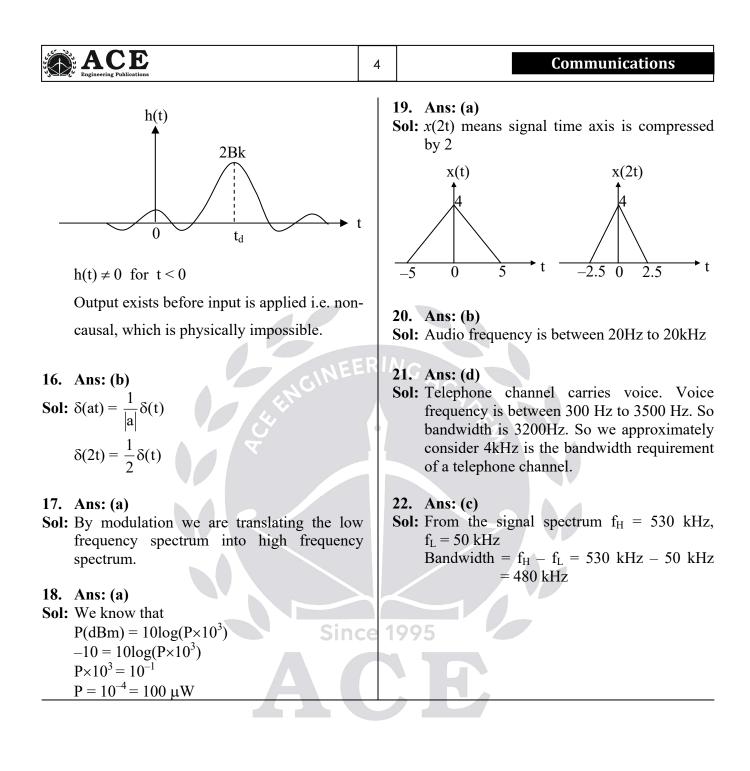
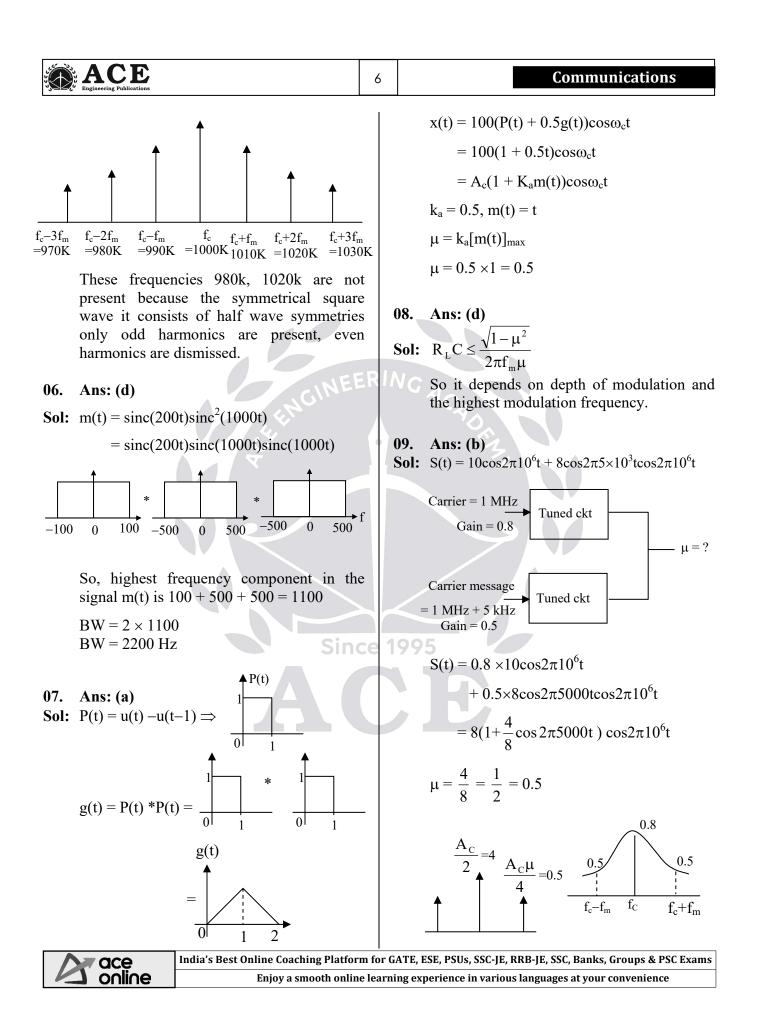

