

GATE | PSUs

INSTRUMENTATION ENGINEERING

Sensors & Industrial Instrumentation

Piezoelectric Material

Stres

(Text Book: Theory with worked out Examples and Practice Questions)

Piezoelectric Effect

Basics of Transducer

(Solutions for Text Book Practice Questions)

01. Ans: (d)

Chapter **1**

- Sol: P: Charge amplifier with very low bias current and high input impedance -Piezoelectric sensor for measurement of static force
 - Q: Voltage amplifier with low bias current and very high input impedance- Glass electrode pH sensor
 - R: Voltage amplifier with very high CMRR- Strain gauge in unipolar DC Wheatstone bridge

02. Ans: (b)

- Sol: A. Mc Leod gauge- Pressure
 - B. Turbine meter- Flow
 - C. Pyrometer-Temperature
 - D. Synchros- Displacement

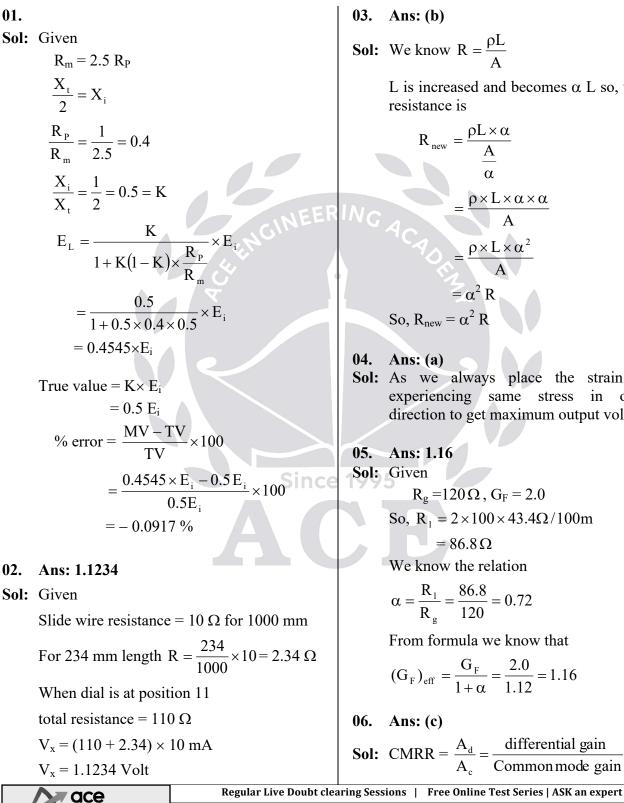
03. Ans: (b)

Sol:

Since 1995

- P. Radiation Pyrometer Temperature measurement
- Q. Dall tube- Flow measurement
- R. Pirani gauge-Vacuum pressure measurement
- S. Gyroscope-Angular velocity measurement

04. Ans: (a, c, d)


Sol: The characteristics of an ideal transducer are:

- High dynamic range
- High repeatability
- Low noise

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience Chapter 2

Resistive, Inductive & Capacitive Transducers

Ans: (b)

Sol: We know
$$R = \frac{\rho L}{A}$$

L is increased and becomes α L so, the new resistance is

$$R_{new} = \frac{\rho L \times \alpha}{\frac{A}{\alpha}}$$
$$= \frac{\rho \times L \times \alpha \times \alpha}{A}$$
$$= \frac{\rho \times L \times \alpha^{2}}{A}$$
$$= \alpha^{2} R$$
So, R_{new} = \alpha^{2} R

04. Ans: (a)

Sol: As we always place the strain gauge experiencing same stress in opposite direction to get maximum output voltage.

05. Ans: 1.16

Sol: Given

 $R_g = 120 \Omega$, $G_F = 2.0$

So, $R_1 = 2 \times 100 \times 43.4 \Omega / 100 m$

 $= 86.8 \Omega$

We know the relation

$$\alpha = \frac{R_1}{R_{\alpha}} = \frac{86.8}{120} = 0.72$$

From formula we know that

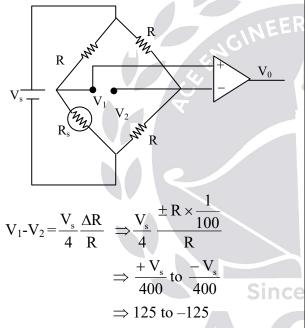
$$(G_F)_{eff} = \frac{G_F}{1+\alpha} = \frac{2.0}{1.12} = 1.16$$

06. Ans: (c)

Sol: CMRR =
$$\frac{A_d}{A_c} = \frac{\text{differential gain}}{\text{Common mode gain}}$$

ACE

CMRR in dB = 20 log
$$\left(\frac{A_d}{A_c}\right)$$


 $A_{d} = 10$

A_c common mode gain

$$=\frac{\Delta V_0}{\Delta V_i} = \frac{(4-3)mV}{(3-2)V} = 1 \times 10^{-3}$$

CMRR =
$$\frac{A_d}{A_c} = \frac{10}{10^{-3}} = 10 \times 10^3 = 10^4$$

07. Ans: (b) Sol:

As the data says the differential amplifier has an additional constant offset voltage at output. Given data for common mode input $V_i = 2V$ and 3V common mode output $V_0 = 3mV$ and $V_0 = 4mV$. Under no load conditions common mode input

 $V_1 = V_2 = 2.5$ (Strain Gauge Resistance – R)

So the common mode input signal becomes 2.5V, hence common mode output signal.

For corresponding 2.5V is

$$\frac{V_0 + V_{02}}{2} = \frac{3mV + 4mV}{2} = 3.5mV$$

If we add this offset to the output of differential amplifier for R + Δ R is $V_0 = 124.3 + 3.5 = 127.8$ For R - Δ R = -125+3.5 =121.5mV So answer is +128mV to -122mV

08. Ans: (c)

4

$$\overline{V_1} = 1.0V \angle 0^\circ = 1e^{j0} = (\cos 0 + j\sin 0) = 1$$

$$\overline{V_2} = 1.0V \angle 10^\circ = 1e^{j0} = (\cos 10 + j\sin 10)$$

$$= 0.984 + j0.113$$

$$V_1 - V_2 = (1 - 0.984) - j0.173$$

$$= 0.016 - j0.173$$

$$|V_1 - V_2| = \sqrt{(0.016)^2 + (0.173)^2}$$

$$= 0.174 V$$

09.

Sol: a) for a displacement of 0.5mm, the output is 2mV, so the Sensitivity (s) = 2/0.5 mV/mm= 4mV/mm

b) for the whole setup, the sensitivity is

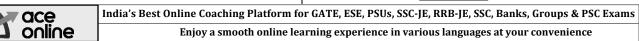
$$S = 150 \times 4mV/mm$$

$$= 1V/mm$$

199 c) Given that,

The output of the voltmeter is 5V with 100 divisions which means that each division = 5V/100 = 0.05V

