

GATE | PSUs

INSTRUMENTATION ENGINEERING

Digital Electronics

(Text Book: Theory with worked out Examples and Practice Questions)

Chapter

Number Systems (Solutions for Text Book Practice Questions)

01.	Ans: (d)	03. Ans: (c)
Sol:	$135_{x} + 144_{x} = 323_{x}$ $(1 \times x^{2} + 3 \times x^{1} + 5 \times x^{0}) + (1 \times x^{2} + 4 \times x^{1} + 4 \times x^{0})$ $= 3x^{2} + 2x^{1} + 3x^{0}$ $\Rightarrow x^{2} + 3x + 5 + x^{2} + 4x + 4 = 3x^{2} + 2x + 3$ $x^{2} - 5x - 6 = 0$	Sol: In 2's complement representation the sign bit can be extended towards left any number of times without changing the value. In given number the sign bit is ' X_3 ', hence is can be extended left any number of times.
	(x-6)(x+1) = 0 (Base cannot be negative)	04. Ans: (c)
	Hence $x = 6$.	Sol: Binary representation of $+(539)_{10}$:
	(OR)	$NG_{2} \frac{539}{2(0-1)}$
	As per the given number x must be greater than 5. Let consider $x = 6$	$2 \underline{269 - 1} \\ 2 \underline{134 - 1} \\ 2 \underline{67 - 0}$
	$(135)_6 = (59)_{10}$	233 - 1 216 - 1
	$(144)_6 = (64)_{10}$	$2\overline{8}$ -0
	$(323)_6 = (123)_{10}$	$2 \begin{vmatrix} 4 & -0 \\ 2 & -0 \end{vmatrix}$
	$(59)_{10} + (64)_{10} = (123)_{10}$	1 -0
0.2	So that $x = 6$	$(+539)_{10} = (10000 \ 11 \ 0 \ 11)_2 = (00100 \ 0011011)_2$
		2's complement \rightarrow 110111100101
02.	Ans: (a)	Hexadecimal equivalent \rightarrow (DE5) _H
Sol:	8-bit representation of Since	1995
	$+127_{10} = 01111111_{(2)}$	05. Ans: 5
	1's complement representation of	Sol: Symbols used in this equation are 0,1,2,3
	- 127 = 10000000.	Hence base or radix can be 4 or higher
	2's complement representation of	$(312)_{\rm x} = (20)_{\rm x} (13.1)_{\rm x}$
	-127 = 10000001	$3x^{2} + 1x + 2x^{3} = (2x+0)(x+3x^{3}+x^{2})$
	No. of 1's in 2's complement of	$3x^{2}+x+2 = (2x)\left(x+3+\frac{1}{x}\right)$
	-127 = m = 2	$3x^2 + x + 2 = 2x^2 + 6x + 2$
	No. of 1's in 1's complement of	$x^2 - 5x = 0$
	127 - n - 1	$\mathbf{x}(\mathbf{x}-5)=0$
		x = 0(or) x = 5
	$\therefore m: n = 2:1$	x must be x > 3, So x = 5
D	India's Best Online Coaching Platform for Enjoy a smooth online les	or GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams arning experience in various languages at your convenience

Sol:	Binary r	epresentation	of +(539) ₁₀ :

```
(13.1)_{\rm x}
2x^0 = (2x+0)(x+3x^0+x^{-1})
(2x) \left(x+3+\frac{1}{x}\right)
=2x^{2}+6x+2
= 5
>3, So x = 5
```

	ACE Engineering Publications	3			Postal Coaching Solutions
06.	Ans: 3		08.	An	s: (a, b & c)
Sol:	$123_5 = \mathbf{x}8_{\mathbf{y}}$		Sol:	(a)	When we have 10 base then we have
	$1 \times 5^2 + 2 \times 5^1 + 3 \times 5^0 = x.y^1 + 8 \times y^0$				(0 - 9) number.
	25 + 10 + 3 = xy + 8				when we have 16 base then we have
	$\therefore xy = 30$				(0 - 15) number.
	Possible solutions:				when we have 8 base then we have
	i. $x = 1, y = 30$				(0 - 7) number.
	ii. $x = 2, y = 15$				So, this is correct statement as the
	iii. $x = 3, y = 10$				longest digit decimal value is $(k - 1)$ in
	3 possible solutions exists.				base k system
	TINE	RI	NG	(b)	This is also true because as an example
07.	Ans: 1			7	$10 \rightarrow We$ borrow k as an significant digit
Sol:	The range (or) distinct values				(86)10
	For 2's complement $\Rightarrow -(2^{n-1})$ to $+(2^{n-1}-1)$			-	- (79)10
	For sign magnitude				(06) ₁₀
	$\rightarrow (2^{n-1} \ 1) \text{ to } + (2^{n-1} \ 1)$			(c)	This statement is also true and have easy
	$\rightarrow -(2 - 1) + (2 - 1)$				conversion as well as it has highest
	Let $n = 2 \Rightarrow$ in 2's complement				number of bits.
	$-(2^{2-1})$ to $+(2^{2-1}-1)$			(d)	Direct conversion is possible between
	-2 to $+1 \Rightarrow -2, -1, 0, +1 \Rightarrow X = 4$		\leq		binary & octal number system
	$n = 2$ in sign magnitude $\Rightarrow -1$ to $+1 \Rightarrow Y = 3$	e ′	199	5	ex: 100111
	X - Y = 1				$(4^{\prime}7)_{8}$
	A				

Chapter 2 Logic Gates & Boolean Algebra

online

Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

K - Maps

01. Ans: (d) **Sol:** Let the output of first MUX is " F_1 " $F_1 = AI_0 + AI_1$ Where A is selection line, I_0 , $I_1 = MUX$ Inputs $F_1 = \overline{S}_1 \cdot W + S_1 \cdot \overline{W} = S_1 \oplus W$ Output of second MUX is $F = \overline{A}.I_0 + A.I_1$ $\mathbf{F} = \overline{\mathbf{S}}_2.\mathbf{F}_1 + \mathbf{S}_2.\overline{\mathbf{F}}_1$ $F = S_2 \oplus F_1$ But $F_1 = S_1 \oplus W$ $\mathbf{F} = \mathbf{S}_2 \oplus \mathbf{S}_1 \oplus \mathbf{W}$ i.e., $F = W \oplus S_1 \oplus S_2$ 02. Ans: 50 Since 1995 Sol: Y₃ X₃ $Y_2 X_2$ $Y_0 X_0$ \mathbb{Z}_4 FA₃ FA_2 FA_1 FA₀ Z_0 S_3 S_2^{\dagger} S_0 S_1

Initially all the output values are '0', at t = 0, the inputs to the 4-bit adder are changed to $X_3X_2X_1X_0 = 1100$, $Y_3Y_2Y_1Y_0 = 0100$

---- indicates critical path delay to get the output

i.e. critical time (or) maximum time is taken for Z₄ to get final output as '1'

Affordable Fee Available 1M	3M 6M 12M 18M and 24 Months Subscription Packages

LCE pering Publications	10	Digital Electronics

03. Ans: (a)

Sol: The given circuit is binary parallel adder/subtractor circuit. It performs A+B, A–B but not A + 1 operations.

K	C ₀	Operation
0	0	A+B (addition)
0	1	A+B+1(addition with carry)
1	0	$A+\overline{B}$ (1's complement addition)
1	1	$A + \overline{B} + 1$ (2's complement subtraction)

04. Ans: (d)

Sol: It is expansion of 2:4 decoders to 1:8 demultiplexer A_1 , A_0 must be connected to S_1 , S_0 i.e.., $R = S_0$, $S = S_1$ Q must be connected to S_2 i.e., $Q = S_2$

P is serial input must be connected to D_{in}

05. Ans: 6

Sol: $T = 0 \rightarrow NOR \rightarrow MUX \ 1 \rightarrow MUX \ 2 \\ 2ns \ 1.5ns \ 1.5ns$ Delay = 2ns + 1.5ns + 1.5ns = 5ns $T = 1 \rightarrow NOT \rightarrow MUX \ 1 \rightarrow NOR \rightarrow MUX \ 2 \\ 1ns \ 1.5ns \ 2ns \ 1.5ns$ Delay = 1ns + 1.5ns + 2ns + 1.5ns = 6nsHence, the maximum delay of the circuit is 6ns.

06. Ans: -1

- **Sol:** When all bits in 'B' register is '1', then only it gives highest delay.
 - \therefore '-1' in 8 bit notation of 2's complement is 1111 1111.

07. Ans: (b & c)

Sol: (a) It is incorrect because for getting \overline{B} is $(\overline{A+B}) = \overline{A}\overline{B}$

- we need one more 2×1 MUX
- (b) It is correct

$$\begin{array}{c} \mathbf{B} & \overbrace{\mathbf{I}_0} \\ \mathbf{1} & \overbrace{\mathbf{I}_1} \\ \mathbf{A} \end{array} \qquad \begin{array}{c} \mathbf{Y} = \mathbf{A} + \overline{\mathbf{A}} \mathbf{B} \\ = \mathbf{A} + \mathbf{B} \end{array}$$

(c) It is correct we need minimum
 2 number of 2×1 muxes for implementing 2 input exnor gate

 2×1 MUX required = 2

(d) It is incorrect because one 16×1 MUX is sufficient for all 4 variable function.

Sequential Circuits

02. Ans: 4

Sol: In the given first loop of states, zero has repeated 3 times. So, minimum 4 number of Flip-flops are needed.

03. Ans: 7

Sol: The counter is cleared when $Q_D Q_C Q_B Q_A = 0110$

Clk	QD	Qc	QB	QA
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	0	0	0

As the clear input is given to be synchronous so it waits upto the next clock pulse to clear the counter & hence the counter get's cleared during the 7th clock pulse.

 \therefore mod of counter = 7

04. Ans: (b)

 $2\Delta t$.

Sol: The given circuit is a mod 4 ripple down counter. Q_1 is coming to 1 after the delay of

Outputs of counter is connected to inputs of decoder

Coun	ter outputs	Deco	Decoder outputs				
Q_1	Q_0	a b		d ₃	d_2	d_1	d_0
0	0	0	0	0	0	0	1
0	1	0	1	0	0	1	0
1	0	1	0	0	1	0	0
1	1	1	1	1	0	0	0

The overall circuit acts as 4-bit ring counter n = 2

 \therefore k = 2² = 4, k-bit ring counter

	ACE						12						Digital	Electro	onics
06.	Ans: (b)							07.	Ans	: (b))				
Sol:	CLK 0 1 2 3 4 5 6 7	Seri B⊕	al in= $C \oplus D$ 1		A B C D 1 0 1 0 1 1 0 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0			Sol:	J 0 0 0 1 1 1	K 0 0 1 1 0 0 1	Q 0 1 0 1 0 1 0	\$\overline{Q}_n\$ 1 0 1 0 1 0 1 0 1	$T = (J + \overline{Q})$ $(K + \overline{Q})$ $1.0 = 0$ $1.1 = 1$ $1.1 = 1$ $1.0 = 0$ $1.1 = 1$	$(+Q_n)$	$ \begin{array}{c} Q_{n+1} \\ 0 \\ 1 \\ Q_n \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{array} $
	∴ After register be	7 cl	ock pu e 1010	ılses agaiı	content of	shift	R <i>II</i>	VG	1 J K 0 1	1 Qn ()	1	0 01	1.1 = 1		
08. Sol:	Ans: 1.5	Clk 0		Q ₂	$\begin{array}{c c} Q_3 & Q_4 \\ \hline 0 & 1 \\ \hline 1 & 0 \end{array}$	$\frac{Q_5}{0}$	Y= 0	= Q ₃ -	$T = + Q_5$	l l	+k	$\zeta Q_n =$	(J+Q _n) ($(K + \overline{Q_n})$)
		1 2 3 4 5	01 0 0	0 0 1 0 1 1	$\begin{array}{c} 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \\$	$\begin{array}{c} 1 \\ \bullet \\ 0 \\ \bullet \\ 0 \\ \bullet \\ 0 \end{array}$	1 0 1 1 0	99	5						
	The wave	form	at OR	gate	output, Y is	[A = +	+5V]		□,	•					
	Average p $P = \frac{V_{Ao}^2}{R}$	power $r = \frac{1}{R}$	$T_{1} = \begin{bmatrix} Lt \\ T_{1} \to \infty \end{bmatrix}$	$= 5T$ $\frac{1}{1} \int_{0}^{T_{1}}$	$y^{2}(t) dt = \frac{1}{H}$	$\frac{1}{2T_1} \left[\int_{T_1}^{2} \right]$	$\int_{r}^{2T} \mathbf{A}^{2}$	dt^{2} +	$\int_{3T}^{5T} A$	dt					
	$=\frac{A^2}{RT_1}$	-[(2T	- T) +	(5T -	$-3T$)] = $\frac{A^2}{R(5)}$	$\frac{3T}{T} = \frac{1}{2}$	$5^2.3$ 10×3	$\frac{1}{5} = 1.$	5mV	N					
2	ace online	e	India's B	est Or	lline Coaching P Enjoy a smooth	latform online	for G learni	ATE, E ing exp	SE, PS erien	Us, SS ce in v	C-JE, I ariou	KRB-JE, s langu	SSC, Banks ages at you	s, Groups r convenio	& PSC Exams ence

09. Ans: (b)

Sol:

Present	Next	State	Outpu	ut (Y)
State	X = 0	X = 0 X = 1		X = 1
А	Α	Е	0	0
В	С	Α	1	0
С	В	А	1	0
D	Α	В	0	1
Е	А	С	0	1

Step (1):

By replacing state B as state C then state

B, C are equal.

Reducing state table							
Present state	Next state						
	X = 0	X = 1					
А	Α	Е					
В	В	Α	1				
В	В	А					
D	А	В					
E	Α	В					

Step (2):

Reducing state table								
Present state	Next state							
	X = 0	X = 1						
А	А	Е						
В	В	А						
D	А	В						
E	А	В						

State D, E are equal, remove state E and replace E with D in next state.

Reducing state table					
Present state	Next st	tate			
	X = 0	X = 1			
А	А	D			
В	В	А			
D	А	В			
D	А	В			

Finally reduced state table is

Reduced state table					
Present state	Next state				
	X = 0	X = 1			
A	А	D			
B 4	В	А			
D 4	А	В			

: 3 states are present in the reduced state table

10. Ans: (c)

Since 199

Sol: State table for the given state diagram

			×
	State	Input	Output
5	S ₀	0	1
	S ₀	1	0
	S ₁	0	1
	S_1	1	0

Output is 1's complement of input.

11. Ans: (c)

Sol: In state (C), when XYZ = 111, then Ambiguity occurs Because, from state (C) \Rightarrow When X = 1, Z = 1 \Rightarrow N.S is (A)

When Y = 1, $Z = 1 \Rightarrow N.S$ is (B)

 Regular Live Doubt clearing Sessions
 |
 Free Online Test Series | ASK an expert

 Affordable Fee
 |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

13

Engineering Publications	14	Digital Electronics
 12. Ans: (b & d) Sol: (a) It is incorrect statement ripple counter is slower than synchronous counter is apply with 1 clock. (b) It is correct statement because mode counters means it counts the number of clock pulses arriving at its clock input which is basically we do in electronic time clocks. 	5 5 1 5	(c) It is incorrect, because with the help of positive edge triggered JK-flip-flop we design binary down counter.(d) It is correct statement because D-flipflop is easy to design and easy to get the next possible state output.

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

Logic Gate Families

01. Ans: (b)

Sol: V_{OH}(min):-

(High level output voltage) The minimum voltage level at a Logic

circuit output in the logic '1' state under defined load conditions.

Vol(max):-

(Low level output voltage)

The maximum voltage level at a logic circuit output in the Logical '0' state under defined load conditions.

VIL(max):- (Low level input voltage)

The maximum voltage level required for a logic '0' at an input. Any voltage above this level will not be accepted as a Low by the logic circuit.

V_{IH}(min) :- (High level Input voltage)

The minimum voltage level required for logic '1' at an input. Any voltage below this level will not be accepted as a HIGH by the Logic circuit.

Fig: currents and voltages in the two logic states.

ace online

02. Ans: (b)

Sol: Fan out is minimum in DTL

(High Fan-out = CMOS)

Power consumption is minimum in CMOS. Propagation delay is minimum in ECL (fastest = ECL)

03. Ans: (b)

Sol: When $V_i = 2.5V$,

Q₁ is in reverse active region

- Q₂ is in saturation region
- Q₃ is in saturation region
- Q₄ is in cut-off region

04. Ans: (d)

Sol: The given circuit can be redrawn as below:

$$OUT = (\overline{PQ}) = PQ$$
$$= P AND Q$$

05. Ans: (b)

Sol: As per the description of the question, when the transistor Q_1 and diode both are OFF then only output z = 1.

X	Y	Ζ	Remarks
0	0	0	Q_1 is OFF, Diode is ON
0	1	1	Q ₁ is OFF, Diode is OFF
1	0	0	Q_1 is ON, Diode is OFF
1	1	0	Q ₁ is ON, Diode is OFF

Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert
Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages

Engineering Publications	16	Digital Electronics
 06. Ans: (a, b & c) Sol: (a) Correct statement, power CMOS is order of μW with that of MOS logic gate. (b) Correct statement ⇒ fig speed × power 	er consumes in hich is less than gure of merit =	 (c) It is also correct statement CMOS is made up of both P-channel & N-channel FET both have equal number. (d) CMOS logic gate provide highest noise margin so this statement is incorrect.

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience A/D & D/A Converters

01. Ans: (b)

Chapter

Sol:

CLK	Co	oun	ter	D	eco	der	•	V ₀	
	Q	2 Q	1 Q0	D	3 D	$_2 \mathbf{D}_1$	\mathbf{D}_{0}		
1	0	0	0	0	0	0	0	0	
2	0	0	1	0	0	0	1	1	
3	0	1	0	0	0	1	0	2	
4	0	1	1	0	0	1	1	3	7
5	1	0	0	1	0	0	0	8	
6	1	0	1	1	0	0	1	0	-
7	1	1	0	1	0	1	0	9	E
8	1	1	1	1	0	1	1	10	

02. Ans: (b) Sol:

$$\begin{split} R_{equ} &= (((((2R||2R)+R)||2R)+R)||2R) \\ R_{equ} &= R = 10 k \, \Omega \, . \end{split}$$

$$I = \frac{V_R}{R} = \frac{10V}{10k} = 1mA.$$

Current division at $\frac{I}{16}$ 1×10^{-3}

$$=\frac{1\times10^{-9}}{16}=62.5\,\mu\,A$$

03. Ans: (c)

Sol: Net current at inverting terminal,

 $I_i = \frac{I}{4} + \frac{I}{16} = \frac{5I}{16}$

ace

$$V_0 = -I_i R = -\frac{51}{16} \times 10 k \Omega$$
$$= \frac{-5 \times 1 \times 10^{-3} \times 10 \times 10^3}{16} = -3.125 V$$

04. Ans: (d)

Sol: Given that
$$V_{DAC} = \sum_{n=0}^{3} 2^{n-1} b_n$$
 Volts
 $V_{DAC} = 2^{-1} b_0 + 2^0 b_1 + 2^1 b_2 + 2^2 b_3$
 $\Rightarrow V_{DAC} = 0.5 b_0 + b_1 + 2 b_2 + 4 b_3$

Initially counter is in 0000 state

	Up	V _{DAC} (V)	o/p of
	counter o/p		comparator
	b ₃ b ₂ b ₁ b ₀		
	0 0 0 0	0	1
	0 0 0 1	0.5	1
	0 0 1 0	1	1
	0 0 1 1	1.5	1
	0 1 0 0	2	1
5	0 1 0 1	2.5	1
	0 1 1 0	3	1
	0 1 1 1	3.5	1
	1 0 0 0	4	1
	1 0 0 1	4.5	1
	1 0 1 0	5	1
	1 0 1 1	5.5	1
	1 1 0 0	6	1
	1 1 0 1	6.5	0

When $V_{DAC} = 6.5$ V, the o/p of comparator is '0'. At this instant, the clock pulses to the counter are stopped and the counter remains in 1101 state.

 \therefore The stable reading of the LED display is 13.

	Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert
e	Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages

19

		18		Digital Electronics
05. Sol:	Ans: (b) The magnitude of error between $V_{DAC} \& V_{i}$	n (08. Sol:	Ans: (b & d) (a) It is incorrect, minimum number of
	at steady state is $ V_{DAC} - V_{in} = 6.5 - 6.2 $	11		comparator required in 'n' bit flash ADC is $2^n - 1$.
	= 0.3 V			(b) It is correct (no register/counter required in flash ADC, only comparator required).
06.	Ans: (a)			(c) It is incorrect
Sol:	In Dual slope			Conversion time of $SAB = nT$.
	$ADC \Rightarrow V_{i_1}T_{i_2} = V_{p_1}T_{p_2}$			Conversion time of SAR – If T_{clk}
	$\Rightarrow V_{in} = \frac{V_R T_2}{T_1}$ $= \frac{100 \text{ mV} \times 370.2 \text{ ms}}{300 \text{ ms}}$	RI	VG	Conversion time of Dual Slope ADC = $(2^{n+1}) T_{clk}$ SAR faster than Dual slope ADC. (d) It is correct, because it compares DAC
	DVM indicates = 123.4 Ans: (d) Ex: $f_{in} = 1 \text{ kHz} \rightarrow f_s = 2 \text{ kHz}$ $f_{in} = 25 \text{ kHz} \leftarrow f_s = 50 \text{ kHz}$			output with analog voltage & does the same till both are equal in magnitud At this moment counter will sto Maximum conversion time is equ
07. Sol:				to (2^{n-1}) T _{clk} of n-bit ADC. The conversion time depends on analog input voltage as well as on size of ADC.
	1. Max conversion time $-2 = 1 - 2$. I μ = 2048 μ s	5		
	2. Sampling period = $T_s \ge maximum$ conversion time $T_s \ge 2048 \ \mu s$			5
	3. Sampling rate $f_s = \frac{1}{T_s} \le \frac{1}{2048 \times 10^{-6}}$			R
	$f_s \le 488$ $f_s \le 500 \text{ Hz}$ 4. $f_{in} = \frac{f_s}{2} = 250 \text{ Hz}$			

Chapter B Architecture, Pinout of 8085 & Interfections in 202 Interfacing with 8085

01. Sol:	Ans: (a) chip se chipsele must be) elect is ect = 0; e let us	an the i see	active inputs all po	low signal for for NAND gate ossible cases for	$\begin{array}{ c c c c c c c c }\hline \hline A_{15} & A_{14} & A_{13} & A_{12} & A_{11} A_0 \\\hline \hline 1 & 1 & 1 & 0 & 0 0 & = E000H \\\hline \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\$
$\begin{array}{c} A_7 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} \text{A}_6 & \text{A}_5 \\ 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \\ 0 & 0 \\ 0 & 0 \\ \end{array}$ The only	$\begin{array}{ccc} A_4 & A_3 \\ 0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 0 \\ \hline 1 & 0 \\ 0 & 0 \\ \hline 1 & 0 \\ 0 & 0 \\ \hline 1 & 1 \\ 1 & 1 \\ 1 & 0 \\ 0 & 0 \\ \hline 1 & 0 \\ 0 & 0 \\ \end{array}$	A: 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0	tion 2 A ₁ X X X X X X X X X X X X X Suits h	A_{0} X X X X X X X X X X X X X X X X X X X	 1 1 0 1 1 =EFFFH 02. Ans: (d) Sol: Both the chips have active high chip select inputs. Chip 1 is selected when A₈ = 1, A₉ = 0 Chip 2 is selected when A₈ = 0, A₉ = 1 Chips are not selected for combination of 00 & 11 of A₈ & A₉ Upon observing A₈ & A₉ of given address Ranges, F800 to F9FF is not represented
$A_0 \& A_1$ are used for line selection A_2 to A_7 are used for chip selection Since					election selection Sinc	 03. Ans: (d) Sol: The I/O device is interfaced using "Memory Mapped I/O" technique. The address of the Input device is A₁₅ A₁₄ A₁₃ A₁₂ A₁₁ A₁₀ A₉ A₈ A₇ A₆ A₅ A₄ A₃ A₂ A₁ A₀
$A_2 + A_3 + A_4 $	$\begin{array}{c} A_2 \xrightarrow{0} \\ A_3 \xrightarrow{0} \end{array} \begin{array}{c} 1 \\ 1 \\ A_4 \xrightarrow{0} \\ 0 \end{array} \end{array}$					$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
A_5 A_6 A_7	1 0 \therefore Addr	o ess space)	60H to	63H	04. Ans: (b) Sol: • Out put 2 of 3×8 Decoder is used for selecting the output port. \therefore Select code is 010 $A_{15} A_{14} A_{13} A_{12} A_{11} A_{10} - A_0$ $0 \ 1 \ 0 \ 1 \ 0 \ 0 0$
	A_o to A_o	$_{11}$ are use	ed fo	r line s	selection	\Rightarrow 5000H • This mapping is memory mapped I/O
					Regular Live Doubt cl	earing Sessions Free Online Test Series ASK an expert
	Affordable Fee Available				ffordable Fee Availab	le 1M 3M 6M 12M 18M and 24 Months Subscription Packages

ACE Engineering Publications

To provide \overline{cs} as low, The condition is

 $A_{15} = A_{14} = 0$ and $A_{13} A_{12} = 01$ (or) (10)

i.e $A_{15} = A_{14} = 0$ and $A_{13} A_{12}$ shouldn't be 00, 11.

Thus it is $A_{15} + A_{14} + [A_{13}A_{12} + \overline{A_{13}}, \overline{A_{12}}]$

OCE
ONLINEIndia's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams
Enjoy a smooth online learning experience in various languages at your convenience

20

****	ACE	
See.	Engineering Publications	

21

07. Ans: (a) Sol:

A₁₅, A₁₄ are used for chip selection

A13, A12, A11 are used for input of decoder

A ₁₅ A ₁₄	A ₁₃ A ₁₂ A ₁₁	A_{10} A_0
Enable of	Input of decoder	Address of
decoder		chip

Size of each memory $block = 2^{11} = 2K$

- 08. Ans: (a, d & e)
- 09. Ans: (a, c & e)

Since 1995

Chapter 9 Instruction set of 8085 & Programming with 8085

01. Sol:	Ans: (c) 6010H : LXI H,8A79H ; (HL) = 8A79H 6013H : MOV A L : (A)←(L) = 79		RET \rightarrow returned to the main program \therefore The contents of Accumulator after execution of the above SUB2 is 02H.
	6014H : ADD H; (A) = 0111 1001	04.	Ans: (c)
	+ ; (H) = 1000 1010 ; (A) = 0000 0011 $\overline{CY} = 1, AC = 1$; 66 Added to (A) since CY=1 & AC =1	Sol:	The loop will be executed until the value in register equals to zero, then, Execution time =9(7T+4T+4T+10T)+(7T+4T+4T+7T)+7T = 254T.
	; (A) = 69H	05.	Ans: (d)
	6016H : MOV H,A ; (H)←(A) =69H	Sol:	H=255 : L = 255, 254, 253,0
	6017H : PCHL ; (PC)←(HL) = 6979H		H=254 : $L = 0, 255, 254,0$
02. Sol:	Ans: (c) 0100H : LXI SP, 00FFH ; (SP) = 00FFH 0103H : LXI H, 0107 H ; (HL) = 0107H 0106H : MVI A, 20H ; (A) = 20H $0108H : SUB M ; (A) \leftarrow (A) - (0107)$; (0107) = 20H ; (A) = 00H The contents of Accumulator is 00H	→ 199	H=1 : L = 0,255,254,253,0 H=0 : In first iteration (with H=255), the value in L is decremented from 255 to 0 i.e., 255 times In further remaining 254 iterations, the value in L is decremented from 0 to 0 i.e., 256 times \therefore 'DCRL' instruction gets executed for \Rightarrow [255+(254×256)] \Rightarrow 65279 times
03. Sol:	Ans: (c) SUB1 : MVI A, 00H $A \leftarrow 00H$ CALL SUB2 \rightarrow program will shifted to SUB 2 address location SUB 2 : INR $A \rightarrow A$ 01H	06. Sol:	Ans: (a) "STA 1234H" is a 3-Byte Instruction and it requires 4 Machine cycles (Opcode fetch, Operand1 Read, Operand2 Read, Memory write). The Higher order Address (A ₁₅ – A ₈) sent in 4 machine cycles is as follows Given "STA 1234" is stored at 1FFEH

A ace online

's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience **ACE** Engineering Publications

i.e., Address Instruction

1FFE, 1FFF, 2000 : STA 1234H

Machine	Address	Higher order
cycle	$(A_{15}-A_{0})$	address
		$(A_{15}-A_{8})$
1. Opcode	1FFEH	1FH
fetch		
2. Operand1	1FFFH	1FH
Read		
3. Operand2	2000H	20H
Read		
4. Memory	1234H	12H
Write		CINE

i.e. Higher order Address sent on A15-A8 for

4 Machine Cycles are 1FH, 1FH, 20H, 12H.

07. Ans: (d)

Sol: The operation SBI BE_H indicates A-BE \rightarrow A where A indicates accumulator Thus the result of the subtraction operation is stored in the accumulator and the contents of accumulator are changed.

08. Ans: (c)

- **Sol:** If the content in register B is to be multiplied with the content in register C, the contents of register B is added to the accumulator (initial value of accumulator is 0) for C times.
- 09. Ans: (a, b & d)

Basics of DCS & PLC

01. Ans: (a, b, c, d)

Sol: The output of PLC can be relay coils, solenoids, indicators, motors, lamps, alarms.

02. Ans: (d)

Sol: The PLCs were actually designed to replace hardwired control.

03. Ans: (c)

Sol: In a PLC, scan time refers to the amount of time in which the entire program takes to complete.

04. Ans: (a)

Sol: Transformer is an isolated device which protects PLC from any incoming surges from the field.

05. Ans: (b)

Sol: Ladder logic is a written method to document the design & construction of relay racks as used in manufacturing & process control.

 Affordable Fee |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

Since 1995