

GATE | PSUs

ELECTRONICS & COMMUNICATION ENGINEERING

Network Theory

(**Text Book** : Theory with worked out Examples and Practice Questions)

Basic Concepts (Solutions for Text Book Practice Questions)

01. Ans: (c) **Sol:** We know that; $i(t) = \frac{dq(t)}{dt}$ dq(t) = i(t).dti(t), Amps 5 4 3 t(usec) $q = \int i(t)dt = Area under i(t) upto 5 \ \mu sec$ $q = q_1 |+ q_2 |+ q_3 |$ $= \left(\frac{1}{2} \times 3 \times 5\right) + \left(\frac{1}{2} \times 1 \times 2 + (1 \times 3)\right) + \left(\frac{1}{2} \times 1 \times 1 + (1 \times 3)\right)$ $q = 15 \mu C$ 02. Ans: (a) Sol: Sind 4 A 4A 8 V 8V $8V \ge 2 \Omega$ R

03. Ans: (a)

Sol: The energy stored by the inductor $(1\Omega, 2H)$ upto first 6 sec:

$$E_{\text{stored upto 6 sec}} = \int_{0}^{6} P_{L} dt = \int_{0}^{6} v_{L}(t) i_{L}(t) dt$$

$$= \int_{0}^{2} \left(L \frac{di(t)}{dt} . i(t) \right) dt$$

$$= \int_{0}^{2} \left(2 \left[\frac{d}{dt} (3t) \right] \times 3t \right) dt + \int_{2}^{4} \left(2 \left[\frac{d}{dt} (6) \right] \times 6 \right) dt$$

$$+ \int_{4}^{6} \left(2 \left[\frac{d}{dt} (-3t+18) \right] \times (-3t+18) \right) dt$$

$$= \int_{0}^{2} 18t \, dt + \int_{2}^{4} 0 \, dt + \int_{4}^{6} (-6[-3t+18]) \, dt$$

$$= 36 + 0 - 36 = 0 \text{ J} \qquad (\text{or})$$

$$E_{\text{stored upto 6sec}} = E_{L} |_{t=6sec}$$

$$= \frac{1}{2} L (i(t) |_{t=6})^{2}$$

$$= \frac{1}{2} \times 2 \times 0^{2} = 0 \text{ J}$$
04. Ans: (d)
Sol: The energy absorbed by the inductor (1\Omega, 2H) upto first 6sec:

$$E_{\text{absorbed}} = E_{\text{dissipated}} + E_{\text{stored}}$$
Energy is dissipated in the resistor

$$E_{\text{dissipated}} = \int P_{R} dt = \int (i(t))^{2} R \, dt$$

$$= \int_{0}^{2} (3t)^{2} \times 1 dt + \int_{2}^{4} (6)^{2} \times 1 dt + \int_{4}^{6} (-3t+18)^{2} \times 1 dt$$

$$= \int_{0}^{2} 9t^{2} \, dt + \int_{2}^{4} 36 dt + \int_{4}^{6} (9t^{2} + 324 - 108t) dt$$

 \Rightarrow

And

4 A

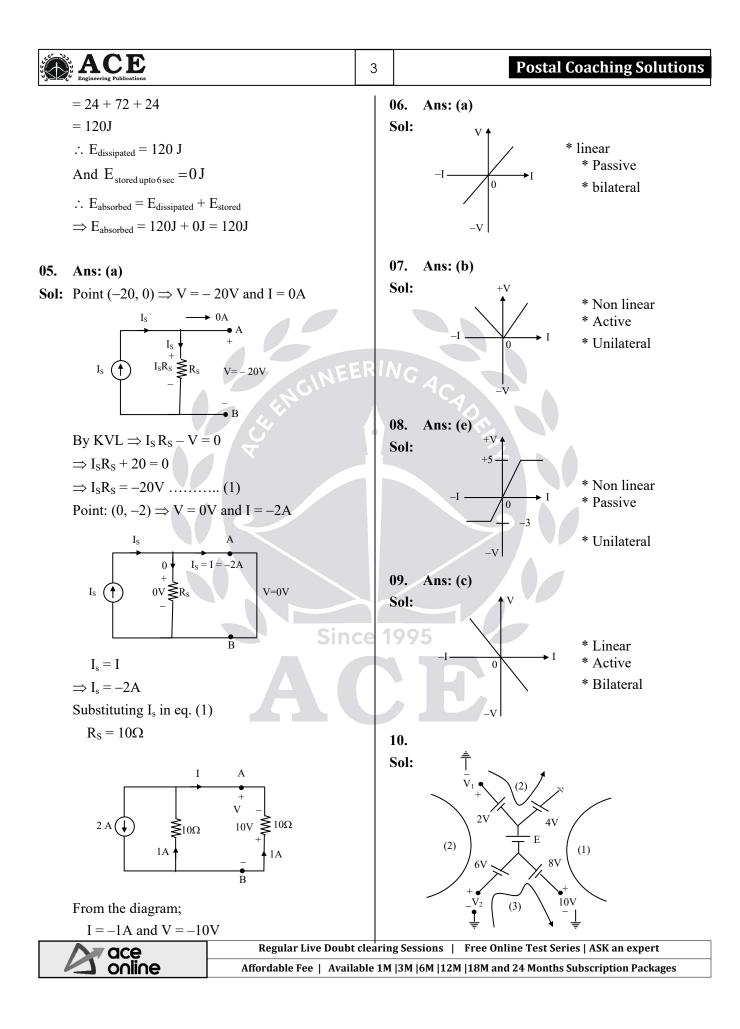
 \Rightarrow

Applying KCL at node 'b' I + 4 = 4I = 0A

 $\frac{8}{R} = 4$

 $R = 2\Omega$

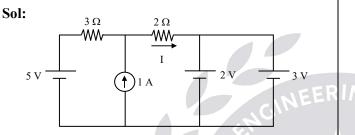
Chapter



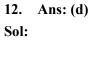
ACE

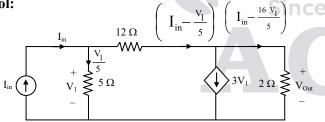
(1) By KVL \Rightarrow + 10 + 8 + E + 4 = 0 E = -22V (2) By KVL \Rightarrow + V₁ - 2 + 4 = 0 V₁ = -2V (3) By KVL \Rightarrow + V₂ + 6 - 8 - 10 = 0 V₂ = 12V

11. Ans: (d)



Here the 2V voltage source and 3V voltage source are in parallel which violates the KVL. Hence such circuit does not exist. (But practical voltage sources will have some internal resistance so that when two unequal voltage sources are connected in parallel current can flow and such a circuit may exist).





Applying KVL,

$$-V_{1} + 12\left(I_{in} - \frac{V_{1}}{5}\right) + 2\left(I_{in} - \frac{16V_{1}}{5}\right) = 0$$
$$-V_{1} + 12I_{in} - \frac{12V_{1}}{5} + 2I_{in} - \frac{32V_{1}}{5} = 0$$
$$14I_{in} = \frac{49}{5}V_{1}$$

$$\Rightarrow V_1 = \frac{70}{49} I_{in} \dots \dots (1)$$

$$\therefore V_{out} = 2 \left(I_{in} - \frac{16V_1}{5} \right) \dots \dots (2)$$

Substitute equation (1) in equation (2)

$$V_{\text{out}} = 2 \left(I_{\text{in}} - \frac{16}{5} \times \frac{70}{49} I_{\text{in}} \right)$$
$$= 2 \left(\frac{-25}{7} \right) I_{\text{in}}$$

$$=\frac{-50}{7}I_{in}$$

$$V_{G}$$
 : $V_{out} = -7.143 I_{in}$

٦

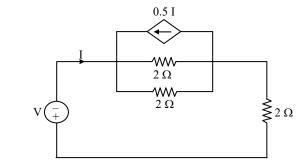
13. Ans: (c)
Sol:

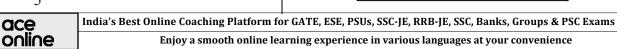
$$V_1 = 20V$$

 $V_1 = 20V$
 $V_1 = 20V$
 $V_2 = 12V$
 $V_1 = 20V$
 $V_2 = 12V$
 $V_1 = 12V$
 $V_2 = 12V$

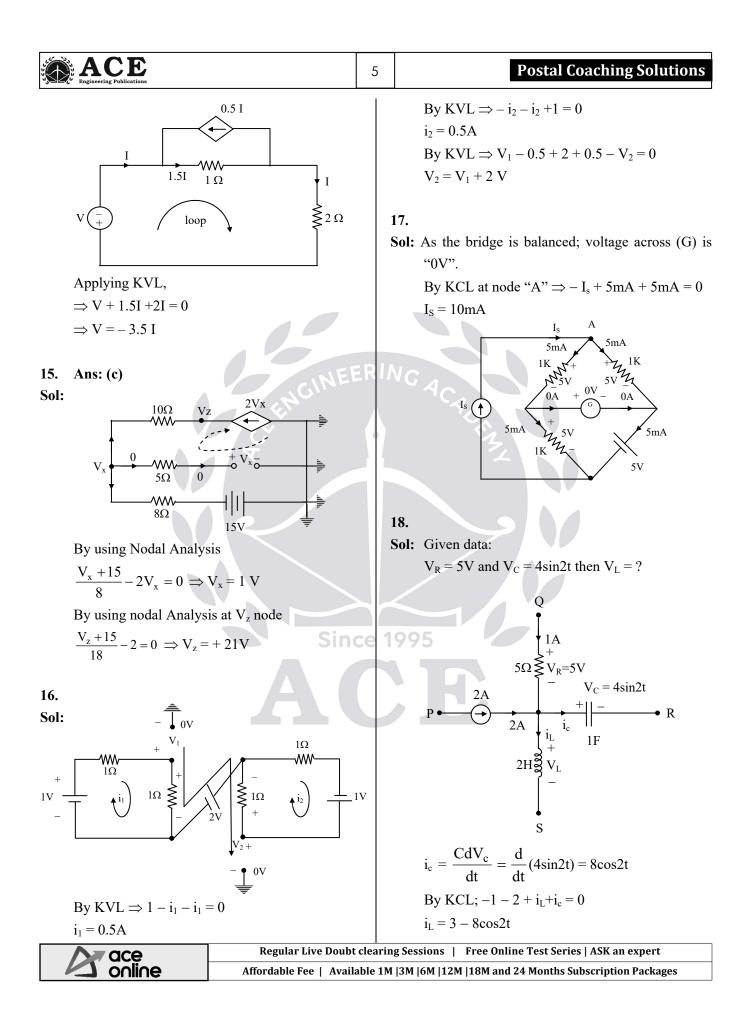
Power delivered by the dependent source is $P_{del} = (12 \times 4) = 48$ watts

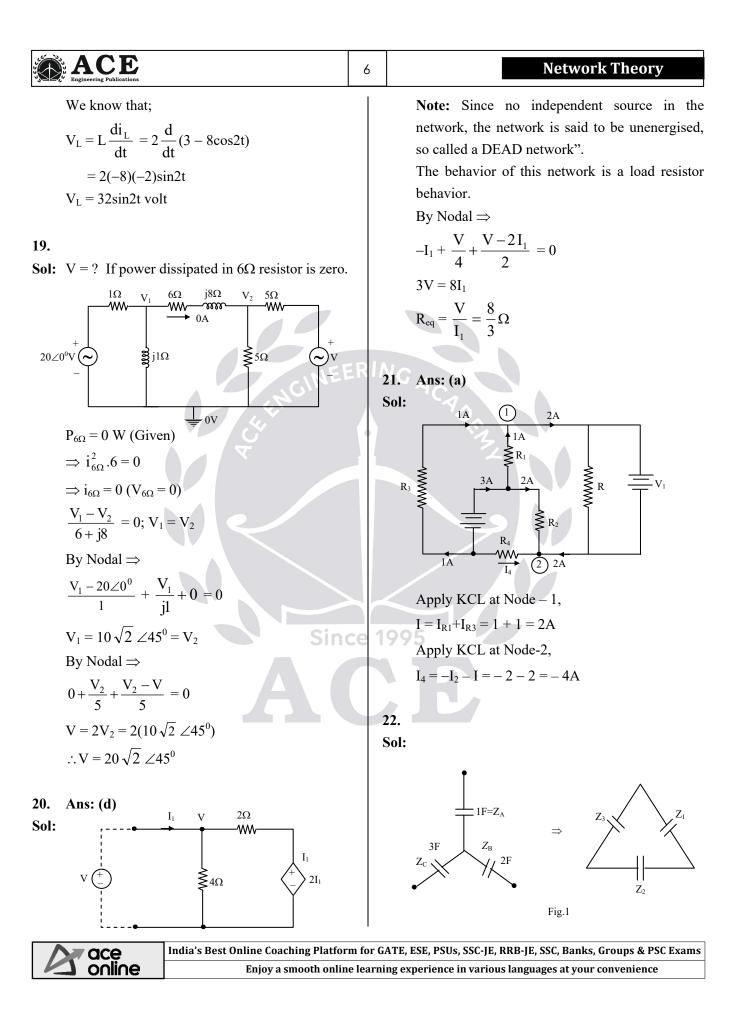
14. Ans: (d)

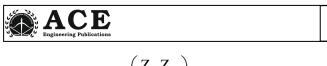


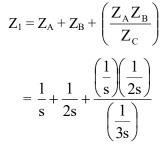


4









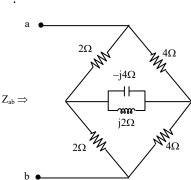
$$Z_1 = \frac{1}{s\left(\frac{1}{3}\right)}; \qquad C = \frac{1}{3}F$$

 $\frac{1}{2}$ F

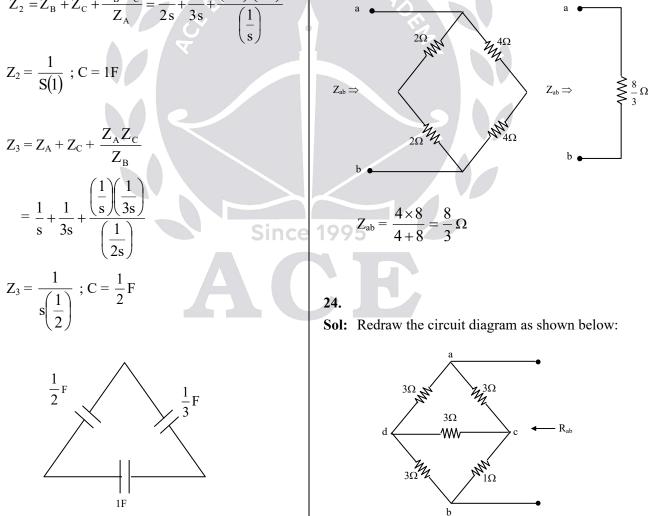
$$Z_{2} = Z_{B} + Z_{C} + \frac{Z_{B} Z_{C}}{Z_{A}} = \frac{1}{2s} + \frac{1}{3s} + \frac{\left(\frac{1}{2s}\right)\left(\frac{1}{3s}\right)}{\left(\frac{1}{s}\right)}$$

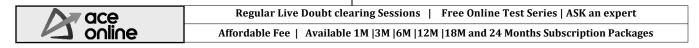
7

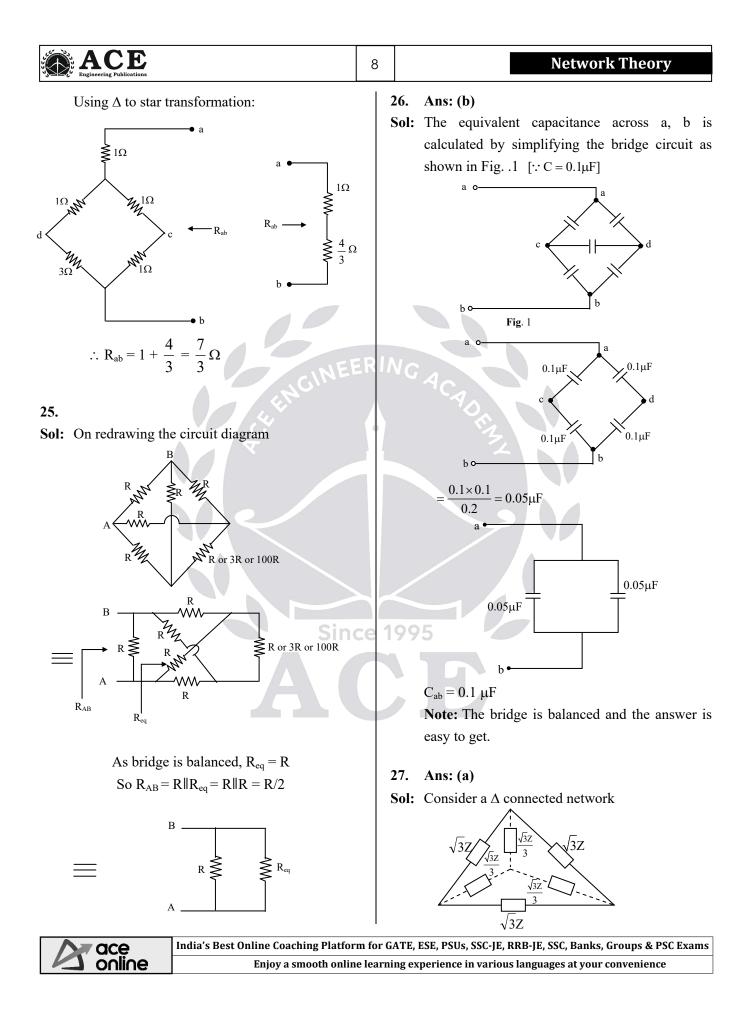
Postal Coaching Solutions

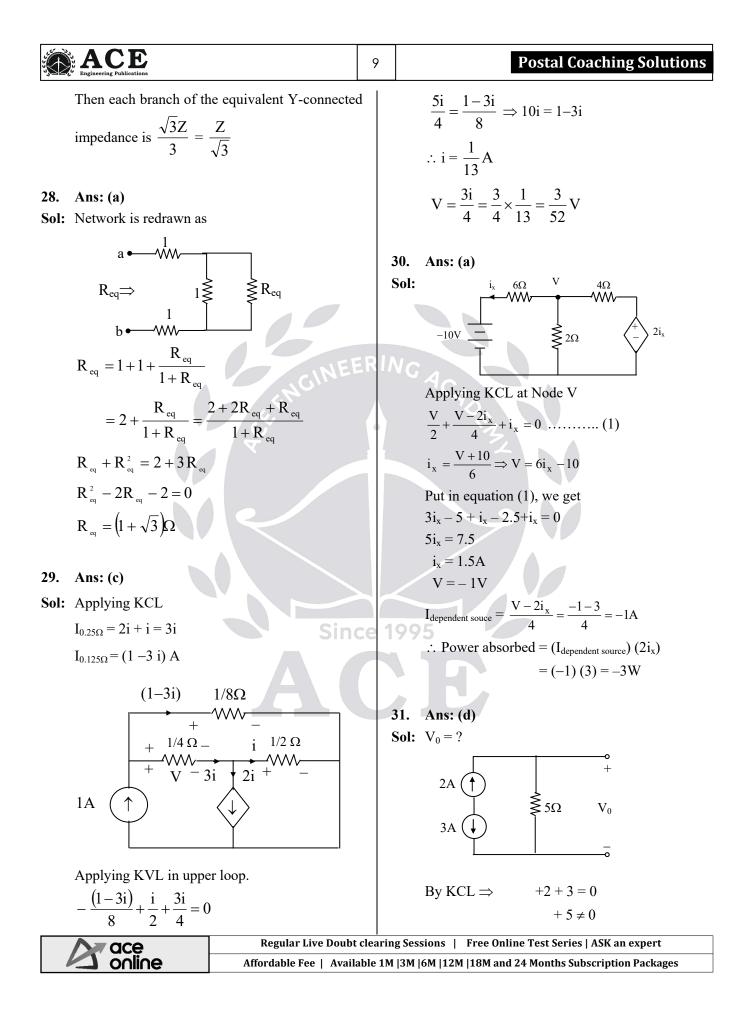


Since $2 \times 4 = 4 \times 2$; the given bridge is balanced one, therefore the current through the middle branch is zero. The bridge acts as below:









ACE
Engineering Publications

 (\mp) 10V

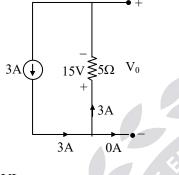
Ι

ξ5Ω

Since the violation of KCL in the circuit ; physical connection is not possible and the circuit does not exist.

