
GATE | PSUs

CIVIL ENGINEERING

L

Geotechnical Engineering

(**Text Book** : Theory with worked out Examples and Practice Questions)

Geotechnical Engineering

(Solutions for Text Book Practice Questions)

01. Origin of Soil

09. Ans: (b) & (d)

Sol: Loam: It is mixture of sand, silt and clay, sometimes containing some organic matter such as humus.

Loess: It is a loose deposit of wind blown silts that has been weakly cemented with calcium carbonate and Montmorillonite.

Alluvial soil: Are soil that have been deposited from suspension in running water. **Peat:** It is highly organic soil.

02. Definitions and Properties of Soil

01. Ans: (c)

Sol: Volume of solids in sample A: Total volume $V = V_s + V_v$

Void ratio, $e = \frac{V_v}{V_s}$

 $V_s = V_v$

Total volume V = 1 m³ \therefore V_s = 1 - V_s

$$V_s = \frac{1}{2}m^3$$

Volume of solids in sample B: Total volume, $V = V_s + V_v$ $1 = V_s + V_v$ $V_v = 1 - V_s$

 $1.5 V_{s} = V_{v}$

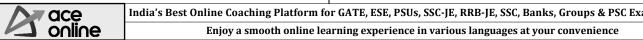
Void ratio,
$$e = \frac{V_v}{V_s}$$

1.5 V_s = 1 - V_s
2.5 V_s = 1
V_s =
$$\frac{1}{2.5}$$
 = 0.4 m³

After compaction solids volume cannot change total volume after compaction

V = 1 m³
V_s = 0.4 + 0.5 = 0.9 m³
Porosity, n =
$$\frac{V_v}{V} = \frac{0.1}{1} = 0.1$$

02. Ans: (a)


Sol: Water content of mixed sample = $\frac{W_w}{W_{solids}}$

Weight of solids cannot change weight of solids in sample of water content 50%

Water content,
$$w = \frac{W_{w_1}}{W_{solid_1}}$$

 $0.5 = \frac{W_w}{W_{solid_1}}$
 $0.5 W_{solid_1} = W_w$
Total weight of sample, $W = 1 \text{ kg}$
 $W_s + W_w = 1 \text{ kg}$
 $0.5 W_s = 1 - W_s$
 $W_s = \frac{1}{1.5} = 0.667 \text{ kg}$

Weight of solids in sample of water content 80%

$$w = \frac{W_w}{W_s} \Longrightarrow 0.8 W_s = W_w$$
$$0.8 W_s = 1 - W_s$$
$$W_s = \frac{1}{1.8} = 0.556 \text{ kg}$$
ESE, PSUS, SSC-IE, BRB-IE, SSC, Banks, Groups & PSC Exams

Since 19

Engineering Publications	2 CIVIL-Postal Coaching Solutions
$\therefore \text{ Total weight of mix} = 2 \text{ kg}$ Solids weight of mix = 0.667 + 0.556 = 1.223 $\therefore \text{ water content of mix} = \frac{W_w}{W_s} = \frac{2 - 1.223}{1.223}$ = 63.6%	05. Ans: (c) Sol: Amount of water to be added $= \gamma_{d_2} V[w_2 - w_1]$ $= 1.65 \times 1000 [0.18 - 0.12]$ $= 99 \text{ tons}$ ($\therefore 1 \text{g/cc} = 1 \text{t/m}^3$)
03. Ans: (d) Sol: $\gamma = \gamma_d (1 + w) \gamma_d$ is constant $\gamma \propto 1 + w$ $\frac{\gamma_2}{\gamma_1} = \frac{1 + w_2}{1 + w_1} \Rightarrow \frac{\gamma_2}{1.8} = \frac{1.1}{1.05}$ $\gamma_2 = 1.88 \text{ gm/cc}$ <i>Common data for Questions 04 & 05</i>	06. Ans: (c) Sol: $\gamma_1 = 1.66; w_1 = 8\%$ $\gamma_2 = 1.15; w_2 = 6\%$ $\gamma_3 = 1.82$ $w_3 = 14\%$ $v_3 = 100 \text{ m}^3$ 1 Borrow pit
04. Ans: (b) Sol: In Borrow pit $\gamma = 1.75 \text{ g/cc}$ $w_1 = 12\%$ $G = 2.7; V_1 = ?$ After compaction $w_2 = 18\%$ $\gamma_{d_2} = 1.65 \text{ g/cc}$ $V_2 = 1000 \text{ m}^3$ $\frac{V_1}{V_2} = \frac{\gamma_{d_2}}{\gamma_{d_1}}$ $\gamma_{d_1} = \frac{\gamma}{1+w} = \frac{1.75}{1+0.12} = 1.56$ $\frac{V_1}{1000} = \frac{1.65}{1.56}$ $\therefore V_1 = 1056 \text{ m}^3$	$\frac{v_{1}}{v_{3}} = \frac{1+e_{1}}{1+e_{3}} = \frac{\gamma_{d_{3}}}{\gamma_{d_{1}}}$ $\gamma_{d_{1}} = \frac{\gamma_{1}}{1+w_{1}} = \frac{1.66}{1+0.08} = 1.537$ $\gamma_{d_{2}} = \frac{1.15}{1+0.06} = 1.084$ $\gamma_{d_{3}} = \frac{1.82}{1+0.14} = 1.59$ $\frac{V_{1}}{V_{3}} = \frac{\gamma_{d_{3}}}{\gamma_{d_{1}}}$ $\frac{V_{1}}{V_{3}} = \frac{\gamma_{d_{3}}}{\gamma_{d_{1}}}$ $V_{1} = 104.3 \text{ m}^{3}$ $V_{2} = \frac{1.596}{1.084} \times 100 = 147.2 \text{ m}^{3}$ No. of truck load $= \frac{147.2}{6} = 24.5 = 25 \text{ nos.}$

A ace online

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

Engineering Fublications	3 Geotechnical Engineering
07. Ans: (c) Sol: e = 0.51 $S_r = 80\%$ V water solids d_w d_w	09. Ans: 0.92 Sol: $e \times S_r = 0.44 \text{ G}$ e = 0.44 G $e = 0.44 \times 2.07$ $\therefore e = 0.92$
$d_{w} = 1 m$ $S_{r} = \frac{d_{w}}{d_{v}} = \frac{1}{d_{v}} = 0.80$ $\therefore d_{v} = 1.25$ $e = \frac{d_{v}}{d_{s}} = \frac{1.25}{d_{s}} = 0.5$ $d_{s} = 2.5$ $\therefore \text{ Total } d = d_{s} + d_{v} = 2.5 + 1.25$ $= 3.75 m$	10. Ans: 11.87% Sol: To find initial porosity $\gamma_{d} = \frac{\gamma_{w}.G}{1+e}$ $16 = \frac{9.80 \times 2.67}{1+e}$ e = 0.637 $n_{1} = \frac{e}{1+e} = \frac{0.637}{1+0.637} = 0.388 \approx 38.8\%$
$e \times S_{r} - WG$ $\therefore e = 0.44 G$ $\frac{\gamma_{sat}}{2} = \frac{G + e}{2}$	$e = \frac{V_v}{V_s} = 0.637$ $n = \frac{V_v}{V} \Longrightarrow 0.388 = \frac{V_v}{1} \Longrightarrow V_v = 0.388$ Coarse sand $V_s = V - V_v = 1 - 0.388 = 0.611 \text{ m}^3$ Dry silty soil: $\gamma_s = G. \gamma_w$ $= 2.67 \times 9.80 = 26.16 \text{ kN/m}^3$ $V_s = \frac{W_s}{\gamma_s} = \frac{5.5}{26.16} = 0.21 \text{ m}^3$
$\gamma_{w} = \frac{1 + e}{\gamma_{sat}}$ $\gamma_{sat} = \frac{\text{Saturated wt of cube}}{\text{volume of cube}}$ $= \frac{195}{5^{3}} = \frac{195}{125} \text{ g/cc}$ $\therefore \frac{195}{125} = \frac{G + 0.44 \text{ G}}{1 + 0.44 \text{ G}}$ $\therefore G = 2.07$	Wet Clay: Water content, $w = \frac{W_w}{W_s}$ $0.1 = \frac{W - W_s}{W_s}$ $W_s = 1.3636 \text{ kN}$ $V_s = \frac{1.3636}{2.55 \times 9.8} = 0.0545 \text{ m}^3$
	t clearing Sessions Free Online Test Series ASK an expert lable 1M 3M 6M 12M 18M and 24 Months Subscription Packages

Engineering Publications	4 CIVIL-Postal Coaching Solutions		
After compaction: Total volume, $V = 1.2 \text{ m}^3$	04. Index Properties of Soil		
$V_s = 0.611 + 0.21 + 0.0545 = 0.875 \text{ m}^3$	01. Ans: (a)		
$V_s + V_v = V$	Sol: At L.L $w_L = 60\%$,		
$V_v = V - V_s$	$e_1 = \frac{W_L \cdot G}{S} = 0.6 G$		
= 1.2 - 0.875	$e_1 = \frac{1}{S} = 0.0G$		
= 0.325	$w_s = 25\%, e_2 = 0.25 G$		
Final porosity, $n_2 = \frac{0.325}{1.2} \times 100 = 27\%$	$\frac{V_1}{V_2} = \frac{1 + e_1}{1 + e_2}$		
Reduction in porosity = $38.8\% - 27\%$			
= 11.8 %	10 = 1 + 0.6G		
T IT NEE	$R I = \frac{6.5}{1+0.25G}$		
$V_v = 0.325$	G = 2.5		
$V = 1 m^3$	Common data for Questions 02, 03		
$\begin{array}{c} 0.611+0.05+0.21\\ = 0.875 \text{ m}^3 \end{array}$	Common unu jor Questions 02, 05		
±	02. Ans: (c)		
	Sol: G_m = Mass specific gravity = 1.88		
11. Ans: (b) & (c)	Water content, $w = 40\%$		
T			
Sol: Void ratio (e) = $\frac{V_v}{V_s}$	On oven drying, mass specific gravity		
If $V_v > V_s$	drops to $= 1.74$		
Then void ratio can be greater than 1 and	G of clay =?		
void ratio can be less than 1 to 0 but not	e 1995 $e = \frac{w_s \cdot G}{2} = 0.40 \times G$		
zero.	S _r		
Porosity $(n) = \frac{V_v}{V}$	$\gamma_{\rm vert} = \frac{\gamma_{\rm w} (G + e)}{2}$		
v v	$\gamma_{sat} = \frac{1}{1+e}$		
$V_v \ge V$	G + 0.40 G		
Hence n can not be greater than 1	$1.88 = \frac{G + 0.40 G}{1 + .4 G}$		
% age air void $(n_a) = \frac{V_a}{V} \times \frac{V_v}{V}$	G(1+0.4)		
\mathcal{C} \mathcal{C} \mathcal{C} \mathcal{V} \mathcal{V}_{v}	$1 + 0.4 \mathrm{G} = \frac{\mathrm{G}\left(1 + 0.4\right)}{1.88}$		
$n_a = a_c \times n$	G = 2.90		
$V_a \le V_v$	0 2.50		
Hence n_a is always less than porosity.			
	for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams learning experience in various languages at your convenience		
Enjoy a smooth online learning experience in various languages at your convenience			