GATE | PSUs

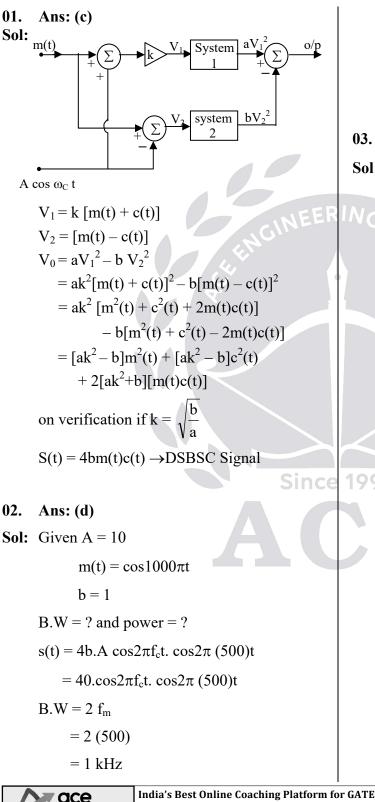
ELECTRONICS & COMMUNICATION ENGINEERING


Communications

(**Text Book :** Theory with worked out Examples and Practice Questions)



Engineering Publications	3 Postal Coaching Solutions
$X(\omega) = \frac{e^{-\frac{\omega^2}{4a}}}{\sqrt{a}} \sqrt{\pi}$ $X(\omega) = \sqrt{\frac{\pi}{a}} e^{-\frac{\omega^2}{4a}}$	10. Ans: (a) Sol: $f(t) = A e^{-a t } \stackrel{F.T}{\leftrightarrow} F(j\omega) = \frac{2Aa}{a^2 + \omega^2}$ 11. Ans: (d) Sol: $m(t) = f(t) \cos 2t$ Apply Fourier transform
07. Ans: (d) Sol: The EFS expression of a periodic signal $x(t)$ is $x(t) = \sum_{n=-\infty}^{\infty} c_n e^{jn\omega_0 t}$ where, 'c _n ' is EFS coefficient.	$M(f) = \frac{1}{1}[F(\omega - 2) + F(\omega + 2)]$
Apply F.T on both sides $X(\omega) = \sum_{n=-\infty}^{\infty} c_n FT[e^{jn\omega_0 t}]$ $\lim_{e^{jn\omega_0 t}} 2\pi\delta(\omega)$ $\lim_{e^{jn\omega_0 t}} \sum_{2\pi\delta(\omega - n\omega_0)}^{\infty}$	12. Ans: (b) Sol: For band limited signals, $S(f) \neq 0; f < W$
$X(\omega) = 2\pi \sum_{n=-\infty} c_n \delta(\omega - n\omega_0)$ So, it is a train of impulse. 08. Ans: (a) Sol: V(j\omega) = e^{-j2\omega}; \omega \le 1	 S(f) = 0; f > W 13. Ans: (a) Sol: In a communication system, antenna is used to convert voltage variations to field variation and vice-versa.
Energy = $\frac{1}{2\pi} \int_{-\infty}^{\infty} V(j\omega) ^2 d\omega$ = $\frac{1}{2\pi} \int_{-1}^{1} e^{-j2\omega} ^2 d\omega$ = $\frac{1}{2\pi} \int_{-1}^{1} d\omega$	14. Ans: (d) Sol: Hilbert transform of f(t) is H.T {f(t)} = f(t) * $\frac{1}{\pi t}$ It is in the terms of 't'. 15. Ans: (a) Sol: For an ideal LPF
$= \frac{2}{2\pi}$ $= \frac{1}{\pi}$	$H(f) = k e^{-j\omega t_0} \text{ for } -B < f < B$ h(t) = F ⁻¹ [H(f)] = 2Bk sinc 2B (t-t _d)
09. Ans: (b) Sol: Parseval's theorem is used to find the energy of the signal in frequency domain. $\therefore \int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(j\omega) ^2 d\omega$	$-B 0 B \rightarrow f$
	able 1M 3M 6M 12M 18M and 24 Months Subscription Packages


