

GATE | PSUs

ELECTRICAL ENGINEERING

Electromagnetic Fields

Text Book: Theory with worked out Examples and Practice Questions

Chapter

Static Fields & Maxwell's Equations (Solutions for Text Book Practice Questions)

01. Ans: 1 $+\int \vec{A} \cdot dy \vec{a}_y$, $x = \frac{2}{\sqrt{2}}$, y = from 1 to 3**Sol:** $\vec{V} = x \cos^2 v \hat{i} + x^2 e^z \hat{i} + z \sin^2 v \hat{k}$ $-\int \vec{A} \cdot dx \vec{a}_x$, $y = 3, x = \text{from } \frac{1}{\sqrt{3}}$ to $\frac{2}{\sqrt{3}}$ $= x \cos^2 y \hat{a}_x + x^2 e^z \hat{a}_y + z \sin^2 y \hat{a}_z$ From divergence theorem $-\int \vec{A} \cdot dy \vec{a}_y$, $x = 1/\sqrt{3}$, y = from 1 to 3 $\oint \overline{\mathbf{V}}.\hat{\mathbf{n}} \, d\mathbf{s} = \int \left(\nabla.\overline{\mathbf{D}} \right) d\mathbf{v} \dots \mathbf{1}$ $= \int x y \, dx + \int x^2 \, dy - \int x \, y \, dx - \int x^2 \, dy$ $= y \frac{x^2}{2} \bigg|_{1/\sqrt{3}}^{2/\sqrt{3}} + x^2 y \bigg|_{1}^{3} - y \frac{x^2}{2} \bigg|_{1/\sqrt{3}}^{2/\sqrt{3}} - x^2 y \bigg|_{1}^{3}$ $\nabla \overline{\mathbf{D}} = \frac{\partial}{\partial \mathbf{x}} \left(\mathbf{x} \cos^2 \mathbf{y} \right) + \frac{\partial}{\partial \mathbf{y}} \left(\mathbf{x}^2 \mathbf{e}^z \right) + \frac{\partial}{\partial z} \left(z \sin^2 \mathbf{y} \right)$ $=\cos^2 y + \sin^2 y = 1$ at y = 1 $x = 2/\sqrt{3}$ y = 3 $x = 1/\sqrt{3}$ dv = dxdvdz $=\frac{1}{2}\left(\frac{4}{3}-\frac{1}{3}\right)+\frac{4}{3}(3-1)-\frac{3}{2}\left(\frac{4}{3}-\frac{1}{3}\right)-\frac{1}{3}(3-1)$ Putting these value in equation 1 we have $\oint \overline{V}.\hat{n} \, ds = \int \int \int 1^{1} 1 \times dx \, dy \, dz$ $=\frac{1}{2}+\frac{8}{3}-\frac{3}{2}-\frac{2}{3}=-1+2=1$ $= \int_{0}^{1} dx \int_{0}^{1} dy \int_{0}^{1} dz = 1$ 03. Ans: (d) **Sol:** $F = \rho a_0 + \rho \sin^2 \phi a_{\phi} - z a_z$ **02**. Ans: (c) $= F_0 a_0 + F_{\phi} a_{\phi} + F_z a_z$ **Sol:** Given $\vec{A} = x y \vec{a}_x + x^2 \vec{a}_y$ $\nabla \cdot \overline{F} = \frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho F_{\rho}) + \frac{1}{\rho} \frac{\partial}{\partial \phi} (F_{\phi}) + \frac{\partial}{\partial z} (F_{z})$ Let $I = \oint \vec{A} \cdot d\vec{\ell}$, I is evaluated over the path shown in the Fig., as follows $= \frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho^2) + \frac{1}{\rho} \frac{\partial}{\partial \phi} (\rho \sin^2 \phi) + \frac{\partial}{\partial z} (-z)$ y 🖌 $= 2 + 2\sin\phi\cos\phi - 1$ $= 1 + 2 \sin \phi \cos \phi$ 3 $\nabla.\overline{F}\Big|_{\phi=\pi} = 2, \ \nabla.\overline{F}\Big|_{\phi=0} = 1$ $\nabla.\overline{F}\Big|_{\phi=\frac{\pi}{2}} = 2\nabla.\overline{F}\Big|_{\phi=0}$ 1 $1/\sqrt{3}$ $2/\sqrt{3}$ 04. Ans: (c) Fig. **Sol:** $\overline{D} = 2\hat{a}_x - 2\sqrt{3}\hat{a}_z$ $\overline{D} = |\overline{D}|\overline{a}_n$ $I = \oint \vec{A} \cdot dx \vec{a}_x$, y = 1, $x = \text{from } \frac{1}{\sqrt{2}}$ to $\frac{2}{\sqrt{2}}$ $\left|\overline{\mathbf{D}}\right| = \sqrt{16} = 4$ India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams ace online Enjoy a smooth online learning experience in various languages at your convenience

