \times (CD)$$

$$\omega_4 = \frac{9 \times 4}{36} = 1 \,\text{rad/s}$$

27. Ans: (d)

Sol: Refer the figure shown below, By knowing the velocity directions instantaneous centre can be located as shown. By knowing velocity (magnitude) of Q we can get the angular velocity of the link, from this we can get the velocity of 'P using sine rule.



'I' is the instantaneous centre.

From sine rule

From sine rate
$$\frac{PQ}{\sin 45} = \frac{IQ}{\sin 70} = \frac{IP}{\sin 65}$$

$$\frac{IP}{IQ} = \frac{\sin 65^{\circ}}{\sin 70^{\circ}}$$

$$V_{Q} = IQ \times \omega = 1$$

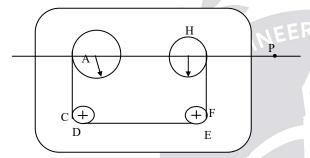
$$\Rightarrow \omega = \frac{V_{Q}}{IQ}$$

$$V_{P} = IP \times \omega = \frac{IP}{IQ} \times V_{Q} = \frac{\sin 65^{\circ}}{\sin 70^{\circ}} \times 1$$

$$= 0.9645$$

28. Ans: (c)

Sol: Consider the three bodies the bigger spool (Radius 20), smaller spool (Radius 10) and the frame. They together have three I centers, I centre of big spool with respect to the frame is at its centre A. that of the small spool with respect to the frame is at its centre H. The I centre for the two spools P is to be located.



As for the three centers in line theorem all the three centers should lie on a straight line implies on the line joining of A and H. More over as both the spools are rotating in the same direction, P should lie on the same side of A and H. Also it should be close to the spool running at higher angular velocity. Implies close to H and it is to be on the right of H. Whether P belongs to bigger spool or smaller spool its velocity must be same. As for the radii of the spools and noting that the velocity of the tape is same on both the spools

$$\omega_{H} = 2\omega_{A}$$

$$\therefore AP.\omega_{A} = HP\omega_{H} \text{ and}$$

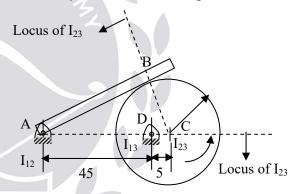
$$AP = AH + HP \Longrightarrow HP = AH$$

Note:

- (i) If two links are rotating in same directions then their Instantaneous centre will never lie in between them. The 'I' center will always close to that link which is having high velocity.
- (ii) If two links are rotating in different directions, their 'I' centre will lie in between the line joining the centres of the links.

29. Ans: (b)

Sol: I_{23} should be in the line joining I_{12} and I_{13} . Similarly the link 3 is rolling on link 2.



So the I – Center I_{23} will be on the line perpendicular to the link – 2. (I_{23} lies common normal passing through the contact point)

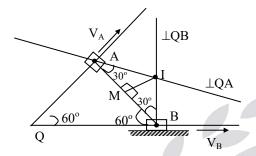
So the point C is the intersection of these two loci which is the center of the disc.

So
$$\omega_2(I_{12}, I_{23}) = \omega_3(I_{13}, I_{23})$$

 $\Rightarrow \omega_2 \times 50 = 1 \times 5$
 $\Rightarrow \omega_2 = 0.1 \text{ rad/sec}$

30. Ans: 1 (range 0.95 to 1.05)

Sol: Locate the I-centre for the link AB as shown in fig. M is the mid point of AB Given, $V_A = 2 \text{ m/sec}$



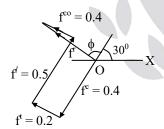
$$V_{A} = IA.\omega \Rightarrow \omega = \frac{V_{A}}{IA}$$

$$V_{M} = IM.\omega = IM \frac{V_{A}}{IA} = \frac{IM}{IA}.V_{A}$$

$$= \sin 30^{\circ}.V_{A} = \frac{1}{2}.2 = 1 \text{m/sec}$$

31. Ans: (a) & 32. Ans: (b)

Sol:



Centripetal acceleration,

 $f^c = r\omega^2 = 0.4 \text{ m/s}^2$ acts towards the centre Tangential acceleration, $f^t = r\alpha = 0.2 \text{ m/s}^2$ acts perpendicular to the link in the direction of angular acceleration. Linear deceleration = 0.5 m/s^2 acts opposite to velocity of slider

As the link is rotating and sliding so coriolis component of acceleration acts

$$f^{co} = 2V\omega = 2 \times 0.2 \times 1 = 0.4 \text{ m/s}^2$$

To get the direction of coriolis acceleration, rotate the velocity vector by 90^0 in the direction of ω .

Resultant acceleration

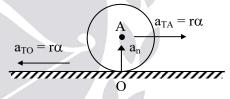
$$= \sqrt{0.6^2 + 0.1^2} = 0.608 \,\text{m/sec}^2$$
$$\phi = \tan^{-1} \left(\frac{0.6}{0.1}\right) = 80.5$$

Angle of Resultant vector with reference to $OX = 30 + \phi = 30 + 80.5 = 110.53^{\circ}$

33. Ans: (d)

Sol:

Since



Acceleration at point 'O'

$$a_o^{\rightarrow} = a_{TO}^{\rightarrow} + a_{TA}^{\rightarrow} + a_n^{\rightarrow}$$

 a_{TO}^{\rightarrow} and a_{TA}^{\rightarrow} are linear accelerations

with same magnitude and opposite in direction.

$$\Rightarrow a_{O}^{\rightarrow} = a_{n}^{\rightarrow} = \frac{V^{2}}{r} = r\omega^{2}$$

$$f^{R} \qquad \qquad r\alpha \qquad o'$$

$$r\omega^{2}$$

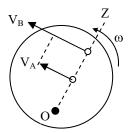
$$a'$$

(Acceleration diagram)

Resultant acceleration, $f^R = r \omega^2$

34. Ans: (c)

Sol:



$$V_B = OB \times \omega$$

$$V_A = OA \times \omega$$

$$V_{BA} = V_B - V_A = (OB - OA) \times \omega$$

= $\omega (r_B - r_A)$

and direction of motion point 'B'.

35. Ans: (d)

Sol: As uniform angular velocity is given,

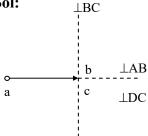
Tangential acceleration, $\alpha = 0$

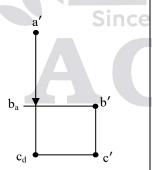
Centripetal acceleration,

$$f_{BA} = (r_B^2 - r_A^2) \times \omega$$
 from Z to 'O'.

36. Ans: (a)

Sol:





Velocity Diagram

Acceleration Diagram

From velocity Diagram, $V_C = V_B$

$$l_4\omega_4 = l_2\omega_2$$

$$25 \times \omega_4 = 50 \times 0.2$$

$$\Rightarrow \omega_4 = 0.4 \text{ rad/sec}$$

From Acceleration Diagram,

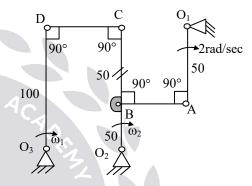
$$l_4\alpha_4 = l_2\alpha_2$$

$$25 \times \alpha_4 = 50 \times 0.1$$

$$\Rightarrow \alpha_4 = 0.2 \text{ rad/sec}^2$$

37. Ans: (d)

Sol:



As links O₁A and O₂B are parallel then

$$V_A = V_B$$

$$\Rightarrow$$
 50 × 2 = 50 × ω_2

$$\Rightarrow$$
 $\omega_2 = 2 \text{ rad/sec}$

As a O₂ C and O₃D are parallel links then

$$V_C = V_D$$

$$\Rightarrow 100 \times 2 = 100 \times \omega_1$$

$$\Rightarrow$$
 $\omega_1 = 2 \text{ rad/sec}$

$$V_D = r\omega_1$$

$$= 100 \times 2 = 200 \text{ mm/sec}$$

 $\alpha = 0$ (given), so tangential acceleration a^t

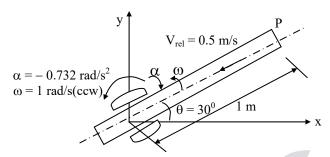
$$= r\alpha = 0$$

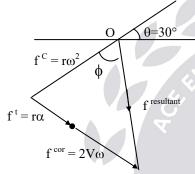
Centripetal acceleration, $f^c = r\omega_1^2$

$$= 100 \times (2)^2 = 400 \text{ mm/sec}^2$$

38.

Sol:





Acceleration diagram

Radial relative acceleration, $f^{linear} = 0$

Centripetal acceleration, $f^c = r\omega^2$

=
$$1 \times 1^2 = 1$$
 m/s² (acts towards the center)

Tangential acceleration, $f^t = r\alpha$

$$= 1 \times 0.732 = 0.732 \text{ m/sec}^2$$

Coriolis acceleration, $f^{cor} = 2V\omega$

$$= 2 \times 0.5 \times 1 = 1 \text{ m/sec}^2$$

Resultant acceleration.

$$f^r = \sqrt{1^2 + (1 + 0.732)^2} = 2 \text{ m/sec}^2$$

$$\phi = \tan^{-1} \left(\frac{1.732}{1} \right) = 60^{\circ}$$

$$\theta_{reference} = 30 + 180 + 60 = 270^{0}$$

39. Ans: (d)

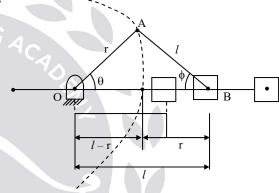
Sol: Angular acceleration of connecting rod is given by

$$a = -\omega^2 \sin \theta \left[\frac{\left(n^2 - 1\right)}{\left(n^2 - \sin^2 \theta\right)^{3/2}} \right]$$

when
$$n = 1$$
, $a = 0$

40. Ans: (b) & 41. Ans: (a)

Sol:



$$F_P = 2 kN$$

$$l = 80 \text{ cm} = 0.8 \text{ m}$$

$$r = 20 \text{ cm} = 0.2 \text{m}$$

199 From the triangle

OAR

$$\cos \phi = \frac{\ell^2 + \ell^2 - r^2}{2\ell^2}$$
$$= \frac{2 \times 80^2 - 20^2}{2 \times 80^2} \Rightarrow \phi = 14.36$$

$$\cos \theta = \frac{20^2 + 80^2 - 80^2}{2 \times 20 \times 80} \Rightarrow \theta = 82.82$$

Thrust connecting rod

$$F_{T} = \frac{F_{P}}{\cos \phi} = \frac{2}{\cos 14.36} = 2.065 \,\text{kN}$$

Turning moment,

$$T = F_T \times r = \frac{F_P}{\cos \phi} \left(\sin(\theta + \phi) \right) \times r$$
$$= \frac{2}{\cos 14.36} \times \sin(14.36 + 82.82) \times 0.2$$
$$= 0.409 \text{ kN-m}$$

42. Ans: (b)

Sol: Calculate AB that will be equal to 260 mm

$$L = 260 \text{ mm}, P = 160 \text{ mm}$$

$$S = 60 \text{ mm}, Q = 240 \text{ mm}$$

$$L + S = 320$$

$$P + Q = 400$$

$$\therefore$$
 L+S < P+Q

It is a Grashof's chain

Link adjacent to the shortest link is fixed

43. Ans: (b)

Sol: $O_2A \parallel O_4B$

Then linear velocity is same at A and B.

