

GATE | PSUs

MECHANICAL ENGINEERING

Engineering Mechanics

Text Book & Work Book : Theory with worked out Examples and Practice Questions

Engineering Mechanics

(Solutions for Text Book Practice Questions)

online

 Regular Live Doubt clearing Sessions
 Free Online Test Series | ASK an expert

 Affordable Fee |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

A ace online

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

ace online

ACE 7 $\Sigma F_x = 0$ 04. Ans: (d) Sol: F.B.D of both the books are shown below. $P - F_1 - F_2 = 0$ $P = F_1 + F_2 = 72.24 + 12.24$ N_2 P = 84.48 N03. Ans: (b) ↓ m₂ g Sol: Free Body Diagram N_2 20 cm 10 cm NB Nı $m_1 g$ where, f is the friction between the two 10 cm 35 cm NA books. W = 100 N f_1 is the friction between the lower book and ground. $F_A = \mu N_A = \frac{1}{3} N_A$ Now, maximum possible acceleration of $F_B = \mu N_B = \frac{1}{3} N_B$ upper book. $a_{\max} = \frac{f_{\max}}{m_2} = \frac{\mu m_2 g}{m_2} = \mu \times g$ $\Sigma M_{\rm B} = 0$ $= 0.3 \times 9.81 = 2.943 \text{ m/s}^2$ $-100 \times 30(\bigcirc) + (N_A \times 20)(\bigcirc) + (F_a \times 12)(\bigcirc) = 0$ For slip to occur, acceleration (a_1) of lower $-3000 + N_A \times 20 + \frac{1}{3}N_A \times 12 = 0$ Since book. i.e, $a_1 \ge a_{max}$ \Rightarrow N_A = 125 N $\frac{F-f-f_1}{m_1} \ge 2.943$ $\Sigma F_{\rm v} = 0$ $N_{A} - N_{B} - 100 = 0$ $F - 2.943 - 0.3 \times 2 \times 9.81 \ge 2.943$ \Rightarrow N_B = 25 N $f: f = f_{max} = 2.943$ and $\Sigma F_x = 0$ $f_1 = \mu \times (m_1 + m_2) g = 0.3 \times 2 \times 9.81$ $\mathbf{P} = \mathbf{F}_{\mathrm{A}} + \mathbf{F}_{\mathrm{B}} = \frac{1}{3} \left(\mathbf{N}_{\mathrm{A}} + \mathbf{N}_{\mathrm{B}} \right)$ $F \ge 11.77 \text{ N}$ $F_{min} = 11.77 \text{ N}$ $=\frac{1}{3}(125+25)=50$ N

ace online India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

Engineering Mechanics

f

F

Engineering Publications	9 Engineer	ring Mechanics
$\Sigma F_{y} = 0$ $N_{A} - W_{A} \cos\theta = 0$ $N_{A} = 200 \cos\theta$ $F_{A} = \mu N_{A} = 0.2 \times 200 \cos\theta$ But, $F_{A} = 40 \cos\theta$ $\Sigma F_{x} = 0$ $T + F_{A} - W_{A} \sin\theta = 0$ $T = W_{A} \sin\theta - F_{A}$ $T = 200 \sin\theta - 40 \cos\theta$ But from equation (1) $T = 150 \cos\theta - 300 \sin\theta$ $\therefore 150 \cos\theta - 300 \sin\theta = 200 \sin\theta - 40 \cos\theta$ $190 \cos\theta = 500 \sin\theta$ $\tan\theta = \frac{190}{500}$ $\Rightarrow \theta = 20.8^{\circ}$ 07. Ans: (d) Sol: FBD for the block V V $W = 500$ $V = 500$ $\Sigma F_{y} = 0$ $N - W \sin 45 - P \sin 45 = 0$ $N = \frac{500}{\sqrt{2}} + \frac{P}{\sqrt{2}}$	But, $F = \mu N = 0.25 \left(\frac{500}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right)$ $\Sigma F_x = 0$ $P \cos 45 + F - W \sin 45 = 0$ $P \cos 45 + 0.25 \left(\frac{500}{\sqrt{2}} + \frac{P}{\sqrt{2}} \right)$ $\Rightarrow P = 300 N$ 08. Ans: (a) Sol: FBD of block $F_1 = \mu N_1$ $F_2 = \mu N_2$ $\Sigma F_x = 0$ $N_2 - F_1 = 0$ $\Rightarrow N_2 = F_1 (\because F_1 = \mu N_1)$ $N_2 = \mu N_1$ $\Sigma F_y = 0$ $N_1 + F_2 - W = 0$ $N_1 + \mu N_2 - W = 0$ $N_1 + \mu N_2 - W = 0$ $N_1 + \mu^2 N_1 - W = 0$ ($\because D$ $N_1 (1 + \mu^2) = W$ $N_1 = \frac{W}{1 + \mu^2}$ $N_2 = \frac{\mu W}{1 + \mu^2}$ $Couple = (F_1 + F_2) \times r$ $= \mu r (N_1 + N_2)$ $= \frac{\mu r \times W(1 + \mu)}{1 + \mu^2}$ (\because	$\frac{P}{\sqrt{2}}$ $-500 \times \frac{1}{\sqrt{2}} = 0$ W F_{1} $N_{2} = \mu N_{1}$ $N_{2} = f$

 India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams

 Enjoy a smooth online learning experience in various languages at your convenience