Chapter 2 Amplitude Modulation

01. Ans: (a)
Sol:
$$V(t) = A_c \cos \omega_c t + 2 \cos \omega_m t \cdot \cos \omega_c t$$
.
Comparing this with the AM-DSB-SC signal
A $\cos \omega_c t + m(t) \cos \omega_c t$, it implies that
 $m(t) = 2\cos \omega_m t \Rightarrow E_m = 2$
To implement Envelope detection,
 $A_c \ge E_m$
 $\therefore (A_c)_{min} = 2$
02. Ans: (d)
Sol: $m(t) = (A_c + A_m \cos \omega_m) \cos \omega_c t$.
 $Given$
 $A_c = 2A_m$
 $= A_c(1 + \frac{A_m}{A_c} \cos \omega_m) \cos \omega_c t$.
Given
 $A_c = 2A_m$
 $= A_c(1 + \frac{1}{2} \cos \omega_m t) \cos \omega_c t$.
 $Given$
 $A_c = 2A_m$
 $= A_c(1 + \frac{1}{2} \cos \omega_m t) \cos \omega_c t$.
 $Given$
 $A_c = 2A_m$
 $= A_c(1 + \frac{1}{2} \cos \omega_m t) \cos \omega_c t$.
 $Given$
 $A_c = 2A_m$
 $= A_c(1 + \frac{1}{2} \cos \omega_m t) \cos \omega_c t$.
 $Given$
 $A_c = 2A_m$
 $= A_c(1 + \frac{1}{2} \cos \omega_m t) \cos \omega_c t$.
 $Given$
 $A_c = 100[0.8 + 0.6 \sin \omega_1t] \cos \omega_c t$
 $V_{max} = A_c[1 - \mu] = 100[0.8 + 0.6] = 140 V$.
 $V_{max} = A_c[1 - \mu] = 100[0.8 - 0.6] = 20 V$
 $= 20V to 140 V$
5. Ans: (c)
50: $f_c = 1 MHz = 1000 kHz$
The given m(t) is symmetrical square wave of period T = 100 µsec
 $f_m = \frac{1}{T_0} = 10 \text{ kHz}$
100 μsec
 $f_m = \frac{1}{T_0} = 10 \text{ kHz}$
100 μsec
 $f_m = \frac{1}{T_0} = 10 \text{ kHz}$
100 μsec
 $f_m = \frac{1}{T_0} = 10 \text{ kHz}$
100 μsec
 $f_m = \frac{1}{T_0} = 10 \text{ kHz}$
100 μsec
 $f_m = \frac{1}{T_0} = 10 \text{ kHz}$
100 μsec
 $f_m = \frac{1}{T_0} = 10 \text{ kHz}$
100 μsec
 $f_m = \frac{1}{T_0} = 10 \text{ kHz}$
100 μsec
 $f_m = \frac{1}{T_0} = 10 \text{ kHz}$
100 μsec
 $f_m = \frac{1}{T_0} = 10 \text{ kHz}$
100 μsec
 $f_m = \frac{1}{T_0} = 10 \text{ kHz}$
100 μsec
 $f_m = \frac{1}{T_0} = 10 \text{ kHz}$
100 μsec
 $f_m = \frac{1}{T_0} = 10 \text{ kHz}$
100 μsec
 $f_m = \frac{1}{T_0} = 10 \text{ kHz}$
100 μsec
 $f_m = \frac{1}{T_0} = 10 \text{ kHz}$
100 μsec
 $f_m = \frac{1}{T_0} = 10 \text{ kHz}$
100 μsec
 $f_m = \frac{1}{T_0} = 10 \text{ kHz}$
100 μsec
 $f_m = \frac{1}{T_0} = 10 \text{ kHz}$
100 μsec
 $f_m = \frac{1}{T_0} = 10 \text{ kHz}$
100 μsec
 $f_m = \frac{1}{T_0} = 10 \text{ kHz}$
100 μsec
 $f_m = \frac{1}{T_0} \text{ kHz}$
100 μsec
 $f_m = \frac{1}{T_0} \text{ kHz}$
100 $\mu \text{sec$

Engineering Publications	7 Postal Coaching Solutions
10. Ans: (d) Sol: $A_{max} = 10V$ $A_{min} = 5V$ $\mu = 0.1$ $\mu = \frac{A_{max} - A_{min}}{A_{max} + A_{min}} = \frac{1}{3} = 0.33$ $A_C = \frac{A_{max} + A_{min}}{2} = \frac{10 + 5}{2} = 7.5 V$ $A_C = \frac{A_{max} + A_{min}}{2} = \frac{10 + 5}{2} = 7.5 V$ $A_C = \frac{A_{max} + A_{min}}{2} = \frac{10 + 5}{2} = 7.5 V$ $A_C = \frac{A_{max} + A_{min}}{2} = \frac{10 + 5}{2} = 7.5 V$ $A_C = \frac{A_{max} + A_{min}}{2} = \frac{10 + 5}{2} = 7.5 V$ $A_C = \frac{A_{max} + A_{min}}{2} = \frac{10 + 5}{2} = 7.5 V$ $A_C = \frac{A_{max} + A_{min}}{2} = \frac{10 + 5}{2} = 7.5 V$ $A_C = \frac{A_{max} + A_{min}}{2} = \frac{10 + 5}{2} = 7.5 V$ $A_C = \frac{A_{max} + A_{min}}{2} = \frac{10 + 5}{2} = 7.5 V$ $A_C = \frac{A_{max} + A_{min}}{2} = \frac{10 + 5}{2} = 7.5 V$ $A_C = \frac{A_{max} + A_{min}}{2} = \frac{10 + 5}{2} = 7.5 V$ $A_C = \frac{A_{max} + A_{min}}{2} = \frac{10 + 5}{2} = 7.5 V$ $A_C = \frac{A_{max} + A_{min}}{2} = \frac{10 + 5}{2} = 7.5 V$ $A_C = \frac{10 + 5}{2} = 2.5 V$ Which must be added to attain = 17.5	P _c = $\frac{4^2}{2}$ = 8 W P _m = $\frac{1}{2} + \frac{1}{2} = 1$ W $\frac{P_m}{P_c} = \frac{1}{8} = 0.125$ 13. Ans: (a, c & d) Sol: S _{AM} (t)=10cos(2\pi \times 5000t) + 25cos(2\pi \times 5200t) + 25cos(2\pi \times 4800t) \therefore USB Frequency = 5200 Hz LSB Frequency = 4800 Hz $\frac{A_c \mu}{2} = 25$ $\frac{10 \times \mu}{2} = 25$ $\therefore \mu = 5$ a, c & d are correct. NOTE: options are changed for
11. Ans: (d) Sol: Modulation index $\mu = k_a m(t) _{max}$ $k_a = \frac{2b}{a} = \frac{2(\text{square term coefficient})}{\text{linear term coefficient}}$ $ m(t) _{max} = 1$ $\mu = 2\left(\frac{b}{a}\right)$ $P_{SB} = \frac{1}{2}P_C \Rightarrow P_C \frac{\mu^2}{2} = \frac{1}{2}P_C$ $\mu^2 = 1 \Rightarrow \left(2\frac{b}{a}\right)^2 = 1$ $\Rightarrow 2\frac{b}{a} = 1 \Rightarrow \frac{a}{b} = 2$	(a) $\mu = 5$ (b) $\mu = 2.5$ 14. Ans: (a & c) Sol: $S_{AM}(t) = K_1 \cos(2\pi \times 5000t) + K_2 \cos(2\pi \times 5200t) + K_3 \cos(2\pi \times 4800t)$ c(t) = 10 cos($2\pi \times 5000t$) $K_1 = 10 = A_C$ $f_c + f_m = 5200 \text{ Hz}$ $\mu = 0.5$ $f_c - f_m = 4800 \text{ Hz}$ $\therefore \frac{A_c \mu}{2} = K_2 = K_3$ $\therefore 2f_m = 400 \text{ Hz}$ $\frac{10 \times 0.5}{2} = K_2 = K_3$ $f_m = 200 \text{ Hz}$ $\therefore K_2 = K_3 = 2.5$ a & c are correct.
	IC t clearing Sessions Free Online Test Series ASK an expert lable 1M 3M 6M 12M 18M and 24 Months Subscription Packages