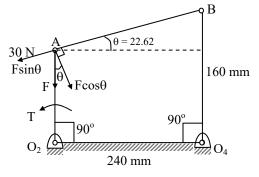
$$\therefore \omega_2 \times O_2 A = \omega_4 \times O_4 B$$

$$\therefore 8 \times 60 = \omega_4 \times 160$$

$$\Rightarrow$$
 $\omega_4 = 3 \text{ rad/sec}$

44. Ans: (c)

Sol:



$$\tan \theta = \frac{100}{240} \Longrightarrow \theta = 22.62^{\circ}$$

As centre of mass falls at O2

$$m\bar{r}\omega^2 = 0 \quad (::\bar{r} = 0)$$

$$\alpha = 0$$
 (Given)

Inertia torque = 0

Since torque on link O_2A is zero, the resultant force at point A must be along O_2A .

$$\Rightarrow$$
 Fsin22.62 = 30

$$\Rightarrow F = \frac{30}{\sin 22.62} = 78 \text{ N}$$

The magnitude of the joint reaction at $O_2 = F = 78 \text{ N}$

45. Ans: (d)

Sol:
$$I \frac{d^2 \theta}{dt^2} = T + f(\sin \theta, \cos \theta)$$

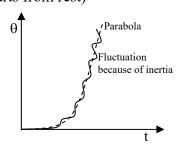
Where 'T' is applied torque, f is inertia torque which is function of $\sin\theta \& \cos\theta$

Since
$$\frac{d\theta}{dt} = \frac{T}{I}t + f'(\sin\theta, \cos\theta) + c_1$$

$$\theta = \frac{T}{I}t^2 + c_1t + f''(\sin\theta, \cos\theta)$$

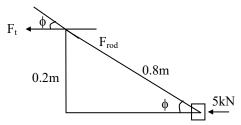
 θ is fluctuating on parabola

and @
$$t = 0$$
, $\theta = 0$, $\dot{\theta}(slope) = 0$ (because it starts from rest)



46. Ans: 1 (range 0.9 to 1.1)

Sol:



Given $F_p = 5 \text{ kN}$

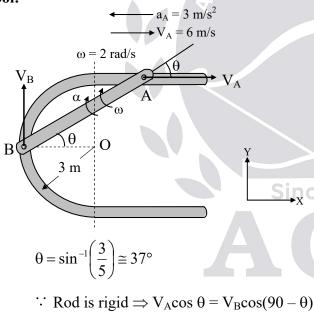
$$F_{rod} = \frac{F_p}{\cos \phi}, F_t = F_{rod} \cos \phi$$

$$\therefore F_t = 5 \text{ kN}$$

Turning moment = F_t . $r = 5 \times 0.2 = 1$ kN-m

47. Ans: (a, d)

Sol:



$$\omega_{AB} = \frac{6\sin 37 + 8\cos 37}{5} = 2\operatorname{rad/s}$$

$$\vec{a}_{B} = \vec{a}_{BA} + \vec{a}_{A}$$
(i)

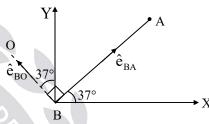
$$\vec{a}_{B} = \frac{V_{B}^{2}}{3}\hat{i} + a_{B}^{t}\hat{j}$$
(ii)

 $\begin{bmatrix} \hat{e}_{B}^{t} \text{ is tangential component of acceleration} \end{bmatrix}$ $\begin{bmatrix} \hat{e}_{BO} \text{ is unit vector along BO and } \hat{e}_{BA} \text{ is unit vector along BA} \end{bmatrix}$

$$\vec{a}_{\mathrm{BA}} = \left(\vec{a}_{\mathrm{BA}}\right)^{t} + \left(\vec{a}_{\mathrm{BA}}\right)^{r}$$

$$\vec{a}_{\text{BA}}^{t} = 5\alpha \hat{e}_{\text{BO}}$$

$$\vec{a}_{BA}^{r} = \omega^{2} \times 5\hat{e}_{BA}^{} = 20\,\hat{e}_{BA}^{}$$



$$\vec{a}_{BA} = 5\alpha \cos 37\hat{j} - 5\alpha \sin 37\hat{i} + 20\cos 37\hat{i} + 20\sin 37\hat{j}$$
$$= 4\alpha\hat{j} - 3\alpha\hat{i} + 16\hat{i} + 12\hat{j}(iii)$$

$$\vec{a}_{A} = -3\hat{i}$$
(iv)

Substituting (iv), (iii), (ii) in (i)

$$\frac{64}{3}\hat{i} + a_{B}^{t}\hat{j} = 4\alpha\hat{j} - 3\alpha\hat{i} - 3\hat{i} + 16\hat{i} + 12\hat{j}$$

$$\therefore \frac{64}{3} = 13 - 3\alpha$$

$$\alpha = -2.78 \text{ rad/s}^2$$

Putting the value of α in eq. (i),

$$\vec{a}_{B} = \vec{a}_{BA} + \vec{a}_{A}$$

$$= 4\alpha \hat{j} - 3\alpha \hat{i} + 16\hat{i} + 12\hat{j} - 3\hat{i}$$

$$= (4 \times -2.78) \hat{j} - (3 \times -2.78)\hat{i} + 16\hat{i} + 12\hat{j} - 3\hat{i}$$

$$= -11.12 \hat{j} + 8.34\hat{i} + 16\hat{i} + 12\hat{j} - 3\hat{i}$$

$$= 21.34\hat{i} + 0.88\hat{j}$$

$$|a_{B}| = \sqrt{(21.34)^{2} + (0.88)^{2}} = 21.4 \text{ m/s}^{2}$$

 \Rightarrow V_B = 8 m/s

Chapter 2

Gear and Gear Trains

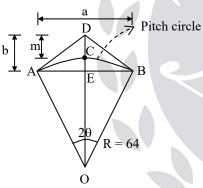
01. Ans (a)

Sol: Profile between base and root circles is not involute. If tip of a tooth of a mating gear digs into this non-involute portion interference will occur.

02. Ans: (d)

Sol: Angle made by 32 teeth + 32 tooth space

$$=360^{\circ}$$
.



$$2\theta = \frac{360}{64} = 5.625$$

$$\theta = 2.8125$$

$$R = \frac{mT}{2} = \frac{4 \times 32}{2} = 64mm$$

$$a = R \sin\theta \times 2$$

$$= 64 \times \sin(2.81) \times 2 = 6.28$$

$$OE = R\cos\theta = 64 \times \cos(2.8125) = 63.9 \text{ mm}$$

$$b = addendum + CE = module + (OC - OE)$$

$$=4+(64-63.9)=4.1$$

03. Ans: (a)

Sol: When addendum of both gear and pinion are same then interference occurs between tip of the gear tooth and pinion.

04. Ans: Decreases, Increases

05. Ans: (b)

Sol: For same addendum interference is most likely to occur between tip of the gear tooth and pinion i.e., at the beginning of the contact.

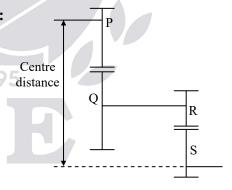
06. Ans: (b)

Sol: For two gears are to be meshed, they should have same module and same pressure angle.

07. Ans: (b)

Sol:

Since



Given
$$T_p = 20$$
, $T_Q = 40$, $T_R = 15$, $T_S = 20$

Dia of
$$Q = 2 \times Dia$$
 of R

$$m_O.T_O = 2m_R.T_R$$

Given, module of
$$R = m_R = 2mm$$

$$\Rightarrow m_Q = 2 m_R \frac{T_R}{T_Q} = 2 \times 2 \times \frac{15}{40} = 1.5 \text{ mm}$$

$$m_P = m_Q = 2mm$$

$$m_S = m_R = 1.5 \text{ mm}$$

Radius = module
$$\times \frac{\text{No. of teeth}}{2}$$

Centre distance between P and S is given by

$$R_P + R_Q + R_R + R_T$$

$$= m_{P} \frac{T_{P}}{2} + m_{Q} \frac{T_{Q}}{2} + m_{R} \frac{T_{R}}{2} + m_{S} \frac{T_{S}}{2}$$

$$=1.5\left[\frac{40+20}{2}\right]+2\left[\frac{15+20}{2}\right]$$

$$=45+35=80 \text{ mm}$$

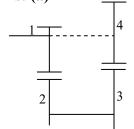
08. Ans: (c)

Sol:
$$\frac{N_2}{N_6} = \frac{N_3 N_5 N_6}{N_2 N_4 N_5} = \frac{N_3 N_6}{N_2 N_4}$$

Wheel 5 is the only Idler gear as the number of teeth on wheel '5' does not appear in the velocity ratio.

09. Ans: (a)

Sol:



$$Z_1 = 16$$
, $Z_3 = 15$, $Z_2 = ?$, $Z_4 = ?$

First stage gear ratio, $G_1 = 4$,

Second stage gear ratio, $G_2 = 3$,

$$m_{12} = 3$$
, $m_{34} = 4$

$$Z_2 = 16 \times 4 = 64$$

$$Z_4 = 15 \times 3 = 45$$

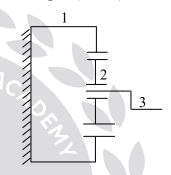
Ans: (b)

Sol: Centre distance

$$= \frac{m_{12}}{2} \times (Z_1 + Z_2) = \frac{m_{34}}{2} \times (Z_3 + Z_4)$$
$$= \frac{4}{2} \times (15 + 45) = 120 \text{mm}$$

Ans: 5 rpm (CCW) 11.

Sol:



$$T_1 = 104$$
, $N_1 = 0$,

$$T_2 = 96$$
, $N_a = 60$ rpm (CW+ve), $N_2 = ?$

$$\frac{N_2 - N_a}{N_1 - N_a} = \frac{T_1}{T_2} = \frac{104}{96}$$

$$\frac{N_2 - 60}{0 - 60} = \frac{104}{96}$$

$$\frac{10^{2}-00}{0-60}=\frac{104}{96}$$

Since
$$N_2 = 60 \left[1 - \frac{104}{96} \right] = \frac{-60 \times 8}{96} = -5 \text{ rpm CW}$$

= 5 rpm in CCW

12. Ans: (a)

Sol: By Analytical Approach

$$\frac{\omega_1 - \omega_5}{\omega_4 - \omega_5} = \frac{-T_2}{T_1} \times \frac{-T_4}{T_3} = \frac{45}{15} \times \frac{40}{20}$$

$$\frac{\omega_1 - \omega_5}{\omega_4 - \omega_5} = 6$$

13. Ans: (d)

Sol: Data given:

$$\omega_1$$
= 60 rpm (CW, +ve)

$$\omega_4 = -120 \text{ rpm}$$
 [2 times speed of gear -1]

We have,
$$\frac{\omega_1 - \omega_5}{\omega_4 - \omega_5} = 6$$

$$\Rightarrow \frac{60 - \omega_5}{-120 - \omega_5} = 6$$
, simplifying

$$60 - \omega_5 = -720 - 6\omega_5$$

$$\omega_5 = -156 \text{ rpm CW}$$

$$\Rightarrow \omega_5 = 156 \text{ rpm CCW}$$

14. Ans: (c)

Sol:
$$\omega_2 = 100 \text{ rad/sec(CW+ve)}$$

$$\omega_{arm}$$
 = 80 rad/s (CCW) = -80 rad/sec

$$\frac{\omega_5 - \omega_a}{\omega_2 - \omega_a} = \frac{-T_2}{T_3} \times \frac{T_4}{T_5}$$

$$\frac{\omega_5 - (-80)}{100 - (-80)} = \frac{-20}{24} \times \frac{32}{80} = -\frac{1}{3}$$

$$\Rightarrow \omega_5 = -140 \text{ CW} = 140 \text{ CCW}$$

15. Ans (c)

Sol: It also rotates one revolution but in opposite direction because of differential gear system

16. Ans: (c)

Sol: No .of Links,
$$L = 4$$

No. of class 1 pairs
$$J_1=3$$

No. of class 2 pairs
$$J_2=1$$
 (Between gears)

No. of dof =
$$3(L-1) - 2J_1 - J_2 = 2$$

17. Ans: (a)

Sol: $r_b = base circle radius,$

 r_d = dedendum radius

r = pitch circle radius.

