

GATE | PSUs

MECHANICAL ENGINEERING

IM & OR

Text Book: Theory with worked out Examples and Practice Questions

IM & OR

(Solutions for Text Book Practice Questions)

Chapter 1

PERT & CPM

01. Ans: (a)

Sol: CPM deals with deterministic time durations.

02. Ans: (a)

Sol: Critical Path :

- It is a longest path consumes maximum amount of resources
- It is the minimum time required to complete the project

03. Ans: (a)

04. Ans: (a)

Sol: Gantt chart indicates comparison of actual progress with the scheduled progress.

05. Ans: (c)

Sol:

Critical path = 1 + 3 + 7 + 9 + 10 = 30 days

06. Ans: (c)

Critical path (1-3-6-8-9) = 8 + 10 + 13 + 15= 46 days

07. Ans: (b)

Sol: Rules for drawing Network diagram:

- Each activity is represented by one and only one arrow in the network.
- No two activities can be identified by the same end events.
- Precedence relationships among all activities must always be maintained.
 - No dangling is permitted in a network.
 - No Looping (or Cycling) is permitted.

08. Ans: (b)

Sol: Activity: Resource consuming and well-defined work element.

Event: Each event is represented as a node in a network diagram and it does not consume any time or resource.

Dummy Activity: An activity does not consume any kind of resource but merely

A ace online

Common solutions for Q.29 & Q.30

29. Ans: (b)

30. Ans: (b)

Sol:

Paths	Duration	
1-2-4-5 = (AEF)	8+9+6=23	
1-2-3-4-5=(ADF)	8+9+6=23	
1-3-4-5 (BDF)	6+9+6 = 21	
1-4-5 (CF)	16+6=22	

- : Highest time taken paths are AEF and ADF
 - ... Critical path's are AEF and ADF

Critical paths are '2'.

- Possible cases to crash
- A by 1 day that cost = 80

F by 1 day that cost = 130

E and D by 1 day that cost = 20 + 40 = 60

31. Ans: (c)

32. Ans: (c)

Sol:

Path	Duration
AB	7+5 = 12
CD	6+6 = 12
EF	8+4 = 12

Three critical paths, number of activities to be crashed are 3.

 \Rightarrow TF = 14 - 7 = 7

 Regular Live Doubt clearing Sessions
 Free Online Test Series
 ASK an expert

Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

Sol:

Activity	Time estimated	Standard deviation
neuvity	$T_e = \frac{T_o + 4T_m + T_p}{6}$	$\sigma = \frac{T_p - T_o}{6}$
Α	$\frac{5 + 4 \times 10 + 15}{6} = 10$	$\frac{15-5}{6} = \frac{5}{3}$
В	$\frac{2+4\times5+8}{6} = 5$	$\frac{8-2}{6} = 1 \text{EE}$
С	$\frac{10 + 4 \times 12 + 14}{6} = 12$	$\frac{14-10}{6} = \frac{2}{3}$
D	$\frac{6+4\times8+16}{6} = 9$	$\frac{16-6}{6} = \frac{5}{3}$

Critical path :

$$1-2-3-4 = 10 + 12 + 9 = 31 \text{ days}$$

$$\sigma_{cp} = \sqrt{V_{1-2} + V_{2-3} + V_{3-4}}$$
$$= \sqrt{\left(\frac{5}{3}\right)^2 + \left(\frac{2}{3}\right)^2 + \left(\frac{5}{3}\right)^2} = \sqrt{6}$$

IM & OR

36 Ans: (a, d)

Sol: In a PERT network of project scheduling the activities in the network follows beta distribution and expected duration of project follows normal distribution.

37 Ans: (c, d)

- **Sol:** In a project-crashing, crash only critical activities (activity on critical path, those activities with zero slack).
 - Crash activities with the lowest crashing cost per unit of time first until the desired project duration is achieved.

38 Ans: (b, d)

1995

Sol: Linked bar chart can show the interdependencies among the project activities In a PERT network, each activity will have fixed duration, however critical path will have standard deviation.

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

5

6

Since

GATE – Text Book Solutions

Network Models

01. Ans: (c)

Sol:

- $d_{ij} \rightarrow$ "Distance from any node i to next node j"
- $s_j \rightarrow$ "Denotes shortest path from node P to any node j".

 $d_{ij} = d_{QG}$ (Adjacent nodes)

 $d_{ij} = d_{RG}$ (Adjacent from node R to G)

 $S_j = S_Q$ (Shortest path from node P to node Q)

 $S_j = S_R$ (Shortest path from node P to node R)

We can go from P to G via Q or via R. P to G via Q

 $S_G = S_Q + d_{QG}$

P to G via R.

 $S_G = S_R + d_{RG}$

Optimum answer is minimum above two answers.

 $S_G = MIN \; [S_Q + d_{QG} \; ; \; S_R + d_{RG}]$

Sol:

	Path	Cost
	1-3-4-6	9+4+2 = 15
	1-3-2-4-6	9+2+3+2 = 16
	1-3-4-5-6	9+4+7+2=22
	1-3-2-5-6	9+2+2+2 =15
1	1-3-2-4-5-6	9+2+3+7+2=23
10	1-2-4-6	3+3+2=8
	1-2-5-6	3+2+2 = 7
	1-2-4-5-6	3+3+7+2 = 15
	1-3-5-6	9+8+2 = 19

From the given statement, we got shortest path (least total cost) is 1-2-5-6 and a path which does not have 1-2, 2-5, 5-6 activities should be considered.

The next path which does not have the above activities is 1-3-4-6 = 15

and 1-3-2-4-6 = 16.

 \therefore In this second least total cost is 15.

A ace

03. Ans: 7

Sol:

Path	Arc length
1-2-4-6	8
1-2-5-4-6	7
1-2-5-6	8
1-2-3-5-4-6	9
1-3-5-4-6	10
1-3-5-6	11

Shortest path length from node 1 to node 6 is 7.

$S_{1} = 0$ $S_{1} = 0$ $S_{1} = 0$ $S_{1} = 0$ $S_{2} = 2$ $S_{4} = 5$ $S_{5} = 4$ $S_{5} = 4$ $S_{5} = 4$

Chapter **3**

7

Linear Programming

01. Ans: (d)

- **Sol:** A restriction on the resources available to a firm (stated in the form of an inequality or an equation) is called constraint.
- 02. Ans: (d)
- 03. Ans: (c)
- 04. Ans: (d)
- **Sol:** The theory of LP states that the optimal solution must lie at one of the corner points.

05. Ans: (b)

Since

Sol: The feasible region of a linear programming problem is convex. The value of the decision variables, which maximize or minimize the objective function, is located on the extreme point of the convex set formed by the feasible solutions.