Sideband Modulation Techniques

Power = $\frac{A_c^2 A_m^2}{4}$ $= \frac{1600 \times 1}{4}$ = 400W

03. Ans: (c)

Sol: Carrier = $\cos 2\pi (100 \times 10^6)$ t Modulating signal = $\cos(2\pi \times 10^6)$ t Output of Balanced modulator $= 0.5 [\cos 2\pi (101 \times 10^6)t + \cos 2\pi (99 \times 10^6)t]$ The Output of HPF is $0.5 \cos 2\pi (101 \times 10^6)$ t Output of the adder is $= 0.5 \cos 2\pi (101 \times 10^6) t + \sin 2\pi (100 \times 10^6) t$ $= 0.5 \cos 2\pi [(100+1)10^{6}t] + \sin 2\pi (100\times10^{6})t$ $= 0.5 [\cos 2\pi (100 \times 10^6) t. \cos 2\pi (10^6) t]$ $-\sin 2\pi (100 \times 10^6)$ t. $\sin 2\pi (10^6)$ t] $+\sin 2\pi (100 \times 10^6)t$ = 0.5 cos 2π (100 ×10⁶)t. cos 2π (10⁶)t + sin $2\pi(100 \times 10^6)$ t [1-0.5 sin 2π (10⁶)t] Let $0.5 \cos 2\pi (10^6)t = r(t) \cos \theta(t)$ $1 - 0.5 \sin 2\pi (10^6)t = r(t).\sin \theta(t)$ The envelope is $\mathbf{r}(t) = [0.25 \cos^2 2\pi \ (10^6)t]$ + {1-0.5 sin 2π (10⁶)t}²]^{1/2} $= [1.25 - \sin 2\pi (10^6)t]^{1/2}$

