

GATE | PSUs

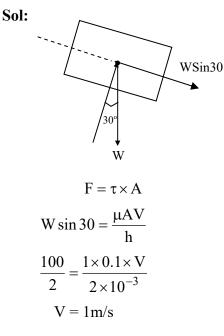
MECHANICAL ENGINEERING

Fluid Mechanics & Turbomachinery

Text Book: Theory with worked out Examples and Practice Questions

Fluid Mechanics & Turbomachinery

(Solutions for Text Book Practice Questions)


Chapter1Properties of Fluids

01. Ans: (c)

- **Sol:** For Newtonian fluid whose velocity profile is linear, the shear stress is constant. This behavior is shown in option (c).
- 02. Ans: 100

Sol: $\tau = \frac{\mu V}{h} = \frac{0.2 \times 1.5}{3 \times 10^{-3}} = 100 \text{ N/m}^2$

03. Ans: 1

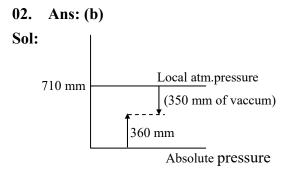
Common data Q. 04 & 05

04. Ans: (c)
Sol:
$$D_1 = 100 \text{ mm}$$
, $D_2 = 106 \text{ mm}$
Radial clearance, $h = \frac{D_2 - D_1}{2}$
 $= \frac{106 - 100}{2} = 3 \text{ mm}$
 $L = 150 \text{ mm} = 0.15 \text{ m}$
 $\mu = 0.2 \text{ pa.s}$
 $N = 240 \text{ rpm}$
 $\omega = \frac{2\pi N}{60} = \frac{2\pi \times 240}{60}$
 $\omega = 8\pi$
 $\tau = \frac{\mu \omega r}{h} = \frac{0.2 \times 8\pi \times 50 \times 10^{-3}}{3 \times 10^{-3}}$
 $= 83.77 \text{N/m}^2$
05. Ans: (b)

Sol: Power, P =
$$\frac{2\pi\omega^2\mu Lr^3}{h}$$

= $\frac{2\pi\times(8\pi)^2\times0.2\times0.15\times(0.05)^3}{3\times10^{-3}}$
= 4.96 Watt

Eagineering Fublications	2 GATE – Text Book Solutions
06. Ans: (c) Sol: $\begin{bmatrix} \tau \\ 30 \\ 18 \\ 6 \end{bmatrix}$ Slope = constant	 Bingham plastic → Fluid behaves like a solid until a minimum yield stress beyond which it exhibits a linear relationship between shear stress and the rate of strain. 09. Ans: (b)
	Sol: V = 0.01 m ³ $\beta = 0.75 \times 10^{-9} \text{ m}^2/\text{N}$ $dP = 2 \times 10^7 \text{ N/m}^2$ $K = \frac{1}{\beta} = \frac{1}{0.75 \times 10^{-9}} = \frac{4}{3} \times 10^9$
07. Ans: (a) Sol: $\tau = \mu \frac{du}{dy}$ $u = 3 \sin(5\pi y)$ $\frac{du}{dy} = 3\cos(5\pi y) \times 5\pi = 15\pi\cos(5\pi y)$ $\tau \Big _{y=0.05} = \mu \frac{du}{dy} \Big _{y=0.05}$	K = $\frac{-dP}{dV/V}$ $dV = \frac{-2 \times 10^7 \times 10^{-2} \times 3}{4 \times 10^9} = -1.5 \times 10^{-4}$ 10. Ans: 320 Pa Sol: $\Delta P = \frac{8\sigma}{D} = \frac{8 \times 0.04}{1 \times 10^{-3}} = \frac{32 \times 10^{-2}}{10^{-3}}$
$= 0.5 \times 15\pi \cos(5\pi \times 0.05)$ = $0.5 \times 15\pi \times \cos\left(\frac{\pi}{4}\right) = 0.5 \times 15\pi \times \frac{1}{\sqrt{2}}$ = $7.5 \times 3.14 \times 0.707 \approx 16.6$ N/m ² 08. Ans: (d) Sol:	$\Delta P = 320 \text{ N/m}^2$ 1995 11. Ans: (a, d) Sol: Given data: S.G = 0.8 and $v = 2 \text{ centistokes} = 2 \times 10^{-6} \text{ m}^2/\text{s}$ Mass density, $\rho = (S.G) \times \rho_{\text{water at } 4^\circ\text{C}}$ $= 0.8 \times 10^3 = 800 \text{ kg/m}^3$
 Ideal fluid → Shear stress is zero. Newtonian fluid → Shear stress varies linearly with the rate of strain. Non-Newtonian fluid → Shear stress does not vary linearly with the rate of strain. 	$= 16 \times 10^{-4} \text{ Pa.s}$ $= 1.6 \text{ centinoise}$


 Regular Live Doubt clearing Sessions
 Free Online Test Series | ASK an expert

 Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

ChapterPressure Measurement2& Fluid Statics

01. Ans: (a)

Sol: 1 millibar = $10^{-3} \times 10^{5} = 100 \text{ N/m}^{2}$ One mm of Hg = $13.6 \times 10^{3} \times 9.81 \times 1 \times 10^{-3}$ = 133.416 N/m^{2} 1 N/mm² = $1 \times 10^{6} \text{ N/m}^{2}$ 1 kgf/cm² = $9.81 \times 10^{4} \text{ N/m}^{2}$

03. Ans: (c)

Sol: Pressure does not depend upon the volume of liquid in the tank. Since both tanks have the same height, the pressure P_A and P_B are same.

04. Ans: (b)

Sol:

• The manometer shown in Fig.1 is an open ended manometer for negative pressure measurement.

- The manometer shown in Fig. 2 is for measuring pressure in liquids only.
- The manometer shown in Fig. 3 is for measuring pressure in liquids or gases.
- The manometer shown in Fig. 4 is an open ended manometer for positive pressure measurement.

05. Ans: 2.2

3

Sol: h_p in terms of oil $s_o h_o = s_m h_m$ $0.85 \times h_0 = 13.6 \times 0.1$ $h_0 = 1.6m$ $h_p = 0.6+1.6$ $\Rightarrow h_p = 2.2m$ of oil (or) $P_p - \gamma_{oil} \times 0.6 - \gamma_{Hg} \times 0.1 = P_{atm}$ $\frac{P_p - P_{atm}}{\gamma_{oil}} = \left(\frac{\gamma_{Hg}}{\gamma_{oil}} \times 0.1 + 0.6\right)$ $= \frac{13.6}{0.85} \times 0.1 + 0.6 = 2.2 \text{ m of oil}$

> Gauge pressure of P in terms of m of oil = 2.2 m of oil

06. Ans: (b)

Sol:
$$h_M - \frac{s_w}{s_0} h_{w_1} = h_N - \frac{s_w h_{w_2}}{s_0} - h_0$$

 $h_M - h_N = \frac{9}{0.83} - \frac{18}{0.83} - 3$
 $h_M - h_N = -13.843 \text{ cm of oil}$

A ace online

07. Ans: 2.125 Sol:

$$h_{p} = \overline{h} + \frac{I}{A\overline{h}}$$

$$= 2 + \frac{\pi D^{4} \times 4}{64 \times D^{2} \times 2 \times \pi}$$

$$= 2 + \frac{2^{2} \times 4}{64 \times 2} = 2.125m$$

08. Ans: 10

Sol: $F = \rho g \overline{h} A$

$$=9810\times1.625\times\frac{\pi}{4}(1.2^2-0.8^2)$$

F = 10 kN

09. Ans: 1

Sol:

2x 2x

$$\begin{split} F_{bottom} &= \rho g \times 2x \times 2x \times x \\ F_V &= \rho g x \times 2x \times 2x \\ \frac{F_B}{F_V} &= 1 \end{split}$$

10. Ans: 10

Sol: $F_V = x \times \pi$

$$F_{V} = \rho g V = 1000 \times 10 \times \frac{\pi \times 2^{2}}{4}$$
$$F_{V} = 10\pi \text{ kN}$$

 $\therefore x = 10$

Sol:
$$F_{net} = F_{H1} - F_{H2}$$

 $F_{H1} = \gamma \times \frac{D}{2} \times D \times 1 = \frac{\gamma D^2}{2}$
 $F_{H2} = \gamma \times \frac{D}{4} \times \frac{D}{2} \times 1 = \frac{\gamma D^2}{8}$
 $= \gamma D^2 \left(\frac{1}{2} - \frac{1}{8}\right) = \frac{3\gamma D^2}{8}$

12. Ans: 2

Sol: Let P be the absolute pressure of fluid f3 at mid-height level of the tank. Starting from the open limb of the manometer (where pressure = P_{atm}) we write :

$$P_{atm} + \gamma \times 1.2 - 2\gamma \times 0.2 - 0.5\gamma \times \left(0.6 + \frac{h}{2}\right) = P$$

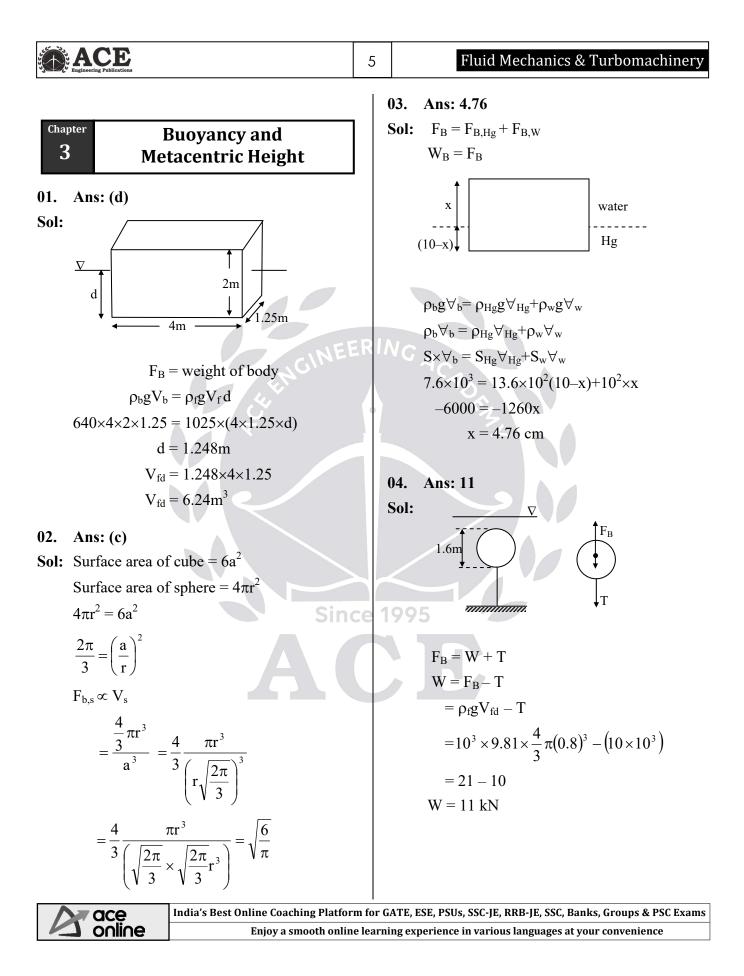
or
$$P - P_{atm} = P_{gauge}$$

$$= \gamma (1.2 - 2 \times 0.2 - 0.5 \times 0.6 - 0.5 \times \frac{h}{2})$$

or
$$h = \frac{0.5}{0.25} = 2$$

13. Ans: (a, c)

Sol: The limitations of piezometer are :


- It can't measure gas pressure.
- It can't measure high pressure.