 Regular Live Doubt clearing Sessions
 Free Online Test Series | ASK an expert

 Affordable Fee
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

ace online

Enjoy a smooth online learning experience in various languages at your convenience

ACE Engineering Publications	10 GATE – Text Book Solutions						
11. Ans: (a) Sol: $Z_{max} = 2x_1 + x_2$	12. Ans: (d)						
Subjected $x_1 + x_2 \le 6$ $x_1 \le 3$ $2x_1 + x_2 \ge 4$	13. Ans: (a) Sol: $Z_{max} = 4 x_1 + 6 x_2 + x_3$ <u>s.t</u>						
$x_1, x_2 \ge 0$	$2 x_{1} - x_{2} + 3x_{3} \le 5$ $x_{1}, x_{2}, x_{3} \ge 0$ $2 x_{1} - x_{2} + 3x_{3} + s_{1} = 5$ $Z_{max} = 4x_{1} + 6x_{2} + x_{3} + 0 s_{1}$ $\boxed{\begin{array}{c}c_{j} \rightarrow & 4 & 6 & 1 & 0 & \min \\ s v \downarrow & x_{1} & x_{2} & x_{3} & s_{1} & B_{0} & Ratio \\ \hline 0 s_{1} & 2 & -1 & 3 & 1 & 5 & -5 \\ \hline z_{j} & 0 & 0 & 0 & 0 & 0 \\ c_{j} - z_{j} & 4 & 6 & 1 & 0 & \end{array}}$						
$\begin{array}{c} 1 \\ \hline Z=3, \\ 0 \\ \hline 1 \\ 2 \\ \hline 2 \\ 3 \\ \hline 4 \\ 5 \\ 6 \\ \hline 7 \\ 8 \\ 9 \\ 10 \\ \hline x_1 \\ 8 \\ 9 \\ 10 \\ \hline x_1 \\ 8 \\ 9 \\ 10 \\ \hline x_1 \\ 10 \\ \hline x$	EV Entering vector exists but leaving vector doesn't exist as minimum ratio column is having negative values. It is a case of unbounded solution space and unbounded optimal solution to problem.						
$Z_{max} = \begin{bmatrix} A(2,0) & 2 \times 2 + 1 \times 0 = 4 \\ B(0,4) & 0 \times 2 + 1 \times 4 = 4 \\ C(0,6) & 0 \times 2 + 1 \times 6 = 6 \\ E(3,0) & 3 \times 2 + 0 \times 1 = 6 \\ D(3,3) & 3 \times 2 + 1 \times 3 = 9 \end{bmatrix}$	 Ans: (u) Sol: Number of zeros in Z row = 4 Number of basic variable = 3 As the number of zeros in Z row is greater than number of basic variable so it has multiple optimal solutions. 						

 $Z_{max} = 9$ at D (3,3)

ace online

Regular Live Doubt clearing Sessions | Free Online Test Series | ASK an expert Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

15. Ans: (b)

Sol: Solution is optimal; but Number of zeros are greater than the number of basic Variables in $C_j - Z_j$ (net evaluation row) hence multiple optimal solutions.

16. Ans: (b)

Sol: If all the elements in the objective row are non-negative incase of maximization, then the solution is said to be optimal. Here, the solution is optimal, $Z_{max} = 1350$.

17. Ans: (a)

Sol:

- A tie for leaving variable in simplex procedure implies degeneracy.
- If in a basic feasible solution, one of the basic variables takes on a zero value then it is case of degenerate solution

&

Common Data Solutions

18. Ans: (d)

19. Ans: (a)

Sol: As the No. of zeros greater than No. of basic variables hence it is a case of multiple solutions or alternate optimal solution exists.

	Basic	x ₁	x ₂	S_1	S_2	S ₃	RHS
1000	z	0	0	0	2	0	48
	\mathbf{s}_1	0	5/3	1	-2/3	0	14
0	S 3	0	-1/3	0	1/3	1	5
	x ₁	1	2/3	0	1/3	0	8

From the table gives the optimum $x_2 = 0$,

 $x_1 = 8$, $Z_{max} = 48$

Look at the coefficient of the non basic variable in the z-equation of iterations. The coefficient of non basic x_2 is zero, indicating that x_2 can enter the basic solution without changing the value of Z, but causing a change in the values of the variables.

Alternate optimal solution :

Here x_2 is the entering variable.

Row	Basic	X ₁	x ₂	S_1	S ₂	S ₃	RHS	Ratio	
R ₁	Z	0	0	0	2	0	48		
R ₂	s ₁	0	5/3	1	-2/3	0	14	14/(5/3)=8.4	→Lea
R ₃	s ₃	0	-1/3	0	1/3	1	5	_	
R ₄	X ₁	1	2/3	0	1/3	0	8	8/(2/3)=12	

Since

→Leaving variable

Entering variable

Row	Basic	X ₁	X ₂	S ₁	S ₂	S ₃	RHS
R ₁	Z	0	0	0	2	0	48
$\mathbf{R}_2' = \frac{\mathbf{R}_2}{\left(5/3\right)}$	x ₂	0	1	3/5	-2/5	0	42/5
$R'_{3} = R'_{3} + \frac{R'_{2}}{3}$	S ₃	0	0	1/5	1/5	1	39/5
$R'_{4} = R_{4} - \frac{2}{3}R'_{2}$	x ₁	1	0	-3/5	3/5	0	12/5

Sinc

In the above table
$$x_1 = \frac{12}{5}$$
, $x_2 = \frac{42}{5}$, $s_3 = \frac{39}{5}$

20. Ans: (c)

- 21. Ans: (a)
- 22. Ans: (c)
- Sol: $Z_{min} = 10x_1 + x_2 + 5x_3 + 0S_1$ Dual, $W_{min} = 50y_1$ subjected to $5y_1 \le 10, y_1 \le 2, W_{max} = 100$

 $3y_1 \le 5$, $y_1 \le 5/3$, $W_{max} = 250/3$ y_1 , $y_2 \ge 0$ $\Rightarrow Z_{max} = 250/3$

Common Data for Questions

ace online

23. Ans: (c)

- **Sol:** Given, $Z_{max} = 5x_1 + 10x_2 + 8x_3$ Subjected to
 - $3x_1 + 5x_2 + 2x_3 \le 60 \rightarrow Material$
 - $4x_1 + 4x_2 + 4x_3 \leq 72 \rightarrow Machine \ hours$

 $2x_{1} + 4x_{2} + 5x_{3} \le 100 \rightarrow \text{Labour hours}$ $x_{1}, x_{2}, x_{3} \ge 0$ $3x_{1} + 5x_{2} + 2x_{3} + s_{1} = 60$ $4x_{1} + 4x_{2} + 4x_{3} + s_{2} = 73$ $2x_{1} + 4x_{2} + 5x_{3} + s_{3} = 100$ $Z_{\text{max}} = 5x_{1} + 10x_{2} + 8x_{3} + 0s_{1} + 0s_{2} + 0s_{3}$ $5 \quad \frac{1}{0} \quad 8 \quad 0 \quad 0 \quad 0$

e	C B	C _j	\rightarrow S V	5 x ₁	0 x ₂	8 X 3	0 s ₁	0 s ₂	0 s 3	\mathbf{B}_0	Min Ratio
	1	0	x ₂	$\frac{1}{3}$	1	0	$\frac{1}{3}$	$\frac{-1}{6}$	0	8	
	8		X 3	$\frac{2}{3}$	0	1	$\frac{-1}{3}$	$\frac{5}{12}$	0	10	
	C)	S ₃	$\frac{-8}{3}$	0	0	$\frac{1}{3}$	$\frac{-17}{12}$	1	18	
		Z	z j	$\frac{26}{3}$	1 0	8	$\frac{2}{3}$	$\frac{5}{3}$	0	160	
	C _j –Z _j		$\frac{-11}{3}$	0	0	$\frac{-2}{3}$	$\frac{-5}{3}$	0			

 Regular Live Doubt clearing Sessions
 Free Online Test Series | ASK an expert

 Affordable Fee
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

12

$\frac{C_j - Z_j}{x_2}$	-11	0	0	-2	10	0	LL=2 UL=1 0	10-2= 8 10+10 =20
$\frac{C_j - Z_j}{x_3}$	$\frac{-11}{2}$	0	0	2	-4	0	LL=4 UL=2	8-4=4 8+2=1 0

In $C_j - Z_j$ row all elements are negatives or zeros, hence the solution is optimal and unique.