	11	Engineering Mechanics
$\frac{1}{x}$.	From FBD (1)
$T_1 = 1000 \times e^{\pi - 6}$		$\Sigma F_y = 0$
$T_1 = 1181.36 \text{ N}$		$N_2 - W_2 \cos\theta = 0$
$\frac{\Gamma_2}{T} = e^{\mu\beta}$		$N_2 = W_2 \cos\theta = W \times 0.8$
1 ₁		$N_2 = 0.8 W$
$T_2 = 1181.36 \times e^{\frac{1}{\pi} \times \frac{4\pi}{3}} = 4481.65 \text{ N}$		$\therefore F_2 = \mu N_2 = 0.2 \times 0.8 \text{ W}$
P _{max} ua		$F_2 = 0.16 W$
$\frac{1}{T_2} = e^{rt}$		$\Sigma F_x = 0$
$\frac{1}{x}$		$T_1 - W_2 sin\theta - F_2 = 0$
$P_{max} = 4481.68 \times e^{\pi - 6}$	ERIA	$T_1 = F_2 + W_2 \sin\theta = 0.16 \text{ W} + 0.6 \text{W}$
$P_{max} = 5300 \text{ N}$	ENG	$T_1 = 0.76 W$
11. Ans: (b)		A O A
		From FBD (2)
Sol: Given $\mu = 0.2$, $\tan \theta = -\frac{1}{4}$		$\Sigma F_y = 0$
$\Rightarrow \cos \theta = \frac{4}{2}$		$N_2 + W_1 \cos\theta = N_1$
5		$N_1 = N_2 + W_1 \cos \theta$
$\sin\theta = \frac{3}{5}$		$N_1 = 0.8W + 1000 \times \frac{4}{2}$
y S		5
y TL		$N_1 = 0.8 W + 800$
		$F_1 = \mu N_1 = 0.2 (0.8 \text{ W} + 800)$
	cen	= 0.16 W + 160
		$\frac{\Gamma_2}{T} = e^{\mu\beta}$
$W_2 \sin \theta$ F_2 $W_2 \cos \theta$ X_2	x	
$W_2 = W$ T_2		$T_2 = T_1 e^{\mu p} = 0.76 \text{ W} e^{0.2 \times h}$
Fig: FBD (1) F_{λ}		$1_2 = 1.42$ W
		$\Sigma F_{\rm x} = 0$
		$\mathbf{I}_2 + \mathbf{F}_1 + \mathbf{F}_2 = \mathbf{W}_1 \sin \theta$
$W_1 \sin \theta$ $W_1 \cos \theta$ $W_1 \cos \theta$		$1.42W+0.16W+160+0.16W = 1000 \times \frac{3}{5}$
$W_1 = 1000$		1.74 W = 440
Fig: FBD (2)		\Rightarrow W = 252.87 N
India's Best Online Coaching Platfor	rm for GA	ATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams

A dce online Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

Engineering Publications	13	Engineering Mechanics
		$\Rightarrow C_1 = 0$
Chapter 17: CD		$2\sqrt{V} = 6t$
4 and Curvilinear Motion		$V = 9t^2$
	-	But V = $\frac{ds}{dt} = 9t^2$
01. Ans: (d)		$\int ds = \int \Omega t^2 dt$
Sol: $x = 2t^3 + t^2 + 2t$		$\int ds = \int \mathcal{F} t dt$
$V = \frac{dx}{dt} = 6t^2 + 2t + 2$		$S = 3t^3 + C_2$ At $t = 2 \sec S = 30 \text{ m}$
dt		$\Rightarrow 30 = 3(2)^3 + C_2$
$a = \frac{dv}{dt} = 12t + 2$	ERI	$\Rightarrow C_2 = 6$
At $t = 0 \Rightarrow V = 2$ and $a = 2$		$\therefore S = 3t^3 + 6$
44		At t = 3 sec
02. Ans: (a)		$S = 3(3)^3 + 6$
Sol: $V = kx^3 - 4x^2 + 6x$		S = 87 m
$V_{\text{at }x=2 \text{ if }k=1}=2^{3}-4(2)^{2}+6(2)=4$		
$a = \frac{dV}{h} = k.3x^2 \frac{dx}{h} - 8x \frac{dx}{h} + 6 \frac{dx}{h}$	(04. Ans: (a)
$dt \qquad dt \qquad dt \qquad dt \qquad dt$		Sol: Given, $a = -8S^{-2}$
a - 3x(v) - 3x(v) + 6(v) = $3(2)^2 \times A = (8 \times 2 \times 4) + 6(4)$		$\Rightarrow \frac{dV}{V} = \frac{d^2s}{V^2} = -8s^{-2} = a$
$= 5(2) \times 4 = (8 \times 2 \times 4) + 0(4)$ $= 8 \text{ m/s}^2$		dt dt
Sin	ce 1	99 We know that, $\int V dv = \int a ds$
03. Ans: (d)		$\frac{V^2}{V} = \int -8s^{-2} ds$
Sol: Given, $a = 6\sqrt{V}$		2 5
dV (V		$\frac{V^2}{2} = \frac{8}{2} + C_1$
$\frac{1}{dt} = 6\sqrt{V}$		2 = S
$\int \frac{dV}{dt} = \int 6 dt$		2^2 or 2
J $\sqrt{ m V}$ J		$\Rightarrow \frac{2}{2} = \frac{6}{4} + C_1$
$2\sqrt{V} = 6t + C_1$		$\Rightarrow C_1 = 0$
Given, at $t = 2 \sec$, $V = 36$		\mathbf{V}^2 8
$\Rightarrow 2\sqrt{36} = 6(2) + C_1$		$\therefore \frac{1}{2} = \frac{1}{S}$