$$= \left[\frac{5}{4} - \sin 2\pi \, (10^6) t\right]^{1/2}$$

	ACE Engineering Publications	9		Postal Coaching Solutions
04. Sol:	Ans: (b) Output of 1 st balanced modulator is			$S(t)/T_{x} = \frac{A_{c}A_{m}}{2}\cos 2\pi [f_{c} - f_{m}]t$
				$S(t) / R_{X} = \left[\frac{A_{c}A_{m}}{2}\cos 2\pi (f_{c} - f_{m})t\right]\cos 2\pi (f_{c} + 10)t$
	-13 -11 -10 -9 -7 / 9 10 11 13)		$\Rightarrow \frac{A_c A_m}{4} [\cos 2\pi (2f_c + 10 - f_m)t + \cos 2\pi (10 + f_m)t]$
	Output of HPF is			i.e., from 310 Hz to 1010 Hz
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	07. Sol:	Ans: (b) BW of Basic group = 12×4 = 48 kHz
	The Output of 2^{nd} balanced modulator is consisting of the following +ve frequencies.		Nc	BW of super group = $5 \times 48 = 240 \text{ kHz}$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		08. Sol:	Ans: (d) Given 11 voice signals
	Thus, the spectral peaks occur at 2 kHz and 24 kHz.	Z		B.W. of each signals = 3 kHz Guard Band Width = 1 kHz
05. Sol:	Ans: (c) Given			Lowest $f_c = 300 \text{ kHz}$ Highest $f_c =$
	$f_{m_1} = 100Hz, f_{m_2} = 200Hz, f_{m_3} = 400Hz,$			$\Rightarrow f_{c_{H}} + f_{m_{lost}} = 300 \text{kHz} + 11(3\text{kHz}) + 10(1\text{kHz})$ $= 343 \text{ kHz}$
	$f_{c} = 100 \text{KHz}, f_{c_{L0}} = 100.02 \text{KHz}$			$f_{c_{\rm H}} = 343 \text{kHz} - 3 \text{kHz}$ $= 340 \text{kHz}$
	$S(t)/_{T_{X}} = \frac{A_{c}A_{m}}{2} [\cos(f_{c} + f_{m_{1}})t + \cos(f_{c} + f_{m_{2}})t + \cos(f_{c} + f_{m_{3}})t]$		00	5
	$S(t)/R_x = [S(t)/T_x]A_c \cos 2\pi f_{e_{10}}t$		09. Sol:	Ans: (b) $f_{m1} = 5 \text{ kHz} \rightarrow AM$
	$\Rightarrow \frac{A_{c}^{2}A_{m}}{4} [\cos(f_{c} + f_{c_{Lo}} + f_{m_{l}}) + \cos(f_{m_{l}} - 20) +$			$f_{m2} = 10 \text{ kHz} \rightarrow \text{DSB}$ $f_{m3} = 10 \text{ kHz} \rightarrow \text{SSB}$
	$\cos(f_c + f_{c_{Lo}} + f_{m_2}) + \cos(f_{m_2} - 20) +$			$f_{m4} = 2kHz \rightarrow SSB$
	$\cos(f_c + f_{c_{Lo}} + f_{m_3}) + \cos(f_{m_3} - 20)]$ Detector output frequencies:			$f_{m5} = 5kHz \rightarrow AM$ $f_g = 1kHz$
06.	80Hz, 180Hz, 380Hz Ans: (b)			$BW = (2fm_1 + 2f_{m2} + f_{m3} + f_{m4} + 2f_{m5} + 4f_g)$
	Given			$= 2 \times 5 + 2 \times 10 + 10 + 2 + 2 \times 5 + 4 \times 1$ $= 10 + 20 + 10 + 10 + 6$
501.	SSB AM is used, LSB is transmitted			= 10 + 20 + 10 + 10 + 0 = 56 kHz
	$f_{LO} = (f_c + 10)$			\therefore BW = 56 kHz
	Regular Live Doubt	clearin	ig Sess	sions Free Online Test Series ASK an expert
		ble 1M	3M	6M 12M 18M and 24 Months Subscription Packages

Engineering Publications	10 Communications
	11. Ans: (a, c & d) Sol: For DSB-SC $\eta = 100\%$ $BW = 2f_{max} = 2 \times 3 \times 10^4 = 60 (kHz)$ S(t) = m(t) c(t) $= 50 cos(2\pi \times 10^7 t) cos(2\pi \times 10^4 t)$ $+ 50 cos(2\pi \times 10^7 t) 4 cos(6\pi \times 10^4 t)$ $P_t = 26.25 (kW)$ (a, c & d are correct)

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

Angle Modulation

- 01. Ans: (a) Sol: $s(t) = 10 \cos(20\pi t + \pi t^2)$ $f_i = \frac{1}{2\pi} \frac{d\theta_i(t)}{dt}$ $f_i = \frac{1}{2\pi} [20\pi + 2\pi t]$ $\frac{df_i}{dt} = \frac{1}{2\pi} \times 2\pi \times 1 = 1 \text{Hz/sec}$
- 02. Ans: (d)

Sol: $P_{fc} = \frac{A_c^2 J_0^2(\beta)}{2}$

$$\beta$$

So, $J_0^2(\beta)$ is decreasing first, becoming zero and then increasing so power is also behave like $J_0^2(\beta)$.

03. Ans: (a)

Sol: In an FM signal, adjacent spectral components will get separated by $f_m = 5 \text{ kHz}$

Since BW =
$$2(\Delta f + f_m) = 1$$
MHz
= 1000×10^3
 $\Delta f + f_m = 500$ kHz

 $\Delta f = 495 \text{ kHz}$

The n^{th} order non-linearity makes the carrier frequency and frequency deviation increased by n-fold, with the base-band signal frequency (f_m) left unchanged since n = 3,