 Acception
 Regular Live Doubt clearing Sessions
 Free Online Test Series | ASK an expert

 Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

Since

2m

	ACE Engineering Publications	6		GATE – Text Book Solutions
05. Sol:	Ans: 1.375 $W_{water} = 5N$ $W_{oil} = 7N$ S = 0.85 W - Weight in air $F_{B1} = W - 5$ $F_{B2} = W - 7$ $W - 5 = \rho_1 g V_{fd} \dots (1)$		07. Sol:	Ans: (b) $W = F_B$ $\rho_b g V_b = \rho_f g V_{fd}$ $\rho_b V_b = \rho_f V_{fd}$ $0.6 \times \frac{\pi}{4} d^2 \times 2d = 1 \times \frac{\pi}{4} d^2 \times x$ $\Rightarrow x = 1.2d$ $GM = BM - BG$
	$W - 7 = \rho_2 g V_{fd} \dots (2)$ $V_{fd} = V_b$ $W - 5 = \rho_1 g V_b$ $\frac{W - 7 = \rho_2 g V_b}{2 = (\rho_1 - \rho_2) g V_b}$ $V_b = \frac{2}{(1000 - 850)9.81}$ $V_b = 1.3591 \times 10^{-3} m^3$	ER I/	VG Ĵ	$BM = \frac{I}{V} = \frac{\pi d^4}{64 \times \frac{\pi}{4} d^2 \times 1.2d} = \frac{d}{19.2} = 0.052d$ BG = d - 0.6d = 0.4d Thus, GM = 0.052d - 0.4d = -0.348 d GM < 0 Hence, the cylinder is in unstable condition.
06.	$W = 5 + (9810 \times 1.3591 \times 10^{-3})$ $W = 18.33N$ $W = \rho_{b} g V_{b}$ $\frac{18.33}{9.81 \times 1.3591 \times 10^{-3}} = \rho_{b}$ $\rho_{b} = 1375.05 \text{ kg/m}^{3}$ $S_{b} = 1.375$ Ans: (d)		08. Sol:	Ans: 122.475 V=0.1 m/s $F_s \downarrow F_s$
	For a floating body to be stable, metacentr should be above its center of gravity Mathematically $GM > 0$.			The thickness of the oil layer is same on either side of plate y = thickness of oil layer $=\frac{23.5-1.5}{2}=11$ mm

$$=\frac{23.5-1.5}{2}=11$$
mm

Regular Live Doubt clearing Sessions | Free Online Test Series | ASK an expert Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

A ace online

ACE Engineering Publications		7	Fluid Mechanics & Turbomachinery
Shear stress on or	ne side of the plate		
$\tau = \frac{\mu}{2}$	ıdU dy	Cha)	Eluid Kinomotics
$F_s = total shear for$	rce (considering both sides		
of the plate)		01.	Ans: (b)
$=2A \times \tau = \frac{2A\mu}{y}$	<u>N</u>	Sol:	Alls. (b)
$=\frac{2\times1.5\times1.5\times1}{11\times10^{-1}}$	$\frac{2.5 \times 0.1}{3} = 102.2727$ N	•	Constant flow rate signifies that the flow is steady.
Weight of plate, W	V = 50 N	•	For conically tapered pipe, the fluid velocity
Upward force on s		RINC	at different sections will be different. This
$F_v = \rho g V = 900 \times g$	$9.81 \times 1.5 \times 1.5 \times 10^{-3}$		corresponds to non-uniform flow.
= 29.79'	78 N		in the second se
	र	Com	amon Data for Questions 02 & 03
Total force require		02.	Ans: 0.94
$= F_s + W$		Sol:	$a_{Local} = \frac{\partial V}{\partial t}$
	27 + 50 - 29.7978	501.	∂t
= 122.474	49 N		$= \frac{\partial}{\partial t} \left(2t \left(1 - \frac{x}{2L} \right)^2 \right)$
09. Ans: (a, b, c, d)			$=\left(1-\frac{x}{2x}\right)^2 \times 2$
Sol:	Sinc	a 100	$=\left(1-\frac{x}{2L}\right)\times 2$
6 1	s have less GM than war		
	fort point of view.	(a _{Loc}	al)at x = 0.5, L = 0.8 = $2\left(1 - \frac{0.5}{2 \times 0.8}\right)^2$
-	ball submerged in water is		$= 2(1 - 0.3125)^2 = 0.945 \text{ m/sec}^2$
	ing it when unsubmerged		$= 2(1 - 0.3125)^2 = 0.945 \text{ m/sec}^2$
•	force acting on the ball.		12 (0
	nt of a submerged body is	03.	Ans: -13.68
the force of buo	nan its actual weight due to ayancy.	Sol:	$\mathbf{a}_{\text{convective}} = \mathbf{v} \cdot \frac{\partial \mathbf{v}}{\partial \mathbf{x}} = \left[2t \left[1 - \frac{\mathbf{x}}{2L} \right]^2 \right] \frac{\partial}{\partial \mathbf{x}} \left[2t \left(1 - \frac{\mathbf{x}}{2L} \right)^2 \right]$
	e manometers are preferred pressure is small.		$= \left[2t\left[1 - \frac{x}{2L}\right]^{2}\right]2t\left[2\left(1 - \frac{x}{2L}\right)\left(-\frac{1}{2L}\right)\right]$
			At $t = 3 \text{ sec}$; $x = 0.5 \text{ m}$; $L = 0.8 \text{ m}$
	dia's Best Online Coaching Platform	i for GATE, I	ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams
Enjoy a smooth online learning experience in various languages at your convenience			

8 CATE - Text Book Solutions
acconvertive
$$2 \times 3 \left[1 - \frac{0.5}{2 \times 0.8} \right]^2 \times 2 \times 3 \left[2 \left(1 - \frac{0.5}{2 \times 0.8} \right) \right] \left[\frac{-1}{2 \times 0.8} \right]$$

acconvertive -14.62 m/sec^2
about = $a_{\text{local}} + a_{\text{convertive}} = 0.94 - 14.62$
 $= -13.68 \text{ m/sec}^2$
64. Ans: (d)
Sol: $u = 6xy - 2x^2$
Continuity equation for 2D flow
 $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$
 $\frac{\partial u}{\partial x} = 6y - 4x$
 $(6y - 4x) + \frac{\partial v}{\partial y} = 0$
 $\frac{\partial u}{\partial x} = 6y - 4x$
 $(6y - 4x) + \frac{\partial v}{\partial y} = 0$
 $\frac{\partial v}{\partial y} = (4x - 6y) = 0$
 $\frac{\partial v}{\partial y} = (4x - 6y) = 0$
 $\frac{\partial v}{\partial y} = (4x - 6y) = 0$
 $\frac{\partial v}{\partial x} = 4xy - 3y^2 + c$
 $= 4xy - 3y^2 + c$
 $= 4xy - 3y^2 + f(x)$
65. Ans: $\sqrt{2} = 1.414$
Sol: $\frac{\partial V}{\partial x} = \frac{1}{3} (\text{m/sec/m})$
 $V^{-3} \text{ m/sec}$
68. Ans: (b)
Sol: $\psi = x^2 - y^2$
 $a_{\text{Total}} = \frac{\partial}{\partial y} (x^2 - y^2) - 2y$
 $e^{-2y} - \frac{\partial}{\partial y} (x^2 - y^2) - 2y$

Affordable Fee | Availabl

Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

$$v = \frac{\partial \psi}{\partial x} = \frac{\partial}{\partial x} \left(x^2 - y^2 \right) = 2x$$

$$a_x = u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y}$$

$$= (2y)(0) + (2x)(2)$$

$$\therefore a_x = 4x$$

$$a_y = u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y}$$

$$= (2y) \times (2) + (2x) \times (0)$$

$$a_y = 4y$$

$$\therefore a = (4x)\hat{i} + (4y)\hat{j}$$
Ans: (b)
Given The stream function for a potential

Ans: (b) **09.**

ACE

Sol: Given, The stream function for a potential flow field is $\psi = x^2 - y^2$ ± − 9

$$\phi = ?$$

$$u = \frac{-\partial \phi}{\partial x} = -\frac{\partial \psi}{\partial y}$$

$$u = -\frac{\partial \psi}{\partial y} = -\frac{\partial (x^2 - y^2)}{\partial y}$$

$$u = 2y$$

$$u = 2y$$

$$u = -\frac{\partial \phi}{\partial x} = 2y$$

$$\int \partial \phi = -\int 2y \partial x$$

$$\phi = -2 xy + c_1$$
Given, ϕ is zero at (0,0)
 $\therefore c_1 = 0$

$$\therefore \phi = -2xy$$

IVENE BOLSE SET UPDER CONTRICT OF CONTRIBUTION 10. Ans: 4
Sol: Given, 2D – flow field
Velocity, V = 3xi + 4xyj

$$u = 3x$$
, $v = 4xy$
 $\omega_z = \frac{1}{2} \left(\frac{dv}{dx} - \frac{du}{dy} \right)$
 $\omega_z = \frac{1}{2} \left(4y - 0 \right)$
 $(\omega_z)_{at(2,2)} = \frac{1}{2} \times 4(2) = 4 \text{ rad/sec}$
11. Ans: (b)
Sol: Given, $u = 3x$, $v = Cy$, $w = 2$
The shear stress, τ_{xy} is given by
 $\tau_{xy} = \mu \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) = \mu \left[\frac{\partial}{\partial y} (3x) + \frac{\partial}{\partial x} (Cy) \right]$
 $= \mu (0 + 0) = 0$
12. Ans: (b, c)
Sol: Given : $\bar{V} = x\hat{1} - y\hat{j}$
Thus, $u = x$ and $v = -y$
 $\frac{\partial u}{\partial x} = 1; \frac{\partial u}{\partial y} = 0; \frac{\partial v}{\partial x} = 0; \frac{\partial v}{\partial y} = -1$
 $a_x = u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = x \times 1 - y \times 0 = x$
 $a_y = u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = x \times 0 + y \times 1 = y$
Thus, $\bar{a} = a_x \hat{1} + a_y \hat{j} = x\hat{1} + y\hat{j}$
 $u = -\frac{\partial \psi}{\partial y} = x;$ On integration, $\psi = -xy + C$
 $u = -\frac{\partial \phi}{\partial x} = x;$ On integration, $\phi = -\frac{x^2}{2} + C$