	ACE Engineering Publications	5	Geotechnical Engineering
	Ans: (a) $w_{s} = ?$ $e = 0.4 \times 2.90$ $e = 1.16 \implies e = w_{s} G$ $w_{s} = \left(\frac{1}{G_{m}} - \frac{1}{G}\right) \times 100$ $= \left(\frac{1}{1.74} - \frac{1}{2.90}\right) \times 100 = 22.98\%$ $w_{s} = 23\%$		06. Ans: (c) Sol: To find initial and final void ratio = ? To find e₁: $\gamma_{sat} = \frac{W_1}{V_1} = \frac{95.6}{68.5} = 1.39 \text{ g/cc}$ $1.39 = \frac{2.67 + e_1}{1 + e_1}$ $e_1 = 3.28 \simeq 3.15$
Com	mon Data for Questions 04, 05 & 06		To find e ₂ :
05.	Ans: (b) Initial weight of saturated soil, $W_1 = 95.6 \text{ gm}$ Initial volume of saturated soil, $V_1 = 68.5 \text{ cc}$ Final dry weight = 43.5 gm = W _d Final dry volume = 24.1 cc = V _d $w_s = ?$ $w_s = \left[\frac{W_1 - W_d}{W_d} - \left(\frac{v_1 - v_d}{W_d}\right)\gamma_w\right] \times 100$ $= \left[\frac{95.6 - 43.5}{43.5} - \left(\frac{68.5 - 24.1}{43.3}\right)\right] \times 100$ $w_s = 17.7\%$ Ans: (c) $\gamma_d = \frac{W_d}{V_d} = \frac{43.5}{24.1} = 1.80 \text{ gm/cc}$ $G_m = \frac{\gamma_d}{\gamma_w} = \frac{1.80}{1} = 1.80$ $W_s = \left(\frac{1}{G_m} - \frac{1}{G}\right) \times 100$ $17.7 = \left(\frac{1}{1.80} - \frac{1}{G}\right) \times 100$ G = 2.65		Formula e2. $e_2 = w_8G$ $= 0.17 \times 2.65$ = 0.47 07. Ans: (c) Sol: $V_1 = 100 \text{ cc},$ $w_1 = 30\%$ $w_8 = 18\%$ G = 2.72 $V_2 = ?$ w = 15% Let e ₁ be void ratio at water content of 30% $e_1 = \frac{w_1G}{S_r} = \frac{0.30 \times 2.72}{1} = 0.816$ Let e ₂ be void ratio, at w_8 $e_2 = \frac{w_8G}{S_r} = \frac{0.18 \times 2.72}{1} = 0.489$ $\frac{V_1}{V_2} = \frac{1 + e_1}{1 + e_2}$ $V_2 = \frac{100 \times (1 + 0.489)}{1 + 0.816} = 82 \text{ cc}$
		cloarin	g Sessions Free Online Test Series ASK an expert

A ace	Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert
ace online	Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages

08. Ans: 21.63%. 347 kN and w = 25.24% Sol: n = 36% $e = \frac{n}{1-n} = \frac{0.36}{1-0.36} = 0.563$ G = 2.6 $w_1 = 11\%$ Let w ₂ be w.c @ full saturation $e = \frac{w_2.G}{s} = w_2 = 0.216 = 21.6\%$ $\gamma_d = \gamma_w \left(\frac{G}{1+e}\right)$ $= 9.81 \left(\frac{2.6}{1+0.563}\right) = 16.31 \text{ kN/m}^3$ To rise w.c w ₁ to w ₂ The weight of water to be added 09. Ans: (a), (b) & (d) Sol: Given, $G_m = 1.70$ $G_s = 2.8$ $G_m = \frac{\gamma_d}{\gamma_w} = 1.70$ $\gamma_d = \frac{G\gamma_w}{1+e}$ $1.7 = \frac{2.8}{1+e}$ $\Rightarrow 1+e = \frac{2.8}{1.7} = 1.647$ e = 0.647	Engineering Publications	6 CIVIL-Postal Coaching Solution
additionally $= w_{s}(w_{2} - w_{1})$ $= \gamma_{d}.v(w_{2} - w_{1})$ $= 16.31 \times 200 (0.216 - 0.11)$ $= 346 \text{ kN}$ $\frac{V_{2}}{V_{1}} = \frac{1 + e_{2}}{1 + e_{1}} \Rightarrow V_{2} = 1.06V_{1}$ $\frac{1.06V_{1}}{V_{1}} = \frac{1 + e_{2}}{1 + e_{1}} \Rightarrow V_{2} = 1.06V_{1}$ $e_{2} = 0.657$ $e_{2} = \frac{w_{3}G}{s}$ $0.657 = \frac{w_{3} \times 2.6}{1}$ $w_{3} = 0.254 = 25.4\%$ Porosity (n) = 1 - n = \frac{1}{1 + e} $1 - n = \frac{1}{1.647}$ $n = 0.39$ Shrinkage limit (w_{s}) es = wG $0.647 (1) = w_{s} \times 2.8$ $w_{s} = 0.2310$ $w_{s} = 23.10\%$ Shrinkage ratio (S _R) = $\frac{\gamma_{d}}{\gamma_{w}} = 1.7$	98. Ans: 21.63%. 347 kN and w = 25.24% Sol: n = 36% $e = \frac{n}{1-n} = \frac{0.36}{1-0.36} = 0.563$ G = 2.6 $w_1 = 11\%$ Let w_2 be w.c @ full saturation $e = \frac{w_2.G}{s} = w_2 = 0.216 = 21.6\%$ $\gamma_d = \gamma_w \left(\frac{G}{1+e}\right)$ $= 9.81 \left(\frac{2.6}{1+0.563}\right) = 16.31 \text{ kN/m}^3$ To rise w.c w_1 to w_2 The weight of water to be added additionally $= w_s(w_2 - w_1)$ $= 7d.v(w_2 - w_1)$ $= 16.31 \times 200 (0.216 - 0.11)$ = 346 kN $\frac{V_2}{V_1} = \frac{1+e_2}{1+e_1} \Rightarrow V_2 = 1.06V_1$ $\frac{1.06V_1}{V_1} = \frac{1+e_2}{1+e_1}$ $e_2 = 0.657$ $e_2 = \frac{w_3G}{s}$ $0.657 = \frac{w_3 \times 2.6}{1}$	09. Ans: (a), (b) & (d) Sol: Given, $G_m = 1.70$ $G_s = 2.8$ $G_m = \frac{\gamma_d}{\gamma_w} = 1.70$ $\gamma_d = \frac{G\gamma_w}{1+e}$ $\frac{\gamma_d}{\gamma_w} = \frac{G}{1+e}$ $1.7 = \frac{2.8}{1+e}$ $\Rightarrow 1+e = \frac{2.8}{1.7} = 1.647$ e = 0.647 Porosity (n) = $1 - n = \frac{1}{1+e}$ $1 - n = \frac{1}{1.647}$ n = 0.39 Shrinkage limit (w _s) es = wG 0.647 (1) = w _s × 2.8 $w_s = 0.2310$ $w_s = 23.10\%$

A ace online

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

05. Soil Classification

01. Ans: (c) **Sol:** $w_{\rm L} = 60\%$ $w_{\rm P} = 20\%$ $I_P \text{ of soil} = w_L - w_P$ = 60 - 20 = 40% I_P of A line = 0.73($w_L - 20\%$) = 0.73(60 - 20)= 29.2As the soil lies above A line chart and its liquid limit is 60% The given soil is CH. 02. Ans: GW - GM **Sol:** $C_u = 18$, $C_c = 2$, $I_p = 6$ From question it is given as gravelly soil. For GW, $C_u > 4$ and $C_c = 1 - 3$ 18 > 4 and $C_c = 2$ \therefore Soil is GW But lines lies 5% and 12%, border line cases require dual symbol For GM Atterberg limits fall below A line or $I_p < 4$ For GC Atterberg limits above A-line and I_p >7 Here $I_p = 6$ for GC IP must be greater ∴ Soil is GW-GM 03. Ans: (GM) **Sol:** Fine fraction = 45%

Coarse fraction = 100 - 45 = 55%

: Soil is coarse grained

% passing 4.75 mm since = 58% (out of total soil)

Geotechnical Engineering

% retained or 4.75 mm since = 100 - 58%= 42% (out of total)

Gravel + sand = 55%

7

% of Gravel = 42% (out of total soil)

 \therefore % retaining on 4.75 mm sieve out of coarse fraction

$$=\frac{42}{55}\times100=76\%$$

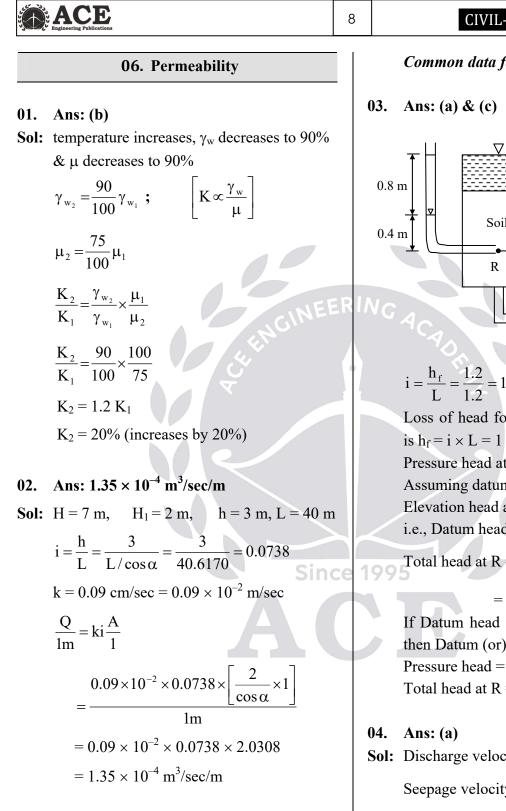
(out of coarse fraction)

: it is gravel

$$w_{L} = 40\%, \qquad w_{p} = 30\%$$

A-line = 0.73 (w_L - 20)
= 0.73 (40 - 20) = 14.6%
$$I_{p} = 40 - 30 = 10\%$$

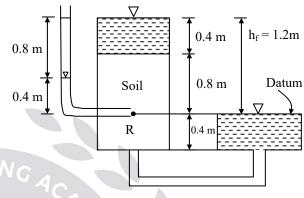
Point plots below A-line silty gravel (GM)


04. Ans: (a) & (d) Sol:

	Soil	Size				
	Boulder	> 300 mm				
5	Cobble	80 – 300 mm				
	Gravel	$4.75 \ mm-80 \ mm$				
	Sand	$75\ \mu-4.75\ mm$				
	Silt	$75 \ \mu - 2 \ \mu$				
	Clay	< 2 µ				

05. Ans: (b) & (d)

Sol: Classification of soil is done on the basis of grain size distribution and plasticity chart.


	Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert
A online	Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages

CIVIL-Postal Coaching Solutions

Common data for Questions. 003 & 004

Ans: (a) & (c)

Loss of head for a seepage length of 0.8 m is $h_f = i \times L = 1 \times 0.8 = 0.8 m$ Pressure head at R is 0.4 m Assuming datum at d/s water surface, Elevation head at R is zero i.e., Datum head = 0Total head at $R = \frac{P}{\gamma} + Z$

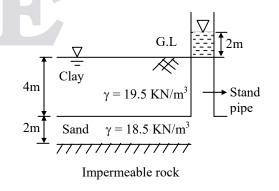
$$= 0.4 + 0 = 0.4$$

If Datum head is chosen at bottom of soil, then Datum (or) Elevation head = 0.4 m Pressure head = 0.4Total head at R = 0.4 + 0.4 = 0.8

Sol: Discharge velocity, V = k. $i = k \times 1 = k$ Seepage velocity, $V_s = \frac{V}{n} = \frac{k}{0.50} = 2 k$

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams ace online Enjoy a smooth online learning experience in various languages at your convenience