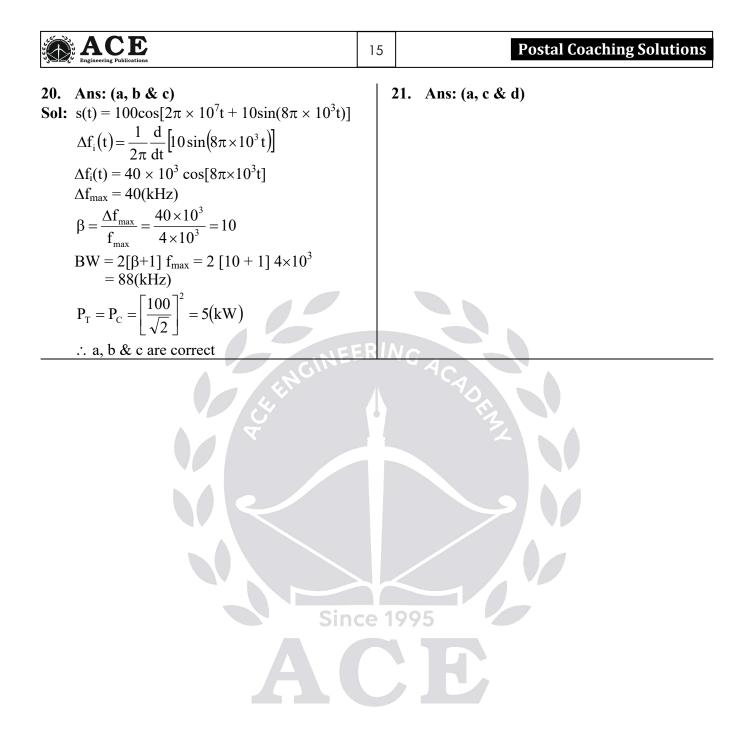
:.
$$(\Delta f)_{New} = 1485 \text{ kHz} \&$$

 $(f_c)_{New} = 300 \text{ MHz}$
New BW = 2(1485 + 5) ×10³
= 2.98 MHz
= 3 MHz

04. Ans: (d) \sum_{∞}

Sol:
$$S(t) = A_c \sum_{n=-\infty} J_n(\beta) \cos 2\pi (f_c + nf_m) t$$

 $\Delta f = 3(2f_m) = 12 \text{ kHz}$
 $\beta = \frac{\Delta f}{f_m} = 6$
 $\therefore S(t) = \sum_{n=-\infty}^{\infty} 5.J_n(6) \cos 2\pi (f_c + nf_m) t$
 $f_c = 1000 \text{ kHz}, f_m = 2 \text{ kHz}$
 $= \cos 2\pi (1008 \times 10^3) t$
 $= \cos 2\pi (1000 + 4 \times 2) \times 10^3 t$
i.e., $n = 4$
The required coefficient is $5.J_4(6)$


05. Ans: (c)
Sol:
$$2\pi f_m = 4\pi \ 10^3$$

 $\Rightarrow f_m = 2k$
 $J_0(\beta) = 0 \text{ at } \beta = 2.4$
 $\beta = \frac{k_f A_m}{f_m} \Rightarrow 2.4 = \frac{k_f \times 2}{2k}$
 $k_f = 2.4 \text{ KHz /V}$
 $at \beta = 5.5$

A ace online India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

Engineering Publications	12 Communications
$5.5 = \frac{2.4 \mathrm{k} \times 2}{\mathrm{f_m}}$	From f_c to $f_c + 4f_m$ pass through ideal BPF
III	Powers in these frequency components
\Rightarrow f _m = 872.72 Hz	$P = \frac{A_C^2}{2R} J_0^2(\beta) + 2 \frac{A_C^2}{2R} J_1^2(\beta) + 2 \frac{A_C^2}{2R} J_2^2(\beta)$
06. Ans: (c)	2R $2R$ $2R$ $2R$ $2R$
Sol: $\beta = 6$ $J_0(6) = 0.1506$; $J_3(6) = 0.1148$	$+2\frac{A_{\rm C}^2}{2R}J_3^2\beta+2\frac{A_{\rm C}^2}{1R}J_4^2(\beta)$
$J_1(6) = 0.2767 \; ; \; \; J_4(6) = 0.3576$	$\Lambda^{2} \left[(-0.178)^{2} + 2(-0.328)^{2} + 2(0.049)^{2} \right]$
$J_2(6) = 0.2429$;	$= \frac{A_{\rm C}^2}{2R} \left[\frac{(-0.178)^2 + 2(-0.328)^2 + 2(0.049)^2}{+ 2(0.365)^2 + 2(0.391)^2} \right]$
$\frac{P_{f_c \pm 4f_m}}{P_T} = ? \qquad P_T = \frac{A_c^2}{2R}$	= 41.17 Watts
GINE	08. Ans: (d)
$P_{f_{c}\pm 4f_{m}} = \frac{A_{C}^{2}}{R} \left \frac{J_{0}^{2}(\beta)}{2} + J_{1}^{2}(\beta) + J_{2}^{2}(\beta) + J_{3}^{2}(\beta) + J_{4}^{2}(\beta) \right $	Sol: $P_t = \frac{A_c^2}{2R}$ (R =1 Ω)
$P_{f_{c \pm 4f_{m}}} = \frac{A_{c}^{2}}{R} \left[\frac{J_{0}^{2}(\beta)}{2} + J_{1}^{2}(\beta) + J_{2}^{2}(\beta) + J_{4}^{2}(\beta) \right]$	$=\frac{100}{2}=50$ W
$\frac{P_{f_c \pm 4f_m}}{P_T} = \frac{0.2879}{\frac{1}{2}} = 0.5759 = 57.6 \%$	% Power = $\frac{Power in components}{total power} \times 100$
07. Ans: (c)	$=\frac{41.17}{50}\times 100$
Sol: $m(t) = 10\cos 20\pi t$	= 82.35%
$f_m = 10 Hz$ Sin	nce 1995 09. Ans: (d)
inserting correct signal and frequency	09. Ans: (d) Sol: In frequency modulation the spectrum
$\beta = \frac{k_f A_m}{f_m} = \frac{5 \times 10}{10} = 5$	contains $f_c \pm nf_1 \pm mf_2$, where n & m =
$\mathbf{f}_{m} = 10$	0, 1, 2, 3
$\frac{A_{C}J_{0}(\beta)}{2}$	10. Ans: (c)
$A_{C}J_{1}(\beta) \stackrel{2}{\uparrow} \underline{A_{C}J_{1}(\beta)}$	Sol: Given $f_c = 1MHz$
$\frac{2}{2}$ $A_{C}J_{2}(\beta)$	$f_{max} = f_c + k_f A_m$
$\frac{A_{C}J_{2}(\beta)}{2}$	$k_p = 2\pi \ k_f$
$ \xrightarrow{A_{C}J_{1}(\beta)}{2} \xrightarrow{A_{C}J_{2}(\beta)}{2} A$	$k_{\rm f} = \frac{k_{\rm p}}{2\pi} = \frac{\pi}{2\pi}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{1}{f_m} = \frac{1}{2}$
	orm for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams
	ine learning experience in various languages at your convenience

Engineering Publications	13 Postal Coaching Solutions
$= \left(10^{6} + \frac{1}{2} \times 10^{5}\right) = \left(10^{6} + 0.5 \times 10^{5}\right)$ $= \left(10^{6} + 5 \times 10^{4}\right)$	$f_{i} = f_{c} \pm \Delta f$ $= f_{c} \pm k_{f} A_{m}$ $= 100 \times 10^{3} \pm 10 \times 10^{3} (m(t))$
$= (10^3 + 50)10^3$	$= 100 \times 10^{\circ} \pm 10 \times 10^{\circ} (m(t))$ = 110 kHz & 90 kHz
$=(10^3+50)$ k	13. Ans: (c)
= 1050 kHz.	Sol: $S(t) = A_c \cos (2\pi f_c t + k_p m(t))$
$f_{\min} = f_c - k_f A_m$ $= \left(10^6 - \frac{1}{2} \times 10^5\right)$	$f_i = \frac{1}{2\pi} \frac{d}{dt} \theta_i(t) \qquad \qquad \theta_i(t)$
$=(10^6 - 0.5 \times 10^5)$	$= \frac{1}{2\pi} \frac{d}{dt} (2\pi f_c t + k_p m(t))$
$= \left(10^6 - 5 \times 10^4\right)$	$= f_c + \frac{1}{2\pi} k_p \frac{d}{dt} m(t)$
$=(10^3-50)10^3$	$f = f + \frac{k_p}{1} - f + \frac{k_p}{1} \times 4 \times 10^3$
$= (10^3 - 50) k$ = 950 kHz	$f_{max} = f_c + \frac{k_p}{2\pi} \frac{1}{\left(\frac{10^{-3}}{4}\right)} = f_c + \frac{k_p}{2\pi} \times 4 \times 10^3$
11. Ans: (d)	$=100 \text{ kHz} + \frac{\pi}{2\pi} \times 4 \times 10^3$
Sol: $\beta = \frac{\Delta f}{f_m}$	= 102 kHz
$\Delta \phi = \frac{\Delta f}{f_m}$ Since	$f_{\min} = f_{c} - k_{p} \frac{1}{\left(\frac{10^{-3}}{4}\right)}$
$\Delta f = \Delta \phi f_m$ $= k_p A_m f_m$	$= f_c - 2 \text{ kHz}$ $f_{min} = 98 \text{ kHz}$
12. Ans: (c)	14. Ans: (c)
Sol: Given +1	Sol: Given,
T/4	$S(t) = A_c \cos (\theta_i(t))$ $= A_c \cos (\omega_c t + \phi(t))$
-1 $T = 10^{-3} \text{sec}$	$m(t) = \cos(\omega_m t)$
$f_c = 100 \times 10^3 \text{ Hz}$	$f_i(t) = f_c + 2\pi k (f_m)^2 \cos \omega_m t$
$k_f = 10 \times 10^3 Hz$ m(t) _{max} = +1 , m(t) _{min} = -1	$f_i = \frac{1}{2\pi} \frac{d\theta_i(t)}{dt}$
Regular Live Doubt	t clearing Sessions Free Online Test Series ASK an expert able 1M 3M 6M 12M 18M and 24 Months Subscription Packages

Radio Receivers

01. Ans: (d)

Sol: The image channel selectivity of super heterodyne receiver depends upon Pre selector and RF amplifier only.

02. Ans: (b)

Sol: The image (second) channel selectivity of a super heterodyne communication receiver is determined by the pre selector and RF amplifier.