Basic variables are:

 $x_2 = 8$, $x_3 = 10$, $s_3 = 18$ i.e., production of B = 8 units, C = 10 units 18 labours hours remained unutilized Non Basic variable

 $s_1 = 0$.

 $x_1 = 0$,

 $s_2 = 0$

Resource materials and resource machine hours are fully utilized. In $(C_j - Z_j)$ row at optimality, the values under s_1 , s_2 and s_3 columns represents the shadow prices.

So, If 1 kg material increases, contribution

increases by $\frac{2}{3}$.

If 1 kg material decreases, contribution decreases by $\frac{2}{3}$. If 1 kg material increases, then production B

increases by $\frac{1}{3}$ and production C decreases

by
$$\frac{1}{3}$$

If m/c hr increases by 1 units, contribution increases by 5/3.

If m/c hr decreases by 1 units, contribution decreases by $\frac{5}{3}$

If m/c hr increases by 1 units, production B decreases by $\frac{1}{6}$ and production increases by

$$\frac{3}{12}$$

by $\frac{5}{12}$

If m/c hr decreases by 1 units, production B increases by $\frac{1}{6}$ and production C decreases

If 1 unit of A produces, contribution decreases by $\frac{11}{3}$, production B decreases by $\frac{1}{3}$, production C decreases by $\frac{2}{3}$.

24. Ans: (a) Sol: If 3 kg material increases, contribution 199 increases by $3 \times \frac{2}{3} = \text{Rs. } 2$

25. Ans: (a)

Since

Sol: Present profit = $160 \Rightarrow 160 - \frac{5}{3} \times 12 = 140/-$

26. Ans: (b)Sol: New production of B

$$= 8 - \left(12 \times \frac{-1}{6}\right) = 8 + \left(12 \times \frac{1}{6}\right)$$
$$= 8 + 2 = 10 \text{ units}$$

				1				
Sol:	If materials are increased by 3kgs then the			X ₁	X2	X 3	\mathbf{s}_1	
	1 = 10 + (2 + 1)		z-row	0	0	2	1	
	new production of C is = $10 + \left(3 \times \frac{3}{3}\right)$		x ₁	1	0	1	1	
	$= 10 - \left(3 \times \frac{1}{3}\right) = 10 - 1 = 9$		x ₂	0	0	0	-1	
							\mathbf{s}_1	
28.	Ans: (a)				Z-	row	1	
Sol:	If 1 unit of A produces, contribution					X ₁	1	
		10 m m				X ₂	-1	1
	decreases by $\frac{1}{3}$	IA					1	-
	NCINE		If RI	HS va	lue c	of 1 st	constr	aiı
29.	Ans: (a)		1 uni	t ther	1			
Sol:	If 6 units of A are produced then the new		Fron	n the	table	;		
	profit is,	z increases by 1 unit, x_1 increases x_2 decreases by 1 unit,						
	(11)							
	$160 - \left(6 \times \frac{11}{3}\right) = 138$	If RHS value of 2nd constrain					rai	
			1 uni	t ther	1			
30.	Ans: (a)		_				_	
6.1						s ₂		
Sol:	Production of B, $3 \times \frac{1}{3} = 1$			z-row		2		
	Since	19	995	x ₁		-1		
	Production of C, $3 \times \frac{1}{3} = 2$			x ₂		2		
Com	1mon data 35 & 36							
31.	Ans: (b) , 32. Ans: (b)		Fron	n the	table			
Sol:	Basic variables		z inci	rease	s by 2	2 unit	\mathbf{x} , \mathbf{x}_1 d	ec
	$x_1 = 20$, $x_2 = 10$		x ₂ de	creas	es by	2 un	its,	
	Non-basic variables		If RF	IS va	lue o	f 1st	constr	air
	$s_1 = 0 \Rightarrow$ first constraint is fully consumed.		10 ur	nits th	ien z	decre	eases b	y
	$s_2 = 0 \implies$ second constraint is fully		The r	new c	bject	ive v	alue,	
	consumed.			7	7 =	= 110	_ 10 =	= 1

ace online

Regular Live Doubt clearing Sessions | Free Online Test Series | ASK an expert Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

27.	Ans:	(c)

ACE

 $x_3 = 0$ (unwanted variable)

	X 1	x ₂	X 3	\mathbf{s}_1	s ₂	RHS
z-row	0	0	2	1	2	110
x ₁	1	0	1	1	-1	20
x ₂	0	0	0	-1	2	10

nt increases by

eases by 1 unit,

int increases by

creases by 1 unit

nt decreases by 10 units,

$$Z_{max} = 110 - 10 = 100$$

14

I

33. Ans: (c)

Sol:

	X_1	X ₂	S_1	S_2	RHS	Ratio
z-row	-3	-5	0	0	0	0
S ₁	2	1	1	0	2	2/1=2
S ₂	3	2	0	1	4	4/2=2

Entering variable X₂

Minimum ratio = $min(2/1, 4/2) = 2^*$

*Tie w.r.t leaving variables S_1 and S_2

Thus it has degenerate solution.

34. Ans: (d)

Sol:

	X ₁	X ₂	S ₁	S_2	RHS
z-row	-2	-1	0	0	0
S ₁	-2	1	1	0	4
S ₂	0	1	0	1	3

Entering variable X₁

Ratio = $Min\{4/-2, 3/0\}$

As there is no least positive ratio, there is no leaving variable which results the problem has unbounded solution.

35. Ans: 28000

Sol:

	Prod	Maximum	
Demand	Chairs (x ₁)	Tables (x ₂)	available
Wood	1	2	200
Chairs	1	—	150
Tables	_	1	80
Profit/loss	100	300	

 $Z_{max} = 100x_1 + 300x_2$ Subject to $x_1 + 2x_2 \le 200$

$$Z_{\rm max} = 100 \times 40 + 300 \times 80 = 28000$$

Sol:

		Proc	lucts	Mayimum	
	Demand	A (x ₁)	B (x ₂)	available	
	Raw material	1	1	850	
	Special type of buckle	1		500	
	Ordinary buckle	_	1	700	
9	95 Time	1	1/2	500	
	Profits/unit	10/-	5/-		

Constraints :

$$\begin{split} x_1 &= \text{No. of belts of type 'A'} \\ x_2 &= \text{No. of belts of type 'B'} \\ Z_{max} &= 10x_1 + 5x_2 \\ \text{s.t} \quad x_1 + x_2 \leq 850 \\ x_1 &\leq 500 \ , \qquad x_2 \leq 700 \\ x_1 + \frac{1}{2}x_2 &\leq 500 \ , \qquad x_1 \ , x_2 \geq 0 \\ 2x_1 + x_2 \leq 1000 \ , \end{split}$$

A ace online

37. Ans: (a, d)

Sol: In a linear programming problem (LPP)

- All decision variables are inter-related and non-negative
- Objective function must be straight line
- There exists proportional relationship between objective and constraints.
- Activities and constraints are finite in number.
- All decision variables should be positive.

38. Ans: (c, d)

Sol: In a standard form of LPP

- All decision variables and RHS values must be non-negative.
- In-equalities are to be eliminated by using slack or surplus variables.

Inventory Control Sol: EOQ = $\sqrt{\frac{2AS}{C^{T}}}$ $EOQ_1 = \sqrt{2} \times \sqrt{\frac{2AS}{CI}}$ $EOQ_1 = \sqrt{2} \times EOQ$ Sol: EOQ = $\sqrt{\frac{2DC_o}{C_o}}$ 03. Ans: (b) Sol: A = 900 unit S = 100 per order CI = 2 per unit per year $EOQ = ELS = \sqrt{\frac{2AS}{CI}}$ $\frac{2 \times 900 \times 100}{2} = 300$

GATE - Text Book Solutions

04. Ans: (c)

Sol: Inventory carrying cost:

It involves the cost of investment in inventories, of storage, of obsolescence, of insurance, of maintaining inventory records, etc.