For the complete profile to be invoulte,

$$r_b = r_d$$

$$r_d = r - 1$$
 module

$$r = \frac{mT}{2} = \frac{16 \times 5}{2} = 40 \text{ mm}$$

$$r_b = r_d = 40 - 1 \times 5 = 35 \text{ mm}$$

$$r_b = r \cos \phi \Rightarrow \phi \simeq 29^{\circ}$$

18. Ans:
$$-3.33$$
 N-m

Sol:
$$\frac{\omega_{s} - \omega_{a}}{\omega_{p} - \omega_{a}} = \frac{-Z_{p}}{Z_{s}}$$

$$\Rightarrow \frac{0-10}{\omega_{\rm p}-10} = \frac{-20}{40}$$

$$\Rightarrow \omega_p = 30 \text{ rad/sec}$$

By assuming no losses in power transmission

$$T_p \times \omega_p + T_s \times \omega_s + T_a \times \omega_a = 0$$

$$\Rightarrow$$
 T_p × 30 + T_s × 0 + 5 × 10 = 0

$$\Rightarrow T_p = \frac{-50}{30} = -1.67 \text{ N-m}, T_p + T_s + T_a = 0$$

$$\Rightarrow -1.67 + T_s + 5 = 0$$

$$\Rightarrow$$
 T_s = -3.33 N-m

19. Ans: (a)

Since

Sol: Train value = speed ratio

20. Ans: (d)

Sol:
$$T_S + 2 T_P = T_A$$
 ----(1)

$$\frac{N_A - N_a}{N_P - N_a} = \frac{T_P}{T_A}$$
 -----(2)

and
$$\frac{N_P - N_S}{N_S - N_G} = -\frac{T_S}{T_P}$$
 -----(3)

From (2) and (3)

$$\frac{N_A - N_a}{N_S - N_a} = -\frac{T_B}{T_\Delta}$$

$$\Rightarrow \frac{300 - 180}{0 - 180} = -\frac{80}{T_A}$$

$$T_A = 120$$

$$80 + 2 T_P = 120$$

$$\Rightarrow$$
 T_P = 20

21. Ans: (a, b, c, d)

Sol:

- Bevel gear is used for connecting two nonparallel or, intersecting but coplanar shafts.
- Spur gear is used for connecting two parallel and coplanar shafts with teeth parallel to the axis of the gear wheel.
- Mitre gear is used for connecting two shafts whose axes are mutually perpendicular to each other.
- Helical gear is used for connecting two parallel and coplanar shafts with teeth inclined to the axis of the gear wheel.

Chapter 3

Flywheels

01.

Sol: Given

$$P = 80 \text{ kW} = 80 \times 10^3 \text{ W} = 80,000 \text{W}$$

$$\Delta E = 0.9$$
 Per cycle

$$N = 300 \, \text{rpm}$$

$$C_s = 0.02$$

$$\omega = \frac{2\pi N}{60} = \frac{2\pi \times 30}{60} = 31.41 \text{ rad/s}$$

$$\rho = 7500 \text{ kg/m}^3$$

$$\sigma_c = 6 \text{ MN/m}^2$$

$$\sigma_c = \rho V^2 = \rho R^2 \omega^2$$

$$R = \sqrt{\frac{\sigma_{c}}{\rho \omega^{2}}} = \sqrt{\frac{6 \times 10^{6}}{7500 \times 31.41^{2}}}$$

$$R = 0.9 \text{ m}$$

$$D = 2R = 1.8m$$

$$N = 300 \text{rpm} = 5 \text{rps} \rightarrow 0.2 \text{ Sec/rev}$$

1 cycle = 2 revolution (::4 stroke engine)

$$= 0.4 \sec$$

Energy developed per cycle

$$= 0.4 \times 80 = 32 \text{ kJ}$$

$$\Delta E = E \operatorname{per} \operatorname{cycle} \times 0.9$$

$$= 32 \times 10^3 \times 0.9 = 28800 \text{ J}$$

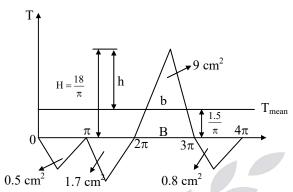
$$\Delta E = I\omega^2 C_s$$

$$I = \frac{\Delta E}{\omega^2 C_s}$$

$$I = 1459.58 \text{ kg-m}^2$$

02.

Sol:



Given: $1 \text{ cm}^2 = 1400 \text{ J}$

Assume on x-axis 1 cm = 1 radian and on yaxis 1 cm = 1400 N-m

$$a_1 = -0.5 \text{ cm}^2$$

$$a_2 = -1.7 \text{ cm}^2$$

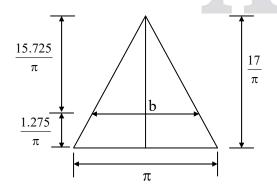
$$a_3 = 9 \text{ cm}^2$$

$$a_4 = -0.8 \text{ cm}^2$$

Work done per cycle = $-a_1 - a_2 + a_3 - a_4$ = -0.5 - 1.7 + 9 - 0.8 $= 6 \text{ cm}^2$

Mean torque $T_m = \frac{\text{Workdone per cycle}}{}$

$$=\frac{6}{4\pi}=\frac{1.5}{\pi}$$
cm



Area of the triangle (expansion)

$$= \frac{1}{2} \times \pi \times H = 9$$
$$H = 18 / \pi$$

Area above the mean torque line

$$\Delta E = \frac{1}{2} \times b \times h$$

From the similar triangles,

$$\frac{b}{B} = \frac{h}{H} \Rightarrow b = \frac{16.5}{18} \times \pi$$

$$\Delta E = \frac{1}{2} \times b \times \frac{16.5}{\pi}$$
$$= \frac{1}{2} \times \frac{16.5}{18} \times \frac{16.5}{\pi} = 7.56 \text{ cm}^2$$

$$\Delta E = 7.56 \times 1400 = 10587 \text{ N-m}$$

$$N_1 = 102 \text{ rpm}, \quad N_2 = 98 \text{ rpm},$$

$$\omega_1 = \frac{2\pi N_1}{60} = 10.68 \text{ rad/s}$$

$$\omega_2 = \frac{2\pi N_2}{60} = 10.26 \text{ rad/s}$$

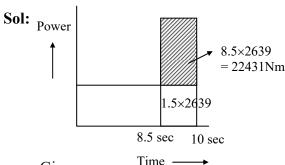
$$\Delta E = \frac{1}{2} \times I \times (\omega_1^2 - \omega_2^2)$$

$$2 \times \Delta E$$

$$I = \frac{2 \times \Delta E}{(\omega_1^2 - \omega_2^2)} = \frac{2 \times 10587}{10.68^2 - 10.26^2}$$

$$I = 2405.6 \text{ kg-m}^2$$

03.



Given:

$$d = 40 \text{ mm}, \qquad t = 30 \text{ mm}$$

$$E_1 = 7 \text{ N-m/mm}^2, \quad S = 100 \text{ mm}$$

$$V = 25 \text{ m/s}, V_1 - V_2 = 3\%V, \quad C_S = 0.03$$

$$A = \pi dt = \pi \times 40 \times 30$$

$$= 3769.9 = 3770 \text{ mm}^2$$

Since the energy required to punch the hole is 7 Nm/mm^2 of sheared area, therefore the Total energy required for punching one hole = $7 \times \pi dt = 26390 \text{ N-m}$

Also the time required to punch a hole is 10 sec, therefore power of the motor required $=\frac{26390}{10}=2639 \text{ Watt}$

The stroke of the punch is 100 mm and it punches one hole in every 10 seconds.

Total punch travel = 200 mm

(up stroke + down stroke)

Velocity of punch = (200/10) = 20 mm/s

Actual punching time = 30/20 = 1.5 sec

Energy supplied by the motor in 1.5 sec is

$$E_2 = 2639 \times 1.5 = 3958.5 = 3959 \text{ N-m}$$

Energy to be supplied by the flywheel during punching or the maximum fluctuation of energy

$$\Delta E = E_1 - E_2$$

= 26390 - 3959 = 22431 N-m

Coefficient of fluctuation of speed

$$C_s = \frac{V_1 - V_2}{V} = 0.03$$

We know that maximum fluctuation of energy (ΔE)

22431 =
$$\text{m V}^2 \text{ C}_S = \text{m } (25)^2 (0.03)$$

 $\text{m} = 1196 \text{ kg}$

04. Ans: 4.27

Sol:
$$I = mk^2 = 200 \times 0.4^2 = 32 \text{ kg-m}^2$$

$$\omega_1 = \frac{2\pi \times 400}{60} = 41.86 \,\text{rad/s}$$

$$\omega_2 = \frac{2\pi \times 280}{60} = 26.16 \,\text{rad/s}$$

Energy released =
$$\frac{1}{2}I(\omega_1^2 - \omega_2^2) = 17086.6 J$$

Total machining time =
$$\frac{60}{5}$$
 = 12 sec

Power of motor
$$=$$
 $\frac{17086.6}{12-8} = 4.27 \text{ kW}$

05. Ans: (d)

Sol: Work done =
$$-0.5+1-2+25-0.8+0.5$$

= 23.2 cm^2

199 Work done per cycle = $23.2 \times 100 = 2320$

$$(:: 1 \text{cm}^2 = 100 \text{N} - \text{m})$$

$$T_{\text{mean}} = \frac{\text{W.D per cycle}}{4\pi}$$
$$= \frac{2320}{4\pi} = \frac{580}{\pi} \text{N} - \text{m}$$

Suction = 0 to
$$\pi$$
,

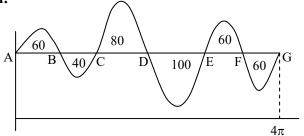
Compression =
$$\pi$$
 to 2π

Expansion =
$$2\pi$$
 to 3π ,

Exhaust =
$$3 \pi$$
 to 4π

06. Ans: (c)

Sol:



$$E_A = E$$

$$E_{\rm B} = E + 60$$

$$E_C = E + 60 - 40 = E + 20$$

$$E_D = E + 20 + 80 = E + 100 = E_{max}$$

$$E_E = E + 100 - 100 = E$$

$$E_F = E + 60$$

$$E_G = E + 60 - 60 = E_{min}$$

$$\therefore R > P > Q > S$$

07. Ans: (b)

Sol:
$$I_{disk} = \frac{mr^2}{2}$$

$$I_1 = \frac{mr_1^2}{2}$$
, $C_{s1} = 0.04$

$$I_2 = 4 \times mr_1^2 = 4I_1$$

$$C_{s2} = \frac{I_1}{I_2} \times C_{s1} = 0.01 \implies 1\%$$
 reduce

08. Ans: (b)

Sol: For same ΔE and ω

$$C_{\rm s} \propto I$$

$$\frac{C_{S1}}{C_{S2}} = \frac{I_2}{I_1} = \frac{2I}{I}$$

$$C_{S2} = \frac{C_{S1}}{2} = \frac{0.04}{2} = 0.02$$

Sol: Let the cycle time = t

Actual punching time = t/4

W = energy developed per cycle

Energy required in actual punching

$$= 3W/4$$

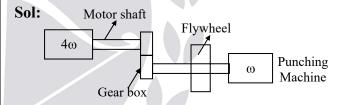
During 3t/4 time, energy consumed = W/4

$$E_{max} = \frac{3W}{4}$$
, $E_{min} = \frac{E}{4}$

$$\Delta E = E_{\text{max}} - E_{\text{min}} = \frac{E}{2}$$

$$\frac{\Delta E}{E} = 0.5$$

10. Ans: (c)



$$C_s = 0.032$$

Since

Gear ratio
$$= 4$$

$$I\omega'^2 \times C_s' = I\omega^2 C_s$$

$$C'_{s} = C_{s} \left(\frac{\omega}{\omega'}\right)^{2} = \frac{C_{s} \times \omega^{2}}{16 \omega^{2}} = \frac{C_{s}}{16}$$

$$= 0.0032 / 16 = 0.002$$

(by taking moment of Inertia, I = constant).

Thus, if the flywheel is shifted from machine shaft to motor shaft when the fluctuation of energy (ΔE) is same, then coefficient of fluctuation of speed decreases by 0.2% times.

