

GATE | PSUs

MECHANICAL ENGINEERING

Strength of Materials

Text Book: Theory with worked out Examples and Practice Questions

Strength of Materials

(Solutions for Text Book Practice Questions)

Simple Stresses and Strains

Fundamental, Mechanical Properties of Materials, Stress Strain Diagram

01. Ans: (b)

Sol:

• **Ductility:** The property of materials to allow large deformations or large extensions without failure (large plastic zone) is termed as ductility.

Chapter

1

- **Brittleness:** A brittle material is one which exhibits a relatively small extensions or deformations prior to fracture. Failure without warning (No plastic zone) i.e. no plastic deformation.
- **Tenacity**: High tensile strength.
- **Creep:** Creep is the gradual increase of plastic strain in a material with time at constant load.
- **Plasticity:** The property by which material undergoes permanent deformation even after removal of load.
- Endurance limit: The stress level below which a specimen can withstand cyclic stress indefinitely without failure.
- **Fatigue:** Decreased Resistance of material to repeated reversal of stresses.

02. Ans: (a)

Sol:

- When the material is subjected to stresses, it undergoes to strains. After removal of stress, if the strain is not restored/recovered, then it is called inelastic material.
- For rigid plastic material:

- Any material that can be subjected to large strains before it fractures is called a ductile material. Thus, it has large plastic zone.
- Materials that exhibit little or no yielding before failure are referred as brittle materials. Thus, they have no plastic zone.

03. Ans: (a)

Sol: *Refer to the solution of Q. No. (01).*

04. Ans: (b)

Sol: The stress-strain diagram for ductile material is shown below.

GATE – Text Book Solutions

- σ_{P} P Proportionality limit Q Elastic limit R Upper yield point S Lower yield point T Ultimate tensile strength U FailureFrom above,
 - $OP \rightarrow Stage I$
 - $PS \rightarrow Stage II$
 - $ST \rightarrow Stage III$
 - $TU \rightarrow Stage IV$

05. Ans: (b)

Sol:

• If the response of the material is independent of the orientation of the load axis of the sample, then we say that the material is **isotropic** or in other words we can say the isotropy of a material is its characteristics, which gives us the information that the properties are same in the three orthogonal directions x, y and z. A material is homogeneous if it has the same composition throughout the body. Hence, the elastic properties are the same at every point in the body in a given direction. However, the properties need not to be the same in all the directions for the material. Thus, both A and B are false.

06. Ans: (a)

- Sol: Strain hardening increase in strength after plastic zone by rearrangement of molecules in material.
 - Visco-elastic material exhibits a mixture of creep as well as elastic after effects at room temperature. Thus their behavior is time dependant

07. Ans: (a)

Sol: *Refer to the solution of Q. No. (01).*

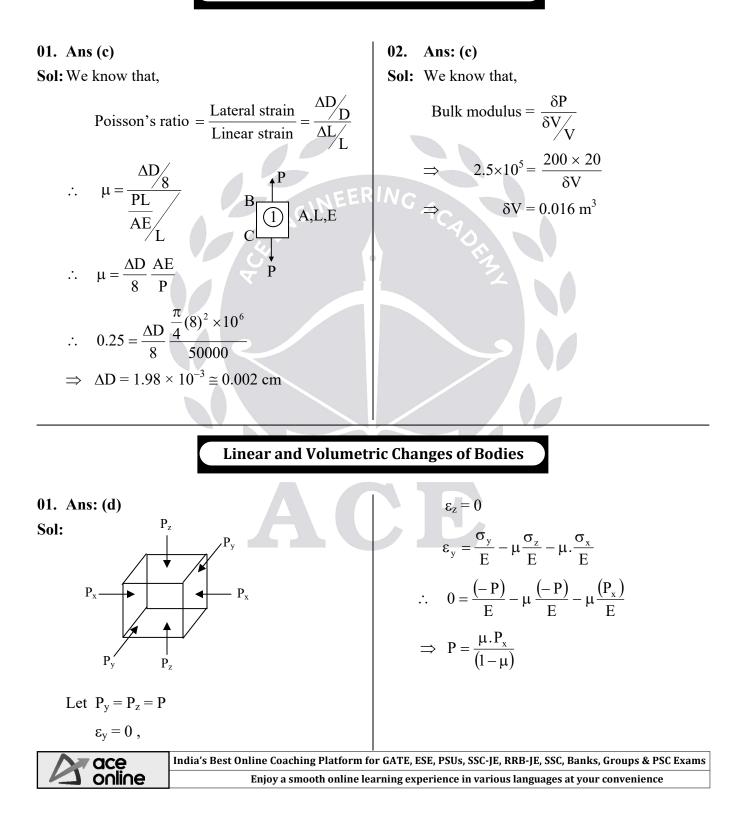
08. Ans: (a)

Sol: Modulus of elasticity (Young's modulus) of some common materials are as follow:

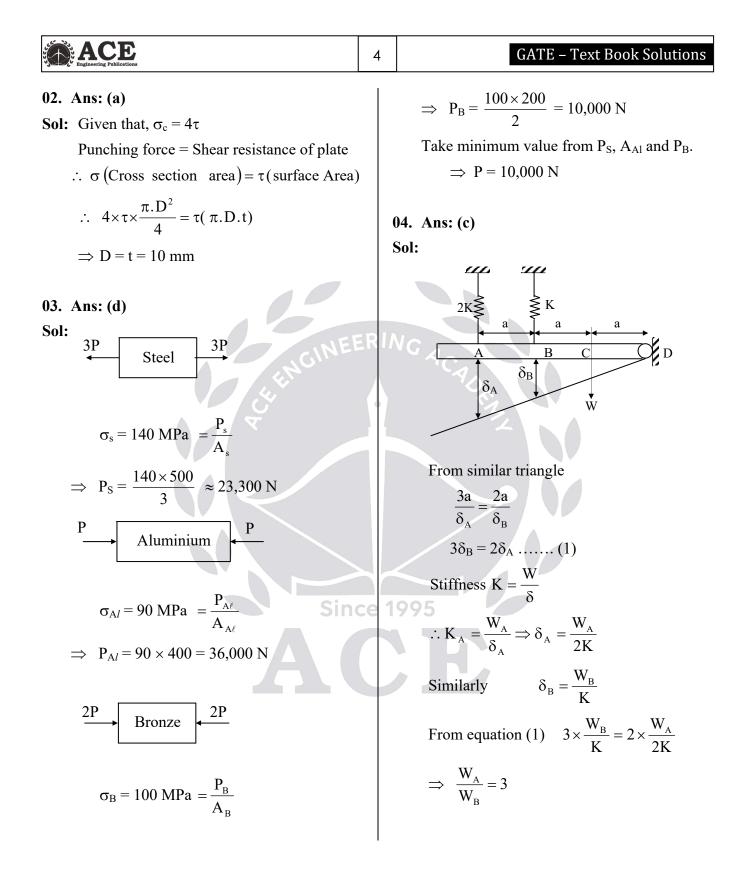
Material	Young's Modulus (E)
Steel	200 GPa
Cast iron	100 GPa
Aluminum	60 to 70 GPa
Timber	10 GPa
Rubber	0.01 to 0.1 GPa

09. Ans: (a)

Sol: Addition of carbon will increase strength, thereby ductility will decrease.


 Acception
 Regular Live Doubt clearing Sessions
 Free Online Test Series | ASK an expert

 Affordable Fee |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages


Since

Strength of Materials

Elastic Constants and Their Relationships

3

ace	Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert
	Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages

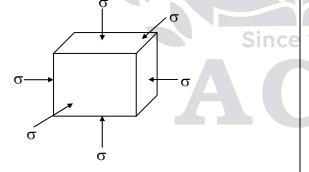
ACE Engineering Publication

Thermal/Temperature Stresses

- 01. Ans: (b)
- **Sol:** Free expansion = Expansion prevented

$$\left[\ell \alpha t\right]_{s} + \left[\ell \alpha t\right]_{AI} = \left\lfloor \frac{P\ell}{AE} \right\rfloor_{s} + \left\lfloor \frac{P\ell}{AE} \right\rfloor_{AL}$$

$$11 \times 10^{-6} \times 20 + 24 \times 10^{-6} \times 20$$


$$= \frac{P}{100 \times 10^{3} \times 200} + \frac{P}{200 \times 10^{3} \times 70}$$

$$\Rightarrow P = 5.76 \text{ kN}$$

$$\sigma_{s} = \frac{P}{A_{s}} = \frac{5.76 \times 10^{3}}{100} = 57.65 \text{ MPa}$$

 $\sigma_{Al} = \frac{P}{A_{al}} = \frac{5.76 \times 10^{3}}{200} = 28.82 \text{ MPa}$

02. Ans: (a)

Sol:

Strain in X-direction due to temperature,

$$\varepsilon_t = \alpha (\Delta T)$$

Strain in X-direction due to volumetric stress,

$$\varepsilon_{x} = \frac{\sigma_{x}}{E} - \mu \frac{\sigma_{y}}{E} - \mu \frac{\sigma_{z}}{E}$$

$$\therefore \quad \varepsilon_{x} = \frac{-\sigma}{E} (1 - 2\mu)$$
$$\therefore \quad -\sigma = \frac{(\varepsilon_{x})(E)}{1 - 2\mu}$$
$$\therefore \quad -\sigma = \frac{\alpha(\Delta T)E}{(1 - 2\mu)}$$
$$\Rightarrow \quad \sigma = \frac{-\alpha(\Delta T)E}{1 - 2\mu}$$

