

GATE | PSUs

ELECTRICAL ENGINEERING

Digital Electronics

Text Book: Theory with worked out Examples and Practice Questions

Chapter

Number Systems (Solutions for Text Book Practice Questions)

01.	Ans: (d)	03. Aı	18: (c)
Sol:	$135_{x} + 144_{x} = 323_{x}$ $(1 \times x^{2} + 3 \times x^{1} + 5 \times x^{0}) + (1 \times x^{2} + 4 \times x^{1} + 4 \times x^{0})$ $= 3x^{2} + 2x^{1} + 3x^{0}$ $\Rightarrow x^{2} + 3x + 5 + x^{2} + 4x + 4 = 3x^{2} + 2x + 3$ $x^{2} - 5x - 6 = 0$	Sol: In bit of giv car	2's complement representation the sign can be extended towards left any number times without changing the value. In ven number the sign bit is ' X_3 ', hence is n be extended left any number of times.
	(x-6)(x+1) = 0 (Base cannot be negative)	04. Ar	1s: (c)
	Hence $x = 6$.	Sol: B1	nary representation of $+(539)_{10}$:
	(OR) GIVE E GREATER		2539 2269 - 1 2134 - 1
	than 5. Let consider $x = 6$		$2\overline{67} - 0$
	$(135)_6 = (59)_{10}$		233 - 1 216 - 1
	$(144)_6 = (64)_{10}$		$2\overline{8}$ -0
	$(323)_6 = (123)_{10}$	4	$2 \frac{4}{2} \frac{-0}{2}$
	$(59)_{10} + (64)_{10} = (123)_{10}$		1_0
0.2	So that $x = 6$	(+539	$p_{10} = (10000 \ 11 \ 0 \ 11)_2 = (00100 \ 0011011)_2$
		2's	s complement \rightarrow 110111100101
02.	Ans: (a)	Не	exadecimal equivalent \rightarrow (DE5) _H
501:	8-bit representation of Sinc	1995	
	$+127_{10} = 01111111_{(2)}$	05. Ai	15: 5
	1's complement representation of	Sol: Sy	mbols used in this equation are 0,1,2,3
	- 127 = 10000000.	He	ence base or radix can be 4 or higher
	2's complement representation of	(3	$(12)_{\rm x} = (20)_{\rm x} (13.1)_{\rm x}$
	127 - 10000001	3x	$x^{2} + 1x + 2x^{0} = (2x+0)(x+3x^{0}+x^{-1})$
	No. of 1's in 2's complement of	3x	$^{2}+x+2 = (2x) \left(x+3+\frac{1}{x}\right)$
	-127 = m = 2	3x	$x^{2} + x + 2 = 2x^{2} + 6x + 2$
	No. of 1's in 1's complement of	x ²	-5x=0
	-127 = n = 1	x(z	(x - 5) = 0 = 0(or) x = 5
	\therefore m: n = 2:1		must be $x > 3$. So $x = 5$
	India's Best Online Coaching Platform	or GATE, ESE, I	PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams
	1 Online Enjoy a smooth online	earning experie	nce in various languages at your convenience

Sol. Diffary representation of (337)	ol: B	Binary	representation	of +(539) ₁
---	-------	--------	----------------	------------------------

```
(20)_{\rm x} (13.1)_{\rm x}
+2x^{0} = (2x+0)(x+3x^{0}+x^{-1})
=(2x)\left(x+3+\frac{1}{x}\right)
2 = 2x^2 + 6x + 2
0
0
x = 5
 x > 3, So x = 5
```

	ACE Engineering Publications	3			Postal Coaching Solutions
06.	Ans: 3		08.	An	s: (a, b & c)
Sol:	$123_5 = \mathbf{x8_y}$		Sol:	(a)	When we have 10 base then we have
	$1 \times 5^2 + 2 \times 5^1 + 3 \times 5^0 = x.y^1 + 8 \times y^0$				(0 - 9) number.
	25 + 10 + 3 = xy + 8				when we have 16 base then we have
	$\therefore xy = 30$				(0 - 15) number.
	Possible solutions:				when we have 8 base then we have
	i. $x = 1, y = 30$				(0 - 7) number.
	ii. $x = 2, y = 15$				So, this is correct statement as the
	iii. $x = 3, y = 10$				longest digit decimal value is $(k - 1)$ in
	3 possible solutions exists.				base k system
	TINE	RI	NG	(b)	This is also true because as an example
07.	Ans: 1			7	$10 \rightarrow We$ borrow k as an significant digit
Sol:	The range (or) distinct values				(86)10
	For 2's complement $\Rightarrow -(2^{n-1})$ to $+(2^{n-1}-1)$			-	- (79)10
	For sign magnitude				(06) ₁₀
	$\rightarrow (2^{n-1} \ 1) \text{ to } + (2^{n-1} \ 1)$			(c)	This statement is also true and have easy
	$\rightarrow -(2 - 1) + (2 - 1)$				conversion as well as it has highest
	Let $n = 2 \Rightarrow$ in 2's complement				number of bits.
	$-(2^{2-1})$ to $+(2^{2-1}-1)$			(d)	Direct conversion is possible between
	-2 to $+1 \Rightarrow -2, -1, 0, +1 \Rightarrow X = 4$		\leq		binary & octal number system
	$n = 2$ in sign magnitude $\Rightarrow -1$ to $+1 \Rightarrow Y = 3$	e ′	199	5	ex: 100111
	X - Y = 1				$(4^{\prime}7)_{8}$
	A				

Chapter 2 Logic Gates & Boolean Algebra

Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

online

K - Maps

01. Ans: (d) **Sol:** Let the output of first MUX is " F_1 " $F_1 = AI_0 + AI_1$ Where A is selection line, I_0 , $I_1 = MUX$ Inputs $F_1 = \overline{S}_1 \cdot W + S_1 \cdot \overline{W} = S_1 \oplus W$ Output of second MUX is $F = \overline{A}.I_0 + A.I_1$ $\mathbf{F} = \overline{\mathbf{S}}_2.\mathbf{F}_1 + \mathbf{S}_2.\overline{\mathbf{F}}_1$ $F = S_2 \oplus F_1$ But $F_1 = S_1 \oplus W$ $\mathbf{F} = \mathbf{S}_2 \oplus \mathbf{S}_1 \oplus \mathbf{W}$ i.e., $F = W \oplus S_1 \oplus S_2$ 02. Ans: 50 Since 1995 Sol: Y_3 X_3 $Y_2 X_2$ $\mathbf{Y}_1 \quad \mathbf{X}_1$ Y₀ X₀ \mathbb{Z}_3 Z_4 FA_3 Z_1 FA_2 \mathbb{Z}_2 FA_1 FA₀ $-Z_0$ S_3 S_2 S_0 S_1

Initially all the output values are '0', at t = 0, the inputs to the 4-bit adder are changed to $X_3X_2X_1X_0 = 1100$, $Y_3Y_2Y_1Y_0 = 0100$

---- indicates critical path delay to get the output

i.e. critical time (or) maximum time is taken for Z₄ to get final output as '1'

Affordable Fee Available 1M	3M 6M 12M 18M and 24 Months Subscription Packages

ACE Engineering Publications	10	Digital Electronics
Ans: (a) The given circuit is binary parallel adder/s	ubtrac	tor circuit. It performs A+B, A–B but not A + 1

K	C ₀	Operation
0	0	A+B (addition)
0	1	A+B+1(addition with carry)
1	0	$A+\overline{B}$ (1's complement addition)
1	1	$A + \overline{B} + 1$ (2's complement subtraction)

04. Ans: (d)

03. Sol:

Sol: It is expansion of 2:4 decoders to 1:8 demultiplexer A₁, A₀ must be connected to S₁, S₀ i.e.., $R = S_0, S = S_1$ Q must be connected to S₂ i.e., $Q = S_2$

P is serial input must be connected to D_{in}

05. Ans: 6

Sol: $T = 0 \rightarrow NOR \rightarrow MUX 1 \rightarrow MUX 2$ 1.5ns 2ns 1.5ns Delay = 2ns + 1.5ns + 1.5ns = 5ns $T = 1 \rightarrow NOT \rightarrow MUX 1 \rightarrow NOR \rightarrow MUX 2$ 1.5ns 1ns 2ns 1.5ns Delay = 1ns + 1.5ns + 2ns + 1.5ns = 6nsof the Hence, the maximum delay circuit is 6ns.

06. Ans: -1

- **Sol:** When all bits in 'B' register is '1', then only it gives highest delay.
 - \therefore '-1' in 8 bit notation of 2's complement is 1111 1111.

07. Ans: (b & c)

Sol: (a) It is incorrect because for getting \overline{B} is $(\overline{A+B}) = \overline{A}\overline{B}$

we need one more 2×1 MUX

А

(b) It is correct

$$\begin{array}{c} \mathbf{B} & \overbrace{\mathbf{I}_0} \\ \mathbf{1} & \overbrace{\mathbf{I}_1} \\ \end{array} \qquad \qquad \mathbf{Y} = \mathbf{A} + \mathbf{\overline{A}} \mathbf{B} \\ = \mathbf{A} + \mathbf{B} \end{array}$$

(c) It is correct we need minimum
 2 number of 2×1 muxes for implementing 2 input exnor gate

 2×1 MUX required = 2

(d) It is incorrect because one 16×1 MUX is sufficient for all 4 variable function.

Sequential Circuits

02. Ans: 4

Sol: In the given first loop of states, zero has repeated 3 times. So, minimum 4 number of Flip-flops are needed.

03. Ans: 7

Sol: The counter is cleared when $Q_D Q_C Q_B Q_A = 0110$

Clk	QD	Qc	QB	QA
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	0	0	0

As the clear input is given to be synchronous so it waits upto the next clock pulse to clear the counter & hence the counter get's cleared during the 7th clock pulse.

 \therefore mod of counter = 7

04. Ans: (b)

 $2\Delta t$.

Sol: The given circuit is a mod 4 ripple down counter. Q_1 is coming to 1 after the delay of

Outputs of counter is connected to inputs of decoder

Coun	ter outputs	ts Decoder inputs Decoder output					
Q_1	Q_0	а	b	d ₃	d_2	d_1	d_0
0	0	0	0	0	0	0	1
0	1	0	1	0	0	1	0
1	0	1	0	0	1	0	0
1	1	1	1	1	0	0	0

The overall circuit acts as 4-bit ring counter n = 2

 \therefore k = 2² = 4, k-bit ring counter

	ACE Engineering Publication	Dans				12						Digital Elect	ronics
06. Sol:	Ans: (b)				L		07. Sol·	Ans	: (b))			
	CLK	Seri B⊕	al in= C⊕D	A B C D			501.	J	K	Q	\overline{Q}_n	$T = (J + Q_n)$	Q_{n+1}
	0		1 —	→ 1 0 1 0								$\left(\mathbf{K}+\overline{\mathbf{Q}}_{n}\right)$	
	2			$\rightarrow 0 1 1 0 1$				0	0	0	1	0.1 = 0	$\begin{bmatrix} 0\\1 \end{bmatrix}$
	3		0	$\rightarrow 0 0 1 1$ $\rightarrow 0 0 0 1$				0	1	0	1	1.0 = 0 0.1 = 0	$1 \downarrow Q_n$
	5		1	$\rightarrow 10001$				0	1	1	0	1.1 = 1	0 0 0
	6		0	$\rightarrow 0 1 0 0$				1 1	0	0	1	1.1 = 1 1.0 = 0	$- \left \begin{array}{c} 1 \\ 1 \end{array} \right _{1}$
			I —	+ 1010				1	1	0	1	$1.0 \ 0$ 1.1 = 1 1.1 = 1	$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}_{\overline{0}}$
	: After	7 cl	ock puls	es content of	f shift	DIA			-1	1	0	1.1 - 1	$\mathbf{V}^{\mathbf{r}}\mathbf{Q}_{\mathbf{n}}$
	register be	ecom	e 1010 ag	ain.	NFE		VG	\mathcal{K}	$Q_n 0$	0	01	11	10
				L. L.				0	9 ₀			$\left \hat{1} \right\rangle$	
				<u> </u>						3			
								1	1	, <u>~</u>			<u>[1</u>
								Т=	JO	_ _ +k	$\zeta O_n =$	$(J+O_{r})(K+\overline{O})$)
											- «		cn /
08. Sala	Ans: 1.5												
501:		Clk	Q 1	Q ₂ Q ₃ Q ₄	Q5	Y=	= Q ₃ -	+ Q5					
		0	0		0	0	<						
		1			$\overline{1}$	1	00	5					
		2			\mathbf{X}_{1}	1	774	9					
		5 4			$\mathbf{X}_{0}^{\mathbf{I}}$	1			7				
		5		$1 \rightarrow 0 \rightarrow 1$	\mathbf{A}_{0}°	0				7			
	The wave	form	at OR ga	te output, Y is	[A = -	+5V]	r						
			A						•				
		0 ↓ ──	T 2T	3T 4T 5T									
	Average p	owei	$T_1 = 5^{-1}$										
	$P = \frac{V_{Ao}^2}{R}$	$-=rac{1}{R}$	$\begin{bmatrix} Lt \\ T_1 \to \infty \end{bmatrix} \frac{1}{T_1} \cdot \frac{1}{T_1} \cdot$	$\int_{0}^{T_{1}} y^{2}(t) dt =$	$\frac{1}{\mathbf{RT}_{1}}\left[\int_{1}^{1}$	$_{\Gamma}^{2T}A^{2}$	dt +	$\int_{3T}^{5T} A$	2 dt				
	$=\frac{A^2}{RT_1}$	-[(2T	-T)+(5	$\left[T-3T\right] = \frac{A^2}{R(}$	$\frac{1}{5T}$ =	$\frac{5^2.3}{10\times 3}$	$\frac{1}{5} = 1.$	5mV	N				
0			India's Bes	Online Coaching	Platform	n for GA	ATE, E	SE, PS	Us, SS	C-JE,	RRB-JE,	SSC, Banks, Group	os & PSC Exams
		3		Enjoy a smoot	h online	learni	ng exp	eriene	ce in v	ariou	s langu	ages at your conve	nience

Engineering Publications	13	Postal Coaching Solutions
 09. Ans: (b & d) Sol: (a) It is incorrect statement ripple counter is slower than synchronous counter is apply with 1 clock. (b) It is correct statement because mode counters means it counts the number of clock pulses arriving at its clock input which is basically we do in electronic time clocks. 	s s f c	(c) It is incorrect, because with the help of positive edge triggered JK-flip-flop we design binary down counter.(d) It is correct statement because D-flipflop is easy to design and easy to get the next possible state output.

A/D & D/A Converters

01. Ans: (b)

Chapter

Sol:

CLK	Counter			D	eco	V ₀			
	Q	2 Q	1 Q0	D	3 D	$_2 \mathbf{D}_1$	\mathbf{D}_{0}		
1	0	0	0	0	0	0	0	0	
2	0	0	1	0	0	0	1	1	
3	0	1	0	0	0	1	0	2	
4	0	1	1	0	0	1	1	3	V
5	1	0	0	1	0	0	0	8	
6	1	0	1	1	0	0	1	0	
7	1	1	0	1	0	1	0	9	E
8	1	1	1	1	0	1	1	10	

02. Ans: (b) Sol:

$$\begin{split} R_{equ} &= (((((2R||2R)+R)||2R)+R)||2R) \\ R_{equ} &= R = 10 k \, \Omega \, . \end{split}$$

$$I = \frac{V_R}{R} = \frac{10V}{10k} = 1mA.$$

Current division at $\frac{I}{16}$ 1×10^{-3}

$$=\frac{1\times10^{-9}}{16}=62.5\,\mu$$
A

03. Ans: (c)

Sol: Net current at inverting terminal,

$$I_i = \frac{I}{4} + \frac{I}{16} = \frac{5I}{16}$$

$$V_0 = -I_i R = -\frac{51}{16} \times 10 k \Omega$$
$$= \frac{-5 \times 1 \times 10^{-3} \times 10 \times 10^3}{16} = -3.125 V$$

04. Ans: (d)

Sol: Given that
$$V_{DAC} = \sum_{n=0}^{3} 2^{n-1} b_n$$
 Volts
 $V_{DAC} = 2^{-1} b_0 + 2^0 b_1 + 2^1 b_2 + 2^2 b_3$
 $\Rightarrow V_{DAC} = 0.5b_0 + b_1 + 2b_2 + 4b_3$

Initially counter is in 0000 state

	Up	V _{DAC} (V)	o/p of
	counter o/p		comparator
	b ₃ b ₂ b ₁ b ₀		
	0 0 0 0	0	1
	0 0 0 1	0.5	1
	0 0 1 0	1	1
	0 0 1 1	1.5	1
	0 1 0 0	2	1
5	0 1 0 1	2.5	1
	0 1 1 0	3	1
	0 1 1 1	3.5	1
	1 0 0 0	4	1
	1 0 0 1	4.5	1
	1 0 1 0	5	1
	1 0 1 1	5.5	1
	1 1 0 0	6	1
	1 1 0 1	6.5	0

When $V_{DAC} = 6.5$ V, the o/p of comparator is '0'. At this instant, the clock pulses to the counter are stopped and the counter remains in 1101 state.

 \therefore The stable reading of the LED display is 13.

			1
۶. C	Engineering Publications	15	Postal Coaching Solutions
05. Sol:	Ans: (b) The magnitude of error between V_{DAC} & V_{irr} at steady state is $ V_{DAC} - V_{in} = 6.5 - 6.2 $ = 0.3 V	L	Here, $\Delta = \frac{10-0}{(2^{10}-1)} = 9.775 \times 10^{-3} \text{ V}$ Hence $\frac{\Delta}{2} = 4.8875 \times 10^{-3} \text{ V}$ So conversion time (maximum) should be
06. Sol:	Ans: (a) In Dual slope ADC $\Rightarrow V_{in}T_1 = V_R \cdot T_2$		such that the drop across capacitor voltage must reach maximum value $\Delta/2$. Hence, time taken for this $t = \frac{\Delta/2}{drop rate} = \frac{4.8875 \times 10^{-3}}{10^{-4} \text{ V/m sec}}$
	$\Rightarrow V_{in} = \frac{V_R T_2}{T_1}$ $= \frac{100 \text{ mV} \times 370.2 \text{ ms}}{300 \text{ ms}}$ DVM indicates = 123.4	RI	 t ≅ 49 m sec 09. Ans: (b & d) Sol: (a) It is incorrect, minimum number of comparator required in 'n' bit flash
07. Sol:	Ans: (d) Ex: $f_{in} = 1 \text{ kHz} \rightarrow f_s = 2 \text{ kHz}$ $f_{in} = 25 \text{ kHz} \leftarrow f_s = 50 \text{ kHz}$ 1. Max conversion time $= 2^{N+1}T = 2^{11}.1 \mu s$ $= 2048 \mu s$ 2. Sampling period $= T_s \ge$ maximum		 ADC is 2ⁿ - 1. (b) It is correct (no register/counter required in flash ADC, only comparator required). (c) It is incorrect, Conversion time of SAR = n T_{clk}
	conversion time $T_s \ge 2048 \ \mu s$ 3. Sampling rate $f_s = \frac{1}{T_s} \le \frac{1}{2048 \times 10^{-6}}$ $f_s \le 488 f_s \le 500 \ Hz$ 4. $f_{in} = \frac{f_s}{2} = 250 \ Hz$:e 1	 Conversion time of Dual Slope ADC = (2ⁿ⁺¹) T_{clk} SAR faster than Dual slope ADC. (d) It is correct, because it compares DAC output with analog voltage & does the same till both are equal in magnitude. At this moment counter will stop. Maximum conversion time is equal to (2ⁿ⁻¹) T_{clk} of n-bit ADC. The
08. Sol:	Ans: (d) In an ADC along with S-H circuit (sample		conversion time depends on analog input voltage as well as on size of ADC.

Sol: In an ADC along with S-H circuit (sample and hold) circuit, to avoid error at output, voltage across capacitor should not drop by more than $\pm \Delta/2$, where Δ is step size.

> ace online