Engineering Publications		14		GATE – Text Bo	ok Solutions
$V = \frac{4}{\sqrt{s}}$ $\Rightarrow \frac{ds}{dt} = \frac{4}{\sqrt{s}}$ $\Rightarrow \int \sqrt{s} ds = \int 4 dt$ $\frac{2}{3} s^{3/2} = 4t + C_2$ At $t = 1$, $S = 4$		14	$\int dx = \int \left(\frac{4t}{3}\right)^{4} = \int \left(\frac{4t}{3}\right)^{4} = \int \frac{4t^{4}}{3 \times 4} = \int \frac{4t^{4}}{3} = \int $	$\frac{\text{GATE} - \text{Text Box}}{\text{GATE} - 2t + C_1} dt$ $2 \cdot \frac{t^2}{2} + C_1 t + C_2$ $+ C_1 t + C_2$ ition, $= -2 \text{ m}$ $= C_1$	ok Solutions
$\Rightarrow \frac{2}{3}(4)^{3/2} = 4(1) + 0$ $\Rightarrow C_2 = \frac{16}{3} - 4 = \frac{4}{3}$ $\therefore \frac{2}{3}s^{3/2} = 4t + C_2$ $\Rightarrow \frac{2}{3}s^{3/2} = 4t + \frac{4}{3}$ At $t = 2$ sec $\frac{2}{3}s^{3/2} = 4(2) + \frac{4}{3}$ $\Rightarrow s = 5.808 \text{ m}$	Ct ENGINEE	RIA	$\Rightarrow -2$ At t= 2, x = $\Rightarrow -20 = \frac{2^{4}}{3}$ $\Rightarrow C_{1} = \frac{-2}{3}$ $\therefore x = \frac{t^{4}}{3} - \frac{1}{3}$ $\therefore at t = 4 set$ $x = \frac{4^{4}}{3} - 4^{2}$	$= C_{2}$ -20 m $-2^{2} + 4(2) + (-2)$ $\frac{9}{9}$ $t^{2} - \frac{29}{3}t - 2$ ec $-\frac{29}{3}(4) - 2$	
$a = \frac{-8}{s^2} = \frac{-8}{5.808^2} = \frac{-8}{5.808^2}$ 05. Ans: (c) Sol: Given, $a = 4t^2 - 2$	-0.237 m/sec ² Since	ce 1	= 28.67 m 995 06. Ans: (b) Sol: $u_A = 20 \text{ m/sec}$ $a_A = 5 \text{ m/cm}^2$	$u_{\rm B} = 60 \text{ m/sec}$ $a_{\rm B} = 3 \text{ m/sec}^2$	
$\frac{dv}{dt} = 4t^2 - 2$ $dv = (4t^2 - 2) dt$ $v = \frac{4t^3}{2} - 2t + C_1$			O Pt "A" ←	Pt "B" S _A	$A \& B$ S_B
$\frac{dx}{dt} = \frac{4t^3}{3} - 2t + C_1$	Regular Live Doubt	clearin able 1M	Let S _A be th Let S _B be th g Sessions Free Or	ne distance traveled ne distance traveled nline Test Series ASK an nd 24 Months Subscriptio	l by "A" l by "B" expert

SACE
 15
 Engineering Mechanics

$$S_A = S_B + 384$$
 $u_A t + \frac{1}{2} a_A t^2 = u_B t + \frac{1}{2} a_B t^2 + 384$
 08. Ans: (c)

 $u_A t + \frac{1}{2} a_A t^2 = u_B t + \frac{1}{2} a_B t^2 + 384$
 $u_A t + \frac{1}{2} a_A t^2 = u_B t + \frac{1}{2} a_B t^2 + 384$
 $u_A t + \frac{1}{2} a_A t^2 = u_B t + \frac{1}{2} a_B t^2 + 384$
 $4t^2 - 40t - 384 - 0$
 $t = 16 \sec (or) - t = -6 \sec (x + 16 \sin (x +$

A ace online India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

ACE Engineering Publications

18

A ace online

 Regular Live Doubt clearing Sessions
 |
 Free Online Test Series | ASK an expert

 Affordable Fee
 |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

	ACE Engineering Publications	19		Engineering Mechanics
02.	Ans: (c)		04	. Ans: (d)
Sol:	Given $\omega = 4\sqrt{t}$		So	l: Given angular acceleration, $\alpha = \pi \operatorname{rad/sec}^2$
	$\theta = 2$ radians at t = 1 sec			Angular displacement in time t_1 and t_2
	$\theta = ? \alpha = ? $ at t = 3sec			$=\pi$ rad $=\theta_2-\theta_1$
	$\omega = \frac{\mathrm{d}\theta}{\mathrm{d}\theta} \Longrightarrow \int \mathrm{d}\theta = \int \omega \mathrm{d}t$			$\omega_{t2} = 2\pi \text{ rad/sec}$
	dt J J			$\omega_{t1} = ?$
	$\theta = \int 4 \sqrt{t} dt$			$\omega_{t1}^2 - \omega_0^2 = 2\alpha\theta_1$
	$\theta = \frac{6}{3}t^{3/2} + c(1)$			$\omega_{t2}^2 - \omega_0^2 = 2\alpha\theta_2$
	From given condition, at $t = 1$, $\theta = 2rad$	DI	M	$\omega_{t2}^2 - \omega_{t1}^2 = 2\alpha(\theta_2 - \theta_1)$
	$(1) \Rightarrow 2 = \frac{8}{2} (1)^{3/2} + \mathbf{c}_1 \Rightarrow \mathbf{c}_1 = \frac{-2}{2} \mathbf{C}^{1/2}$			$4\pi^2 - \omega_{t1}^2 = 2\pi^2$
	8 2			$\omega_{t1}^2 = 2\pi^2$
	$\therefore \theta = \frac{3}{3}t^{3/2} - \frac{2}{3}$			$\omega_{t1} = \pi \sqrt{2} \text{ rad/s}$
	At t = 3 sec, $\theta = \frac{8}{(3)^{3/2}} - \frac{2}{-2}$			
	3 3 3		05	. Ans: (c)
	$\theta_{t=3} = 13.18 \text{rad}$		So	l: Given retardation
	$\alpha = \frac{d\omega}{d\omega} = \frac{d(4\sqrt{t})}{d\omega} = \frac{2}{\sqrt{t}}$			$\alpha = -3t^2$
	dt dt √t		_	$\frac{d\omega}{dt} = -3t^2$
	$\alpha_{t=3} = \frac{2}{\sqrt{2}} = 1.15 \text{ rad/sec}^2$			$\int dt = \int 2t^2 t dt$
	v ³ Sine	ce	19	$G = \int -3t dt$
03.	Ans: (b)			$\omega = -t^3 + c_1$
Sol:	$r = 2 \text{ cm}, \omega = 3 \text{ rad/sec}, a = 30 \text{ cm/s}^2$			From given condition at $t = 0$,
	$a_N = r\omega^2 = 2(3)^2 = 18 \text{ cm/sec}^2$			$\omega = 27 \text{ rad/sec}$
	Since total acceleration $a = \sqrt{a_T^2 + a_N^2}$			$27 = -0^{3} + c_{1}$
	$\Rightarrow a^2 = a_T^2 + a_N^2$			\Rightarrow c ₁ = 27
	$30^2 = a_{\perp}^2 + 18^2$			$\therefore \omega = -t^3 + 27$
	$a_{\rm T} = 24 \mathrm{cm/sec}^2$			Wheel stops at $\omega = 0$,
	$a_1 = r \alpha = 24$			$\Rightarrow 0 = -t^2 + 27$
	$\frac{24}{24} = \frac{12}{12} = \frac{1}{2}$			\Rightarrow t = 3sec
	$\alpha = \frac{12}{2} = 12 \text{ rad/sec}^2$			
	India's Best Online Coaching Platfor	rm for	GAT	E, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams
	J ONLINE Enjoy a smooth onlin	ie lear	ning	experience in various languages at your convenience