	· · · · ·	
Engineering Publications	3	Postal Coaching Solutions
$\therefore \overline{D} = 4 \left\{ \frac{2\hat{a}_x - 2\sqrt{3}\hat{a}_z}{4} \right\}$		$\vec{\mathbf{a}}_{\mathrm{E}} = \frac{\vec{\mathrm{E}}(1, -1, 1)}{\left \mathrm{E}(1, -1, 1)\right } = \frac{1}{\sqrt{3}} \left[-\vec{\mathbf{a}}_{\mathrm{x}} + \vec{\mathbf{a}}_{\mathrm{y}} - \vec{\mathbf{a}}_{\mathrm{z}}\right]$
$-p_s a_n \qquad \dots p_s - 4/m^2$		or in 1, J, k notation, $a_E = \frac{1}{\sqrt{3}} \begin{bmatrix} -1 + J - k \end{bmatrix}$
05. Ans: (d)	(07. Ans: (b)
Sol: $V = 10y^4 + 20x^3$ $E = -\nabla V = -60x^2 \hat{a} - 40y^3 \hat{a}$	5	Sol: For valid $B, \nabla B = 0$
$D = \varepsilon_0 E = -60x^2 \varepsilon_0 \hat{a}_x - 40y^3 \varepsilon_0 \hat{a}_y$		$\left(\frac{\partial}{\partial x}a_{x} + \frac{\partial}{\partial y}a_{y} + \frac{\partial}{\partial z}a_{z}\right)\left(x^{2}a_{x} - xya_{y} - Kxza_{z}\right) = 0$
$\nabla .D = \rho_{v}$		$2\mathbf{x} - \mathbf{x} - \mathbf{K}\mathbf{x} = 0$
$\rho_{\rm u} = \frac{\partial}{\partial t} (-60 {\rm x}^2 \epsilon_0) + \frac{\partial}{\partial t} (-40 {\rm y}^3 \epsilon_0)$		$\Rightarrow 2 - 1 - K = 0$
$\partial x = 120 \text{ yr} = 120 \text{ y}^2$	ERIA	NG : K = 1
$-120 \text{ x}\epsilon_0 - 120 \text{ y} \epsilon_0$		08. Ans: (d)
$\rho_{v}(at 2, 0) = -120 \times 2\epsilon_{0} - 120 \times 0^{2} \epsilon_{0}$ = -240 so		Sol: The two infinitely long wires are oriented as
210 00		shown in the Fig.
06. Ans: (d)		$z \uparrow \qquad \frac{1}{2} A = \vec{a}_y$
Sol: Given		
$V(x, y, z) = 50 x^2 + 50 y^2 + 50 z^2$		$-\mathbf{a}_{z}$
E(x, y, z) in free space = $-$ grad (V)		y
$= -\nabla V$		
$= -\left[\frac{\partial}{\partial x} \overrightarrow{Va_x} + \frac{\partial}{\partial y} \overrightarrow{Va_y} + \frac{\partial}{\partial z} \overrightarrow{Va_z}\right]^{T}$	ce 1	$\frac{1995}{x} = \frac{1}{a_x}$
$= -\left[100 \mathrm{x} \ \overrightarrow{a_{\mathrm{x}}} + 100 \mathrm{y} \ \overrightarrow{a_{\mathrm{y}}} + 100 \mathrm{z} \ \overrightarrow{a_{\mathrm{z}}}\right] \mathrm{V/m}$	ı	The infinitely long wire in the y-z plane carrying current along the \vec{a}_y direction
\vec{E} (1,-1, 1) =		produces the magnetic field at the origin in the direction of $\vec{a}_y \times -\vec{a}_z = -\vec{a}_x$.
$-\left[100 \overrightarrow{a_x} - 100 \overrightarrow{a_y} + 100 \overrightarrow{a_z}\right] V / m$	L	The infinitely long wire in the x-y plane carrying current along the \vec{a}_x direction
$E(1,-1,1) = 100\sqrt{(-1)^2 + (1)^2 + (-1)^2}$		produces the magnetic field at the origin in the direction of $\vec{a}_x \times -\vec{a}_y = -\vec{a}_z$.
$=100\sqrt{3}$		where \vec{a}_x , \vec{a}_y and \vec{a}_z are unit vectors along
Direction of the electric field is given by th	e	the 'x', 'y' and 'z' axes respectively.
		x and z components of magnetic field are