11. Ans: 0.5625

Sol: The flywheel is considered as two parts $\frac{m}{2}$ as rim type with Radius R and $\frac{m}{2}$ as disk type with Radius $\frac{R}{2}$

$$I_{Rim} = \frac{m}{2}R^{2},$$

$$I_{disk} = \frac{1}{2} \times \frac{m}{2} \times \left(\frac{R}{2}\right)^{2} = \frac{mR^{2}}{16}$$

$$I = \frac{mR^{2}}{2} + \frac{mR^{2}}{16}$$

$$= \frac{9}{16}mR^{2}$$

$$= 0.5625 mR^{2}$$

$$\therefore \alpha = 0.5625$$

12. Ans: 104.71

Sol: N = 100 rpm

$$T_{\text{mean}} = \frac{1}{\pi} \int_0^{\pi} T d\theta$$

$$= \frac{1}{\pi} \int_0^{\pi} (10000 + 1000 \sin 2\theta - 1200 \cos 2\theta) d\theta$$

$$= \frac{1}{\pi} [100000 - 500 \cos 2\theta - 600 \sin 2\theta]_0^{\pi}$$

$$= 10000 \text{ Nm}$$

$$Power = \frac{2\pi NT}{60}$$

$$= \frac{2 \times \pi \times 100 \times 10000}{60} = 104719.75 \text{ W}$$

$$P = 104.719 \text{ kW}$$

Governor

01. Ans: (a)

Sol: As the governor runs at constant speed, net force on the sleeve is zero.

02. Ans: (d)

Sol: At equilibrium speed, friction at the sleeve is zero.

03. Ans: (a)

Sol:
$$mr\omega^2 = \frac{r}{h} \left(mg + \frac{Mg(1+k)}{2} \right)$$

$$k = 1$$

$$\omega^2 = \frac{9.8}{2 \times 0.2} (10 + 2)$$

$$\omega = 17.15 \text{ rad/sec}$$

04. Ans: (a)

Sol:
$$mr\omega^2 a = \frac{1}{2} \times 200 \times \delta \times a$$

$$\delta = \frac{1 \times 20^2 \times 0.25 \times 2}{200}$$
$$= 0.5 \times 2 = 1 \text{ cm}$$

05. Ans: (a)

Sol:
$$\text{mr}\omega^2 \times \mathbf{a} = \left(\frac{\mathbf{F}_s}{2}\right) \times \mathbf{a}$$

$$F_s = 2mr\omega^2$$

= 2×1 × 0.4 × (20)² = 320 N

06. Ans: (c)

Sol: A governor is used to limit the change in speed of engine between minimum to full load conditions, the sensitiveness of a governor is defined as the ratio of difference between maximum and minimum speed to mean equilibrium speed, thus,

sensitivenss =
$$\frac{\text{Range of speed}}{\text{mean speed}} = \left(\frac{N_1 - N_2}{N_1 + N_2}\right)$$

Where, mean speed, $N = \frac{N_1 + N_2}{2}$

N₁ = maximum speed corresponding to noload conditions.

 N_2 = minimum speed corresponding to full load conditions.

07. Ans: (b)

08. Ans: (a)

Sol:
$$r_1 = 50 \text{ cm}$$
, $F_1 = 600 \text{ N}$

$$F = a + rb$$
 Unstable Isochronous $600 = a + 50 b$ $700 = a + 60 b$ $10 b = 100$ $b = 10 N/cm$ $a = 100 N$ $F = 100 + 10 r$ Radius

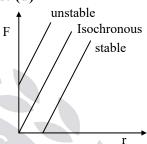
This is unstable governor. It can be isochronous if its initial compression is reduced by 100 N.

09. Ans: (d)

Sol: By increasing the dead weight in a porter governor it becomes more sensitive to speed change.

10. Ans: (d)

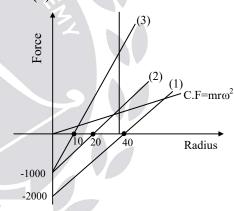
Sol:



11. Ans: (a)

Sol:

Since



At radius,
$$r_1 = F_1 < F_2 < F_3$$

- .. As Controlling force is less suitable 1 is for low speed and 2 for high speed ad 3 is for still high speed.
- (1) is active after 40 cm
- (2) is active after 20 cm
- (3) is active after 10 cm

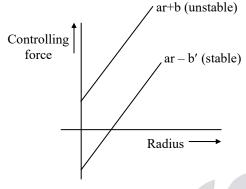
At given radius above 20

$$F_3 > F_2$$
 $mr\omega_3^2 > mr\omega_2^2$
 $\omega_3 > \omega_2$

Since

12. Ans: (b)

Sol:



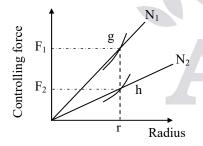
To make the governor stable spring stiffness should be decreased.

13. Ans: (c)

Sol: A governor is said to be sensitive if for a given fractional change in speed, displacement of sleeve is high.

14. Ans: (c)

Sol: If friction is taken into account, two or more controlling force are obtained as show in figure.



In all, three curves of controlling force are obtained as follows.

- (a) for steady run (neglecting friction)
- (b) while sleeve moves up (f positive)
- (c) while sleeve moves down (f negative)

The vertical intercept gh signifies that between the speeds corresponding to gh, the radius of the ball does not change while direction of movement of sleeve does. Between speeds N_1 and N_2 , the governor is insensitive.

15. Ans: (b)

Sol: A governor is stable if radius of rotation of ball is increases as the speed increases.

Centripetal force, $F = mr\omega^2$

$$\Rightarrow \frac{F}{r} = m\omega^2$$

Slope of the centripetal force represents speed. Higher the slope, higher will be the speed.

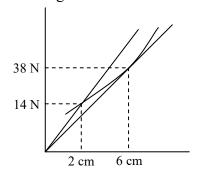
when
$$r = 2$$
 cm; $F = 14$ N

$$\therefore \frac{F}{r} = \frac{14}{2} = 7$$

when
$$r = 6$$
 cm; $F = 38$ N

$$\frac{F}{r} = \frac{38}{6} = 6.33$$

As the radius increases slope of the centripetal force curve decreases and therefore speed of the governor decreases. Thus the governor is unstable.



Since

16. Ans: 1063 N, 284 rpm, 250 N, 316 rpm

Sol: Given, m = 8 kg

 $F_1 = 1500 \text{ N}$ at $r_1 = 0.2 \text{ m}$ and

 $F_2 = 887.5 \text{ N} \text{ at } r_2 = 0.13 \text{ m},$

For spring controlled governor, controlling force is given by

$$F = a r + b$$

$$1500 = a \times 0.2 + b$$

$$887.5 = a \times 0.13 + b$$

$$\therefore a = 8750, b = -250$$

$$F = 8750 \text{ r} - 250$$

At
$$r = 0.15 \text{ m}$$
,

$$F = 8750 \times 0.15 - 250 = 1062.5 \text{ N}$$

So, controlling force, F = 1062.5 m

$$F = mr\omega^2$$

$$1062.5 = 8 \times 0.15 \,\omega^2$$

$$\omega = 29.76 \text{ rad/s}$$

$$N = \frac{60 \,\omega}{2\pi} = 284 \text{ rpm}$$

For isochronous speed

$$F = a r = 8750 \times 0.15 = 1312.5 N$$

$$F = mr\omega^2$$

$$1312.5 = 8 \times 0.5 \times \omega^2$$

$$\Rightarrow \omega = 33.07 \text{ rad/s}$$

$$N = \frac{60\omega}{2\pi} = 316 \text{ rpm}$$

The increase in tension is 250 N to make the governor isochronous.

17. Ans: (a, d)

Sol:

- A governor is said to be unstable if the radius of rotation falls as the speed increases.
- Spring controlled governors can become isochronous.
- By increasing the initial compression of the spring the mean speed can be increased.
- Isochronisms for a centrifugal governor can be achieved only at the expense of its stability.

Chapter **5**

Balancing

01. Ans: (c)

Sol: unbalanced force $(F_{un}) \propto mr\omega^2$

Unbalance force is directly proportional to square of speed. At high speed this force is very high. Hence, dynamic balancing becomes necessary at high speeds.

02. Ans: (a)

Sol: Dynamic force = $\frac{W}{g} e \omega^2$

Couple =
$$\frac{W}{g} e \omega^2 a$$

Reaction on each bearing = $\pm \frac{W}{g} e \omega^2 \frac{a}{l}$

Total reaction on bearing

$$= \left(\frac{\mathbf{W}}{\mathbf{g}} \mathbf{e} \, \mathbf{\omega}^2 \, \frac{\mathbf{a}}{l}\right) - \left(\frac{\mathbf{W}}{\mathbf{g}} \mathbf{e} \, \mathbf{\omega}^2 \, \frac{\mathbf{a}}{l}\right) = 0$$

03. Ans: (b)

Sol: Since total dynamic reaction is zero the system is in static balance.

04. Ans: (a)

05. Ans: (b)

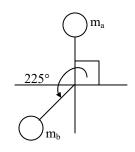
Sol:

$$m_a = 5 \text{ kg}, \ r_a = 20 \text{ cm}$$

$$m_b = 6 \text{ kg}, r_b = 20 \text{ cm}$$

$$m_c=?\;, \qquad r_c=20\;cm$$

$$m_d = ?$$
, $\theta_c = ?$, $\theta_d = ?$



Since

Take reference plane as 'C'

For complete balancing

$$\sum mr = 0$$
 & $\sum mrl = 0$

$$2m_d cos \; \theta_d - 9 \; \sqrt{2} \; = 0$$

$$\Rightarrow m_d \cos \theta_d = 9\sqrt{2}$$

$$2m_d \sin\theta_d - 5 - 9 \sqrt{2} = 0$$

$$m_d sin\theta_d = = \frac{1}{2} \Big(5 + 9\sqrt{2} \, \Big)$$

$$m_d = \sqrt{\left(\frac{9}{\sqrt{2}}\right)^2 + \left[\frac{1}{2}\left(5 + 9\sqrt{2}\right)\right]^2} = 10.91 \text{kg}$$

$$\theta_{\rm d} = \tan^{-1} \left[\frac{\frac{1}{2} \left(5 + 9\sqrt{2} \right)}{\frac{9}{\sqrt{2}}} \right] = 54.31^{0}$$

$$= 90 - 54.31 = 35.68$$
 w.r.t 'A'

$$m_c \cos\theta_c + m_d \cos\theta_d - 3\sqrt{2} = 0$$

$$\Rightarrow m_c \cos \theta_c + 10.91 \cos 54.31 - 3\sqrt{2} = 0$$

$$m_c \cos \theta_c = -2.122$$

$$m_c \sin\theta_c + m_d \sin\theta_d - 3\sqrt{2} + 5 = 0$$

$$m_c \sin\theta_c + 10.91 \sin 54.31 - 3\sqrt{2} + 5 = 0$$

$$m_c \sin \theta_c = -9.618$$

$$m_e = \sqrt{(-2.122)^2 + (-9.618)^2} = 9.85 \text{kg}$$

$$\tan \theta_{\rm c} = \frac{-9.618}{-2.122}$$

$$\theta_c = 257.56 \text{ or } 257.56 - 90 \text{ w.r.t 'A'}$$

= 167.56

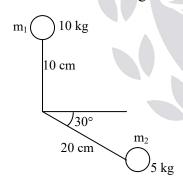
S.No	m	(r×20)cm	(<i>l</i> ×20)cm	θ	mrcosθ	mrsinθ	mrlcosθ	mr <i>l</i> sinθ
A	5	1	-1	90	0	5	0	-5
В	6	1	3	225	$-3\sqrt{2}$	$-3\sqrt{2}$	$-9\sqrt{2}$	-9√2
С	m _c	1	0	θ_{c}	$m_c cos \theta_c$	$m_c sin \theta_c$	0	0
D	m_d	1	2	$\theta_{\rm d}$	$m_d cos \theta_d$	$m_d sin \theta_d$	$2m_d cos\theta_d$	$2m_d sin \theta_d$

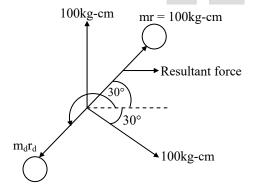
Since 1995

Common data Q. 06 & 07

06. Ans: (a)

 $m_2 = 5kg,$ **Sol:** $m_1 = kg$, $r_1 = 10cm$ $r_2 = 20$ cm, $r_d = 10cm$ $m_1 r_1 = 100 \text{ kg cm}$ $m_2r_2 = 100kg$ cm