A ace online

 Regular Live Doubt clearing Sessions
 |
 Free Online Test Series | ASK an expert

 Affordable Fee
 |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

	ACE Engineering Publications		17		IM & OR
05.	Ans: (b)			10.	Ans: (d)
Sol:	At EOQ, Carry	ving cost = Ordering cost	5	Sol	: (No of orders $=\frac{A}{O} = \frac{12 \text{ months}}{45 \text{ days}} = \frac{12}{1.5} = 8$)
06.	Ans: (d)				
Sol:	Inventory carry investment in obsolescence, inventory recor	ying cost involves the cost o inventories, of storage, o of insurance, of maintaining rds, etc.	f f g	Q	=100
07.	Ans: (a)				$TVC = \frac{A}{2}S + \frac{Q}{2}CI.$
Sol:	A = 800, $S =$	50/- ,		Ma	Q 2
	$C_s = 2$ per unit (TIC) _{EOQ} = $\sqrt{2}$.	= CI ASCI			$= 8 \times 100 + \frac{100}{2} \times 120 = \text{Rs. } 6800$
	$=\sqrt{2}$	$\overline{\times 800 \times 50 \times 2} = 400$		11.	Ans: (b)
00	A			Sola	: Average inventory
Uð. Sali	Ans: (c) $TC(O_{1}) = TC(O_{2})$				O 6000 2000
501:	$IC(Q_1) = IC(C_1)$	(2)			$=\frac{1}{2}=\frac{1}{2}=3000$ per year
	$\frac{kd}{Q_1} + \frac{hQ_1}{2} = \frac{k}{Q}$	$\frac{d}{d_2} + \frac{nQ_2}{2}$			= 250 per month
	$kd\left(\frac{Q_2-Q_1}{Q_1Q_2}\right)=$	$=\frac{h}{2}(Q_2-Q_1)$		12. Sola	Ans: (b) P = 1000 $r = 500$ $Q = 1000$
	$\frac{2kd}{h} = Q_1 Q_2$	Sin	ce 1	99	$I_{max} = \frac{1000}{1000} (1000 - 500) = 500$
	$(O^*)^2 = O_1 \times O_2$				1000
	$(\mathbf{x}) = \sqrt{\mathbf{x}}$	$\frac{1}{200\times600} = 424.264$		13.	Ans: correct key (c)
	$\mathbf{Q}^{*} = \sqrt{\mathbf{Q}_{1} \times \mathbf{Q}_{2}}$	$_{2} = \sqrt{300 \times 000} = 424.204$	5	Sol	: $D = 1000$ units,
09.	Ans: (c)				$C_0 = Rs.100$ /order,
Sale	EOQ_1 $(2A)$	AS) (CI)			$C_c = 100/unit/year$, $C_s = 400/unit/year$
501:	$\overline{\text{EOQ}_2} = \sqrt{\overline{C}}$	$\frac{1}{2} \int_{A}^{X} \sqrt{\left(\frac{1}{2} A S\right)_{B}}$			$Q_{max} = EOQ_s \times \frac{C_s}{C_c + C_s}$
	$= \sqrt{\left(\frac{2\times 1}{2}\right)^2}$	$\frac{1}{4} \right) \times \sqrt{\left(\frac{1}{2 \times 400 \times 100}\right)}$			$= \sqrt{\frac{2DC_0}{C_o}} \sqrt{\frac{C_c + C_s}{C_o}} \times \left(\frac{C_s}{C_o + C_o}\right)$
	$(EOQ)_A : (EOQ)_A$	$Q_{B} = 1:4$			
India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Ba				, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams	
			e real III	ing e	Aperience in various languages at your convenience

= 1	$\frac{2\times1000\times100}{100}$	$\frac{100+400}{400} >$	$\left(\frac{400}{100+400}\right)$
= 4	0 units		

14. Ans: (d)

Sol: Re-order level = $1.25[\Sigma x p(x)]$

$$= 1.25 [80 \times 0.2 + 100 \times 0.25 + 120 \times 0.3 + 140 \times 0.25]$$

= 140 units

Demand	80	100	120	140
Probability	0.20	0.25	0.30	0.25
Cumulative probability	0.2	0.45	0.75	10
(Service level)	0.2	0.45	0.75	1.0

Service Level = 100 %

- 15. Ans: (b)
- 16. Ans: (b)

17. Ans: (d)

Sol: C – Class means these class items will have very less consumption values. – least consumption values Since

$$B \rightarrow 300 \times 0.15 = 45$$

$$F \rightarrow 300 \times 0.1 = 30$$

$$C \rightarrow 2 \times 200 = 400$$

$$E \rightarrow 5 \times 0.3 = 1.5$$

$$J \rightarrow 5 \times 0.2 = 1.0$$

$$G \rightarrow 10 \times 0.05 = 0.5$$

$$H \rightarrow 7 \times 0.1 = 0.7$$

H items are classified as

 \therefore G, H items are classified as C class items because they are having least consumption values.

18. Ans: (b)

Sol: In ABC analysis :

Category "A" = Low safety stock Category "B" = Medium safety stock Category "C" = High safety stock

19. Ans: (a, b)

Sol: EOQ is the quantity of materials ordered at each order point that minimizes the total annual costs for a material in a fixed order quantity inventory system and it will minimize the total annual cost of ordering and carrying the inventory.

At EOQ,

Annual ordering cost = Annual inventory carrying cost

20. Ans: (a, b, d)

Sol: ABC analysis is a technique of inventory management.

A category includes those inventory which are very important to the organization and consist of 70-80% of inventory value but only 10-20 % of the quantity.

A category item requires very strict control, fixed order quantity and no safety stock.

A ace online

19

Chapter 5

Forecasting

- 01. Ans: (d)
- 02. Ans: (d)

Sol:

- A simple moving average is a method of computing the average of a specified number of the most recent data values in a series.
- This method assigns equal weight to all observations in the average.
- Greater smoothing effect could be obtained by including more observations in the moving average.

03. Ans: (a)

Sol: 3 period moving $avg = \frac{100 + 99 + 101}{3}$

= 100

4 period moving average

$$=\frac{102+100+99+101}{4}=100.5$$

5 period moving average

$$=\frac{99+102+100+99+101}{5}=100.2$$

Arithmetic Mean

$$=\frac{101+99+102+100+99+101}{6}$$
$$=100.33$$

Sol: $D_t = 100$ units , $F_t = 105$ units $\alpha = 0.2$ $F_{t+1} = 105 + 0.2 (100 - 105) = 104$

05. Ans: (c) Sol: $D_t = 105$, $F_t = 97$, $\alpha = 0.4$ $F_{t+1} = 97 + 0.4 (105 - 97) = 100.2$

06. Ans: (c) Sol: $F_{t+1} = F_t + a (X_t - F_t)$

07. Ans: (c)

Sol: Another form of weighted moving average is the exponential smoothed average. This method keeps a running average of demand and adjusts if for each period in proportion to the difference between the latest actual demand and the latest value of the forecast.

09. Ans: (b)

Sol:

Since

Period	Di	Fi	$(\mathbf{D}_{i} - \mathbf{F}_{i})^{2}$
14	100	75	625
15	100	87.5	156.25
16.	100	93.75	39.0625
	$\Sigma (D_i - F_i)^2 = 820$		

$$F_{15} = F_{14} + \alpha (D_{14} - F_{14})$$
$$= 75 + 0.5(100 - 75) = 87.5$$

A ace online

20	GATE – Text Book Solutions
3	 To make the proper arrangement for training the personal. Budgetary allegations are not done in the beginning of a project. So, deciding the purchase program is not the purpose of long term forecasting.
]	13. Ans: (d) Sol:
	20

Period	Di	Fi	$ (\mathbf{D}_{i}-\mathbf{F}_{i}) $	
1	10	9.8	0.2	CINI
2	13	12.7	0.3	
3	15	15.6	0.6	
4	18	18.5	0.5	
5	22	21.4	0.6	
		$\Sigma D_i - F_i$	= 2.2	

Ans: (d) 11.

Sol:

 m_1 = moving average periods give forecast $F_1(t)$

 m_2 = moving average periods give forecast $F_2(t)$

 $m_1 > m_2$

 $F_1(t)$ is a stable forecast has less variability.

 $F_2(t)$ is a sensitive (inflationary) forecast and has high variability.

12. Ans: (d)

Sol: Following are the purposes of long term forecasting :

- To plan for the new unit of production.
- To plan for the long-term financial requirement.

- Time horizon is less for a new product and keeps increasing as the product ages. So, statement (I) is correct.
- Judgemental techniques apply statistical method like random sampling to a small population and extrapolate it on a larger scale. So, statement (II) is correct.
- Low values of smoothing constant result in stable forecast. So statement (3) is correct.

i)
$$F_7 = \frac{60 + 50 + 40}{3} = 50$$

ii)
$$F_7 = \frac{60 \times 0.5 + 50 \times 0.25 + 40 \times 0.25}{0.5 + 0.25 + 0.25} = 52.5$$

(iii) 2 period moving average =
$$\frac{60+50}{2} = 55$$

4 period moving average

$$=\frac{60+50+40+20}{4}=42.5$$

5 period moving average

$$=\frac{60+50+40+20+30}{5}=40$$

Regular Live Doubt clearing Sessions | Free Online Test Series | ASK an expert ace online

Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

21

- 15. Ans: (114.8 units, 9 periods)
- Sol: At $\alpha = 0.2$

$$\begin{split} F_{may} &= 100 + 0.2 \; (200 - 100) = 120 \\ F_{june} &= 120 + 0.2 \; (50 - 120) = 106 \\ F_{july} &= 106 + 0.2 \; (150 - 106) = 114.8 \end{split}$$

Time	Demand	Forecast
April	200	100
May	50	120
June	150	106
July	-	114.8

$$\alpha = \frac{2}{n+1}$$

$$n+1=\frac{2}{\alpha} \implies n=\frac{2}{0.2}-1=9$$
 period

16. Ans: (a, b)

Sol: In a time series analysis of forecasting :

- Exponential smoothing of time series data assigns exponentially decreasing weights for newest to oldest observations
- Simple moving average method uses equal weights to the previous data
- Un-stable demand data requires higher value of 'α' and lower value of 'n'

where,
$$\alpha = \frac{2}{n+1}$$

$$F_{t+1} = F_t + \alpha \left(D_t - F_t \right)$$

If smoothening coefficient (α) is 1 then the latest forecast would be equal to the previous period actual demand.

17. Ans: (a, c, d)

Sol: In exponential smoothing,

- high value of α is high and less for other forecasts. Hence the high value of forecast is only chosen when the nature of demand is not reliable rather unstable.
- lower value of 'α' results more smoothening effect
- lesser 'α' results more smoothening
 effect
- different weights have been assigned to the previous data. Exponential smoothing of time series data assigns exponentially decreasing weights for newest to oldest observations.

18. Ans: (a, b)

Sol: In a forecasting process

- Qualitative methods (suitable for long and medium range production planning)
 - Quantitative methods (suitable for short range production planning)
 - Market survey is well suited for long range production planning (Qualitative methods of forecasting)
 - Exponential smoothening is well suited for short range forecasting (Quantitative methods of forecasting)

	ACE Engineering Publications	23				IM & OR
10. Sol:	Ans: (a, b, c) In a single server queuing model : Mean arrival rate (λ) follows Poisson	n	Cha 7	pter 7	Sequencing & S	Scheduling
	Mean arrival time = $\frac{1}{\lambda} \Rightarrow$ exponential	ıl	01. Sol:	Ans: SPT	(a) rule	
	distribution			Job 1	Process time (days)	Completion time
	Mean service time = $\frac{1}{11}$ \Rightarrow exponential	ıl		3	5	9
	distribution	ERI	NG	5 6	6 8	23
	$\rho < 1 \Rightarrow \frac{\lambda}{-} < 1 \Rightarrow \lambda < u$			2	9	32
	μ			4	10	42
	Mean arrival time > Mean service time				$\Sigma C_i =$	125
11. Sol:	Ans: (a, d) Mean service time, $\mu = 6 \text{ minutes} = \frac{60}{6} = 10 / \text{ hr}$ $\rho < 1 \implies \frac{\lambda}{\mu} < 1 \implies \lambda < \mu \text{ for single serve}$ queuing model. From the given options $\lambda = 4 / \text{hr}$ (or) 6 / hr	er Ce 1	02. Sol: 99 03. Sol: 04. Sol:	Aver Ans: Acco is mi: EDD The j Ans: John Optir Do th to be	age Flow Time = $\frac{\sum a_{n}}{n}$ = $\frac{12}{6}$ (a) ording to SPT rule to nimum. (d) rule can minimize m ob sequence is R (d) ason's rule : num job sequence I ne job 1 st if the minimize on the machine (M	$\frac{C_i}{5} = 20.83$ otal inventory cost aximum lateness. $-P - Q - S$ $III - I - IV - II$ num time happens) and do it on the
				end i	f .it is on second m	achine (N). Select
	India's Best Online Coaching Platfor	m for 0	GATE, I	ESE, PSU	I III CASE OI A HE.	s, Groups & PSC Exams
K	1 Online Enjoy a smooth online	e learn	ning ex	perience	e in various languages at you	ur convenience

Sol:

Job	Μ			Ν	Idle		
	In	PT	Out	In	PT	Out	
III	0	1	1	1	2	3	-
Ι	1	3	4	4	6	10	1
IV	4	7	11	11	5	16	1
II	11	5	16	16	2	18	-

Total idle time on machine (N) = 3

06. Ans: (a)

Sol: Optimum sequence of jobs

2 3 1 4

07. Ans: (b)

Sol: Optimum sequence is

R T S Q U P

Job		M_1			M ₂		
	In	РТ	Out	In	РТ	Out	
R	0	8	8	8	13	21 S	ince
Т	8	11	19	21	14	35	
S	19	27	46	46	20	66	
Q	46	32	78	78	19	97	
U	78	16	94	97	7	104	
Р	94	15	109	109	6	115	

The optimal make-span time = 115 days

- 08. Ans: (c)
- Sol: Critical Ratio (C.R)

 $C.R = \frac{(Date required - Todays Date)}{Days needed to complete job}$ $C.R = \frac{Available Time}{Re quired time}$

09. Ans: (a, d)

Sol:

- All jobs are ready for processing
- All processing times are deterministic in nature
- Machine is flexible and can process jobs without any break downs
- No pre-emption i.e the job cannot be unloaded without having completion on a machine
- Travelling times and setup times of jobs are negligible
- Job can be un-loaded from the machine even through it is not getting completed incase of priority rules.

10. Ans: (a, d)

1995

- **Sol:** Sequencing the jobs in the increasing order of their processing time is known as SPT rule.
 - It minimizes the mean flow time as well as the number of tardy jobs.
 - It minimizes the total inventory (holding) cost.
 - It also minimizes the mean tardiness, if all tasks have the same due date.

	Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert
	Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages

24

Chapter

8

Transportation Model

- 01. Ans: (c)
- Sol: A no. of allocations : m + n 1 $\Rightarrow 5 + 3 - 1 = 7$

02. Ans: (a)

Sol: For degeneracy in transportations, number of allocations < (m + n) - 1where m = no. of rows, n = no. of columns

03. Ans: (b)

Sol: In Transportation problem for solving the initial feasible solution for total cost, Vogel's approximation methods are employed for obtaining solutions which are faster than LPP due to the reduced number of equations for solving.

Optimality is reached using MODI/ U-V method or stepping stone method.

04. Ans: (b)

Sol: It generates the best initial basic feasible solution. This method is the best choice in order to get an optimal solution within minimum number of iterations.

The Vogel's approximation method is also known as the penalty method.

25

05. Ans: (a)

Sol: No. of allocations = 5

 \therefore no. of allocations = m + n - 1

m + n - 1 = 4 + 3 - 1

 \therefore It is a degenerate solution

06. Ans: (a)

Sol	1	2	3	4	Supp
. А	10	5	20	11 10	15
NGAC	12	7 10	9 15	20	25
c	5	14	16	18 5	10
Demand	5	15	15	15	50 50

Evaluation of empty cells:

Cell (A1) Evaluation = $C_{A1}-C_{A4}+C_{C4}-C_{C1}$

=10 - 11 + 18 - 5 = 12

Cell (A3) Evaluation = $C_{A3} - C_{A2} + C_{B2} - C_{B3}$ = 20 - 9 + 7 - 2 = 16

• Cell (B1) Evaluation =12-7+2-11+18-4

= 10 Cell (B4) Evaluation = 20 - 7 + 2 - 11 = 4Cell (C2) Evaluation = 14 - 2 + 11 - 18 = 5Cell (C3) Evaluation = 16 - 9 + 7 - 2 - 18 = 5If cell cost evaluation value is '-ve', indicates further unit transportation cost is decreasing and if cost evaluation value is '+ve' indicates further unit transportation cost is increases. If cost evaluation value is zero, unit transportation cost doesn't change.

	ACE Engineering Publications	26	GATE – Text Book Solutions
 Com 07. 09. Sol:	As for A3 cell cost evaluation is +16 means that, if we transport goods to A3 the unit transportation cost is increased by 16/ mon Data for Questions Q07, Q08 & Q09 : Ans: (b) 08. Ans: (a) Ans: (b) $1 2 3 4$ A 25 45 B 30 25 45 B 30 25 45 C 55 35 10 No. of allocations = 6 R + C - 1 = 6 As No. of allocations = R + C - 1 Hence the problem is not degeneracy case. Opportunity cost of cell (i, j) is	26 , e	$GATE - Text Book Solutions$ $\therefore The reduction in the transportation cost is 25 \times 19 = 475 10. Ans: (c) Sol: \boxed{10 - 14 + 14} + 12 - 16} = 16 By stepping stone method, Cell evaluation of B - 1 cell = +7 - 5 + 8 - 10 + 14 - 12 = 2/- \boxed{10 - 0 - 20 + 0} = -35 \boxed{0 - 0 - 10 + 0} = -35$
	Opportunity cost of cell (i, j) is $C_{ii} - (U_i + V_i)$		$\theta = \text{minimum of } 10 - \theta, 5 - \theta, 20 - \theta = 0$
	If $C_{ij} - (U_i + V_j) \ge 0 \Rightarrow$ problem is optimal, Empty cell evaluation (or) Opportunity cos of cells:	t	$\theta = 5$ units Increase in cost = $5 \times 2 = 10/-$ 11. Ans: (c)
	$A_1 = -12$, $A_2 = -19$, $B_2 = -8$ $B_4 = 12$, $C_3 = 3$, $C_4 = 12$ From the above as A2 has opportunity cost '-19' indicates unit transportation cost i	t s	Sol: To find the number units shifted to A ₂ cell. $\begin{array}{r} +\theta & 20-\theta \\ \hline \\ 15-\theta & 25+\theta \end{array}$
	By forming loop A2, A3, B2, B3 it i observed that to transport minimum quantity is 25 among 25, 30, 35.	S 1 clearin	$\theta = \text{minimum value of } 15-\theta, 20-\theta = 0$ $\theta = 15 \text{ units}$
	Affordable Fee Availa	able 1M	I 3M 6M 12M 18M and 24 Months Subscription Packages

Since

12. Ans: (b, d)

Sol: In a transportation model

- Vogel's approximation method (VAM) generates best initial basic feasible solution among others.
- least cost method can give an initial solution
- MODI method is efficient method to generate an optimal solution as well as for testing optimality of a transportation solution.
- Vogel's approximation method can give a better initial solution compared to north west corner (NWC) method.

Chapter 9

Assignment Model

01. Ans: (a)

Sol: Let C_{ij} = unit assignment cost X_{ij} = Decision variable (allocation) Minimize $Z = \sum_{i=1}^{n} \sum_{l=1}^{n} C_{ij} X_{ij}$ Subject to : $\sum_{i=1}^{n} X_{ij} = 1$ $\sum_{ij} X_{ij} = 1$ $X_{ij} = 1$ (when assigned) $X_{ij} = 0$ (when not assigned) Number of decision variables = n^2 (or) m^2 Number of basic variables = Number of assignments = n (or) m 02. Ans: (c) 1995 03. Ans: (a) 04. Ans: (c) Sol: $S_1 \quad S_2 \quad S_3$ S_1 S_2 S_3 Р 110 120 130 Column Q 115 140 140 15 5 Transaction R 125 145 165 10 20 Р 10 20 0 0 0

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

Q

R

0

25 25

20 40

Row Transaction -10

ACE Engineering Fublications		28	GATE – Text Book Solutions
P-S ₂ - 120 Q-S ₃ - 140 R-S ₁ - 125 Total = 385 05. Ans: (1-B, 2-D, 3-C) Sol: Step-1: Take the row mininal elements of correct $1 0 2$ 0 & 2 & 2 8 & 5 & 0 0 & 6 & 2 Step - 2 : Take the column m from all elements of $1 0 2$ 0 & 6 & 2 Step - 2 : Take the column m from all elements of $0 2 2$ $8 5 0$ $0 2 2$ $8 5 0$ $0 6 2$ Step - 3 : Select single zero ro	2, 4-A) num of subtract it from sponding row. 3 1 4 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	28 n 8	GATE – Text Book Solutions $1 - B : 7$ $2 - D : 8$ $3 - C : 2$ $4 - A : 5$ Total cost = 22 O6. Ans: (C1-J2, C2-J1, C3-J4, C4-J3) Sol: J_1 J_2 J_3 J_4 C_1 10 5 15 13 C_2 3 8 18 10 7 2 3 C3 5 11 7 9 Step - 1 : 5 0 10 8 5 0 10 6 5 15 Step - 2 : Step - 2 : 5 0 10 7 0 6 5 14 8 5 0 0 6 2 3
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0 0 3 Sin ow or column and assign	ce 1	Step - 2: 5 0 10 7 0 6 5 14 8 5 0 0 0 6 2 3
at the all where zero row straight line method $\begin{array}{c c} A & B \\ 1 & 1 & 0 \\ 2 & 0 & 2 \\ 3 & 8 & 5 \\ 4 & 0 & 6 \end{array}$	ro exists. If there is no or column. Then use $\frac{C D}{2 2}$ $\frac{2 0}{0 0}$ $\frac{0}{2 3}$	e e	Step – 3 :
A ace online	Regular Live Doubt Affordable Fee Availa	clearin able 1M	ng Sessions Free Online Test Series ASK an expert 3M 6M 12M 18M and 24 Months Subscription Packages

It may be noted there are no remaining zeroes and row -4 and column -4 each has no assignment. Thus optimal solution is not reached at this stage. Therefore, proceed to following important steps.

Step – 4 :

Draw the minimum number of horizontal and vertical lines necessary to cover all zeroes at least once.

Take the above Table

- (i) Mark row 4 in which there is no assignment
- (ii) Mark column 1 which have zeroes in marked column.
- (iii) Next mark row 2 because this row contains assignment in marked column 1.

No further rows or columns will be required to mark during this procedure.

(iv) Draw the required lines as follows.
(a) Draw L₁ through marked column 1
(b) Draw L₂ and L₃ through unmarked row (1 and 3)

Step – 5 :

29

Select the smallest element (2).

Among all the uncovered elements of the above table and substract this value from all the elements of the matrix not covered by lines and add to every element that lie at the intersection of the lines L_1 , L_2 , and L_3 and leaving the remaining element unchange.

	J_1	J_2	J_3	J_4
C ₁	7	0	10	7
C ₂	0	4	3	12
C ₃	10	5	0	0
C_4	0	4	0	5

It may be added that there are no remaining zeroes and every row and column has an assignment.

Since, the no. of assignment = no. of row or column

The solution is optimal

4

199 The pattern of assignment at which job hasbeen assigned to each contractor.

Contractor	Job	Amount (Rs)×1000
C ₁	J_2	5
C_2	\mathbf{J}_1	3
C ₃	J_4	3
C_4	J_3	7
		$18 \times 1000 = 18000$

Minimum amount = Rs. 18,000/-

07. Ans: $(A-J_1, B-J_2, C-J_4, D-J_3, TC=107)$

Sol:

	Job	Job	Job	Job	
	1	2	3	4	
А	20	36	31	27	
В	24	34	45	22	
С	22	45	38	18	
D	37	40	35	28	
А	0	16	11	7	Row
В	2	12	23	0	Transaction
С	4	27	20	0	
D	9	12	7	0	
А	0	4	4	7	Column
В	2	0	16	0	Transaction
С	4	15	13	0	
D	9	0	0	0	
	A – .	$J_1 \rightarrow 2$	20		
	$B - J_2 \rightarrow 34$				
	$\tilde{C} - J_4 \rightarrow 18$				
	$D = I_2 \rightarrow 35$				
		<u>1</u>	07		

08. Ans: (1-A, 2-C, 3-B, 4-Dummy, TC=35)

- **Sol:** Here no. of rows \neq no. of column
 - ∴ The algorithm is not balanced so add one dummy column.

Onerates	Machine					
Operates	Α	В	С	Dummy		
1	9	26	15	0		
2	13	27	6	0		
3	35	20	15	0		
4	18	30	20	0		

Step –	1:		
	9	26	15
	13	27	6

13	21	0	0
35	20	15	0
18	30	20	0

Step – 2:

30

	0	6	9	0
	4	7	0	0
AC	26	0	9	0
40	9	10	14	0

Here the operator -4 is assigned to dummy column.

: He is the idle worker.

09. Ans: (a, b, c)

- Sol: In assignment model,
 - Each source has unity supply
 - Each destination has unity demand
 - Total supply is equal to number of sources
 - The total number of allocations in the assignment problem always equal to 'n', which is always less then (2n-1), hence assignment problems always degenerate.

ace	Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert
online	Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages

Since

GATE – Text Book Solutions

0

31

01. Ans: (d) 02. Ans: (b)

03. Ans: (b)

Sol:

,		6				
М	onths	Month 1	EERIN Month 2	Month 3	Unused	Capacity
101	onuis		WOITH 2	Wohth 5	capacity	Available
		20	22	24	10	100
	RT	90	10		2	100
1		24	26	28		20
	ОТ					20
			20	22	>	100
	RT		100			100
2			24	26		20
	ОТ		20			20
		$N \Lambda$		95 20		80
	RT			80		00
3		$7 \land \setminus$		30	10	40
	OT	$\langle \Box \rangle$	$\langle \rangle$		10	
	RT					
		90	130	110		
	OT					

Level of planned production in overtimes in 3rd period is '30'.

RT = Regular time

OT = Over time

ACE Engineering Publications	32	GATE – Text Book Solutions
---------------------------------	----	----------------------------

04. Ans: (b)

Sol:

	Cumulative	Cumulative	Ir	iventory	Cos	st
Month	Production	Demand	End	Stock out	End inventory	Stock out cost
1	100	80	20	-	40	-
2	180	180	-	-	-	-
3	250	260	-	10	-	100
4	320	300	20		40	-
					80	100
		CINEER	INC	Total	180)

05. Ans: (b)

06. Ans: (d)

07. Ans:

Sol:

		0		Total Canacity			
Supply from		Period 1	Period 2	Period 3	Period 4	Un used capacity	Available (supply)
В	eginning inventory	²⁰⁰ 0	5	10	15		200
1	Regular	700 60	65	70	75	0	700
1	Overtime	70	75	80	85	300	300
2	Regular		⁵⁰⁰ 60	65	²⁰⁰ 70	0	700
2	Overtime		70	75	80	300	300
3	Regular			²⁰⁰ 60	⁵⁰⁰ 65	0	700
5	Overtime			70	²⁰⁰ 75	100	300
Δ	Regular				⁷⁰⁰ 60	0	700
Т	Overtime				300 70	0	300
		900	500	200	1900	700	4200

 $Total \cos t = (700 \times 60) + (500 \times 60) + (200 \times 70) + (200 \times 60) + (500 \times 65) + (200 \times 75)$

 $+(700 \times 60)+(300 \times 70) = \text{Rs } 2,08,500/-$

	Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert
	Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages

08. Ans: (a, b)

Sol: In aggregate production planning :

- MPS is a detailed production schedule and it specifies what end items are to be produced and when.
- MRP is a technique for determining the quantity and timing for the acquisition of dependent demand items needed to satisfy master schedule requirements.
- The most favorable solution is usually a combination of mixed strategy that meets the objectives of the organization in light of its particular circumstances.

Since

Chapter11Material Requirement & Planning

01. Ans: (b)

02. Ans: (c)

- **Sol:** Based on master production schedule, a material requirements planning system :
 - Creates schedules, identifying the specific parts and materials required to produce end items.
 - Determines exact unit numbers needed.
 - Determines the dates when orders for those materials should be released, based on lead times.

03. Ans: (d)

Sol: Refer to the solution of Q.No. 02

04. Ans: (c)

- Sol: MRP has three major input components:
 - 1. Master production Schedule of end items required. It dictates gross or projected requirements for end items to the MRP system.
 - 2. Inventory status file of on-hand and onorder items, lot sizes, lead times etc.
 - 3. Bill of materials (BOM) or Product structure file what components and sub assemblies go into each end product.

ACE

Ans: (c) 05.

Sol: Bill of Materials (BOM): A listing of all components (subassemblies and materials) that go into an assembled item. It frequently includes the part numbers and quantity required per assembly.

> requirements Capacity planning (CRP) is a technique for determining what personnel and equipment capacities are needed to meet the production objectives embodied in the master schedule and the material requirements plan.

> Material Requirement planning (MRP) is a technique for determining the quantity and timing for the acquisition of dependent demand items needed to satisfy master schedule requirements.

> Master production Schedule of end items required. It dictates gross or projected requirements for end items to the MRP system

> > 08. Ans: (b)

06. Ans: (c)

09. Ans: (c)

Sol:

07. Ans: (b)

Maximum Lead time = 12 weeks

Chapter 12

Break Even Analysis

01. Ans: (c)

Sol: Total fixed cost, TFC = Rs 5000/-Sales price, SP = Rs 30/-Variable cost, VC = Rs 20/-

Break even production per month,

$$Q^* = \frac{TFC}{SP - VC} = \frac{5000}{30 - 20} = 500 \text{ units}$$

Ans: (a) 02.

Sol: Total cost = 20 + 3X -----(1) Total cost = 50 + X -----(2)By solving equ. (1) and (2) 2X = 30X = 15 units When X = 10 units $TC_1 = 20 + (3 \times 10) = Rs 50/-$ Since 1995 $TC_2 = 50 + (1 \times 10) = Rs 60/-$ Among both, total cost for process is less So process-1 is choose.

03. Ans: (c)

Sol: In automated assembly there are less labour, so variable cost is less, but fixed is more because machine usage is more. In job shop production, labour is more but machine is less. So variable cost is more and fixed cost is less.

ace online

ACE

04. Ans: (c) **Sol:** TC = Total cost $TC_A = Total cost for jig-A$ $TC_B = Total \text{ for jig-B}$ $TC_A = TC_B$ 800 + 0.1X = 1200 + 0.08X0.02X = 400 $\therefore X = \frac{400}{0.02} = \frac{400}{2} \times 100 = 20,000 \text{ units}$ 05. Ans: (d)

- **Sol:** Sales price Total cost = Profit $(C_P \times 14000) - (47000 + 14000 \times 15) = 23000$ $\therefore C_P = 20$
- **06.** Ans: (b)
- **07.** Ans: (a)
- 08. Ans: (c)
- 09. Ans: 1500
- X Sol:

 $S_1 = 100$ $S_2 = 120$ $F_2 = 8000$ $F_1 = 20,000$ $V_2 = 40$ $V_1 = 12$ $\mathbf{P} = \mathbf{q}(\mathbf{S} - \mathbf{V}) - \mathbf{F}$ $P_1 = q(100 - 12) - 20,000$ $P_2 = q(120 - 40) - 80,000$ $P_1 = P_2$ 88q - 20,000 = 80q - 80,00012000 = 8q \Rightarrow q = 1500

10. Ans: (b)

ace

11. Ans: (c)

35

Sol: At breakeven point Total cost = Total revenue $FC + VC \times Q = SP \times Q$

$$Q = \frac{FC}{(SP - VC)}$$

FC = 1000/-, VC = 3/-, SP = 4/-
$$Q = \frac{1000}{(4-3)} = 1000 \text{ units}$$

If sales price is increased to 25%

$$SP = 4 + \frac{1}{4} \times 4 = 5/-$$

$$Q^* = \frac{1000}{(5-3)} = 500$$
 units

. Breakeven quantity decreases by

$$=\frac{100-500}{100}\times100=50\%$$

12. Ans: 225 Sol:

Since

95	Standard machine tool	Automatic machine tool
$F_1 = F.C.$	$\frac{30}{60} \times 200 = \text{Rs.}100$	$2 \times 800 =$ Rs.1600 = F ₂
V.C	$=\frac{20}{60} \times 200$ = Rs. 73.33	$=\frac{5}{60} \times 800$ = Rs. 66.67

 $q = \frac{1600 - 100}{73.33 - 66.67} = 225$ volts

If greater than 225 units then automatic machine tool is economic.

36

GATE – Text Book Solutions

Chapter 13

Lean Manufacturing

01. Ans: (a)

Sol: Lean production requires

- Flexible resources
- Cellular layouts
- Pull system
- Kanbans
- Small lots
- Quick setups
- Uniform production levels
- Quality at the source
- Total Productive Maintenance (TPM)
- Supply chain

02. Ans: (a)

Sol:

- Lean production is an integrated management system that emphasizes the elimination of waste
- Lean production is an integrated set of activities designed to achieve production using minimal inventories of raw materials, work-in-process and finished goods

03. Ans: (d)

Sol: Drawbacks of lean production :

ace online

 It is not appropriate for every type of organization. Particularly large variety of low volume production environments.

- Difficult to maintain the discipline of lean production.
- Not the right choice for mass production (or) high-volume repetitive items

04. Ans: (d)

Sol:

- Lean system will have efficient supply chain by means of long-term supplier contracts
- Reduced inventory and improved service quality are the key benefits of lean system
- More product variety and greater flexibility are the key features of lean system

05. Ans: (a)

06. Ans: (b)

Sol: Quality in lean system is based on Kaizen, the Japanese term for "Change for the good of all" or "Continuous improvement".

07. Ans: (d)

Sol: The productivity improvement is not a dimension of lean culture.

08. Ans: (a)

Sol: Time from production finished to customer order delivered is known as delivery lead time.

 Regular Live Doubt clearing Sessions
 Free Online Test Series
 ASK an expert

 Affordable Fee
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

	ACE Engineering Publications	37		IM & OR	
09.	Ans: (b)		14.	Ans: (a, b)	
Sol:	The general definition of SEISO or shine i	S	Sol:	Lean production system emphasizes on	
	to clean your workplace and to make it	it		continuous improvement and standard work	
	beautiful. In the end, what we are trying to	0		practices and pull system instead of push	
	achieve through doing the fourth S is to	0		system.	
	create an environment that is a clear	n			
	workplace for us to be within.		15.	Ans: (a)	
			Sol:	Kanban system is meant for maintaining	
10.	Ans: (d)			pull system.	
11		RI	No		
11. G.L	Ans: (a, b)		10.	Ans: (c) 250 mm^{3}	
501:	1 Orange kesting		501:	Daily demand (d) = 250 units $D_{\rm ex}$ last time (LT) = 1/2 day	
	1. Overproduction			Production lead time $(L1) = 1/2$ day	
	2. Waiting			Kanban size $(C) = 50$ units	
	3. Transporting			Safety Stock = $1/4$ day	
	4. Processing			No. of Kanbans,	
	5. Inventory			$n = \frac{d \times L1 + \text{safety stock}}{C}$	
	6. Movement 7. Defects			$250 \times 0.5 \pm (250 \times 0.25)$	
	7. Defects			$=\frac{250\times0.5+(250\times0.25)}{50}=3.75\approx4$	
12.	Ans: (b, c)				
Sol:	Work performed on the product which ha	ce 1	17.9	Ans: 6	
~ • • • •	no value is treated as waste and it should b	e	Sol:	Daily demand $(d) = 500$ units	
	eliminated			Size of container $(C) = 200$ units	
	Lean production is an integrated set of			Safety factor (α) = 20 % = 0.2	
	activities designed to achieve production	n		Material handling and processing time	
	using minimal inventories of raw materials, work-in-process and finished goods.			$(\overline{v}) = 2 \text{ days}$	
				No. of Kanbans,	
13.	Ans: (c)			$n = \frac{d \times LT \times (1 + \alpha)}{C}$	
				$=\frac{500\times2\times(1+0.2)}{1000}=6$	
				200	
	India's Best Online Coaching Platfor	m for (GATE,	ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams	
	J Online Enjoy a smooth onlin	Ne Enjoy a smooth online learning experience in various languages at your convenience			