	ACE Engineering Publications	9			Geo	otechnica	al Engin	eering
05. Sol:	Ans: 0.183 cm/sec and 0.094 cm/sec Weight of water collected in 1 minute = 6.18 N		06. Sol:	Ans: (b) & Coarse grai fine grained	ned soil i	s more p	ermeable	e than
	Weight = volume × density $6.18 = \text{volume} \times 9810$ Volume = $\frac{6.18}{9810} = 6.3 \times 10^{-4} \text{ m}^3/\text{min}$		A	ype of soil pprox K m/sec)	Gravel 10°	Sand 10 ⁻²	silt 10 ⁻⁴	Clay 10 ⁻⁶
	$Q = 1.05 \times 10^{-5} \text{ m}^{3}/\text{sec}$ $Q = \text{kiA}$ $1.05 \times 10^{-5} = \text{k} \times \frac{26}{20} \times \frac{\pi}{4} \times 0.075^{2}$ $k_{\text{at } 25^{\circ}\text{C}} = 1.83 \times 10^{-3} \text{ m/sec} = 0.183 \text{ cm/sec}$ $k \propto \left(\frac{\text{e}^{3}}{1+\text{e}}\right) \times \frac{1}{\mu}$	RIA	$ \rightarrow K\alpha \frac{\gamma_w}{\mu} \alpha T $ As temperature increases, viscosity liquid decreases, permeabili increases. $ \rightarrow Laminar flow prevails in clays, st and fine sand. $ $ \rightarrow Pumping out test is more accurate the the constant head laborate permeability test. $					
	At 25°C At 20°C K = 0.183 cm/sec $k_2 = ?$ n = 40% $n_2 = 35\%$ $e = \frac{n}{n-1}$ $e_2 = \frac{0.35}{0.65} = 0.5384$ $v_1 = 0.9v_{20°C}$ $v_{20°C}$ \therefore $\frac{k_2}{k_1} = \left(\frac{e^3}{1+e}\right)_2 \left(\frac{1+e}{e^3}\right)_1 \times \frac{\mu_1}{\mu_2}$ $= \frac{0.5384^3}{1.5384} \times \frac{1.667}{0.667^3} \times 0.9$ $k_2 = 0.094$ cm/sec	ce 1	99	5				

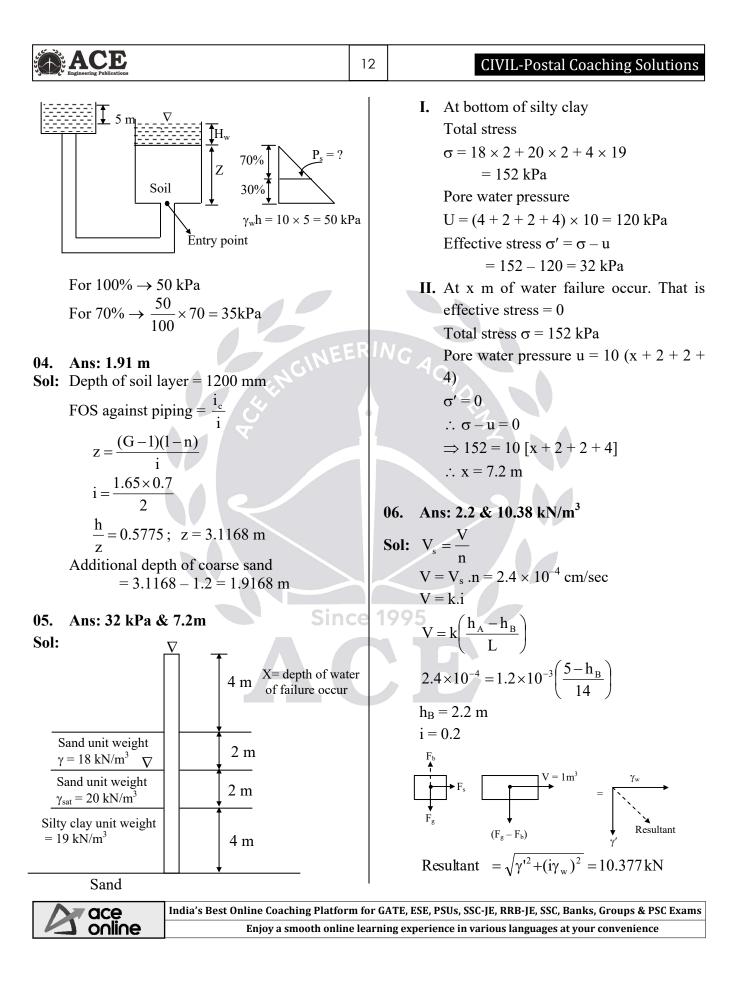

Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert
Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages

ACE 10 07. Effective Stress 01. Ans: (d) Sol: ₹^{G.L} 1m W.T 04. e = 0.4, G = 2.652m Sand Sol: 3m Clay $\gamma_{sat} = 20 \text{ KN/m}^3$ γ_{sat} of sand = $\frac{\gamma_w (G+e)}{1+e}$ $=\frac{10(2.65+0.4)}{1+0.4}=21.785 \,\mathrm{kN/m^3}$ γ_d of soil above water table = ? $\gamma_{\rm d} = \frac{\gamma_{\rm w} G}{1+e} = \frac{10 \times 2.65}{1+0.4} = 18.92 \,\rm kN/m^3$ Effective stress below G.L =? $\sigma'=\sigma-u$ $=(1 \times 18.92)+(2 \times 21.785)+(20 \times 3)-(5 \times 10)$ $= 72.49 \text{ kN/m}^2$ Since 02. Ans: (d) Sol: 2m ∑ J^{3m} ∇ Increase in effective stresses final effective stress - initial effective stress = change in effective stresses $=(\gamma_d-\gamma_w)(3-2)$ = (16 - 10) 1 = 6 kPa

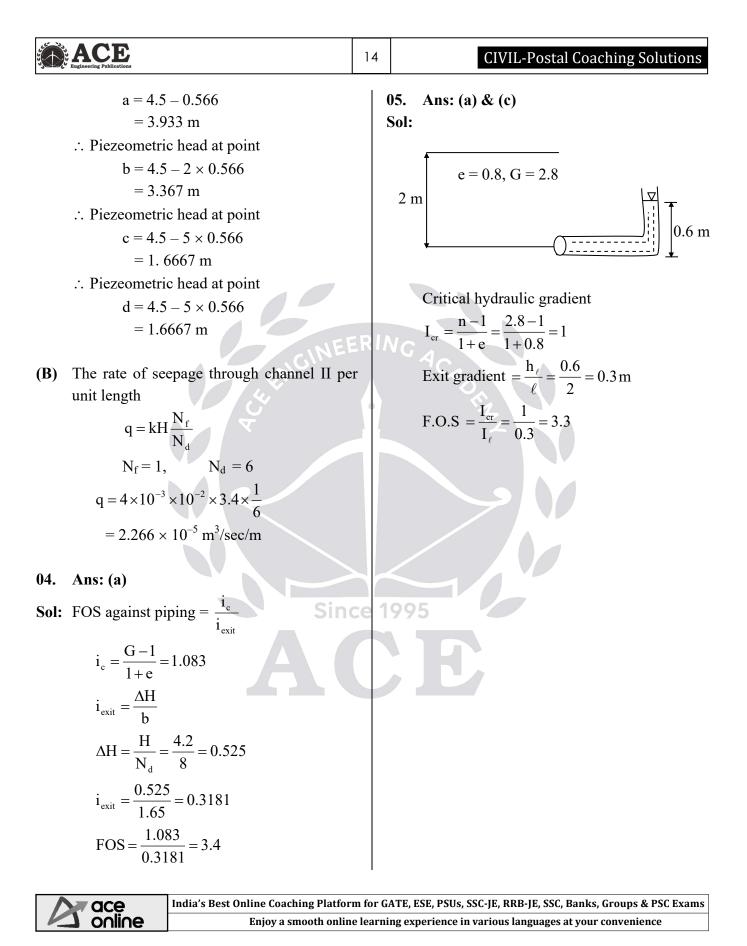
03. Ans: (b) **Sol:** σ' at 9m depth below G.L = ? $\sigma' = \sigma - u$ $=(17\times3)+(20\times1)+(18\times5)-(6\times9.81)$ $\sigma' = 102.14 \text{ kN/m}^2$ Ans: (a) 2m 4m 2 Capillary rise 1m Sand 5m Clay $\Delta \sigma'$ at 9 m depth of soil below G.L = ? Effective stress after capillary rise at $9m = \sigma'$ $\sigma' = \sigma - u$ $= (2 \times 17) + (2 \times 20) + (18 \times 5) - 6 \times 9.81$ $\sigma' = 105.14$ Increase in effective stress = 105.14 - 102.14 $\Delta \sigma' = 3 \text{ kN/m}^2$

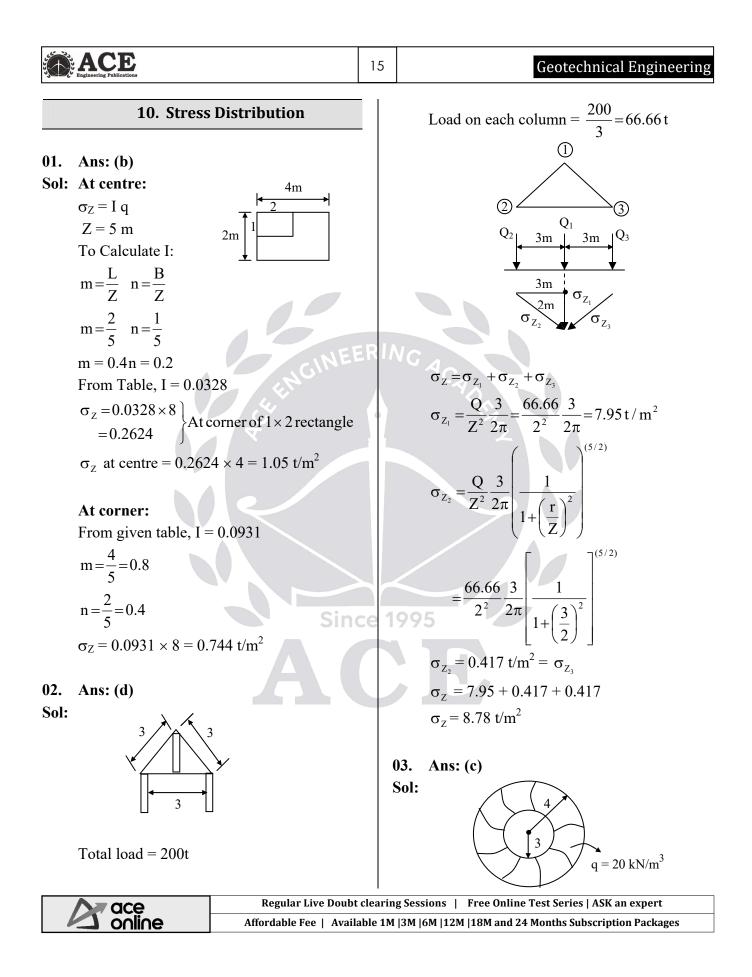
CIVIL-Postal Coaching Solutions

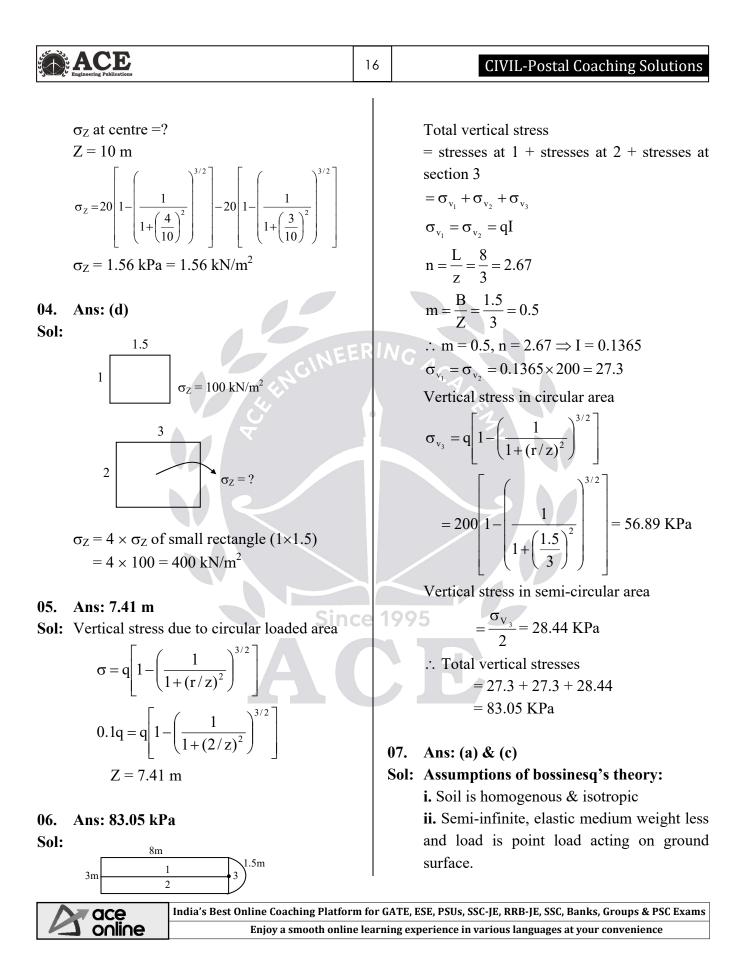
Common Data for Questions Q 05 & Q 06


 India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams

 Enjoy a smooth online learning experience in various languages at your convenience