32. Ans: (b)

Sol: Redraw the given circuit as shown below:



By KVL
$$\Rightarrow$$

-15 -V₀ = 0
V₀ = -15V

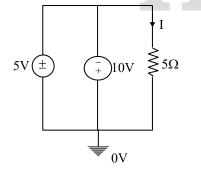
- 33. Ans: (d)
- **Sol:** Redraw the circuit diagram as shown below: Across any element two different voltages at a time is impossible and hence the circuit does not exist.

Another method:

By
$$KVL \Rightarrow$$

5 + 10 = 0

$$15 \neq 0$$



Since the violation of KVL in the circuit, the physical connection is not possible.

Sol: Redraw the given circuit as shown below:

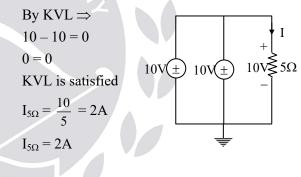
10V

By KVL \Rightarrow -10 -10 = 0 -20 \neq 0

Since the violation of KVL in the circuit, the physical connection is not possible.

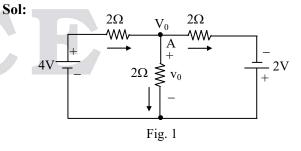
35. Ans: (b)

Sol: Redraw the given circuit as shown below:



36. Ans: (d)

Since

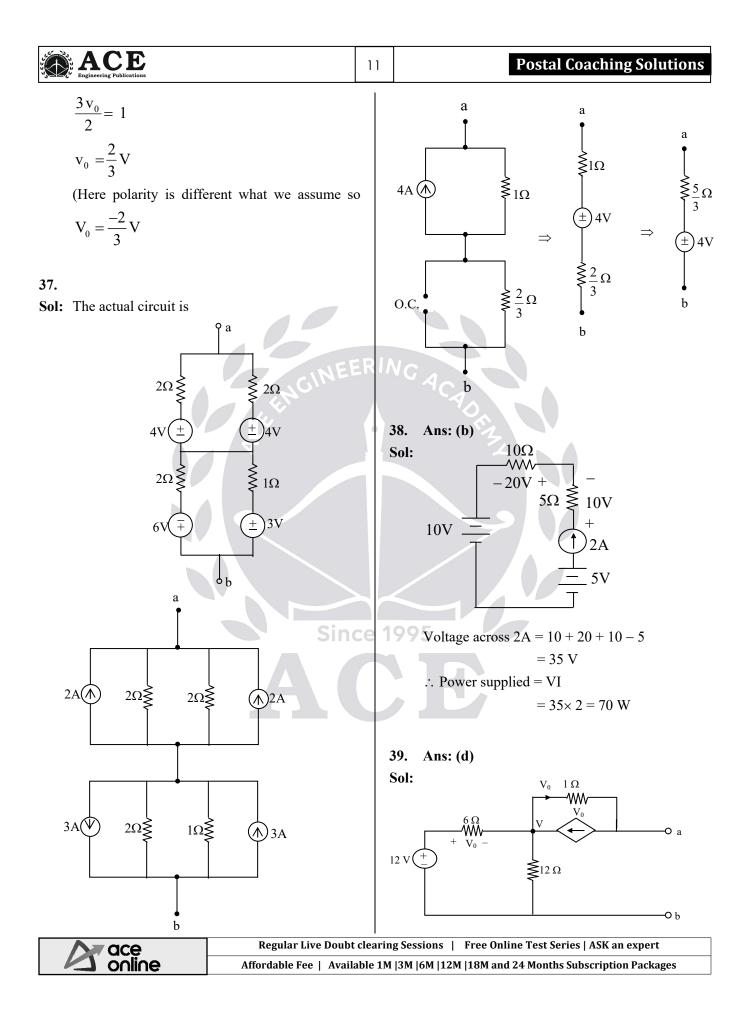


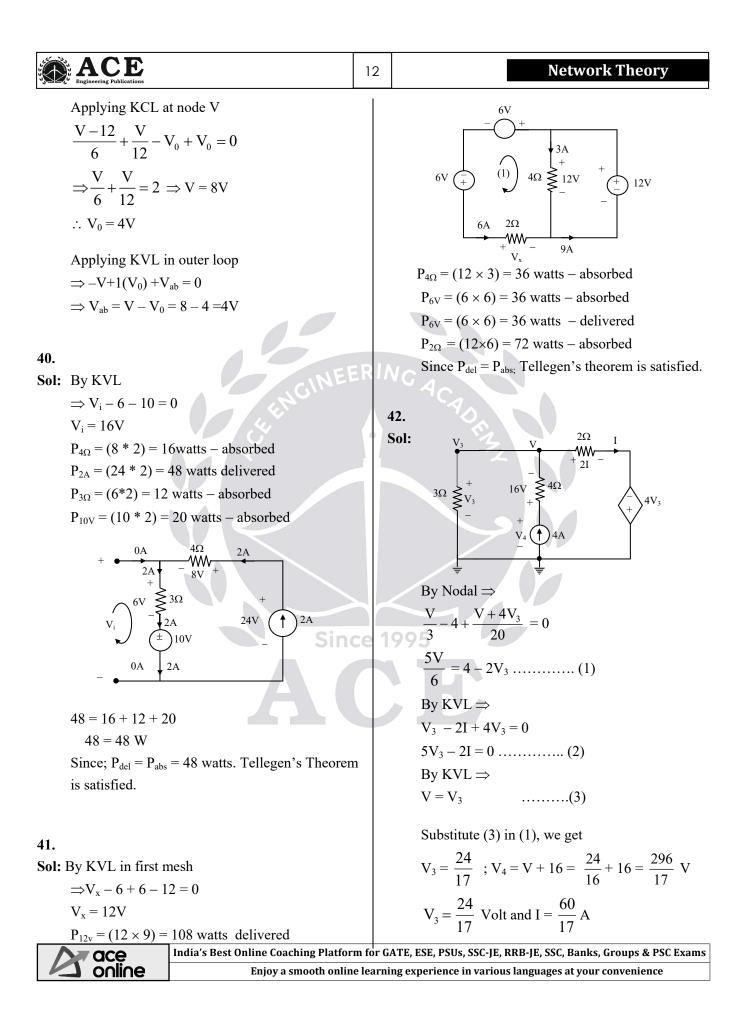
The diode is forward biased. Assuming that the diode is ideal, the Network is redrawn with node A marked as in Fig. 1.

Apply KCL at node A

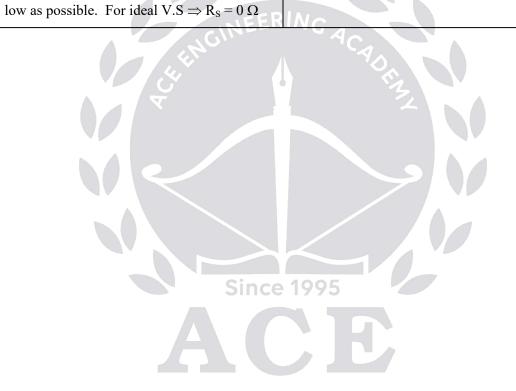
$$\frac{4 - v_0}{2} = \frac{v_0}{2} + \frac{v_0 + 2}{2}$$

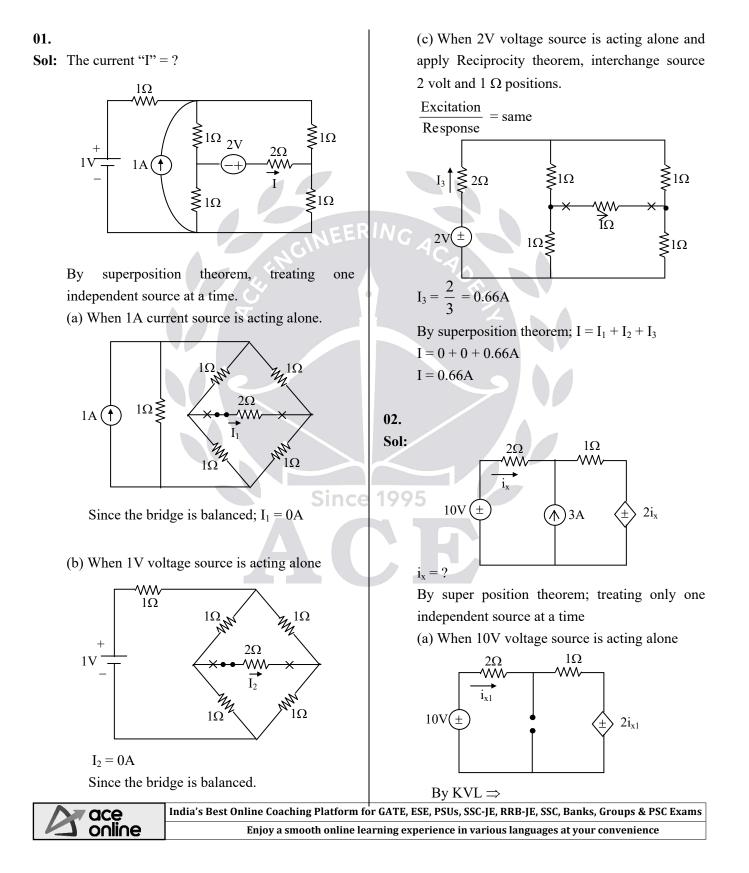
A ace online





Engineering Publications	13	Postal Coaching Solutions
$\begin{split} P_{3\Omega} &= 0.663 \text{W} \text{ absorbed} \\ P_{4\Omega} &= 64 \text{W} \text{ absorbed} \\ P_{4A} &= 69.64 \text{W} \text{ delivered} \\ P_{2\Omega} &= 24.91 \text{W} \text{ absorbed} \\ P_{4V3} &= 19.92 \text{W} \text{ delivered} \\ \text{Since } P_{del} &= P_{abs} = 89.57 \text{W} \text{ ; Tellegen's Theorem} \\ \text{is satisfied.} \end{split}$	1	 → For practical current I_s its internal resistance R_s connected in parallel as maximum as possible. For ideal C.S ⇒ R_s = ∞ Ω Any element connected with an ideal current source is not effect. Any element connected in parallel with an ideal voltage source is not effect.
 43. Ans: (a, d) Sol: → For practical voltage source V_s is connected in series with its internal resistance R_s as 		





ACE **Postal Coaching Solutions** 15 $10 - 2i_{x1} - i_{x1} - 2i_{x1} = 0$ For 120 V \rightarrow V₂ = 50 V $i_{x1} = 2A$ For 105 V \rightarrow V₂ = $\frac{105}{120} \times 50 = 43.75$ V (b) When 3A current source is acting alone $V_2 = 120 \text{ V} \Rightarrow I^2 R_3 = 60 \text{ W} \Rightarrow I = \sqrt{\frac{60}{R_2}}$ For $V_s = 105 V$ $P_3 = \left(\frac{105}{120}\sqrt{\frac{60}{R_3}}\right)^2 \times R_3 = 45.9 \text{ W}$ ∧)3A \pm 2 i_{x2} 04. Ans: (b) By Nodal \Rightarrow Sol: It is a liner network

$$\frac{V}{2} - 3 + \frac{(V - 2i_{x_2})}{1} = 0$$

$$3V - 4i_{x_2} = 6 \dots \dots \dots (1)$$

And

$$i_{x_2} = \frac{0 - V}{2} \Rightarrow V = -2i_{x_2} \dots \dots (2)$$

Put (2) in (1), we get

$$i_{x_2} = -\frac{3}{5}A$$

By SPT ;

ace online

$$i_x = i_{x1} + i_{x2} = 2 - \frac{3}{5} = \frac{7}{5}$$

: $i_x = 1.4A$

03.

Sol:

$$R_{1} \quad i_{1} = 3A$$

$$R_{2} \quad i_{1} = 3A$$

$$R_{2} \quad i_{1} = 3K$$

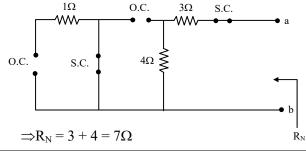
$$R_{2} \quad i_{1} = 50V$$

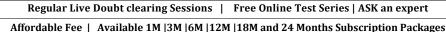
$$R_{3} \quad i_{1} = 50V$$

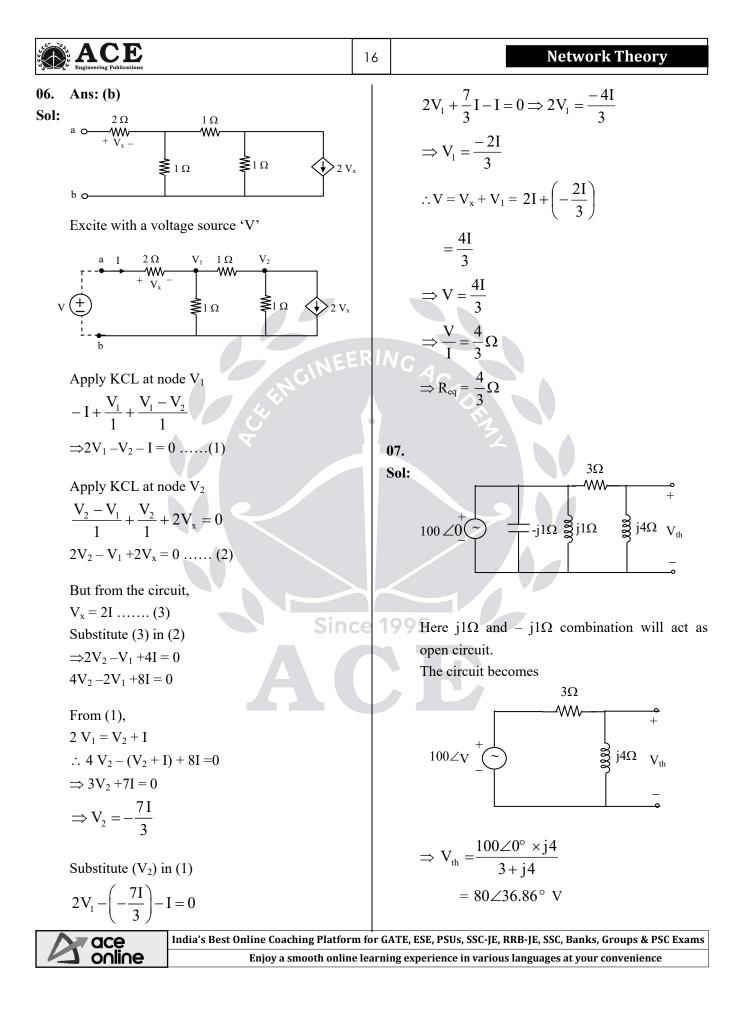
I: It is a liner network ∴ V_x can be assumed as function of i_{s1} and i_{s2} $V_x = Ai_{s_1} + Bi_{s_2}$ $80 = 8A + 12 B \rightarrow (1)$ $0 = -8A + 4B \rightarrow (2)$ From equation 1 & 2 A = 2.5, B = 5Now, V_x = (2.5)(20) + (5)(20) V_x = 150V

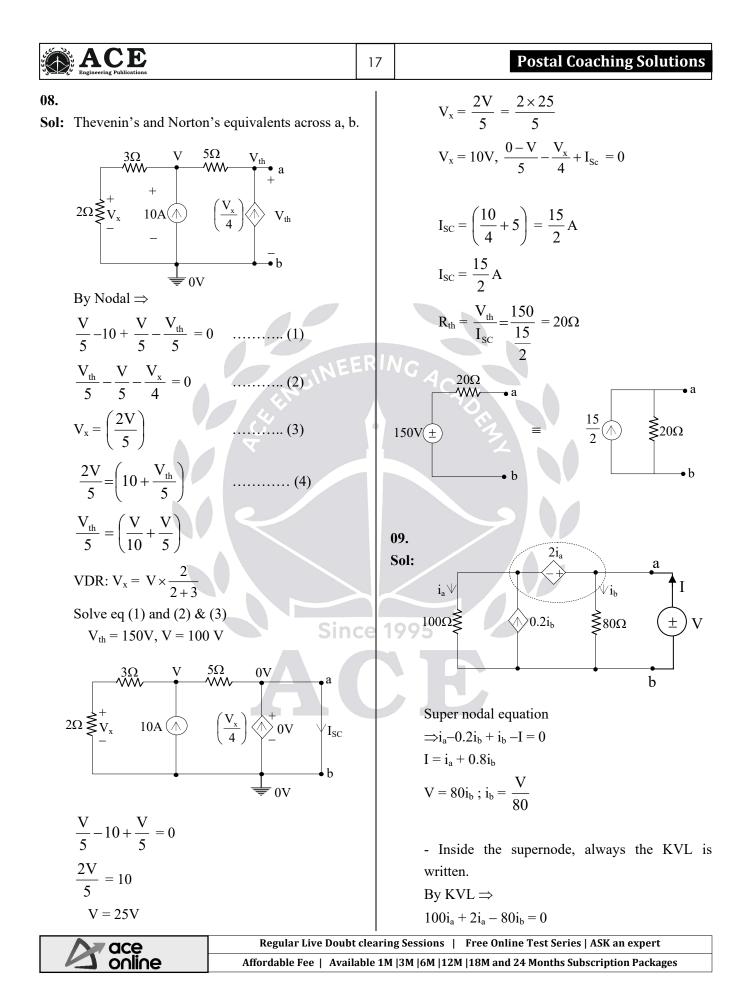
Since 05. Ans: (c) Sol: 1Ω 3A 3Ω 6VW 4Ω a

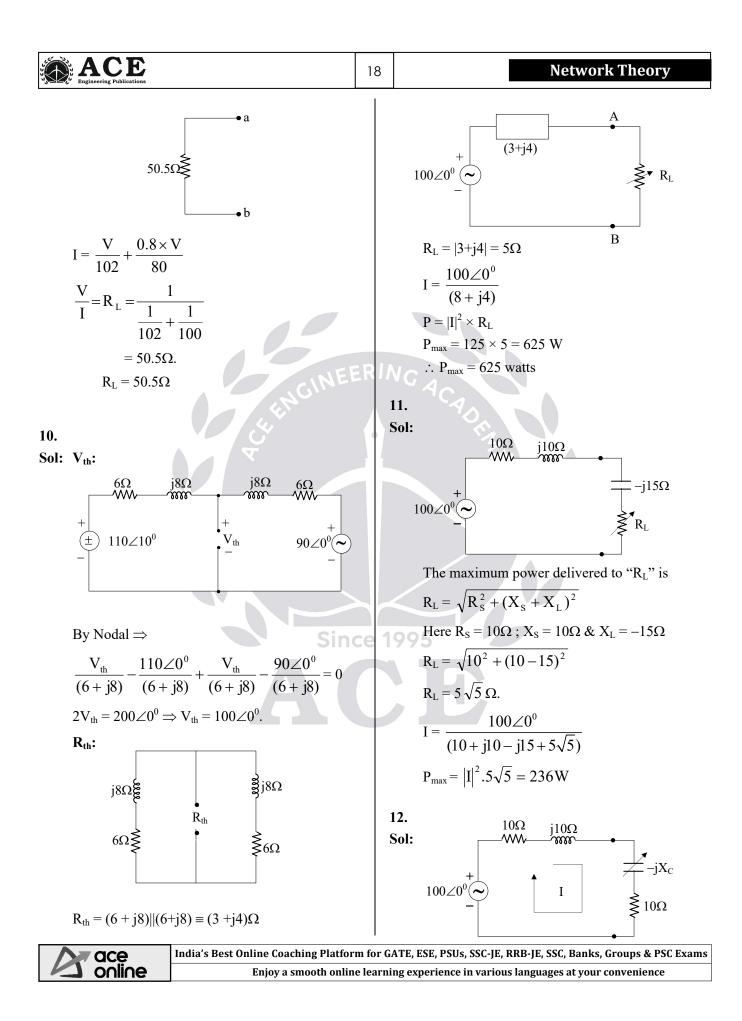
> For finding Norton's equivalent resistance independent voltage sources to be short circuited and independent current sources to be open circuited, then the above circuit becomes

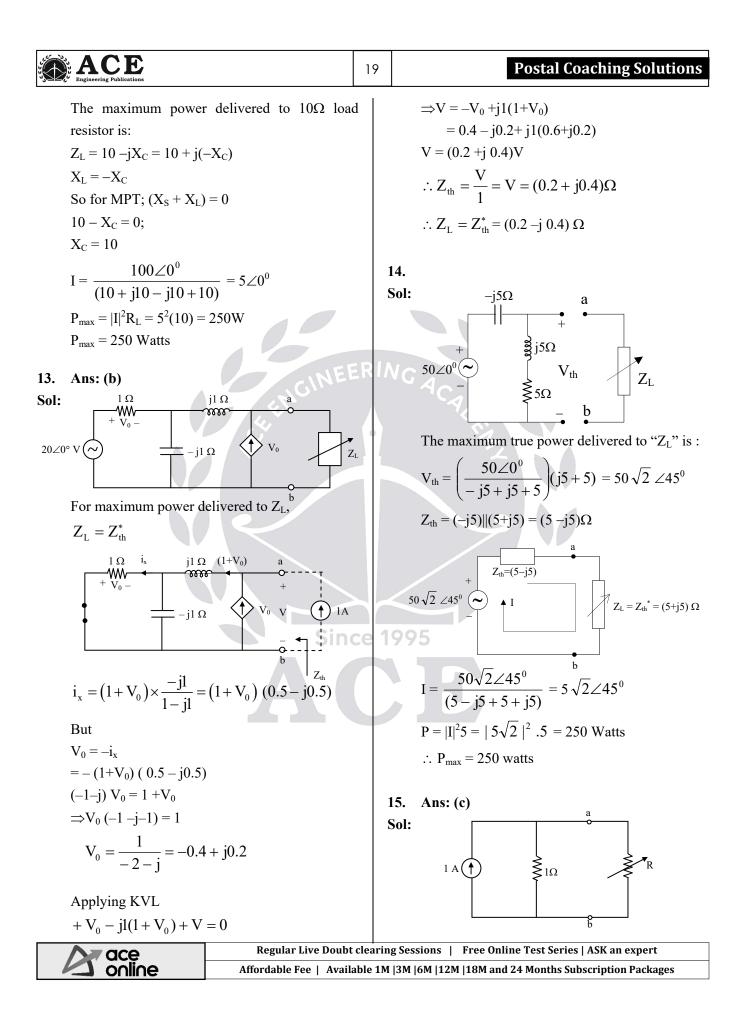


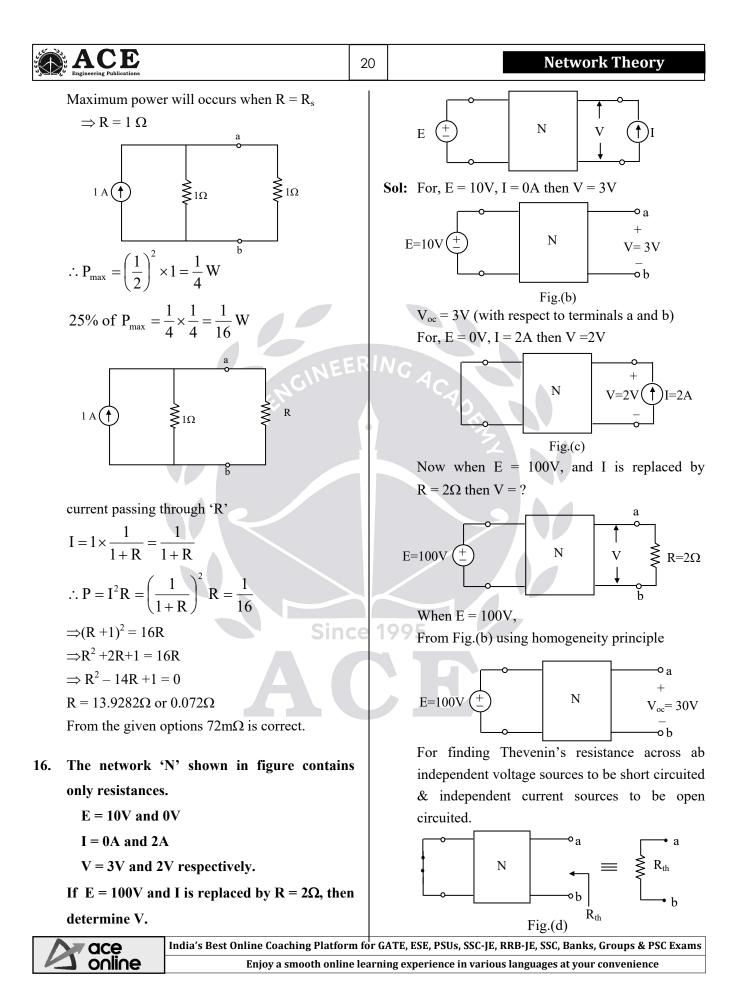


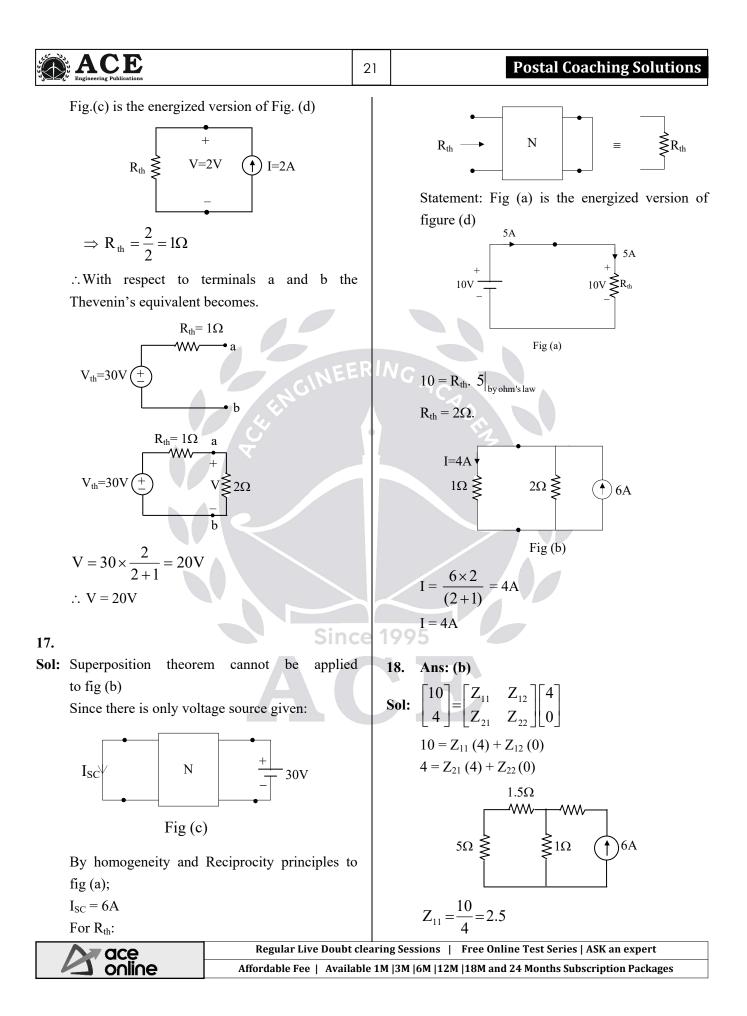


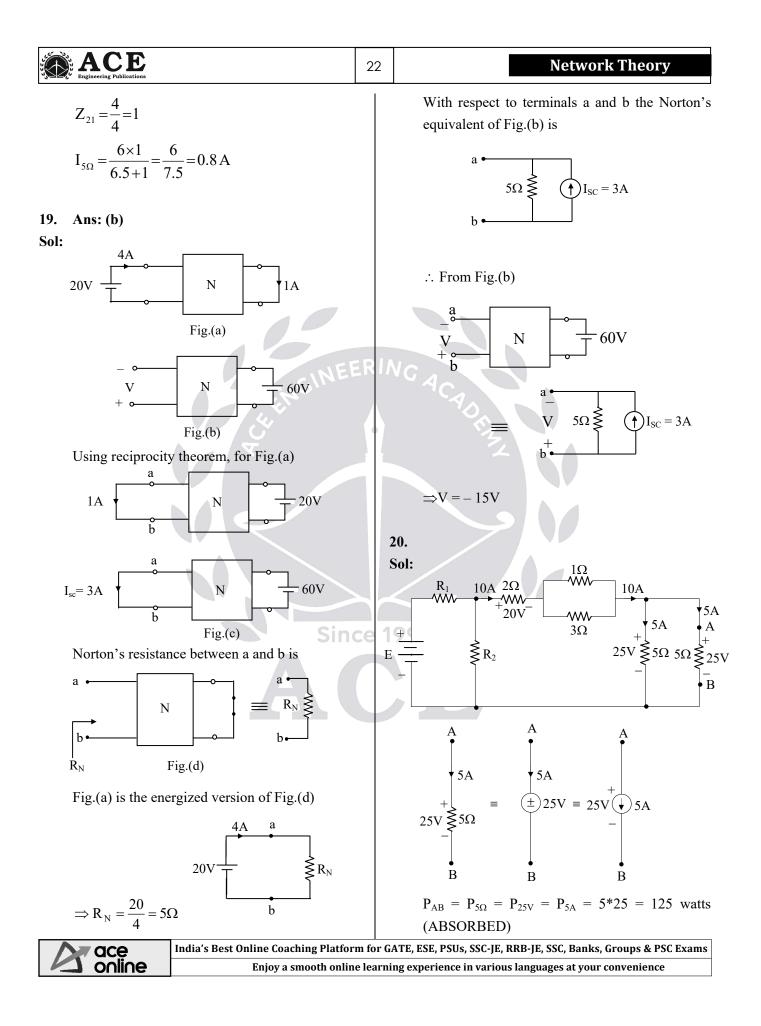








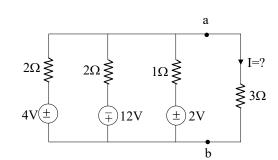




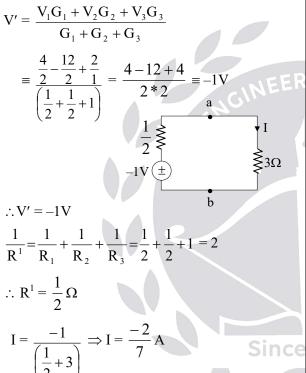
 ACE
Engineering Publications

Postal Coaching Solutions

21. Sol:



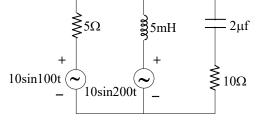
By Mill Man's theorem;



22. Ans: (d)

ace online

Sol:

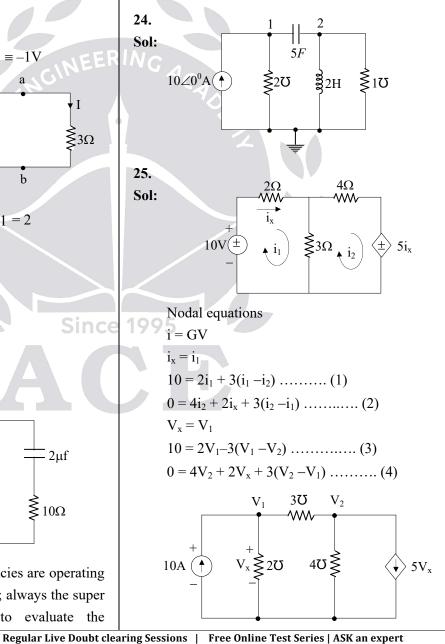


Since the two different frequencies are operating on the network simultaneously; always the super position theorem is used to evaluate the responses since the reactive elements are frequency sensitive

i.e.,
$$Z_L = j\omega L$$
 and $Z_C = \frac{1}{j\omega c} \Omega$.

23.

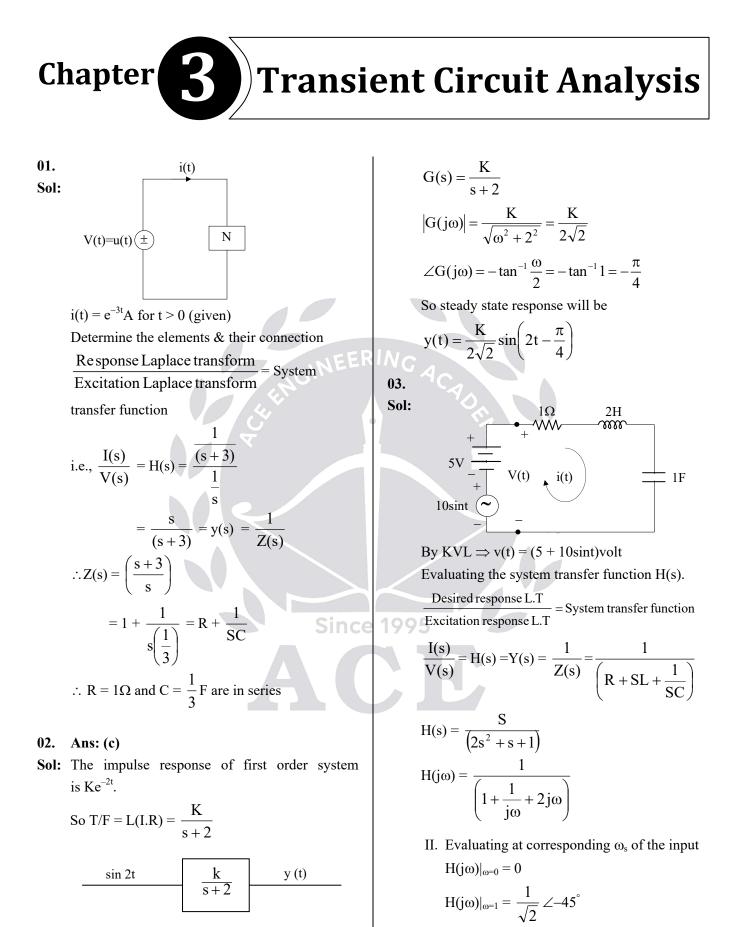
Sol: In the above case if both the source are100rad/sec, each then Millman's theorem is more conveniently used.



Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

Engineering Publications	24	Network Theory			
26. (b, c)Sol: Tellegen's Theorem is applicable to an nonlinear Network.	у	$I = 1 \Longrightarrow 4I = 4(1) = 4 V$ $R_{th} = \frac{V_s}{I}$			
27. Ans: (c, d)		$\frac{V_s - 4}{4} + \frac{V_s}{2} - 1 = 0$			
Sol: 4Ω V _s I = 1		$\frac{3V_s}{4} = 2 \Longrightarrow V_s = \frac{8}{3}V$			
$4V \Leftrightarrow \qquad $		$R_{th} = \frac{V_s}{I} = \frac{8}{3}\Omega$			
		∴ There is no independent source, $V_{th} = 0$ ∴ (c, d) are correct.			

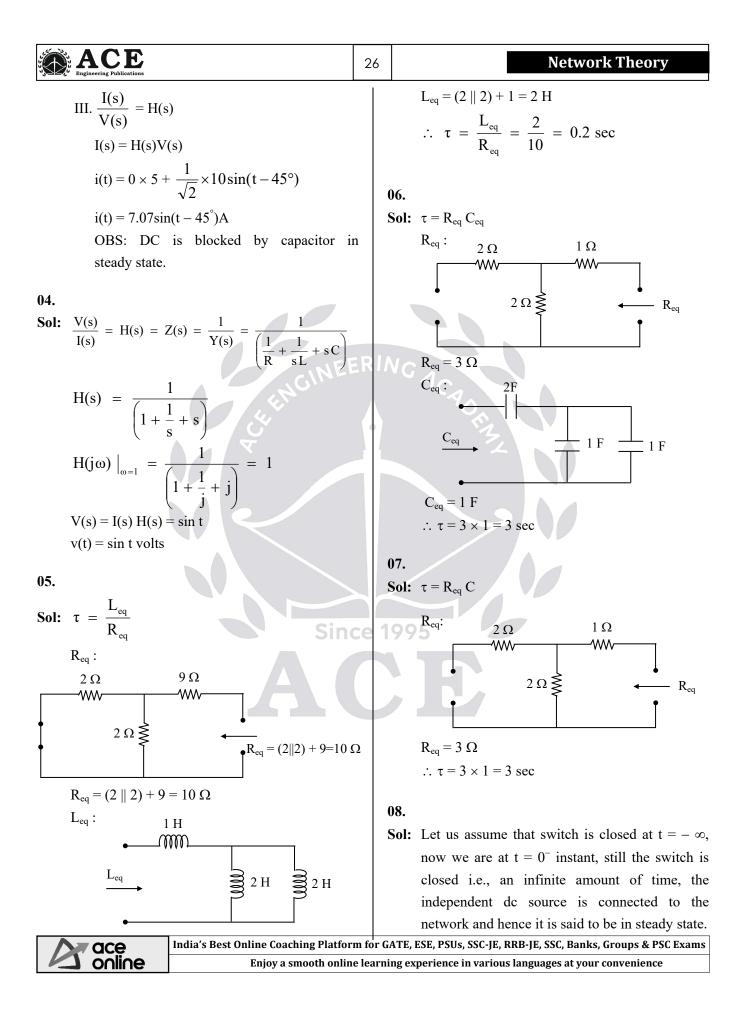
A ace online India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

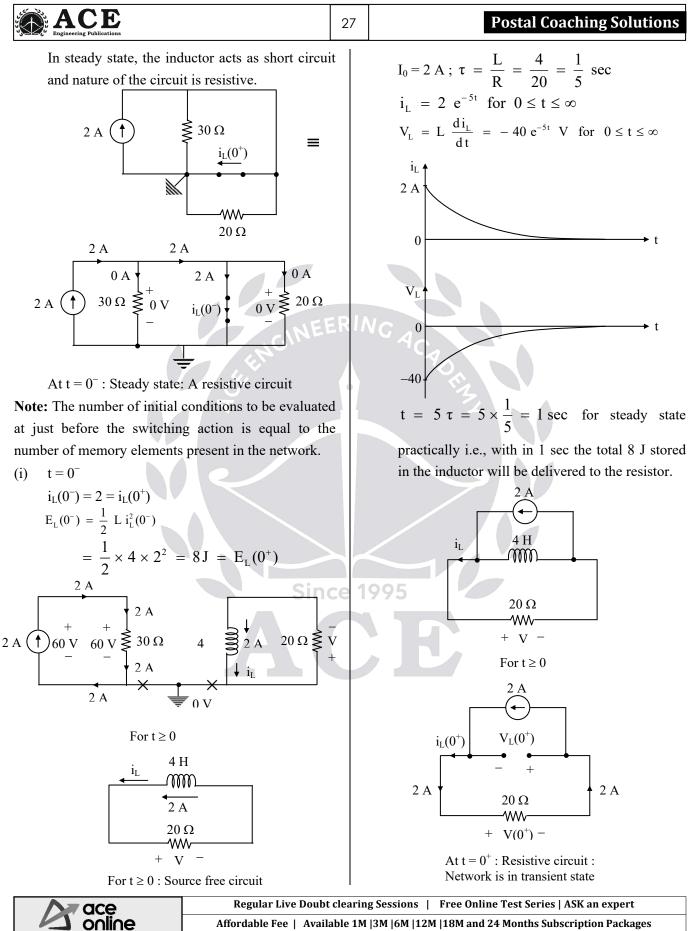


 Regular Live Doubt clearing Sessions
 |
 Free Online Test Series | ASK an expert

 Affordable Fee
 |
 Available 1M | 3M | 6M | 12M | 18M and 24 Months Subscription Packages

ace online

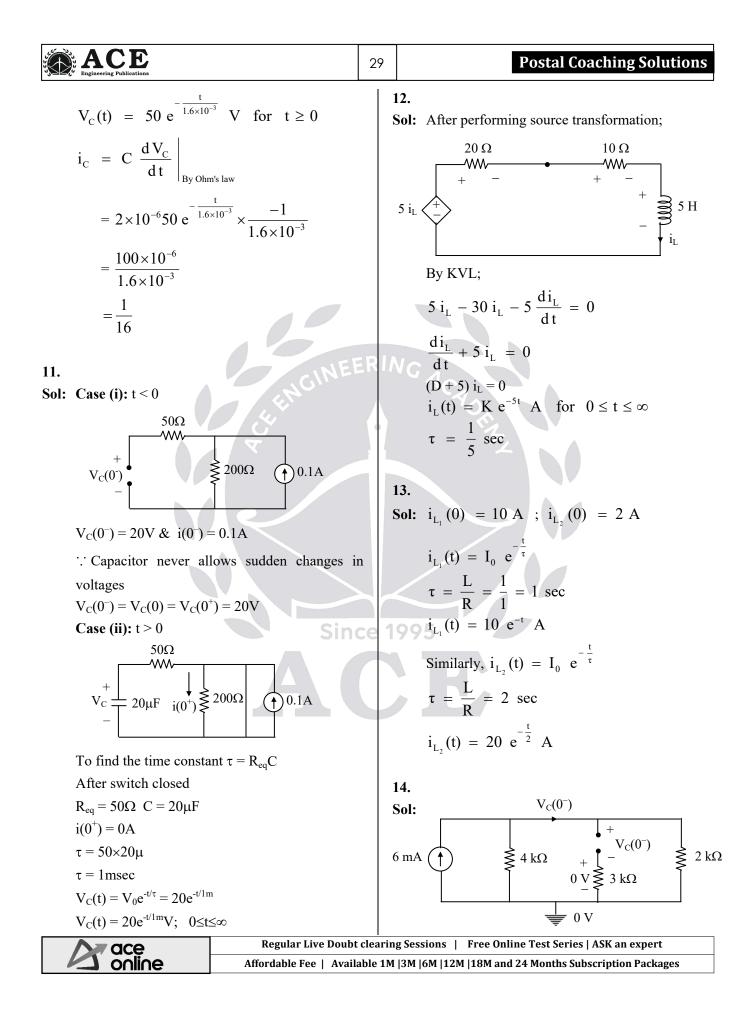


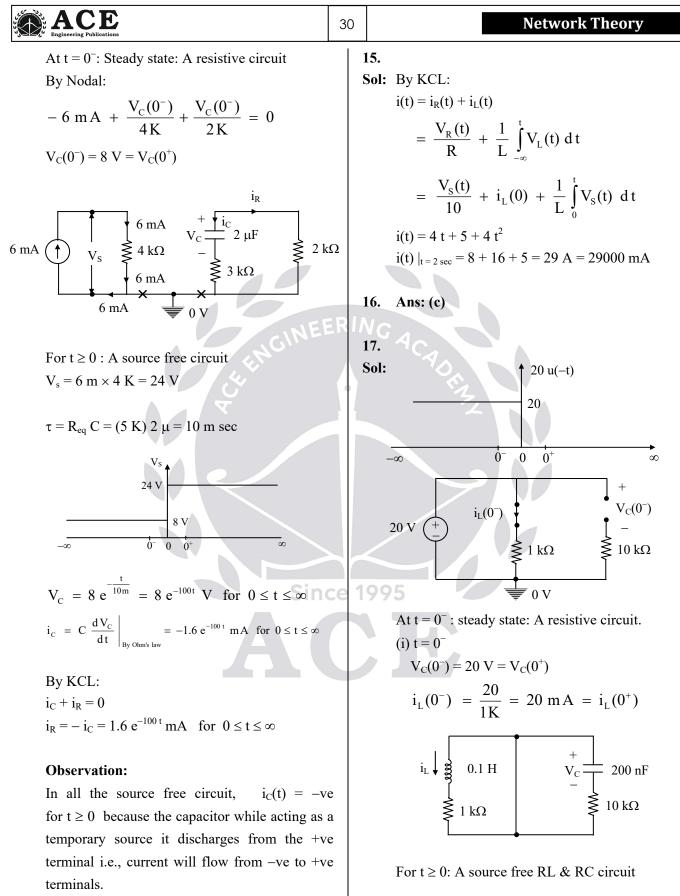


Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

Engineering Publications	28 Network Theory
By KCL:	(3) $V_L(0^+) = -40 \text{ V}$
$-2 + i_L(0^+) = 0$	$V_{L}(t) _{t=0^{+}} = -40 \text{ V}$
$i_{L}(0^{+}) = 2 A$	$L(7) _{t=0^{+}}$
$V(0^+) = R \ i_L(0^+) \mid_{By \ Ohm's \ law}$	$L \left. \frac{d i_{L}(t)}{d t} \right _{t=0^{+}} = -40$
$V(0^+) = 20 (2) = 40 V$	$d t \Big _{t=0^+}$
By KVL:	di(t) 40 40
$V_L(0^+) + V(0^+) = 0$	$\frac{di_{L}(t)}{dt}\Big _{t=0} = -\frac{40}{L} = -\frac{40}{4} = -10 \text{ A/sec}$
$V_L(0^+) = -V(0^+) = -40 V = V_L(t) _{t=0^+}$	Check :
Observations:	$i_{\rm L}(t) = 2 e^{-5t} A$ for $0 \le t \le \infty$
$t = 0^{-}$ $t = 0^{+}$	
$i_L(0^-) = 2 A$ $i_L(0^+) = 2 A$	$\frac{di_{L}(t)}{dt} = -10 e^{-5t} \text{ A/sec for } 0 \le t \le \infty$
$i_{20\Omega}(0^-) = 0 A$ $i_{20\Omega}(0^+) = 2 A$	PINO 1: 01
$V_{20\Omega}(0^{-}) = 0 V$ $V_{20\Omega}(0^{+}) = 40 V$	$\frac{di_{L}(t)}{dt_{L}}$ = -10 A/sec
$V_L(0^-) = 0 V$ $V_L(0^+) = -40 V$	dt $t = 0^+$
Conclusion:	
To keep the same energy as $t = 0^{-}$ and to protect	t 09. 10 Ω
the KCL and KVL in the circuit (i.e., to ensure	
the stability of the network), the inducto	r
voltage, the resistor current and its voltage	
can change instantaneously i.e., within zero time	e $40 \Omega \gtrless V$ $+$ $35 H$
at $t = 0^+$.	-24 V = +
(2) $i_{L}(t)$	$-\overline{1}$ i_L
20Ω $4 H$ $3 V_{L}(t)$ Since	$= 1995_{i_1(0^+)} = 2.4 \text{ A}$
-	$V(0^+) = -96 V$
For $t \ge 0$	$i_{L}(t) = 2.4 e^{-10t} A$ for $0 \le t \le \infty$
$i_{L}(t) = 2 e^{-5t} A$ for $0 \le t \le \infty$	
$V_{L}(t) = -40 e^{-5t} V \text{ for } 0 \le t \le \infty$	10.
Conclusion:	Sol:
For all the source free circuits, $V_L(t) = -ve$ fo	r $2 \stackrel{S}{\longrightarrow} 1 \stackrel{732 \Omega}{\longleftarrow} 1$
$t \ge 0$, since the inductor while acting as	
temporary source (upto 5τ), it discharges from	$1 \rightarrow 1 \rightarrow$
positive terminal i.e., the current will flow from	n = 1
negative to positive terminals. (This is the mus	
condition required for delivery, by Tellegan'	s
theorem)	$V_{\rm C}(0^+) = 50 \text{ V}; i(0^+) = 62.5 \text{ mA}$

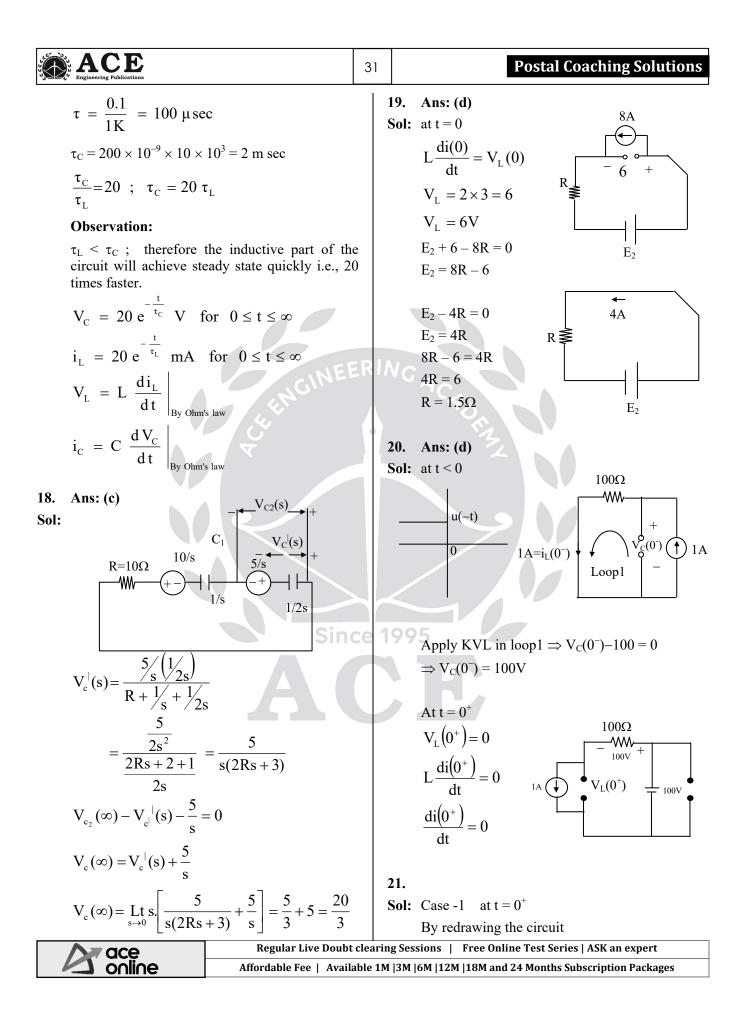
A ace online India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

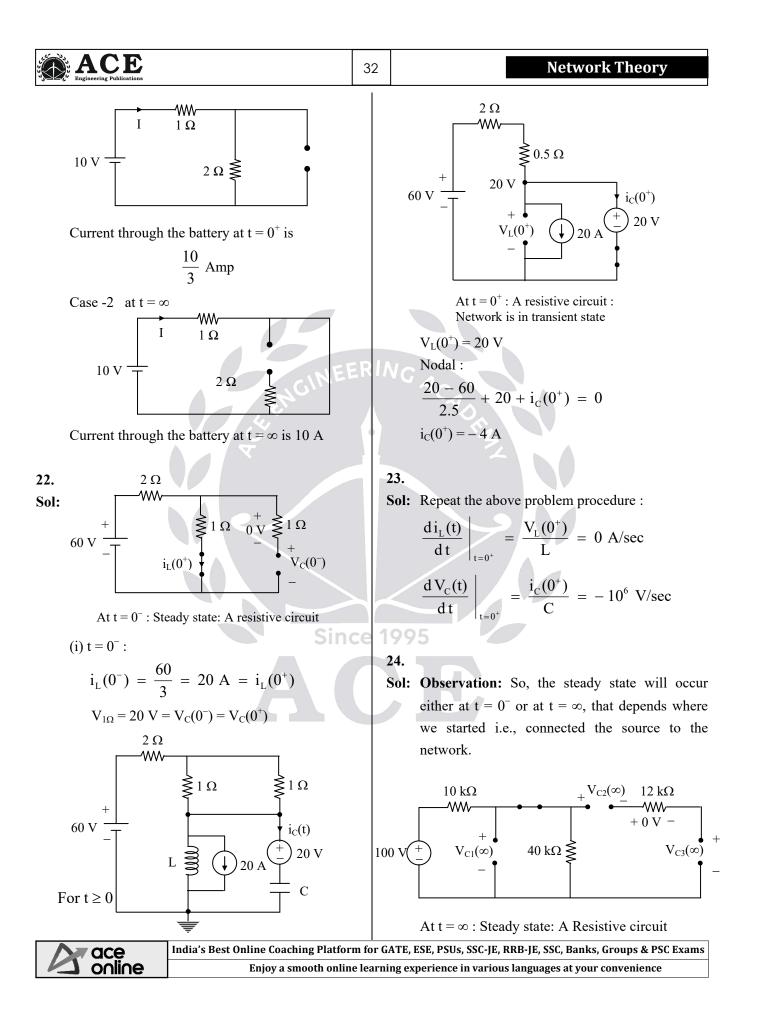


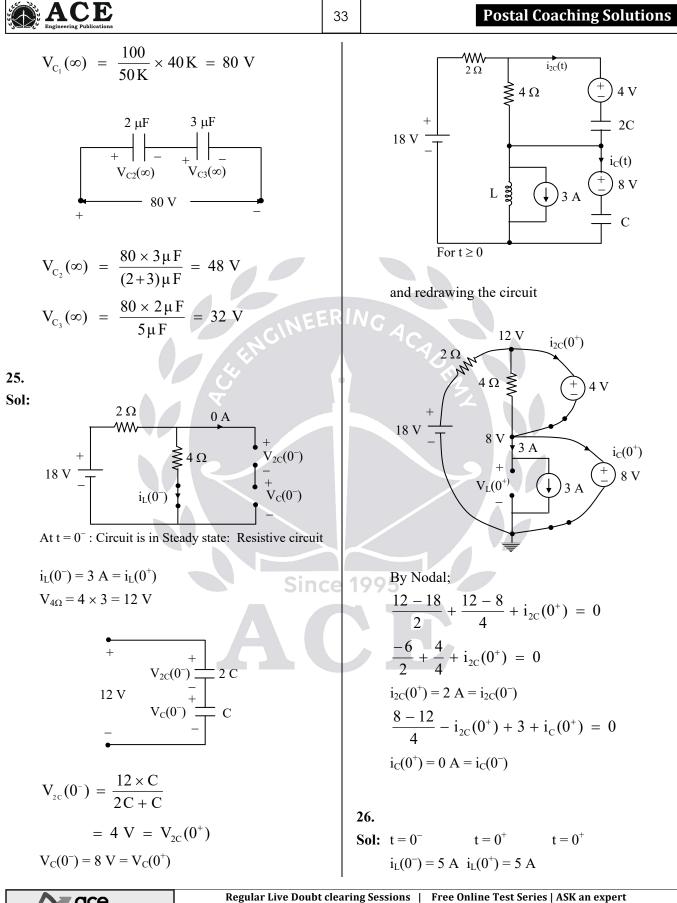


India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams online Enjoy a smooth online learning experience in various languages at your convenience

ace

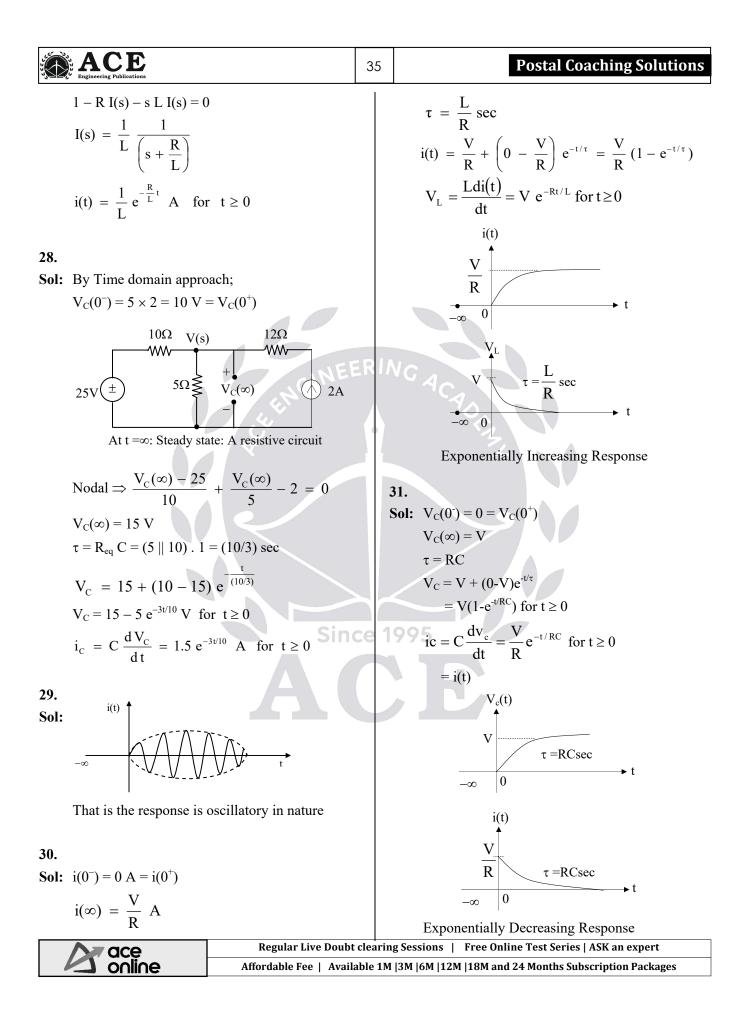






Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

ACE	34	Network Theory
$\frac{di_{L}(0^{+})}{dt} = \frac{V_{L}(0^{+})}{L} = 40$ $i_{R}(0^{-}) = -5 A \qquad i_{R}(0^{+}) = -1A$ $\frac{di_{R}(0^{+})}{dt} = -40 \text{ A/sec}$ $i_{C}(0^{-}) = 0 A \qquad i_{C}(0^{+}) = 4A$ $\frac{di_{C}(0^{+})}{dt} = -40 \text{ A/sec}$ $V_{L}(0^{-}) = 0 V$ $V_{L}(0^{-}) = 120 V$ $\frac{dV_{L}(0^{+})}{dt} = 1098 \text{ V/sec}$ $V_{R}(0^{-}) = -150 V$ $V_{R}(0^{-}) = -30 V$ $\frac{dV_{R}(0^{+})}{dt} = -1200 \text{ V/sec}$ $V_{C}(0^{-}) = 150 V$ $V_{L}(0^{+}) = 108 \text{ V/sec}$ (i). $t = 0^{-}$ By KCL $\Rightarrow i_{L}(t) + i_{R}(t) = 0$ $t = 0^{-} \Rightarrow i_{L}(0^{-}) + i_{R}(0^{-}) = 0$ $i_{R}(0^{-}) = -30 V$ $W_{R}(0^{-}) = -5 A$ $V_{R}(0^{-}) = R i_{R}(0^{-}) = 30(-5) = -150 V$ By KVL $\Rightarrow V_{L}(0^{-}) = 150 V$		$V_{R}(0^{+}) = R i_{R}(0^{+})$ $V_{R}(0^{+}) = -30 V$ By KVL $\Rightarrow V_{L}(t) - V_{R}(t) - V_{C}(t) = 0$ $V_{L}(0^{+}) = V_{R}(0^{+}) + V_{C}(0^{+})$ $= 150 - 30 = 120 V$ By KCL at 2 nd node; $-5 + i_{C}(t) - i_{R}(t) = 0$ $i_{C}(0^{+}) = 4 A$ (iii). t = 0 ⁺ By KCL at 1 st node \Rightarrow $-4 + i_{L}(t) + i_{R}(t) = 0$ di (t) d
$V_{C}(0^{-}) = V_{L}(0^{-}) - V_{R}(0^{-}) = 150 \text{ V}$ (ii). At $t = 0^{+}$ By KCL at 1 st node \Rightarrow $-4 + i_{L}(t) + i_{R}(t) = 0$ $-4 + i_{L}(0^{+}) + i_{R}(0^{+}) = 0$ $i_{R}(0^{+}) = -i_{L}(0^{+}) + 4$ $i_{R}(0^{+}) = -5 + 4 = -1 \text{ A}$ $V_{R}(t) = R i_{R}(t) _{By \text{ Ohm's law}}$		Sol: Transform the network into Laplace domain $ \begin{array}{c} & & & \\ $
India's Best Online Coaching Platfor		GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams ing experience in various languages at your convenience



ACE Engineering Publications

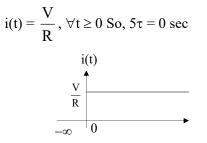
36

Sinc

Network Theory

32.

Sol: It's an RL circuit with $L = 0 \Rightarrow \tau = 0$ sec



i.e., the response is constant

33.

Sol:
$$i_1 = \frac{100u(t) - V_L}{10}$$

 $i_1 = \left(10u(t) - \frac{1}{100} \frac{di_L}{dt}\right)$

 $Nodal \Rightarrow$

$$-i_{1} + i_{L} + \frac{V_{L} - 20i_{1}}{20} = 0$$
$$-2i_{1} + i_{L} + \frac{1}{200} \frac{di_{L}}{dt} = 0$$

Substitute i1;

$$\frac{di_{L}}{dt} + 40i_{L} = 800u(t)$$

$$SI_{L}(s) - i_{L}(0+) + 40I_{L}(s) = \frac{800}{s}$$

$$i_{L}(0^{-}) = 0A = i_{L}(0^{+})$$

$$I_{L}(s) = \frac{800}{s(s+40)} = \frac{20}{s} - \frac{20}{s+40}$$

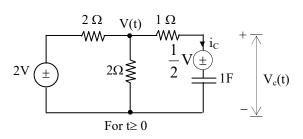
$$I_{L}(t) = 20u(t) - 20e^{-40t} u(t)$$

$$I_{L}(t) = 20(1-e^{-40t}) u(t)$$

$$i_{1} = 10u(t) - \frac{1}{100} d\frac{i_{L}}{dt}$$

$$i_{1} = (10-8e^{-40t}) u(t)$$

Sol: By Laplace transform approach:



Transform the above network into the Laplace domain

V(c)

For t > 0

$$\frac{2}{s} \stackrel{(+)}{=} \frac{2}{s} \stackrel{(+)}{=} \frac{2}{s} \stackrel{(+)}{=} \frac{1}{s} \stackrel{(+)}{=}$$

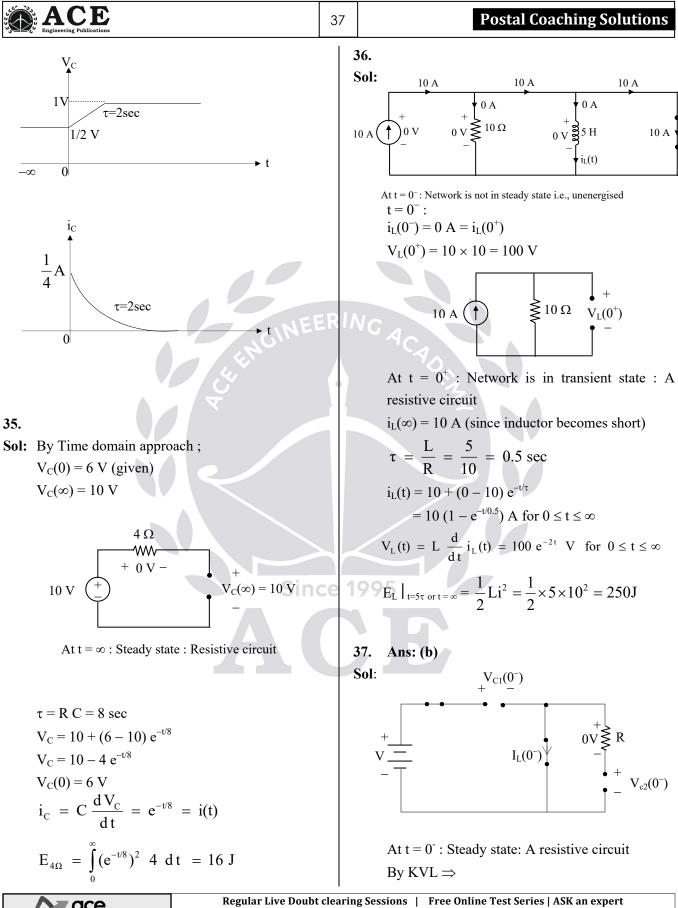
By KVL
$$\Rightarrow$$

 $V_{c}(s) - \frac{1}{2s} - \frac{1}{s} I_{c}(s) = 0$
 $V_{c}(s) = \frac{1}{2s} + \frac{1}{s} I_{c}(s)$

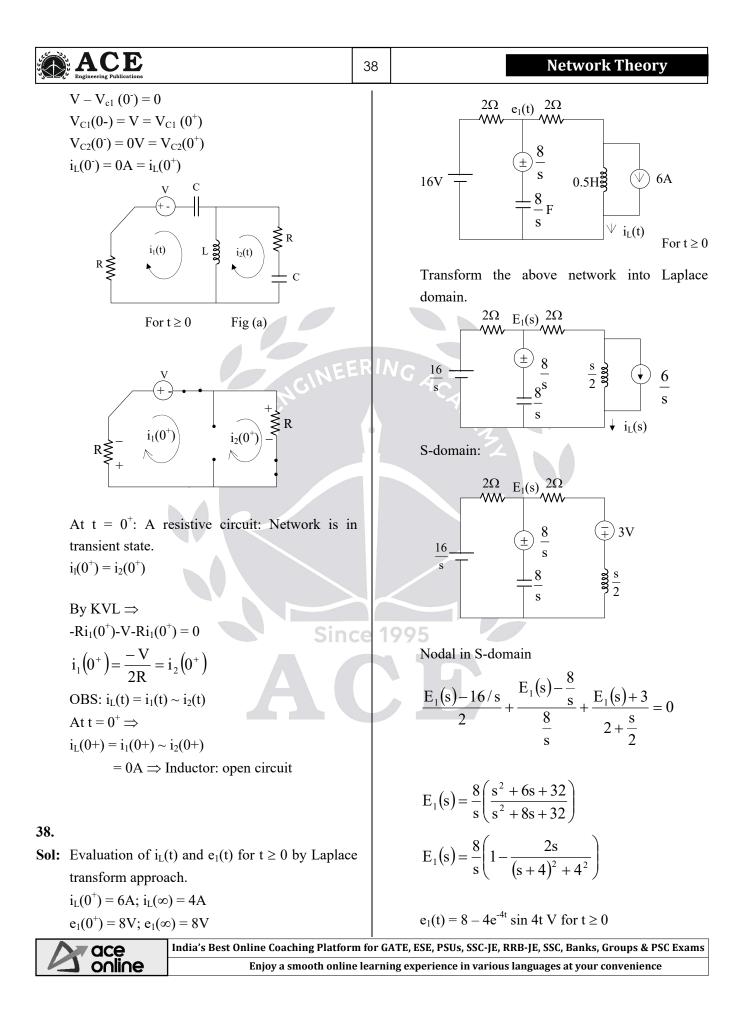
$$v_{c}(t) = 1 - \frac{1}{2} e^{-\frac{t}{2}} V \text{ for } t \ge 0$$

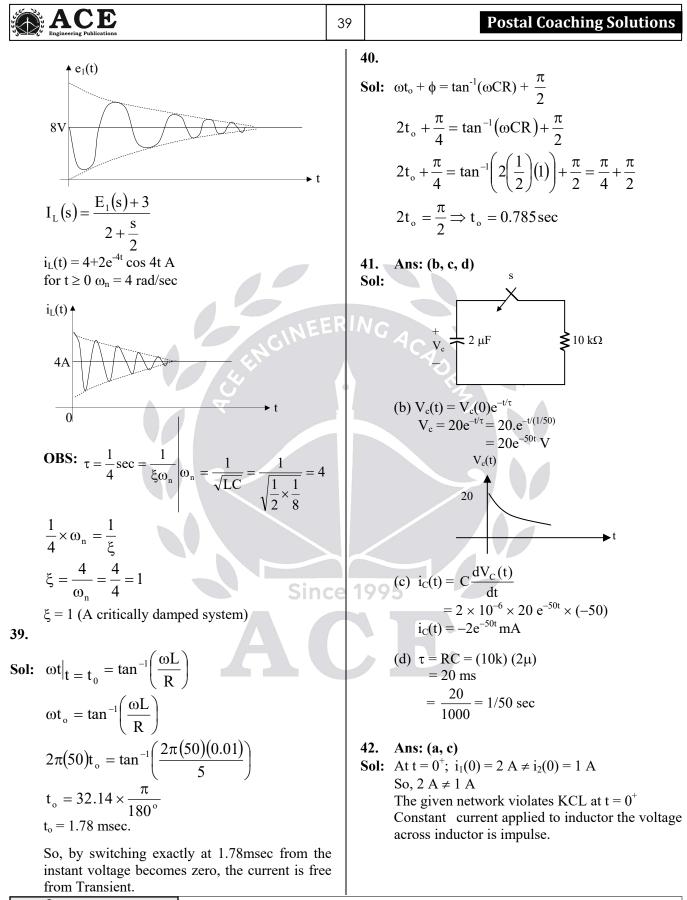
 India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams

 Enjoy a smooth online learning experience in various languages at your convenience



ace online





Chapter A AC Circuit Analysis

= 6.2017∠27.125°A

 OCE
 India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams

 Enjoy a smooth online learning experience in various languages at your convenience

value of half cycle.

ACE Engineering Publications

$$I_{2} = \frac{I(1 - jI)}{1 - jI + 1 + j2}$$

= 3.922\angle - 81.31° A
$$E_{2} = (1 - jI)I_{1} = 8.7705 \angle - 17.875° V$$
$$E_{0} = 0.5I_{2} = 1.961 \angle - 81.31° V$$

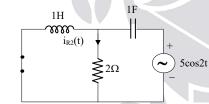
07.

Sol: Since two different frequencies are operating on the network simultaneously always the super position theorem is used to evaluate the response.

Network is in steady state, therefore the network

is resistive. $I_{R1}(t) = \frac{10}{2} = 5A$

(ii)



Network is in steady state

As impedances of L and C are present because of $\omega = 2$. They are physically present.

$$Z_{L} = j\omega L; Z_{c} = \frac{1}{j\omega C} \Big|_{\omega=2}$$

$$j2\Omega \quad V$$

$$i_{R2}(t) \quad \downarrow$$

$$Z_{L} = j\omega L; Z_{c} = \frac{1}{j\omega C} \Big|_{\omega=2}$$

Network is in phasor domain

Nodal \Rightarrow

$$\frac{V}{j2} + \frac{V}{2} + \frac{V - 5 \angle 0^0}{-j0.5} = 0$$

ace online

$$\begin{split} V &= 6.32 \angle 18.44^0 \\ I_{R2} &= \frac{V}{2} = 3.16 \angle 18.44^0 = 3.16 \, e^{j18.14^0} \\ i_{R2}(t) &= R.P[I_{R2}e^{j2t}]A \\ &= 3.16 \cos \left(2t + 18.44^0\right) \\ By \text{ super position theorem,} \\ i_R(t) &= i_{R1}(t) + i_{R2}(t) \\ &= 5 + 3.16 \cos \left(2t + 18.44^0\right)A \end{split}$$

08. Ans: (c)
Sol:
$$\frac{1}{s^2 + 1} - I(s)(2 + 2s + \frac{1}{s}) = 0$$

 $I(s)(\frac{2s + 2s^2 + 1}{s}) = \frac{1}{s^2 + 1}$
 $I(s) + 2s^2I(s) + 2sI(s) = \frac{s}{s^2 + 1}$
 $i(t) + \frac{2d^2i}{dt^2} + 2\frac{di}{dt} = \cos t$
 $2\frac{d^2i}{dt^2} + 2\frac{di}{dt} + i(t) = \cos t$

09.

Since

Sol:
$$V = \sqrt{V_R^2 + (V_L - V_C)^2}$$

 $V = V_R = I.R$
 $100 = I.20; I = 5A$
Power factor $= \cos\phi = \frac{V_R}{V} = \frac{V_R}{V_R} = 1$

So, unity power factor.

10.

Sol: By KCL in phasor - domain

$$\Rightarrow -I_1 - I_2 - I_3 = 0$$

$$I_3 = -(I_1 + I_2)$$

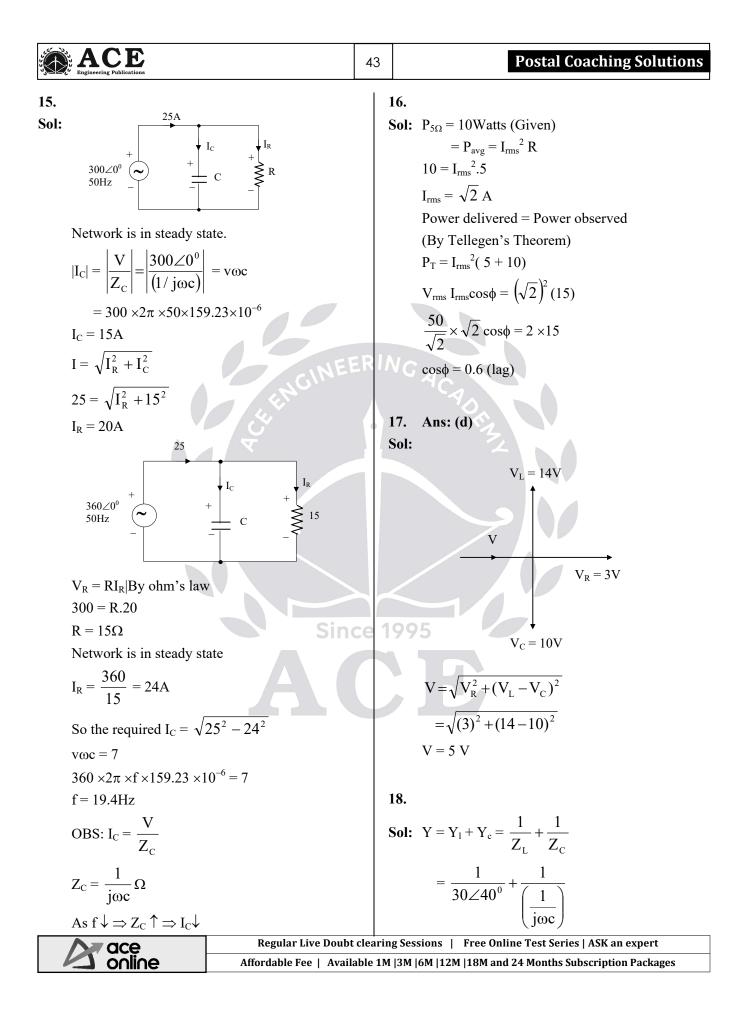
$$i_1(t) = \cos(\omega t + 90^0)$$

$$I_1 = 1 \angle 90^0 = j1$$

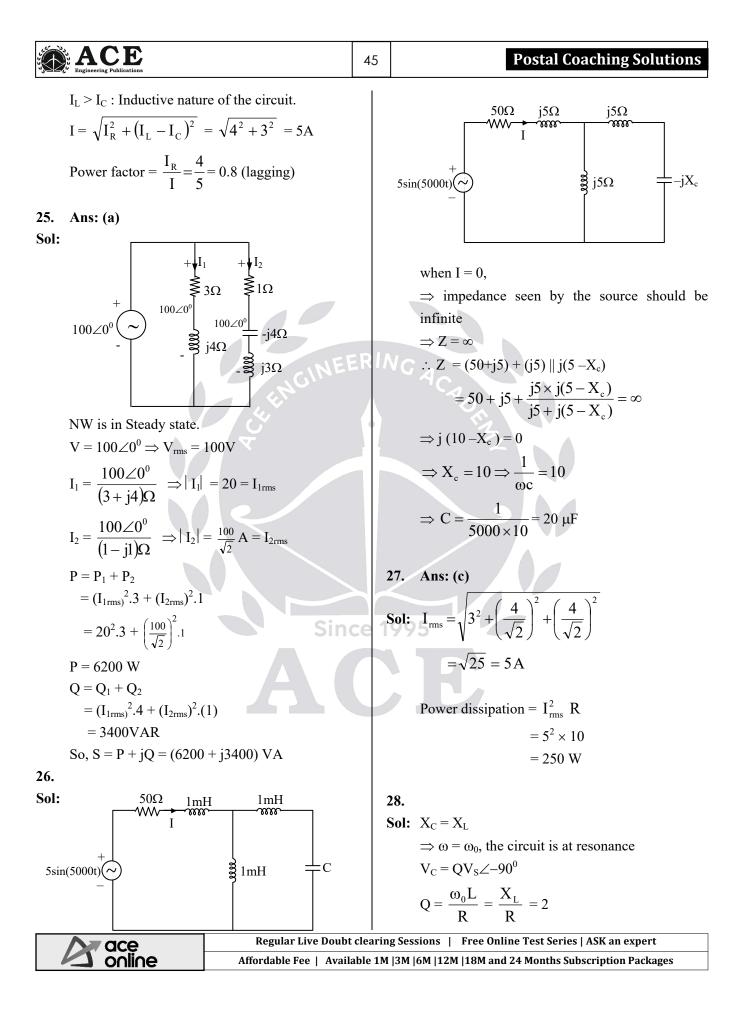
 Regular Live Doubt clearing Sessions
 Free Online Test Series | ASK an expert

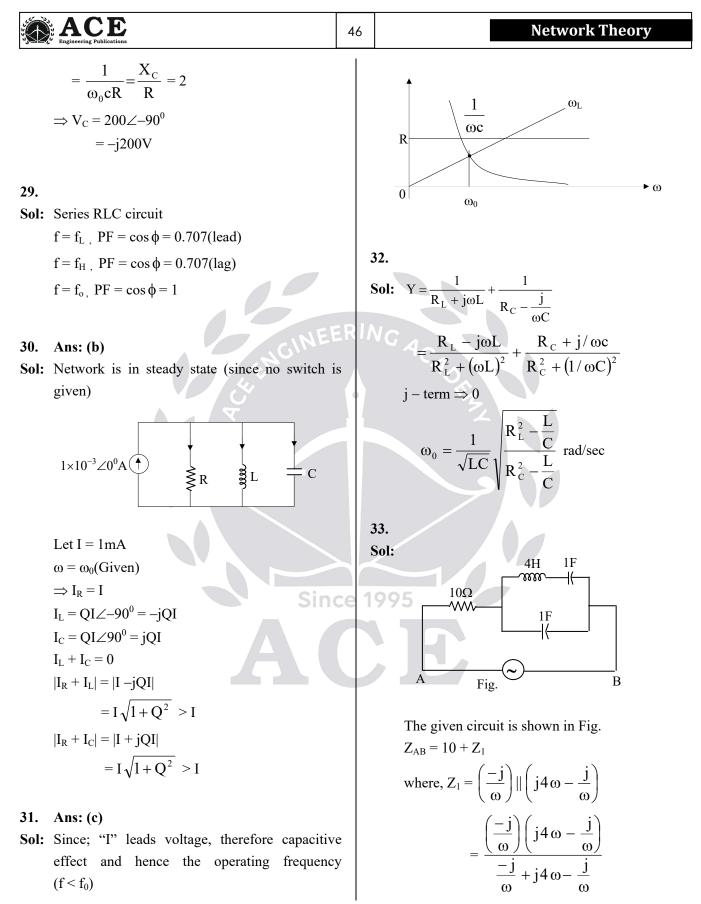
 Affordable Fee |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

Engineering Publications	42 Network Theory	
$I_2 = 1 \angle 0^0 = (1 + j0)$	Therefore, the phasor I_1 leads I_2 by an angle	
$I_3 = \sqrt{2} \not a \pi + 45^0 = \sqrt{2} e^{i(\pi + 45)}$	of 135°.	
$i_3(t) = \text{Real part}[I_3.e^{j\omega t}]\text{mA}$	14.	
$= -\sqrt{2}\cos(\omega t + 45^0 + \pi)mA$	Sol: $I_2 = \sqrt{I_R^2 + I_C^2} \implies 10 = \sqrt{I_R^2 + 8^2}$	
$i_3(t) = -\sqrt{2}\cos(\omega t + 45^0)mA$	V R C V R	
11	$I_R = 6A$	
11. V V V	$I_{1} = I = \sqrt{I_{R}^{2} + (I_{L} - I_{C})^{2}}$	
Sol: $I = \frac{V}{R} + \frac{V}{Z_L} + \frac{V}{Z_C} = 8 - j12 + j18$	$10 = \sqrt{6^2 + (I_{\rm L} - I_{\rm C})^2}$	
I = 8 + 6j	$I_L - I_C = \pm 8A$	
$ \mathbf{I} = \sqrt{100} = 10\mathbf{A}$	$\mathrm{I_L}-8=\pm 8$	
GINE	$I_L - 8 = -8$ (Not acceptable)	
12. Sol: By KCL \Rightarrow	Since $I_L = \frac{V}{Z_L} \neq 0$.	
$-\mathbf{I} + \mathbf{I}_{\mathbf{L}} + \mathbf{I}_{\mathbf{C}} = 0$	$I_{L} - 8 = 8$	
$I = I_L + I_C$	$I_L = 16A$	
$I_{r} = \frac{V}{V} = \frac{V}{3 \angle 0^{\circ}}$	$I_L > I_C$	
$I_{L} = \frac{V}{Z_{L}} = \frac{V}{j\omega L} = \frac{3\angle 0^{\circ}}{j(3) \cdot \left(\frac{1}{2}\right)}$	$I_C = 8A$	
(3)	$I_2 = 10A$ ω	
$I_{L} = \frac{3 \angle 0^{0}}{i} = \frac{3 \angle 0^{0}}{\angle 90^{0}} = 3 \angle -90^{0}$	$I_R = 6A - 90^\circ$	
$I = 3 \angle -90^{\circ} + 4 \angle 90^{\circ} = -j3 + j4 = j1 = 1 \angle 90^{\circ}$	ϕ 90° $120 \angle 0^{\circ}$	
Sinc	$I_{\rm L} = 10 $ $(I_{\rm L} - I_{\rm C}) = 8 $	
13. Ans: (d) Sol: I		
	+	
	$I_L = 16A$	
90 135 $\omega=2 \text{ rad/sec}$	I ₂ leads $120 \angle 0^0$ by $\tan^{-1}\left(\frac{8}{6}\right)$	
\rightarrow V \rightarrow V	12 round 12020 by the (6)	
	I ₁ lags $120 \angle 0^0$ by $\tan^{-1}\left(\frac{8}{6}\right)$	
I2		
$I_1 = I_C = \frac{V}{Z_C} = \frac{V}{X_C} \angle 90^{\circ}$	Power factor $\cos\phi = \frac{I_R}{I} = \frac{I_R}{I}$	
$I_2 = \frac{V}{2 + j\omega L} = \frac{V}{2 + j2} = \frac{V}{2\sqrt{2}} \angle 45^0$	$=\frac{6}{10}=0.6$ (lag)	
India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams		
Enjoy a smooth online learning experience in various languages at your convenience		



Engineering Publications	44 Network Theory		
$=j\omega c+\frac{1}{30}\angle -40^{0}$	21. Sol: $V = 4 \angle 10^{\circ}$ and $I = 2 \angle -20^{\circ}$		
$=j\omega c+\frac{1}{30}(\cos 40^{0}-j\sin 40^{0})$	Note: When directly phasors are given the magnitudes are taken as rms values since they are measured		
Unit power factor \Rightarrow j-term = 0 sin 40 ⁰	using rms meters. $V_{rms} = 4V$ and $I_{rms} = 2A$		
$\omega c = \frac{\sin 40^{\circ}}{30}$			
$C = \frac{\sin 40^0}{2\pi \times 50 \times 30} = 68.1 \mu F$	$Z = \frac{V}{I} = 2 \angle 30^\circ; \phi = 30^\circ \text{ (Inductive)}$		
$2\pi \times 50 \times 30$ C = 68.1 µF	$P = 10\sqrt{3} W, Q = 10VAR$		
19. Ans: (b)	$S = 10(\sqrt{3} + j1) VA$		
Sol: To increase power factor shunt capacitor is to	22. Ans: (a)		
be placed.	Sol: $S = VI^*$		
VAR supplied by capacitor	$= (10 \angle 15^\circ) (2 \angle 45^\circ)$		
$= P (tan\phi_1 - tan\phi_2)$	= 10 + j17.32		
$= 2 \times 10^{3} [\tan(\cos^{-1} 0.65) - \tan(\cos^{-1} 0.95)]$	S = P + jQ		
= 1680 VAR	P = 10 W Q = 17.32 VAR		
VAR supplied = $\frac{V^2}{X_c} = V^2 \omega C = 1680$	23. Ans: (c) Sol: $P_R = (I_{rms})^2 \times R$		
$\therefore C = \frac{1680}{(115)^2 \times 2\pi \times 60} = 337\mu\text{F}$	$I_{\rm rms} = \frac{10}{\sqrt{2}}$		
20. V $160/10^{\circ} - 90^{\circ}$ Since	$P_{\rm R} = \left(\frac{10}{\sqrt{2}}\right)^2 \times 100$		
Sol: $Z = \frac{V}{I} = \frac{160 \angle 10^{\circ} - 90^{\circ}}{5 \angle -20^{\circ} - 90^{\circ}} = 32 \angle 30^{\circ}$ Since	24.		
$\phi = 30^{\circ}$ (Inductive)	$(240)^{2}$		
$V_{\rm rms} = \frac{160}{\sqrt{2}} Vj, I_{\rm rms} = \frac{5}{\sqrt{2}}$	Sol: $P_{avg} = \frac{V_{rms}^2}{R} = \frac{\left(\frac{240}{\sqrt{2}}\right)^2}{60} = 480$ Watts		
Real power (P) = $\frac{160}{\sqrt{2}} \times \frac{5}{\sqrt{2}} \times \cos 30^{\circ}$	$V = 240 \angle 0^0$		
$\sqrt{2} \sqrt{2} = 200 \sqrt{3} \text{ W}$	$I_{R} = \frac{V}{R} = \frac{240}{60} = 4A$		
Reactive power (Q) = $\frac{160}{\sqrt{2}} \times \frac{5}{\sqrt{2}} \times \frac{1}{2}$	$I_L = \frac{V}{Z_L} = \frac{V}{X_L} = \frac{240}{40} = 6A$		
= 200 VAR	$I_{\rm C} = \frac{V}{Z_{\rm C}} = \frac{V}{X_{\rm C}} = \frac{240}{80} = 3A$		
Complex power = $P + jQ = 200(\sqrt{3} + j1)$ VA	$Z_{\rm C}$ $X_{\rm C}$ 80 - 51		
India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams			
Enjoy a smooth online learning experience in various languages at your convenience			





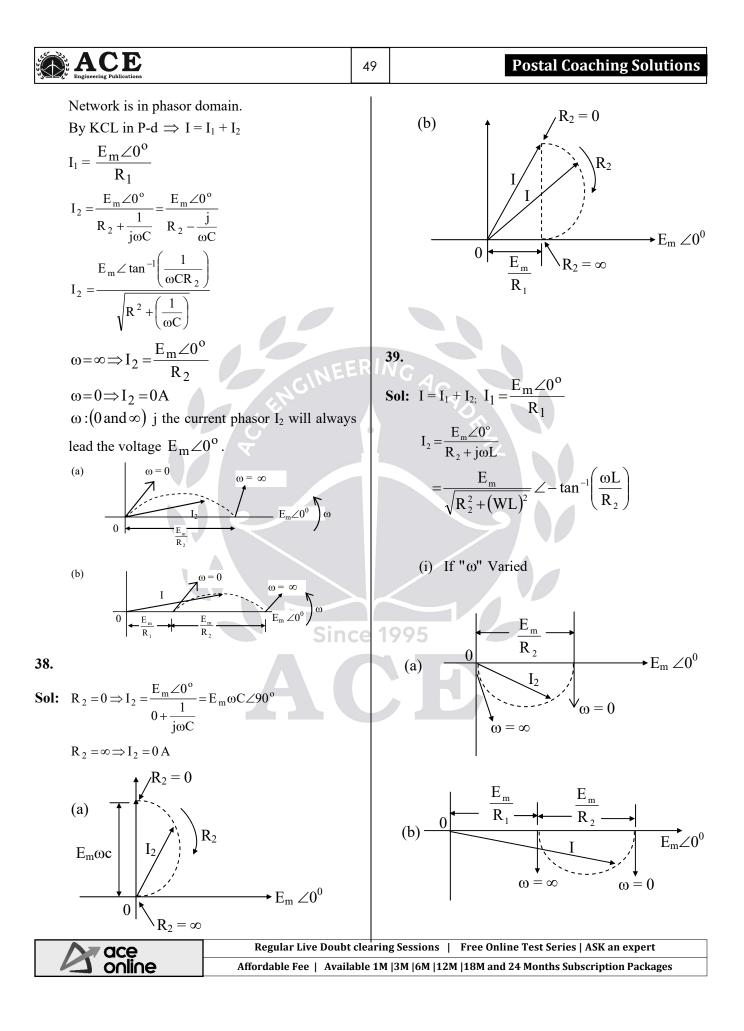
ACE Engineering Publications	47	Postal Coaching Solutions	
$= \frac{4 - \frac{1}{\omega^2}}{j4\omega - \frac{j2}{\omega}}$ For circuit to be resonant i.e., $\omega^2 = \frac{1}{4}$ $\omega = \frac{1}{2} = 0.5$ rad/sec $\therefore \omega_{\text{resonance}} = 0.5$ rad/sec 34.		(ii) $\frac{L}{C} \neq R^2$ circuit will resonate at only one frequency. i.e., at $\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{4}$ rad/sec Then $Y = \frac{2R}{R^2 + \frac{L}{C}}$ mho $Y = \frac{2(2)}{2^2 + \frac{4}{4}} = \frac{4}{5}$ mho	
Sol: (i) $\frac{L}{C} = R^2 \implies \text{circuit}$ will resonate for all the frequencies, out of infinite number of frequencies we are selecting one frequency. i.e., $\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{2}$ rad/sec then $Z = R = 2\Omega$. $I = \frac{V}{Z} = \frac{10 \angle 0^0}{2} = 5 \angle 0^0$ $i(t) = 5\cos\frac{t}{2}A$ $Z_L = j\omega_0 L = j2\Omega$; $Z_C = \frac{1}{j\omega_0 c} = -j2\Omega$.		$2^{2} + \frac{1}{4} = 5$ $Z = \frac{5}{4}\Omega$ $I = \frac{V}{Z} = \frac{10 \angle 0^{0}}{5/4} = 8 \angle 0^{0}$ $i(t) = 8\cos\frac{t}{4}A$ $Z_{L} = j\omega_{0}L = j1\Omega$ $Z_{c} = \frac{1}{j\omega_{0}C} = -j1\Omega$ $I_{L} = \frac{I(2-j1)}{2+i1+2-i1} = \frac{\sqrt{5}}{4}I.\angle \tan^{-1}\left(\frac{1}{2}\right)$	
$I_{L} = \frac{I(2 - j2)}{2 + j2 + 2 - j2} = \frac{I}{\sqrt{2}} \angle -45^{\circ} \text{ Since}$ $i_{L} = \frac{5}{\sqrt{2}} \cos\left(\frac{t}{2} - 45^{\circ}\right) A$ $i_{c} = \frac{I(2 + j2)}{2 + j2 + 2 - j2} = \frac{I}{\sqrt{2}} \angle 45^{\circ}$ $i_{c} = \frac{5}{\sqrt{2}} \cos\left(\frac{t}{2} + 45^{\circ}\right) A$	ce 1	$i_{L} = \frac{8\sqrt{5}}{4} \cos\left(\frac{t}{4} - \tan^{-1}\left(\frac{1}{2}\right)\right)$ $I_{c} = \frac{I(2+j1)}{2+j1+2-j1} = \frac{\sqrt{5}}{4} I \angle \tan^{-1}\left(\frac{1}{2}\right)$ $i_{c} = \frac{8\sqrt{5}}{4} \cos\left(\frac{t}{4} + \tan^{-1}\left(\frac{1}{2}\right)\right)$	
$P_{\text{avg}} = I_{\text{L(rms)}}^{2} \cdot \mathbf{R} + I_{\text{c(rms)}}^{2} \cdot \mathbf{R}$ $= \left(\frac{5/\sqrt{2}}{\sqrt{2}}\right)^{2} \cdot 2 + \left(\frac{5/\sqrt{2}}{\sqrt{2}}\right)^{2} \cdot 2$ $= 25 \text{ watts}$		$P_{\text{avg}} = I_{\text{Lrms}}^2 \cdot \mathbf{R} + I_{\text{Crms}}^2 \mathbf{R}$ $= \left(\frac{2\sqrt{5}}{\sqrt{2}}\right)^2 \cdot 2 + \left(\frac{2\sqrt{5}}{\sqrt{2}}\right)^2 \cdot 2$ $= 40 \text{ watts}$	
Regular Live Doubt	Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert		

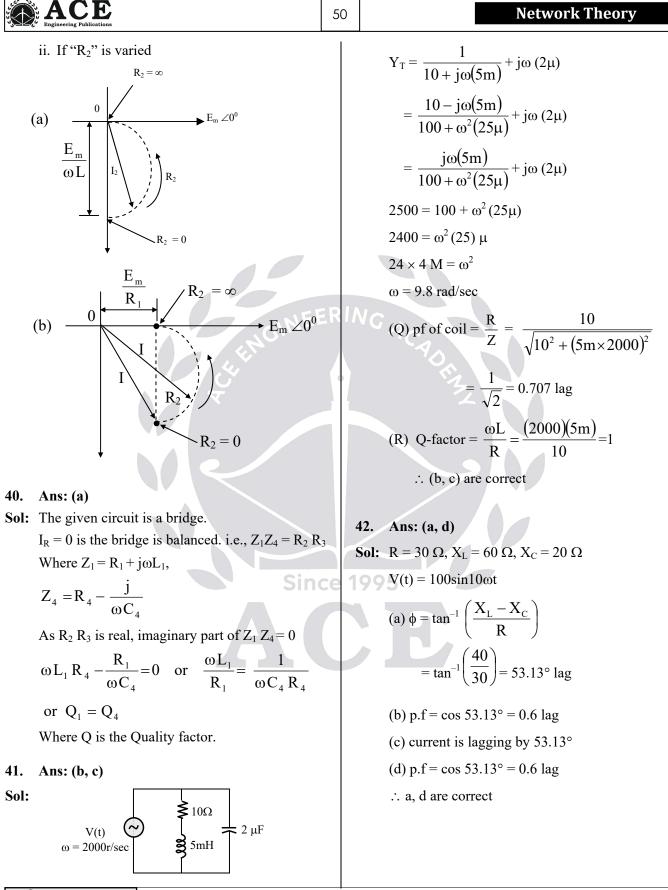
A ace online

ACE **Network Theory** 48 35. 36. Ans: (d) **Sol:** (i) $Z_{ab} = 2 + (Z_{I} \parallel Z_{C} \parallel 2)$ Sol: $Q = \frac{\omega L}{R}$ $= 2 + jX_L || - jX_C || 2$ $=\frac{2+2X_{L}X_{C}(X_{L}X_{C}-j2(X_{L}-X_{C}))}{(X_{L}X_{C})^{2}+4(X_{L}-X_{C})^{2}}$ $Q = \frac{2\omega L}{P} = 2 \times \text{orginal} \rightarrow Q - \text{doubled}$ j-term = 0 $\Rightarrow -2(X_L - X_C) = 0$ $S = V.I = V. \frac{V}{R + i\omega L} \times \frac{R - j\omega L}{R - i\omega L}$ $X_I = X_C$ $\omega_0 L = \frac{1}{\omega_0 C}$ $S = \frac{V^{2}}{R^{2} + (\omega L)^{2}} - \frac{V^{2}.j\omega L}{R^{2} + (\omega L)^{2}}$ $\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{44}} = \frac{1}{4} \text{ rad / sec}$ S = P + iQActive power (P) = $\frac{V^2}{R^2 + (\omega L)^2}$ At resonance entire current flows through 2Ω only. $P = \frac{V^2}{R^2(1+Q^2)}$ (ii) $Z_{ab}|_{\omega=\omega_0} = 2 + 2 = 4\Omega$ $X_{I} = X_{C}$ $P \approx \frac{V^2}{R^2 \Omega^2}$ (iii) $V_i(t) = V_m \sin\left(\frac{t}{\lambda}\right) V$ As Q is doubled, P decreases by four times. $Z = 4\Omega$ $i(t) = \frac{V_i(t)}{Z} = \frac{V_m}{4} \sin\left(\frac{t}{4}\right) = \dot{i}_R$ 37. Sol: $Z_C = \frac{1}{imC}$ Since $V = 2i_R = \frac{V_m}{2} \sin\left(\frac{t}{4}\right) V = V_C = V_L$ $\omega = 0; Z_{C} = \infty \implies C: open circuit \implies i_{2} = 0$ $\omega = \infty; Z_{\rm C} = 0 \Longrightarrow {\rm C}: {\rm Short\,Circuit} \Longrightarrow i_2 = \frac{{\rm E}_{\rm m}}{{\rm R}} \angle 0^{\circ}$ $i_{\rm C} = C \frac{dV_{\rm C}}{dt} = \frac{V_{\rm m}}{2} \cos\left(\frac{t}{4}\right)$ Transform the given network into phasor $i_c = \frac{V_m}{2} \sin\left(\frac{t}{4} + 90^0\right) A$ domain. $i_{L} = \frac{1}{L} \int V_{L} dt = \frac{-V_{m}}{2} \cos\left(\frac{t}{4}\right)$ $E_{m} \angle 0^{0} \xrightarrow{} E_{m} \angle 0^{0} \xrightarrow{} R_{1} \xrightarrow{} E_{m} \angle 0^{0} \xrightarrow{} R_{1} \xrightarrow{} R_{2}$ $i_{\rm L} = \frac{V_{\rm m}}{2} \sin\left(\frac{t}{4} - 90^{\circ}\right) A$

OBS: Here $i_L + i_C = 0$ \Rightarrow LC Combination is like an open circuit.

ace online





Magnetic Circuits

01.

Chapter

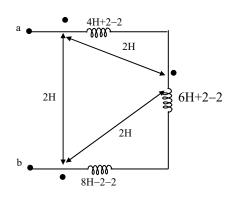
Sol: $X_C = 12$ (Given) $X_{eq} = 12$ (must for series resonance) So the dot in the second coil at point "Q" $L_{eq} = L_1 + L_2 - 2M$ $L_{eq} = L_1 + L_2 - 2K\sqrt{L_1L_2}$ $\omega L_{eq} = \omega L_1 + \omega L_2 - 2K\sqrt{L_1L_2\omega.\omega}$ $12 = 8 + 8 - 2K\sqrt{8.8}$ $\Rightarrow K = 0.25$

02.

Sol: $X_C = 14$ (Given) $X_{Leq} = 14$ (must for series resonance) So the dot in the 2nd coil at "P" $L_{eq} = L_1 + L_2 + 2M$ $L_{eq} = L_1 + L_2 + K\sqrt{L_1L_2}$ $\omega L_{eq} = \omega L_1 + \omega L_2 + 2K\sqrt{\omega L_1L_2\omega}$ $14 = 2 + 8 + 2K\sqrt{2(8)}$ $\Rightarrow K = 0.5$

03.

Sol: $L_{ab} = 4H + 2 - 2 + 6H + 2 - 2 + 8H - 2 - 2$ $L_{ab} = 14H$



Sol: Impedance seen by the source

$$Z_{s} = \frac{Z_{L}}{16} + (4 - j2)$$
$$= \frac{10\angle 30^{\circ}}{16} + (4 - j2)$$
$$= 4.54 - j1.69$$

$$45\Omega$$

$$W$$

$$The second state is a constraint of the second state is constraint of the second state is$$

For maximum power transfer; $R_L = R_s$ $n^2 5 = 45 \implies n = 3$

06. Ans: (b)

Since

Sol:
$$6V \xrightarrow{30mH} 5mH$$
 $30mH$ V_2

Apply KVL at input loop

$$-6-30\times10^3 \frac{di_1}{dt} + 5\times10^3 \frac{di_2}{dt} - 50i_1 = 0...(1)$$

Take Laplace transform

$$\frac{6}{s} + [-30 \times 10^{-3} (s) - 50] I_1(s) + 5 \times 10^{-3} s I_2(s) = 0...(2)$$

Apply KVL at output loop

$$V_2(s) - 30 \times 10^{-3} \frac{di_2}{dt} + 5 \times 10^{-3} \frac{di_1}{dt} = 0$$

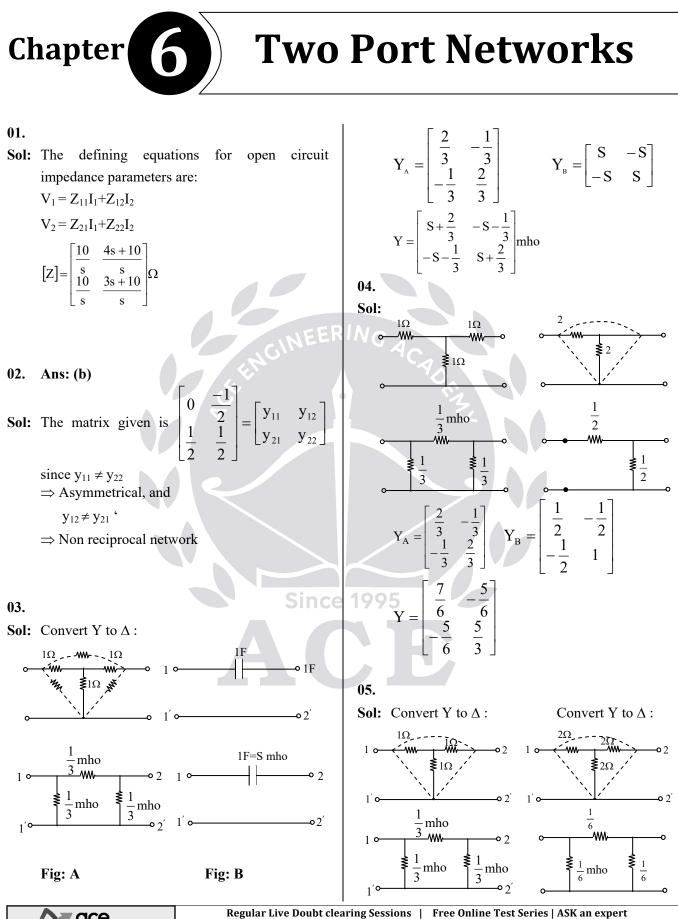
A ace online

 Regular Live Doubt clearing Sessions
 |
 Free Online Test Series | ASK an expert

 Affordable Fee
 |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

۲

ACE **Postal Coaching Solutions** 52 $I_1 = \frac{10\angle 20}{5} = 2\angle 20^{\circ}$ Take Laplace transform $V_2(s) - 30 \times 10^{-3} s I_2(s) + 5 \times 10^{-3} s I_1(s) = 0$ Substitute $I_2(s) = 0$ in above equation $\frac{I_1}{I_2} = n = 2 \implies I_2 = 1 \angle 20^{\circ} A$ $V_2 + 5 \times 10^{-3} \text{ sI}_1(\text{s}) = 0 \dots (3)$ From equation (2) 08. $-\frac{6}{10} + (-30 \times 10^{-3} (s) + 50) I_1(s) = 0$ Sol: By the definition of KVL in phasor domain $V_{s} - V_{0} - V_{2} = 0$ $I_{1}(s) = \frac{-6}{s (30 \times 10^{-3} (s) + 50)} \quad \dots \dots \dots (4)$ $V_0 = V_s - V_2 = V_s \left(1 - \frac{V_2}{V_s} \right)$ Substitute eqn (4) in eqn (3)V=ZI $V_{2}(s) = \frac{-5 \times 10^{-3} (s) (-6)}{s (30 \times 10^{-3} (s) + 50)}$ By KVL Apply Initial value theorem $V_{\rm S} = j\omega L_1 I_1 + j\omega M (0)$ Lt s $\frac{-5 \times 10^{-3} (s)(-6)}{s (30 \times 10^{-3} (s) + 50)}$ $V_2 = i\omega L_2(0) + i\omega MI_1$ $V_0 = V_s \left(1 - \frac{M}{L_s}\right)$ $v_2(t) = \frac{-5 \times 10^{-3} \times (-6)}{30 \times 10^{-3}} = +1$ 07. **Sol:** $R_{in}' = \frac{8}{2^2} = 2\Omega$ $R_{in} = 3 + R_{in}' = 3 + 2 = 5\Omega$



A ace online

Sol:
$$T_1 = T_2 = \begin{bmatrix} 1 & -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} \end{bmatrix}$$
Sol: $T_1 = T_2 = \begin{bmatrix} 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 \end{bmatrix}$ 06.Sol: $T_1 = T_2 = \begin{bmatrix} 1 + \frac{-1}{1} & 1 \\ 1 & -\frac{1}{1} & 1 \end{bmatrix}$ $T_1 = T_2 = \begin{bmatrix} 1 + \frac{-1}{1} & 1 \\ 1 & -\frac{1}{1} & 1 \end{bmatrix}$ $T_2 = \begin{bmatrix} 1 + \frac{1}{2} & 1 \\ 1 & 0 & 1 \end{bmatrix}$ $T_1 = T_2 = \begin{bmatrix} 1 + \frac{-1}{1} & 1 \\ 1 & -\frac{1}{1} & 1 \end{bmatrix}$ $T_2 = \begin{bmatrix} 1 + \frac{1}{2} & 1 \\ 0 & 1 \end{bmatrix}$ $T_1 = T_2 = \begin{bmatrix} 1 + \frac{-1}{2} & 1 \\ 1 & -\frac{1}{1} & 1 \end{bmatrix}$ $T_2 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ $T_1 = T_2 = \begin{bmatrix} 1 + \frac{-1}{2} & 1 \\ 1 & 0 & 1 \end{bmatrix}$ $T_2 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ $T_1 = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$ $T_2 = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$ $T_1 = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$ $T_2 = \begin{bmatrix} 1 & 0 \\ \frac{1}{2} & 2 \end{bmatrix}$ $T_1 = \begin{bmatrix} 1 & 0 \\ \frac{1}{2} & 2 \end{bmatrix}$ $T_2 = \begin{bmatrix} 1 & 0 \\ \frac{1}{2} & 2 \end{bmatrix}$ $T_2 = \begin{bmatrix} 1 & 0 \\ \frac{1}{2} & 2 \end{bmatrix}$ $T_2 = \begin{bmatrix} 1 & 0 \\ \frac{1}{2} & 2 \end{bmatrix}$ $T_2 = \begin{bmatrix} 1 & 0 \\ \frac{1}{2} & 2 \end{bmatrix}$ $T_2 = \begin{bmatrix} 1 & 0 \\ \frac{1}{2} & 2 \end{bmatrix}$ $T_2 = \begin{bmatrix} 1 & 0 \\ \frac{1}{2} & 2 \end{bmatrix}$ $T_2 = \begin{bmatrix} 1 & 0 \\ \frac{1}{2} & 2 \end{bmatrix}$ $T_2 = \begin{bmatrix} 1 & 0 \\ \frac{1}{2} & 2 \end{bmatrix}$ $T_2 = \begin{bmatrix} 1 & 0 \\ \frac{1}{2} & 2 \end{bmatrix}$ $T_2 = \begin{bmatrix} 1 & 0 \\ \frac{1}{2} & 2 \end{bmatrix}$ $T_2 = \begin{bmatrix} 1 & 0 \\ \frac{1}{2} & 2 \end{bmatrix}$ $T_2 = \begin{bmatrix} 1 & 0 \\ \frac{1}{2} & 2 \end{bmatrix}$ $T_2 = \begin{bmatrix} 1 & 0 \\ \frac{1}{2} & 2 \end{bmatrix}$ $T_2 = \begin{bmatrix} 1 & 0 \\ \frac{1}{2} & 3 \end{bmatrix}$ $T_2 = \begin{bmatrix} 1 & 0 \\ \frac{1}{2} & 3 \end{bmatrix}$ $T_2 = \begin{bmatrix} 1 & 0 \\ \frac{1}{2} & 3 \end{bmatrix}$ $T_2 = \begin{bmatrix} 1 & 0 \\ \frac{1}{2} & 3 \end{bmatrix}$ $T_2 = \begin{bmatrix} 1 & 0 \\ \frac{1}{2} & 3 \end{bmatrix}$ $T_2 = \begin{bmatrix} 1 & 0 \\ \frac{1}{2} & 3 \end{bmatrix}$ $T_2 = \begin{bmatrix} 1 & 0 \\ \frac{1}{2} & 3 \end{bmatrix}$ $T_2 = \begin{bmatrix} 1 & 0 \\ \frac{1}{2} & 3 \end{bmatrix}$ $T_2 = \begin{bmatrix} 1 & 0 \\ \frac{1}{2} & 3 \end{bmatrix}$

ACE Engineering Publications

55

09.