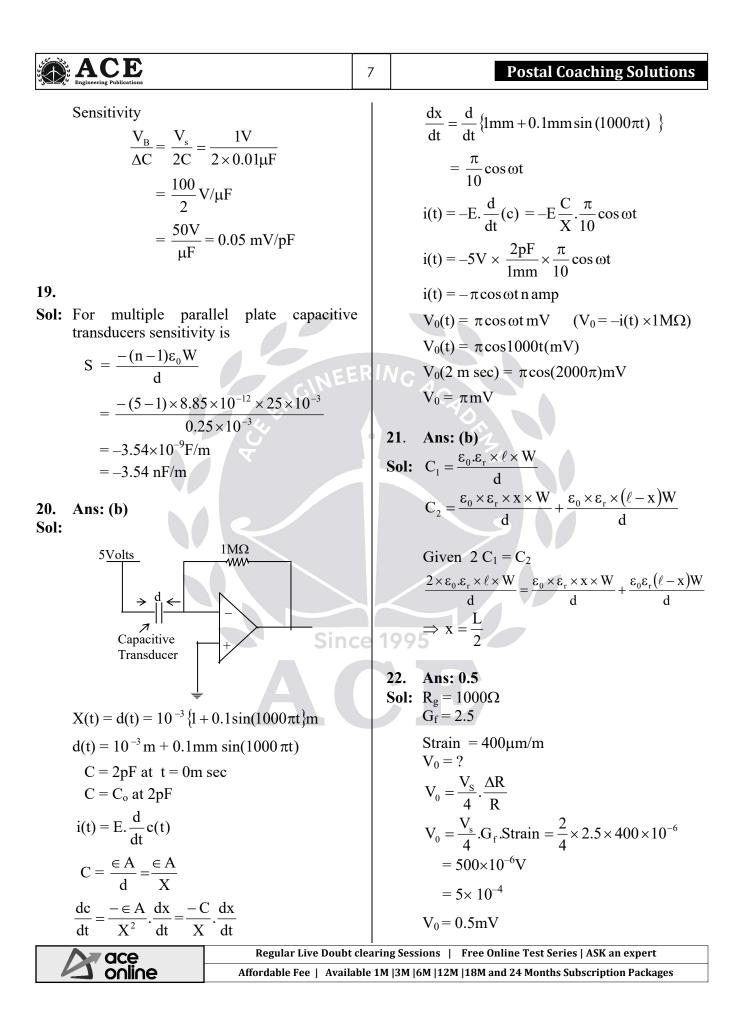
The minimum voltage that can read is $1/5^{th}$ of a division, so the minimum voltage is


$$=\frac{0.05\mathrm{V}}{5}=0.01\mathrm{V}$$

Which corresponds to 0.01mm so Resolution 'R' = 0.01mm

10.

Sol: Given $\beta = 250$



Engineering Publications	5 Postal Coaching Solutions
$S_{LVDT} = 1mV/0.5mm = 2mV/mm$	12. Ans: 3.56
$1 \text{mm} \rightarrow 2 \text{mV}$	Sol: Given
0.25 mm $\rightarrow 0.25 \times 2$ mV	p = 0, d = 4 mm, c = 300 pF,
$E_0 = \beta \times E_{diff}$	$p = 500 \text{ kN/m}^2$,
$= 250 \times 0.5 \text{mV} = 125 \text{mV}$	Average deflection = 0.28 mm, $\Delta f = ?$
Sensitivity = $\frac{125mV}{1N}$	$F = \frac{1}{2\pi\sqrt{Lc}}$
So, sensitivity of the whole system is $\frac{125\text{mV}}{12\text{V}}$	$f \propto \frac{1}{\sqrt{c}}$ So
1N 11. Ans: (b) Sol:	$\frac{\mathbf{f}_1}{\mathbf{f}_2} = \sqrt{\frac{\mathbf{c}_2}{\mathbf{c}_1}} = \sqrt{\frac{\mathbf{d}_1}{\mathbf{d}_2}}$
$E \xrightarrow{+} C + \Delta C$	$\mathbf{f}_2 = \mathbf{f}_1 \sqrt{\frac{\mathbf{d}_2}{\mathbf{d}_1}}$
$E \swarrow - \frac{1}{C} - \Delta C \qquad \qquad$	$= 100 \text{ k} \sqrt{\frac{4 - 0.28}{4}} = 96.43 \text{ Hz}$ $\Delta f = f_1 - f_2 = 3.56 \text{ Hz}$
Virtual ground concept	13. Ans: (b) Sol:
$V_{1} = V_{2}, \qquad V_{2} = V_{0}$ $\frac{V_{0} - E}{X_{C+\Delta C}} + \frac{V_{0} - (-E)}{X_{C-\Delta C}} = 0$ Since $V_{0} - E \qquad V_{0} + E$	$V_{p} = 1V$
$\frac{V_0 - E}{\frac{1}{j\omega(C + \Delta C)}} + \frac{V_0 + E}{\frac{1}{j\omega(C - \Delta C)}} = 0$	
$(V_0 - E)j\omega(C + \Delta C) + (V_0 + E)$	$V_1 = V_2$ Virtual ground concept
$j\omega(C - \Delta C) = 0$	Apply nodal analysis at V ₂
$V_0 C + V_0 \Delta C - EC$	$\frac{V_2 - 1}{X_{C1}} + \frac{V_2(-1)}{X_{C2}} + \frac{V_2 - V_0}{X_{C3}} = 0$
$= \mathbf{E}\mathbf{C} + \mathbf{V}_0 \mathbf{C} - \mathbf{V}_0 \Delta \mathbf{C} + \mathbf{E}\mathbf{C} - \mathbf{E} \Delta \mathbf{C} = 0$	
$2 V_0 C = 2 E \Delta C$	$V_0(j\omega_{C3}) = j\omega \left[\frac{C_2 - C_1}{C_3}\right]$
$V_0 = E \frac{\Delta C}{C}$	$V_0 = 0.354 V$
Regular Live Doubt	 clearing Sessions Free Online Test Series ASK an expert

ace online

	E ications	6 Sensors & Industrial Instrumentation
14. Sol:	Capacitive transducer	Given data $E = 100V$ $R_f = 100K\Omega$ C = 50 pF
Vi	C _i Op Amp V _o	$X = 5mm$ $e_0 = \left\{ \frac{100 \times 10^3 \times 50 \times 10^{-12} \times 100}{5 \times 10^{-3}} \right\} \frac{dx}{dt}$ $\frac{e_0}{\frac{dx}{dt}} = \frac{100 \times 10^3 \times 50 \times 100}{50 \times 10^{-3}} = 0.1$
Here V K	$\mathbf{L} = \left(\frac{-\mathbf{C}_{i}}{\varepsilon_{0}\mathbf{A}}\mathbf{V}_{i}\right)\mathbf{V}/\mathbf{m}$	16. Ans: (d) Sol: $V_0 = A_d \times V_d$
Given d		$V_{\rm B} = \frac{V_{\rm s} \times \Delta C}{2C}$ Given $V_0 = 10$ V
The sen		$\Delta C = \frac{5}{100} = 0.05$ So
()	$\frac{10 \times 10^{-12}}{0.85 \times 10^{-12} \times 200 \times 10^{-6}} \times 10 V/m$ 57×10 ⁻⁶ V/mm	$10 V = A_{d} \times \frac{0.05}{2} \times 10$ $A_{d} = \frac{2}{0.05} = 40$
-		17. Ans: (b)
	the above figure $\times \frac{-c}{x} \cdot \frac{dx}{dt}$	never changes. 18. Ans: (b) Sol: Given $C_0 = C = 0.01 \ \mu F$
$\mathbf{e}_0 = -\mathbf{R}$	x ut	$R \gtrless 3.9 \text{ k} \qquad \overline{C+\Delta C}$
Г	$R_{f}=100K\Omega$	1 kHz $R \gtrless 3.9 \text{ k}$ $C-\Delta C$
		$V_{\rm B} = V_{\rm s} \cdot \frac{\Delta C}{2C}$ rm for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams
B onli	• • • • • • • • • • • • • • • • • • •	ne learning experience in various languages at your convenience