unit vector in the direction of \vec{E} .

ace online

	ACE Engineering Publications		4	Electromagnetic Fields		
09. Sol:	Ans: (a) $\nabla .\overline{B} = 0$ A divergence 1 some other vector $\overline{B} = \nabla \times \overline{A}$ $\nabla \times \overline{A} = \overline{B}$ $\oint \overline{A} . d\overline{l} = \int_{s} \overline{B} . d\overline{a}$ $\int_{s}^{1} \overline{B} . d\overline{s}$ is equivalent to the second	ess vector may be a curl o for s qual to magnetic flux ψ	f	(Since $z = 0$ has normal component a_x) $B_{t_1} = 1.2 \ \overline{a}_x + 0.8 \ \overline{a}_y$ We know magnetic flux density is continuous $B_{n_1} = B_{n_2}$ $B_{n_2} = 0.4 \ \overline{a}_z$ Surface charge, $\overline{k} = 0$ $H_{t_2} - H_{t_1} = 0$ $H_{t_2} = H_{t_1}$		
10. Sol:	through a surface Ans: (c) In general, for density K A/m $H = \frac{1}{2}K \times a_n$ $H = \frac{1}{2}(8\overline{a}_x \times \overline{a}_z)$	an infinite sheet of curren	tr <i>II</i>	$\mu_{1} B_{t_{2}} = \mu_{2} B_{t_{1}}$ $B_{t_{2}} = \frac{1}{2} (1.2 a_{x} + 0.8 a_{y})$ $B_{2} = B_{t_{2}} + B_{n_{2}} = 0.6 \overline{a}_{x} + 0.\overline{4} a_{y} + 0.4 \overline{a}_{z}$ $\mu_{0} \mu_{r_{2}} H_{2} = 0.6 \overline{a}_{x} + 0.\overline{4} a_{y} + 0.4 \overline{a}_{z}$ $H_{2} = \frac{1}{\mu_{0}} [0.6 \overline{a}_{x} + 0.\overline{4} a_{y} + 0.4 \overline{a}_{z}] A/m$		
11. Sol:	$= -4 a_{y} (:: a$ Ans: (b) $\epsilon_{r} = 1$	$\overline{E}_2 = a_x$		13. Ans: (b) Sol: Tangential components of electric fields are continuous $(E_{t_1} = E_{t_2})$ $E_1 \sin \alpha_1 = E_2 \sin \alpha_2 (1)$		
12. Sol:	$\varepsilon_{r} = 2$ $D_{n_{2}} - D_{n_{1}} = \rho_{s}$ $D_{n_{2}} = \varepsilon E_{n_{2}} =$ $D_{n_{1}} = \varepsilon_{0} 2 \times 2 a$ From (a) ($\varepsilon_{0} - 4 \varepsilon_{0}$) a _x = Ans: (a) $\mu_{r_{1}} = 2$ $Z =$ $B_{1} = 1.2 \overline{a}_{x} + 0.$	$\overline{E}_{1} = 2a_{x}$ $\rightarrow (a)$ $\in_{0} a_{x}$ $x = 4 \in_{0} a_{x}$ $= \rho_{s} \Rightarrow \rho_{s} = -3 \in_{0}$ $\mu_{r_{2}} = 1$ $= 0$ $8 \overline{a}_{y} + 0.4 \overline{a}_{z}$		P ₁ P ₁ P ₁ P ₁ P ₁ P ₂ P ₁ P ₂ P ₁ P ₂ P ₁ P ₁		
	$B_{n_1} = 0.4 \overline{a}_z$	India's Best Online Coaching Platfor	m for G	$\alpha_2 = 45^0$ r GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams		
	1 online	Enjoy a smooth online learning experience in various languages at your convenience				

Engineering Publications	5	Postal Coaching Solutions			
14. Ans: (c) Sol: N = 100 $\phi = t^3 - 2t$ mWb According to Faraday's law $E = N \frac{d\phi}{dt} \Big _{t=4sec}$ = 100 × (3t ² - 2) mV = 4.6 V		 (b) Consider a point located at b for which 1.5 > z > -0.5. For surface charge density of 50ε₀ C/m², â_N = -â_z where as for -50ε₀C/m², â_n = â_z ∴ Ē(z) = 50ε₀ (-â_z) + (-50ε₀ / 2ε₀)(â_z) = -50â_zV/m (c) Consider a point located at c for which z < 1.5 and z < -0.5. At this point â_n = -â_z. ∴ Ē(z) = 50ε₀ (-â) + (-50ε₀ / 2ε₀)(â) = 0V/m 			
15. Ans: (a, b & d) Sol: (a) $-50\varepsilon_0 C/m^2 50\varepsilon_0 C/m^2$ $-\hat{a}_z$ $c_{z=-0.5b}$ $z=1.5a$ Consider a point located at a for which z > 1.5 and $z > -0.5$ as shown in figure At this point $\hat{a}_n = \hat{a}_z$ for both the surface charge densities. Hence $\overline{E}(z) = \frac{50\varepsilon_0}{2\varepsilon_0} \hat{a}_z + \left(\frac{-50\varepsilon_0}{2\varepsilon_0}\right) \hat{a}_z = 0V/m$	h e	$E(z) = \frac{2\varepsilon_0}{2\varepsilon_0} (-z_z) + (-2\varepsilon_0) (-z_z) = 0 + 7 \text{ in}$ Hence we have $\overline{E} = \begin{cases} 0 & z > 1.5 \\ -50\hat{a}_z & 1.5 > z > -0.5 \\ 0 & z < -0.5 \end{cases}$ (d) In the region $-0.5 < z < 1.5 (1.5 > z > -0.5)$ $\overline{E} = -50\hat{a}_z$ and $A = (x, y, z)$ and B = (x, y, -0.5). $V_{AB} = -\int_B^A \overline{E}.d\overline{L}$ $= -\int_B^A (-50\hat{a}_z)(dx \hat{a}_x + dy \hat{a}_y + dz \hat{a}_z)$ $= 50\int_{-0.5}^z dz = 50[z]_{-0.5}^z = 50(z + 0.5)$ = 50z + 25			
Since 1995					
ACE					