Keep the balancing mass m_d at exactly opposite to the resultant force

∴
$$m_d r_d = 100 \text{kg-cm}$$

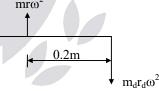
⇒ $m_d \times 10 = 100 \text{ kg-cm}$

$$m_d = 10$$
kg cm

$$\theta_d = 180 + 30 = 210$$

07. Ans: (d)

 $mr\omega^2$ Sol:



$$mr = 100kg-cm = 1kgm$$

$$N = 600 \text{ rpm} \Rightarrow \omega = \frac{2\pi N}{60} = 20\pi \text{rad/s}$$

Couple 'C' =
$$mr\omega^2 \times 0.2 = 1 \times (20\pi)^2 \times 0.2$$

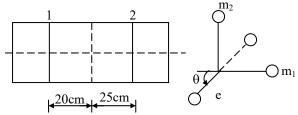
= 789.56 Nm

Reaction on the bearing

$$= \frac{\text{couple}}{\text{dis tan ce between bearing}}$$
$$= \frac{789.56}{0.4} = 1973.92 \text{N}$$

08. Ans: (a)

Sol:



$$\begin{split} &r_1 = 10 \text{ cm}, \quad r_2 = 10 \text{ cm}, \quad m_1 = 52 \text{ kg} \\ &m_2 = 75 \text{ kg}, \quad \theta_1 = 0 \text{ (Reference)} \\ &\theta_2 = 90^\circ, \qquad m = 2000 \text{kg} \;, \quad e = ?, \; \theta = ? \\ &me \; cos\theta = m_1 r_1 = \; 520 \end{split}$$

$$me \sin\theta = m_2 r_2 = 750$$

me =
$$\sqrt{(m_1 r_1)^2 + (m_2 r_2)^2}$$
 = $\sqrt{520^2 + 750^2}$
= 913 kg - cm

$$e = \left(\frac{913}{2000}\right) = 0.456cm$$

$$\theta = \tan^{-1} \left(\frac{m_2 r_2}{m_1 r_1} \right) = \tan^{-1} \left(\frac{75}{52} \right) = 55.26^0$$

$$= 180 + 55.26 = 235.26^{\circ}$$

w.r.t mass '1'.

09. Ans: (a) Sol:

Plane	m	r (m)	L (m) (reference	θ	F _x	$\mathbf{F}_{\mathbf{y}}$	$\mathbf{C}_{\mathbf{x}}$	$\mathbf{C}_{\mathbf{y}}$
	(kg)	V	Plane A)		(mrcosθ)	(mrsinθ)	(mrlcosθ)	(mrlsinθ)
D	2 kg.m		0.3	0	2	0	0.6	0
A	-m _a	0.5m	0	θ_a	$-0.5m_a\cos\theta_a$	$-0.5m_a sin \theta_a$	0	0
В	-m _b	0.5m	0.5	θ_{b}	$-0.5 m_b cos \theta_b$	$-0.5m_b sin \theta_b$	$-\frac{m_b}{4}\cos\theta_b$	$-\frac{m_b}{4}\sin\theta_b$

$$C_x = 0 \implies \frac{m_b \cos \theta_b}{4} = 0.6$$

$$C_y = 0 \implies \frac{m_b \sin \theta_b}{\Delta} = 0$$

$$\Rightarrow m_b = 2.4 kg \; , \quad \theta_b = 0$$

$$\Sigma F_{\rm x} = 0$$

$$\Rightarrow 2 - 0.5 \text{ m}_a \cos\theta_a - 0.5 \text{ m}_b \cos\theta_b = 0$$

$$\Rightarrow \frac{\mathrm{m_a}}{2} \cos \theta_{\mathrm{a}} = 0.8$$

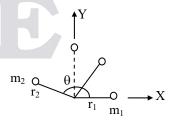
$$\Sigma F_y = 0 \implies \frac{m_a}{2} \sin \theta_a = 0$$

$$\therefore \theta_a = 0^\circ$$
, $m_a = 1.6 \text{ kg}$

(Note: mass is to be removed so that is taken as -ve).

10. Ans: (a)

Sol:



$$\frac{F_x}{\omega^2} = m_1 r_1 + m_2 r_2 \cos \theta$$
= 20 × 15 + 25 × 20 cos135
= -53.55 gm-cm

$$\frac{F_y}{\omega^2} = m_2 r_2 \sin \theta_2 = 25 \times 20 \sin 135$$

$$= 353.553 \text{ gm-cm}$$

$$m_b r_b = \sqrt{F_x^2 + F_y^2}$$

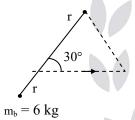
$$\Rightarrow m_b = \frac{\sqrt{F_x^2 + F_y^2}}{r_b}$$

$$= \frac{\sqrt{(-53.55)^2 + (353.553)^2}}{20} = 17.88 \text{ gm}$$

$\theta_{b} = \tan^{-1} \frac{F_{y}}{F_{x}} = \tan^{-1} \left(\frac{353.553}{-53.55} \right) = 98.7^{\circ}$

11. Ans: 30 N

Sol:



Crank radius

= stroke/2 = 0.1 m,
$$\omega$$
 = 10 rad/sec

Unbalanced force along perpendicular to the line of stroke = $m_b r \omega^2 \sin 30^\circ$ = $6 \times (0.1) \times (10)^2 \sin 30^\circ$

=
$$6 \times (0.1) \times (10)^2 \sin 30^\circ$$

= 30 N

12. Ans: (b)

Sol:

• Primary unbalanced force = $mr\omega^2 cos\theta$ At $\theta = 0^\circ$ and 180°, Primary force attains maximum.

Secondary force =
$$\frac{mr\omega^2}{n}\cos 2\theta$$
 where n is obliquity ratio. As $n > 1$, primary force is greater than secondary force.

 Unbalanced force due to reciprocating mass varies in magnitude. It is always along the line of stroke.

13. Ans: (b)

Sol: In balancing of single-cylinder engine, the rotating balance is completely made zero and the reciprocating unbalance is partially reduced.

14. Ans: (b)

Sol:
$$m = 10 \text{ kg}$$
, $r = 0.15 \text{ m}$, $c = 0.6$, $\theta = 60^{\circ}$, $\omega = 4 \text{ rad/sec}$

Residual unbalance along the line of stroke

=
$$(1 - c)$$
 m $r\omega^2 cos\theta$
= $(1 - 0.6) \times 10 \times 0.15 \times 4^2 cos60$
= 4.8 N

15. Ans: 2

1995

Since

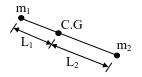
Sol: By symmetric two system is in dynamic balance when

$$mea = m_1e_1a_1$$

$$m_1 = m \frac{e}{e_1} \cdot \frac{a}{a_1} = 1 \times \frac{50}{20} \cdot \frac{2}{2.5} = 2 \text{kg}$$

16. Ans: (a)

Sol:



$$m_1 = \frac{mL_2}{L_1 + L_2} = \frac{100 \times 60}{100} = 60$$
kg

$$m_2 = \frac{mL_1}{L_1 + L_2} = \frac{100 \times 40}{100} = 40 \text{kg}$$

$$I = m_1 L_1^2 + m_2 L_2^2$$

$$= 60 \times 40^2 + 40 \times 60^2$$

$$= 240000 \text{ kg cm}^2$$

$$= 24 \text{ kg m}^2$$

Cams

01. Ans: (d)

Sol: Pressure angle is given by

$$\tan \phi = \frac{\frac{dy(\theta)}{d\theta} - e}{y(\theta) + \sqrt{(r_p)^2 - (e)^2}}$$

where,

φ is pressure angle,

 θ is angle of rotation of cam

e is eccentricity

r_p is pitch circle radius

y is follower displacement

02. Ans: (d)

Since

Sol: Cycloidal motion

$$y = \frac{h}{2\pi} \left(\frac{2\pi\theta}{\phi} - \sin\left(\frac{2\pi}{\phi}\theta\right) \right)$$

$$\dot{y}_{max} = \frac{2h\omega}{\phi} \qquad -----(1)$$

Simple harmonic motion:

$$\dot{\mathbf{y}}_{\text{max}} = \left(\frac{\pi}{2} \frac{\mathbf{h}\omega}{\mathbf{\phi}}\right) \qquad -----(2)$$

Uniform velocity:

$$\dot{y} = \frac{h\omega}{\phi} \qquad -----(3)$$

From (1), (2) and (3) we observe that

$$V_{cyclodial} > V_{SHM} > V_{UV} \label{eq:Vcyclodial}$$

03. Ans: (b)

04. Ans: (b)

Sol: L = 4 cm,
$$\phi = 90^{\circ} = \pi/2 \text{ radian}$$

$$\omega = 2 \text{ rad/sec}$$
, $\theta = \frac{2}{3} \times 90 = 60^{\circ}$

$$\frac{\theta}{\phi} = \frac{2}{3}$$

$$s(t) = \frac{L}{2} \left(1 - \cos \frac{\pi \theta}{\phi} \right)$$

$$= 2(1 - \cos 120) = 3$$
cm

$$V(t) = \frac{L}{2} \times \frac{\pi}{\phi} \times \omega \times \sin\left(\frac{\pi\theta}{\phi}\right)$$

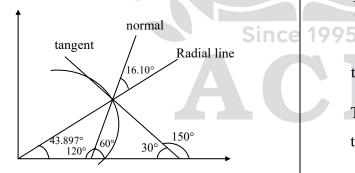
$$= \frac{4}{2} \times 2 \times 2 \sin(120) = 7 \operatorname{cm/s}$$

$$a(t) = \frac{L}{2} \left(\frac{\pi}{\phi}\right)^2 \times \omega^2 \times \cos\left(\frac{\pi\theta}{\phi}\right)$$

$$= \frac{4}{2} \times 2^2 \times 2^2 \times \cos(120) = -16 \text{cm/sec}^2$$

05. Ans: (b)

Sol:



$$x = 15\cos\theta$$
,

$$y = 10 + 5\sin\theta$$

$$\tan \phi = \frac{dy}{dx} = \frac{dy}{\frac{d\theta}{d\theta}} = \frac{5\cos\theta}{-15\sin\theta}$$

at
$$\theta = 30^{\circ}$$
.

$$\tan \phi = \frac{5 \times \frac{\sqrt{3}}{2}}{-15 \times \frac{1}{2}} = -\frac{1}{\sqrt{3}} \implies \phi = 150^{\circ}$$

$$\tan \theta = \frac{y}{x} = \frac{10 + 5\sin \theta}{15\cos \theta} = \frac{10 + 5\sin 30}{15\cos 30}$$
$$\theta = 43.897^{\circ}$$

Pressure angle is angle between normal and radial line = 16.10° .

or
$$x = 15 \cos \theta$$
,

$$y = 10 + 5 \sin\theta$$
 at $\theta = 30^{\circ}$

$$\left(\frac{x}{15}\right)^2 + \left(\frac{y-10}{5}\right)^2 = 1$$

$$x = \frac{15\sqrt{3}}{2}$$
, $y = 125$

$$\frac{2x}{15^2} + \frac{2(y-10)}{5^2} \cdot \frac{dy}{dx} = 0$$

$$\frac{dy}{dx} = \frac{-x}{(y-10)9} = \frac{-15\sqrt{3}}{2\left(\frac{3}{2}\right) \times 9} = \frac{-1}{\sqrt{3}}$$

$$\tan\theta = \frac{-1}{\sqrt{3}}$$

Then normal makes with x-axis

$$\tan^{-1}(\sqrt{3}) = 60^{\circ}$$

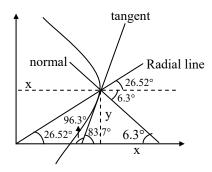
$$\tan \theta = \frac{y}{x} = \frac{10 + 5\sin \theta}{15\cos \theta} = \frac{10 + 5\sin 30}{15\cos 30}$$

$$\theta = 43.897^{\circ}$$

With follower axis angle made by normal (pressure angle) = 60° - 43.897° = 16.10°

06. Ans: (a)

Sol:



Let α be the angle made by the normal to the curve

$$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{(4,2)} = 9$$

$$\tan \alpha = \frac{\mathrm{d}y}{\mathrm{d}x} = 4x - 7$$

At
$$x = 4 \& y = 2$$
,

$$\alpha = \tan^{-1}(9) = 83.7^{\circ}$$

The normal makes an angle

$$= \tan^{-1} \left(\frac{-1}{9} \right) = 6.3^{\circ} \text{ with x axis}$$

$$\theta = \tan^{-1}\left(\frac{2}{4}\right) = 26.52^{\circ}$$

Pressure angle is angle between normal and radial line = $26.52 + 6.3 = 32.82^{\circ}$

07. Ans: (b)

Sol: For the highest position the distance between the cam center and follower

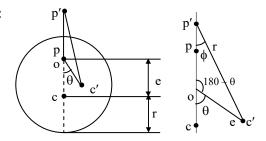
$$= (r + 5) \text{ mm}$$

For the lowest position it is (r-5) mm So the distance between the two positions

$$=(r+5)-(r-5)=10 \text{ mm}$$

08. Ans: (a)

Sol:



When 'c' move about 'o' through ' θ ', point 'p' moves to p'. ' ϕ ' is angle between normal drawn at point of contact which always passes through centre of circle and follower axis. So this is pressure angle.

From Δle p'oc'

$$\frac{r}{\sin(\pi - \theta)} = \frac{e}{\sin \phi}$$

$$\sin \phi = \frac{e}{r} \sin \theta$$

 ϕ is maximum $\theta = 90^{\circ}$

$$\sin \phi = \frac{e}{r}$$

Pressure angle s maximum at pitch point

$$\phi = \sin^{-1}\left(\frac{e}{r}\right) = 30^{\circ}$$

Chapter 7

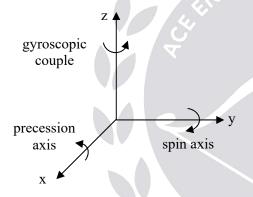
Gyroscope

01. Ans: (c)

Sol: Due to Gyroscopic couple effect and centrifugal force effect the inner wheels tend to leave the ground.

02. Ans: (d)

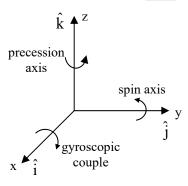
Sol: Pitching is angular motion of ship about transverse axis.



Due to pitching gyroscopic couple acts about vertical axis.

03.

Sol:
$$m = 1000 \text{ kg}, \quad r_k = 200 \text{ mm}$$



$$I = 1000 \times (0.2)^2 = 40 \text{ kg-m}^2$$

N = 5000 rpm (CCW) looking from stern

$$\omega = \frac{2\pi \times 5000}{60} = 523.6 \text{ rad/s}$$

$$\vec{\omega} = -523.6\,\hat{j}$$

Precession velocity

$$\omega_p = \frac{V}{r} = \frac{25 \times 0.514}{400} = 0.032125 \text{ rad/s}$$

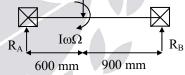
$$\vec{\omega}_p = 0.0312 \text{ k}$$

Gyroscopic couple = $I(\vec{\omega} \times \vec{\omega}_p)$

G =
$$40(-523.6\,\hat{j} \times 0.032125\,\hat{k})$$

= $-672.826\,\hat{i}\,\text{N-m} = 672.826\,\text{N-m(CW)}$

Now,



$$199R_A + R_B = mg = 9810 N$$

$$\sum M_A = 0$$

$$R_B \times 1.5 - 672.826 - 9810 \times 0.6 = 0$$

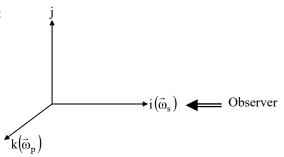
$$R_B = 4372.54 \text{ N}$$

$$R_A = 5437.45 \,\mathrm{N}$$

The bow of ship tends to fall because of gyroscopic action.

04. Ans: 1681 N-m

Sol:



k = 220 mm, m = 210 kg
I = 210 × (0.22)² = 10.164 kg-m²

$$\omega_s = \frac{2\pi \times 1800}{60} = 1884.95 \text{ rad/s}$$

$$\omega_{\rm p} = \frac{1200 \times \frac{5}{18}}{3800} = 0.0877 \,\text{rad/s}$$

$$\begin{aligned} M &= I \; \omega_s \; \omega_p \\ &= 10.164 \times 0.0877 \times 1884.95 \\ &= 1681 \; N\text{-m} \end{aligned}$$

 $\vec{\omega}_{\rm S}$ is acting towards nose (positive x-axis) $\vec{\omega}_{\rm p}$ is out the plane of paper (positive z-axis) $\vec{\omega} \times \vec{\omega}_{\rm p}$ is acting towards negative y-axis (right side). So the pilot will turn left side in order to keep aircraft in vertical plane.

05. Ans: 200

Sol:
$$R = 100 \text{ m}$$
, $v = 20 \text{ m/sec}$,
$$\omega_p = \frac{V}{R} = 0.2 \frac{rad}{sec}$$
 $\omega_s = 100 rad/sec$
$$I = 10 \text{ kg-m}^2$$

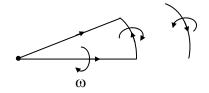
Gyroscopic moment

=
$$I\omega_s\omega_p = 10 \times 0.2 \times 100 \text{N-m}$$

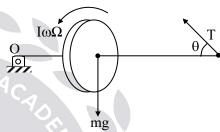
= 200 N-m

Sol:

(i)



The gyroscopic couple is = $I\omega\Omega$



$$\begin{split} \sum & M_o = 0 \\ 2a. T \sin \theta + I \omega \Omega = mg \times a \\ \frac{2a. T.b}{\sqrt{4a^2 + b^2}} + \frac{mr^2}{2} \omega \Omega = mg \times a \\ T &= \frac{\sqrt{4a^2 + b^2}}{2ab} \bigg(mga - \frac{mr^2}{2} \omega \Omega \bigg) \end{split}$$

For clockwise rotation of precession

(ii)
$$\sum M_o = 0$$

$$2a.T \sin \theta - I\omega\Omega = mg \times a$$

$$T = \frac{\left(mga + \frac{1}{2}mr^2\omega\Omega\right)\left(b^2 + 4a^2\right)^{\frac{1}{2}}}{2ab}$$

07. Ans: (a, b, d)

Sol: Gyroscopic couple = $I.(\omega \times \omega_p)$

Chapter 8

Mechanical Vibrations

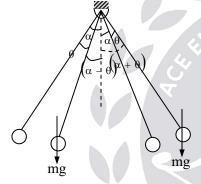
01. Ans: (b)

Sol:
$$T = 2\pi \sqrt{\frac{L}{g}} \implies 0.5 = 2\pi \times \sqrt{\frac{L}{9.81}}$$

 $\implies L = 62.12 \text{ mm}$

02. Ans: (d)

Sol:



Let the system is displaced by θ from the equilibrium position. It's position will be as shown in figure.

By considering moment equilibrium about the axis of rotation (Hinge)

$$I \theta + m g \ell \sin(\alpha + \theta) - m g \ell \sin(\alpha - \theta) = 0$$

$$I\!=\!m\ell^2+m\ell^2\!=\!2m\ell^2$$

After simplification

$$2m\ell^2\ddot{\theta} + 2mg\ell\cos\alpha\sin\theta = 0$$

For small oscillations (θ is small) $\sin \theta = \theta$

$$\therefore 2m\ell^2\ddot{\theta} + 2mg\ell\cos\alpha.\theta = 0$$

$$\omega_{n} = \sqrt{\frac{2 m g \ell \cos \alpha}{2 m \ell^{2}}} = \sqrt{\frac{g \cos \alpha}{\ell}}$$

03. Ans: (c)

Sol: Let, V_o is the initial velocity,

'm' is the mass

Equating Impulse = momentum

$$mV_o = 5kN \times 10^{-4} sec$$

$$=5\times10^3\times10^{-4}=0.5\sec$$

$$\therefore V_0 = \frac{0.5}{m} = 0.5 \,\text{m/sec}$$

$$\omega_{\rm n} = \sqrt{\frac{\rm k}{\rm m}} = \sqrt{\frac{10000}{1}} = 100 \, \text{rad/sec}$$

When the free vibrations are initiate with initial velocity,

The amplitude

$$X = \frac{V_0}{\omega_n}$$
 (Initial displacement)

$$\therefore X = \frac{V_0}{\omega_n} = \frac{0.5 \times 10^3}{100} = 5 \text{ mm}$$

04. Ans: (a)

Sol: Note: ω_n depends on mass of the system not on gravity

$$\therefore \ \omega_{_{n}} \ \propto \frac{1}{\sqrt{m}}$$

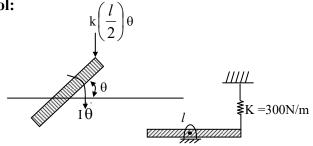
If
$$\omega_n = \sqrt{\frac{g}{\delta}}$$
, $\delta = \frac{mg}{K}$

$$\therefore \ \omega_n = \sqrt{\frac{g}{\left(\frac{mg}{K}\right)}} = \sqrt{\frac{K}{m}}$$

 $\therefore \omega_n$ is constant every where.

05. Ans: (c)

Sol:



By energy method

$$E = \frac{1}{2}I\dot{\theta}^2 + \frac{1}{2}Kx^2 = constant$$

$$E = \frac{1}{2}I\dot{\theta}^2 + \frac{1}{2}K \times \left(\frac{\ell}{2}\theta\right)^2 = \cos \tan t$$

Differentiating w.r.t 't'

$$\frac{dE}{dt} = I \frac{\bullet \bullet}{\theta} + \frac{K}{2} \times \frac{\ell^2}{4} \times 2\theta = 0$$

$$I = \frac{m\ell^2}{12}$$

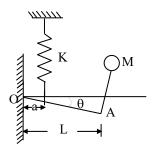
$$\frac{m\ell^2}{12}\ddot{\theta} + \frac{K\ell^2}{4}\theta = 0$$

$$\Rightarrow \ddot{\theta} + \frac{3K}{m}\theta = 0$$

$$\Rightarrow \omega_{\rm n} = \sqrt{\frac{3K}{m}} = 30 \, \text{rad/sec}$$

06. Ans: (a)

Sol:



Assume that in equilibrium position mass M is vertically above 'A'. Consider the displaced position of the system at any instant as shown above figure.

If Δ_{st} is the static extension of the spring in equilibrium position, its total extension in the displaced position is $(\Delta_{st} + a\theta)$.

From the Newton's second law, we have

$$I_0 \stackrel{\bullet}{\theta} = Mg(L + b\theta) - k(\Delta_{st} + a\theta)a...(1)$$

But in the equilibrium position

 $MgL=k\Delta_{st}a$

Substituting the value in equation (1), we

have
$$I_0 = (Mgb - ka^2)\theta$$

$$\Rightarrow I_0 \stackrel{\bullet}{\theta} + (ka^2 - Mgb)\theta = 0$$

$$\omega_n = \sqrt{\frac{ka^2 - Mgb}{I_0}}$$

$$\tau = 2\pi \sqrt{\frac{I_0}{ka^2 - Mgb}}$$

The time period becomes an imaginary quantity if $ka^2 < Mgb$. This makes the system unstable. Thus the system to vibrate the limitation is

$$ka^2 > Mgb$$

$$b < \frac{ka^2}{Mg}$$

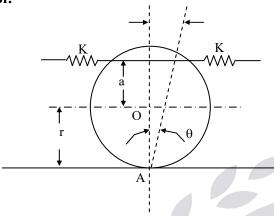
Where W = Mg

07. Ans: (a)

Since

08.

Sol:



$$KE = \frac{1}{2}mr^{2}\dot{\theta}^{2} + \frac{1}{2}I\dot{\theta}^{2}$$
$$= \frac{1}{2}mr^{2}\dot{\theta}^{2} + \frac{1}{4}mr^{2}\dot{\theta}^{2}$$
$$= \frac{3}{4}mr^{2}\dot{\theta}^{2}$$

$$PE = \frac{1}{2}Kx^2 + \frac{1}{2}Kx^2 = Kx^2$$

$$x = (r + a)\theta$$

$$\Rightarrow$$
 PE = $K\{(r+a)\theta\}^2$

$$\frac{d}{dt}KE + \frac{d}{dt}PE = 0$$

Substituting in the above equation

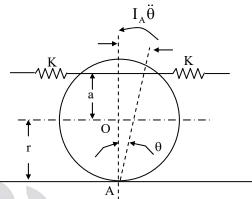
$$\frac{3}{2}mr^2\ddot{\theta} + 2K(r+a)^2\theta = 0$$

Natural frequency

$$f_n = \frac{1}{2\pi} \sqrt{\frac{4K(r+a)^2}{3mr^2}}$$

So
$$f_n = 47.74 \text{ Hz}.$$

OR



Taking the moment about the instantaneous centre 'A'.

$$I_A\ddot{\theta} + 2K (r+a) \theta (r+a) = 0$$

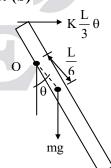
$$I_A = \frac{mr^2}{2} + mr^2 = \frac{3}{2}mr^2$$

$$\frac{3}{2}mr^2\ddot{\theta} + 2k(r+a)^2\theta = 0$$

$$\omega_{n} = \sqrt{\frac{k_{eq}}{m_{eq}}} = \sqrt{\frac{2k(r+a)^{2}}{\frac{3}{2}mr^{2}}} = \sqrt{\frac{4k(r+a)^{2}}{3mr^{2}}}$$

09. Ans: (b)

Sol:



By considering the equilibrium about the pivot 'O'

$$I_0\ddot{\theta} + mg \times \frac{L}{6}\sin\theta + K\frac{L}{3}\theta \times \frac{L}{3} = 0$$

$$\frac{mL^{2}}{9}\ddot{\theta} + \left(mg \times \frac{L}{6} + \frac{KL^{2}}{9}\right)\theta = 0 \quad (\because \sin\theta \approx \theta)$$

$$\omega_n = \sqrt{\frac{mg \times \frac{L}{6} + \frac{KL^2}{9}}{\frac{mL^2}{9}}} \implies \omega_n = \sqrt{\frac{3g}{2L} + \frac{K}{m}}$$

10. Ans: (d)

Sol:
$$X_0 = 10$$
 cm, $\omega_n = 5$ rad/sec

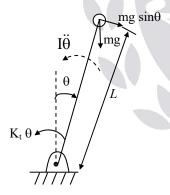
$$X = \sqrt{x_0^2 + \left(\frac{v_0}{\omega_n}\right)^2}$$

If
$$v_0 = 0$$
 then $X = x_0$

$$\therefore X = x_0 = 10$$
cm

11. Ans: (c) & 12. Ans: (c)

Sol:



$$I = mL^2$$

The equation of motion is

$$mL^2\ddot{\theta} + (k_t - mgL)\theta = 0$$

Inertia torque = mL^2

Restoring torque =
$$k_t - mgL \sin\theta$$

= $(k_t - mgL)\theta$

Sol: For a Cantilever beam stiffness,
$$K = \frac{3EI}{\rho^3}$$

Natural frequency,
$$\omega_n = \sqrt{\frac{K}{m}} = \sqrt{\frac{3EI}{m\ell^3}}$$

Given
$$f_n = 100 \text{ Hz}$$

$$\Rightarrow \omega_n = 2\pi f_n = 200 \pi$$

$$200\pi = \sqrt{\frac{3EI}{m\ell^3}}$$

Flexural Rigidity

EI =
$$\frac{(200.\pi)^2 .m\ell^3}{3}$$
 = 0.0658 N.m²

14. Ans: (d)

Sol: Free body diagram

Moment equilibrium about hinge

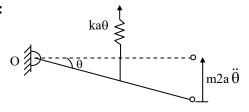
$$409 \text{ m} 2r\ddot{\theta}.2r + k\theta.r = 0$$

$$4mr^2\ddot{\theta} + kr^2\theta = 0$$

$$\omega_{\rm n} = \sqrt{\frac{kr^2}{4mr^2}} = \sqrt{\frac{k}{4m}} = \sqrt{\frac{400}{4}}$$

15. Ans: (a)

Sol:



By taking the moment about 'O', $\Sigma m_0 = 0$

$$(m2a\ddot{\theta} \times 2a) + (ka\theta \times a) = 0$$

$$\Rightarrow 4a^2 m \ddot{\theta} + ka^2 \theta = 0$$

Where,
$$m_{eq} = 4a^2m$$
, $k_{eq} = ka^2$

Natural frequency,
$$\omega_{n} = \sqrt{\frac{k_{eq}}{m_{eq}}}$$

$$=\sqrt{\frac{ka^2}{4a^2m}}=\sqrt{\frac{k}{4m}}\frac{rad}{sec}$$

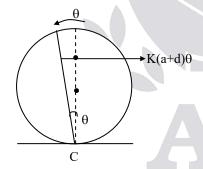
$$[::\omega_n=2\pi f]$$

$$\Rightarrow f = \frac{\omega_n}{2\pi} = \frac{1}{2\pi} \times \sqrt{\frac{k}{4m}} Hz$$

16. Ans: (a)

Sol: Moment equilibrium above instantaneous centre (contact point)

$$-k(a+d)\theta.(a+d) = I_c \ddot{\theta}$$



$$I_c = \frac{3}{2} Ma^2 ,$$

$$\omega_{a} = \sqrt{\frac{k(a+d)^{2}}{\frac{3}{2}Ma^{2}}}$$

$$\omega_{n} = \sqrt{\frac{2k(a+d)^{2}}{3Ma^{2}}}$$

Sol: KE =
$$\frac{1}{2}$$
m $\dot{x}^2 + \frac{1}{2}$ I $\dot{\theta}^2$

$$m = 5 \text{ kg}, \qquad \theta = \frac{x}{r}$$

$$\theta = \frac{x}{r}$$

$$I = \frac{20 \times r^2}{2} = 10r^2$$

KE =
$$\frac{1}{2}5\dot{x}^2 + \frac{1}{2}10r^2 \cdot \frac{\dot{x}^2}{r^2} = \frac{1}{2}(15)\dot{x}^2$$

$$\therefore m_{eq} = 15$$

$$\therefore m_{eq} = 15$$

$$PE = \frac{1}{2}kx^{2}$$

$$\therefore k_{eq} = k = 1500 \text{N/m}$$

Natural frequency

$$\omega_{\rm n} = \sqrt{\frac{{\rm k}_{\rm eq}}{{\rm m}_{\rm eq}}} = \sqrt{\frac{1500}{15}} = 10 \,{\rm rad/sec}$$

18. Ans: (b)

Sol: In damped free vibrations the oscillatory motion becomes non-oscillatory at critical Since 1995 damping.

> Hence critical damping is the smallest damping at which no oscillation occurs in free vibration

Ans: (a)

Sol:
$$\omega_n = 50 \text{ rad/sec} = \sqrt{\frac{5}{m}}$$

If mass increases by 4 times

$$\omega_{n_1} = \sqrt{\frac{k}{4m}} = \frac{1}{2} \times \sqrt{\frac{k}{m}} = \frac{50}{2} = 25 \text{ rad/sec}$$

Damped frequency natural frequency,

$$\omega_{d} = \sqrt{1 - \xi^{2}} \times \omega_{n}$$

$$\Rightarrow 20 = \sqrt{1 - \xi^{2}} \times 25 = 0.6 = 60\%$$

20. Ans: (a)

Sol:
$$K_1$$
, $K_2 = 16 \text{ MN/m}$

$$K_3, K_4 = 32 \text{ MN/m}$$

$$K_{eq} = K_1 + K_2 + K_3 + K_4$$

$$m = 240 \text{ kg}$$

$$\omega_{\rm n} = \sqrt{\frac{K_{\rm e}}{m}}$$

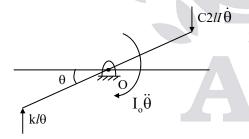
$$K_{eq} = ((16 \times 2) + (32 \times 2)) \times 10^6 = 96 \times 10^6 \text{ N/m}$$

$$\omega_{\rm n} = \sqrt{\frac{96 \times 10^6}{240}} = 632.455 \text{ rad/sec}$$

$$N = \frac{\omega_n \times 60}{2\pi} = 6040 \, \text{rpm}$$

21. Ans: (a)

Sol:



For slender rod,
$$I_o = \left[\rho \frac{x^3}{3}\right]_{-\ell}^{2\ell}$$
$$= \frac{\rho}{3} \times \left(8\ell^3 + \ell^3\right) = \frac{9\rho\ell^3}{3} = 3\rho\ell^3 = m\ell^2$$

Where, $\rho = m/3l$

Considering the equilibrium at hinge 'O'.

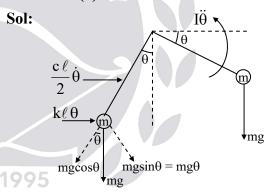
$$\begin{split} &I_o \ \ddot{\theta} \ + c2l \dot{\theta} \times 2l + kl\theta \times l = 0 \\ & \Rightarrow \ ml^2 \ddot{\theta} \ + 4l^2 c \ \dot{\theta} + kl^2 \theta \ = 0 \\ &I_{equivalent} = ml^2, \ C_{eq} = 4l^2 c, \ k_{eq} = kl^2 \end{split}$$

22. Ans: (b)

Sol: Damping ratio,
$$\xi = \frac{c}{c_c} = \frac{c_{eq}}{2\sqrt{k_{eq}m_{eq}}}$$

$$= \frac{4\ell^2 c}{2 \times \sqrt{k\ell^2 \times m\ell^2}}$$
$$= \frac{4\ell^2 c}{2 \times \sqrt{mk\ell^4}} = \frac{2c}{\sqrt{km}}$$

23. Ans: (a)



$$I = m(2l)^2 + ml^2 = 5ml^2$$

The equation motion is

$$\begin{split} \left(m \times (2\ell)^2 + m\ell^2\right) \ddot{\theta} + \frac{c\ell^2}{4} \dot{\theta} + k\ell^2 \theta + mg\ell \theta = 0 \\ = 5m\ell^2 \ddot{\theta} + \frac{c\ell^2}{4} \dot{\theta} + k\ell^2 \theta + mg\ell \theta = 0 \\ \omega_n = \sqrt{\frac{k_{eq}}{m_{eq}}} = \sqrt{\frac{k\ell^2 + mg\ell}{5m\ell^2}} \\ = \sqrt{\frac{400}{5 \times 10}} = 3.162 \, \text{rad/s} \end{split}$$

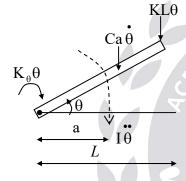
24. Ans: (a)

Sol:
$$\xi = \frac{c_{eq}}{2\sqrt{k_{eq}m_{eq}}} = \frac{\left(\frac{c\ell^2}{4}\right)}{2\sqrt{(k\ell^2 + mg\ell) \times 5m\ell^2}}$$

$$= \frac{\frac{400 \times 1^2}{4}}{2\sqrt{(400 \times 1^2 + 10 \times 9.81 \times 1) \times 5 \times 10 \times 1^2}} = 0.316$$

25. Ans: (a)

Sol:



By moment equilibrium

$$I\ddot{\theta} + Ca^2\dot{\theta} + KL^2\theta + K_{\theta}\theta = 0$$

$$\frac{mL^2}{3} \stackrel{\bullet}{\theta} + Ca^2 \stackrel{\bullet}{\theta} + (KL^2 + K_{\theta})\theta = 0$$

$$\omega_{n} = \sqrt{\frac{K_{eq}}{m_{eq}}} = \sqrt{\frac{KL^{2} + K_{\theta}}{mL^{2}/3}}$$

$$\omega_{\rm n} = \sqrt{\frac{1500}{0.833}} = 42.26 \text{ rad/sec}$$

26. Ans: (c)

Sol: Refer to the above equilibrium equation

$$C_{eq} = Ca^{2}$$

= $500 \times 0.4^{2} = 80 \frac{N - m - sec}{rad}$

 \Rightarrow C = 80 Nms/rad

Note: For angular co-ordinate

Unit of Equivalent inertia =
$$\frac{N-m}{rad/s^2} = kg - m^2$$

Unit of equivalent damping coefficient = $\frac{N-m}{rad/s}$

Unit of equivalent stiffness = N-m/rad

27. Ans: (a)

Sol: Given length of cantilever beam,

$$l = 1000 \text{ mm} = 1 \text{m}, \text{ m} = 20 \text{ kg}$$

Cross section of beam = square

Moment of inertia of the shaft,

1995 I =
$$\frac{1}{12}$$
bd³ = $\frac{25 \times (25)^3}{12}$ = 3.25 ×10⁻⁸ m⁴

$$E_{\text{steel}} = 200 \times 10^9 \, \text{Pa}$$

Mass,
$$M = 20$$
kg

Stiffness,
$$K = \frac{3EI}{\ell^3}$$

Critical damping coefficient,

$$C_C = 2\sqrt{Km} = 1250 \text{ Ns/m}$$

28. Ans: (c)

Since

29. Ans: (d)

Sol:
$$x = 10 \text{ cm at } \frac{\omega}{\omega_n} = 1;$$

$$\xi = 0.1$$

At resonance
$$x = \frac{x_0}{2\xi} = 10 \text{ cm}$$

$$\Rightarrow$$
 $x_0 = 2 \times 0.1 \times 10 = 2$ cm

 x_0 = static deflection

At
$$\frac{\omega}{\omega_n} = 0.5$$
,

$$x = \frac{x_0}{\sqrt{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + \left[2\xi \frac{\omega}{\omega_n}\right]^2}}$$

$$x = \frac{2}{\sqrt{\left[1 - (0.5)^2\right]^2 + (2 \times 0.1 \times 0.5)^2}} = 2.64 \,\mathrm{cm}$$

30. Ans: (a)

Sol: $m\ddot{x} + Kx = F\cos\omega t$

$$m = ?$$

$$K = 3000 \text{ N/m},$$

$$X = 50 \text{ mm} = 0.05 \text{ m}$$

$$F = 100 N$$
.

$$\omega = 100 \, \text{rad/sec}$$

$$X = \frac{F}{K - m\omega^2}$$

$$\Rightarrow$$
 m = $\frac{K}{\omega^2} - \frac{F}{X\omega^2} = 0.1 \text{kg}$

Sol:
$$\delta = ln \left(\frac{x_1}{x_2} \right) = ln \, 2 = 0.693$$

$$\xi = \frac{\delta}{\sqrt{4\pi^2 + \delta^2}}$$

$$=\frac{0.693}{\sqrt{4\pi^2+0.693^2}}=0.109$$

$$c = 2\xi\sqrt{k\,m} = 2\times0.109\times\sqrt{100\times1}$$

$$= 2.19 \text{ N-sec/m}$$

Sol:
$$x_{\text{static}} = 3 \text{mm}$$
, $\omega = 20 \text{ rad/sec}$

As
$$\omega > \omega_n$$

So, the phase is 180°

$$-x = \frac{x_{\text{static}}}{\sqrt{\left(1 - \left(\frac{\omega}{\omega_{\text{n}}}\right)^{2}\right)^{2} + \left(2\xi \frac{\omega}{\omega_{\text{n}}}\right)^{2}}}$$

$$x = \frac{3}{\sqrt{1 - \left(\frac{20}{10}\right)^2} + \left(2 \times 0.109 \times \frac{20}{10}\right)^2}}$$

= 1 mm opposite to F.

33. Ans: (c)

Sol: At resonance, magnification factor =
$$\frac{1}{2\xi}$$

$$\Rightarrow 20 = \frac{1}{2\xi}$$

$$\Rightarrow \xi = \frac{1}{40} = 0.025$$

34. Ans: (c)

Sol: M = 100 kg, m = 20 kg, e = 0.5 mm

$$K = 85 \text{ kN/m}, C = 0 \text{ or } \xi = 0$$

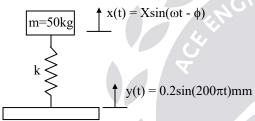
 $\omega = 20\pi \text{ rad/sec}$

Dynamic amplitude

$$X = \frac{me\omega^{2}}{\pm (k - M\omega^{2})} = \frac{20 \times 5 \times 10^{-4} \times (20\pi)^{2}}{\pm (8500 - 100 \times (20\pi)^{2})}$$
$$= 1.27 \times 10^{-4} \text{ m}$$

35. Ans:

Sol:



$$\omega = 200\pi \text{ rad/sec}, -X = 0.01 \text{ mm}$$

$$Y = 0.2 \text{ mm}$$

$$\frac{X}{Y} = \frac{k}{k - m\omega^2}$$

$$\Rightarrow \frac{-0.01}{0.2} = \frac{k}{k - 50 \times (200\pi)^2}$$

$$\Rightarrow k = 939.96 \text{ kN/m}$$

36. Ans: (b)

Sol:
$$m = 5 \text{ kg}$$
, $c = 20$,
 $k = 80$, $F = 8$, $\omega = 4$
 $x = \frac{F}{(k - m\omega^2) + (c\omega)^2}$
 $= \frac{8}{\sqrt{(80 - 5 \times 4^2) + (20 \times 4)^2}} = 0.1$

Magnification factor =
$$\frac{x}{x_{\text{static}}}$$

$$x_{\text{static}} = \frac{F}{k} = \frac{8}{80} = 0.1$$

Magnification factor =
$$\frac{0.1}{0.1}$$
 = 1

37. Ans: (c)

Sol: Given,
$$m = 250 \text{ kg}$$

 $K = 100,000 \text{ N/m}$
 $N = 3600 \text{ rpm}$

$$\xi = 0.15$$

$$\omega_n = \sqrt{\frac{K}{m}} = 20 \text{ rad/sec}$$

$$\omega = \frac{2\pi \times N}{60} = 377 \text{ rad/sec}$$

$$TR = \frac{\sqrt{1 + \left(2\xi \frac{\omega}{\omega_n}\right)^2}}{\sqrt{\left(1 - \frac{\omega^2}{\omega_n^2}\right)^2 + \left(2\xi \frac{\omega}{\omega_n}\right)^2}} = 0.0162$$

38. Ans: 10 N.sec/m

Since 1995

Sol: Given systems represented by

$$m\ddot{x} + c\dot{x} + kx = F\cos\omega t$$

For which,
$$X = \frac{F}{\sqrt{(K - m\omega^2)^2 + (C\omega)^2}}$$

Given,
$$K = 6250 \text{ N/m}$$
, $m = 10 \text{ kg}$, $F = 10 \text{ N}$
 $\omega = 25 \text{ rad/sec}$, $X = 40 \times 10^{-3}$

$$\omega_n = \sqrt{\frac{K}{m}} = 25 \, \text{rad/sec}$$

$$\omega t = 25t \Rightarrow \omega = 25 \text{ rad/sec}$$

$$\omega = \omega_n$$
 or $K = m\omega_n^2$

$$\therefore X = \frac{F}{C\omega} \Rightarrow C = \frac{F}{X\omega}$$
$$= \frac{10}{40 \times 10^{-3} \times 25} = 10 \frac{N - sec}{m}$$

39. Ans: (b)

Sol: Transmissibility (T) reduces with increase in damping up to the frequency ratio of $\sqrt{2}$. Beyond $\sqrt{2}$, T increases with increase in damping

40. Ans: (c).

Sol: Because f = 144 Hz execution frequency. f_{R_n} (Natural frequency) is 128.

$$\frac{\omega}{\omega_{R_{-}}} = \frac{f}{f_{R_{-}}} = \frac{144}{128} = 1.125$$

It is close to 1, which ever sample for which $\frac{\omega}{\omega_n}$ close to 1 will have more response, so sample R will show most percentible to

sample R will show most perceptible to vibration

41. Ans: (b)

Sol: Given Problem of the type

$$m\ddot{x} + c\dot{x} + kx = F\cos\omega t$$

for which,
$$X = \frac{F}{\left(k - m\omega^2\right)^2 + \left(c\omega\right)^2}$$

or
$$X = \frac{F/K}{\sqrt{\left(1 - \left(\frac{\omega}{\omega_n}\right)^2\right) + \left(2\xi \frac{\omega}{\omega_n}\right)^2}}$$

Given
$$F = 10$$
,

$$\omega_n = 10\omega$$

$$k = 150 \text{ N/m} \text{ or } \frac{\omega}{\omega_n} = \frac{1}{10} = 0.1$$

$$\xi = 0.2$$

$$X = \frac{10/150}{\sqrt{(1-0.1)^2 + (2 \times 0.2 \times 0.1)^2}}$$

$$=0.0669 \simeq 0.07$$

42. Ans: 6767.7 N/m

Sol: Given
$$f = 60 \text{ Hz}$$
, $m = 1 \text{ kg}$

$$\omega = 2\pi f = 120 \pi rad/sec$$

Transmissibility ratio, TR = 0.05

Damping is negligible, C = 0, K = ?

We know
$$TR = \frac{K}{K - m\omega^2}$$
 when $C = 0$

As TR is less than $1 \Rightarrow \omega/\omega_n >> \sqrt{2}$

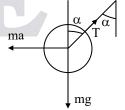
TR is negative

$$\therefore -0.05 = \frac{K}{K - m\omega^2}$$

Solving we get K = 6767.7 N/m

43. Ans: (c)

Sol:



Where, a = acceleration of train

$$T \cos \alpha = mg$$

$$T \sin \alpha = ma$$

$$\tan\alpha = \frac{ma}{m\alpha}$$

$$a = g \tan \alpha = 9.81 \tan(9.81^{\circ})$$

= 1.69 m/s²

44. Ans: (a)

45. Ans: (b)

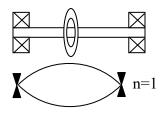
Sol:
$$e = 2mm = 2 \times 10^{-3} m$$
, $\omega_n = 10 \text{ rad/s}$, $N = 300 \text{ rpm}$
$$\omega = \frac{2\pi N}{60} = 10\pi \text{ rad/sec}$$

$$X = \frac{me\omega^2}{k - m\omega^2} = \frac{e\omega^2}{\left(\frac{k}{m}\right)^2 - \omega^2} = \frac{e\omega^2}{\omega_n^2 - \omega^2}$$

$$X = \frac{e\left(\frac{\omega}{\omega_n}\right)^2}{1 - \left(\frac{\omega}{\omega_n}\right)^2} = \frac{2 \times 10^{-3} \times \left(\frac{10\pi}{10}\right)^2}{\pm \left(1 - \left(\frac{10\pi}{10}\right)^2\right)}$$
$$= 2.25 \times 10^{-3} \text{ m} = 2.25 \text{ mm}$$

46. Ans: (a)

Sol: Number of nodes observed at a frequency of 1800 rpm is 2



n-mode number

The whirling frequency of shaft,

$$f = \frac{\pi}{2} \times n^2 \sqrt{\frac{gEI}{WL^4}}$$

For 1st mode frequency, $f_1 = \frac{\pi}{2} \times \sqrt{\frac{gEI}{WL^4}}$ $f_n = n^2 f_1$

As there are two nodes present in 3rd mode,

$$f_3 = 3^2 f_1 = 1800 \text{ rpm}$$

$$f_1 = \frac{1800}{9} = 200 \text{ rpm}$$

:. The first critical speed of the shaft = 200 rpm

47. Ans: (b)

Sol: Critical or whirling speed

$$\omega_{\rm c} = \omega_{\rm n} = \sqrt{\frac{\rm K}{\rm m}} = \sqrt{\frac{\rm g}{\delta}} \, {\rm rad/sec}$$

If N_C is the critical or whirling speed in rpm

then
$$\frac{2\pi N_C}{60} = \sqrt{\frac{g}{\delta}}$$

$$\Rightarrow \frac{2\pi N_C}{60} = \sqrt{\frac{9.8 \, \text{lm/s}^2}{1.8 \times 10^{-3} \, \text{m}}}$$

$$\Rightarrow N_C = 705.32 \, \text{rpm} \approx 705 \, \text{rpm}$$