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

9

Since

ChapterEnergy Equation and5its Applications

01. Ans: (c)

Sol: Applying Bernoulli's equation for ideal fluid

$$\frac{P_{1}}{\rho g} + Z_{1} + \frac{V_{1}^{2}}{2g} = \frac{P_{2}}{\rho g} + Z_{2} + \frac{V_{2}^{2}}{2g}$$

$$\frac{P_{1}}{\rho g} + \frac{(2)^{2}}{2g} = \frac{P_{2}}{\rho g} + \frac{(1)^{2}}{2g}$$

$$\frac{P_{2}}{\rho g} - \frac{P_{1}}{\rho g} = \frac{4}{2g} - \frac{1}{2g}$$

$$\frac{P_{2} - P_{1}}{\rho g} = \frac{3}{2g} = \frac{1.5}{g}$$

02. Ans: (c)

Sol:

$$(1)$$
 (1) (1) (1) (2)

$$\frac{V_1^2}{2g} = 1.27 \text{m} , \qquad \frac{P_1}{\rho g} = 2.5 \text{m}$$
$$\frac{V_2^2}{2g} = 0.203 \text{m} , \qquad \frac{P_2}{\rho g} = 5.407 \text{m}$$

$$Z_1 = 2 m$$
 , $Z_2 = 0 m$

Total head at (1) - (1)

$$= \frac{V_1^2}{2g} + \frac{P_1}{\rho g} + Z_1$$

= 1.27 + 2.5 + 2 = 5.77 m

$$GATE - Text Book Solutions$$

Total head at (2) – (2)
$$= \frac{V_2^2}{2g} + \frac{P_2}{\rho g} + Z_2$$
$$= 0.203 + 5.407 + 0 = 5.61 \text{ m}$$

Loss of head = 5.77 - 5.61 = 0.16 m
∴ Energy at (1) – (1) > Energy at (2) – (2)

... Flow takes from higher energy to lower

energy

10

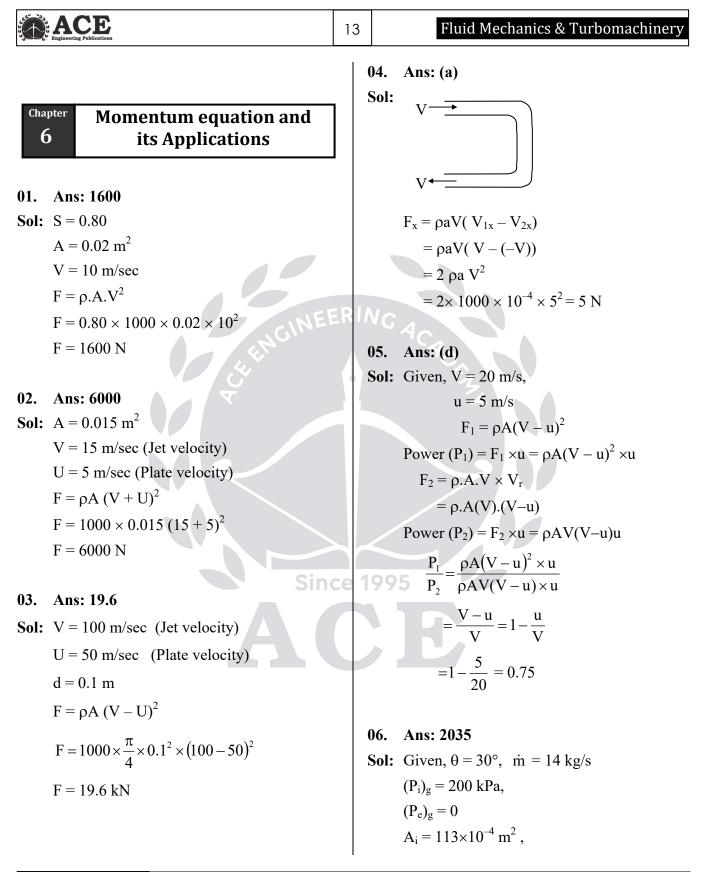
Since

i.e. from (S_1) to (S_2)

Flow takes place from top to bottom.

03. Ans: 1.5
Sol:
$$A_1 = \frac{\pi}{4} d_1^2 = \frac{\pi}{4} (0.1)^2 = 7.85 \times 10^{-3} \text{ mm}^2$$

 $A_2 = \frac{\pi}{4} d_2^2 = \frac{\pi}{4} (0.05)^2 = 1.96 \times 10^{-3} \text{ mm}^2$
 $\frac{P_1}{\rho g} + \frac{V_1^2}{2g} + Z_1 = \frac{P_2}{\rho g} + \frac{V_2^2}{2g} + Z_2 + h_L$
 $Z_1 = Z_2$, it is in horizontal position
Since, at outlet, pressure is atmospheric
 $P_2 = 0$
 $Q = 100 \text{ lit/sec} = 0.1 \text{ m}^3/\text{sec}$
 $V_1 = \frac{Q}{A_1} = \frac{0.1}{7.85 \times 10^{-3}} = 12.73 \text{ m/sec}$
 $V_2 = \frac{Q}{A_2} = \frac{0.1}{1.96 \times 10^{-3}} = 51.02 \text{ m/sec}$
 $\frac{P_{1gauge}}{\rho_{air} \times g} + \frac{(12.73)^2}{2 \times 10} = 0 + \frac{(51.02)^2}{2 \times 10}$
 $\frac{P_1}{\rho_{air} \cdot g} = 121.53$
 $P_1 = 121.53 \times \rho_{air} \times g$
 $= 1.51 \text{ kPa}$


 Regular Live Doubt clearing Sessions
 |
 Free Online Test Series | ASK an expert

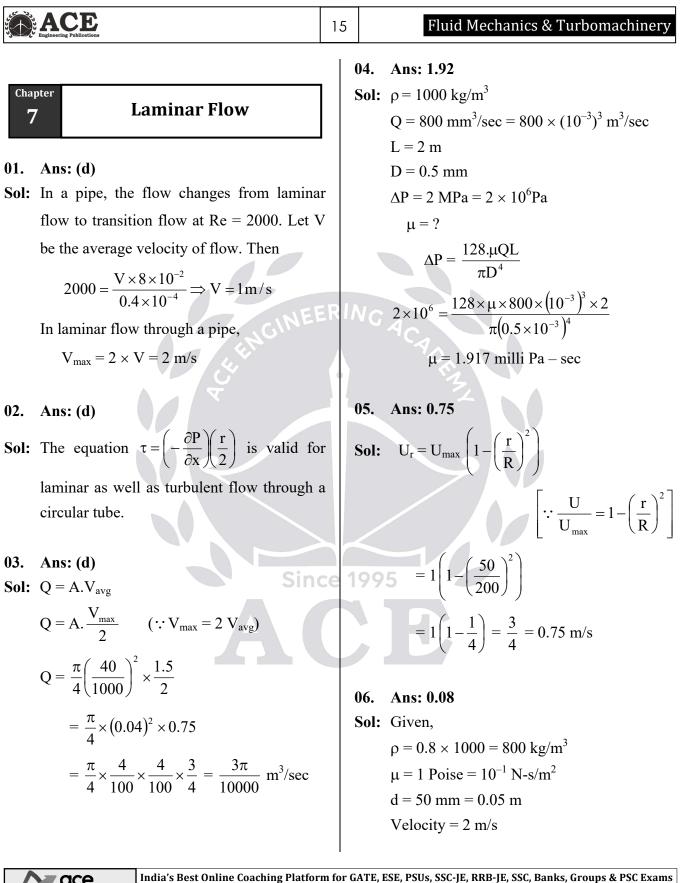
 Affordable Fee
 |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

	Engineering Publications	11	Fluid Mechanics & Turbomachinery
04. Sala	Ans: 395 $0 = 100$ liter (see = $0.1 = 3^{3}$ (see		$A_2 = \frac{\pi}{4} d_2^2 = \frac{\pi}{4} (0.12)^2 = 0.011 m^2$
501:	Q = 100 litre/sec = 0.1 m ³ /sec V ₁ = 100 m/sec; $P_1 = 3 \times 10^5 \text{ N/m}^2$		$\Delta P = 4 \text{ kPa},$
	$V_2 = 50 \text{ m/sec};$ $P_2 = 1 \times 10^5 \text{ N/m}^2$ Power (P) = ?		$h = \frac{\Delta P}{W} = \frac{\Delta P}{\rho_f \cdot g}$
	Energy equation :		$=\frac{\Delta P}{s_{f}\rho_{w}g}=\frac{4\times10^{3}}{0.85\times1000\times9.81}$
	$\frac{P_1}{\rho g} + \frac{V_1^2}{2g} + Z_1 = \frac{P_2}{\rho g} + \frac{V_2^2}{2g} + Z_2 + h_L$		1. "_
	$\frac{3 \times 10^5}{1000 \times 10} + \frac{100^2}{2 \times 10} + 0 = \frac{1 \times 10^5}{1000 \times 10} + \frac{50^2}{2 \times 10} + 0 + h_{\rm L}$		$Q_{\rm Th} = \frac{0.07 \times 0.011}{\sqrt{(0.07)^2 - (0.011)^2}} \sqrt{\frac{2 \times 9.81 \times 4 \times 10^3}{0.85 \times 1000 \times 9.81}}$
	$\Rightarrow h_{\rm L} = 395 \text{ m}$	RI	$= 0.035 \text{ m}^3/\text{sec} = 35.15 \text{ ltr/sec}$
	$P = \rho g Q.h_L$		06. Ans: 65
	$\mathbf{P} = 1000 \times 10 \times 0.10 \times 395$		Sol: $h_{stag} = 0.30 \text{ m}$
	P = 395 kW		$h_{stat} = 0.24 m$
05. Sol:	Ans: 35		$V = c \sqrt{2gh_{dyna}}$ $V = 1 \sqrt{2g(h_{stag} - h_{stat})}$
	fluid, $S = 0.85$		$= \sqrt{2(9.81)(0.30 - 0.24)} = 1.085 \text{ m/s}$ $= 1.085 \times 60 = 65.1 \text{ m/min}$
	← Pressure difference	ce 1	07. Ans: 81.5
	$\blacksquare Between A & B = 4 kPa$		Sol: $x = 30 \text{ mm}$, $g = 10 \text{ m/s}^2$
	$d_1 = 300 \text{ mm}, d_2 = 120 \text{ mm}$		$\rho_{air} = 1.23 \text{ kg/m}^3; \ \rho_{Hg} = 13600 \text{ kg/m}^3$ C = 1
	$Q_{Th} = \frac{A_1 A_2}{\sqrt{A_1^2 - A_2^2}} \sqrt{2gh}$		$V = \sqrt{2gh_D}$
	$=\frac{A_1A_2}{\sqrt{A_1^2-A_2^2}}\sqrt{2g\left(\frac{\Delta P}{W}\right)}$		$h_{\rm D} = x \left(\frac{S_{\rm m}}{S} - 1 \right)$
	$\sqrt{A_1^2 - A_2^2} \sqrt{(w)}$ $A_1 = \frac{\pi}{4} d_1^2 = \frac{\pi}{4} (0.30)^2 = 0.07 \text{m}^2$		$h_{\rm D} = 30 \times 10^{-3} \left(\frac{13600}{1.23} - 1 \right)$
	4 ⁻¹ 4 ^(0,0,0) 0 ^(0,0)		$h_D = 331.67 \text{ m}$ $V = 1 \times \sqrt{2 \times 10 \times 331.67} = 81.5 \text{ m/sec}$
			$v = 1 \wedge \sqrt{2} \wedge 10 \wedge 331.07 = 01.3$ m/sec
			GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams
Enjoy a smooth online learning experience in various languages at your convenience			