5	4.05		
		11	Geotechnical Engineering
05	Amer (d)		
05. Sol:	Ans: (d) Effective stress at a depth of 6m =?		08. Seepage Pressure and Critical
501.	$\gamma_{\rm w} = 10 \text{ kN/m}^2$		Hydraulic Gradient
	$\sigma' = \sigma - u$		
	$= (19.5) \times 4 + (18.5 \times 2) - (8 \times 10)$		01. Ans: (c)
	$\sigma' = 35 \text{ kN/m}^2$		Sol:
06. Sol:	$\sigma' = 35$ kN/m Ans: (a) $\Delta \sigma' = ?$ when artesian head in the stand is reduced by 1m Total stress remains same. Pore water pressure decreases by 10 kN/m ² \therefore Effective stress increases by 10 kN/m ² $\Delta \sigma' = 10$ kN/m ²	R <i>I</i> /	9 m clay g_{m}
	N N N		Downward pressure = uplift pressure
07.	Ans: (a), (b), (c) & (d)		$\gamma (H - y) = \gamma_w h_a$
Sol: 08. Sol:	Pore water pressure $(v) = \sigma - \overline{\sigma}$ Effective stress do not change at sudden, bu by desiccation of upper lager by surface drying, change in water table, removal o any building and desiccation due to plan life, total stress decreases, hence pore wate pressure decreases, and vice-versa. Ans: (a) & (c) Soil particles get closed and become more compact as effective stress increases. As effective stress increases, compressibility o soil decreases.	e f t ce 1 ⁵	$y(11 - y) = y_w H_a$ 20 (9 - y) = 10 × 6 y = 6 m ∴ Maximum depth of trench will be excavated without failure is 6 m. 02. Ans: (c) Sol: 20 (9 - 7) = γ_w h_a $h_a = \frac{20 \times 2}{10} = 4 m$ Water table to be lowered = 6 - 4 = 2m 03. Ans: 35 Sol: Given Net head causing flow h = 5 m Hydraulic gradient i = $\frac{h}{Z} = \frac{5}{Z} = 1$ $\Rightarrow Z = 5 m$ Seepage length Z = 5 m


 Regular Live Doubt clearing Sessions |
 Free Online Test Series | ASK an expert


 Affordable Fee |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

Engineering Publications	13 Geotechnical Engineering
07. Ans: (d) Sol: Total stress at point A	09. Seepage Analysis
$= 0.7 \times 9.81 + 20.6 \times 1$ = 27.467 KPa	01. Ans: 0.0086
Neutral stress at point $A = \gamma_w h$ h = total head at point A	Sol: The quantity of flow into the pond per m ² area
h = 1 + 0.7 + 0.75 = 2.45	Q = ki
$\therefore \text{ Effective stresses at point A, } \sigma' = \sigma - u$ $= 27.467 - 9.81 \times 2.45$ $= 3.4325 \text{ kPa}$	$i = \frac{h}{z} = \frac{head loss}{depth of clay} = \frac{5m}{5m} = 1$ $\therefore Q = 10^{-5} \times 10^{-2} \times 1 = 10^{-7} \text{ m}^{3}/\text{sec}$
08. Ans: (c)	$ERING = 10^{-7} \times 3600 \times 24 \text{ m}^3/\text{day}$
Sol: Upward seepage force per unit volume = $\frac{\gamma_{w} h \times A}{volume} = \frac{\gamma_{w} h \times A}{A \times z} = \gamma_{w} i$	$= 0.0086 \text{ m}^3/\text{day}$
volume $A \times z$ = 9.81 × 0.75	02. Ans: (d)
$= 7.3575 \text{ kN/m}^3$	Sol: Equivalent permeability $k = \sqrt{k_x k_y}$
09. Ans: (a) & (d)Sol: If seepage flow is upward then effective stress will get reduced by seepage force, and vice-versa.	
Sin	ce 1995 = $3.404 \times 9 \times \frac{5}{8}$ = 19.152 m ³ /day/m
Α	$\therefore \text{ Total seepage} = q \times b = 19.152 \times 50$ $= 957.6 \text{ m}^3/\text{day}$
	03. Ans: 3.933, 3.367, 1.666, 1.6667, $\Delta Q = 2.2667 \times 10^{-5} \text{ m}^3/\text{sec/m}$
	Sol: (A) Total head loss $h = (4.5 - 1.1) = 3.4$
	Head loss per one flow net $=\frac{3.4}{6}=0.566$ m
	Piezeometric head at point
	t clearing Sessions Free Online Test Series ASK an expert lable 1M 3M 6M 12M 18M and 24 Months Subscription Packages

08. Ans: (b), (c) & (d)

Sol: Westergaard, like Boussinesq, also solved the problem of pressure distribution in soils under a point load. For solving this problem, he also made certain assumptions, as were made by Boussinesq.

> He assumed the soil mass to be elastic, homogeneous and of semi-infinite extent. He, in fact, assumed that the soil mass contains numerous closely spaced horizontal sheets of negligible thickness of an infinite rigid material, which permit only the downward deformation of the mass as a whole without allowing it to undergo any lateral deformation. In other words, the soil mass would not behave in all directions in a similar fashion, as was the case with Westergaard Boussinesq. Hence, did assume a sort of non-isotropy in the soil mass; whereas, Boussinesq had assumed the soil mass to be fully isotropic.

> Westergaard's assumptions are more close to the field reality, especially for overconsolidated and laminated sedimentary soils, which exhibit marked an-isotropy, satisfying Westergaard's assumption of

 $\frac{E_{h}}{E_{v}} = \frac{\text{young moudlus of soil in horizontal direction}}{\text{Young mod ulus soil in vertical direction}} = \infty$

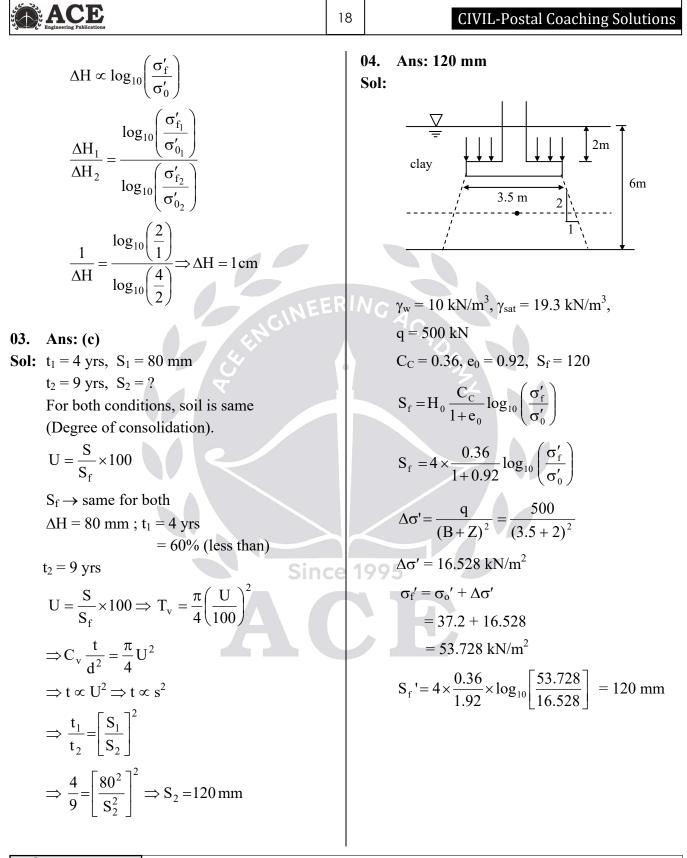
11. Consolidation

01. Ans: 147.86 mm & 2.86 years Sol: d = H = 8 m = 800 cmFor a settlement 120 mm in 2 years $C_v = 6 \times 10^{-3} cm^2/s$ $S_f = ?, t_{90} = ?$ $T_v = \frac{C_v t}{d^2}$ $= \frac{6 \times 10^{-3} \times 2 \times 365 \times 24 \times 60 \times 60}{800^2} = 0.5913$

Since
$$T_v > 0.282$$

 $T_v = 1.781 - 0.933 \log_{10} (100 - U\%)$
 $0.5913 = 1.781 - 0.933 \log_{10} (100 - U\%)$
 $U = 81.16\%$

$$\Rightarrow U = \frac{s}{s_{f}}$$
$$\Rightarrow 81.16 = \frac{120}{s_{f}} \times 100$$
$$s_{f} = 147.86 \text{ mm}$$


(b)
$$T_v = 1.781 - 0.953 \log_{10} (100 - 90\%)$$

= 0.848
 $T_v = \frac{C_v t}{d^2} \Rightarrow 0.848 = \frac{6 \times 10^{-3} \times t}{120^2}$
 $\Rightarrow t = 2.86$ years

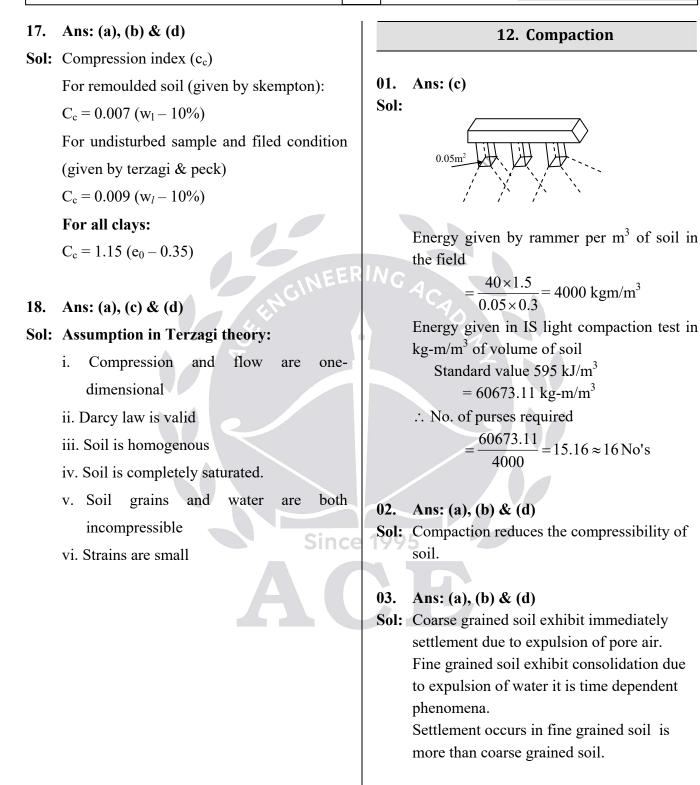
02. Ans: (a)
Sol:
$$\Delta H_1 = 1$$
 cm,
 $\sigma'_{f_1} = 2$ kg / cm², $\sigma'_{0_1} = 1$ kg/cm²,
 $\Delta H_2 = ?$
 $\sigma'_{f_2} = 4$ kg/cm², $\sigma'_{0_2} = 2$ kg/cm²

A ace	Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert
Online	Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages

Geotechnical Engineering

17

	India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams
online	Enjoy a smooth online learning experience in various languages at your convenience