	ACE Engineering Publications		21	Engineering Mechanics	
11. Sol:	EXAMPLE V _a = 1 m/s V _a = along vertical V _b = along horizor So instantaneous comperpendicular to A $IA = OB = l \times \cos \theta$ $IB = OA = l \times \sin \theta$ V _a = $\omega \times IA$ $\Rightarrow \omega = \frac{V_a}{IA} = 2 \text{ rad}$ Ans: (d) The velocity direct can be located and velocity (magnitud) angular velocity of can get the velocity V _Q =1m/sec	al ontal enter of V _a and V _b will be and B respectively $P = 1 \times \cos 60^{\circ} = \frac{1}{2}m$ $= 1 \times \sin 60^{\circ} = \frac{\sqrt{3}}{2}m$ / sec ions instantaneous centre is shown. By knowing le) of Q we can get the f the link, from this we of 'P using sine rule.		The instantaneous centre. From sine rule $\frac{PQ}{\sin 45} = \frac{IQ}{\sin 70} = \frac{IP}{\sin 65}$ $\frac{IP}{IQ} = \frac{\sin 65^{\circ}}{\sin 70^{\circ}}$ $V_{Q} = IQ \times \omega = 1$ $\Rightarrow \omega = \frac{V_{Q}}{IQ}$ $V_{P} = IP \times \omega = \frac{IP}{IQ} \times V_{Q} = \frac{\sin 65^{\circ}}{\sin 70^{\circ}} \times 1$ $= 0.9645 \text{ m/s}$	
		y's Dost Online Coastine Dist		CATE EVE DONA COO IE DOD IE COO Dante Origina & DOO D	
	Enjoy a smooth online learning experience in various languages at your convenience				

		23	Engineering Mechanics
	$P_{x} - F = \left(\frac{W}{g}\right)a$ $P_{cos36,86} - F = \left(\frac{W}{g}\right)a$		From static equilibrium condition $\Sigma F_y = 0$ N - W = 0
	$0.8P - F = \left(\frac{2224}{g}\right)(0.2g)$ $0.8P - F = 444.8$		N = W = 44.48N From dynamic equilibrium condition $\Sigma F_x = 0$ F = ma
	0.8P - F = 444.8 + F		$\mathbf{N} = \frac{\mathbf{W}}{\mathbf{N}}\mathbf{a}$
	P = 556+1.25F(1)		g
	$2\Gamma_y = 0$ N+P _y -W = 0	ERI	$\int G \mu = \frac{a}{g}$
	$N = W - P_y$ (since $\mu = \frac{F}{N}$)		$a = \mu g$ (1) Since $v^2 - u^2 = 2as$
	$F = \mu N$		$0 - (9.126)^2 = 2(-a) \times 13.689$
	$F = \mu (W - P_y)$		$a = 3.042 \text{ m/s}^2 \dots (2)$
	$= 0.2(2224 - P \sin 36.86)$		From (1) & (2)
	$F = 444.8 - 0.12P \dots(2)$		$3.042 = \mu(9.81)$
	From (1) & (2)		$\Rightarrow \mu = 0.31$
	P = 556 + 1.25(444.8 - 0.12P)		
	1.15P = 1112		05. Ans: (a)
	P = 966.95 Since	ce 1	Sol:
04.	P = 967 N Ans: (d)		F $W\cos\theta$ $W\sin\theta$
Sol:			Ψ _θ O
			TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
	$u = 9.120 \text{ m/s}$ $\rightarrow V=0$		
	↓ → ma		
	\rightarrow F s		mg.sinθ
	←` N		$mg\cos\theta$ W θ
			\x
L	India's Best Online Coaching Platfor	m for G	ATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams
	Enjoy a smooth onlin	e learni	ing experience in various languages at your convenience

ace online

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

ļ		ACE
L	S-Herly	Engineering Publications

	Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert
C online	Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages

	ACE Engineering Publications		27	Engineering Mechanics
12.	Ans: (d)			14. Ans: (a)
Sol:	$I = 5 \text{kg.m}^2$			Sol:
	R = 0.25m			Thread
	F = 8 N			Reel
	Mass moment	of inertia, $I_x = I_y = \frac{mr^2}{4}$		
	$I_z = \frac{mr^2}{mr^2}$			
	2 2			₩mg
	$M = I\alpha$			
	$8 \times 0.25 = 5 \times \alpha$			a = linear acceleration,
	$\alpha = 0.4$	CINE	=K1/	k = radius of gyration
	$\omega^2 - \omega_0^2 = 2\alpha\theta$	ENC		For vertical translation motion
	$\omega^2 - 0^2 = 2(0.4)$	$\times \pi$ (since for half		mg - T = ma (1)
		revolution $\theta = \pi$)		For rotational motion
	$\omega = 1.58 \text{ rad/sec}$		$T \times r = I\alpha$	
				$Tr = mk^2 \alpha = mk^2 \times \frac{a}{2}$
13.	Ans: 4.6 secon	lds		r nik w nik ^ r
Sol:	M = 60 N - m			$\rightarrow T - \frac{mk^2}{mk^2} \times 2$ (2)
	L = 2m,	$\omega_0 = 0,$		$\rightarrow 1 = \frac{1}{r^2} \times a^{-1} = \frac{1}{r^2}$
	$\omega = 200 \text{ rpm} =$	$\frac{200 \times 2\pi}{60}$		$mg - \frac{mk^2}{r^2} \times a = ma \implies a = \frac{gr^2}{(k^2 + r^2)}$
	$\omega = 20.94 \frac{\text{rad}}{\text{sec}}$			
	Moment, $M = 1$	Ια		
	$60 = \frac{\mathrm{mL}^2}{\mathrm{12}} \times$	α		
	$\Rightarrow 60 = \frac{40 \times 2}{12}$	$-\times \alpha$		
	$\alpha = 4.5$ rad	/sec ²		
	$\omega = \omega_0 + \alpha t$			
	20.94 = 4.5t			
	\Rightarrow t = 4.65 se	ec		
	ace	India's Best Online Coaching Platfor	m for G	GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams
K	1 online	Enjoy a smooth onlin	e learn	ing experience in various languages at your convenience

The loss of KE of shell converted to do the work in lifting the sand box and shell to a height of " $L - L\cos 30^{\circ}$ "

i.e.,
$$Wd = \frac{1}{2}mV^2$$

Where $d = L - L\cos 30^\circ$
 $= 3.048 - 3.048 \times \cos 30 = 0.41 \text{ m}$
 $266.58 \times 0.41 = \frac{1}{2} \left(\frac{266.58}{9.81}\right) \times V^2$
 $\Rightarrow V = 2.83 \text{ m/sec}$

Where V is the velocity of block & shell

By momentum equation

 $m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$

Where $v_1 = v_2 = V \& u_1 = ?, u_2 = 0$

Strain energy in spring = Area under the force displacement curve.

1995 =
$$\frac{1}{2}$$
F×s = $\frac{1}{2}$ (ks)×s = $\frac{1}{2}$ ks²
 $\frac{1}{2}$ ks² = Gain of KE
 $\frac{1}{2}$ ks² = $\frac{1}{2}$ mv²
 \Rightarrow v² = $\frac{ks^2}{m} = \frac{ks^2}{w}g$
v = $\sqrt{\frac{kg}{w}}$.s (\because m = $\frac{w}{g}$)

A ace	Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert
online	Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages

3. Ans: (a)
3. Ans: (a)
3. Sol: Given, m = 2 kg
Position at any time is given as

$$x = t + 5t^2 + 2t^3$$

At t = 0, x = 0,
At t = 3 sec,
 $x = 3 + 5(3^2) + 2(3^3) = 102m$
Velocity, V = $\frac{dt}{dt} = 1 + 10t + 6t^2$
Initial velocity i.e., t = 0, is v₁ = 1m/s
Final velocity i.e., t = 0, is v₁ = 1m/s
Final velocity i.e., t = 0, is v₁ = 1m/s
Final velocity i.e., t = 0, is v₁ = 1m/s
Final velocity i.e., t = 0, is v₁ = 1m/s
Final velocity i.e., t = 0, is v₁ = 1m/s
Work done - change in KE
 $= \frac{1}{2}mv_1^2 - \frac{1}{2}mv_1^2$
 $- \frac{1}{2} \times 2(85^2 - 1^2) - 7224 J$
6. Ans: (c)
5. Ans: (b)
5. Ans: (c)
5. Ans: (b)
5. Ans: (c)
5. Ans: (c)
5. Ans: (b)
5. Ans: (c)
5. Ans: (b)
5. Ans: (b)
5. Ans: (c)
5. Ans: (b)
5. Ans: (b)
5. Ans: (b)
5. Ans: (c)
5. Ans: (b)
5. Ans: (c)
5. Ans: (b)
5. Ans: (c)
5. Ans: (c)

$b\left(L-\frac{b}{2}\right) = \frac{1}{2} \frac{Lv^{2}}{g}$ $v^{2} = 2gb\left(1-\frac{b}{2L}\right)$ $v = \sqrt{gb}\left(2-\frac{b}{L}\right)$ $v = \sqrt{gb}\left(2-\frac{b}{L}\right)$ 80: Given, $m_{1} = 3$ kg, $m_{2} = 6$ kg Velocities before impact $u_{1} = 4$ m/s, $u_{2} = -1$ m/s Velocities after impact $v_{1} = 40$ m/sc, $v_{2} = -20$ Notice is before impact $u_{1} = 2$ kg (since g = 10m/sec ²) Velocities before impact $u_{1} = 40$ m/sc, $v_{2} = -10$ m/s Velocities after impact $u_{1} = 2$ kg (since g = 10m/sec ²) Velocities after impact $u_{1} = 2$ kg (since g = 10m/sec ²) Velocities after impact $u_{1} = 2$ kg (since g = 10m/sec ²) Velocities after impact $u_{1} = 2$ kg (since g = 10m/sec ²) Velocities after impact $u_{1} = 2$ kg (since g = 10m/sec ²) Velocities after impact $u_{1} = 2$ kg (since g = 10m/sec ²) Velocities after impact $u_{1} = 2$ kg (since g = 10m/sec ²) Velocities after impact $u_{1} = 4$ kg (since g = 10m/sec ²) Velocities after impact $u_{1} = 4$ kg (since g = 10m/sec ²) Velocities after impact $u_{1} = 4$ kg (since g = 10m/sec ²) Velocities after impact $u_{1} = 4$ kg (since g = 10m/sec ²) Velocities after impact $u_{1} = 4$ kg (since g = 10m/sec ²) Velocities after impact $u_{1} = 4$ kg (since g = 10m/sec ²) Velocities after impact $u_{1} = 4$ kg (since g = 10m/sec ²) Velocities after impact $u_{1} = 4$ kg (since g = 10m/sec ²) 9. Ans: (e) 9. Ans: (e) 9. KE = $\frac{1}{2}$ mV ² + $\frac{1}{2}$ Lo ² Where, $\omega = \frac{V}{2R}$ $u_{1} = -\frac{1}{2}$ m($(2R)^{2} + R^{2}$) $= \frac{5}{2}$ mR ²	$b\left(L-\frac{b}{2}\right) = \frac{1}{2} \frac{Lv^{2}}{g}$ $v^{2} - 2gb\left(1-\frac{b}{2L}\right)$ $v = \sqrt{gb}\left(2-\frac{b}{L}\right)$ $v = \sqrt{gb}\left(2-\frac{b}{L}\right)$ 80: Given, $m_{1} = 3$ kg, $m_{2} = 6$ kg Velocities before impact $u_{1} = 4$ m/s, $u_{2} = -1$ m/s Velocities after impact $v_{1} = 0$ m/s, $v_{2} = ?$ From momentum equation $m_{1}u_{1} + m_{2}u_{2} = m_{1}v_{1} + m_{2}v_{2}$ $(4) + 6(-1) = 3(0) + 6(v_{2})$ $\Rightarrow 6 = 6$ v_{2} $\Rightarrow v_{2} = 1$ m/s Coefficient of restitution, $c = \frac{v_{2} - v_{1}}{u_{1} - u_{2}}$ Coefficient of restitution $c = 0.6$ From momentum equation $m_{1}v_{1}+m_{2}v_{2} = m_{1}u_{1}+m_{2}u_{2}$ $\Rightarrow 1(40) + 2(-10) = 1(u_{1}) + 2(u_{2})$ $\Rightarrow u_{1} + 2u_{2} = 20$ (1) $e = \frac{u_{4} - u_{1}}{v_{1} - v_{2}} = relative velocity of Seperation 0.6 = \frac{u_{2} - u_{1}}{40 - (-10)}\Rightarrow u_{2} - u_{1} = 30(2)From 1 & 2u_{1} = -13.33 m/secu_{2} = 16.66 m/sec$	ACE Engineering Fublications	30		GATE – Text Book Solutions
$u_2 = 10.00 \text{ m/sec}$	$u_2 - 10.00 \text{ m/sec}$	$b\left(L - \frac{b}{2}\right) = \frac{1}{2} \frac{Lv^2}{g}$ $v^2 = 2gb\left(1 - \frac{b}{2L}\right)$ $v = \sqrt{gb\left(2 - \frac{b}{L}\right)}$ 07. Ans: (d) Sol: $v_1 = 40 \text{ m/s} \qquad \qquad$		08. Sol: VG	Ans: (b) Given, $m_1 = 3 \text{ kg}$, $m_2 = 6 \text{ kg}$ Velocities before impact $u_1 = 4 \text{ m/s}$, $u_2 = -1 \text{ m/s}$ Velocities after impact $v_1 = 0 \text{m/s}$, $v_2 = ?$ From momentum equation $m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$ $3(4) + 6(-1) = 3(0) + 6(v_2)$ $\Rightarrow 6 = 6 v_2$ $\Rightarrow v_2 = 1 \text{ m/s}$ Coefficient of restitution, $e = \frac{v_2 - v_1}{u_1 - u_2}$ $e = \frac{1 - 0}{4 - (-1)} = \frac{1}{5}$ Ans: (c) $KE = \frac{1}{2} \text{mV}^2 + \frac{1}{2} \text{I}\omega^2$ $KE = \frac{1}{2} \text{mV}^2 + \frac{1}{2} \text{I}\omega^2$ $Where, \omega = \frac{V}{2R}I = \frac{1}{2} \text{m}((2R)^2 + R^2) = \frac{5}{2} \text{mR}^2$

A ace online

Regular Live Doubt clearing Sessions|Free Online Test Series | ASK an expertAffordable Fee|Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

Engineering Publications	31	Engineering Mechanics
$\therefore KE = \frac{1}{2}mV^{2} + \frac{1}{2}\left(\frac{5}{2}mR^{2}\right)\left(\frac{V}{2R}\right)^{2}$ $= \frac{1}{2}mV^{2} + \frac{5}{4}mR^{2} \times \frac{V^{2}}{4R^{2}}$ $= \frac{1}{2}mV^{2} + \frac{5}{16}mV^{2}$ $KE = \frac{13mV^{2}}{16}$ 10. Ans: (a) Sol: $\underbrace{0 \text{ for } MS}_{1 \text{ kg}} + \underbrace{0 \text{ for } MS$	31	Engineering Mechanics Method II : Applying angular momentum conservation about an axis passing through centre of wheel and perpendicular to the plane of paper. $\therefore 0 = I_{cm} \omega$ $\Rightarrow \omega = 0 \text{ rad/sec}$ 11. Ans: (a) Sol: (m+M)g f_d $m_1 = m \rightarrow mass of bullet$ $m_2 = M \rightarrow mass of bullet$ $m_2 = M \rightarrow mass of block$ $u_1 = V \rightarrow bullet initial velocity$ $u_2 = 0 \rightarrow block initial velocity$ $v_1 = v_2 = v \rightarrow velocity of bullet and block$
Applying angular momentum conservation about an axis passing through the contact point (A) and perpendicular to the plane of paper, we get $1 \times 10 \times 1 = I_{cm} \omega + 21 \times \frac{10}{21} \times 1$ [Angular momentum about any axis passing through A can be written as $\vec{L}_A = \vec{L}_{cm} + m(\vec{r} \times \vec{V}_{cm})$] $\Rightarrow \omega = 0$ rad/sec	f g,	$F_{d} = \mu N$ $(M+m)a = \mu(M+m)g$ $\Rightarrow a = \mu g$ From momentum equation $m_{1}u_{1} + m_{2}u_{2} = m_{1}v_{1} + m_{2}v_{2}$ $mV + m(0) = (m + M)V$ $v = \frac{mV}{m+M}$ Now from v ² -u ² = 2as

A ace online Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

A ace online

38

GATE – Text Book Solutions

03. Ans: (b)

Sol: Screw is subjected to torque, axial compressive load and bending moment also, sometimes.