Eagineering Publications	12	GATE – Text Book Solutions
08. Ans: 140		Let the point at the summit be denoted by
Sol: $Q_a = C_d \frac{A_1 A_2}{\sqrt{A_1^2 - A_2^2}} \sqrt{2gh}$		(3). Then,
$C_d \propto \frac{1}{\sqrt{h}}$		$\frac{P_1}{\gamma} + \frac{V_1^2}{2g} + Z_1 = \frac{P_3}{\gamma} + \frac{V_3^2}{2g} + Z_3$
$\frac{C_{d_{venturi}}}{C_{d_{orifice}}} = \frac{0.95}{0.65} = \sqrt{\frac{h_{orifice}}{h_{venturi}}}$		where, $V_3 = V_2 = 2\sqrt{g} m/s$;
		$Z_3 - Z_1 = 1.4 \text{ m}$
$h_{venturi} = 140 \text{ mm}$		Thus, Prove 4g and
09. Ans: (b, d)	ERIA	$\frac{P_3}{\gamma} = -1.4 - \frac{4g}{2g} = -3.4$
Sol: (3)		\Rightarrow P ₃ = -3.4 × 9810 Pa
		= -33.354 kPa
Applying Bernoulli equation betwee	n	
sections (1) & (2) $\mathbf{P} = \mathbf{V}^2$ $\mathbf{P} = \mathbf{V}^2$ Sin	ce 1	995
$\frac{P_1}{\gamma} + \frac{V_1^2}{2g} + Z_1 = \frac{P_2}{\gamma} + \frac{V_2^2}{2g} + Z_2$		
But, $P_1 = 0 = P_2$; $V_1 = 0$;		
$Z_1 - Z_2 = 2 m$	Y	
So, $0+0+2=0+\frac{V_2^2}{2g}+0$		
\Rightarrow V ₂ = 2 \sqrt{g} m/s		
$Q = \frac{\pi}{4} d^2 V_2 = \frac{\pi}{4} \times (3 \times 10^{-2})^2 \times 2\sqrt{9.81}$		
$= 4.428 \times 10^{-3} \text{ m}^{3}/\text{s}$		

A ace online

A ace online

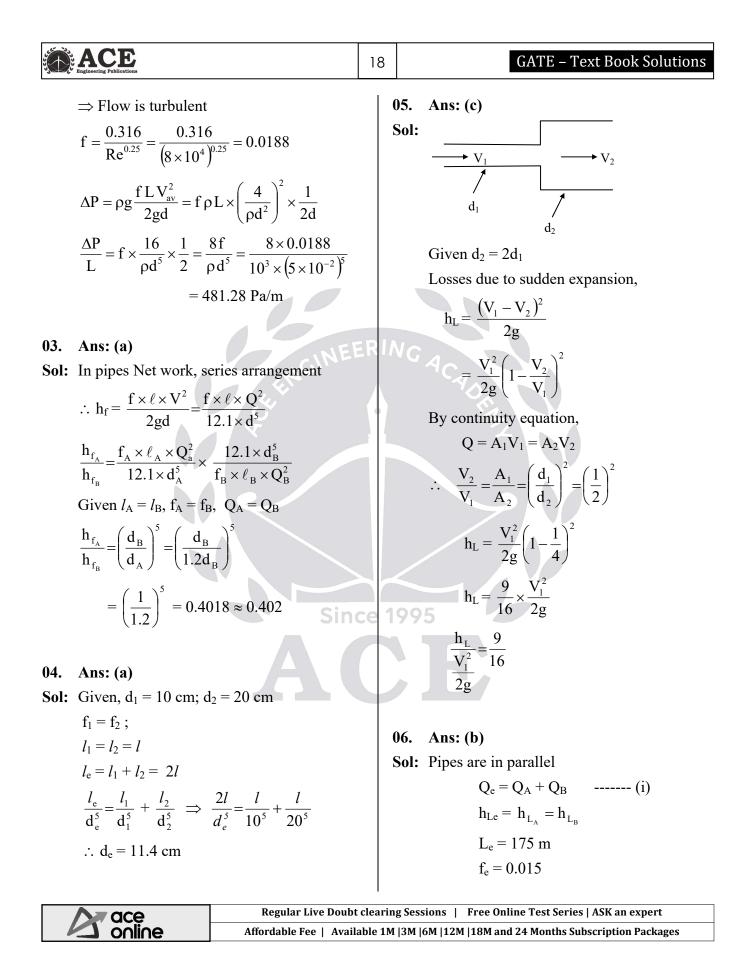

ACE

 $A_e = 7 \times 10^{-4} \text{ m}^2$ 07. Ans: (a, d) $\rho = 10^3 \text{ kg/m}^3$. Sol: Given: $g = 10 m/s^2$ $d_i = 5 \text{ cm}$, $V_i = 20 \text{ m/s},$ From the continuity equation : U = 8 m/s $\rho A_i V_i = 14$ $F_x = \rho A_i (V_i - U) (V_i - U)$ $V_i = \frac{14}{10^3 \times 113 \times 10^{-4}} = 1.24 \,\mathrm{m/s}$ or $= 10^3 \times \frac{\pi}{4} \times 0.05^2 \times (20 - 8)^2$ Similarly, $V_e = \frac{14}{10^3 \times 7 \times 10^{-4}} = 20 \text{ m/s}$ = 282.74 N Let F_x be the force exerted by elbow on Work done per second, water in the +ve x-direction. Applying the $\dot{W} = F_x \times U$ linear momentum equation to the C.V. $= 282.74 \times 8 = 2.262 \text{ kW}$ enclosing the elbow, we write : Efficiency, $(P_i)_{\alpha}A_i + F_v = \dot{m}(V_e \cos 30^\circ - V_i)$ $\eta = \frac{\dot{W}}{\frac{1}{2}\rho Q \times V_j^2} = \frac{2\dot{W}}{\rho A_j V_j^3} = \frac{8\dot{W}}{\rho \times \pi d_j^2 \times V_j^3}$ $F_{x} = \dot{m} \left(V_{e} \cos 30^{\circ} - V_{i} \right) - \left(P_{i} \right)_{\sigma} A_{i}$ $= 14 (20 \times \cos 30^{\circ} - 1.24) - 200 \times 10^{3} \times 113 \times 10^{-4}$ $=\frac{8\times2.262\times10^{3}}{10^{3}\times\pi\times(0.05)^{2}\times(20)^{3}}$ = 225.13 - 2260 $= -2034.87 \text{ N} \approx -2035 \text{ N}$ = 0.288 = 28.8 %The x-component of water force on elbow is $-F_x$ (as per Newton's third law). 1995 i.e., ≅ 2035 N y $(P_e)_g = 0$ ► F(x)_{on water} (i)

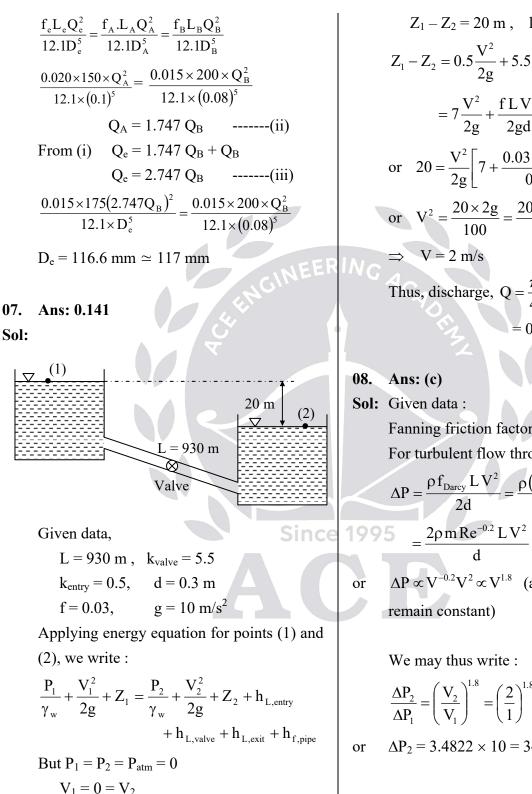
 Regular Live Doubt clearing Sessions
 Free Online Test Series | ASK an expert

 Affordable Fee |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

14


A ace online

Enjoy a smooth online learning experience in various languages at your convenience


ACE Engineering Publications	16 GATE – Text Book Solutions
Reynold's Number, $Re = \frac{\rho VD}{\mu}$	08. Ans: 5.2 Sol: Oil viscosity,
$=\frac{800\times 2\times 0.05}{10^{-1}}=800$	$\mu = 10 \text{ poise} = 10 \times 0.1 = 1 \text{ N-s/m}^2$ y = 50 × 10 ⁻³ m
(:: Re < 2000)	
∴ Flow is laminar,	Width of plate = 0.2 m ,
For laminar, Darcy friction factor	Q = ?
$f = \frac{64}{Re} = \frac{64}{800} = 0.08$	$Q = A.V_{avg} = (width of plate \times y)V$ 12uVL
	$\Delta P = \frac{12\mu VL}{B^2}$
07. Ans: 16 Sol: For fully developed laminar flow,	$3 \times 10^{3} = \frac{12 \times 1 \times V \times 1.20}{(50 \times 10^{-3})^{2}}$
$h_f = \frac{32\mu V L}{\rho g D^2}$ (: Q = AV)	V = 0.52 m/sec
10	$Q = AV_{avg} = (0.2 \times 50 \times 10^{-3}) (0.52)$
$h_{f} = \frac{32\mu \left(\frac{Q}{A}\right)L}{\rho g D^{2}} = \frac{32\mu Q L}{A D^{2} \times \rho g}$	= 5.2 lit/sec
	09. Ans: (a)
$h_{f} = \frac{32\mu QL}{\frac{\pi}{4}D^{2} \times D^{2} \times \rho g}$	Sol: Wall shear stress for flow in a pipe is given by,
$h_f \propto \frac{1}{D^4}$ Since	$\tau_{o} = -\frac{\partial P}{\partial x} \times \frac{R}{2} = \frac{\Delta P}{L} \times \frac{D}{4} = \frac{\Delta P D}{4L}$
$h_{f1} D_1^4 = h_{f_2} D_2^4$	10. Ans: 72
Given, $D_2 = \frac{D_1}{2}$	Sol: Given, $\rho = 800 \text{ kg/m}^3$,
2	$\mu = 0.1$ Pa.s
$h_{f1} \times D_1^4 = h_{f2} \times \left(\frac{D_1}{2}\right)^4$	Flow is through an inclined pipe.
	$d = 1 \times 10^{-2} m,$
$h_{f_2} = 16h_{f_1}$	$V_{av} = 0.1 \text{ m/s}, \qquad \theta = 30^{\circ}$
: Head loss, increases by 16 times if diameter is halved.	$Re = \frac{\rho V_{av} d}{\mu} = \frac{800 \times 0.1 \times 1 \times 10^{-2}}{0.1} = 8$
	\Rightarrow flow is laminar.
Regular Live Doubt cl	learing Sessions Free Online Test Series ASK an expert
	ble 1M 3M 6M 12M 18M and 24 Months Subscription Packages