	ACE Engineering Publications	19	Geotechnical Engineering
05.	Ans: (c)		Common data for Questions 08 & 09
Sol:	$t \propto \frac{d^2 m_v}{K}$		$U = \frac{80}{300} = 26.6\%$
	$\frac{t_2}{t_1} = \left(\frac{d_2}{d_1}\right)^2 \left(\frac{m_{v2}}{m_{v1}}\right) \left(\frac{K_1}{K_2}\right)$ $t_1 = 15 \text{ yrs, } d_2 = 2 d_1 \text{ , } K_2 = 3K_1,$ $m_{v2} = 4 m_{v1}$		$T_{v} = \frac{C_{v}t}{d^{2}}$ $\frac{\pi}{4}(26.6)^{2} = \frac{C_{v}t}{d^{2}}$ $\frac{C_{v}}{d^{2}} = \frac{\pi}{225}$
	$t_{2} = 15 \times \left(\frac{2}{1}\right)^{2} \left(\frac{4}{1}\right) \left(\frac{1}{3}\right)$ $t_{2} = 80 \text{ yrs}$		8. Ans: (b) ol: $T_v = \frac{C_v}{d^2} \times t = \frac{\pi}{225} \times 25 = 0.35$ U = 65%
	Common data for Questions 06 & 07		$\frac{S}{300} \times 100 = 0.65$ S = 195 mm
06.	Ans: (a)		9. Ans: (d)
Sol:	$d_{1} = \frac{20}{2} = 10 \text{mm}, U_{1} = 50\%, t_{1} = 45 \text{min} \text{ [lab]}$ $d_{2} = 5000 \text{ mm}, U_{2} = 50\%, t_{2} = ? \text{ [field]}$ Same U, T _v $t \propto d^{2}$ Since $\frac{t_{2}}{t_{1}} = \frac{d_{2}^{2}}{d_{1}^{2}}$	e 14	ol: At U% = 70%, $T_v = 0.403$ $T_v = \frac{C_v}{d^2} \times t$ $0.403 = \frac{\pi}{225} \times t \Rightarrow t = 28.8 \text{ yrs}$ 0. Ans: (c) ol: NOTE: The time is measured from middle of construction period t = 5 yrs,
	$t_2 = 45 \left(\frac{5000}{10}\right)^2 = 11250000 \text{ min}$ = 21.4 years		S = 90 mm, $S_{f} = 360$ $T_{v} = \frac{C_{v}t}{d^{2}}$ $t_{1} = T_{v} = (S/360)^{2}$
07.	Ans: (b)		$\frac{t_1}{t_2} = \frac{T_{v_1}}{T_{v_2}} = \frac{(S/360)^2}{(90/360)^2}$
Sol:	$t_2 = 4 \times 21.4 = 85.6 \text{ yrs}$		$S^2 = 90^2 \times \frac{9}{4}$
			S = 135 mm
		-	Sessions Free Online Test Series ASK an expert
		e 1141	3M 6M 12M 18M and 24 Months Subscription Packages

Engineering Publications		20	CIVIL-Postal Coaching Solutions	
Common data for	Questions 11 & 12		$S_{f} = m_{v} H \Delta \sigma'$	
11. Ans: (b)			$S_f \propto H. \Delta \sigma'$ assuming 'm _v ' remains same	
Sol: $\gamma_{\text{sat}} = 18 \text{ kN/m}^3$			$\frac{\mathbf{s}_{\mathbf{f}_1}}{\mathbf{s}_{\mathbf{f}_2}} = \frac{\mathbf{H}_1 \Delta \sigma'}{\mathbf{H}_2 \Delta \sigma'}$	
$\gamma_{sat} = 20 \text{ kN/m}^3$			$\frac{250}{10} - \frac{H_1 24}{10} - S = 422 \text{ mm}$	
$\gamma_w = 10 \text{ kN/m}^3$			$\frac{250}{S_{f_2}} = \frac{H_1 24}{1.2H33.81} = S_{f_2} = 422 \text{mm}$	
Depth = 4 m; $\gamma = 1$	9 kN/m^3			
a) Immediately after l	oad		4. Ans: (a), (b) & (c)	
$\sigma = q + (18 \times 5)$	$) + (20 \times 3)$	S	Sol: Rate of settlement is directly related to rate	
= 226 kPa	INEE	RIA	of dissipation of excess pore water pressure. $K = c_v m_v \gamma_w$	
$U = U_{static} + U_{dy}$			Hence rate of consolidation (i.e. flow of	
$= 8\gamma_{\rm w} + q = 1$	56		water) is controlled by, permeability,	
$\sigma' = 70 \text{ kPa} = 70$	0 kN/m^2		compressibility and excess pore water	
			pressure.	
12. Ans: (c)			$U = \frac{u_i - u_z}{u_i}$	
Sol: Many years after (At the end of		1	15. Ans: (a), (b) & (c)	
consolidation)		1	Sol: \rightarrow Correction is applied for the effect of 3 –	
$\sigma = 226 \text{ kPa}$	$\sigma = 226 \text{ kPa}$		dimensional consolidation.	
$U = 80 \qquad (\because \overline{U})$	Ū=0)		\rightarrow Settlement of rigid footing = 0.8 times	
$\sigma' = 146 \text{ kPa}$	Sinc	e 10	the settlement at center of flexible footing.	
			\rightarrow For foundation located at certain depth, a	
13. Ans: 422.7 mm			depth factor correction has been	
Sol:			suggested by IS 8009 – part I – 1976.	
Preliminary analysis	Detailed investigation			
H_1	$H_2 = 1.2H_1$		6. Ans: (a) & (c) Sol: Immediate settlement occurs by expulsion	
$\Delta \sigma' = 24 \text{KPa}$	$\Delta \sigma_{\rm r}^2 = \Delta \sigma' + 1 \times \gamma_{\rm w}$		of pore air, so volume only change by	
	= 24 + 9.81		decrease of air not by decrease of water, so	
	= 33.81 KPa		volume change does not occur in idealized manner. Secondary settlement is done by	
$Sf_1 = 250 \text{ mm}$	Sf ₂ =?		plastic theory.	

 India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams

 Enjoy a smooth online learning experience in various languages at your convenience

	ACE
3.2K	Engineering Publications

	Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert
A ace online	Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages

13. Shear Strength

01. Ans: (a)

Sol: Direct stress, $\sigma_1 = 5 \text{ Kg/cm}^2$ All round stress, $\sigma_3 = 3.2 \text{ Kg/cm}^2$ Shear on failure plane, $\tau_f = 0.9$ $\phi = ?$ $\tau_{max} = \frac{\sigma_1 - \sigma_3}{2} = 0.9$

$$:: \tau_{\rm f} \!=\! \tau_{\rm max} \! \Longrightarrow \! \phi \!=\! 0$$

Another method:

$$\tau_{f} = \frac{\sigma_{1} - \sigma_{3}}{2} \sin 2\alpha_{f}$$
$$0.9 = \frac{5 - 3.2}{2} \sin 2\left(45 + \frac{\phi}{2}\right)$$
$$1 = \sin 2\left[45 + \frac{\phi}{2}\right]$$
$$1 = \cos\phi$$
$$\phi = 0$$

Common data for Questions 02 & 03

02 & 03 Ans: (c) & (b) Sol: Given: Unconfined compressive test ($\phi = 0$) $q_u = 1.2 \text{ kg/cm}^2$ $\alpha_f = 50$ Cohesion of soil =?

$$\alpha_{\rm f} = \left(45 + \frac{\phi}{2}\right)$$

$$\sigma_1 = \sigma_3 \tan^2 \left(45 + \frac{\phi}{2}\right) + 2C \tan \left(45 + \frac{\phi}{2}\right)$$

$$\therefore \ \alpha_{\rm f} = 50$$

22

04. Sol

CIVIL-Postal Coaching Solutions

$$50 = 45 + \frac{\phi}{2}$$

$$5 \times 2 = \phi$$

$$\phi = 10^{\circ}$$

$$q_{u} = 2 C_{u} \tan\left(45 + \frac{\phi}{2}\right) \text{ if } \phi > 0$$

$$q_{u} = 2 C_{u} \tan\left(45 + \frac{\phi}{2}\right) \text{ if } \phi = 0$$

$$1.20 = 2 C_{u} \tan\left(45 + \frac{10}{2}\right)$$

$$C_{u} = 0.5 \text{ kg/cm}^{2}$$

$$Ans: C_{u} = 0, \phi_{u} = 15.8^{\circ}, C' = 0, \phi' = 22^{\circ}$$

$$\sigma_{d} = 150 \text{ kN/m}^{2}$$

$$u_{f} = 75 \text{ kN/m}^{2}$$

$$NCC \text{ in } C_{u} \text{ test } C_{u} = 0 \& C' = 0$$

$$To \text{ find, } \phi_{u}^{1} \& \phi_{u}^{11} = ?$$

$$\sigma_{1} = \sigma_{3} + \sigma_{d} = 200 + 150$$

$$= 350 \text{ kN/m}^{2}$$

$$350 = 200 \tan^{2}\left(45 + \frac{\phi_{u}}{2}\right) + 2(0)$$

$$\frac{350}{200} = \tan^{2}\left(45 + \frac{\phi_{u}}{2}\right)$$

$$\phi_{u} = 15.8^{\circ}$$

$$To \text{ find } \phi'$$

$$\sigma_{1}^{1} = \sigma_{3}^{1}\left(45 + \frac{\phi}{2}\right)$$

$$(\sigma_{1} - u) = (\sigma_{3} - u)\tan^{2}\left(45 + \frac{\phi}{2}\right)$$

$$275 = (125) \tan^{2}\left(45 + \frac{\phi}{2}\right)$$

$$\phi = 22^{\circ}$$

 India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams

 Enjoy a smooth online learning experience in various languages at your convenience

Since

	ACE Engineering Publications	23		Geotechnical Engineering
05. Sol: 06.	Ans: $B = 0.70 \& A = -0.228$ Change = final value – Initial value In consolidation stage: $\Delta u_3 = 10 - (-60) = 70 \text{ kN/m}^2$ $\Delta \sigma_3 = 100 - 0 = 100 \text{ kN/m}^2$ $\Delta u_3 = B \times \Delta \sigma_3 \implies B = 0.7$ In shearing stage (or) failure stage $\Delta u_d = -70 - 10 = -80 \text{ kN/m}^2$ $\therefore u = \text{Pore water pressure}$ $\Delta \sigma_d = 500 \text{ kN/m}^2$ $\Delta u_d = AB \Delta \sigma_d$ $-80 = A \times 0.7 \times 500$ $\implies A = -0.228$ Ans: 78.20 kN/m ²		07. Sol: V <i>G</i>	Ans: (a), (b), (c) & (d) An empirical formula has been suggested by Brinch Hansen and Lundgren (1960), which takes into account the influence of the major factors influencing ϕ' in sands and gravels. This formula is expressed as: $\phi' = 36^{\circ} + \phi_1^{\circ} + \phi_2^{\circ} + \phi_3^{\circ} + \phi_4^{\circ}$ Where $\phi_1^{\circ} = \text{Grain shape correction factor, with thefollowing values;For angular grains = + 1^{\circ}For sub-angular grains = 0^{\circ}For grounded grains = -3^{\circ}For well rounded grains = -6^{\circ}\phi_2^{\circ} = Grains size correction factor with thefollowing values:$
Sol:	$\Delta \sigma_{3} = \frac{1}{2} \Delta \sigma_{1}$ $\Delta \sigma_{1} = 3\gamma = 48.6 \text{ KPa}$ $\Delta \sigma_{3} = \frac{1}{2} \Delta \sigma_{1} = 24.3$ $\Delta \sigma_{d} = (\Delta \sigma_{1} - \Delta \sigma_{3})$ $= 48.6 - 24.3 = 24.3$ $\Delta u = B (\Delta \sigma_{3} + A \Delta \sigma_{d})$ $= 31.29 \text{ KPa}$ To find $\sigma' = \sigma - u$ $= 8 \times 16.2 - 31.29 = 98.31 \text{ KPa}$ $S = C' + \sigma' \tan$ $= 50 + 98.31 \times \tan (16^{\circ})$ $= 78.18 \text{ KPa}$		99	 For sand = 0° For fine gravel = + 1° For medium and coarse gravel = + 2° φ₃° = Correction factor for Gradation, with the following values: For poorly graded soil = - 3° For medium uniformity = 0° For well graded soil = +3° φ₄° = Correction factor for relative density, with the following values: For loose packing = - 6° For medium density = 0° For densest packing = + 6° Note: 1. The influence of relative density (i.e., density index) is the most important as can be seen above. 2. The value of 36° is for average conditions. 3. Typical values of φ' for different types of sands and gravels may range between 20° to 48°.