Screws are generally made of C30 or C40 steel. As the failure of power screws may lead to serious accident, higher factor of safety of 3 to 5 is taken. Threads may fail due to shear, which can be avoided by using nut of sufficient height. Wear is another possible mode of thread failure as the threads of nut and bolt rub against each other. Nuts are made of softer material than screws so that if at all the failure takes place, nut fails and not the screw, which is the costlier member and is also difficult to replace. Plastic, bronze or copper alloys are used for manufacturing nuts. Plastic is used for low load applications and has good friction and wear properties. Bronze and copper alloys are used for high load applications.

Therefore it is essential to design a power screw for maximum shear stress.

04. Ans: (b)

Sol: Under direct compressive stress,

$$d_{c} = \sqrt{\frac{4W}{\pi\sigma_{c}}}$$

Under wear consideration, $d_c = \sqrt{\frac{2W}{P_b \psi \tau}}$

05. Ans: (c)

Sol: Self locking screw:

If friction angle, $\phi \ge$ helix angle, α Screw is self locking.

i.e., torque required to lower the load is positive.

If $\phi < \alpha$, The screw is over hauling

i.e., torque required to lower the load is negative

For self locking screw,

 $tan \phi > tan \alpha$

$$l > \frac{L}{\pi d_m}$$

06. Ans: (c)

Sol:

- A multi-start thread may be used to get larger value of linear displacement per revolution
- A differential screw may be used to get a very small value of linear displacement per revolution.

07. Ans: (c)

Sol:

- A multi-start thread may be used to get larger value of linear displacement per revolution with no guarantee of self locking.
- Multi-start threads are used for transmitting power and generating movement. Because each partial or complete revolution equals more linear travel based on the number of threads, multi-threaded components can

ACE Engineering Publications

efficiently handle more power. Multi-start threads can also be used for some fastening purposes.

08. Ans: (b)

Sol:

- Multi-start threads are used for transmitting power and generating movement. Because each partial or complete revolution equals more linear travel based on the number of threads, multi-threaded components can efficiently handle more power. Multi-start threads can also be used for some fastening purposes.
- Hence they secure high efficiency.
- 09. Ans: (d)
- Sol: Square thread,

 $\eta = \frac{\text{work output}}{\text{work input}}$

During one revolution of screw

Work input = $P \times \pi d_m$

Work output = WL

$$\eta = \frac{WL}{P\pi d_{m}} = \frac{W \tan \alpha}{P} \quad [\because \tan \alpha = \frac{L}{\pi d_{m}}]$$
$$\eta = \frac{\text{ideal effort}(\text{No friction})}{A + C}$$

$$\eta = \frac{W \tan \alpha}{W \tan(\phi + \alpha)} = \frac{\tan \alpha}{\tan(\phi + \alpha)}$$

Belt Drives & Wedge

01. Ans: (d)
Sol:
$$P = \frac{(T_1 - T_2)V}{1000}$$
 - Flat belt
 $V =$ belt (or) rope drive
 $T_1 \& T_2 =$ Tensions in high and slack side,
 $V = m/sec$, $P = kW$
 $\frac{T_1}{T_2} = e^{\mu\theta}$

02. Ans: (c)

Sol: Condition for maximum power transmitted

(i)
$$T_{c} = \frac{T_{max}}{3}$$

(ii)
$$T_{1} = \frac{2T_{max}}{3}$$

(iii)
$$V = \sqrt{\frac{T_{max}}{3}}$$

03. Ans: (b)

Since

Sol: All the stresses produced in a belt are tensile stresses.

04. Ans: (c)

Sol: Power = $(T_1 - T_2) V$

Due to centrifugal tension,

Total Tension (safe tension):

Total tension on tight side, $T_{t1} = T_1 + T_C$ Total tension on slack side, $T_{t2} = T_2 + T_C$

$$T_{t1} - T_{t2} = T_1 - T$$

Therefore the centrifugal tension has no effect on power transmission.

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

Engineering Mechanics

05.	Ans: (a)		09.	Ans: (c)	
Sol:	A V-belt marked	A-914-50 denotes	a Sol:	: Maximum tensile stress in belt due	to
	standard belt of insid	e length 914 mm and	a	tension $\sigma = T_1$	
	pitch length 950 mm			tension, $0 = \frac{1}{bt}$	
	A belt marked A	A-914-52 denotes a	n	Due to bending maximum tensile stre	ss
	oversize belt by an a	mount of $(52 - 50) =$	2	occurs on small pulley side 'd'	
	units of grade numbe	r.		$\sigma_{\rm b} E \qquad \left[\begin{array}{c} d & t \end{array} \right]$	
				$\frac{1}{y} = \frac{1}{r} \qquad \qquad \left[r = \frac{1}{2}; y = \frac{1}{2} \right]$	
06.	Ans: (a)			Et	
Sol:		10		$\sigma_b = \overline{d}$	
•	Wire ropes make co	ntact at the bottom of	FRINC	Total maximum stress induced in belt,	
	the groove of the pul	ey.		$\sigma_{max} = \sigma + \sigma_b$	
•	V-Belt makes conta	ct at the sides of th	e	$\sigma = \frac{T_1}{T_1} + \frac{Et}{Et}$	
	groove of the pulley.	হ		bt d	
07.	Ans: (c)		10.	Ans: (a)	
Sol:	Let, $D = diameter of$	the pitch circle	Sol:		
	T = number of t	eeth on the sprocket			
	$p = D \sin\left(\frac{\theta}{2}\right)$				
	(2)				
	We know that, $\theta =$	<u> </u>	ce 199	75*	
	(200)	1			
	$p = D \sin \left(\frac{360^2}{2T} \right)$	$= D \sin \left(\frac{180^{-1}}{T} \right)$		$\theta = 180 - 2 \alpha$	
				$\sin\alpha = \frac{D_1 - D_2}{2}$	
	or $D = p \csc\left(\frac{180}{\pi}\right)$	<u>•</u>		2C	
	(T)		$L_{open} = \pi(R+r) + 2C + \left \frac{(R-r)^2}{(R-r)^2} \right $	
08.	Ans: (c)			$\mathbf{I} = \pi (\mathbf{R} + \mathbf{r}) + 2\mathbf{C} + \left[(\mathbf{R} + \mathbf{r})^2 \right]$	
Sol:	$\frac{T_1}{1} = e^{\frac{\mu\theta}{\sin\beta}}$			$L_{\text{closed}} = \pi(\mathbf{R} + \mathbf{I}) + 2\mathbf{C} + \begin{bmatrix} \mathbf{C} \end{bmatrix}$	
2011	T ₂			$I = 2C + (\pi)(D + 1) + ((D - 1)^2 + 1C)$	
				$L = 2C + \left(\frac{-}{2}\right)(D + d) + \left((D - d) / 4C\right)$	
	Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert				
	Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages				

40

GATE – Text Book Solutions

ACE Engineering Publications

Engineering Publications	42 GATE – Text Book Solutions
LAGRANGE'S EQUATION	$= \frac{m}{2b} \int_{0}^{b} \left\{ \dot{x}^{2} \times b + \dot{\theta}^{2} \times \frac{b^{3}}{3} + \dot{x} \times \dot{\theta} \times \cos \theta \times b^{2} \right\}$
01. Ans: (c) Sol: (i) PE of spring $=\frac{1}{2}k.x^{2}$ (ii) K E of block $=\frac{1}{2} \times M \times x^{2}$	$= \frac{1}{2}m\dot{x}^{2} + \frac{1}{6}m.\dot{\theta}^{2} \times b^{2} + \frac{1}{2} \times m.\dot{x}.\dot{\theta} \times \cos\theta \times b$ P.E of rod = $-\frac{1}{2} \times m \times b \times \cos\theta \times g$ $\therefore PE = PE \text{ of spring} + PE \text{ of rod}$ PE = $\frac{1}{2} \ln x^{2} + \left(-\frac{1}{2} \times m \times \cos\theta\right)$
(ii) KE of block $-\frac{1}{2} \times M \times X$ (iii) KE of rod: Mass of element, $dm = m \times \frac{dy}{b}$ $KE = \frac{1}{2} dm \times v^2 = \frac{1}{2} \times dm \times \{v_x^2 + v_y^2\}$	$PE = \frac{1}{2}kx^{2} + \left\{-\frac{1}{2} \times m \times g \times b \times \cos\theta\right\}$ $KE = KE \text{ of block} + KE \text{ of rod}$ $KE = \frac{1}{2} \times M \times \dot{x}^{2} + \frac{1}{2}m\dot{x}^{2} + \frac{1}{6}m \times \dot{\theta}^{2} \times b^{2}$ $+\frac{1}{2} \times m \times \dot{x} \times \dot{\theta} \times \cos\theta \times b$
$2 \qquad 2 \qquad (x = y)$ $v_{x} = \dot{x}_{1} = \frac{d}{dt} \{x_{1}\} = \frac{d}{dt} \{x + y \sin \theta\}$ $\therefore v_{x} = \dot{x} + y \times \cos \theta \times \dot{\theta}$ $\frac{d}{dt} (x + y \sin \theta) = \dot{y} + \dot{y} \cdot \dot{y} = \dot{y} + \dot{y} \cdot \dot{y} + \dot{y} \cdot \dot{y} = \dot{y} \cdot \dot{y} + \dot{y} \cdot \dot{y} + \dot{y} \cdot \dot{y} = \dot{y} \cdot \dot{y} + \dot{y} \cdot \dot{y} + \dot{y} \cdot \dot{y} + \dot{y} \cdot \dot{y} = \dot{y} \cdot \dot{y} + \dot{y} + \dot{y} \cdot \dot{y} + \dot{y} \cdot \dot{y} + \dot{y} \cdot \dot{y} + \dot{y} \cdot \dot{y} + \dot{y} + \dot{y} \cdot \dot{y} + $	$\therefore \text{ Lagrange, } L = \text{KE} - \text{PE}$ $= \frac{1}{2} \{m + M\} \times \dot{x}^{2} + \frac{1}{6}m \times \dot{\theta}^{2} \times b^{2} + \frac{1}{2} \times m \times \dot{x}$ $\dot{\theta} = 0 \text{ I} = \frac{1}{2} \{m + M\} \times \dot{y}^{2} + \frac{1}{6}m \times \dot{\theta}^{2} \times b^{2} + \frac{1}{2} \times m \times \dot{x}$
$v_{y} = \frac{1}{dt}(y_{1}) = \frac{1}{dt}(y\cos\theta) = -y\sin\theta \times \theta$ $\therefore \text{ KE of rod} = \int \frac{1}{2} \cdot dm \times v^{2}$ $= \int \frac{1}{2} \times m \times \frac{dy}{b} \times \left\{ (\dot{x} + y\cos\theta \times \dot{\theta})^{2} + (-y\sin\theta \times $	$\frac{1995}{2}$