ACE Fluid Mechanics & Turbomachinery 17 Applying energy equation for the two sections of the inclined pipe separated by 10 Chapter **Flow through Pipes** m along the pipe, 8 $\frac{P_1}{\gamma} + \frac{V_1^2}{2\sigma} + Z_1 = \frac{P_2}{\gamma} + \frac{V_2^2}{2\sigma} + Z_2 + h_f$ 01. Ans: (d) But $V_1 = V_2$. Sol: $(Z_2 - Z_1) = 10 \sin 30^\circ = 5 \text{ m}$ The Darcy-Weisbash equation for head loss and $h_{\rm f} = \frac{32\mu V_{\rm av}L}{\rho g d^2}$. in written as: $\frac{(P_1 - P_2)}{\gamma} = (Z_2 - Z_1) + \frac{32\mu V_{av}L}{0000}$ $h_f = \frac{f L V^2}{2g d}$ where V is the average velocity, f is friction $(P_1 - P_2) = \rho g(Z_2 - Z_1) + \frac{32\mu V_{av}L}{d^2}$ factor, L is the length of pipe and d is the $= 800 \times 10 \times 5 + \frac{32 \times 0.1 \times 0.1 \times 10}{(1 \times 10^{-2})^2}$ diameter of the pipe. This equation is used for laminar as well as $=40 \times 10^{3} + 32 \times 10^{3} = 72$ kPa turbulent flow through the pipe. The friction factor depends on the type of . flow (laminar or turbulent) as well as the 11. Ans: (a, b, c, d) nature of pipe surface (smooth or rough) Sol: The following statements regarding laminar For laminar flow, friction factor is a flow through pipes are correct. function of Reynolds number. Velocity profile is parabolic as given by $\mathbf{u} = \mathbf{U} \left(1 - \frac{\mathbf{r}^2}{\mathbf{R}^2} \right)$ 02. Ans: 481 Sol: Given data, • Shear stress, $\tau = \mu \frac{du}{dv} = -\mu \frac{du}{dr}$ $\dot{m} = \pi \text{ kg/s}, \qquad d = 5 \times 10^{-2} \text{ m}.$ $\mu = 0.001 \text{ Pa.s}$, $\rho = 1000 \text{ kg/m}^3$ $\tau = -\mu \times \left(-\frac{2r U}{R^2} \right) = \frac{2\mu U}{R^2} \times r$ $V_{av} = \frac{\dot{m}}{\rho A} = \frac{4\dot{m}}{\rho \pi d^2} = \frac{4 \times \pi}{\rho \pi d^2} = \frac{4}{\rho d^2}$ = Linear profile $Re = \frac{\rho V_{av} d}{\mu} = \rho \times \frac{4}{\rho d^2} \times \frac{d}{\mu} = \frac{4}{\mu d}$ Rate of shear strain profile is also linear. Flow is rotational. $=\frac{4}{0.001\times5\times10^{-2}}=8\times10^{4}$

A ace

ACE

$Z_1 - Z_2 = 20 \text{ m}$, $k_{exit} = 1$ $Z_1 - Z_2 = 0.5 \frac{V^2}{2g} + 5.5 \frac{V^2}{2g} + 1 \times \frac{V^2}{2g} + \frac{f L V^2}{2g d}$ $=7\frac{V^2}{2g} + \frac{fLV^2}{2gd} = \frac{V^2}{2g} \left(7 + \frac{fL}{d}\right)$ or $20 = \frac{V^2}{2g} \left[7 + \frac{0.03 \times 930}{0.3} \right] = 100 \frac{V^2}{2g}$ or $V^2 = \frac{20 \times 2g}{100} = \frac{20 \times 2 \times 10}{100}$ \Rightarrow V = 2 m/s Thus, discharge, $Q = \frac{\pi}{4} \times 0.3^2 \times 2$ $= 0.1414 \text{ m}^3/\text{s}$

Fluid Mechanics & Turbomachinery

Sol: Given data : Fanning friction factor, $f = m Re^{-0.2}$ For turbulent flow through a smooth pipe. $\Delta P = \frac{\rho f_{\text{Darcy}} L V^2}{2d} = \frac{\rho (4f) L V^2}{2d}$

 $\Delta P \propto V^{-0.2} V^2 \propto V^{1.8}$ (as all other parameters remain constant)

We may thus write :

$$\frac{\Delta P_2}{\Delta P_1} = \left(\frac{V_2}{V_1}\right)^{1.8} = \left(\frac{2}{1}\right)^{1.8} = 3.4822$$

or
$$\Delta P_2 = 3.4822 \times 10 = 34.82 \text{ kPa}$$

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams ace online Enjoy a smooth online learning experience in various languages at your convenience

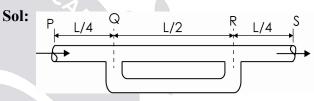
19

09. Ans: (b) **Sol:** Given data : Rectangular duct, L = 10 m, X-section of duct = 15 cm × 20 cm Material of duct-Commercial steel, $\varepsilon = 0.045$ mm Fluid is air ($\rho = 1.145$ kg/m³, $v = 1.655 \times 10^{-5}$ m²/s) $V_{av} = 7$ m/s $Re = \frac{V_{av} \times D_h}{v}$ where, D_h = Hydraulic diameter $= \frac{4 \times Cross \sec tional area}{Perimeter}$ $= \frac{4 \times 0.15 \times 0.2}{2(0.15 + 0.2)} = 0.1714$ m

$$\operatorname{Re} = \frac{7 \times 0.1714}{1.655 \times 10^{-5}} = 72495.5$$

 \Rightarrow Flow is turbulent.

ace online


Using Haaland equation to find friction factor,

$$\frac{1}{\sqrt{f}} \simeq -1.8 \log \left[\frac{6.9}{\text{Re}} + \left(\frac{\epsilon/\text{D}_{\text{h}}}{3.7} \right)^{1.11} \right]$$
$$\frac{1}{\sqrt{f}} = -1.8 \log \left[\frac{6.9}{72495.5} + \left(\frac{0.045 \times 10^{-3}}{0.1714 \times 3.7} \right)^{1.11} \right]$$
$$= -1.8 \log[9.518 \times 10^{-5} + 2.48 \times 10^{-5}]$$
$$= -1.8 \log(11.998 \times 10^{-5})$$
$$\frac{1}{\sqrt{f}} = 7.058$$
$$f = 0.02$$

The pressure drop in the duct is,

$$\Delta P = \frac{\rho f L V^2}{2D_h}$$
$$= \frac{1.145 \times 0.02 \times 10 \times 7^2}{2 \times 0.1714} = 32.73 Pa$$
The required pumping power will be

$$P_{pumping} = Q \Delta P = A V_{av} \times \Delta P$$
$$= (0.15 \times 0.2) \times 7 \times (32.73)$$
$$= 6.87 W \simeq 7 W$$

Case I: Without additional pipe, Let Q be the discharge through the pipe. Then

$$\frac{P_{P}}{\gamma} + \frac{V_{P}^{2}}{2g} + Z_{P} = \frac{P_{S}}{\gamma} + \frac{V_{S}^{2}}{2g} + Z_{S} + \frac{f L Q^{2}}{12.1 d^{5}}$$

But $V_{P} = V_{S}$

and $Z_P = Z_S$

 P_P and P_S are the pressures at sections P and S, respectively.

Thus,

$$\frac{P_{\rm P}}{\gamma} - \frac{P_{\rm S}}{\gamma} = \frac{f \, L \, Q^2}{12.1 \, d^5} \quad \text{------}(1)$$

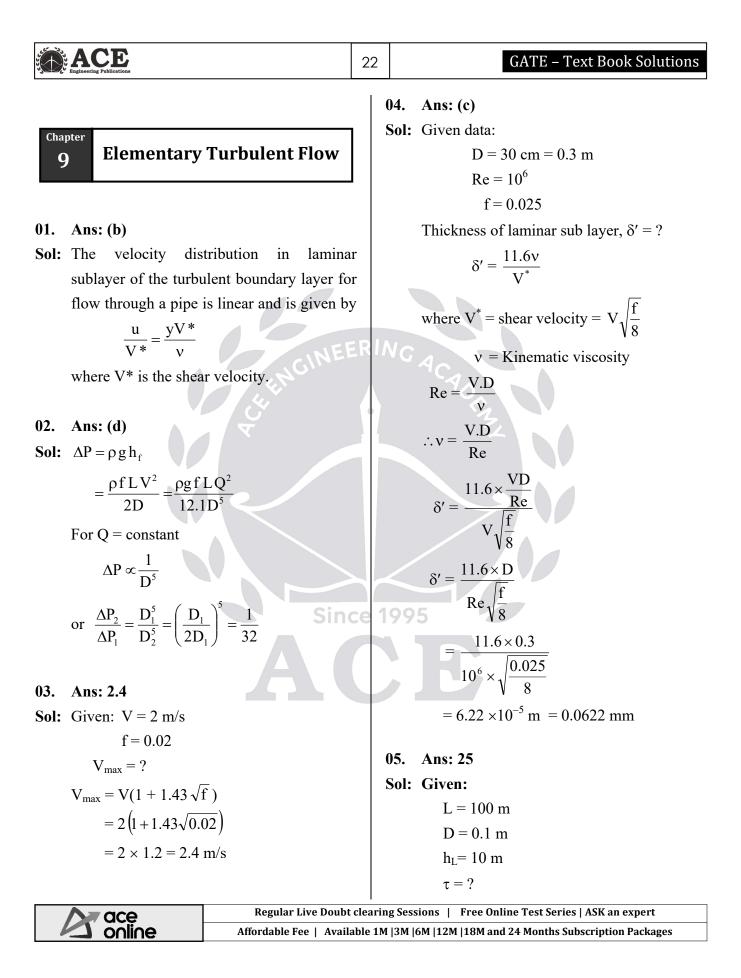
Case II: When a pipe (L/2) is connected in parallel.

In this case, let Q' be the total discharge.

 Regular Live Doubt clearing Sessions
 Free Online Test Series | ASK an expert

 Affordable Fee |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

21


A ace online

= 26.5 %

ACE

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

Fluid Mechanics & Turbomachinery

ACE

Fluid Mechanics & Turbomachinery

For any type of flow, the shear stress at
wall/surface
$$\tau = \frac{-dP}{dx} \times \frac{R}{2}$$

 $\tau = \frac{\rho g h_L}{L} \times \frac{R}{2}$
 $\tau = \frac{\rho g h_L}{L} \times \frac{D}{4}$
 $= \frac{1000 \times 9.81 \times 10}{100} \times \frac{0.1}{4}$
 $= 24.525 \text{ N/m}^2 = 25 \text{ Pa}$

06. Ans: 0.905

Sol: k = 0.15 mm

 $\tau = 4.9 \text{ N/m}^2$ v = 1 centi-stoke $\tau^* \qquad \overline{\tau_0} \qquad \overline{4.9}$

$$V^* = \sqrt{\frac{n_0}{\rho}} = \sqrt{\frac{m_0}{1000}} = 0.07 \text{ m/sec}$$

v = 1 centi-stoke

$$=\frac{1}{100}$$
 stoke $=\frac{10^{-4}}{100}$ $=10^{-6}$ m² / sec

$$\frac{k}{\delta'} = \frac{0.15 \times 10^{-5}}{\left(\frac{11.6 \times v}{V^*}\right)}$$
$$= \frac{0.15 \times 10^{-3}}{\frac{11.6 \times 10^{-6}}{0.07}} = 0.905$$

07. Ans: (a)

Sol: The velocity profile in the laminar sublayer is given as

$$\frac{u}{V^*} = \frac{yV^*}{v}$$

or $v = \frac{y(V^*)^2}{u}$ where, V* is the shear velocity. Thus, $v = \frac{0.5 \times 10^{-3} \times (0.05)^2}{1.25}$ $= 1 \times 10^{-6} \text{ m}^2/\text{s}$ $= 1 \times 10^{-2} \text{ cm}^2/\text{s}$ Ans: 47.74 N/m²

08. Ans: 47.74 N/m² Sol: Given data : d = 100 mm = 0.1 m $u_{r=0} = u_{max} = 2 \text{ m/s}$ Velocity at r = 30 mm = 1.5 m/s Flow is turbulent. The velocity profile in turbulent flow is

$$\frac{u_{max} - u}{V^*} = 5.75 \log\left(\frac{R}{y}\right)$$

where u is the velocity at y and V* is the shear velocity.