 Regular Live Doubt clearing Sessions
 Free Online Test Series | ASK an expert

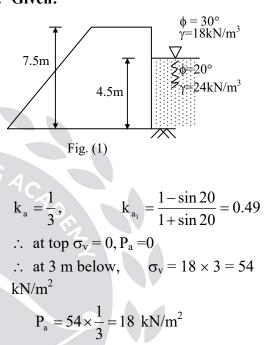
 Affordable Fee |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

24

CIVIL-Postal Coaching Solutions

08. Ans: (a), (b), (c) & (d)

Sol: Liquefaction property in sands: Loose saturated sands, as explained above, may undergo large scale reduction in their shear strength. When subjected to a sudden shock or other dynamic loads, since such a soil mass behaves like an un drained system, where there will occur a tendency for reduction in volume of the soil, which cannot actually occur in the available short period of time. This induces sudden increases pore pressures, reducing the effective stress. If this decrease is such that the effective stress almost reduces to zero then the soil in that localized zone will be transformed into a fluid like mass with hardly any shear strength.


> The soil is then said to have liquefied, and this property is known liquefaction. Once a complete loss of strength has occurred in a limited mass of soil, the stresses which were carried by the affected soil before its liquefaction, gets transferred to the adjacent soil pats, against throwing that part of soil mass into a state of liquefaction, and the process may continue, causing large scale failure of earthen sloped, etc.

09. Ans: (b), (c) & (d)

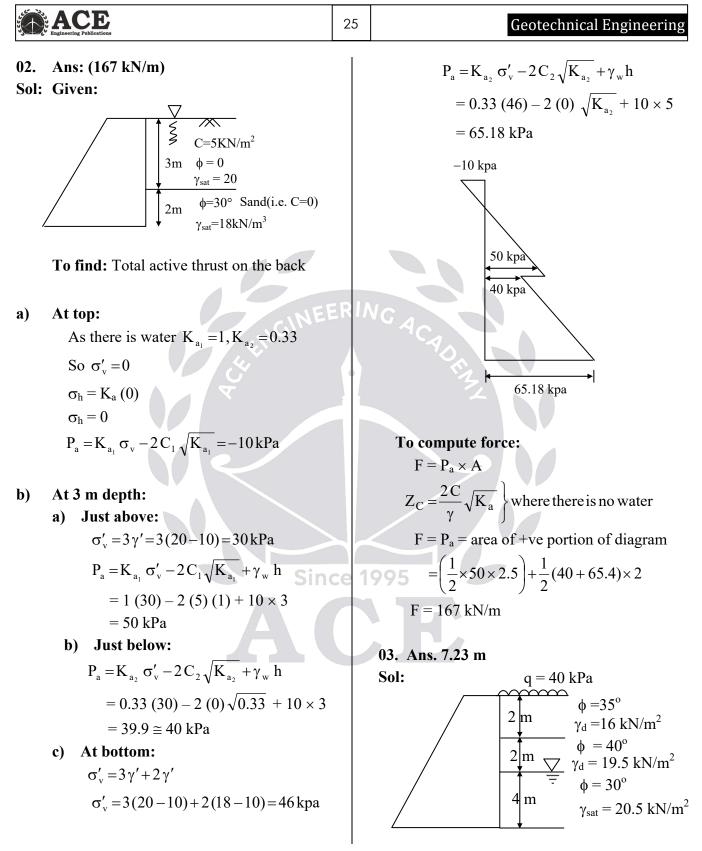
Sol: Shear strength $\tau = C' + \overline{\sigma} \tan \phi'$

Where $\overline{\sigma}$ is effective stress and C' & ϕ' are effective stress shear strength parameter. Shear strength also depends upon drainage condition wheather it is drained or untrained, by knowing the drainage condition, effective and total shear strength parameter are taken into account 14. Earth Pressure

01. Ans: 316.7 kN Sol: Given:

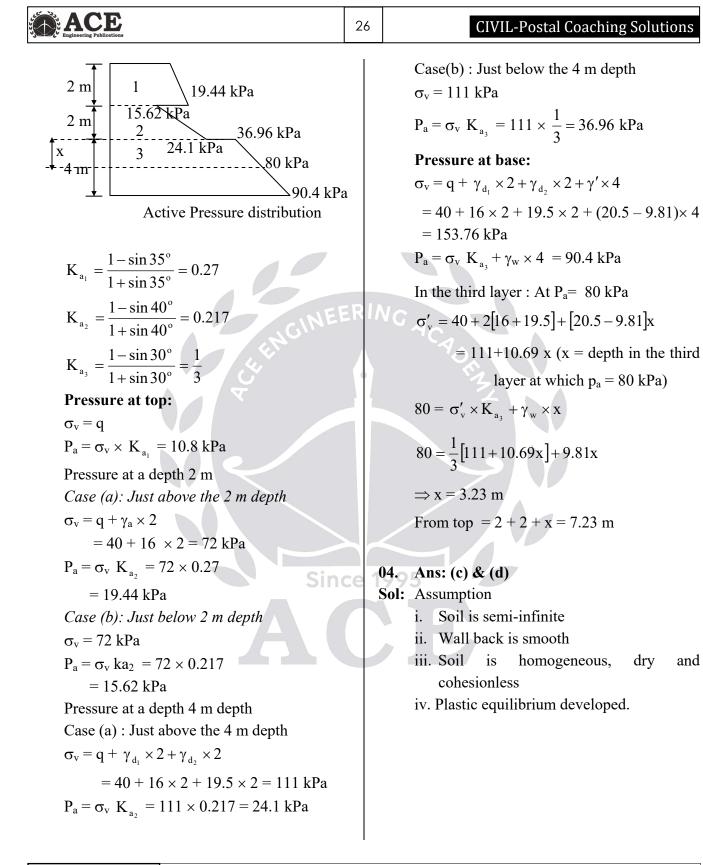
... at 3m just below $P_{a_1} = 54 \times 0.49 = 26.46$ At 7.5 m, $\sigma_v = 18 \times 3 + 4.5 \times 14 = 117$ kN/m²

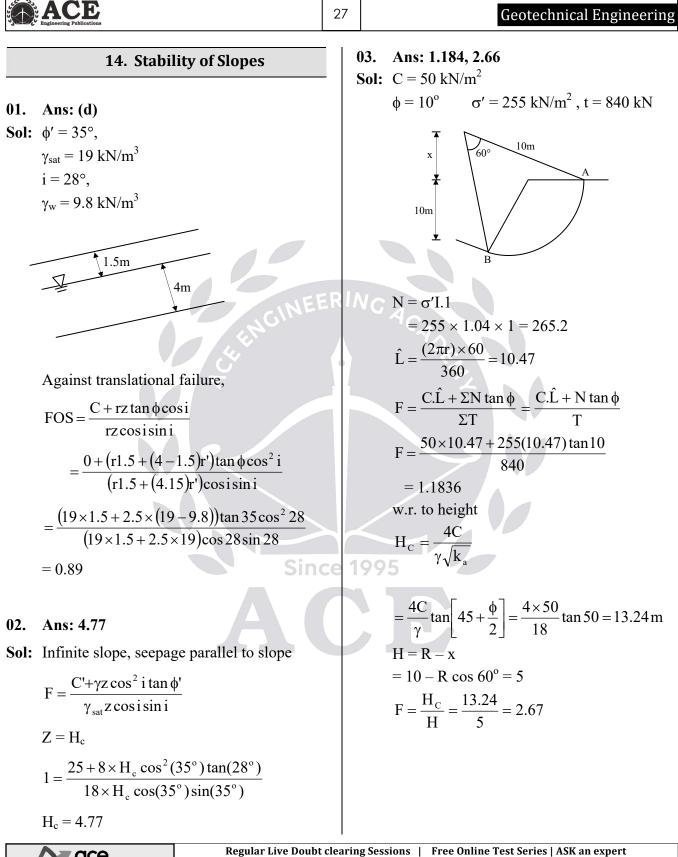
1995 $P_{a_2} = 0.49(117) + 10 \times 4.5$ = 102.33 kN/m²


Total active thrust

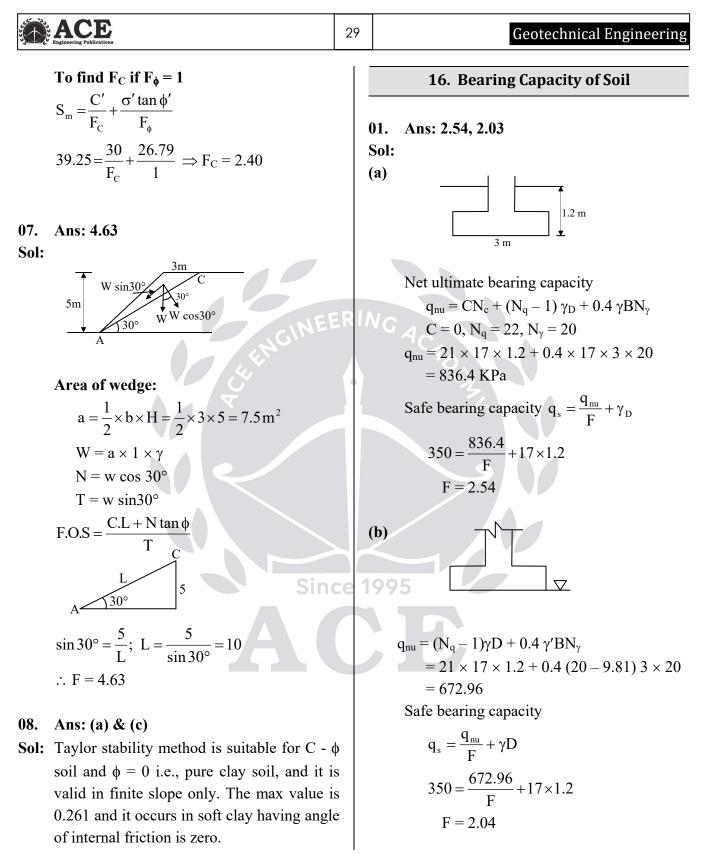
$$= \frac{1}{2} \times 18 \times 3 + \left(\frac{26.46 + 102.33}{2}\right) 4.5$$

= 316.77 kN/m


102.33


India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

	Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert
ine ine	Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages



OCEIndia's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC ExamsOnlineEnjoy a smooth online learning experience in various languages at your convenience

 Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

Engineering Publications	28		CIVIL-Postal Coaching Solutions
04. Ans: $F_c = 1.16$ & $F_{\phi} = 1.2$ Sol: Given: Cutting is to be made in soil Slope of soil = 25° Depth of soil = 25 m Cohesion soil C = 0.35 kg/cm ² Angle $\phi = 15^{\circ}$ Bulk density $\gamma = 2$ gm/cc		05. Sol:	Ans: 3.56 & 1.18 Given: A new canal is excavated with Depth of canal $h = 5 m$ $C = 1.4 t/m^2$; $\phi = 15^{\circ}$ $\gamma_{sat} = 1.945 t/m^3$ Slope of bank = 1 : 1 To find: a) FOS w.r.t cohesion when canal runs full
a) FOS w.r.t cohesion, if FOS desired with respect to friction = 1.5 As we know $F_{s} = \frac{\tan \phi}{\tan \phi_{m}} \Rightarrow 1.5 = \frac{\tan 15^{\circ}}{\tan \phi_{m}}$ $\tan \phi_{m} = \frac{\tan 15^{\circ}}{1.5}$ $\phi_{m} = 10^{\circ}, S_{n} = 0.06$ $S_{n} = \frac{C}{F_{c} \gamma H}$ $0.06 = \frac{3500}{F_{c} \times 2000 \times 25} F_{c} = 1.16$	RI	V <i>G</i>	=? b) If it is suddenly emptied, FOS = ? a) $S_n = \frac{C}{F_c \gamma^1 H}$ $0.083 = \frac{1.4}{F_C (1.945 - 1)5} \Rightarrow F_C = 3.56$ For $\phi = 15^0$; $S_n = 0.083$ For $\phi = 7.5^0$; $S_n = 0.122$ b) $\phi_m = \frac{\gamma}{\gamma_{sat}} \times 15 = 7.5$ $S_n = \frac{C}{F_C \gamma_{sat} H}$ $F_C = \frac{1.4}{0.122 \times 1.945 \times 5} = 1.179$
b) If FOS with respect to cohesion is 1.5, then what is FOS with respect to friction = $(F_{\phi} = ?)$ $S_n = \frac{C}{F_C \gamma H}$ $S_n = \frac{3500}{1.5 \times 2000 \times 25}$ $S_n = 0.049 \approx 0.05$ $\therefore \phi_m = 12.5^{\circ}$ $F_{\phi} = \frac{\tan \phi}{\tan \phi_m} = \frac{\tan 15^{\circ}}{\tan 12^{\circ}5'} = 1.2$			Ans: $\mathbf{F}_{c} = 2.4 \& \mathbf{F}_{\phi} = 2.89$ Given: Embankment is to be made of a soil Shear parameters of soil: $C' = 30 \text{ KN/m}^2$; $\phi' = 15^\circ$ To find \mathbf{F}_{ϕ} if $\mathbf{F}_{C} = 1$ $S_m = \frac{C'}{F_C} + \frac{\sigma' \tan \phi}{F_{\phi}}$; $(\phi' = 15')$ $39.25 = \frac{30}{1} + \frac{100 \times \tan 15}{F_{\phi}}$ $F_{\phi} = 2.89$ ESE, PSUS, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams
			perience in various languages at your convenience

A ace	Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert				
Online	Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages				

	ACE Engineering Publications	30	CIVIL-Postal Coaching Solutions
02. Sol:	Ans: (b)		S_{γ} or $F_{\gamma s} = 1.314$ Depth factors d_q or $F_{qd} = 1.113$
Sol:	Given:		$d_{\gamma} \text{ or } F_{\gamma d} = 1.113$
	Depth = 1m		Inclination factors
	Square plate = 30 cm^2		i_{q} or $F_{qi} = 0.444$
	Load = 7.2 tones		i_{γ} or $F_{\gamma i} = 0.02$
	S_p settlement = 25 mm		Substituting in the equation,
	To find:		[(18×1×33.3×1.314×1.113]]
	If settlement is limited for 10 mm		$q_{ns} = \times 0.444 + (0.5 \times 18 \times 1.7 \times 37.16)$
	Allowable bearing pressure=?		×1.314×113×0.02
	$a = \frac{7.2}{-80t/m^2}$		$= 405.85 \text{ kN/m}^2$
	$q_1 = \frac{7.2}{(0.3)^2} = 80 t/m^2$	- DI	$q_{nu} = q_u - \gamma D = 405.85 - 18 \times 1$
	$S_2 = 10 \text{ mm}$	ENI	$q_{uu} q_{u} - 7D + 05.05 - 10 \times 1$ = 387.85 kN/m ²
	q = ?	/	
	(S \propto q in case of granular soils)		$q_{ns} = \frac{q_{nu}}{F} = \frac{387.85}{3} = 129.28 \text{ kN}/\text{m}^2$
			Net safe load = $A' \times q_{ns}$
	$\frac{S_2}{S_1} = \frac{q_2}{q_1}$		$= B'L \times q_{ns}$
			$= 1.7 \times 2 \times 129.28 = 439.55 \text{ kN}$
	$\frac{10}{25} = \frac{q_2}{80}$		
	$q_2 = 32 \text{ t/m}^2$		04. Ans: 5.01 m
	q ₂ 52 cm		Sol: For design safety, $q_n \le q_{na}$
03.	Ans: 439.55		(smaller of q_{ns} and q_{np})
Sol:	B = 2 m		If q_{np} is not given, then $q_{na} = q_{ns}$
2011			$q_n \le q_{ns}$
	L = 2 m e = 1 - 0.85	Le	or $q_g \leq q_s$
	= 0.15 m		Gross load = co. load + 5% col.load
	B' = B - 2e		10(2) 5 10(2)
	$= 2 - 2 \times 0.15 = 1.70 \text{ m}$		$=1962 + \frac{5}{100}1962$
	There is no effect of water table as it is located	d	= 2060.1 kN
	well below the base of footing.		$Q_{s} = 2060.1_{100}$
	$Q_{nu} = [\gamma DN_q S_q d_q i_q + 0.5_{\gamma} B' N_{\gamma} S_{\gamma} i_{\gamma} d_{\gamma}]$		$q_g = \frac{Q_s}{A} = \frac{2060.1}{1.5^2} \text{kN/m}^2$
	Given:		= 915.6 kPa
	$F = 3$ $\gamma = 18 \text{ kN/m}^3$		$q_n - \gamma D_f$
	$D = 1 \text{ m}$ $N_q = 33.3$		$\mathbf{q}_{s} = \frac{\mathbf{q}_{n} - \gamma \mathbf{D}_{f}}{F} + \gamma \mathbf{D}_{f}$
	$N_{\gamma} = 37.16$ B' = 1.70 m		$1.3N_{c} + \gamma D_{f} (N_{a} - 1) + 0.4 \gamma BN_{r}$
	Shape factors, S_q or $F_{qs} = 1.314$		$q_{s} = \frac{1.3N_{c} + \gamma D_{f} (N_{q} - 1) + 0.4\gamma BN_{r}}{F} + \gamma D_{f}$
		-	
			GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams ning experience in various languages at your convenience
-		e iedi'i	ning experience in various languages at your convenience

	ACE Engineering Publications	31	Geotechnical Engineering
915.6	$\frac{5 = q_s}{2 + 20.6 \times D_f \times (22 - 1) + 0.4 \times 20.60 \times 2.5 \times 20}{3} + 20.6 \times 17$ equate $q_g = q_s$ $D_f = 5.01$ m		Since there is a provision for basement floor, the footing is not back filled. Hence, $q_n = q_u - \gamma D$ $= 140-19 \times D$
05. Sol:	Ans: 6.55 m Given: Size of foundation = $14m \times 21m$ Unconfined compressive strength = 15 kN/r $C_u = \frac{15}{2} = 7.5 \text{ kN/r}$		$140-19 \times D = 14.17 \left(1+0.2 \frac{D}{14}\right)$ $140-19 \times D = 14.17+0.202D$ $125.83 = 19.202D$ $D = 6.55 m$
	Gross pressure intensity $q_u = 140 \text{ kN/m}^2$ FOS = 3; $\gamma_{clay} = 19 \text{ kN/m}^3$ For safety $q_n \le q_{na}$ Where, $q_{na} \rightarrow$ net allowable bearing capacity of soil which is smaller of $q_{ns} \& q_{np}$ According to skemptons; $q_{nu} = CN_c$ For Rectangular footing; $N_c = 5 \left[1 + 0.2 \frac{D}{B} \right] \left[1 + 0.2 \frac{B}{L} \right]$ $q_{ns} = \frac{q_{nu}}{F.O.S}$		 06. Ans: (a), (c) & (d) Sol: General Shear Failure: Brittle type stress strain behavior (dense sand is characterized by (a) well defined failure pattern. (b) a sudden catastrophic failure accompanied by tilting of foundation and (c) Bulging of ground surface adjacent to the foundation.
	$= 42.5 \left(1 + 0.2 \frac{D}{14} \right)$ $q_{ns} = \frac{q_{nu}}{FOS} = \frac{42.5}{3} \left(1 + 0.2 \frac{D}{14} \right)$ $= 14.17 \left(1 + 0.2 \frac{D}{14} \right)$		 2. Punching shear failure: Occurs in soil possessing the stress – strain characteristics of a very plastic soil. i. Poorly defined shear plane ii. Soil zone beyond the loaded area being little affected.

	Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert
	Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages

Engineering Publications	32	CIVIL-Postal Coaching Solutions
iii. Significant penetration of a wedge shaped soil zone beneath foundation accompanied by vertical shea	n r	17. Pile Foundation
beneath the edge of foundation.		 01. Ans: Q_u = 134.3 kN Sol: Given: Diameter of bored concrete pile = 30cm Length passes through stiff fissures = 6.50m Depth of shrinkage & swelling=1.50m Average undrained stress of clay = 50 kPa
 3. Local shear failure: It has some characteristics of both GSF and PSF 		below pile = 100 kPa $\alpha = 0.3$ To find: Ultimate load capacity = ? $Q_u = A_b C N_c + A_s \alpha C$ $= 0.070 \times 100 \times 9 + 4.71 \times 0.3 \times 50$
Main feature of local shear failure are.i. Well defined wedge and slip surfaction.ii. Slip surface not visible beyond edge of foundation.	e	= 134.3 kN $\therefore A_{\rm S} = \pi d l$ = 3.14×5×0.3 = 4.71 m ² 02. Ans: 669 kN
iii. Slight bulging of ground surfact adjacent to foundation.	e	Sol: Non-homogeneous $E_1=0$ 5 $C_u=50$
settlement	C	$E_{L} = 5 - \frac{5}{5}$ $E_{L} = 10 - \frac{5}{5}$ $E_{L} = 15 - \frac{5}{5}$ $C_{u} = 70$ $C_{u} = 100$ $C_{u} = 200$
		Given: L = 20 m $\phi = 500 \text{ mm} = 0.05 \text{ m}$ $\alpha = 0.4$ F = 2.5 $N_c = 9 \text{ ; } \phi_u = 0$

A ace online

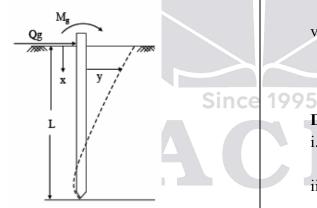
India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