Sol: By Nodal

$$-I_{1} + V_{1} - 3V_{2} + V_{1} + 2V_{1} - V_{2} = 0$$
$$-I_{2} + V_{2} + V_{2} - 2V_{1} = 0$$
$$Y = \begin{bmatrix} 4 & -4 \\ -3 & 2 \end{bmatrix} \mathcal{O}$$
$$[Z] = Y^{-1}$$

We can also obtain [g], [h], [T] and $[T]^{-1}$ by rewriting the equations.

10.

Sol: The defining equations for open-circuit impedance parameters are:

 $V_1 = Z_{11}I_1 + Z_{12}I_2$

 $V_2 = Z_{21}I_1 \!+\! Z_{22}I_2$

In this case, the individual Z-parameter matrices get added.

$$(\mathbf{Z}) = (\mathbf{Z}_{a}) + (\mathbf{Z}_{b})$$

$$\begin{bmatrix} Z \end{bmatrix} = \begin{bmatrix} 10 & 2 \\ 2 & 7 \end{bmatrix} \Omega$$

11.

Sol: For this case the individual y-parameter matrices get added to give the y-parameter matrix of the overall network.

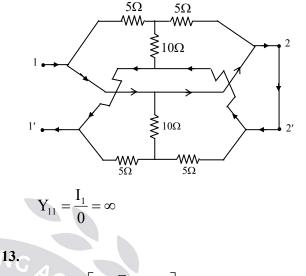
 $Y=Y_a+Y_b$

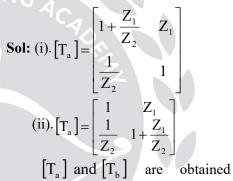
The individual y-parameters also get added

$$Y_{11} = Y_{11a} + Y_{11b} \text{ etc}$$
$$[Y] = \begin{bmatrix} 1.4 & -0.4 \\ -0.4 & 1.4 \end{bmatrix} \text{mhc}$$

12. Ans: (c)

Sol: $Y_{11} = \frac{I_1}{V_1}\Big|_{V_1}$





 $[T_a]$ and $[T_b]$ are obtained by defining equations for transmission parameters.

14.

Sol: In this case, the individual T-matrices get multiplied

$$(T) = (T_1) \times (T_{N1})$$

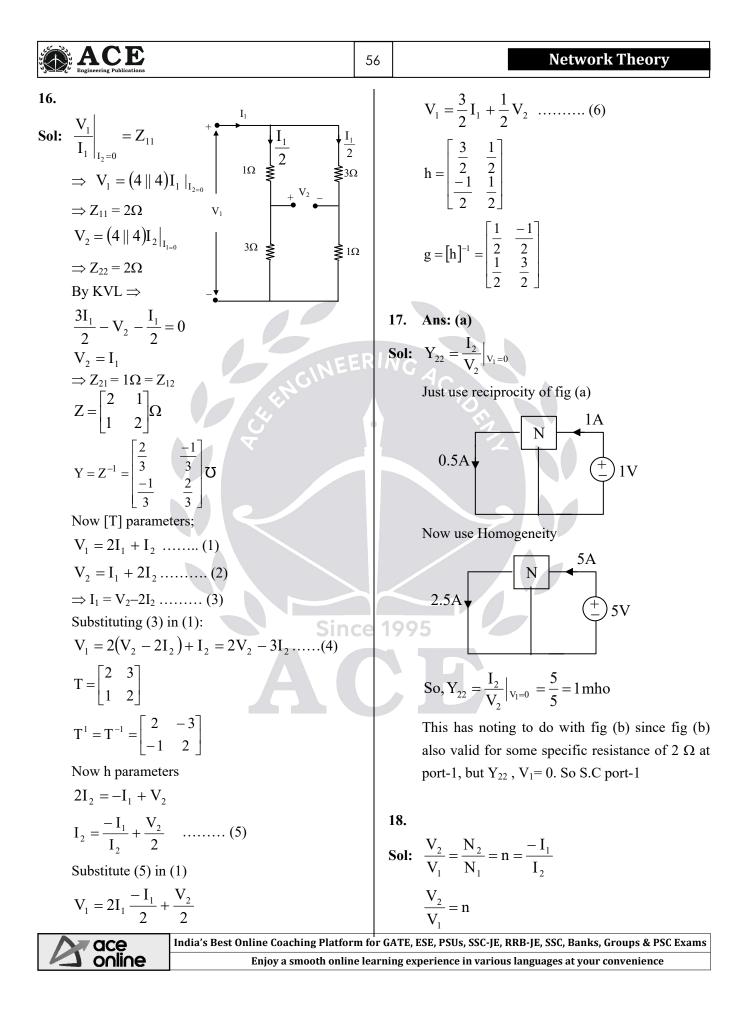
$$(T) = (T_1)(T_{N1}) = \begin{pmatrix} 1+s/4 & s/2 \\ 1/2 & 1 \end{pmatrix} \begin{pmatrix} 8 & 4 \\ 2 & 5 \end{pmatrix}$$

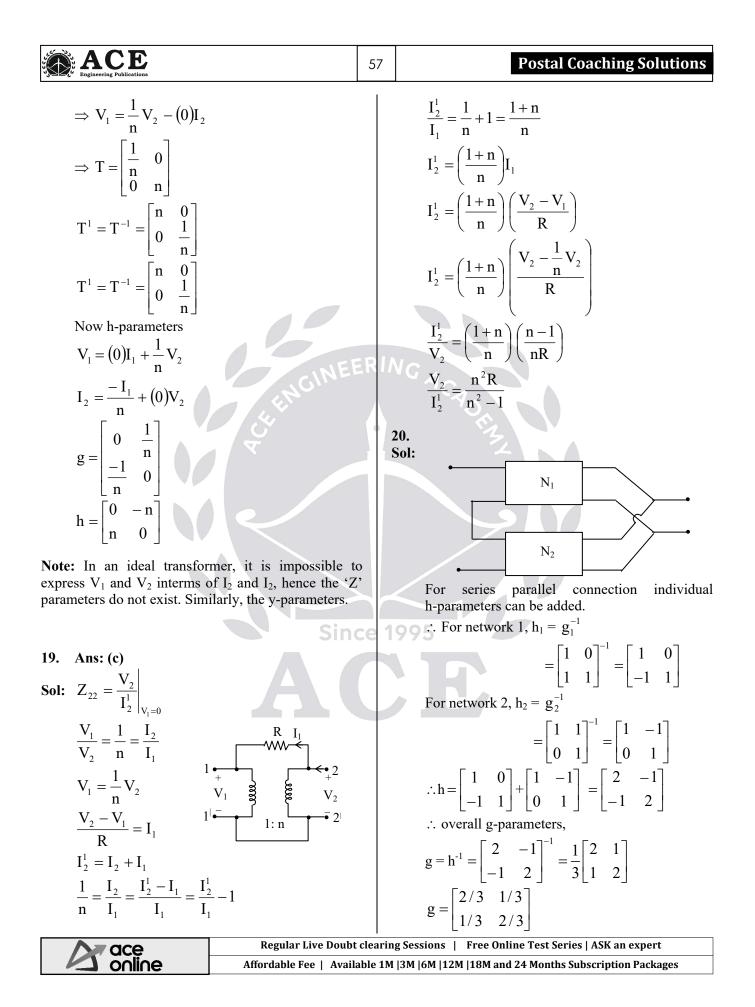
$$= \begin{pmatrix} 3s+8 & 3.5s+4 \\ 6 & 7 \end{pmatrix}$$

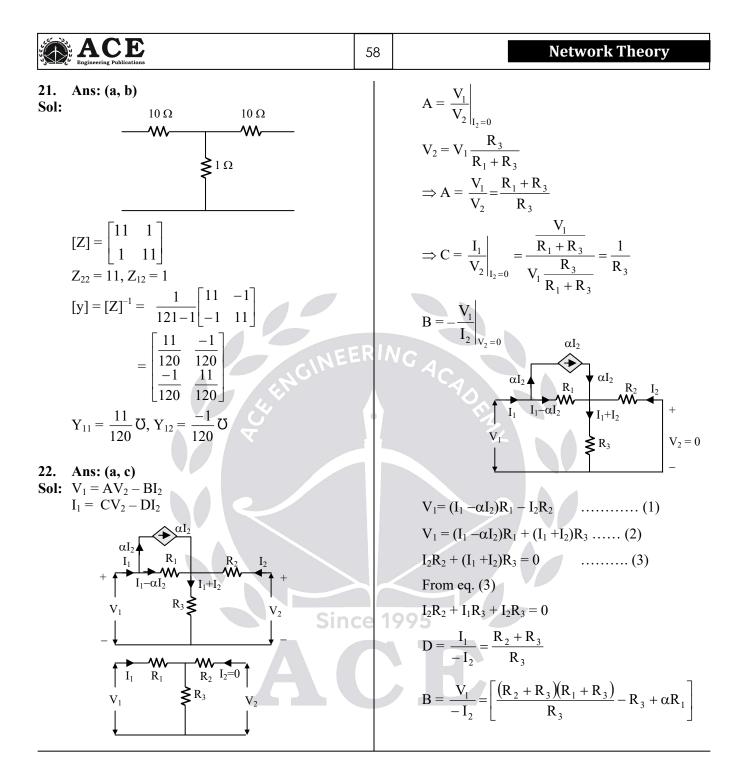
15.

Sol:
$$Z_{in} = R_{in} = \frac{V_1}{I_1} = \frac{AV_2 - BI_2}{CV_2 - DI_2} = \frac{V_2 - 2I_2}{V_2 - 3I_2}$$
,
 $V_2 = 10(-I_2)$
 $Z_{in} = R_{in} = \frac{12}{13}\Omega$

ace online
 Regular Live Doubt clearing Sessions
 Free Online Test Series | ASK an expert



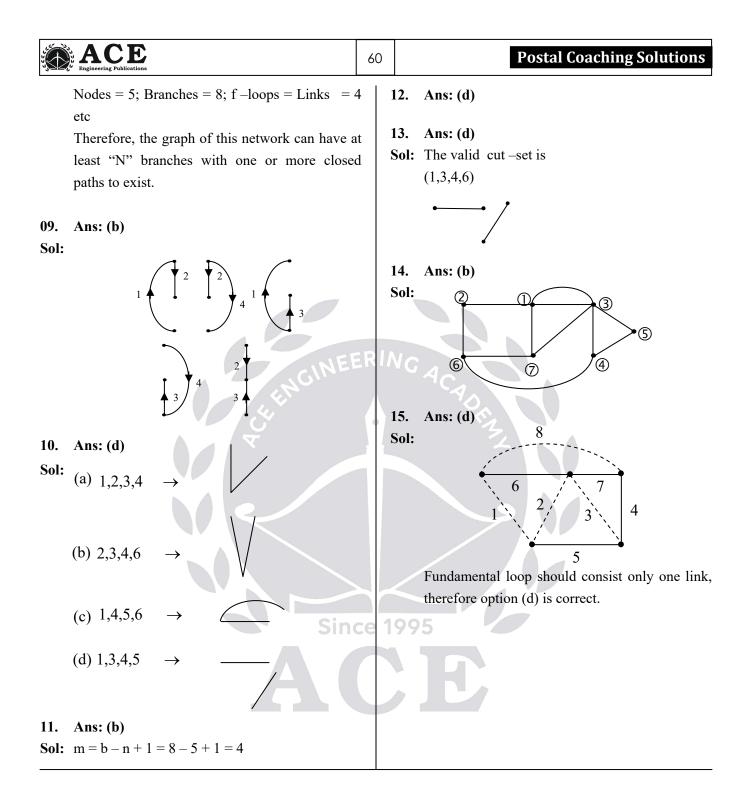




A ace online

Graph Theory

01. Ans: (c) f-loops = (b-n+1) = 55**Sol:** $n > \frac{b}{2} + 1$ f-loop = f-cutset matrices = $n^{(n-2)}$ $= 12^{12-2} = 12^{10}$ Note: Mesh analysis simple when the nodes are more than the meshes. 08. Ans: (a) Sol: Let N=1 02. Ans: (c) Nodes=1, Branches = 0; f-loops = 0**Sol:** Loops = $b - (n-1) \Rightarrow loops = 5$ Let N=2 n = 7 $\therefore b = 11$ 03. Ans: (a) 04. Nodes = 2; Branches = 1; f-loop = 0 **Sol:** Nodal equations required = f-cut sets Let N=3 =(n-1)=(10-1)=9Mesh equations required = f-loops = b - n + 1 = 17 - 10 + 1 = 8So, the number of equations required Nodes = 3; Branches = 3; f-loop = 1= Minimum (Nodal, mesh) = Min(9,8) = 8 \Rightarrow Links = 1 Let N = 405. Ans: (c) Since Sol: Not a tree (Because trees are not in closed path) Nodes=4; Branches = 4; f-loops=Links=1 Still N = 4Ans: (a) **06.** 07. Branches = 6; f-loops = Links = 3 **Sol:** For a complete graph ; Let N = 5 $b = n_{C_2} \Rightarrow \frac{n(n-1)}{2} = 66$ n = 12 f-cut sets = (n-1) = 11Regular Live Doubt clearing Sessions | Free Online Test Series | ASK an expert ace online Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages



Passive Filters

01. Sol:

 $\begin{array}{l} \omega = 0 \Longrightarrow V_0 = V_i \\ \omega = \infty \Longrightarrow V_0 = 0 \end{array} \} \Longrightarrow Low \text{ pass filter}$

02.

Sol: $\omega = 0 \Rightarrow V_0 = \frac{V_i R_2}{R_1 + R_2}$ "V_0" is attenuated $\Rightarrow V_0 = 0$

$$\omega = \infty \Longrightarrow V_0 = V$$

It represents a high pass filter characteristics.

03.

Sol:
$$H(s) = \frac{V_i(s)}{I(s)} = \frac{S^2LC + SRC + 1}{SC}$$

Put $s = j\omega i = -\frac{\omega^2LC + j\omega RC + 1}{j\omega C}$
 $\omega = 0 \Longrightarrow H(s) = 0$
 $\omega = \infty \Longrightarrow H(s) = 0$

It represents band pass filter characteristics

04.

Sol: $\omega = 0 \Longrightarrow V_0 = 0$

 $\omega = \infty \Longrightarrow V_0 = 0$

It represents Band pass filter characteristics

05.

Sol: $\omega = 0 \Longrightarrow V_0 = 0$

 $\omega = \infty \Longrightarrow V_0 = V_i$

It represents High Pass filter characteristics.

06.

Sol: $H(s) = \frac{1}{s^2 + s + 1}$

ace online $\omega = 0 : S = 0 \Rightarrow H(s) = 1$ $\omega = \infty : S = \infty \Rightarrow H(s) = 0$ It represents a Low pass filter characteristics

07.

Sol:
$$H(s) = \frac{s^2}{s^2 + s + 1}$$

 $\omega = 0 : S = 0 \Rightarrow H(s) = 0$
 $\omega = \infty : S = \infty \Rightarrow H(s) = 1$

It represents a High pass filter characteristics

08.

Sol: $\omega = 0; V_0 = V_i$ $\omega = \infty; V_0 = 0$

It represents a low pass filter characteristics.

09.

Sol:
$$\omega = 0 \Rightarrow V_0 = V_{in}$$

 $\omega = \infty \Rightarrow V_0 = V_{in}$
It represents a Band stop filter or notch filter.

110.95

Sol:
$$H(s) = \frac{S}{s^2 + s + 1}$$

 $\omega = 0 : S = 0 \Rightarrow H(s) = 0$
 $\omega = \infty : S = \infty \Rightarrow H(s) = 0$

It represents a Band pass filter characteristics

11.

Sol:
$$H(s) = \frac{S^2 + 1}{s^2 + s + 1}$$

 $\omega = 0 \Rightarrow S = 0 \Rightarrow H(s) = 1$
 $\omega = \infty \Rightarrow S = \infty \Rightarrow H(s) = 1$
It represents a Band stop filter

 Regular Live Doubt clearing Sessions
 Free Online Test Series | ASK an expert

 Affordable Fee |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