For pipe,
$$y = R - r$$

$$= (50 - 30) \text{ mm} = 20 \text{ mm}$$

Thus,

Since 1995

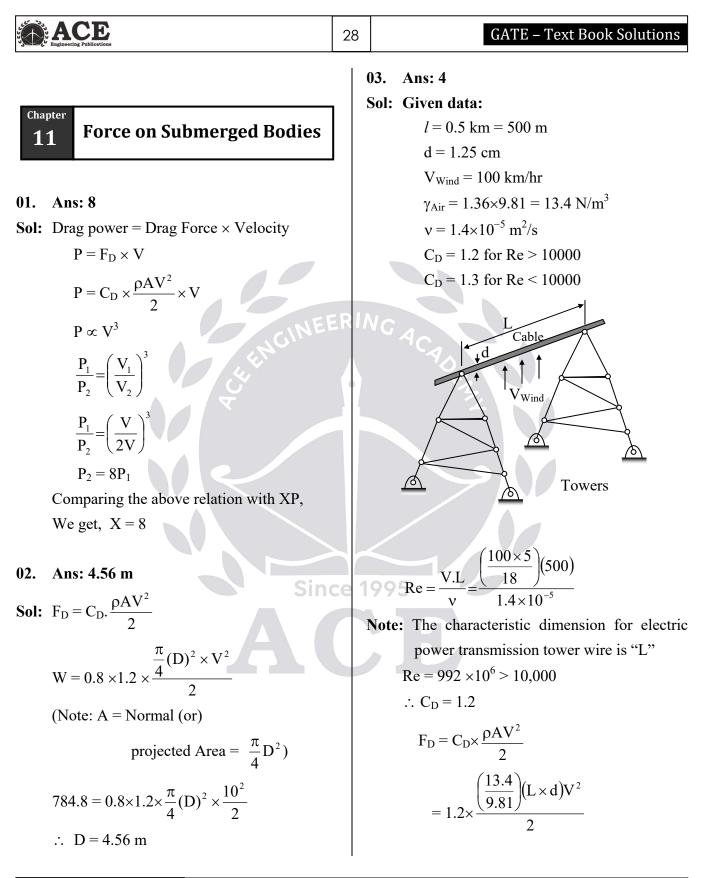
$$\frac{2-1.5}{V^*} = 5.75 \log\left(\frac{50}{20}\right) = 2.288$$

or
$$V^* = \frac{0.5}{2.288} = 0.2185 \,\mathrm{m/s}$$

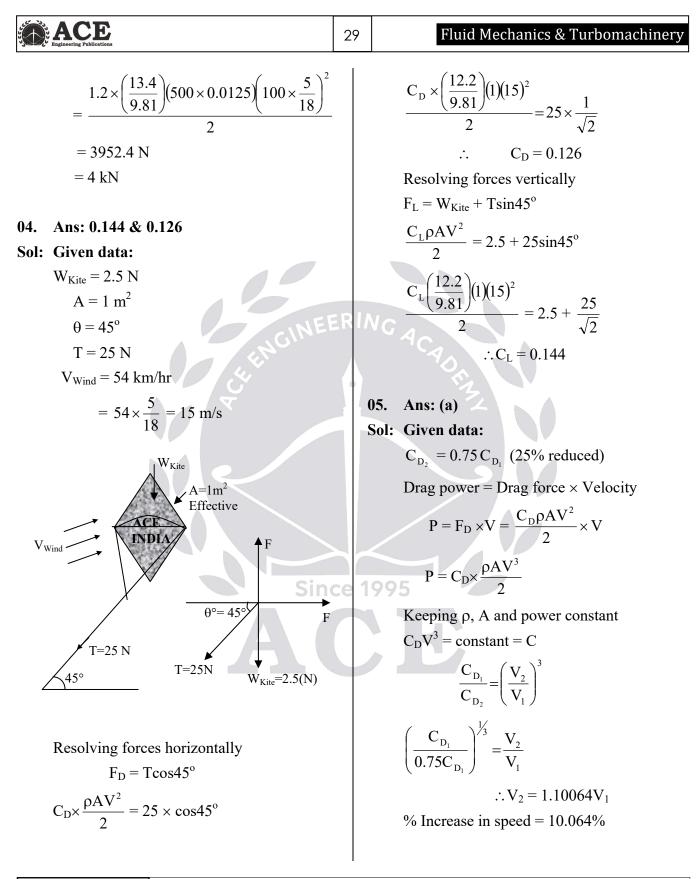
Using the relation,

$$V^* = \sqrt{\frac{\tau_w}{\rho}} \text{ or } \tau_w = \rho (V^*)^2$$

$$\tau_w = 10^3 \times (0.2185)^2 = 47.74 \text{ N/m}^2$$


A ace online

ACE GATE – Text Book Solutions 24 **09**. **Ans: (a, b)** Sol: The following statements are true for Chapter **Boundary Layer Theory** 10 turbulent flow through pipes: • Velocity profile is logarithmic (in the overlap region) expressed as 01. Ans: (c) $\frac{u}{u^*} = 2.5 \, \ell n \left(\frac{yu^*}{v} \right) + 5.0$ **Sol:** Re _{Critical} = $\frac{U_{\infty} x_{critical}}{v}$ Surface roughness plays an important Assume water properties role in contributing towards determining $5 \times 10^5 = \frac{6 \times x_{\text{critical}}}{1 \times 10^{-6}}$ head loss. 0 $x_{critical} = 0.08333 \text{ m} = 83.33 \text{ mm}$ 02. Ans: 1.6 Sol: $\delta \propto \frac{1}{\sqrt{\text{Re}}}$ (At given distance 'x') $\frac{\delta_1}{\delta_2} = \sqrt{\frac{\text{Re}_2}{\text{Re}_1}}$ $\frac{\delta_1}{\delta_2} = \sqrt{\frac{256}{100}} = \frac{16}{10} = 1.6$ Since 03. Ans: 80 Sol: = 2 cm $\delta_{\rm B} = 3 \, \rm cm$ B 1 m $(x_1 + 1) \delta \propto \sqrt{x}$ $\frac{\delta_{\rm A}}{\delta_{\rm B}} = \sqrt{\frac{{\rm x}_1}{{\rm (x}_1+1)}}$ Regular Live Doubt clearing Sessions | Free Online Test Series | ASK an expert ace online Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages


	Publications	25	Fluid Mechanics & Turbomachinery
x =	$\frac{2}{3} = \sqrt{\frac{x_1}{x_1 + 1}}$		$\theta = \int_0^{\delta} \frac{u}{U_{\infty}} \left(1 - \frac{u}{U_{\infty}} \right) dy$
$\frac{4}{9} =$	$\frac{\mathbf{x}_1}{\mathbf{x}_1 + 1}$		$= \int_0^\delta \frac{y}{8} \left(1 - \frac{y}{\delta} \right) dy$
5x ₁	$=4 \Longrightarrow x_1 = 80 \text{ cm}$		$=\frac{y^2}{2\delta}-\frac{y^3}{3\delta}\Big _0^\delta$
04. Ans Sol: τ∝	1		$=\frac{\delta}{2}-\frac{\delta}{3}=\frac{\delta}{6}$
	$\frac{\delta}{\sqrt{x}} :: \delta \propto \sqrt{x}$	RI	Shape factor = $\frac{\delta^*}{\theta} = \frac{\delta/2}{\delta/6} = 3$
2	$=\sqrt{\frac{x_2}{x_1}}$		06. Ans: 22.6 Sol: Drag force,
$\frac{\tau_1}{\tau_2}$ =	$=\sqrt{4}=2$		$F_{\rm D} = \frac{1}{2} C_{\rm D}.\rho.A_{\rm Proj}.U_{\infty}^2$
05. Ans	:3		B = 1.5 m, $\rho = 1.2 \text{ kg/m}^3$ L = 3.0 m, $\nu = 0.15 \text{ stokes}$
Sol: $\frac{U}{U_{\infty}}$	$=\frac{y}{\delta}$		$U_{\infty} = 2 \text{ m/sec}$ $Re = \frac{U_{\infty}L}{V} = \frac{2 \times 3}{0.15 \times 10^{-4}} = 4 \times 10^{5}$
$\frac{\delta^*}{\theta} =$	=Shape factor = ? Since	:e 1	$V = 0.15 \times 10^{-4}$ $C_{\rm D} = \frac{1.328}{\sqrt{\rm Re}} = \frac{1.328}{\sqrt{4 \times 10^5}} = 2.09 \times 10^{-3}$
δ* =	$= \int_{0}^{\delta} \left(1 - \frac{u}{U_{\infty}} \right) dy$		Drag force,
=	$\int_0^{\delta} \left(1 - \frac{y}{8}\right) dy$		$F_{\rm D} = \frac{1}{2} \times 2.09 \times 10^{-3} \times 1.2 \times (1.5 \times 3) \times 2^{2}$ = 22.57 milli Newton
	$y - \frac{y^2}{2\delta} \bigg _{0}^{\delta}$		= 22.57 milli-Newton
	$\left. \frac{y}{2\delta} \right _{0}$		07. Ans: 1.62 Sol: Given data,
=	$\delta - \frac{\delta}{2} = \frac{\delta}{2}$		$U_{\infty} = 30 \text{ m/s},$
			$\rho = 1.2 \text{ kg/m}^3$

A ace online

ACE Engineering Fublications	26		GATE – Text Book Solutions
Velocity profile at a distance x from leading edge, $\frac{u}{U_{\infty}} = \frac{y}{\delta}$ $\delta = 1.5 \text{ mm}$ Mass flow rate of air entering section ab, $(\dot{m}_{in})_{ab} = \rho U_{\infty} (\delta \times 1) = \rho U_{\infty} \delta \text{ kg/s}$ Mass flow rate of air leaving section cd, $(\dot{m}_{out})_{cd} = \rho \int_{0}^{\delta} u(dy \times 1) = \rho \int_{0}^{\delta} U_{\infty} \left(\frac{y}{\delta}\right) dy$ $= \frac{\rho U_{\infty}}{\delta} \left[\frac{y^2}{2}\right]_{0}^{\delta} = \frac{\rho U_{\infty} \delta}{2}$ From the law of conservation of mass : $(\dot{m}_{in})_{ab} = (\dot{m}_{out})_{cd} + (\dot{m}_{out})_{bc}$ Hence, $(\dot{m}_{out})_{bc} = (\dot{m}_{in})_{ab} - (\dot{m}_{out})_{cd}$ $= \rho U_{\infty} \delta - \frac{\rho U_{\infty} \delta}{2}$ $= \frac{1.2 \times 30 \times 1.5 \times 10^{-3}}{2}$ Sime $= 27 \times 10^{-3} \text{ kg/s}$	g	NG	Ans: 28.5 Given data, Flow is over a flat plate. L = 1 m, U _∞ = 6 m/s v = 0.15 stoke = 0.15×10 ⁻⁴ m ² /s $\rho = 1.226 \text{ kg/m}^3$ $\delta(x) = \frac{3.46x}{\sqrt{\text{Re}_x}}$ Velocity profile is linear. Using von-Karman momentum integral equation for flat plate. $\frac{d\theta}{dx} = \frac{\tau_w}{\rho U_{\infty}^2}$ (1) we can find out τ_w . From linear velocity profile, $\frac{u}{U_{\infty}} = \frac{y}{\delta}$, we evaluate first θ , momentum thickness as $\theta = \int_{-\infty}^{\delta} \frac{u}{U_w} \left(1 - \frac{u}{U_w}\right) dy$
$= 27 \times 10^{-3} \times 60 \text{ kg/min}$ = 1.62 kg/min			$= \left(\frac{y^2}{2\delta} - \frac{y^3}{3\delta^2}\right)_0^{\delta} = \frac{\delta}{2} - \frac{\delta}{3} = \frac{\delta}{6}$
08. Ans: (b) Sol: For 2-D, steady, fully developed lamina boundary layer over a flat plate, there i velocity gradient in y-direction, $\frac{\partial u}{\partial y}$ only The correct option is (b).	s r.	ng 6	$\Rightarrow \theta = \frac{\delta}{6} = \frac{1}{6} \times \frac{3.46 \mathrm{x}}{\sqrt{\mathrm{Re}_{\mathrm{x}}}}$ $= \frac{3.46}{6} \frac{\mathrm{x}^{1/2}}{\left(\frac{\mathrm{U}_{\infty}}{\mathrm{v}}\right)^{1/2}}$
Aregular Live Doubt Affordable Fee Availar		-	sions Free Online Test Series ASK an expert 6M 12M 18M and 24 Months Subscription Packages

ace	Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert
online	Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages

A ace online

	ACE Engineering Publications	30		GATE – Text Book Solutions
W 07.	 Ans: (c) When a solid sphere falls under gravity a its terminal velocity in a fluid, the following relation is valid : Veight of sphere = Buoyant force + Drag force Ans: 0.62 Given data, Diameter of dust particle, d = 0.1 mm 	ıt g	08. Sol:	Ans: (b) Since the two models M ₁ and M ₂ have equal volumes and are made of the same material, their weights will be equal and the buoyancy forces acting on them will also be equal. However, the drag forces acting on them will be different. From their shapes, we can say that M ₂ reaches the bottom earlier than M ₁ .
	Density of dust particle, $\rho = 2.1 \text{ g/cm}^3 = 2100 \text{ kg/m}^3$ $\mu_{air} = 1.849 \times 10^{-5} \text{ Pa.s,}$ At suspended position of the dust particle, $W_{particle} = F_D + F_B$ where F_D is the drag force on the particle and F_B is the buoyancy force. From Stokes law: $F_D = 3\pi\mu \text{ V d}$ Thus, $\frac{4}{3} \times \pi r^3 \times \rho \times g = 3\pi\mu \text{ Vd} + \frac{4}{3}\pi r^3 \rho_{air}g$ or, $\frac{4}{3}\pi r^3 g(\rho - \rho_{air}) = 3\pi\mu_{air} \text{ V}(2r)$ or $\text{V} = \frac{2}{9}r^2g\left(\frac{\rho - \rho_{air}}{\mu_{air}}\right)$ $= \frac{2}{9} \times \left(0.05 \times 10^{-3}\right)^2 \times 9.81 \times \frac{(2100 - 1.2)}{1.849 \times 10^{-5}}$ $= 0.619 \text{ m/s} \approx 0.62 \text{ m/s}$	e ce 1	09. Sol: •	 Ans: (a) Drag of object A₁ will be less than that on A₂. There are chances of flow separation on A₂ due to which drag will increase as compared to that on A₁. Drag of object B₁ will be more than that of object B₂. Because of rough surface of B₂, the boundary layer becomes turbulent, the separation of boundary layer will be delayed that results in reduction in drag. Both the objects are streamlined but C₂ is rough as well. There will be no pressure drag on both the objects. However, the skin friction drag on C₂ will be more than that on C₁ because of flow becoming turbulent due to roughness. Hence, drag of object C₂ will be more than that of object C₁. Thus, the correct answer is option (a).

ACE Engineering Publications	31 Fluid Mechanics & Turbomachinery
Chapter	04. Ans: (c)
12Dimensional Analysis	 Sol: Mach Number → Launching of rockets Themes Number → Covitation flow in soil
01. Ans: (c) Sol: Total number of variables, n = 8 and $m = 3$ (M, L & T) Therefore, number of π 's are $= 8 - 3 = 5$ 02. Ans: (b) Sol: 1. $\frac{T}{\rho D^2 V^2} = \frac{MLT^2}{ML^{-3} \times L^2 \times L^2 \times T^{-2}} = 1.$ \rightarrow It is a non-dimensional parameter. 2. $\frac{VD}{H} = \frac{LT^{-1} \times L}{ML^{-1}T^{-1}} \neq 1.$	 Thomas Number → Cavitation flow in soil Reynolds Number → Motion of a submarine Weber Number → Capillary flow in soil 05. Ans: (b) Sol: According to Froude's law T_r = √L_r t_p = √L_r t_p = 10/√L_r = 10/√1/25
μ ML 1 → It is a dimensional parameter. 3. $\frac{D\omega}{V} = 1$. → It is a non-dimensional parameter. 4. $\frac{\rho VD}{\mu} = \text{Re}$. → It is a non-dimensional parameter. 03. Ans: (b) Sol: T = f (l, g) Total number of variable, n = 3, m = 2 (L & T only) Hence, no. of π terms = 3 - 2 = 1	$V_{\rm p} = 10 {\rm m/s}$, $L_{\rm r} = \frac{1}{25}$

32

GATE – Text Book Solutions

07. Ans: (d)

Sol: Froude number = Reynolds number.

 $\nu_r = 0.0894$

If both gravity & viscous forces are important then

 $\nu_{\rm r} = (L_{\rm r})^{3/2}$ $\sqrt[3]{(\nu_{\rm r})^2} = L_{\rm r}$ $L_{\rm r} = 1:5$

08. Ans: (c)

- Sol: For distorted model according to Froude's law
 - $Q_{\rm r} = L_{\rm H} L_{\rm V}^{3/2}$ $L_{\rm H} = 1:1000 ,$ $L_{\rm V} = 1:100$ $Q_{\rm m} = 0.1 \text{ m}^3/\text{s}$ $Q_{\rm r} = \frac{1}{1000} \times \left(\frac{1}{100}\right)^{3/2} = 0.1 \text{ m}^3/\text{s}$ $Q_{\rm P} = 10^5 \text{ m}^3/\text{s}$

09. Ans: (c)

Sol: For dynamic similarity, Reynolds number should be same for model testing in water and the prototype testing in air. Thus,

$$\frac{\rho_{\rm w} \times V_{\rm w} \times d_{\rm w}}{\mu_{\rm w}} = \frac{\rho_{\rm a} \times V_{\rm a} \times d_{\rm a}}{\mu_{\rm a}}$$

or
$$V_w = \frac{\rho_a}{\rho_w} \times \frac{d_a}{d_w} \times \frac{\mu_w}{\mu_a} \times V_a$$

ace online

(where suffixes w and a stand for water and air respectively)

Substituting the values given, we get

$$V_{w} = \frac{1.2}{10^{3}} \times \frac{4}{0.1} \times \frac{10^{-3}}{1.8 \times 10^{-5}} \times 1 = \frac{8}{3} \text{ m/s}$$

To calculate the drag force on prototype, we equate the drag coefficient of model to that of prototype.

i.e,
$$\left(\frac{F_{\rm D}}{\rho A V^2}\right)_{\rm p} = \left(\frac{F_{\rm D}}{\rho A V^2}\right)_{\rm m}$$

Hence, $\left(F_{\rm D}\right)_{\rm p} = \left(F_{\rm D}\right)_{\rm m} \times \frac{\rho_{\rm a}}{\rho_{\rm w}} \times \frac{A_{\rm a}}{A_{\rm w}} \times \left(\frac{V_{\rm a}}{V_{\rm w}}\right)^2$
 $= 4 \times \frac{1.2}{10^3} \times \left(\frac{4}{0.1}\right)^2 \times \left(\frac{1}{8/3}\right)^2$
 $= 1.08 \text{ N}$

10. Ans: 47.9

Since

Sol: Given data,

	Sea water	Fresh water		
	(Prototype testing)	(model testing)		
V	0.5	?		
ρ	1025 kg/m ³	10^3 kg/m^3		
μ	1.07×10^{-3} Pa.s	1×10 ⁻³ Pa.s		

For dynamic similarity, Re should be same in both testing.

i.e.,
$$\frac{\rho_{m}V_{m}d_{m}}{\mu_{m}} = \frac{\rho_{p}V_{p}d_{p}}{\mu_{p}}$$
$$V_{m} = V_{p} \times \frac{\rho_{p}}{\rho_{m}} \times \frac{d_{p}}{d_{m}} \times \frac{\mu_{m}}{\mu_{p}}$$
$$= 0.5 \times \frac{1025}{10^{3}} \times 100 \times \frac{10^{-3}}{1.07 \times 10^{-3}}$$
$$= 47.9 \text{ m/s}$$

 Regular Live Doubt clearing Sessions
 Free Online Test Series | ASK an expert

 Affordable Fee
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

13 Compressible Fluid Flow

01. Ans: (b)

Sol: Shock wave is an irreversible process. Entropy change across shock wave is always greater than zero, not nearly equal to zero. All other statements given are correct.

02. Ans: (c)

Sol: Semi – angle of a Mach come is given by

 $\sin \alpha = \frac{1}{M}$ Or, $\alpha = \sin^{-1} \left(\frac{1}{M} \right)$

03. Ans: (d)

Sol: Shock – boundary layer interaction in a convergent – divergent nozzle takes place in the divergent portion where the flow can be supersonic.

04. Ans: (d)

- **Sol:** Across normal shock, the stagnation temperature remains constant.
 - $T_0 = constant,$

Thus,
$$T_1 + \frac{V_1^2}{2c_p} = T_2 + \frac{V_2^2}{2c_p} = T_0$$

As V_2 decreases across normal shock, the temperature (T₂) has to increase for T₀ to remain constant.

All other statements given are correct.

Note: As given above, statement 4 is wrong. Thus from process of elimination, option (d) is the correct answer.

05. Ans: (a)

33

Sol: The correct matching is;

$$\frac{T^*}{T_0} = \frac{2}{\gamma + 1}$$
$$\frac{P^*}{P_0} = \left(\frac{2}{\gamma + 1}\right)^{\frac{\gamma}{\gamma - 1}}$$
$$\frac{\rho^*}{\rho_0} = \left(\frac{2}{\gamma + 1}\right)^{\frac{1}{\gamma - 1}}$$
$$\frac{S^*}{S_0} = 1 \qquad \text{(Isentropic)}$$

06. Ans: (d)

Sol: In isentropic flow, stagnation pressure, stagnation temperature and stagnation density would remain constant throughout the flow.

flow)

07. Ans: (a)

Sol: In a normal shock in a gas

- the upstream flow is supersonic
- the downstream flow is subsonic.

GATE – Text Book Solutions

08. Ans: (d)

Sol: The following statements are correct:

- Mach number is equal to one at a point where the entropy is maximum whether it is Rayleigh or Fanno line .
- A normal shock can never appear in subsonic flow.
- The downstream Mach number across a normal shock is always less than one.
- The stagnation pressure across a normal shock decreases.

09. Ans: (b)

Sol: $\sin \alpha = \frac{1}{M}$

 $\sin^2 \alpha = \frac{1}{M^2}$

$$1 - \cos^2 \alpha = \frac{1}{M^2}$$

$$\cos^{2} \alpha = \frac{M^{2} - 1}{M^{2}}$$

$$\cos \alpha = \frac{\sqrt{M^{2} - 1}}{M}$$

$$\Rightarrow \alpha = \cos^{-1} \left(\frac{\sqrt{M^{2} - 1}}{M} \right)$$

10. Ans: (c)

Sol: Given data:

At $T_1 = 15^{\circ}C$,

$$V_1 = 400 \text{ km} / \text{hr} = 400 \times \frac{5}{18} \text{m/s}$$

At $T_2 = -25^{\circ}C$, $V_2 = ?$ for $M_1 = M_2$

$$M_{1} = \frac{V_{1}}{C_{1}} = \frac{400 \times 5}{18 \times \sqrt{kR(273 + 15)}} = \frac{400 \times 5}{18 \times \sqrt{kR \times 288}}$$
$$M_{2} = M_{1} : \frac{V_{2}}{\sqrt{kR(273 - 25)}} = \frac{400}{\sqrt{kR \times 288}}$$
Where V₂ is in km/hr
$$V_{2} = 400 \times \sqrt{\frac{248}{288}} \text{ km/hr} = 371.2 \text{ km/hr}$$

11. Ans: (d)
Sol: Given data : T = 273+15° = 288 k
Mach angle,
$$\alpha = 30°$$

 $\sin \alpha = \frac{1}{M} = \frac{C}{V} = \frac{\sqrt{kRT}}{V}$
 $V = \frac{\sqrt{kRT}}{\sin \alpha} = \frac{\sqrt{1.4 \times 287 \times 288}}{\sin 30°} = 680.35 \text{ m/s}$

12. Ans: (b)

Sol: For a normal shock,

 M_1 (upstream Mach number) = 1.68 $\gamma = 1.4, M_2$ (downstream Mach number) = ? We know that for a normal shock ,

$$M_{2}^{2} = \frac{M_{1}^{2} + \frac{2}{(\gamma - 1)}}{2M_{1}^{2}\left(\frac{\gamma}{\gamma - 1}\right) - 1}$$
$$= \frac{1.68^{2} + \frac{2}{(1.4 - 1)}}{2 \times 1.68^{2} \times \left(\frac{1.4}{0.4}\right) - 1} = \frac{1.68^{2} + 5}{2 \times 1.68^{2} \times 3.5 - 1}$$

$$= 0.417$$

 \Rightarrow M₂ = 0.646 *Note: Answer key is (b).*

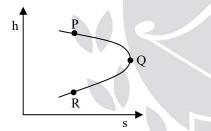
 Regular Live Doubt clearing Sessions |
 Free Online Test Series | ASK an expert

 Affordable Fee |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

13. Ans: (a)

Sol: Across a normal shock wave

- mach number decreases
- static pressure increases
- stagnation pressure decreases
- static temperature increases


14. Ans: (b)

Sol: A normal shock wave

- is irreversible
- is not isentropic
- can occur in diverging port of converging -diverging nozzle.

15. Ans: (c)

Sol: For Fanno line shown in the figure,

- subsonic flow proceeds along PQ not along PQR
- supersonic flow proceeds along RQ not along PQR
- subsonic flow proceed along PQ and supersonic flow proceeds along RQ.

16. Ans: (a)

Sol: For Rayleigh line, the temperature is maximum at $\frac{1}{\sqrt{\gamma}}$ while heating a subsonic

flow.

ace online India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

35

Fluid Mechanics & Turbomachinery

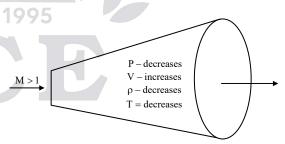
17. Ans: (b)

Sol: Given data:

Rayleigh flow

 $P_1 = 2 \ \text{bar}, \qquad T_1 = 60^{\circ}\text{C}, \\ d = 60 \ \text{mm} \ , \qquad V_1 = 40 \ \text{m/s}$

From the Rayleigh line, it is known that at maximum entropy, M = 1


18. Ans: (c)

Sol: For Fanno flow in a constant area duct with supersonic flow at inlet and choking

condition achieved, if the pipe length is reduced, then the flow will be still supersonic.

19. Ans: (b)

Sol: Refer to the figure given below, where the increase or decrease in thermodynamic properties in a divergent passage for M > 1at entry is shown.

Thus, for supersonic flow entry to a diverging passage, pressure and density will decrease along the passage.

Engineering Publications		36	GATE – Text Book Solutions		
20. Ans: (b)Sol: Reyleigh line flow is a flow in a constant area duct without friction but with heat transfer.			Chapter14Turbomachinery		
21. Ans: (c)Sol: Fanno line flow is a duct with friction by transfer and work.	a flow in a constant area at in the absence of hea	a	D1. Ans: 1000 Sol: T = Moment of momentum of water in a turbine = Torque developed = 15915 N-m Speed (N) = 600 rpm Power developed = $\frac{2\pi NT}{60}$		
	CKENGINEE V		$= \frac{2 \times \pi \times 600 \times 15915}{60}$ = 1000 × 10 ³ W = 1000 kW 02. Ans: 4000 Sol: Q = 50 m ³ /sec , H = 7.5 m		
			$\eta_{\text{Turbine}} = 0.8$ $\eta_{\text{Turbine}} = \frac{P_{\text{shaft}}}{P_{\text{water}}} = \frac{P_{\text{shaft}}}{\rho g Q (H - h_f)}$ $0.8 = \frac{P_{\text{shaft}}}{1000 \times 9.81 \times 50(7.5 - 0)}$		
			P _{shaft} = 2943×10 ³ W = 2943 kW = $\frac{2943}{0.736}$ HP = 4000 HP 03. Ans: 1		
			Sol: We know that $U = \frac{\pi DN}{60} = k_u \sqrt{2gH}$ where D = diameter of wheel		
			where D = diameter of wheel N = speed of turbine = 600 rpm H = Head available of Pelton wheel turbine = 300 m		
ace online	Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages				

	37Fluid Mechanics & Turbe
$\therefore \frac{\pi \times D \times 600}{60} = 0.41 \sqrt{2 \times 9.81 \times 300}$ D = 1.0 m 04. Ans: (b)	 A high head turbine has a laspecific speed. Hence, state wrong. For the same power, a tur running at high specific speed
Sol: Specific speed of turbine is expressed as $N_{s} = \frac{N\sqrt{P}}{H^{5/4}} = \frac{T^{-1}\sqrt{FLT^{-1}}}{L^{5/4}}$ $= F^{\frac{1}{2}}L^{\frac{1}{2}-\frac{5}{4}}T^{-1-\frac{1}{2}}$ $= F^{1/2}L^{-3/4}T^{-3/2}$	 Pelton wheel is the tangential whereas the Propeller and Kap are axial flow units. Hence, state
= $r L 1$ 05. Ans: (b) Sol: P = 8.1 MW = 8100 kW H = 81 m ; N = 540 rpm	ERING 08. Ans: (a) Sol: $u = \frac{\pi DN}{60}$,

$$1 = 81 \text{ m}$$
; $N = 540 \text{ rpm}$

Specific speed N_S

$$=\frac{540\times\sqrt{8100}}{(81)^{5/4}}=\frac{540\times90}{243}=200$$

60 < N_S < 300 (Francis Turbine)

06. Ans: (a)

Sol: The specific speed is lowest for Pelton wheel and highest for Kaplan turbine. N_s for Francis turbine lies between those of Pelton wheel and Kaplan turbine.

07. Ans: (a, c, d)

Sol:

• Only the tangential component of absolute velocity is considered into the estimation of theoretical head of a turbo machine. Hence, statement (a) is correct.

ow value of ment (b) is

machinery

- bo machine will be small correct.
- flow turbine olan turbines tement (d) is

But $u \propto \sqrt{H}$ Hence, for a given scale ratio.

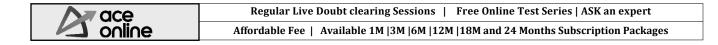
$$N \propto H^{1/2}$$

09. Ans: (d)

Sol: Caviation in any flow passage will occur, if the local pressure at any point in the flow passage falls below the vapour pressure corresponding to the operating temperature.

10. Ans: (d)

Sol: Cavitation in a reaction turbine may occur at inlet to draft tube. It is expected that the pressure at inlet to draft tube may fall below the vapour pressure.


11. Ans: 1000

Sol: Given $N_p = 500$ rpm

$$\frac{D_m}{D_p} = \frac{1}{2}$$

Engineering Publications		GATE – Text Book Solutions			
We know that $\begin{pmatrix} ND \\ \sqrt{H} \end{pmatrix}_{m} = \left(\frac{ND}{\sqrt{H}}\right)_{p}$ Given H is constant $\therefore \frac{N_{m}}{N_{p}} = \frac{D_{p}}{D_{m}} \Rightarrow \frac{N_{m}}{500} = 2$ $\Rightarrow N_{m} = 1000 \text{ rpm}$ 12. Ans: 73 Sol: Given P_{1} = 100 kW H_{1} = 100 m and H_{2} = 81 m We know that $\begin{pmatrix} \frac{P}{(H)^{3/2}} \\ 1 \end{pmatrix}_{1} = \left(\frac{P}{(H)^{3/2}} \right)_{2}$ $\therefore \frac{100}{(100)^{3/2}} = \frac{P_{2}}{(81)^{3/2}}$ $P_{2} = 72.9 \text{ kW} \simeq 73 \text{ kW}$ New power developed by same turbine = 73 kW	R //	13. Sol: NG	Ans: (b) Given data : $D_{runer} = D_{tip} = 3 \text{ m}$, $D_{hub} = \frac{1}{3} \times D_{runner} = 1 \text{ m}$, Velocity of flow, $V_f = 5 \text{ m/s}$, u = 40 m/s Discharge through the runner is, $Q = \frac{\pi}{4} (D_{tip}^2 - D_{hub}^2) \times V_f$ $= \frac{\pi}{4} (3^2 - 1^2) \times 5 = 31.4 \text{ m}^3/\text{s}$		
Since 1995					
ACE					