$\Delta V = \frac{A}{d} E$ = $\frac{10 \text{mm}}{50 \text{mm}} \times 10$ = $2V$ Detailed solution: 25.	Ans: (d) : $V_{Bri} = \frac{V_s}{4} \frac{\Delta R}{R}$ $V_{Bri} = \frac{V_s}{4} G_f \times strain$ $1 \times 10^{-3} = \frac{2}{4} \times 2 \times strain$ Strain = $1 \times 10^{-3} = 1000 \mu$ Ans: (b, c)
$C_1 = \frac{\varepsilon A}{d+x}, \qquad C_2 = \frac{\varepsilon A}{d-x}$ Sol	Ans: (b, c)
$E_{1} = \frac{\frac{\varepsilon A}{d-x}}{\left(\frac{\varepsilon A}{d-x}\right) + \left(\frac{\varepsilon A}{d+x}\right)}$ $E_{2} = \frac{\frac{\varepsilon A}{d+x}}{\left(\frac{\varepsilon A}{d-x}\right) + \left(\frac{\varepsilon A}{d+x}\right)}$ $E_{1} = \frac{d+x}{2d} \cdot E$ $E_{2} = \frac{d-x}{2d}$ $E_{2} = \frac{d-x}{2d}$	 In an LVDT, the two secondary windings are connected in differential to obtain: An output voltage which is phase sensitive i.e., the output voltage has a phase which can lead us to a conclusion place from right to left or from left to right. In order to establish the null or the reference point for the displacement of the core. Ans: (a, b, c, d) The advantages of an LVDT is/are Linearity Infinite resolution Low hysteresis A very good high frequency response

Piezo Electric Transducers

01. 02. **Sol:** $\epsilon = 4 \times 10^{-11} \text{ F/m}$ 4mm Sol: Given constant 'g' = $12 \times 10^{-3} \frac{V/m}{N/m^2}$ $y = 8.6 \times 10^{-10} \text{ N/m}^2$ $\Delta t = x = 10^{-9} \,\mathrm{m}$ Dielectric constant = 1.250×10^{-8} F/m Young's modulus $E = 1.2 \times 10^{11} \text{ N/m}^2$ $\frac{F}{\Lambda} = y \frac{\Delta t}{t}$ d = 8 mm, t = 2 mm and $R = 10^8 \Omega$ $F = y \cdot \frac{\Delta t}{t} \cdot A$ a) $g = \frac{K}{c}$ F = 8.6×10⁻¹⁰×10⁻⁹× $\frac{\pi (8 \times 10^{-3})^2}{4}$ = 1.08N K is sensitivity in C/N $K = g \in = 12 \times 10^{-3} \times 1.25 \times 10^{-8}$ $C = \frac{\varepsilon A}{t} = 0.5 \, pF$ $=15 \times 10^{-11} \text{ C/N}$ $C = \frac{\in A}{t}$ Q = d. f = 2.16pC $V = \frac{Q}{C_{p}} = 4.3V$ $C = 31.41 \times 10^{-11}$ Sensitivity in V/m = $\frac{K}{C}$ 03. Ans: (a) Sol: Given $=\frac{15\times10^{-11}}{31.41\times10^{-11}}$ d = 2 pC/N $C_{p} = 1600 \text{ pF}$ = 0.477 V/m $R_p = 1012\Omega$ $F = 0.1 \sin 10t N$ b) If force is 10 N We know for piezoelectric transducer A = $\frac{\pi d^2}{4} = \frac{\pi \times (8 \times 10^{-3})^2}{4}$ ince $\left|\frac{E}{F}\right| = M = \frac{k}{\sqrt{1 + \left(\frac{1}{T_{F}}\right)^{2}}}$ $A = 50.26 \times 10^{-6} \text{ m}^2$ Pressure = $\frac{\text{Force}}{\text{Area}} = \frac{10}{50.26 \times 10^{-6}}$ $K = \frac{d}{C}$ $= 0.198 \times 10^{6}$ $= 19.8 \times 10^4 \text{ N/m}^2$ $M = \frac{2 \times 10^{-12}}{\sqrt{1 + \frac{1}{(0.1 \times 10)^2}}} = 1.414 \times 10-3 \text{ V/N}$ $V_0 = g \times p \times t$ $=12 \times 10^{-3} \times 19.8 \times 10^{4} \times 2 \times 10^{-3}$ = 4.752 V $\left| \mathbf{M} \right| = \frac{\mathbf{E}(\mathbf{S})}{\mathbf{F}(\mathbf{S})} = 1.141 \ \frac{\mathbf{mV}}{\mathbf{N}}$ c) $\tau = R_{eq}C_{eq}$ $=(10^{8}//10^{8})(4\times10^{-10}+2\times10^{-10}+3.14\times10^{-10})$ $E(s) = M F(s) = \left(1.414 \times \frac{mV}{N}\right) \times 0.1N$ = 45.705 msec = 0.141 mV Regular Live Doubt clearing Sessions | Free Online Test Series | ASK an expert

Chapter

Engineering Publications	11	Postal Coaching Solutions
ii) Capacitance (c) = $\frac{\varepsilon A}{d}$ = $\frac{12 \times 10^{-9} \text{ F/m} \times 36 \times 10^{-6}}{1.5 \times 10^{-3}}$ = 2.88×10 ⁻¹⁰ = 288 pF iii) Voltage generated We know Q = C.V $V = \frac{Q}{C}$ Given $d = \frac{Q}{F}$ So, $Q = d \times F$ = 1.12×10 ⁻⁹ C $V = \frac{Q}{C} = \frac{1.12 \times 10^{-9}}{2.88 \times 10^{-12}}$ = 3.88V 07. Ans: (a) Sol: Piezo electric transducers is suitable for dynamic inputs only.		08. Ans: (b) Sol: Resolution of encoder $= \frac{V_{ref}}{2^n - 1}$ 1kPa $\Rightarrow 30mV$ 100kPa $\Rightarrow 3000 mV = 3V$ Noise of readout circuit $= 3V + 0.3mV$ $V_{ref} = 3.0003V$ Resolution $= \frac{3.0003}{2^{10} - 1} = \frac{3.0003}{1023}$ = 0.00293 V Smallest readout by system $= 0.00293V$ 1kPa $\rightarrow 30mV$ $0.00293V \times \frac{1kPa}{30mV} \leftarrow 0.00293V$ Resolution from i/p side $= 97.666Pa \approx 100Pa$ 09. Ans: (a, b, c) Sol: Piezoelectric accelerometers: • Sensitive to high frequency inputs • Can measure shock & vibrations • Active transducers
Sinc	ce 1	995 E

Chapter **2**.

Measurement of Temperature

01. $\Rightarrow 10 \left[\frac{150.392}{100.392 + 10k} - \frac{100}{100 + 10k} \right] = 0.3842 \text{ mV}$ Sol: For a first order system $A_{d} = \frac{10}{0.382 v} = 26.02$ $T = T_0 \left\{ 1 - \exp\left(\frac{-t}{\tau}\right) \right\}$ Given T = 30, $T_0 = 50^{\circ}C$, $\tau = 120$ sec 04. Ans: (b) So, $30^{\circ}C = 50^{\circ}C \left\{ 1 - \exp\left(\frac{-t}{120}\right) \right\}$ **Sol:** $1^0 \rightarrow 10 \text{mV} (\text{o/p})$ t = 110 sec. $100^0 \rightarrow 100 \text{mV} \text{ (o/p)}$ So $=10\left[\frac{139.2}{139.2+10k}-\frac{100}{100+10k}\right]$ 02. Ans: (b) **Sol:** $R_T = R_0 [1+0.004T]$ True model = 0.03827 V $R_T = R_0 [1+0.004T+6\times 10^{-7}T^2]$ Op Amp gain Note: measurement model calculated by $V_0 = 26.02 [V_1 - V_2]$ being measurement value end approximated equation. But true model calculation to $V_0 = 996 \text{ mV}$ based on true value & accurate expression $R_T = 100[1+0.004(100-0)+6\times10^{-7}(1000)]$ Error = measured value - True value $R_T = 140.06\Omega$ = 996 mV - 1000 mV $R_T = 102[1+0.004(100)] ---(1)$ -4mV $R_T = 98 [1+0.004(100)] ----(2)$ Since 199 $1^{0}C \rightarrow 10mV$ $e_1 = 142.8 - 140.06 = 2.74\Omega$ $e_2 = 137.2 - 140.06 = -2.86\Omega$ $1 \text{mV} \rightarrow \frac{1^0}{10} \text{C}$ 03. Ans: (b) Sol: 10 mV/ $^{\circ}C$ – Change in 1 ^{0}C in RTD output $-4mV \rightarrow -0.4^{\circ}C$ of Bridge 10 mV $R_T = R_0 [1 + \alpha T]$ 05. = 100[1+0.00392(1-0)]**Sol:** $T_0 \quad 0^\circ C \rightarrow 100 \ \Omega = R_0$ $R_{T} = 100.392\Omega$ $V_{out} = A_d [V_1 - V_2]$ $T_1 \quad 100^{\circ}C \rightarrow 150 \ \Omega = R_1$ $10 \text{mV} = A_d [V_B]$ $T_2 \rightarrow \text{gas temp} \rightarrow 300 \ \Omega = R_2$ $V_1 - V_2 = \left(\frac{R_4}{R_4 + R_1}\right)V - \left(\frac{R_3}{R_4 + R_1}\right)V$ $\alpha = 0.0039 \text{ C}^{-1}$ India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams ace online Enjoy a smooth online learning experience in various languages at your convenience

Engineering Publications	13 Postal Coaching Solutions
As per the relation $\frac{R_{T_2} - R_{T_1}}{T_2 - T_1} = \alpha \cdot R_0$	$\ln\left[\frac{1}{10}\right] = \beta\left[\frac{1}{373} - \frac{1}{298}\right]$ $\beta = 3412.55 \text{ k}$
$\frac{300 - 150}{T_2 - 100} = 0.0039 \times 100$	Now $T_0 = 100^{\circ}C + 273 = 373 k = R_0 = 1k$
$\Rightarrow \frac{150}{0.39} = T_2 - 100$ $\Rightarrow T_2 = 384.61 + 100$	T = 150°C + 273 = 473 k = R _T = ? $\ln \left[\frac{R_T}{1K} \right] = 3412.55 \left[\frac{1}{423} - \frac{1}{373} \right]$
$T_2 = 484.61 \ ^{0}C$	$R_{\rm T} = 339.12 \ \Omega$
06. Ans: (b) Sol: $1 k\Omega$ $(0^{0}-150^{0})$ Thermistor	Thermistor resistor at 150°C $I = \frac{5V}{1k + R_{Th}} = \frac{5}{1339.12}$ $= 3.733 \times 10^{-3}$ $P = I^{2} \times R$
At $25^{\circ} \rightarrow 10 \mathrm{k}\Omega$	P = 4.72 mV
$100^{\circ} \rightarrow 1k\Omega$ This thermistor is used in a temperature range of 0-150°C. What is the powe dissipated at thermistor when operating a	$\frac{R_{t}}{R_{t}} = ae^{\frac{b}{T}}$
more temperature $P = I^{2}R = \frac{V^{2}}{R}$ $R_{T} = R_{0} e^{\beta \left(\frac{1}{T} - \frac{1}{T_{0}}\right)}$ $10K$ $1K$ $1K$ $1K$ $25^{0}C$ $100^{0}C$	$\log_{e}\left\{\frac{R_{T}}{R_{0}}\right\} = \log_{e}\left\{ae^{\frac{b}{T}}\right\}$ $\log_{e}\left\{\frac{R_{T}}{R_{0}}\right\} = \log_{e}a + \frac{b}{T}\log_{e}e$
$\ln\left[\frac{R_{T}}{R_{0}}\right] = \beta\left[\frac{1}{T} - \frac{1}{T_{0}}\right]$	$\Rightarrow -1.337 = -8.11 + \frac{2850}{T}$
$T_0 = 25^{\circ}C + 273 = 293k \rightarrow 10k = R_0$ $T = 100 + 273 = 373k \rightarrow 1k = R_T$	$\Rightarrow \frac{2850}{T} = 6.78$ $\Rightarrow T = \frac{2850}{6.78} = 420.35 \text{ K}$
	ot clearing Sessions Free Online Test Series ASK an expert ilable 1M 3M 6M 12M 18M and 24 Months Subscription Packages
	אמאר דיין אין איטן אינן דער אונער אין דייטן איטן אינען איז אוועטע דיין איז איזען אינען אינען אינען אינען אינען

	Engineering Publications	14	Sensors & Industrial Instrumentation	
08.	Ans: -0.04088K ⁻¹		$\frac{T_{i}(s)}{T_{a}(s)} = \frac{1}{2s+1} = \frac{1}{1+2j\omega}$	
Sol:	$\mathbf{R} = \mathbf{R}_{\theta} = \mathbf{R}_{\theta 0} \cdot \mathbf{e}^{\beta \left(\frac{1}{\theta} - \frac{1}{\theta_0}\right)}$ for thermistor			
	$\theta = 316 K$ $\theta_0 = 298 k.$		$ \mathbf{M} = \frac{1}{\sqrt{1+4\omega^2}} = \frac{1}{\sqrt{2}}$	
	$R_{316} = 465 k\Omega R_{298} = 1000 \Omega$			
	$\frac{\mathrm{dR}}{\mathrm{d}\theta} = \mathrm{R}\theta_0 \mathrm{e}^{\beta\left(\frac{1}{\theta}-\frac{1}{\theta_0}\right)} \left(-\frac{\beta}{\theta^2}\right)$		$F = \frac{1}{4\pi}$	
	$\frac{1}{R} \cdot \frac{dR}{d\theta} = \frac{R\theta_0 \cdot e^{\beta\left(\frac{1}{\theta} - \frac{1}{\theta}\right)}}{R\theta_0 \cdot e^{\beta\left(\frac{1}{\theta} - \frac{1}{\theta}\right)}} \cdot (-\beta/\theta^2)$	10.		
	$\frac{1}{R} \cdot \frac{dR}{d\theta} = \frac{R\theta_0 \cdot e}{\frac{e^{\left(1-1\right)}}{e^{\left(1-1\right)}}} \cdot \left(-\beta/\theta^2\right)$	Sol	: $Cn - Pt = -35 \mu V/k$	
	$R\theta_0.e^{p\left(\frac{1}{\theta}-\theta_0\right)}$		a) $Pt - Cn = 35 \mu V/k$	
	Sensitivity is $\frac{-\beta}{\rho^2}$ where β must b	0	b) Nichrome – Constantan = $25 - (-35) = 60$	
	U	ERINC	c) Nickel – constantan	
	calculated. Q is given as 316K.		=-25-(-35)=10	
	$\mathbf{R}_{\theta} = \mathbf{R}_{\theta 0} \cdot \mathbf{e}^{\beta \left(\frac{1}{\theta} - \frac{1}{\theta_0}\right)}$		d) $Cu - Ni = 6 + 25 = 31$	
	$R_{316} = R_{298.}e^{\beta \left(\frac{1}{316} - \frac{1}{298}\right)}$ to find β		So maximum sensitivity around 273 k is	
			Given by (b) Nichrome – constantan	
2	$465\Omega = 1000\Omega\mathrm{e}^{\beta(316^{-1}-298^{-1})}$			
	$\ln(0.465) = \beta(316^{-1} - 298^{-1})$	11. Sol		
	$\beta \cong 4006k$	501	· Çu	
	Therefore Sensitivity		$S = 4/\mu V/^{\circ}C$	
	100 0			
	$=-\frac{4006 \text{k}}{(316)^2}=-0.0408 \text{K}^{-1}$		Çn Çu Çu	
	Sin	ce 199	Çn + V 205W	
09.	Ans: (a)		E_{th}	
Sol	$2\frac{dT_i}{dt} + T_i - T_a = 0$			
501.	u		Çn Çu	
	T_i = Indicated temperature T_a = ambient temperature		$\beta = 1000$	
	r _a – amoient temperature			
	The -3 DB cut-off frequency in th	e	Ice water	
	frequency response of the thermometer is as	s		
	For any problem frequency response allow	'S	$\therefore V_0 = \beta V_{in}$	
	take Laplace Transform			
	$T_{a}(s)$ Thermometer $T_{i}(s)$		$= \beta E_{TH}$	
			$V_0 = \beta S_{TH} [T_H - T_C]$	
	$2sT_{i}(s) + T_{i}(s) - T_{a}(s) = 0$		$T_{\rm H} = 50^{\circ} \rm C$	
	$[2s+1]T_i(s) = T_a(s)$		<u></u>	
			, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams	
	Enjoy a smooth online learning experience in various languages at your convenience			

Engineering Publications	15	Postal Coaching Solutions
12. Ans: (b) Sol: Cu		$48 \ \mu V = 1 \times \{T_2 - 2^{\circ}C\}$ $\implies T_2 = 48 + 2$
$T_{\rm H}$ $T_{\rm C}$ Reference junction $100^{\circ}{\rm C}$ Cn $45^{\circ}{\rm C}$		$T_2 = 50 \text{ °C}$ 5.
$200^{\circ}C \qquad 45^{\circ}C$ $E_{Tk} = S_{TH} [T_{H} - T_{c}]$	G	Sol: For the given thermocouple Emf $Emf_{Chrom-copper} _{at 30}^{0} = E_{chr-const} + E_{const-copper}$
$T.V = E_{Tk} = 53 \ \mu V \ [100 - 0]^{\circ}C$ = 53000 \ \mu V		$= E_{chr - const} - E_{copper - copper}$ $= 1.801-1.196$
$MV = E_{Tk} = 53 \ \mu k \ [100 - 45] = 2915 \ \mu V$ $e_1 = \frac{M.V - T.V}{T.V} \times 100$	ERIA	$= 0.605 \text{mV}$ $E_{\text{Hot}} = V_0 + E_{\text{chrom -copper}}$
$=\frac{2915-5300}{5300}\times100$		= 26.74 mV + 0.605 mV = 27.345 mV
$e_1 = -45\%$ T.V = $E_{TH} = 10600$ M.V = $E_{TH} = 8215$		Temperature corresponding to 27.345 mV is 380^{0} C.
$e_2 = -22.5\%$ 13. Ans: (a)		6. Ans: 1.2 to 1.3 mV sol:
Sol: Given $E_{1G} = 53T \mu V$ $Ec_1c_2 = 43T \mu V$		+ Copper $T_2 = 50^{\circ}C$ - Constantan - $T_1 = 0^{\circ}C$
$Ec_2I = (43T - 53T)\mu V = -10 T\mu V Sin$	ce 19	aconstantan
$Ec_2I = -10 \times 70 \mu V = -700 \mu V$		$T_2 = 15^{\circ}C$ + Iron + $T_1 = 0^{\circ}C$
14. Ans: (d) Sol: From the table	Y	A = copper, B = constantan, C = iron
Sensitivity of thermocouple is		$e_A = 1.9 \ \mu V^{\circ}C$ with respect to platinum
$S_{TH} = \frac{125 - 35 \ \mu V}{90 \ C}$		$e_{\rm B} = -38.3 \mu \text{V/}^{\circ}\text{C}$ with respect to platinum $e_{\rm C} = 13.3 \mu \text{V/}^{\circ}\text{C}$ with respect to platinum
$= 1 \ \mu V/^{\circ}C$		$E_{AB} = e_{A/B} \cdot T_2^{o} C$
We know the relation		$= 40.2 \mu V/^{\circ}C \times 50^{\circ}C$
$E_{TH} = S_{TH} \{T_2 - T_1\}$		$E_{AB} = 2.01 \text{mV}$
		Sessions Free Online Test Series ASK an expert3M 6M 12M 18M and 24 Months Subscription Packages

Similarly $E_{CB} = e_{C/B} \times T_3^{\circ}C = 51.6 \mu V/^{\circ}C \times 15^{\circ}C$ = 0.774 mV. $\therefore E_0 = E_{CB} - E_{AB} = -1.236 \text{mV}.$ $|E_0| = 1.236 \text{mV}.$

17. Ans: 77

Sol:
$$V_0\left(\frac{1k}{2k+1k}\right) = \frac{V_0}{3} = \frac{2.1}{3} = 0.7 = V_+$$
 (virtual and concept)

ΤμΑ

$$I = \frac{V_+}{2k} = 0.35mA =$$

T = 350 K $T = 77^{\circ}C$

18. Ans: 1612

Sol: Given data:

Sensitivity = 10

Thermocouple measures 10mV at $t = \tau =$ 1sec

As given system is first order we use first order system equation

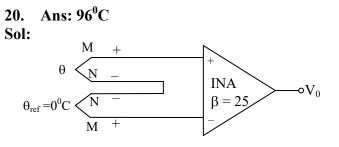
$$y(t) = AK(1 - e^{-t/\tau})$$

A = amplitude

Since = final temperature – initial temperature

$$A = \theta_f - \theta_i = (\theta_f - 30)^0 C$$

y(t) = temperature measured at time t

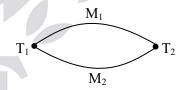

$$10 \times 10^{-3} = (\theta_f - 30) \times 10 \times 10^{-6} \times (1 - e^{-1})$$

 $\theta_f = 1612^0 C$

19. Ans: 0.2

Sol: KCL at inverting terminal:-

$$\frac{0-12}{R(1+x)} + \frac{0+12}{R} + \frac{0-V_0}{R} = 0$$
{Given V₀ = +2V}
$$x = 0.2$$


 $S = 40 \mu V / C$ β = Gain of amplifier = 25 $V_0 = 96 mV$ $\theta = ?$ $V_0 = \beta V_{in}$ $V_0 = \beta E_{TC}$ $= \beta S_{TC} \left[\theta - \theta_{ref} \right]$ 96mV = (25) $\frac{40\mu V}{{}^{0}C} [\theta - 0] {}^{0}C$ $96 \text{mV} = 100 \mu \text{V} \cdot \theta$ $96\text{mV} = 10^{-3}\text{V}\,\theta$ $\theta = 96^{\circ}C$

21. Ans: (a, b, c)

1995

16

Sol: In a thermocouple, two metal junctions between metals M₁ & M₂ are kept at temperatures $T_1 \& T_2$. The thermocouple emf will not be produced if

- M_1 and M_2 are similar and T_1 and T_2 are also similar.
- M_1 and M_2 are dissimilar while T_1 and T₂ are similar.
- M_1 and M_2 are similar while T_1 and T_2 are dissimilar.

Measurement of Flow & Viscosity

01. Ans: (b) **Sol:** $P_1 - P_2 = 30 kPa$ Q = 50 lts $P_1 - P_2 = 20 \text{ kPa}$ 04 By Bernoullis equation $\frac{P_1}{\rho g} + \frac{V_1^2}{2g} = \frac{P_2}{\rho g} + \frac{V_2^2}{2g} + 0.4$ S $\Rightarrow \frac{30}{1000 \times 9.8} = \frac{V_2^2 - V_1^2}{2g} + 0.4$ (By assuming $V_1 = 0$) $V_2 = 7.2$ m/sec $\frac{20}{1000 \times 9.8} = \frac{(V_2')^2}{2g} + 0.4$ $V_2' = 5.67 \text{m/sec}$ $\frac{Q_1}{Q_2} = \frac{V_2}{V'}$ 05. $\Rightarrow \frac{50}{Q_2} = \frac{7.22}{5.67}$ Q = 39.27 lit/sec Ans: 4.45 02. **Sol:** Re = $\rho \frac{dv}{\mu}$ Since 1995 Q = Av $V = Q/A = \frac{\text{mass rate}}{\rho \times A}$ volumerate Volume rate = $\frac{\text{mass}}{1}$ $Re = \frac{\rho \times d \times massrate}{\mu \times \pi \times d}$ d = 4.45 cm

Chapter

03. Ans: (d)

Sol: Pressure and volume have an inverse relation.

4. Ans: (c)
ol:
$$P_b - P_a = \frac{\overline{W}_{Float}}{A_{Float}}$$

 $P_b - P_a = \frac{W_{Float} - B_{Float}}{A_{Float}}$
 $P_b - P_a = \frac{gVd_1 - gVd_2}{A}$
 $(P_b - P_a)A = gV(d_1 - d_2)$
 $(P_a - P_b)A = Vg(d_2 - d_1)$

05. Ans: (d)

Sol: Using Pitot-static tube, flow velocity of fluid is given by

$$V = \sqrt{\frac{2(p_{stag} - p_{stat})}{\rho}}$$

Given density,
$$\rho = 1000 \text{ kgm}^{-3}$$

 $p_{stag} - p_{stat} = 10 \text{ kPa} = 10^4 \text{ N/m}^2$

$$\therefore$$
 V = $\sqrt{20}$ m/sec = V₁

Pipe dia, d = 0.05 m

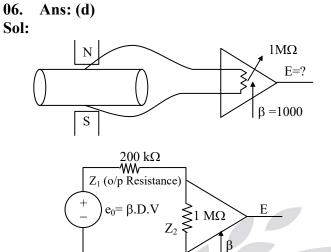
Area,
$$A_1 = \frac{\pi d^2}{4}$$

Cylindrical drum dia, D = 1 m

Area,
$$A_2 = \frac{\pi D^2}{4}$$

If the rate of reduction in water level in the drum is V_2 ,

$$V_1 A_1 = V_2 A_2$$


$$V_2 = V_1 \frac{A_1}{A_2} = \frac{\sqrt{20} (0.05)^2}{(1)^2} = \frac{1}{40\sqrt{5}} \text{ m/s}$$

ace Affo

 Regular Live Doubt clearing Sessions
 |
 Free Online Test Series | ASK an expert

 Affordable Fee
 |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

ACE ngineering Publications

$$E = (\beta). E_{in}$$
$$= \beta \left[\frac{1M\Omega}{200k\Omega + 1M\Omega} \right] e_0 = 0.0833V$$

07. Ans: (c)

Sol: Given $\Delta t = 10 \times 10^{-9}$ sec

 $V_s = 1000 \text{m/sec}$ d = 25 mm $\theta = 60^0$

So,
$$V_f = \frac{\Delta t \times V_s^2}{29 \cos \theta}$$

= $\frac{10 \times 10^{-9} \times (1000)^2}{1000}$

$$\overline{2 \times 25 \times 10^{-3} \times \cos(60^{\circ})} = 0.4 \text{ m/sec}$$

India's Best Online Coaching Platform

Since

08.

Sol:
$$\Delta t = \frac{1}{5 \text{ MHz}} = 0.2 \ \mu \text{ sec}$$

 $V_s = 1500 \text{ m/sec}$

ace online

$$V_f = ?$$

d = distance between crystals

18

From the questions we can draw the figure

$$\sin 45^{\circ} = \frac{0.5}{d}$$

$$d = \frac{0.5}{\sin 45^{\circ}} = 0.7m$$

$$\Delta t = \frac{2d V_{r} \cos \theta}{V_{s}^{2}}$$

$$V_{r} = \frac{\Delta t \times V_{s}^{2}}{2d \cos \theta}$$

$$V_{r} = \frac{0.2 \times 10^{-6} \times (1500)^{2}}{2 \times 0.7 \times \cos 45^{\circ}}$$

$$V_{r} = 0.45 \text{ m/sec}$$
09. Ans: (c)
Sol: Induced voltage of turbine flow meter is

$$E = \beta \text{ n.}\omega$$
where, $\beta = \text{amplitude of time varying flux.}$

$$\alpha = \text{mean flux}$$

$$n = \text{no. of teeth on wheel}$$
given, speed N = 72 rpm.

$$\alpha = 3, \beta = 1 \text{ and } n = 4$$

$$\omega = \frac{2\pi N}{60} = 7.536,$$

$$f = \frac{n\omega}{2\pi} = \frac{4 \times 7.5}{2 \times 3.14} = 4.8\text{Hz}$$
now, E = $\omega\beta n = 7.5 \times 1 \times 4 = 30.144$
10.
Sol: Given

$$\rho_{\text{oil}} = 900 \text{ kg/m}^{3}$$

$$\mu = 0.006 \text{ Ns/m}^{2}$$
for GATE, ESE, PSUS, SSC-E, RRB-E, SSC, Banks, Groups & PSC Exams

Enjoy a smooth online learning experience in various languages at your convenience

Engineering Publications	19 Postal Coaching Solutions		
L = 30 cm	V = 40 (m/sec)		
$\Delta \mathbf{P} = \mathbf{s} \times \mathbf{g} \times \mathbf{h}$	$\mathbf{Q} = \mathbf{A}\mathbf{V} = \frac{\pi}{4}\mathbf{d}^2 \times \mathbf{V} = \frac{\pi}{4} \times (0.25)^2 \times 40$		
$= 900 \times 9.8 \times 20 \times 10^{-2}$ = 1764	$= 1.9634 (m^3 / sec)$		
$Q = \frac{\pi D^4}{128L} \cdot \frac{\Delta p}{\mu}$			
-	13. Ans: 5.025 Sol:		
$= \frac{\pi \times (2 \times 10^{-2})^4 \times 1764}{128 \times 30 \times 10^{-2} \times 0.006}$ = 38.5 cm ³	d 100cm		
11. Ans: (a)			
Sol: For U type manometer	ERING From diagram $\sin 45^\circ = \frac{100}{d}$		
$f = \frac{1}{2\pi} \sqrt{\frac{2g}{L}}$	d = $100\sqrt{2}$ cm t ₁ = 0.9950ms; t ₂ = 1.0000 msec		
$V = a_m \times L$	$f_1 = \frac{1}{0.9950 \text{ms}} = 1.005025 \times 10^3 \text{Hz}$		
$=\frac{\pi D^2}{4} \times L$	$f_2 = \frac{1}{1 \text{m sec}} = 1 \times 10^3 \text{ Hz}$		
$\Rightarrow L = \frac{4V}{\pi D^2}$	$\Delta f = f_1 - f_2 = [1.005025 - 1]10^3 \text{ Hz}$ = 5.025		
	$\Delta f = \frac{2v_f \cos \theta}{d}$		
$\Rightarrow f_n = \frac{2g}{\sqrt{\frac{4V}{\pi D^2}}}$	$\mathbf{v}_{f} = \frac{\Delta f.d}{2\cos\theta} = \frac{(5.025) \times 100\sqrt{2}cm}{2 \times \frac{1}{\sqrt{2}}}$		
$=\frac{1}{2\pi}\sqrt{\frac{2\mathbf{g}\cdot\pi\mathbf{D}^2}{4\mathbf{V}}}$	= 502.5 cm/sec		
	= 5.025 m/sec		
$=rac{\mathrm{D}}{2\sqrt{2}\pi}\sqrt{rac{\mathrm{g}\pi}{\mathrm{V}}}$	14. Ans: 20 Solt $S_{1} = \frac{1}{2} \ln (m^3)$		
$=\frac{\mathrm{D}}{2\sqrt{2\pi}}\sqrt{\frac{\mathrm{g}}{\mathrm{V}}}$	Sol: $S_{\text{fluid}} = 1 \text{kg/m}^3$ $\Delta p = 200 \text{N/m}^2$		
$-\frac{1}{2\sqrt{2\pi}}\sqrt{V}$	$V_{f} = ?$ $C_{V} = 1.0$		
12. Ans: 1.9634	$V_{\rm f} = C_{\rm V} \sqrt{2 \frac{\Delta p}{\rho}}$		
Sol: $e = BlV = 100 \times 10^{-3} \times 0.25 \times V$	$=1\sqrt{\frac{2\times 200}{1}}$		
$l = 0.25 \times 10^{-1} \mathrm{V}$	$ \sqrt{\frac{1}{1}} = 20 \text{m/s} $		
	bt clearing Sessions Free Online Test Series ASK an expert ilable 1M 3M 6M 12M 18M and 24 Months Subscription Packages		

Chapter 6 Measurement of force & torque

01. Ans: (b)
Sol: Given

$$g = 50 \times 10^{-3}$$

$$A = 4 \text{ cm}^{2}$$

$$\tau = 20 \text{ Nm (force × length)}$$
We know

$$g = \frac{E_{\alpha}/t}{F}$$

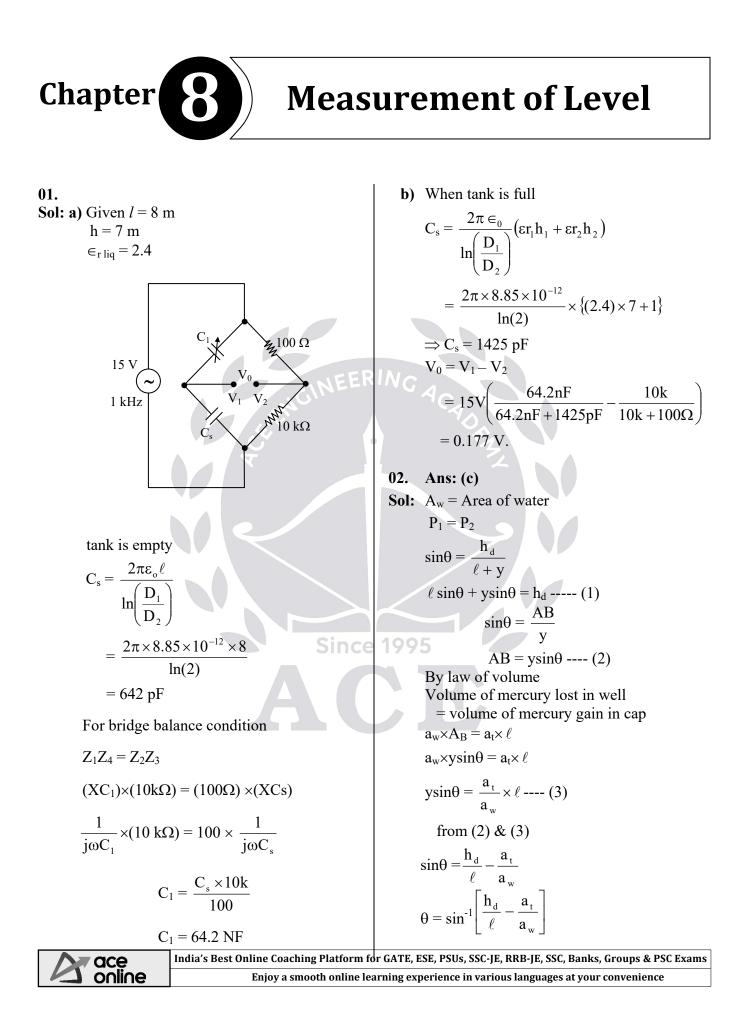
$$T = \vec{F} \times \vec{L}$$

$$L = 0.5 \text{ m given}$$

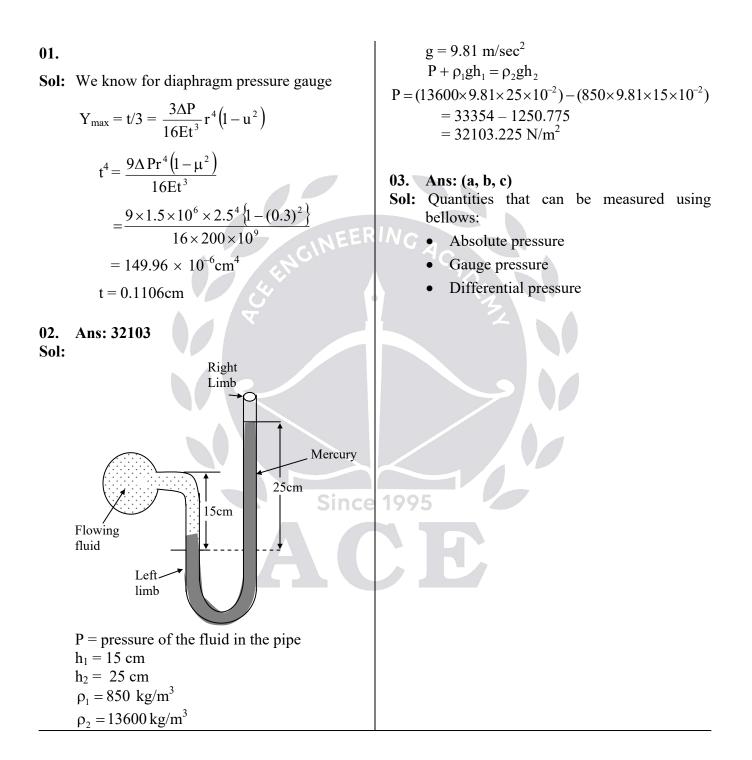
$$F = \frac{\tau}{L} = 40 \text{ N}$$

$$E_{0} = g \times \frac{F}{A} \times t$$

$$E_{0} = 50 \times 10^{-3} \times \frac{40}{4 \times (10^{-2})^{2}} \times 1 \times 10^{-3}$$


$$= 5 \text{ V}$$
02. Ans: 848 Nm
Sol: We know
Angle of shear $\theta = \frac{2T}{\pi Gr^{2}}$
Where G is shaft shear mode
r is the radius of shaft
T is the applied torque
An area of shaft surface, originally square
with the sides of unit length and deformed
Example 1 that **Steet Online** Coaching Platform for GATE, ESE, FSUs, SSC-JE, RBH-JE, SSC, Banks, Groups & PSC Examts
Example 1 that a Best Online Coaching Platform for GATE, ESE, FSUs, SSC-JE, RBH-JE, SSC, Banks, Groups & PSC Examts
Example 1 that a Best Online Coaching Platform for GATE, ESE, FSUs, SSC-JE, RBH-JE, SSC, Banks, Groups & PSC Examts
Example 1 the torming experience in various languages at your convenience
Example 1 the torming experience in various languages at your convenience

Chapter 7 Intermediate Quantity Measurement


01.
Sol: Input range = 0 to 5 g
Damping ratio = 0.8
Output range = 0 to 10 V
m = 0.005 kg
k = 20 N/m
a) input displacement range

$$\frac{m}{k} = \frac{x}{acc}$$

 $\Rightarrow \frac{0.005 kg}{20 N/m} = \frac{x}{5 \times 10^{-3} \times 9.81 m/scc^2}$
 $\Rightarrow x = 12.2625 mm$
b) 1 kΩ POT
 $X_i = \frac{0.005}{20} \times 2 \times 10^{-3} \times 9.81$
 $= 4.905 \times 10^{-3}$ for 2g acceleration
 $a, 0.0049 m$
 $k = \frac{x_i}{x_i} = \frac{0.0049}{0.0126} = 0.388$
 $\frac{R_p}{R_m} = \frac{1k}{10k} = 0.1$
 $\psi_b LE = \frac{MV - TV}{TV} \times 100$
 $MV = \frac{0.33E_i}{1+0.38(1-0.38) \times 0.1}$
 $TV = 0.38 E_i$
Product the back degree Sections 1. Even 0 allow that forcing 1.456 as event.

A ace online

Chapter 9 Measurement of Pressure

Miscellaneous

-

01.

Sol: Let X dB and Y dB be the sound pressure levels from the sound sources.

Then the noise level with both sources operating together is given by Combined spl

$$= 10 \log_{10} \left[\operatorname{anti} \log \left(\frac{X}{10} \right) + \operatorname{anti} \log \left(\frac{Y}{10} \right) \right]$$

= $10 \log_{10} \left[\operatorname{anti} \log \left(\frac{78}{10} \right) + \operatorname{anti} \log \left(\frac{82}{10} \right) \right]$
= $10 \log_{10} \left[6.31 \times 10^7 + 15.85 \times 10^7 \right]$
= $10 \log_{10} \left[22.16 \times 10^7 \right] = 10 \times 8.3456$
= $83.456 \,\mathrm{dB}$

02.

Sol: Resultant spl = $10\log_{10}\left[\operatorname{anti}\log\left(\frac{X}{10}\right) + \operatorname{anti}\log\left(\frac{Y}{10}\right)\right]$

Substituting the numerical values from the given data,

$$85 = 10\log_{10}\left[\operatorname{anti}\log\left(\frac{X}{10}\right) + \operatorname{anti}\log\left(\frac{73}{10}\right)\right]$$

Where X dB is the sound pressure level of the machine.

$$\therefore \operatorname{anti} \log\left(\frac{X}{10}\right) = \operatorname{anti} \log\left(\frac{85}{10}\right) - \operatorname{anti} \log\left(\frac{73}{10}\right)$$

Take log_{10} of both sides

 $X = 10\log_{10} \left[anti \log 8.5 - anti \log 7.3 \right]$

 $X = 10\log_{10} [3.612 \times 10^8 - 0.1995 \times 10^8]$ $X = 10\log_{10} [2.9625 \times 10^8] = 10 \times 8.4717$ $= 84.717 \, dB$

Thus the sound pressure level of the machine alone is 84.717 dB.

03. Ans: -23
Sol:
$$T_{true} = T_{measured} \left(\frac{\varepsilon_1}{\varepsilon_2}\right)^{0.25}$$

 $T_{measured} = 820^{\circ}C = 1093^{\circ}C$
 $\varepsilon_1 = 0.75$
 $\varepsilon_2 = 0.69$
 $T_{time} = 1093 \left(\frac{0.75}{0.69}\right)^{0.25}$
 $= 1093(1.087)^{0.25}$
 $= 1116^{\circ}K$
Error in temperature = $T_{measured} - T_{true}$
 $= 1093 - 1116$
 $= -23^{\circ}K$

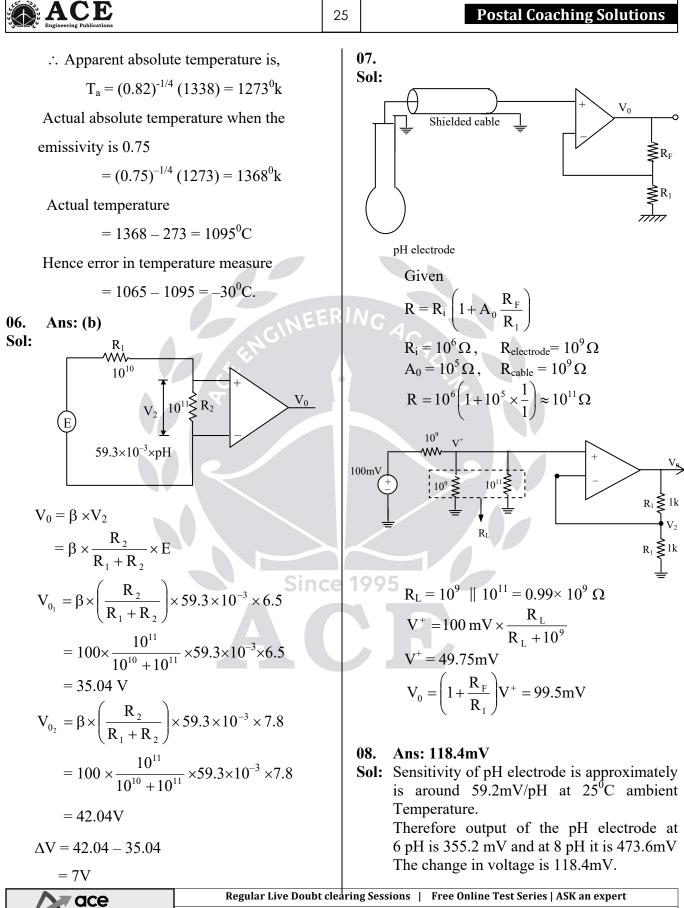
04. Ans: 8

1995

Sol: Area target factor

 $=\frac{\text{distance or receiver from target}}{\text{useful diameter of target}}$

: Diameter of target =
$$\frac{160}{20} = 8 \text{ cm}$$


05.

Sol: Absolute temperature with emissivity of 0.82 is

$$= 1065 + 273 = 1338^{0}$$
k

 OCE
 India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams

 Online
 Enjoy a smooth online learning experience in various languages at your convenience

Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

online

A	C	E	

Postal Coaching Solutions

09. Ans: (a, b, c)

- Sol: Hall effect sensor used for measurement of
 - Position
 - Current
 - Magnetic flux

10. Ans: (b, c, d)

Sol: pH is not a measure of:

- The oxidation or reduction properties of a solution
- Specific conductance of an electrolyte or total ionic activity
- Purity in an aqueous solution

11. Ans: 14.4

Sol:

Т	0°C	100°C	
Ι	4 mA	20 mA	

$$\frac{T-0}{100-0} = \frac{I-4}{16}$$
$$\Rightarrow I = \frac{16T}{100} + 4$$
$$T = 65^{\circ}C$$
$$\Rightarrow I = \frac{16 \times 65}{100} + 4$$
$$T = 144 \text{ mA}$$

12. Ans: (d)

Sol: The most common analog signal standard for industrial process instruments is: 4 to 20 mA DC.