Engineering Publications	33 Geotechnical Engineerin
To find:	04. Ans: $(Q_g = 27390.6 \text{ kN})$
$Q_{safe} = ?$	Sol: Given:
	n = 25
$Q_{safe} = \frac{1}{F} [A_b C N_C + A_s \alpha C]$	L = 12 - 2 = 10 m
At base:	Dia = 0.5 m
	S = 1 m c/c
$\frac{1}{4} \times 0.5^2 \times 200 \times 9 + (\pi \times 0.5) \times 5 \times 0.4 \times 50$	C = 180 kPa
$Q_{safe} = \frac{1}{2.5} \begin{pmatrix} \frac{\pi}{4} \times 0.5^2 \times 200 \times 9 + (\pi \times 0.5) \times 5 \times 0.4 \times 50 \\ +\pi \times 0.5 \times 5 \times 0.4 \times 70 \\ +\pi \times 0.5 \times 5 \times 0.4 \times 100 \end{pmatrix}$	$C_{avg} = 110 \text{ kPa}$
$Q_{safe} = \frac{1}{2.5}$	$\alpha = 0.45$
+===0.5==5==0.4==200	$B_0 = L_0 = 4S + d$
$\left(+\pi \times 0.5 \times 5 \times 0.4 \times 200 \right)$	= 4.5 m
= (353.25+1318)	$\pi I = 1000$ $\pi I = 10000$
$q_u = 1672.26$	EXAMPLE $Q_{gi} = n[\frac{\pi}{4}(0.5)^2 \times 180 \times 9]$
$q_s = \frac{q_u}{E} = \frac{1672.05}{2.5} = 669 \text{ kN}$	$+\pi \times 0.5 \times 10 \times 0.45 \times 100$]
$q_{s} = \frac{1}{F} = \frac{1}{2.5} = 0.05$ KN	= 27390.76 kN
	$Q_{gb} = (4.5)^2 \times 9 \times 180 + 4 \times 4.5 \times 10 \times 110$
03. Ans: 813.41 kN	= 52605 kN
Sol:	$Q_g = 27390.6 \text{ kN}$
81 kN/m ²	(take minimum of two)
+++-+-1->	$(i.e., Q_{gi} \& Q_{gb})$
	05. Ans: $S = 2.18d$
Critical depth = $15 \times$ diameter	Sol: Given:
$= 15 \times 0.3 = 4.5 \text{ m}$	n = 16 pile group
Effective vertical pressure $\sigma'_v = 4.5 \times 18^{inc}$	$199 \alpha = 0.6$
$= 81 \text{ kN/m}^2$	
$\therefore Q_u = A_b f_b + A_s f_s$	$Q_{gi} = n \left[\frac{\pi}{4} d^2 \times C \times 9 + \pi d \times L \times 0.6C \right]$
$-\frac{\pi}{2} \times d^2 \times \sigma' \times N \rightarrow A = k \tan \delta$	(neglect end bearing)
$= \frac{\pi}{4} \times d^2 \times \sigma'_v \times N_q + A_s \cdot \sigma_v k \tan \delta$	$= n \left[\pi dL \times 0.6 C \right]$
$= \frac{\pi}{4} \times 0.3^2 \times 81 \times 137 + 2 \times \tan 40 \left(\frac{1}{2} \times 81 \times 4.5 + 81 \times 7.5 \right)$	$Q_{gb} = 4(3S + d) \times L \times C$
$\frac{1}{4}$	For optimum spacing
$\pi \times 0.3$	$Q_{gi} = Q_{gb}$ $(\eta_g = 100\%)$
= 784.40 + 1249.12	$16[\pi dl \times 0.6C] = 4(3S + d) \times L \times C$
$Q_u = 2033.52$ 0 2022 52	$4\pi d \times 0.6 = 3S + d$
\therefore safe load capacity $=\frac{Q_u}{F}=\frac{2033.52}{2.5}$	$4\pi d \times 0.0 = 3S + d$ 6.54 d = 3 S
= 813.40 kN	S = 2.18 d
-013.40 KIN	5 - 2.18 u
Regular Live Doubt	clearing Sessions Free Online Test Series ASK an expert

A ace online	Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert
	Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages

06. Ans. 635 kN Sol: λ Method: $Q_u = A_b \times C \times N_c + A_s \lambda \times [\sigma'_{va} + 2c]$ $\lambda = \text{constant} = 0.15,$ Dia = 0.4 m, $\gamma = 18 \text{ kN/m}^3$, F.O.S = 3	η_h = Efficiency of pile hammer S = penetration of pile per hammer blow C = constant For drop hammer, C = 2.54 cm, for stea hammer C = 0.254 cm Factor of safety = 6
$\begin{aligned} &Q_u = A_b \times C \times N_c + A_s \lambda \times \left[\sigma'_{va} + 2c\right] \\ &\lambda = \text{constant} = 0.15, \\ &\text{Dia} = 0.4 \text{ m}, \gamma = 18 \text{ kN/m}^3 \text{ , F.O.S} = 3 \end{aligned}$	C = constant For drop hammer, $C = 2.54$ cm, for stea hammer $C = 0.254$ cm
λ = constant = 0.15, Dia = 0.4 m, γ = 18 kN/m ³ , F.O.S = 3	For drop hammer, $C = 2.54$ cm, for stea hammer $C = 0.254$ cm
Dia = 0.4 m, $\gamma = 18 \text{ kN/m}^3$, F.O.S = 3	hammer $C = 0.254$ cm
	Factor of safety $= 6$
Depth (H) = 25 m, $N_c = 9$ for pile in clay	
σ'_{va} = Average effective vertical pressure	Applications
along the pile length	Applications:This formula is more applicable to pill
$\sigma'_{va} = \frac{0 + \gamma H}{2} = \frac{0 + 18 \times 25}{2}$	driven into cohesionless soil.
$\sigma_{va} = \frac{1}{2} = \frac{1}{2}$	 If the pile is driven into saturated loose saturated
= 225 kPa	RINC and silt, liquefaction might result, reduci
$Q_{u} = \frac{\pi}{4} (0.4^{2}) \times 80 \times 9 + \pi \times 0.4 \times 25 \times 0.4 \times 10^{2}$	the pile capacity. So it is not applicable
	saturated loose sand.
$0.15 \times (225 + 2 \times 80)$	4×5 pile group
= 1904.74 kN	Diameter of each pile = 0.3 m
Safe load (or) Allowable load	C/C spacing = 0.9 m
	capacity of a single pile = 500 kN
$Q_{safe} = \frac{Q_u}{F.O.S} = \frac{1904.74}{3}$	
= 635 kN	
07. Ans: 68.25%; 6825 kN	
Sol: Engineering News formula for Drop	2e 1995
Hammer: It is based on the assumption that kineti	
energy delivered by the hammer during	
driving operation is equal to work done of	
the pile.	According to converse Labarre formula:
According to Engineering New's formula,	$\theta \left[(n-1)m + (m-1)n \right]$
$Q_s = \frac{W.h.\eta_h}{F(S+C)}$	$\eta_{g} = 1 - \frac{\theta}{90} \left \frac{(n-1)m + (m-1)n}{mn} \right .$
	$m \rightarrow no. of rows of piles = 4$
Where,	$n \rightarrow no.of piles in each row= 5$
Q _s =Safe Pile capacity W = Weight of hammer	
h = height of drop	$\theta = \tan^{-1}\left(\frac{\mathrm{d}}{\mathrm{s}}\right) = 18.43$
	 m for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exar
	e learning experience in various languages at your convenience

$$\eta_{g} = 1 - \frac{18.43}{90} \left[\frac{(5-1)4 + 5(4-1)}{4 \times 5} \right]$$
$$= 1 - \frac{18.43}{90} \left[\frac{16+15}{20} \right]$$


 $\eta_{g} = 68.25 \%$

Capacity of free standing pile group = $\eta_g \times Q_{gi} \times n = 0.6825 \times 500 \times 20 = 6825 \text{ kN}$

08. Ans: (a), (b) & (c)

Sol: A pile subjected to lateral loading is one of the classes of problem that involve interaction of soil and structure the main aim of project is to calculate structural parameters like slope, deflection, moment, slope and soil reaction at each joint.

09. Ans: (b) Sol:

Q_g = horizontal load

M_g = moment at ground level

If pile is fixed to the pile cap, the pile cap provides fixity to pile head. The fixity provided is equivalent to moment $M_g = -0.93 Q_g T$ at the ground level. The negative sign indicates that moment caused by M_g

and Q_g are of different sign in case of free head pile, moment M_g due to fixity of pile head is zero while for a completely fixedhead pile. Moment m_g is -0.93 Q_gT. Thus for piles with intermediate fixity, the value of moment can be interpolated.

10. Ans: (a), (b) & (c)

35

- Sol: Advantage of bored and cast in situ piles i.e. under reamed pile
 - **i.** Very little displacement and no risk of ground heave.
 - ii. Length can be readily varies
 - iii. Soil can be inspected and checked with soil investigation data.
 - iv. Piles can be installed in very great length and very large diameter and end enlargement of upto 2 or 3 shaft diameter are possible in clays and soft rock.
 - v. Pile can be installed without much noise and vibration and with limited had room.

Disadvantage

- i. Boring method may loosen sandy or gravelly soils.
- ii. Concreting under water will pore problem.
- iii. Concrete cannot be subsequently inspected.
- iv. Susceptible to waisting or necking in squeezing
- v. Enlarged bases can not be formed in granular soil.

A ace online	Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert
	Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages

Geotechnical Engineering

11. Ans: (b), (c) & (d)

Sol: Precast concrete piles are prismatic or circular in section. These piles may be of uniform diameter or tapered. They are usually cast a central casting yard, cured and transported to the construction site. If arrangements for casting and curing are available, they may be cast at the site also.

As a precast concrete pile is usually in a state of compression, no reinforcement is required from load bearing considerations. However, piles are reinforced to take care of handling stresses. Solid sections of 0.2 m to 0.3 m side are usually used. Precast, hollow cylindrical sections are also used where large stiffness and higher bearing capacity is required, though in India, hollow sections are not popular. Precast concrete piles in lengths upto 20 m and precast hollow pipe piles upto 60 m length have been used. Shorter piles can carry loads upto 600 kN, whereas the capacity of longer piles can, in some cases, be as large as 2000 kN.

Concrete piles are considered more or less permanent. However, in exceptional Circumstances, the soil may contain deleterious substances which may affect the pile. Splicing of precast concrete piles is difficult. Further, if the pile at the site proves to be too long, chopping off the extra length is difficult and is likely to damage the pile. Handling and driving of precast concrete piles also requires heavy equipment. Heave and disturbance of surrounding soil may also cause difficulties.

12. Ans: (a) & (c)

Sol: A test pile is a pile which is used only in a load test and does not carry load of super structure. The minimum test load on such a piles should be twice the safe load or load at which the total settlement attains a value of 10% of pile diameter in case of single and 40 mm in case of pile group.

18. Soil Exploration

02. Ans: (c)
Sol:
$$N = 6 + 6 + 8 + 7 = 27$$

 $N' = C_N N = 1 \times 27 = 27$
 $(N'-15)$

03. Ans: 14

Sol: Corrected value $N' = C_N N$ C_N =correction factor for over burden

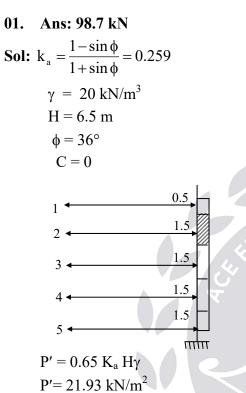
pressure

$$C_{N} = 0.77 \log_{10} \left(\frac{1905}{\sigma_{o}'} \right)$$

$$\sigma_{o}' = 2 \times 18 + (18 - 9.81) \times 3$$

$$= 60.57 \text{ kN/m}^{2}$$

$$C_{N} = 0.77 \log_{10} \left(\frac{1905}{60.57} \right) = 1.153$$


$$N' = 1.153 \times 12 = 13.8 \simeq 14$$

04. Ans: (b) & (c)

Sol: Standard penetration test (SPT) is done for granular soil not for cohesive soil. SPT test represents the relative density of soil and its value increases with increase in denseness of soil. It is performed only in field.

19. Sheet Piles

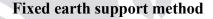
Geotechnical Engineering

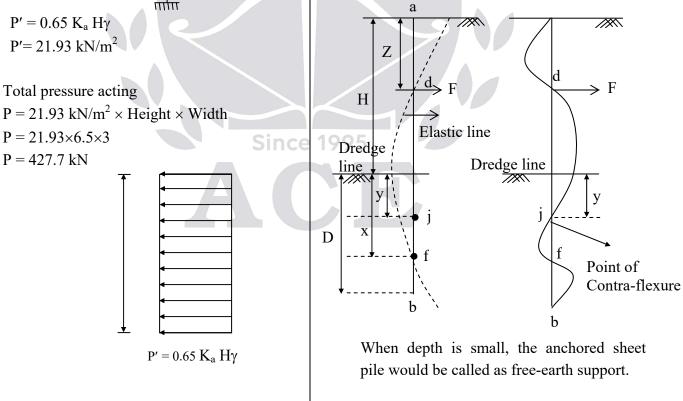
The average load taken by the strut

$$=\frac{427.7}{5}=85.55$$
 kN

But in the problem they asked maximum load taken by the strut

struts (1) (2) (3) (4) are taken maximum loads, (5) struts are taken minimum load.


Strut (2) taken load = $1.5 \times 3 \times P'$


$$= 1.5 \times 3 \times 21.93 \text{ kN}$$

= 98.68 kN

02. Ans: (c) & (d)

37

Sol: A number of methods are used for design of anchored bulk head. However the method commonly used are free earth support method and fixed earth support.

	Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert
	Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages