

GATE | PSUs

ELECTRICAL ENGINEERING

Electric Circuits

Text Book: Theory with worked out Examples and Practice Questions

Electric Circuits (Solutions for Text Book Class Room Practice Questions)

03.	Ans:	(a)
-----	------	-----

$$E_{\text{stored upto 6 sec}} = \int_{0}^{6} P_{L} dt = \int_{0}^{6} v_{L}(t) i_{L}(t) dt$$
$$= \int \left(L \frac{di(t)}{dt} . i(t) \right) dt$$
$$= \int_{0}^{2} \left(2 \left[\frac{d}{dt} (3t) \right] \times 3t \right) dt + \int_{2}^{4} \left(2 \left[\frac{d}{dt} (6) \right] \times 6 \right) dt$$
$$+ \int_{4}^{6} \left(2 \left[\frac{d}{dt} (-3t+18) \right] \times (-3t+18) \right) dt$$
$$= \int_{0}^{2} 18t \, dt + \int_{2}^{4} 0 \, dt + \int_{4}^{6} \left(-6 \left[-3t+18 \right] \right) dt$$
$$= 36 + 0 - 36 = 0 J$$
(or)

 $E_{\text{stored upto 6 sec}} = E_L |_{t=6 \text{sec}}$

$$= \frac{1}{2} L \left(\mathbf{i}(t) \mid_{t=6} \right)^2$$
$$= \frac{1}{2} \times 2 \times 0^2 = 0 J$$

04. Ans: (d)

Sol: The energy absorbed by the inductor $(1\Omega, 2H)$ upto first 6sec: $E_{absorbed} = E_{dissipated} + E_{stored}$ Energy is dissipated in the resistor $E_{dissipated} = \int P_R dt = \int (i(t))^2 R dt$ $= \int_{0}^{2} (3t)^{2} \times 1 dt + \int_{2}^{4} (6)^{2} \times 1 dt + \int_{1}^{6} (-3t+18)^{2} \times 1 dt$ $= \int_{0}^{2} 9t^{2} dt + \int_{0}^{4} 36dt + \int_{0}^{6} (9t^{2} + 324 - 108t) dt$ = 24 + 72 + 24=120J $\therefore E_{dissipated} = 120 J$

Sol: The energy stored by the inductor $(1\Omega, 2H)$ upto first 6 sec:

ACE

(1) By KVL \Rightarrow + 10 + 8 + E + 4 = 0 E = -22V (2) By KVL \Rightarrow + V₁ - 2 + 4 = 0 V₁ = -2V (3) By KVL \Rightarrow + V₂ + 6 - 8 - 10 = 0 V₂ = 12V

11. Ans: (d)

Here the 2V voltage source and 3V voltage source are in parallel which violates the KVL. Hence such circuit does not exist. (But practical voltage sources will have some internal resistance so that when two unequal voltage sources are connected in parallel current can flow and such a circuit may exist).

Applying KVL,

$$-V_{1} + 12\left(I_{in} - \frac{V_{1}}{5}\right) + 2\left(I_{in} - \frac{16V_{1}}{5}\right) = 0$$
$$-V_{1} + 12I_{in} - \frac{12V_{1}}{5} + 2I_{in} - \frac{32V_{1}}{5} = 0$$
$$14I_{in} = \frac{49}{5}V_{1}$$

Electric Circuits

14. Ans: (d)

 $I_{in} - \frac{16 V_1}{5}$) Ce

4

$$Z_1 = \frac{1}{s\left(\frac{1}{3}\right)}; \qquad C = \frac{1}{3}F$$

 $\frac{1}{2}$ F

ace online

$$Z_2 = Z_B + Z_C + \frac{Z_B Z_C}{Z_A} = \frac{1}{2s} + \frac{1}{3s} + \frac{\left(\frac{1}{2s}\right)\left(\frac{1}{3s}\right)}{\left(\frac{1}{s}\right)}$$

Sol: $Z_{ab} = ?$

Postal Coaching Solutions

Since $2 \times 4 = 4 \times 2$; the given bridge is balanced one, therefore the current through the middle branch is zero. The bridge acts as below:

Regular Live Doubt clearing Sessions | Free Online Test Series | ASK an expert Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

ACE
Engineering Publications

 (\mp) 10V

I

ξ5Ω

Since the violation of KCL in the circuit ; physical connection is not possible and the circuit does not exist.

32. Ans: (b)

Sol: Redraw the given circuit as shown below:

By KVL
$$\Rightarrow$$

-15 -V₀ = 0
V₀ = -15V

- 33. Ans: (d)
- **Sol:** Redraw the circuit diagram as shown below: Across any element two different voltages at a time is impossible and hence the circuit does not exist.

Another method:

By KVL
$$\Rightarrow$$

5 + 10 = 0

Since the violation of KVL in the circuit, the physical connection is not possible.

Sol: Redraw the given circuit as shown below:

10V

By KVL \Rightarrow -10 -10 = 0 -20 \neq 0

Since the violation of KVL in the circuit, the physical connection is not possible.

35. Ans: (b)

Sol: Redraw the given circuit as shown below:

36. Ans: (d)

Since

The diode is forward biased. Assuming that the diode is ideal, the Network is redrawn with node A marked as in Fig. 1.

Apply KCL at node A

$$\frac{4 - v_0}{2} = \frac{v_0}{2} + \frac{v_0 + 2}{2}$$

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

	ACE		12	Electric Circuits
40. Sol:	Applying KCL a $\frac{V-12}{6} + \frac{V}{12} - V$ $\Rightarrow \frac{V}{6} + \frac{V}{12} = 2 =$ $\therefore V_0 = 4V$ Applying KVL in $\Rightarrow -V+1(V_0) + V$ $\Rightarrow V_{ab} = V - V_0 =$ By KVL $\Rightarrow V_i - 6 - 10 =$ $V_i = 16V$ $P_{4\Omega} = (8 * 2) = 10$ $P_{3\Omega} = (6*2) = 12$ $P_{10V} = (10 * 2) =$ $+ \frac{0A}{V_i} + \frac{0}{V_i} + \frac$	t node V $V_0 + V_0 = 0$ $\Rightarrow V = 8V$ n outer loop ab = 0 = 8 - 4 = 4V 0 6 6 6 6 6 6 6 7 6 7 7 8 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 8 7 8 8 8 8 8 8		Electric Circuits $F_{4\Omega} = (12 \times 3) = 36 \text{ watts} - \text{absorbed}$ $P_{4\Omega} = (12 \times 3) = 36 \text{ watts} - \text{absorbed}$ $P_{6V} = (6 \times 6) = 36 \text{ watts} - \text{absorbed}$ $P_{6V} = (6 \times 6) = 36 \text{ watts} - \text{delivered}$ $P_{2\Omega} = (12 \times 6) = 72 \text{ watts} - \text{absorbed}$ Since $P_{del} = P_{abs}$; Tellegen's theorem is satisfied. 42. Sol: $y_{3} + y_{4} + y_{4} + y_{4} + y_{4} + y_{5} + y_{5}$
	Since; $P_{del} = P_{abs}$ is satisfied.	= 48 watts. Tellegen's Theoren	n	$5V_3 - 2I = 0$ (2) By KVL \Rightarrow V = V ₃ (3)
41. Sol:	By KVL in first n $\Rightarrow V_x - 6 + 6 - 12$ $V_x = 12V$ $P_{12y} = (12 \times 9) = 0$	the nesh $2 = 0$ 108 watts delivered		Substitute (3) in (1), we get $V_3 = \frac{24}{17}$; $V_4 = V + 16 = \frac{24}{16} + 16 = \frac{296}{17} V$ $V_3 = \frac{24}{17}$ Volt and $I = \frac{60}{17} A$
		India's Best Online Coaching Platfor	m for G	GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams
K	1 online	Enjoy a smooth onlin	e learni	rning experience in various languages at your convenience

13

Postal Coaching Solutions

 $P_{3\Omega} = 0.663 W$ absorbed

 $P_{4\Omega} = 64W$ absorbed

 $P_{4A} = 69.64 W$ delivered

- $P_{2\Omega} = 24.91$ W absorbed
- $P_{4V3} = 19.92$ Wdelivered

Since $P_{del} = P_{abs} = 89.57W$; Tellegen's Theorem is satisfied.

43. Ans: (a, d)

- Sol: \rightarrow For practical voltage source V_S is connected in series with its internal resistance R_S as low as possible. For ideal V.S \Rightarrow R_S = 0 Ω
 - → For practical current I_S its internal resistance R_S connected in parallel as maximum as possible. For ideal C.S \Rightarrow R_S = $\infty \Omega$

Any element connected with an ideal current source is not effect.

Any element connected in parallel with an ideal voltage source is not effect.

2. Circuit Theorems

01.

Sol: The current "I" = ?

By superposition theorem, treating one independent source at a time.

Since the bridge is balanced ; $I_1 = 0A$

(b) When 1V voltage source is acting alone

 $I_2 = 0A$ Since the bridge is balanced.

(c) When 2V voltage source is acting alone and apply Reciprocity theorem, interchange source 2 volt and 1 Ω positions.

By superposition theorem; $I = I_1 + I_2 + I_3$ I = 0 + 0 + 0.66AI = 0.66A

 Regular Live Doubt clearing Sessions
 Free Online Test Series
 ASK an expert

 Affordable Fee
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

	14 Electric Circuits	
02.	By SPT ;	
Sol: $2\Omega \qquad 1\Omega$	$i_x = i_{x1} + i_{x2} = 2 - \frac{3}{5} = \frac{7}{5}$	
$10V \pm 3A \pm 2i_x$ $i_x = ?$ By super position theorem; treating only one	$\therefore i_x = 1.4A$ $03.$ Sol: $R_1 i_1 = 3A$	
independent source at a time (a) When 10V voltage source is acting alone 2Ω 1Ω M	$120V - Resistive R_2 \leq 50V$	
$10V\pm$ \pm $2i_{x1}$	$P_{R_3} = 60 W$	
$By KVL \Rightarrow$	For 120 V \rightarrow i ₁ = 3 A For 105 V \rightarrow i ₁ = $\frac{105}{120} \times 3 = 2.625$ A	
$10 - 2i_{x1} - i_{x1} - 2i_{x1} = 0$ $i_{x1} = 2A$	For 120 V \rightarrow V ₂ = 50 V For 105 V \rightarrow V ₂ = $\frac{105}{120} \times 50 = 43.75$ V	
(b) When 3A current source is acting alone $2\Omega \times 1\Omega$ i_{x2} i_{x2} i_{x2} i_{x2} i_{x2}	$V_2 = 120 \text{ V} \Rightarrow I^2 \text{R}_3 = 60 \text{ W} \Rightarrow I = \sqrt{\frac{60}{\text{R}_3}}$ For $V_s = 105 \text{ V}$ $P_3 = \left(\frac{105}{120}\sqrt{\frac{60}{\text{R}_3}}\right)^2 \times \text{R}_3 = 45.9 \text{ W}$	
By Nodal \Rightarrow $\frac{V}{2} - 3 + \frac{(V - 2i_{x_2})}{1} = 0$ $3V - 4i_{x_2} = 6 \dots (1)$	04. Ans: (b) Sol: It is a liner network $\therefore V_x$ can be assumed as function of i_{s1} and i_{s2} $V_x = Ai_{s_1} + Bi_{s_2}$	2
And $i_{x2} = \frac{0 - V}{2} \Rightarrow V = -2i_{x2} \dots (2)$ Put (2) in (1), we get	$80 = 8A+12 B \rightarrow (1)$ $0 = -8A+4B \rightarrow (2)$ From equation 1 & 2 A = 2.5, B = 5	
$i_{x2} = -\frac{3}{5} A$ India's Best Online Coaching Platform	Now, $V_x = (2.5)(20)+(5)(20)$ $V_x = 150V$ n for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Ex	ams

A ace online

online

Electric Circuits

ACE

 $P_{AB} = P_{5\Omega} = P_{25V} = P_{5A} = 5*25 = 125$ watts (ABSORBED)

By Mill Man's theorem;

Since the two different frequencies are operating on the network simultaneously; always the super position theorem is used to evaluate the responses since the reactive elements are frequency sensitive

i.e.,
$$Z_L = j\omega L$$
 and $Z_C = \frac{1}{j\omega c} \Omega$.

23.

Sol: In the above case if both the source are100rad/sec, each then Millman's theorem is more conveniently used.

Engineering Publications

24

 $\frac{\pi}{4}$

Electric Circuits

$$|G(j\omega)| = \frac{K}{\sqrt{\omega^2 + 2^2}} = \frac{K}{2\sqrt{2}}$$
$$\angle G(j\omega) = -\tan^{-1}\frac{\omega}{2} = -\tan^{-1}1 = -\frac{1}{2}$$

So steady state response will be

$$y(t) = \frac{K}{2\sqrt{2}} \sin\left(2t - \frac{\pi}{4}\right)$$

03.

Sol:

By KVL \Rightarrow v(t) = (5 + 10sint)volt Evaluating the system transfer function H(s). $\frac{\text{Desired response L.T}}{\text{Excitation response L.T}} = \text{System transfer function}$ I(s) = H(s) = V(s) = 1 = 1

$$\frac{I(S)}{V(s)} = H(s) = Y(s) = \frac{1}{Z(s)} = \frac{1}{(R + SL + \frac{1}{SC})}$$

$$H(s) = \frac{S}{(2s^{2} + s + 1)}$$
$$H(j\omega) = \frac{1}{\left(1 + \frac{1}{j\omega} + 2j\omega\right)}$$

II. Evaluating at corresponding ω_s of the input $H(j\omega)|_{\omega=0}=0 \label{eq:model}$

$$\mathrm{H}(j\omega)|_{\omega=1}=\frac{1}{\sqrt{2}}\,\angle-45$$

III.
$$\frac{I(s)}{V(s)} = H(s)$$
$$I(s) = H(s)V(s)$$

ace online S) India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

$$i(t) = 0 \times 5 + \frac{1}{\sqrt{2}} \times 10\sin(t - 45^\circ)$$

 $i(t) = 7.07 sin(t - 45^{\circ})A$

OBS: DC is blocked by capacitor in steady state.

04.

Since

Sol:
$$\frac{V(s)}{I(s)} = H(s) = Z(s) = \frac{1}{Y(s)} = \frac{1}{\left(\frac{1}{R} + \frac{1}{sL} + sC\right)}$$

 $H(s) = \frac{1}{\left(1 + \frac{1}{s} + s\right)}$
 $H(j\omega) \Big|_{\omega=1} = \frac{1}{\left(1 + \frac{1}{j} + j\right)} = 1$
 $V(s) = I(s) H(s) = sin t$
 $v(t) = sin t volts$
05.
Sol: $\tau = \frac{L_{eq}}{R_{eq}}$
 $Q = \frac{2\Omega}{VW} = \frac{9\Omega}{VW}$
 $R_{eq} = (2||2) + 9 = 10\Omega$
 $R_{eq} : 1H$

1н MM

З 2 H

2 H

Engineering Publications	26	Electric Circuit	S
Expresented by the formation of the for	26	Electric Circuit By KCL: $-2 + i_L(0^+) = 0$ $i_L(0^+) = 2 A$ $V(0^+) = R i_L(0^+) _{By Ohm's law}$ $V(0^+) = 20 (2) = 40 V$ By KVL: $V_L(0^+) + V(0^+) = 0$ $V_L(0^+) + V(0^+) = 0$ $V_L(0^+) = -V(0^+) = -40 V = V_L(t) _{t=0}^{t=0}$ Observations: $t = 0^-$ $t = 0^+$ $i_L(0^+) = 2 A$	S = 0 ⁺
V_L 0 -40 $t = 5 \tau = 5 \times \frac{1}{5} = 1 \text{ sec}$ for steady state	e	$i_{L}(0^{-}) = 2 A \qquad i_{L}(0^{+}) = 2 A$ $i_{20\Omega}(0^{-}) = 0 A \qquad i_{20\Omega}(0^{+}) = 2 A$ $V_{20\Omega}(0^{-}) = 0 V \qquad V_{20\Omega}(0^{+}) = 40 V$ $V_{L}(0^{-}) = 0 V \qquad V_{L}(0^{+}) = -40 V$ Conclusion: To keep the same energy as $t = 0^{-}$ and to p the KCL and KVL in the circuit (i.e., to a	rotect
practically i.e., with in 1 sec the total 8 J stored in the inductor will be delivered to the resistor. 2 A i_L 4 H	d	the KCL and KVL in the circuit (i.e., to e the stability of the network), the ind voltage, the resistor current and its vo can change instantaneously i.e., within zero at $t = 0^+$. (2) $i_L(t)$ +	nsure luctor oltage
20Ω $+ V -$ For t ≥ 0 $2 A$ $i_{L}(0^{+})$ $V_{L}(0^{+})$	ce 19	995 20 Ω 4 H V _L (t) For t ≥ 0 $i_L(t) = 2 e^{-5t} A$ for $0 \le t \le \infty$ $V_L(t) = -40 e^{-5t} V$ for $0 \le t \le \infty$ Conclusion: For all the source free circuits $V_L(t) = -V_L(t)$	e for
$2 A = 20 \Omega$ $+ V(0^{+}) - 2 A$		t \geq 0, since the inductor while acting temporary source (upto 5 τ), it discharges positive terminal i.e., the current will flow negative to positive terminals. (This is the	as a from from must

At $t = 0^+$: Resistive circuit : Network is in transient state

theorem)

condition required for delivery, by Tellegan's

Engineering Publications	28	Electric Circuits
12. Sol: After performing source transformation;		At $t = 0^{-}$: Steady state: A resistive circuit By Nodal:
$\begin{array}{cccc} 20 \Omega & 10 \Omega \\ & & & \\ & & \\ & & \\ + & - & + & - \end{array}$		$-6 \text{ mA} + \frac{V_{c}(0^{-})}{4 \text{ K}} + \frac{V_{c}(0^{-})}{2 \text{ K}} = 0$
$5 i_L $ $+$ $5 H$ $ i_L$		$V_{C}(0^{-}) = 8 V = V_{C}(0^{+})$ i_{R}
By KVL; $5 i_{L} - 30 i_{L} - 5 \frac{di_{L}}{dt} = 0$ $\frac{di_{L}}{dt} + 5 i_{L} = 0$	6 ERIA	$6 \text{ mA} \qquad \begin{array}{c} + & i_{\text{C}} \\ V_{\text{C}} \qquad 2 \mu\text{F} \\ \hline & 4 \text{ k}\Omega \qquad - \\ \hline & 6 \text{ mA} \qquad \end{array} \qquad \begin{array}{c} 2 \text{ k}\Omega \\ \hline & 6 \text{ mA} \qquad \end{array} \qquad \begin{array}{c} 2 \text{ k}\Omega \\ \hline & 6 \text{ mA} \qquad \end{array} \qquad \begin{array}{c} 0 \text{ V} \end{array}$
$(D+5) i_{L} = 0$ $i_{L}(t) = K e^{-5t} A \text{ for } 0 \le t \le \infty$ $\tau = \frac{1}{5} \sec$		For $t \ge 0$: A source free circuit $V_s = 6 \text{ m} \times 4 \text{ K} = 24 \text{ V}$ $\tau = R_{eq} \text{ C} = (5 \text{ K}) 2 \mu = 10 \text{ m sec}$
13. Sol: $i_{L_1}(0) = 10 \text{ A}$; $i_{L_2}(0) = 2 \text{ A}$		Vs 24 V
$i_{L_1}(t) = I_0 e^{-\tau}$ $\tau = \frac{L}{R} = \frac{1}{1} = 1 \text{ sec}$		
$i_{L_1}(t) = 10 e^{-t} A$ Sin	nce 1	99 $V_c = 8 e^{-\frac{t}{10m}} = 8 e^{-100t} V$ for $0 \le t \le \infty$
Similarly, $i_{L_2}(t) = I_0 e^{-\tau}$ $\tau = \frac{L}{R} = 2 \sec$	C	$i_{C} = C \left. \frac{d V_{C}}{d t} \right _{By \text{ Ohm's law}} = -1.6 e^{-100 t} \text{ mA for } 0 \le t \le \infty$ By KCL:
$i_{L_2}(t) = 20 e^{-\frac{t}{2}} A$		$i_{C} + i_{R} = 0$ $i_{R} = -i_{C} = 1.6 e^{-100 t} mA \text{ for } 0 \le t \le \infty$
14. $V_{c}(0^{-})$		Observation:
Sol: 6 mA $4 \text{ k}\Omega$ $+$ $ V_{C}(0^{-})$ 2 $0 \text{ V} \leq 3 \text{ k}\Omega$ = $0 V$	2kΩ	In all the source free circuit, $i_C(t) = -ve$ for $t \ge 0$ because the capacitor while acting as a temporary source it discharges from the +ve terminal i.e., current will flow from -ve to +ve terminals.
India's Best Online Coaching Platfo	orm for G	ATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams
	me learni	ng experience in various languages at your convenience

Engineering Publications		29	Postal Coaching Solutions
15. Sol: By KCL:			$\tau = \frac{0.1}{1K} = 100 \ \mu \sec \theta$
$\mathbf{i}(t) = \mathbf{i}_{\mathrm{R}}(t) + \mathbf{i}_{\mathrm{L}}(t)$			$\tau_{\rm C} = 200 \times 10^{-9} \times 10 \times 10^3 = 2 \text{ m sec}$
$= \frac{\mathrm{V}_{\mathrm{R}}(\mathrm{t})}{\mathrm{R}} + \frac{1}{\mathrm{L}}\int_{-\infty}^{\mathrm{t}}$	$V_{L}(t) dt$		$\frac{\tau_{\rm C}}{\tau_{\rm L}}{=}20 \hspace{0.1in} ; \hspace{0.1in} \tau_{\rm C}=20 \hspace{0.1in} \tau_{\rm L}$
$V_s(t)$. (2)	$1 f_{\mathbf{t}}$		Observation:
$= \frac{1}{10} + 1_{L}(0)$ $i(t) = 4 t + 5 + 4 t^{2}$	$D + \frac{1}{L} \int_{0}^{0} V_{S}(t) dt$		$\tau_L < \tau_C$; therefore the inductive part of the circuit will achieve steady state quickly i.e., 20 times faster.
$i(t) _{t=2 \text{ sec}} = 8 + 16 + 5$	5 = 29 A = 29000 mA		$V_{c} = 20 e^{-\frac{t}{\tau_{c}}} V \text{ for } 0 \le t \le \infty$
16. Ans: (c)			$i_L = 20 e^{-\frac{t}{\tau_L}} mA \text{ for } 0 \le t \le \infty$
17.	NGINE		$V_{\rm L} = L \frac{di_{\rm L}}{L}$
Sol:	20 u(-t)		dt By Ohm's law
	20 🗸		$i_{\rm C} = C \left. \frac{dV_{\rm C}}{dt} \right _{\rm By \ Ohm's \ law}$
$-\infty$ $0^ 0$	0+ ∞		18. Ans: (c) $- -V_{C2}(s) ^+$
20 V (+) i _L (0 ⁻)	+ V _c (0 ⁻) - 1 kΩ 10 kΩ Sin	ce 1	Sol: $R=10\Omega$ $10/s$ C_1 $V_C(s)$ $-+$ $1/s$ $1/2s$ $1/2s$
At $t = 0^{-}$: steady state (i) $t = 0^{-}$ $V_{0}(0^{-}) = 20 V = V_{0}$: A resistive circuit.		$V_{c}^{\dagger}(s) = \frac{\frac{5}{s}\left(\frac{1}{2s}\right)}{R + \frac{1}{s} + \frac{1}{2s}}$
$i_{L}(0^{-}) = \frac{20}{1K} =$	$20 \text{ mA} = i_{L}(0^{+})$		$=\frac{\frac{5}{2s^2}}{\frac{2Rs+2+1}{2}} = \frac{5}{s(2Rs+3)}$
i _L ↓ \$ 0.1 H	$\frac{+}{V_{\rm C}}$ 200 nF		$V_{c_{2}}(\infty) - V_{c^{ }}(s) - \frac{5}{s} = 0$
≹ 1 kΩ	¥ 10 kΩ		$V_{c}(\infty) = V_{c}^{\dagger}(s) + \frac{5}{s}$
For $t \ge 0$: A source free	e RL & RC circuit		$V_{c}(\infty) = \underset{s \to 0}{\text{Lt s.}} \left[\frac{5}{s(2Rs+3)} + \frac{5}{s} \right] = \frac{5}{3} + 5 = \frac{20}{3}$
	Regular Live Doubt	clearin	ng Sessions Free Online Test Series ASK an expert
Affordable Fee Available 1			/ 3M 6M 12M 18M and 24 Months Subscription Packages

Engineering Publications	32	Electric Circuits
Expression Publication V = V = V = V = V = V = V = V = V = V =	32 R / A	$\frac{di_{L}(0^{+})}{dt} = \frac{V_{L}(0^{+})}{L} = 40$ $i_{R}(0^{-}) = -5 A \qquad i_{R}(0^{+}) = -1A$ $\frac{di_{R}(0^{+})}{dt} = -40 \text{ A/sec}$ $i_{C}(0^{-}) = 0 A \qquad i_{C}(0^{+}) = 4A$ $\frac{di_{C}(0^{+})}{dt} = -40 \text{ A/sec}$ $V_{L}(0^{-}) = 0 V$ $V_{L}(0^{+}) = 120 V$ $\frac{dV_{L}(0^{+})}{dt} = 1098 \text{ V/sec}$ $V_{R}(0^{-}) = -150 V$ $V_{R}(0^{+}) = -30 V$ $\frac{dV_{R}(0^{+})}{dt} = -1200 \text{ V/sec}$ $V_{C}(0^{-}) = 150 V$ $V_{L}(0^{+}) = 150 V$
By Nodal; $\frac{12 - 18}{2} + \frac{12 - 8}{4} + i_{2C}(0^{+}) = 0$ $\frac{-6}{2} + \frac{4}{4} + i_{2C}(0^{+}) = 0$ $i_{2C}(0^{+}) = 2 \text{ A} = i_{2C}(0^{-})$ $\frac{8 - 12}{4} - i_{2C}(0^{+}) + 3 + i_{C}(0^{+}) = 0$ $i_{C}(0^{+}) = 0 \text{ A} = i_{C}(0^{-})$ 26. Sol: $t = 0^{-}$ $t = 0^{+}$ $t = 0^{+}$ $i_{L}(0^{-}) = 5 \text{ A} i_{L}(0^{+}) = 5 \text{ A}$ India's Best Online Coaching Platfor Enjoy a smooth online	m for G	$\frac{d V_{c}(0^{+})}{d t} = 108 \text{ V/sec}$ (i). $t = 0^{-}$ By KCL $\Rightarrow i_{L}(t) + i_{R}(t) = 0$ $t = 0^{-} \Rightarrow i_{L}(0^{-}) + i_{R}(0^{-}) = 0$ $i_{R}(0^{-}) = -5 \text{ A}$ $V_{R}(t) = R i_{R}(t) _{By \text{ Ohm's law}}$ $V_{R}(0^{-}) = R i_{R}(0^{-}) = 30(-5) = -150 \text{ V}$ By KVL $\Rightarrow V_{L}(t) - V_{R}(t) - V_{C}(t) = 0$ $V_{C}(0^{-}) = V_{L}(0^{-}) - V_{R}(0^{-}) = 150 \text{ V}$ (ii). At $t = 0^{+}$ By KCL at 1 st node \Rightarrow $-4 + i_{L}(t) + i_{R}(t) = 0$ $i_{R}(0^{+}) = - i_{L}(0^{+}) + 4$ $i_{R}(0^{+}) = -5 + 4 = -1 \text{ A}$ $V_{R}(t) = R i_{R}(t) _{By \text{ Ohm's law}}$ ATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exameters

ACE Engineering Publications	33	Postal Coaching Solutions
$V_{R}(0^{+}) = R i_{R}(0^{+})$ $V_{R}(0^{+}) = -30 V$ By KVL $\Rightarrow V_{L}(t) - V_{R}(t) - V_{C}(t) = 0$ $V_{L}(0^{+}) = V_{R}(0^{+}) + V_{C}(0^{+})$ $= 150 - 30 = 120 V$ By KCL at 2 nd node; $-5 + i_{C}(t) - i_{R}(t) = 0$ $i_{C}(0^{+}) = 4 A$ (iii). t = 0 ⁺ By KCL at 1 st node \Rightarrow $-4 + i_{L}(t) + i_{R}(t) = 0$ $0 + \frac{di_{L}(t)}{dt} + \frac{d}{dt} i_{R}(t) = 0$ $V_{R}(t) = R i_{R}(t) _{By \text{ Ohm's law}}$ $\frac{d}{dt} V_{R}(t) = R \frac{d}{dt} i_{R}(t)$ By KVL \Rightarrow $V_{L}(t) - V_{R}(t) - V_{C}(t) = 0$ $\frac{d V_{L}(t)}{dt} - \frac{d V_{R}(t)}{dt} - \frac{d V_{C}(t)}{dt} = 0$ By KCL at node 2: $-5 + i_{C}(t) - i_{R}(t) = 0$ $0 + \frac{d}{dt} i_{C}(t) - \frac{d}{dt} i_{R}(t) = 0$ By KCL at node 2: $-5 + i_{C}(t) - i_{R}(t) = 0$ $0 + \frac{d}{dt} i_{C}(t) - \frac{d}{dt} i_{R}(t) = 0$ By KCL at node 2: $-5 + i_{C}(t) - i_{R}(t) = 0$ $0 + \frac{d}{dt} i_{C}(t) - \frac{d}{dt} i_{R}(t) = 0$ By KCL at node 2: $-5 + i_{C}(t) - i_{R}(t) = 0$ $0 + \frac{d}{dt} i_{C}(t) - \frac{d}{dt} i_{R}(t) = 0$ By KCL at node 2: $-5 + i_{C}(t) - i_{R}(t) = 0$ $0 + \frac{d}{dt} i_{C}(t) - \frac{d}{dt} i_{R}(t) = 0$ By KCL at node 2: $-5 + i_{C}(t) - i_{R}(t) = 0$ $0 + \frac{d}{dt} i_{C}(t) - \frac{d}{dt} i_{R}(t) = 0$ By KCL at node 2: $-5 + i_{C}(t) - i_{R}(t) = 0$ By KCL at node 2: $-5 + i_{C}(t) - i_{R}(t) = 0$ By KCL at node 2: $-5 + i_{C}(t) - i_{R}(t) = 0$ By KCL at node 2: $-5 + i_{C}(t) - i_{R}(t) = 0$ By KCL at node 2: $-5 + i_{C}(t) - i_{R}(t) = 0$ By KCL at node 2: $-5 + i_{C}(t) - i_{R}(t) = 0$ By KCL at node 2: $-5 + i_{C}(t) - i_{R}(t) = 0$ By KCL at node 2: $-5 + i_{C}(t) - i_{R}(t) = 0$ By KCL at node 2: $-5 + i_{C}(t) - i_{R}(t) = 0$ By KCL at node 2: $-5 + i_{C}(t) - i_{R}(t) = 0$ By KCL at node 2: $-5 + i_{C}(t) - i_{R}(t) = 0$ By KCL at node 2: $-5 + i_{C}(t) - i_{R}(t) = 0$ By KCL at node 2: $-5 + i_{C}(t) - i_{R}(t) = 0$ By KCL at node 2: $-5 + i_{C}(t) - i_{R}(t) = 0$ By KCL at node 2: $-5 + i_{C}(t) - i_{R}(t) = 0$ By KCL at node 2: $-5 + i_{C}(t) - i_{R}(t) = 0$ By KCL at node 2: $-5 + i_{C}(t) - i_{R}(t) = 0$ By KCL at node 2: $-5 + i_{C}(t) - i_{R}(t)$		Postal Coaching Solutions $1 - R I(s) - s L I(s) = 0$ $I(s) = \frac{1}{L} \frac{1}{(s + \frac{R}{L})}$ $i(t) = \frac{1}{L} e^{-\frac{R}{L}t} A \text{ for } t \ge 0$ 28. Sol: By Time domain approach; $V_{C}(0^{-}) = 5 \times 2 = 10 \text{ V} = V_{C}(0^{+})$ $V_{C}(0^{-}) = 5 \times 2 = 10 \text{ V} = V_{C}(0^{+})$ $V_{C}(0^{-}) = 5 \times 2 = 10 \text{ V} = V_{C}(0^{+})$ $V_{C}(0^{-}) = 5 \times 2 = 10 \text{ V} = V_{C}(0^{+})$ $At t = \infty: \text{ Steady state: A resistive circuit}$ $Nodal \Rightarrow \frac{V_{C}(\infty) - 25}{10} + \frac{V_{C}(\infty)}{5} - 2 = 0$ $V_{C}(\infty) = 15 \text{ V}$ $\tau = R_{eq} C = (5 \parallel 10) \cdot 1 = (10/3) \text{ sec}$ $V_{C} = 15 + (10 - 15) e^{-\frac{t}{(103)}}$ $V_{C} = 15 - 5 e^{-3t/10} \text{ V for } t \ge 0$ $i_{C} = C \frac{dV_{C}}{dt} = 1.5 e^{-3t/10} \text{ A for } t \ge 0$ 29
27. Sol: Transform the network into Laplace domain $\qquad \qquad $		Sol: $i(t) \qquad i(t) \qquad i$
Regular Live Dou	bt clearin	ng Sessions Free Online Test Series ASK an expert

ace

ACE	34	Electric Circuits
Engineering Publications		
$\tau = \frac{L}{R} \sec \theta$	3	
K V (V) V	√	Sol: It's an RL circuit with $L = 0 \Rightarrow \tau = 0$ sec
$i(t) = \frac{1}{R} + \left(0 - \frac{1}{R}\right) e^{-t/\tau} = \frac{1}{R}$	$\frac{1}{R}\left(1-e^{-t/\tau}\right)$	$i(t) = \frac{v}{R}, \forall t \ge 0 \text{ So}, 5\tau = 0 \text{ sec}$
$V_{L} = \frac{Ldi(t)}{dt} = V e^{-Rt/L}$ for $t \ge 0$)	i(t)
i(t)		<u>V</u>
$\frac{\mathbf{V}}{\mathbf{R}}$		$-\infty$ ' 0
R	t	i.e., the response is constant
$-\infty$ 0		
V_{L}	3	33.
$V = \frac{L}{\tau} \sec t$	CINEER/A	$V_{\rm C}$ 100u(t) – $V_{\rm L}$
R		Sol: $1_1 = \frac{1}{10}$
-∞ 0	T ()	$i_{L} = \begin{pmatrix} 10 \\ 10 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} i_{L} \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} i_{L} \\ 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
Exponentially Increasing Resp	oonse	$H = \left(\frac{100(t) - \frac{1}{100} - \frac{1}{00}}{100} - \frac{1}{00}\right) A$
31.		$Nodal \Rightarrow$
Sol: $V_{C}(0) = 0 = V_{C}(0^{\circ})$		$-i_1 + i_1 + \frac{V_L - 20i_1}{0} = 0$
$\tau = \mathbf{RC}$		20
$V_C = V + (0-V)e^{-t/\tau}$		$-2i_1 + i_1 + \frac{1}{222} \frac{di_1}{dt} = 0$
$= V(1 - e^{-t/RC}) \text{ for } t \ge 0$		200 dt
$dv_{c} = V_{c-t/RC}$	Since 1	99 Substitute ju:
$IC = C - \frac{1}{dt} = \frac{1}{R}e$ for $t \ge 0$		dit to and ()
$= \mathbf{i}(\mathbf{t})$		$\frac{L}{dt} + 40i_L = 800u(t)$
V _c (t)		SL(c) = (01) + 40L(c) = 800
V		$SI_L(S) - I_L(0+) + 40I_L(S) = \frac{1}{S}$
$\tau = RCsec$		$i_L(0^-) = 0A = i_L(0^+)$
0	⇒t	$I_{L}(s) = \frac{800}{s(s+40)} = \frac{20}{s} - \frac{20}{s+40}$
i(t)		$L t) = 20u(t) - 20e^{-40t}u(t)$
V		$I_{\rm I}(t) = 20(1 - e^{-40t}) u(t)$
$\frac{r}{R}$ $\tau = RCsec$		10(1) 1 1
	→ t	$u_1 = 10u(t) - \frac{100}{100} a \frac{z}{dt}$
Fynonentially Decreasing Passes	nse	$i_1 = (10-8e^{-40t}) u(t)$
India's Best Online	Coaching Platform for GA	GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams
	oy a smooth online learnin	ing experience in various languages at your convenience

ک	Engineering Publications		38		Electric Circuits
	$t_{o} = 1.78$ msec.			42.	Ans: (a, c)
	So, by switching	g exactly at 1.78msec from the	e	Sol:	At $t = 0^+$; $i_1(0) = 2 A \neq i_2(0) = 1 A$
	instant voltage b	ecomes zero, the current is fre	e		So, 2 A \neq 1 A
	from Transient.				The given network violates KCL at $t = 0^+$
40.					Constant current applied to inductor the voltage across inductor is impulse.
Sol:	$\omega t_{o} + \phi = \tan^{-1}(\omega$	$(CR) + \frac{\pi}{2}$	۰.		
	$2t_{o} + \frac{\pi}{4} = \tan^{-1}$	$(\omega CR) + \frac{\pi}{2}$	Ľ		4. AC Circuit Analysis
	$2t \pm \frac{\pi}{2} = tan^{-1}$	$(2(1)(1)) + \pi - \pi + \pi$		01.	
	$2\iota_0 + \frac{\pi}{4} - \tan \frac{\pi}{4}$	$\left(2\left(\frac{2}{2}\right)^{(1)}\right)^{+}\frac{1}{2}^{-}\frac{1}{4}^{+}\frac{1}{2}$		Sol:	$I_{avg} = I_{dc} = \frac{1}{T} \int_0^T i(t) dt$
	$2t_o = \frac{1}{2} \Rightarrow t_o =$	= 0.785 sec	ERI	NG	= 3 + 0 + 0 = 3A
41.	Ans: (b, c, d)	CH ENC			$I_{\rm rms} = \sqrt{\frac{1}{T} \int_0^T i^2(t) dt}$
Sol:		× ×			$(\sqrt{2})^2 (5\sqrt{2})^2$
					$=\sqrt{3^2 + \left(\frac{4\sqrt{2}}{\sqrt{2}}\right) + \left(\frac{5\sqrt{2}}{\sqrt{2}}\right) + 0 + 0 + 0}$
	$V_{c} + \frac{1}{2} \mu F$	ξ 10 kΩ			
	-				$=5\sqrt{2A}$
	(b) $V_{a}(t) = V_{a}(0)$	e ^{-t/τ}		02.	
	$V_c = 20e^{-t/\tau} =$	$= 20.e^{-t/(1/50)}$		Sol:	$V_{dc} = V_{avg} = \frac{1}{T} \int_0^T V(t) dt = 2V$
	= V _c (t	$= 20e^{-50t} V$ Since	ce 1	99	Here the frequencies are same, by doing simplification
					$y(t) = 2 - 3\sqrt{2}(\cos 10tx \frac{1}{1} - \sin 10tx \frac{1}{1})$
	20				$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = 1$
		→ t			+ 3cos10t
					$= 2 + 3\sin 10t V$
	(c) $i_C(t) = C \frac{dV_0}{dt}$	$\frac{c(t)}{t}$			So $V_{\rm rms} = \sqrt{(2)^2 + (\frac{3}{\sqrt{2}})^2} = \sqrt{8.5} V$
	$= 2 \times 10$	$e^{-6} \times 20 e^{-50t} \times (-50)$			
	$i_{\rm C}(t) = -2e^{-50}$	^{Dt} mA		03.	
	(d) $\tau = RC = (10^{\circ})^{\circ}$	0k) (2µ)		Sol:	$X_{avg} = X_{dc} = \frac{1}{T} \int_0^T x(t) dt = 0$
	= 20 ms				$\mathbf{x} = \sqrt{1 \mathbf{f}^{\mathrm{T}} \mathbf{f} \mathbf{f}} \mathbf{A}$
	$=\frac{20}{1000}=1$	/50 sec			$X_{\rm rms} = \sqrt{\frac{1}{T}} \int_0^{\infty} x^2(t) dt = \frac{1}{\sqrt{3}}$
	ace	India's Best Online Coaching Platfor	m for G	ATE,	ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams
		Enjoy a smooth online learning experience in various languages at your convenience			

Engineering Publications	39	Postal Coaching Solutions
 04. Ans: (a) Sol: For a symmetrical wave (i.e., area of posihalf cycle = area of negative half cycle.) RMS value of full cycle is same as the R value of half cycle. 	itive The RMS	$I_{1} = \frac{I(1 + j2)}{1 - jl + 1 + j2}$ = 6.2017\arrow 27.125 ° A $I_{2} = \frac{I(1 - jl)}{1 - jl + 1 + j2}$
05.		$= 3.922 \angle -81.31^{\circ} A$
Sol: Complex power, $S = VI^*$		$E_2 = (1-j1)I_1 = 8.7705 \angle -17.875^{\circ} V$
$300 \angle 0^{\circ} V^{+} \bigcirc \qquad -j10 \Omega \longrightarrow 209$ $300 \angle 0^{\circ} V^{+} \bigcirc \qquad j12.5\Omega \longrightarrow 209$ $300 \angle 0^{\circ} V^{+} \bigcirc \qquad -j10 \Omega \longrightarrow 209$ $4-j8$	Ω EER	E ₀ = 0.5I ₂ = 1.961 \angle - 81.31° V 07. Sol: Since two different frequencies are operating on the network simultaneously always the super position theorem is used to evaluate the response. By SPT: (i) $10V + \frac{1}{10V} + \frac{1}{2\Omega}$
$\Rightarrow I = \frac{300 \angle 0^{\circ}}{2 + j12.5 + 4 - j8}$ $\Rightarrow I = 40 \angle -36.86^{\circ}$	nce	Network is in steady state, therefore the network is resistive. $I_{R1}(t) = \frac{10}{2} = 5A$ (ii) 1995
$\therefore \text{Complex power, } S = VI^*$ $= 300 \angle 0^\circ \times 40 \angle 36.86^\circ$ $= 9600 + i7200$		2Ω (~) $5\cos 2t$
∴ Reactive power delivered by the source		Network is in steady state
Q = 72000 VAR		As impedances of L and C are present because of $\omega = 2$. They are physically present
= 7.2 KVAR		$Z_{L} = j\omega L; Z_{c} = \frac{1}{j\omega C} \Big _{\omega=2} $
Sol: $7 = i1 + (1-i1) (1+i2) = 1.4 + i.0.8$		$j2\Omega = V = U$
$I = \frac{E_1}{Z} \Big _{\text{By ohm's law}} = \frac{10\angle 20}{1.4 + j8}$ $= 6.2017 \angle -9.744^\circ \text{ A}$		$ \begin{array}{c c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & &$
Regular Live Do	oubt clear	aring Sessions Free Online Test Series ASK an expert
Affordable Fee A	vailable 1	e 1M 3M 6M 12M 18M and 24 Months Subscription Packages

۲		40	Electric Circuits
	Network is in phasor domain		$\Rightarrow -I_1 - I_2 - I_3 = 0$
	Nodal \Rightarrow		$\mathbf{I}_3 = -(\mathbf{I}_1 + \mathbf{I}_2) \qquad \qquad \mathbf{I}_1 \qquad \mathbf{I}_2$
	$\frac{\mathbf{V}}{\mathbf{V}} + \frac{\mathbf{V}}{\mathbf{V}} + \frac{\mathbf{V} - 5 \angle 0^0}{0} = 0$		$i_1(t) = \cos(\omega t + 90^{\circ})$
	j2 2 - j0.5		$I_1 = 1 \angle 90^\circ = j1$
	$V = 6.32 \angle 18.44^{\circ}$		$I_2 = 1 \angle 0^0 = (1 + j0)$
	$V = \frac{V}{2} = 2.16 \times 18.44^{0} = 2.16 \times 18.14^{0}$		$I_3 = \sqrt{2} \angle \pi + 45^0 = \sqrt{2} e^{j(\pi + 45)}$
	$I_{R2} = \frac{1}{2} = 3.10218.44 = 5.100$		$i_3(t) = \text{Real part}[I_3.e^{j\omega t}]\text{mA}$
	$i_{R2}(t) = R.P[I_{R2}e^{j2t}]A$		$= -\sqrt{2}\cos(\omega t + 45^0 + \pi)mA$
	$= 3.16\cos(2t + 18.44^{\circ})$		$i_{r}(t) = -\sqrt{2} \cos(\omega t + 45^{\circ}) m A$
	By super position theorem,		$I_3(t) = \sqrt{2} \cos(\omega t + 45) \operatorname{mA}$
	$i_{R}(t) = i_{R1}(t) + i_{R2}(t)$		11
	$= 5+3.16\cos(2t+18.44^{\circ})A$		V V V
	NGING		Sol: $I = \frac{v}{R} + \frac{v}{Z} + \frac{v}{Z} = 8 - j12 + j18$
08.	Ans: (c)		$\mathbf{R} = \mathbf{L}_{\mathbf{L}} = \mathbf{L}_{\mathbf{C}}$
Sol:	$\frac{1}{1-1} - I(s)(2+2s+\frac{1}{2}) = 0$		I = 8 + 6J
	$s^2 + 1$ (s)		$ I = \sqrt{100} = 10A$
	$1(s)(2s+2s^2+1)$ 1		12
	$I(s)\left(\frac{s}{s}\right) = \frac{1}{s^2 + 1}$		12. Solution $V(C) \rightarrow V(C)$
			Sol: By KCL \Rightarrow
	$I(s) + 2s^2I(s) + 2sI(s) = \frac{s}{s^2 + 1}$		$-\mathbf{I} + \mathbf{I}_{\mathrm{L}} + \mathbf{I}_{\mathrm{C}} = 0$
	3 1		$I = I_{\rm L} + I_{\rm C}$
	$i(t) + \frac{2d}{dt^2} + 2\frac{dt}{dt} = \cos t$		$I_{L} = \frac{V}{T_{L}} = \frac{V}{V_{L}} = \frac{320^{\circ}}{(1)}$
	at at		$Z_{L} j\omega L j(3)(\frac{1}{2})$
	$2\frac{d^{2}1}{dt^{2}} + 2\frac{d1}{dt} + i(t) = \cos t$ Since	ce 1	995
	dt ² dt		$I_{\rm r} = \frac{3\angle 0^0}{2} = \frac{3\angle 0^0}{2} = 3\angle -90^0$
00			j $\angle 90^{\circ}$
09.			$I = 3 \angle -90^{0} + 4 \angle 90^{0} = -j3 + j4 = j1 = 1 \angle 90^{0}$
Sol:	$V = \sqrt{V_R^2 + (V_L - V_C)^2}$		
	$V = V_R = I.R$		13. Ans: (d)
	100 = I.20; I = 5A		Sol: I
	Power factor = $\cos \phi = \frac{1}{V} = \frac{1}{V_R} = 1$		
	So, unity power factor.		90 135 $\omega=2$ rad/sec
			45 V
10.			
Sol:	By KCL in phasor - domain		
	India's Best Online Coaching Platfor	 m for G	42 ATE, ESE, PSUs, SSC-IE, RRB-IE, SSC. Banks, Grouns & PSC Exams
L	Solution Sector online Solution a smooth online	e learn	ing experience in various languages at your convenience

	ACE Engineering Publications		42		Electric Circuits	
	OBS: $I_C = \frac{V}{Z_C}$ $Z_C = \frac{1}{j\omega c} \Omega$ As $f \downarrow \Rightarrow Z_C \uparrow =$	⇒ I _C ↓	\$	18. Sol:	$Y = Y_{1} + Y_{c} = \frac{1}{Z_{L}} + \frac{1}{Z_{C}}$ $= \frac{1}{30 \angle 40^{0}} + \frac{1}{\left(\frac{1}{100}\right)}$	
16. Sol:	$P_{5\Omega} = 10$ Watts (0 = $P_{avg} = I_{rms}$ $10 = I_{rms}^2.5$ $I_{rms} = \sqrt{2} A$ Power delivered (By Tellegen's T	Given) ² R = Power observed Theorem)	R	VG	$= j\omega c + \frac{1}{30} \angle -40^{0}$ $= j\omega c + \frac{1}{30} (\cos 40^{0} - j\sin 40^{0})$ Unit power factor \Rightarrow j-term = 0 $\omega c = \frac{\sin 40^{0}}{30}$	
	$P_{T} = I_{rms}^{2} (5 + 10)$ $V_{rms} I_{rms} \cos\phi = \left(\frac{50}{\sqrt{2}} \times \sqrt{2} \cos\phi \right)$ $\cos\phi = 0.6 (lag)$	(15) $\sqrt{2}^{2}(15)$ = 2 × 15		19. Sol:	$C = \frac{\sin 40^{\circ}}{2\pi \times 50 \times 30} = 68.1 \mu F$ C = 68.1 \mu F Ans: (b) To increase power factor shunt capacitor is to be placed.	
17. Sol:	Ans: (d) ∨ ∨	$V_R = 3V$		99	VAR supplied by capacitor = P (tan ϕ_1 -tan ϕ_2) = 2×10 ³ [tan(cos ⁻¹ 0.65) - tan(cos ⁻¹ 0.95)] = 1680 VAR VAR supplied = $\frac{V^2}{X_C} = V^2 \omega C = 1680$ $\therefore C = \frac{1680}{(115)^2 \times 2\pi \times 60} = 337 \mu F$	
	$V = \sqrt{V_R^2 + (V_L)^2}$ $= \sqrt{(3)^2 + (14)^2}$ $V = 5 V$	$\int_{C} = 10V$ $\overline{-V_{C}}^{2}$ $\overline{-10}^{2}$	\$	20. Sol:	$Z = \frac{V}{I} = \frac{160 \angle 10^{\circ} - 90^{\circ}}{5 \angle -20^{\circ} - 90^{\circ}} = 32 \angle 30^{\circ}$ $\phi = 30^{\circ} \text{ (Inductive)}$ $V_{\text{rms}} = \frac{160}{\sqrt{2}} \text{ Vj, } I_{\text{rms}} = \frac{5}{\sqrt{2}}$	
1	ace online	India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience				

ا	ACE Engineering Publications		43		Postal Coaching Solutions
	Real power (P) = $\frac{160}{\sqrt{2}} \times \frac{1}{\sqrt{2}}$ = 200 $\sqrt{3}$	$\frac{5}{\sqrt{2}} \times \cos 30^{\circ}$ W			V = 240∠0 ⁰ I _R = $\frac{V}{R} = \frac{240}{60} = 4A$
	Reactive power (Q) = $\frac{160}{\sqrt{2}}$	$\frac{0}{2} \times \frac{5}{\sqrt{2}} \times \frac{1}{2}$			$I_{L} = \frac{V}{Z_{L}} = \frac{V}{X_{L}} = \frac{240}{40} = 6A$
21.	= 20 Complex power $= P + jQ$	$00 \text{ VAR} = 200(\sqrt{3} + j1) \text{ VA}$			$I_{C} = \frac{V}{Z_{C}} = \frac{V}{X_{C}} = \frac{240}{80} = 3A$ $I_{L} > I_{C} : \text{ Inductive nature of the circuit.}$
Sol: Note	V = $4 \angle 10^\circ$ and I = $2 \angle -24$ e: When directly phasors ar are taken as rms values sing rms meters	0° e given the magnitude ince they are measured	s 1 3 D 1/		$I = \sqrt{I_{R}^{2} + (I_{L} - I_{C})^{2}} = \sqrt{4^{2} + 3^{2}} = 5A$ Power factor = $\frac{I_{R}}{I} = \frac{4}{5} = 0.8$ (lagging)
	$V_{rms} = 4V \text{ and } I_{rms} = 2Z$ $Z = \frac{V}{L} = 2 \angle 30^\circ; \phi = 30^\circ$	A (Inductive)		25. Sol:	Ans: (a) $+ I_1 + I_2$
	$P = 10\sqrt{3} W, Q = 10VAR$ S = 10($\sqrt{3}$ +j1) VA	4			$100 \angle 0^{0} \bigcirc 100 \angle 0^{0} \bigcirc $
22. Sol:	Ans: (a) S = VI* = $(10 \angle 15^\circ) (2 \angle 45^\circ)$				- ϑ j4Ω2 - ϑ j3Ω
	= $10 + j17.32$ S = P + jQ P = 10 W Q = 17.32 VA	R	ce 1	99	NW is in Steady state. $V = 100 \angle 0^0 \Rightarrow V_{rms} = 100V$ $100 \angle 0^0$
23.	Ans: (c)				$I_1 = \frac{1}{(3+j4)\Omega} \implies I_1 = 20 = I_{1rms}$
Sol:	$P_{\rm R} = (I_{\rm rms})^2 \times {\rm R}$				$\mathbf{I}_2 = \frac{100 \ge 0^\circ}{(1 - j\mathbf{l})\Omega} \implies \mathbf{I}_2 = \frac{100}{\sqrt{2}} \mathbf{A} = \mathbf{I}_{2\text{rms}}$
	$I_{\rm rms} = \frac{1}{\sqrt{2}}$				$P = P_1 + P_2$ = $(I_{1rms})^2 \cdot 3 + (I_{2rms})^2 \cdot 1$
	$P_{\rm R} = \left(\frac{10}{\sqrt{2}}\right) \times 100$				$= 20^2.3 + \left(\frac{100}{\sqrt{2}}\right)^2.1$
24.					$P = 6200 W$ $Q = Q_1 + Q_2$
Sol:	$P_{avg} = \frac{V_{rms}^2}{R} = \frac{\left(\frac{240}{\sqrt{2}}\right)^2}{60} =$	480 Watts			$= (I_{1rms})^{2}.4 + (I_{2rms})^{2}.(1)$ = 3400VAR So, S = P+jQ = (6200+j3400) VA
		Regular Live Doubt	clearin	ng Ses	sions Free Online Test Series ASK an expert
	la online	Affordable Fee Availa	able 1M	I 3M	6M 12M 18M and 24 Months Subscription Packages

			45	Postal Coaching Solutions
31. Sol:	Ans: (c) Since; "I" leads volt effect and hence the $(f < f_0)$	age, therefore capacitiv he operating frequency	e y	$=\frac{\left(\frac{-j}{\omega}\right)\left(j4\omega-\frac{j}{\omega}\right)}{\frac{-j}{\omega}+j4\omega-\frac{j}{\omega}}$
	$\begin{array}{c c} & 1 \\ \hline \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Ο _L 		$= \frac{4 - \frac{1}{\omega^2}}{j4\omega - \frac{j2}{\omega}}$ For circuit to be resonant i.e., $\omega^2 = \frac{1}{4}$ $\omega = \frac{1}{2} = 0.5$ rad/sec
32.	IGINEE			$\therefore \omega_{\text{resonance}} = 0.5 \text{ rad/sec}$
Sol:	$Y = \frac{1}{R_{L} + j\omega L} + \frac{1}{R_{C} - \frac{1}{\omega}}$ $R_{L} - j\omega L$	$\frac{\overline{j}}{\overline{bC}}$ $R_{c} + j/\omega c$		34. Sol: (i) $\frac{L}{C} = R^2 \implies$ circuit will resonate for all the
	$= \frac{1}{R_{L}^{2} + (\omega L)^{2}} + \frac{1}{R_{C}^{2} + (1/\omega C)^{2}}$ j - term $\Rightarrow 0$		frequencies, out of infinite number of frequencies we are selecting one frequency. i.e., $\omega_0 = \frac{1}{\sqrt{1-\alpha_1}} = \frac{1}{2}$ rad/sec	
	$\omega_0 = \frac{1}{\sqrt{LC}} \sqrt{\frac{R_L^2}{R_C^2}} = \frac{1}{R_C^2} + \frac{R_L^2}{R_C^2} = \frac{1}{R_C^2} + \frac{1}{R_C^2} +$	$\frac{\overline{C}}{L}$ rad/sec		then Z = R = 2 Ω . $I = \frac{V}{Z} = \frac{10 \angle 0^{\circ}}{2} = 5 \angle 0^{\circ}$
33. Sol:	4H 10Ω			$i(t) = 5\cos\frac{t}{2}A$ $Z_{L} = j\omega_{0}L = j2\Omega ; Z_{C} = \frac{1}{j\omega_{0}C} = -j2\Omega.$
				$I_{L} = \frac{I(2-j2)}{2+j2+2-j2} = \frac{I}{\sqrt{2}} \angle -45^{0}$
	A Fig. B The given circuit is shown in Fig. $Z_{AB} = 10 + Z_1$ where, $Z_1 = \left(\frac{-j}{\omega}\right) \ \left(j4\omega - \frac{j}{\omega}\right)$			$i_{\rm L} = \frac{5}{\sqrt{2}} \cos\left(\frac{t}{2} - 45^0\right) A$
				$i_c = \frac{I(2+j2)}{2+j2+2-j2} = \frac{I}{\sqrt{2}} \angle 45^{\circ}$
				$i_{c} = \frac{5}{\sqrt{2}} \cos\left(\frac{t}{2} + 45^{\circ}\right) A$
	Aregular Live Doubt clea Affordable Fee Available			ng Sessions Free Online Test Series ASK an expert I 3M 6M 12M 18M and 24 Months Subscription Packages

Engineering Publications		46	Electric Circuits	
$P_{avg} = I_{L(rms)}^2$). $\mathbf{R} + \mathbf{I}_{c(rms)}^2$. \mathbf{R}		$\mathbf{P}_{\mathrm{avg}} = \mathbf{I}_{\mathrm{Lrms}}^2 \cdot \mathbf{R} + \mathbf{I}_{\mathrm{Crms}}^2 \mathbf{R}$	
$=\left(\frac{5/\sqrt{3}}{\sqrt{2}}\right)$	$\left[\frac{\overline{2}}{2}\right]^2 \cdot 2 + \left(\frac{5/\sqrt{2}}{\sqrt{2}}\right)^2 \cdot 2$		$= \left(\frac{2\sqrt{5}}{\sqrt{2}}\right)^2 \cdot 2 + \left(\frac{2\sqrt{5}}{\sqrt{2}}\right)^2 \cdot 2$ $= 40 \text{ watts}$	
= 25 wa	tts			
			35.	
(ii) $\frac{L}{C} \neq R^2$ cir	rcuit will resonate at only on	e i	Sol: (i) $Z_{ab} = 2 + (Z_L \parallel Z_C \parallel 2)$	
frequency.			$=2+jX_L -jX_C 2$	
i.e., at $\omega_0 =$	$\frac{1}{\sqrt{\text{LC}}} = \frac{1}{4} \text{ rad/sec}$		$= \frac{2 + 2X_{L}X_{C}(X_{L}X_{C} - j2(X_{L} - X_{C}))}{(X_{L}X_{C})^{2} + 4(X_{L} - X_{C})^{2}}$	
Then $V = -$	2R mbo	ERI	V_{G} j-term = 0	
I nen 1	$R^2 + \frac{L}{L}$		$\Rightarrow -2(X_L - X_C) = 0$	
	C		$X_{\rm L} = X_{\rm C}$	
$Y = \frac{2(2)}{2^2 + \frac{4}{4}}$	$=\frac{4}{5}$ mho		$\omega_0 \mathbf{L} = \frac{1}{\omega_0 \mathbf{C}}$	
$Z = \frac{5}{4}\Omega$	Ve		$\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{4.4}} = \frac{1}{4} \text{ rad / sec}$ At resonance entire current flows through	
$I = \frac{V}{Z} = \frac{102}{5}$	$\frac{\angle 0^0}{4} = 8 \angle 0^0$		2Ω only.	
$i(t) = 8\cos\frac{t}{4}$	A	ce 1	(ii) $Z_{ab}\Big _{\omega=\omega_0} = 2 + 2 = 4\Omega$ 995 $X_L = X_C$	
$Z_L = j\omega_0 L =$	jlΩ			
$Z_{c} = \frac{1}{j\omega_{0}C}$	$=-j1\Omega$		(iii) $V_i(t) = V_m \sin\left(\frac{t}{4}\right) V$	
$I_{\rm L} = \frac{I(2 - 1)}{2 + jl + 1}$	$\frac{jl}{-2-jl} = \frac{\sqrt{5}}{4} I \angle tan^{-1} \left(\frac{1}{2}\right)$		$i(t) = \frac{V_i(t)}{Z} = \frac{V_m}{4} \sin\left(\frac{t}{4}\right) = \dot{i}_R$	
$i_{L} = \frac{8\sqrt{5}}{4}cc$	$s\left(\frac{t}{4}-\tan^{-1}\left(\frac{1}{2}\right)\right)$		$V = 2i_{R} = \frac{V_{m}}{2} \sin\left(\frac{t}{4}\right) V = V_{C} = V_{L}$	
$I_c = \frac{I(2+1)}{2+jl+1}$	$\frac{jl}{2-jl} = \frac{\sqrt{5}}{4} \mathbf{I} \angle \tan^{-1}\left(\frac{1}{2}\right)$		$i_{\rm C} = C \frac{dV_{\rm C}}{dt} = \frac{V_{\rm m}}{2} \cos\left(\frac{t}{4}\right)$	
$i_c = \frac{8\sqrt{5}}{4}co$	$s\left(\frac{t}{4}+tan^{-1}\left(\frac{1}{2}\right)\right)$		$i_{c} = \frac{V_{m}}{2} \sin\left(\frac{t}{4} + 90^{0}\right) A$	
A ace	India's Best Online Coaching Platfor	n for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams		
online	ing experience in various languages at your convenience			

Postal Coaching Solutions

$$i_{L} = \frac{1}{L} \int V_{L} dt = -\frac{V_{m}}{2} \cos\left(\frac{t}{4}\right)$$

$$i_{L} = \frac{V_{m}}{2} \sin\left(\frac{t}{4} - 90^{\circ}\right) A$$
OBS: Here $i_{L} + i_{C} = 0$

$$\Rightarrow LC Combination is like an open circuit.
36. Ans: (d)
Sol:
$$Q = \frac{oL}{R}$$

$$Q = \frac{V^{2}}{R^{2} (L + Q^{2})}$$

$$Q = \frac{V^{2}}{R^{2} (L$$$$

Engineering Publications	49 Postal Coaching Solutions
$Y_{T} = \frac{1}{10 + i\omega(5m)} + j\omega(2\mu)$	5. Magnetic Circuits
$f_{T} = \frac{10 - j\omega(5m)}{100 + \omega^{2}(25\mu)} + j\omega(2\mu)$ $= \frac{j\omega(5m)}{100 + \omega^{2}(25\mu)} + j\omega(2\mu)$ $2500 = 100 + \omega^{2}(25\mu)$ $2400 = \omega^{2}(25) \mu$ $24 \times 4 M = \omega^{2}$ $\omega = 9.8 \text{ rad/sec}$ (Q) pf of coil = $\frac{R}{Z} = \frac{10}{\sqrt{10^{2} + (5m \times 2000)^{2}}}$ $= \frac{1}{\sqrt{2}} = 0.707 \text{ lag}$ (R) Q-factor = $\frac{\omega L}{R} = \frac{(2000)(5m)}{10} = 1$	01. Sol: $X_C = 12$ (Given) $X_{eq} = 12$ (must for series resonance) So the dot in the second coil at point "Q" $L_{eq} = L_1 + L_2 - 2M$ $L_{eq} = L_1 + L_2 - 2K\sqrt{L_1L_2}$ $\omega L_{eq} = \omega L_1 + \omega L_2 - 2K\sqrt{L_1L_2\omega\omega}$ $12 = 8 + 8 - 2K\sqrt{8.8}$ $\Rightarrow K = 0.25$ 02. Sol: $X_C = 14$ (Given) $X_{Leq} = 14$ (must for series resonance) So the dot in the 2 nd coil at "P"
\therefore (b,c) are correct	$L_{eq} = L_1 + L_2 + 2M$ $L_{eq} = L_1 + L_2 + K \sqrt{L_1 L_2}$
42. Ans: (a, d) Sol: R = 30 Ω, X _L = 60 Ω, X _C = 20 Ω V(t) = 100sin10ωt (a) $\phi = \tan^{-1} \left(\frac{X_L - X_C}{R} \right)$ $= \tan^{-1} \left(\frac{40}{30} \right) = 53.13^{\circ}$ lag (b) p.f = cos 53.13° = 0.6 lag (c) current is lagging by 53.13° (d) p.f = cos 53.13° = 0.6 lag ∴ a, d are correct	$\omega L_{eq} = \omega L_1 + \omega L_2 + 2K \sqrt{\omega L_1 L_2 \omega}$ $14 = 2 + 8 + 2K \sqrt{2(8)}$ $199 \Rightarrow K = 0.5$ 03. Sol: $L_{ab} = 4H + 2 - 2 + 6H + 2 - 2 + 8H - 2 - 2$ $L_{ab} = 14H$ $a - 4H + 2 - 2 + 6H + 2 - 2 + 8H - 2 - 2$ $L_{ab} = 14H$ $a - 4H + 2 - 2 + 6H + 2 - 2 + 8H - 2 - 2$ $L_{ab} = 14H$
Aregular Live D Affordable Fee	Doubt clearing Sessions Free Online Test Series ASK an expert Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages

	ACE Engineering Publications		50		Electric Circuits
04.	Ans: (c)				Substitute $I_2(s) = 0$ in above equation
Sol:	Impedance seen	by the source			$V_2 + 5 \times 10^{-3} \text{ sI}_1(\text{s}) = 0 \dots (3)$
	$z = Z_{L} + (A)$; 2)			From equation (2)
	$Z_{\rm s} = \frac{16}{16} + (4 - 1)$	(2)			$-\frac{6}{-1}$ + (-30 × 10 ⁻³ (s) + 50) I (s) - 0
	$-\frac{10 \angle 30^{\circ}}{-10}$	(1 - i2)			s
	16	$(\tau - J^2)$			$I_{1}(s) = -6$
	= 4.54 - j1.69				s $(30 \times 10^{-3} (s) + 50)$
05					Substitute eqn (4) in eqn (3)
UJ. Sol·					$V_2(s) = \frac{-5 \times 10^{-3} (s) (-6)}{2}$
501.	45Ω	•			$s(30 \times 10^{-5} (s) + 50)$
					Apply Initial value theorem
	Ģ	₹n ² .5		NC	Lt s -5×10^{-3} (s) (-6)
		ENC			$s \to \infty$ s (30×10 ⁻³ (s)+50)
	$(\mathbf{N})^2$	- V (4)			$v_{2}(t) = \frac{-5 \times 10^{-3} \times (-6)}{10^{-3} \times (-6)} = +1$
	$Z_{in} = \left(\frac{N_1}{N_1}\right) . Z$	TI T			30×10^{-3}
	$\mathbf{D}' = \frac{2}{5}$			07.	
	$R_{in} = n . 3$			6 1	R 1 8 20
	For maximum pc $n^2 5 = 45 \implies n = 3$	ower transfer; $R_L = R_s$		Sol:	$R_{in} = \frac{1}{2^2} = 2\Omega^2$
	$\Pi J = 4J \rightarrow \Pi = J$				$R_{in} = 3 + R_{in}' = 3 + 2 = 5\Omega$
06.	Ans: (b)				$I = \frac{10 \angle 20}{2} = 2 \angle 20^{\circ}$
Sol:	· · ·	5mH+		\leq	n ₁ = 5 = 2220
	6V <u>+</u> 30mH	30mH	ce 1	99	$\frac{I_1}{I_1} = n = 2 \implies I_2 = 1 \swarrow 20^{\circ} A$
	50Ω				I_2
				08.	
	Apply KVL at in	ai		Sol:	By the definition of KVL in phasor domain
	$-6-30 \times 10^3 \frac{d n_1}{d t}$	$+5 \times 10^3 \frac{dt_2}{dt} - 50i_1 = 0(1)$			$\mathbf{V}_{S} - \mathbf{V}_{0} - \mathbf{V}_{2} = 0$
	Take Laplace tra	nsform			$\mathbf{V} = \mathbf{V} = \mathbf{V} = \mathbf{V} \left(1 - \frac{\mathbf{V}_2}{2}\right)$
_	$\frac{6}{-1}$ + [-30 × 10 ⁻³ (s) -	$5011(s) + 5 \times 10^{-3} s I(s) = 0(2)$			$\mathbf{v}_0 = \mathbf{v}_{\mathrm{S}} + \mathbf{v}_2 = \mathbf{v}_{\mathrm{S}} \begin{pmatrix} \mathbf{r} & \mathbf{V}_{\mathrm{S}} \end{pmatrix}$
	s	$50]I_1(5) + 5 \times 10^{-5}I_2(5) = 0^{-10}(-)$			V=ZI
	Apply KVL at ou	utput loop			By KVL
	$V_{2}(s) - 30 \times 10^{-3} \frac{di_{2}}{dt} + 5 \times 10^{-3} \frac{di_{1}}{dt} = 0$ Take Laplace transform				$V_{s} = j\omega L_{1}.I_{1} + j\omega M (0)$
					$V_2 = j\omega L_2(0) + j\omega M I_1$
					$V_0 = V_s \left(1 - \frac{M}{m} \right)$
	$V_2(s) - 30 \times 10$	$s_{1_2}(s) + 5 \times 10^{-5} s_{1_1}(s) = 0$		A (7) F -	$\frac{1}{1} \left(\begin{array}{c} L_{1} \end{array} \right)$
L	ace online	Enjoy a smooth online	m for G e learni	ing exp	25E, PSUS, SSU-JE, KKB-JE, SSU, Banks, Groups & PSU Exams perience in various languages at your convenience
		· · ·		- 1	

ACE Engineering Publications

10.

Sol: The defining equations for open-circuit impedance parameters are:

$$V_1 = Z_{11}I_1 + Z_{12}I_2$$

$$V_2 = Z_{21}I_1 + Z_{22}I_2$$

In this case, the individual Z-parameter matrices get added.

$$(Z) = (Z_{a}) + (Z_{b})$$
$$[Z] = \begin{bmatrix} 10 & 2 \\ 2 & 7 \end{bmatrix} \Omega$$

11.

Sol: For this case the individual y-parameter matrices get added to give the y-parameter matrix of the overall network.

 $Y=Y_a\!+Y_b$

The individual y-parameters also get added $Y_{11} = Y_{11a} + Y_{11b}$ etc

$$\begin{bmatrix} \mathbf{Y} \end{bmatrix} = \begin{bmatrix} 1.4 & -0.4 \\ -0.4 & 1.4 \end{bmatrix} \text{mho}$$

12. Ans: (c)

Sol: $Y_{11} = \frac{I_1}{V_1}$

Sol: (i).
$$[T_a] = \begin{bmatrix} 1 + \frac{Z_1}{Z_2} & Z_1 \\ \frac{1}{Z_2} & 1 \end{bmatrix}$$

(ii). $[T_a] = \begin{bmatrix} 1 & Z_1 \\ \frac{1}{Z_2} & 1 + \frac{Z_1}{Z_2} \end{bmatrix}$

 $[T_a]$ and $[T_b]$ are obtained by defining equations for transmission parameters.

14.

Sol: In this case, the individual T-matrices get multiplied $(T)=(T_1)\times(T_{N1})$

$$(T) = (T_1)(T_{N1}) = \begin{pmatrix} 1+s/4 & s/2 \\ 1/2 & 1 \end{pmatrix} \begin{pmatrix} 8 & 4 \\ 2 & 5 \end{pmatrix}$$
$$= \begin{pmatrix} 3s+8 & 3.5s+4 \\ 6 & 7 \end{pmatrix}$$

15.

Since

Sol:
$$Z_{in} = R_{in} = \frac{V_1}{I_1} = \frac{AV_2 - BI_2}{CV_2 - DI_2} = \frac{V_2 - 2I_2}{V_2 - 3I_2}$$
,
 $V_2 = 10(-I_2)$

$$Z_{in} = R_{in} = \frac{12}{13}\Omega$$

16.

ACE Engineering Publications	54	Electric Circuits
$\frac{3l_{1}}{2} - V_{2} - \frac{l_{1}}{2} = 0$ $V_{2} = I_{1}$ $\Rightarrow Z_{21} = 1\Omega = Z_{12}$ $Z = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \Omega$ $Y = Z^{-1} = \begin{bmatrix} \frac{2}{3} & \frac{-1}{3} \\ \frac{-1}{3} & \frac{2}{3} \end{bmatrix} U$ Now [T] parameters; $V_{1} = 2I_{1} + I_{2} \dots \dots (1)$ $V_{2} = I_{1} + 2I_{2} \dots \dots (2)$ $\Rightarrow I_{1} = V_{2} - 2I_{2}) + I_{2} = 2V_{2} - 3I_{2} \dots \dots (4)$ $T = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$ $T^{1} = T^{-1} = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$ Now h parameters $2I_{2} = -I_{1} + V_{2}$ $I_{2} = -I_{1} + V_{2}$ $I_{2} = -I_{1} + V_{2}$ $I_{2} = -I_{1} + V_{2}$ $U_{1} = 2I_{1} - \frac{I_{1}}{2} + \frac{V_{2}}{2} \dots \dots (5)$ Substitute (5) in (1) $V_{1} = 2I_{1} - \frac{I_{1}}{2} + \frac{V_{2}}{2}$ $V_{1} = \frac{3}{2}I_{1} + \frac{1}{2}V_{2} \dots \dots (6)$ $h = \begin{bmatrix} \frac{3}{2} & \frac{1}{2} \\ -1 & 1 \end{bmatrix}$		Electric Circuits 17. Ans: (a) Sol: $Y_{22} = \frac{I_2}{V_2} _{V_1=0}$ Just use reciprocity of fig (a) 0.5A 0.5A 0.5A 1A 0.5A 1A 0.5A 1A 1A 1V Now use Homogeneity 2.5A 1V 1V Now use Homogeneity 2.5A 1V
$h = \begin{bmatrix} \frac{3}{2} & \frac{1}{2} \\ \frac{-1}{2} & \frac{1}{2} \end{bmatrix}$		$\Rightarrow T = \begin{bmatrix} \frac{1}{n} & 0\\ 0 & n \end{bmatrix}$
$g = [h]^{-1} = \begin{bmatrix} \frac{1}{2} & \frac{-1}{2} \\ \frac{1}{2} & \frac{3}{2} \end{bmatrix}$		$T^{1} = T^{-1} = \begin{bmatrix} 0 & \frac{1}{n} \end{bmatrix}$ $T^{1} = T^{-1} = \begin{bmatrix} n & 0 \\ 0 & \frac{1}{n} \end{bmatrix}$
India's Best Online Coaching Platfor	m for G	ATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams

A dce in a ce

$$I_{2} = \frac{1}{n} + (0)V_{2}$$
$$g = \begin{bmatrix} 0 & \frac{1}{n} \\ -\frac{1}{n} & 0 \end{bmatrix}$$
$$h = \begin{bmatrix} 0 & -n \\ n & 0 \end{bmatrix}$$

Note: In an ideal transformer, it is impossible to express V1 and V2 interms of I2 and I2, hence the 'Z' parameters do not exist. Similarly, the y-parameters.

19. Ans: (c)

Sol: $Z_{22} = \frac{V_2}{I_2^1} |_{V_2}$ $\frac{V_1}{V_2} = \frac{1}{n} = \frac{I_2}{I_1}$ $\mathbf{V}_1 = \frac{1}{n} \mathbf{V}_2$ RNR V_2 Since 1: n $\frac{\mathbf{V}_2 - \mathbf{V}_1}{\mathbf{p}} = \mathbf{I}_1$ $I_{2}^{1} = I_{2} + I_{1}$ $\frac{1}{n} = \frac{I_2}{I_1} = \frac{I_2^1 - I_1}{I_2} = \frac{I_2^1}{I_2} - 1$ $\frac{I_2^1}{I_1} = \frac{1}{n} + 1 = \frac{1+n}{n}$ $\mathbf{I}_{2}^{1} = \left(\frac{1+n}{n}\right)\mathbf{I}_{1}$ $I_2^1 = \left(\frac{1+n}{n}\right) \left(\frac{V_2 - V_1}{R}\right)$

$$I_2^1 = \left(\frac{1+n}{n}\right) \left(\frac{V_2 - \frac{1}{n}V}{R}\right)$$
$$\frac{I_2^1}{V_2} = \left(\frac{1+n}{n}\right) \left(\frac{n-1}{nR}\right)$$
$$\frac{V_2}{I_2^1} = \frac{n^2R}{n^2 - 1}$$

20.

1995

For series parallel connection individual h-parameters can be added.

 \therefore For network 1, $h_1 = g_1^{-1}$

$$= \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$$

For network 2, $h_2 = g_2^{-1}$

$$= \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

: overall g-parameters,

 $g = h^{-1} = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}^{-1} = \frac{1}{3} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ $g = \begin{bmatrix} 2/3 & 1/3 \\ 1/3 & 2/3 \end{bmatrix}$

Regular Live Doubt clearing Sessions | Free Online Test Series | ASK an expert Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

	ACE Engineering Publications		58		Electric Circuits
10.	Ans: (d)		1		8. Passive Filters
Sol:	(a) 1,2,3,4 -	→ //	0)1. Sol:	
	(b) 2,3,4,6 -	\rightarrow			$ \begin{array}{l} \omega = 0 \Longrightarrow V_0 = V_i \\ \omega = \infty \Longrightarrow V_0 = 0 \end{array} \} \Longrightarrow \text{Low pass filter} $
	(c) 1,4,5,6	\rightarrow	()2. Sol:	$\omega = 0 \Longrightarrow V_0 = \frac{V_i R_2}{\omega}$
	(d)1,3,4,5	→			"V ₀ " is attenuated \Rightarrow V ₀ = 0
11. Sol:	Ans: (b) m = b - n + 1 = 3	8-5+1=4 ENGINER	RIA	۷G	$\omega = \infty \Rightarrow V_0 = V_i$ It represents a high pass filter characteristics.
12.	Ans: (d)	N N N)3.	$V_i(s) = S^2LC + SRC + 1$
13.	Ans: (d)			501:	$H(s) = \frac{1}{I(s)} = \frac{1}{SC}$
Sol:	The valid cut –s	et is			$\omega^2 I C \pm i\omega R C \pm 1$
	(1,3,4,6)				Put s = $j\omega i = -\frac{\omega EC + j\omega RC + 1}{j\omega C}$
	/				$\omega = 0 \Longrightarrow H(s) = 0$ $\omega = \infty \Longrightarrow H(s) = 0$
14.	Ans: (b)				It represents band pass filter characteristics
Sol:	2 (D Since	ce 1	99	5
	Ī		()4.	
		•(5)	5	Sol:	$\omega = 0 \Longrightarrow \mathbf{V}_0 = 0$
	6				$\omega = \infty \Longrightarrow \nabla_0 = 0$
15	Ans: (d)				It represents Band pass filter characteristics
Sol:	//iii. (u)	8	()5	
				Sol:	$\omega = 0 \Longrightarrow V_0 = 0$
	• 6	· 7			$\omega = \infty \Longrightarrow V_0 = V_i$
	1				It represents High Pass filter characteristics.
		∑ <u>√</u> 5	()6.	
	Fundamental loc	op should consist only one link	.,	Sol	$H(s) = \frac{1}{1}$
	therefore option	(d) is correct.			$s^{2}+s+1$
	ace	India's Best Online Coaching Platfor	m for G	ATE, I	SE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams
		Enjoy a smooth onlin	e learni	ng exp	perience in various languages at your convenience

	ACE Engineering Publications		59	Postal Coaching Solutions
	$\omega = 0 : S = 0 \Rightarrow H (s) =$ $\omega = \infty : S = \infty \Rightarrow H (s)$ It represents a Low pase	= 1 = 0 ss filter characteristics		$\omega = 0 \Rightarrow S = 0 \Rightarrow H(s) = 1$ $\omega = \infty \Rightarrow S = \infty \Rightarrow H(s) = -1 = 1 \angle 180^{0}$ It represents an All pass filter
07. Sol:	$H(s) = \frac{s^{2}}{s^{2} + s + 1}$ $\omega = 0 : S = 0 \Rightarrow H(s) =$	- 0		13. Ans: (c) Sol. R
08. Sol:	$\omega = \infty : S = \infty \Rightarrow H(s)$ It represents a High pas $\omega = 0; V_0 = V_i$	= 1 ss filter characteristics	ERI	$\omega = 0 \Rightarrow V_0 = V_i$ $\omega = \infty \Rightarrow V_0 = 0$ $V_i(s) (1)$
09. Sol:	$\omega = \infty$; $V_0 = 0$ It represents a low pass $\omega = 0 \Rightarrow V_0 = V_{in}$	s filter characteristics.		$V_{0}(s) = \left[\frac{1}{R + \frac{1}{sc}}\right] \left[\frac{s}{sc}\right]$ $\frac{V_{0}(s)}{V_{i}(s)} = H(s) = \frac{1}{SscR + 1}$ $H(j\omega) = \frac{1}{1 + \frac{1}{sc}} = \frac{1}{2}$
10. Sol:	$w - \infty \implies v_0 - v_{in}$ It represents a Band sto $H(s) = \frac{S}{s^2 + s + 1}$	op filter or notch filter.		$ H (j \omega) $ $ H (j \omega) $ $\frac{1}{\sqrt{2}}$ $ H (j \omega) $ $\frac{1}{\sqrt{2}}$ $ H (j \omega) $
11.	$\omega = 0 : S = 0 \Rightarrow H(s) = \omega = \infty : S = \infty \Rightarrow H(s)$ It represents a Band pa	= 0 Since $= 0ss filter characteristics$	ce 1	Where $f_L = \frac{1}{2\pi RC}$ Stop Band
Sol:	$H(s) = \frac{S^{2} + 1}{s^{2} + s + 1}$ $\omega = 0 \Rightarrow S = 0 \Rightarrow H(s)$ $\omega = \infty \Rightarrow S = \infty \Rightarrow H(s)$ It represents a Band store) = 1 s) = 1 op filter		$ H(j\omega) = \frac{1}{\sqrt{1 + \left(\frac{f}{f_L}\right)^2}}$ $\langle H(i\omega) = -\tan^{-1} \begin{pmatrix} f \\ f \end{pmatrix}$
12. Sol:	$H(s) = \frac{1-s}{1+s}$	Decretes Very Dr. 1		$\sum f(J\omega) = -tan \left(\frac{f_L}{f_L}\right)$ $f = 0 \Rightarrow \phi = 0^0 = \phi_{min}$ $f = f_L \Rightarrow \phi = -45^0 = \phi_{max}$
Affordable Fee Available 1M 3M 6M				1 3M 6M 12M 18M and 24 Months Subscription Packages

ACE Engineering Publications

61

Postal Coaching Solutions

Open circuit voltage, when the switch is open = Thevenin voltage

Phase voltage, $V_{Rn} = \frac{400}{\sqrt{3}} V$

To find Thevenin's equivalent impedance short circuit the voltage sources (Fig. 2 & 3)

$$\therefore Z_{\rm th} = \frac{300}{3} = 100 \ \Omega$$

 \therefore Thevenin's equivalent circuit across R, n is shown in Fig. 4 with the switch closed and 100 Ω load across P, Q

$$=\frac{400}{2\sqrt{3}}$$
 V = 115.5 V

06.

The unbalanced load is shown in Fig. 1. Power is consumed only in 100Ω resistor.

Power consumed in the delta connected unbalanced load shown in Fig.1 is given by

$$P_1 = \frac{V_{ph}^2}{R} = \frac{(400)^2}{100} = 1600 \,\mathrm{W}$$

The star connected load with ' R_x ' in each phase is shown in Fig.2.

Power consumed in balanced star connected load as in Fig.2 is

$$P_2 = 3 \times \left[\frac{\left(\frac{400}{\sqrt{3}}\right)^2}{R_x} \right] = \frac{400^2}{R_x}$$

But given $P_1 = P_2$

$$1600 = \frac{400^2}{R_x}$$

$$R_{\rm x} = \frac{400 \times 400}{1600} = 100 \ \Omega$$

 Regular Live Doubt clearing Sessions | Free Online Test Series | ASK an expert

ACE Engineering Publications

62

Electric Circuits

07. Ans: (b)

Sol:

Power factor angle of load (ϕ)

$$= \tan^{-1}\left(\frac{6}{8}\right) = 36.86^{\circ}$$

Active power consumed by the delta connected balanced load as in Fig. is

$$P = 3 \times V_{ph} \times I_{ph} \times \cos \phi$$

= 3 × 400 × $\frac{400}{\sqrt{8^2 + 6^2}}$ × cos36.86 = 38400 W

Reactive power consumed by the delta connected load is

$$Q_{1} = 3 \times V_{ph} \times I_{ph} \times \sin \phi$$
$$= 3 \times 400 \times \frac{400}{\sqrt{8^{2} + 6^{2}}} \times \sin 36.86$$

= 28800 VAR

Active power consumption remains same even after capacitor bank is connected Reactive power consumed by the delta connected load at a power factor of 0.9

$$Q_2 = \frac{P}{0.9} \times \sin(\cos^{-1} 0.9)$$

= $\frac{38400}{0.9} \times \sin 25.84$
= 18597.96 VAR
 $\therefore Q_2 = 18597.96$ VAR
 \therefore Reactive power supplied by star connected
capacitor bank = $Q_1 - Q_2$

= 28800 - 18597.96

= 10202.04

$\cong 10.2 \text{ kVAR}$

08. Ans: (d)

Sol: The rating of star connected load is given as $12\sqrt{3}$ kVA, 0.8 p.f (lag) Active power consumed by the load, $P = 12\sqrt{3} \times 0.8 \times 10^{3}$ = 16.627 kW

Reactive power consumed by the load

$$= 12\sqrt{3} \times \sin(\cos^{-1} 0.8) \times 10^3$$

$$Q_1 = 12.47 \text{ kVAR}$$

Reactive power consumed by the load at unity power factor is

$$Q_2 = \frac{P}{(1)} \times \sin(\cos^{-1} 1) = 0$$

∴ kVAR to be supplied by the delta connected capacitor bank = $Q_1 - Q_2$ $Q_C = 12.47$ kVAR

Assume V_{AN} as reference

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

ACE

$V_{AN} = 230 \angle 0^{\circ}$ $V_{\rm BN} = 230 \angle -120^{\circ}$ $V_{CN} = 230 \angle + 120^{\circ}$ $\frac{V_{AN}^2}{P} = 4000 \Longrightarrow R = \frac{230^2}{4000} = 13.225\Omega$ $I_A = \frac{V_{AN}}{R} = \frac{230}{13.225} = 17.3913A$ $I_{A} = 17.3913 \angle 0^{\circ} A$ Given neutral current $I_N = 0$ \Rightarrow I_A + I_B + I_C = 0 \Rightarrow I_B +I_C = -(I_A) $I_B + I_C = -17.3913$ $\Rightarrow \frac{\mathrm{V}_{\mathrm{BN}}}{\mathrm{Z}_{\mathrm{B}}} + \frac{\mathrm{V}_{\mathrm{CN}}}{\mathrm{Z}_{\mathrm{C}}} = -17.3913$ $\Rightarrow \frac{230 \angle -120^{\circ}}{Z_{\rm B}} + \frac{230 \angle +120^{\circ}}{Z_{\rm C}} = -17.3913$ $\Rightarrow \frac{230 \angle -120^{\circ}}{Z_{\rm P}} + \frac{230 \angle +120^{\circ}}{Z_{\rm C}} = 17.3913 \angle 180^{\circ} \,\mathrm{A}$

63

ssume that pure capacitor in phase B and pure inductor in phase C we will get

$$I_{\rm B} + I_{\rm C} = \frac{230\angle -120^{\circ}}{X_{\rm C}\angle -90^{\circ}} + \frac{230\angle +120^{\circ}}{X_{\rm L}\angle 90^{\circ}}$$
$$= \frac{230\angle -30^{\circ}}{X_{\rm C}} + \frac{230\angle +30^{\circ}}{X_{\rm L}}$$

When we add the two phasors I_B and I_C . with angles -30° and $+30^{\circ}$ we will get the resultant vector with the angle between -30° and $+30^{\circ}$

But,

 $I_B + I_C$ should be equal to $17.3913 \angle 180^\circ$ Which has angle of 180°

. We have taken wrong assumption

Now take pure inductor in phase B and pure capacitor in phase C we will get

Postal Coaching Solutions

$$I_{B} + I_{C} = \frac{230 \angle -120^{\circ}}{X_{L} \angle 90^{\circ}} + \frac{230 \angle +120^{\circ}}{X_{C} \angle -90^{\circ}}$$

$$= \frac{230 \angle -210^{\circ}}{X_{L}} + \frac{230 \angle +210^{\circ}}{X_{C}}$$

$$= \frac{230}{(2\pi \times 50 \times L)} \angle -210^{\circ} + \frac{230}{\left(\frac{1}{(2\pi \times 50 \times C)}\right)} \angle +210^{\circ}$$

$$= \frac{0.7321}{L} \angle -210^{\circ} + 72256.63 \times C \angle +210^{\circ}$$
∴ From the given options by substituting L =
72.95 mH and C = 139.02 µF we will get I_B + I_C

$$= 17.3913 \angle 180^{\circ}$$
L = 72.95mH in phase B and C = 139.02 µF in
phase C should be placed.
10. Ans: (c)
11. Ans: (d)
Sol: I_L = 12A

Now if the same resistances are connected in delta across the same supply

Regular Live Doubt clearing Sessions | Free Online Test Series | ASK an expert Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