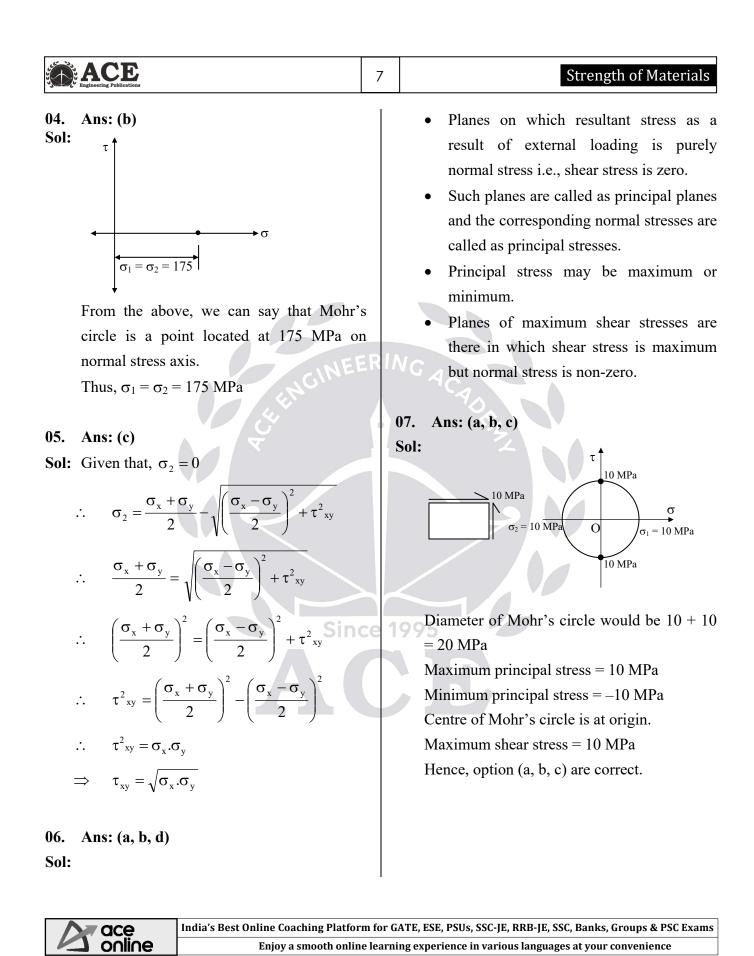
5

- Free expansion in x direction is aαt.
- Free expansion in y direction is $a\alpha t$.
- Since there is restriction in y direction expansion doesn't take place. So in lateral direction, increase in expansion due to restriction is μaαt.

Thus, total expansion in x direction is,

 $= a \alpha t + \mu a \alpha t$ $= a \alpha t (1 + \mu)$

04. Ans: (a, b, d)

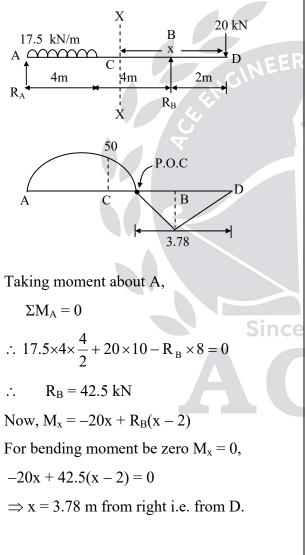

Sol:

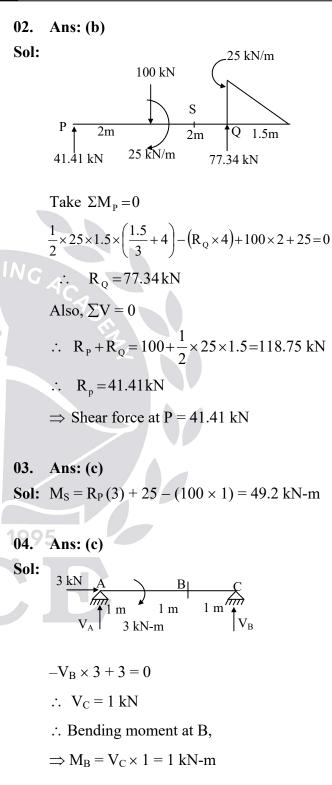
- Brass and copper bars are in parallel arrangement in composite bar.
- In parallel arrangement load is divided and elongation will be same for both the bars.

A ace online India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

Strength of Materials

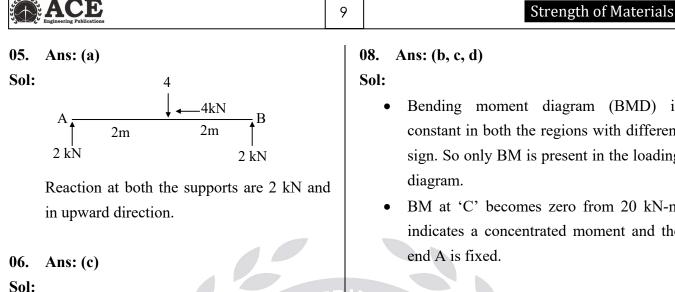
Engineering Publications	6 GATE – Text Book Solution
P = P _b + P _c P = A _b σ_b + A _c σ_c $\delta_b = \delta_c$ $\Rightarrow \frac{P\ell}{AE}\Big _b = \frac{P\ell}{AE}\Big _{cu}$ $\therefore \ell_b = \ell_c$ $\therefore \frac{\sigma_b}{\sigma_c} = \frac{E_b}{E_c}$ Hence, a, b, d are correct. 05. Ans: (b, d) Sol: Elongation produced in prismatic bar due to self weight. $\delta\ell = \frac{\gamma\ell^2}{2E}$ $\gamma =$ weight density Now, $\ell \rightarrow 2\ell$ $\delta\ell' = \frac{\gamma \times (2\ell)^2}{2E} = 4\delta\ell$ Elongation produced will be 4 time original elongation. Stress = E × strain $\sigma = E \times \frac{\delta\ell}{\ell} = E \times \frac{\gamma\ell}{2E}$ $\sigma' = E \times \frac{\gamma 2\ell}{2E}$ $\sigma' = 2\sigma$ Stress produced will be 2 times maximum stress.	Chapter 2 Complex Stresses and Strains 01. Ans: (b) Sol: Maximum principal stress $\sigma_1 = 18$ Minimum principal stress $\sigma_2 = -8$ Maximum shear stress $= \frac{\sigma_1 - \sigma_2}{2} = 13$ Normal stress on Maximum shear stress plan $= \frac{\sigma_1 + \sigma_2}{2} = \frac{18 + (-8)}{2} = 5$ 02. Ans: (b) Sol: Radius of Mohr's circle, $\tau_{max} = \frac{\sigma_1 - \sigma_2}{2}$ $\therefore 20 = \frac{\sigma_1 - 10}{2}$ $\Rightarrow \sigma_1 = 50$ N/mm 03. Ans: (b) Sol: Given data, $\sigma_x = 150$ MPa, $\sigma_y = -300$ MPa, $\mu = 0.3$ Long dam \rightarrow plane strain member $\varepsilon_z = 0 = \frac{\sigma_z}{E} - \frac{\mu \sigma_x}{E} - \frac{\mu \sigma_y}{E}$ $\therefore 0 = \sigma_z - 0.3 \times 150 + 0.3 \times 300$
Regular Live Double Affordable Fee Avail	clearing Sessions Free Online Test Series ASK an expert

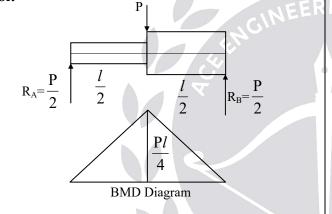



ChapterShear Force3and Bending Moment

8

01. Ans: (b)


Sol: Contra flexure is the point where BM is becoming zero.



GATE – Text Book Solutions

Bending moment at $\frac{l}{2}$ from left is $\frac{Pl}{4}$.

The given beam is statically determinate structure. Therefore equilibrium equations are sufficient to analyze the problem. In statically determinate structure the BMD, SFD and Axial force are not affected by section (I), material (E), thermal changes.

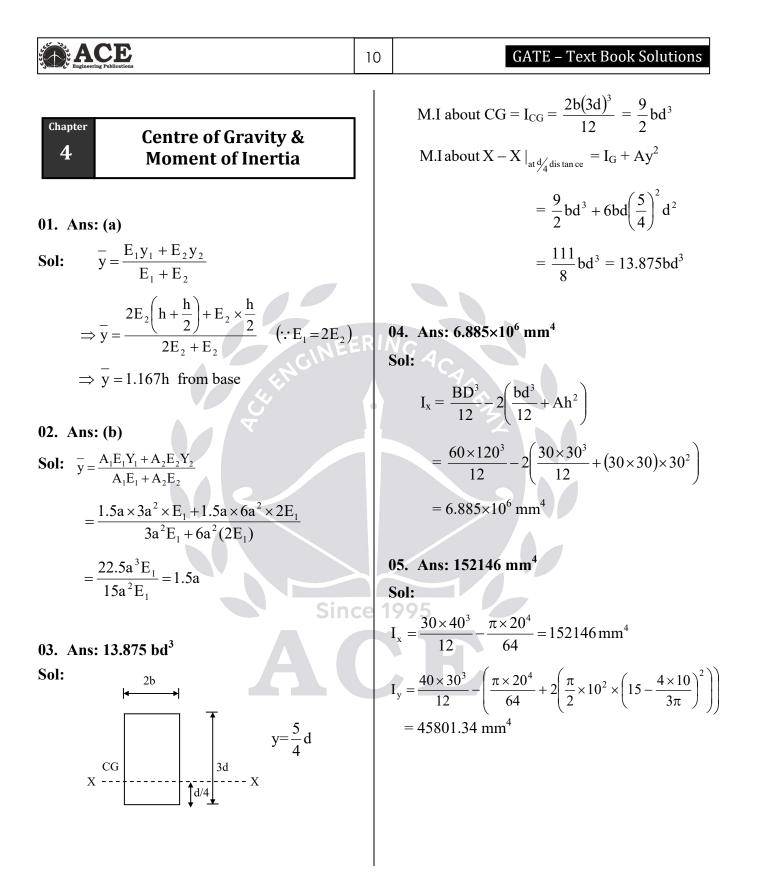
07. Ans: (a)

Sol: As the given support is hinge, for different set of loads in different direction beam will experience only axial load.

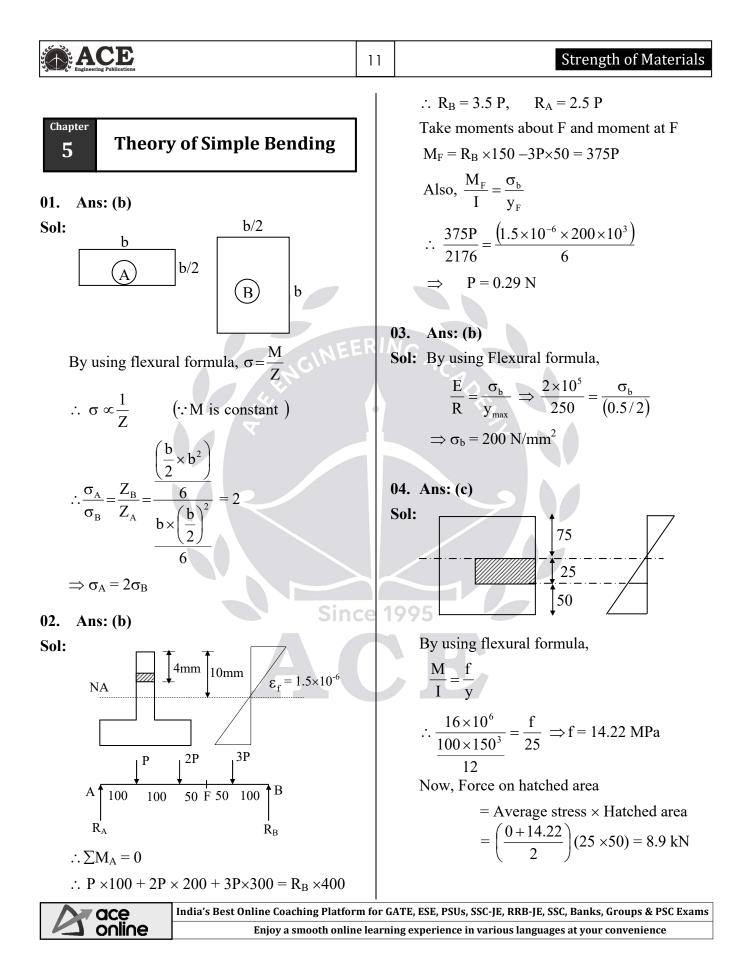
- Bending moment diagram (BMD) is constant in both the regions with different sign. So only BM is present in the loading
- BM at 'C' becomes zero from 20 kN-m indicates a concentrated moment and the

09. Ans: (b, c)

Sol:


1995

- For point load shear force will always be • constant.
- There is no change in the shear force diagram due to presence of bending moment at any point.


Hence, option (a & d) are wrong statements.

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

A ace	Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert
A ace online	Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages

ACE Engineering Publications	12 GATE – Text Book Solutions
05. Ans: (b) Sol: By using flexural formula, $\frac{f_{\text{Tensile}}}{y_{\text{top}}} = \frac{M}{I}$ $\Rightarrow f_{\text{Tensile}} = \frac{0.3 \times 3 \times 10^6}{3 \times 10^6} \times 70$ (maximum bending stress will be at top fibre so $y_1 = 70 \text{ mm}$) $\Rightarrow f_{\text{Tensile}} = 21 \text{ N/mm}^2 = 21 \text{ MN/m}^2$ 06. Ans: (c) Sol: Given data: $P = 200 \text{ N}, \qquad M = 200 \text{ N.m}$ $A = 0.1 \text{ m}^2, \qquad I = 1.33 \times 10^{-3} \text{ m}^4$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
y = 20 mm Due to direct tensile force P, $\sigma_{d} = \frac{P}{A} = \frac{200}{0.1}$ $= 2000 \text{ N/m}^{2} \text{ (Tensile)}$ Due to the moment M, $\sigma_{b} = \frac{M}{I} \times y$ $= \frac{200}{1.33 \times 10^{-3}} \times 20 \times 10^{-3}$	Maximum stress developed in steel is = m·f _w = $20 \times 4 = 80$ MPa Convert whole structure as a steel structure by using modular ratio. 08. Ans: 2.43 mm Sol: From figure, A ₁ B ₁ = $l = 3$ m (given) AB = $\left(R - \frac{h}{2}\right)\alpha = l - l\alpha t_1 - \dots (1)$
= 3007.52 N/m ² (Compressive) $\sigma_{net} = \sigma_d - \sigma_b$ = 2000 - 3007.52 = - 1007.52 N/m ² Negative sign indicates compressive stress.	$A_{2}B_{2} = \left(R + \frac{h}{2}\right)\alpha = l + l\alpha t_{2} - \dots (2)$ Subtracting above two equations (2) – (1) $h(\alpha) = l\alpha (t_{2}-t_{1})$ but $A_{1}B_{1} = l = R\alpha$ $\Rightarrow \alpha = \frac{l}{R}$ $\therefore h\left(\frac{l}{R}\right) = l\alpha (\Delta T)$
	clearing Sessions Free Online Test Series ASK an expert able 1M 3M 6M 12M 18M and 24 Months Subscription Packages

EXAMPLE 13
Strength of Materials

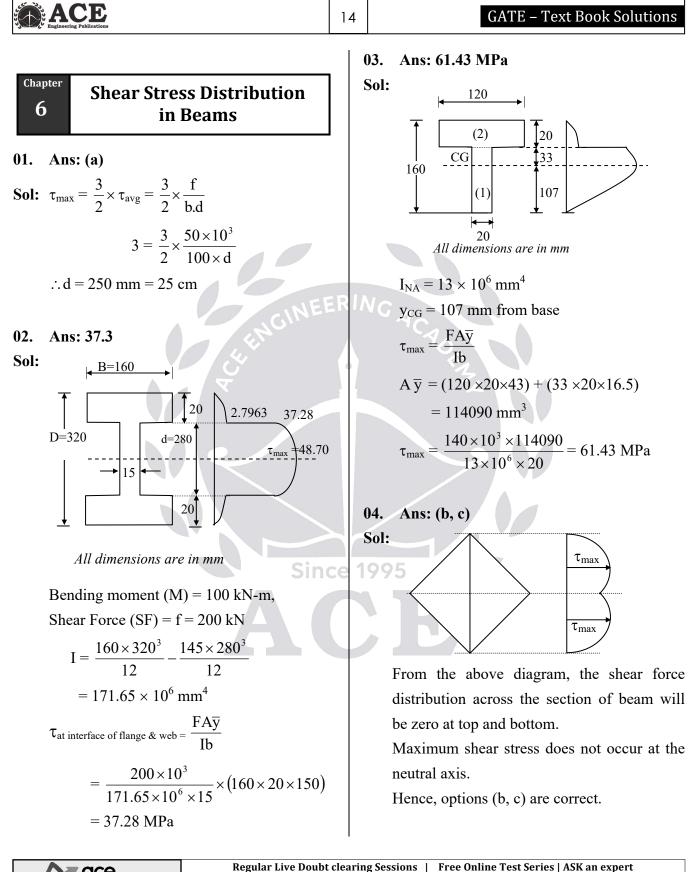
$$R = \frac{h}{\alpha(\Delta T)}$$

$$= \frac{250}{(1.5 \times 10^{-5})(72 - 36)}$$

$$R = 462.9 \text{ m}$$
From geometry of circles

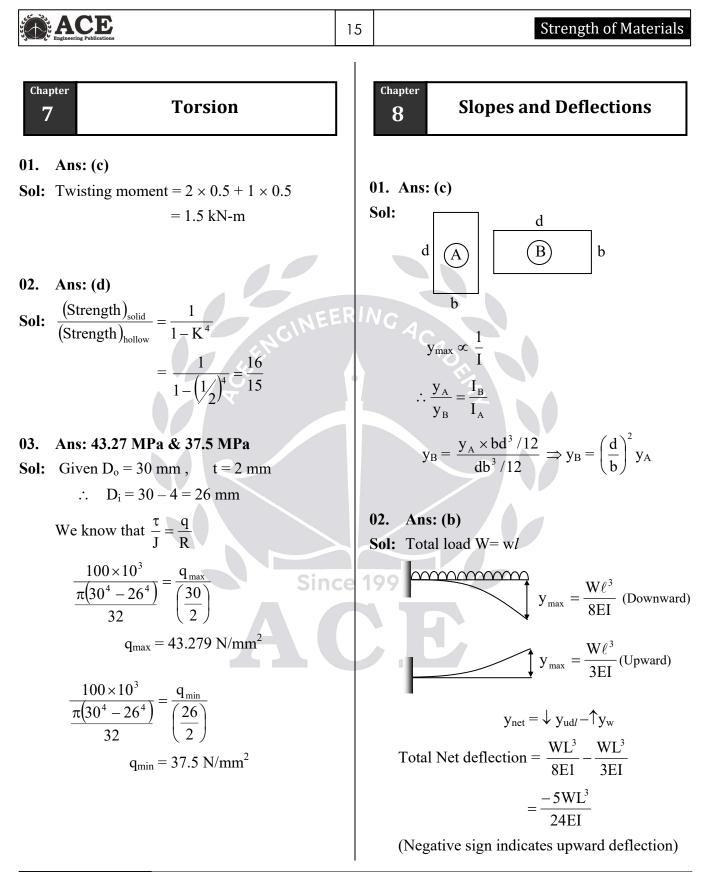
$$(2R - \delta)\delta = \frac{L}{2}, \frac{L}{2} \quad \{\text{ref. figure in Q.No.02}\}$$

$$2R \cdot \delta - \delta^2 = \frac{L^2}{4} (\text{neglect } \delta^2)$$

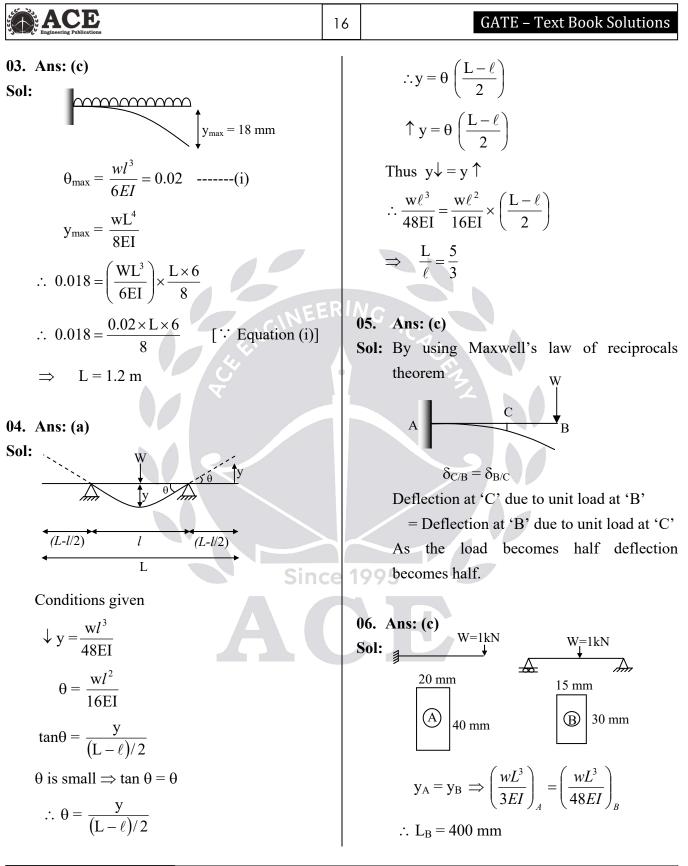

$$\delta = \frac{L^2}{8R} = \frac{3^2}{8 \times 462.9} = 2.43 \text{ mm}$$
Shortcut:
Deflection is due to differential temperature
of bottom and top ($\Delta T = 72^\circ - 36^\circ = 36^\circ$).
Bottom temperature being more, the beam
deflects down.

$$\delta = \frac{\alpha(\Delta T)\ell^2}{8k}$$

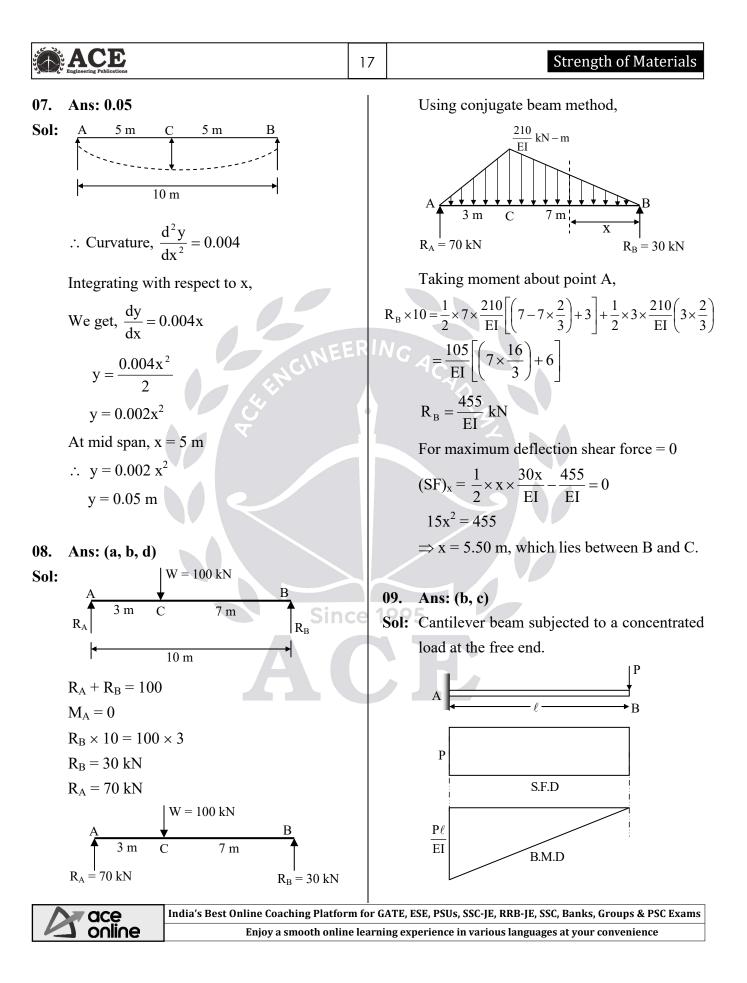
$$= \frac{1.5 \times 10^{-5} \times 36 \times 3000^2}{8 \times 250}$$
E 2.43 mm (downward)
D9. Ans: (**a**, **c**)
Sol:


$$A = \frac{a}{B} \frac{a}{W} = \frac{W}{C} = D$$

$$M$$
BM_Q = M
BM_Q = M + Wa
Conce
**Indis B test 0nline Conching Platform for GATE, ESE, PSUS, SSC-JE, RRP-JE, SSC, Banks, Groups & PSC Exams
E by a smooth online tearing experience in various languages at your conventence**


ace	Regular Live Doubt clearing Sessions		
1 online	Affordable Fee Available 1M 3M 6M 12M		

18M and 24 Months Subscription Packages



India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

A ace online

A ace	Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert
Affordable Fee Av	Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages

ACE Engineering Publications	18	GATE – Text Book Solutions
From the above diagram bending moments or stress is maximum at fixed end. From SFD, shear stress is constant along the length of the beam. Slope of elastic curve is zero at fixed end and maximum at free end. Hence, option (b, c) are correct.	t F R I.(S	Chapter 9 Thin Pressure Vessels OI. Ans: (b) Sol: $\tau_{max} = \sigma_1 = \frac{\sigma_h - 0}{2} = \frac{PD}{4t}$ $\therefore \tau_{max} = \frac{1.6 \times 900}{4 \times 12} = 30 \text{ MPa}$ O2. Ans: 2.5 MPa & 2.5 MPa Sol: Given data: $R = 0.5 \text{ m}, D = 1 \text{ m}, t = 1 \text{ mm}, H = 1 \text{ m}, \gamma = 10 \text{ kN/m}^3, h = 0.5 \text{ m}$ At mid-depth of cylindrical wall (h = 0.5m): Circumferential (hoop) stress, $\sigma_c = \frac{P_{at h=0.5m} \times D}{4t} = \frac{\gamma h \times D}{4t}$ $= \frac{10 \times 10^3 \times (2 \times 0.5)}{4 \times 1 \times 10^{-3}}$ $= 2.5 \times 10^6 \text{ N/m}^2 = 2.5 \text{ MPa}$ Longitudinal stress at mid-height, $\sigma_c = \frac{\gamma \times \text{Volume}}{\pi D \times t}$ $= \frac{\gamma \times \text{Volume}}{\pi D \times t}$ $= \frac{10 \times 10^3 \times 1 \times 1}{4 \times 10^{-3}}$ $= 2.5 \times 10^6 \text{ N/m}^2 = 2.5 \text{ MPa}$
Regular Live Doubt	 clearin	g Sessions Free Online Test Series ASK an expert
		3M 6M 12M 18M and 24 Months Subscription Packages

ace online

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

ACE Engineering Publications	20	GATE – Text Book Solutions
04. Ans: (c)		
Sol: Euler's theory is applicable for axiall loaded columns.	у	Chapter 11 Strain Energy
Force in member AB, $P_{AB} = \frac{F}{\cos 45^{\circ}} = \sqrt{2}F$		01. Ans: (d)
$P_{AB} = \frac{\pi^2 EI}{{L_e}^2}$	\$	Sol:Slope of the stress-strain curve in the elastic
$\therefore \sqrt{2} \mathbf{F} = \frac{\pi^2 \mathbf{E} \mathbf{I}}{\mathbf{L_e}^2}$		region is called modulus of elasticity. For the given curves,
$\Rightarrow F = \frac{\pi^2 EI}{\sqrt{2} L^2}$	ER <i>II</i>	(Modulus of elasticity) _A > (Modulus of elasticity) _B
05. Ans: (a) Sol: Given data: $L_e = L = 3 \text{ m},$ $\alpha = 12 \times 10^{-6} / ^{\circ}\text{C},$		 ∴ E_A > E_B The material for which plastic region is more is stress-strain curve is possesed high ductility. Thus, D_B > D_A. 02. Ans: (b)
d = 50 mm = 0.05 m Buckling load, $P_e = \frac{\pi^2 EI}{L_c^2}$		Sol: o
$\therefore \frac{P_e L}{AE} = L\alpha \Delta T \qquad \text{Sin}$	ce 1	995 30° B
$\therefore \qquad \frac{\pi^2 \text{EI} \times \text{L}}{\text{L}^2 \times \text{AE}} = \text{L} \alpha \Delta \text{T}$		
$\therefore \frac{\pi^2 \times E \times \frac{\pi}{64} \times d^4 \times L}{L^2 \times \frac{\pi}{4} d^2 \times E} = L\alpha \Delta T$		$\frac{(SE)_{A}}{(SE)_{B}} = \frac{Area \text{ under curve } A}{Area \text{ under curve } B}$ $= \frac{\frac{1}{2} \times x \times x \tan 60^{\circ}}{\frac{1}{2} \times x \times x \tan 30^{\circ}} = \frac{3}{1}$
$\therefore \qquad \Delta T = \frac{\pi^2 \times d^2}{16 \times L^2 \times \alpha} = \frac{\pi^2 \times (0.05)^2}{16 \times 3^2 \times 12 \times 10^{-6}}$		$\frac{1}{2} \times x \times x \tan 30^{\circ}$ 1
$\Rightarrow \Delta T = 14.3^{\circ}C$		

Regular Live Doubt clearing Sessions | Free Online Test Series | ASK an expert

Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

A ace online

	ACE Engineering Publications		21		Strength of Materials
03.	Ans: (a)	2)5.	Ans: (d)
Sol:	$\frac{2 \text{ cm}}{10 \text{ cm}}$ $\frac{10 \text{ cm}}{20 \text{ cm}}$ $\frac{10 \text{ cm}}{40 \text{ cm}}$	$\frac{2 \text{ cm}}{20 \text{ cm}}$ $\frac{10 \text{ cm}}{20 \text{ cm}}$ $\frac{2 \text{ cm}}{20 \text{ cm}}$	\$	Sol:	Strain energy, $U = \frac{P^2}{2A^2E}$.V $\therefore U \propto P^2$ Due to the application of P ₁ and P ₂ one after the other $(U_1 + U_2) \propto P_1^2 + P_2^2$ (1) Due to the application of P ₁ and P ₂ together at the same time.
	$\therefore \frac{U_{B}}{U_{A}} = \frac{\left[\frac{\sigma_{1}^{2}}{2E}\right]}{\left[\frac{\sigma_{1}^{2}}{2E}\right]}$	$\frac{\times V_{1} + \frac{\sigma_{2}^{2}}{2E} \times V_{2}}{\times V_{1} + \frac{\sigma_{2}^{2}}{2E} \times V_{2}} \right]_{A}$		V G)6.	$U \propto (P_{1} + P_{2})^{2} \qquad(2)$ It is obvious that, $(P_{1}^{2} + P_{2}^{2}) < (P_{1} + P_{2})^{2}$ $\Rightarrow (U_{1} + U_{2}) < U$ Ans: 1.5
	L,	$\frac{A_1 \times L_1 + \frac{P^2 \times A_2 \times L_2}{A_2^2}}{\frac{A_1 \times L_1}{A_1^2} + \frac{P^2 \times A_2 \times L_2}{A_2^2}} \Big]_A}$ $\frac{\frac{L_2}{A_2}}{\frac{L_2}{A_2}} \Big]_B = \frac{7.165}{4.77} = \frac{3}{2}$	\$	Sol:	Given data: L = 100 mm, G = 80×10 ³ N/mm ² J ₁ = $\frac{\pi}{32}(50)^4$; J ₂ = $\frac{\pi}{32}(26)^4$ U = U ₁ + U ₂ = $\frac{T^2L}{2GJ_1} + \frac{T^2L}{2GJ_2}$
04. Sol:	Ans: (c) $A_1 = Modulus$ $A_1 + A_2 = Modulus$)7.	$\Rightarrow U = 1.5 \text{ N-mm}$ Ans: (a, b)
		$\times 70 \times 10^6 = 14 \times 10^4$			Strain energy stored in AB = $\frac{1}{2} \times P \times \delta$
	2	$\times 50 \times 10^{6} + (0.008 \times 70 \times 10^{6})$			$= \frac{1}{2} \times P \times \frac{P\ell}{AE}$
	$= 76 \times 10^4$ A ₁ + A ₂ = (14	$+76) \times 10^4 = 90 \times 10^4$			$=\frac{P^2L}{2AE}$
	ace	India's Best Online Coaching Platfor	m for G	ATE, I	ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams
	a online	Enjoy a smooth online learning experience in various languages at your convenience			

Axial deformation of AB = $\frac{PL}{AE}$	
Strain energy stored in BC, $U = \int_{0}^{\ell} \frac{M^{2} dx}{2EI} (M = Px)$ $= \int_{0}^{\ell} \frac{(Px)^{2} dx}{2EI}$ $= \frac{P^{2} \ell^{3}}{6EI}$ The displacement at point B is not equal to $\frac{P \ell^{3}}{3EI}, \text{ since there is a hinge point C not}$ fixed. 02. Ans: (1) Sol: In case resultation the shear of without the shear of withou	 centre is related to torsion ncipal plane shear stress is zero ed end slope is zero. e third rule is to avoid tension in ins. b) b) be of a thin channel section, if the int shear stress does not pass through ear center, then the bending will occur orsion. resultant shear stress pass through the center, then the bending will occur it torsion. a, b, c, d) agrams are correct representation of centre and centre of gravity of various