03. Ans: (d)

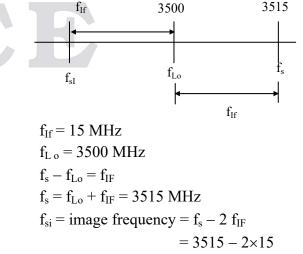
Sol: Given $f_s = 4$ to 10 MHz

IF = 1.8 MHz $f_{si} = ?$ $f_{si} = f_s + 2 \times IF$ = 7.6 MHz to 13.6 MHz

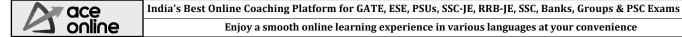
04. Ans: (a)

Sol: Image frequency $f_{si} = f_s + 2 \times IF$ $= 700 \times 10^{3} + 2(450 \times 10^{3})$ = 1600 kHzLocal oscillator frequency, $f_l = f_s + IF$ $(f_l)_{max} = (f_s)_{max} + IF = 1650 + 450$ = 2100 kHz $(f_l)_{\min} = (f_s)_{\min} + IF = 550 + 450$ = 1000 kHz $R = \frac{C_{\text{max}}}{C_{\text{min}}} = \left(\frac{f_{l \text{max}}}{f_{l \text{min}}}\right)^2 = \left(\frac{2100}{1000}\right)^2 = 4.41$

05. Ans: (a) **Sol:** $f_s(range) = 88 - 108MHz$ Given condition $f_{IF} < f_{LO}$, $f_{si} > 108$ MHz $f_{si} = f_s + 2 \times IF$ $f_{si} > 108 \text{ MHz}$ $f_{s} + 2IF > 108 \text{ MHz}$


 $88MHz + 2 \times IF > 108 MHz$ IF > 10MHzAmong the given options IF = 10.7 MHz

06. Ans: (a)


- Sol: Range of variation in local oscillator frequency is $f_{Lmin} = f_{smin} + IF$ = 88 + 10.7 $f_{Lmin} = 98.7 \text{ MHz}$ $f_{Lmax} = f_{smax} + IF$ =108 + 10.7
 - $f_{Lmax} = 118.7 \text{ MHz}$
- 07. Ans: 5

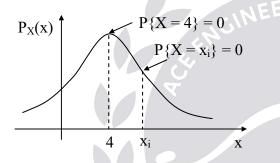
Sol: $f_s = 58 \text{ MHz} - 68 \text{ MHz}$ When $f_s = 58 \text{ MHz}$ $f_{si} = f_s + 2IF > 68 \text{ MHz}$ 2IF > 10 MHz $IF \ge 5 MHz$

= 3485 MHz

Enjoy a smooth online learning experience in various languages at your convenience

Engineering Publications	17	Postal Coaching Solution
09. Ans: (a, b & c) Sol: → $f_{IM} = f_S + 2f_{IF} = 555 \times 10^3 + 2(455 \times 10^3)$ = 1465 kHz $\rightarrow f_{IF} = f_{Io} - f_S = 1010 \times 10^3 - 555 \times 10^3$ $= 455 \times 10^3 \text{ Hz}$ $\rightarrow IRR = \sqrt{1 + Q^2 \rho^2} = 113$ Q = 50 $\rho = \frac{f_{IM}}{f_S} - \frac{f_S}{f_{IM}} = \frac{1465}{555} - \frac{555}{1465}$ \therefore a, b & c are correct.		10. Ans: (b & c) Sol: → $f_{lo} - f_s = f_{IF}$ $f_{lo} = f_{IF} + f_s$ $= 555 \times 10^3 + 1500 \times 10^3$ = 2055 kHz $\rightarrow f_{IM} = f_s + 2f_{IF}$ $= 1500 \times 10^3 + 2(555 \times 10^3)$ = 2610 kHz \therefore b & c are correct

1S


Random Variables & Noise

01. Ans: (c)

Sol: A continuous Random variable X takes every value in a certain range, the probability that X = x, is zero for every x in that range.

Given
$$P_X(x) = \frac{1}{3\sqrt{2\pi}}e^{-\frac{(x-4)^2}{18}}$$
 is a

continuous Random variable therefore probability of the event $\{X = 4\}$ is zero.

02. Ans: (b)

Sol: Given,

X & Y are two Random Variables

 $Y = cos\pi x$

$$f(x) = 1$$
 $\frac{-1}{2} < x < \frac{1}{2}$

= 0 else where f(y) = 2

$$f(y) = f(x) \left| \frac{dx}{dy} \right|$$

$$x = \frac{1}{\pi} \cos^{-1}(y)$$

$$dx = \frac{1}{\pi} \times \frac{-1}{\sqrt{1 - y^2}} dy$$

$$\Rightarrow \frac{\mathrm{dx}}{\mathrm{dy}} = \frac{-1}{\pi\sqrt{1-y^2}}$$

ace online

$$f(y) = \frac{1}{\pi \sqrt{1 - y^2}}$$

$$\sigma_y^2 = E[y^2] - [E[y]]^2$$

03. Ans: (d)

Sol: The probability density function of the envelope of a sinusoidal plus narrrow band noise is Rician.

$$f_{\rm R}(\mathbf{r}) = \frac{\mathbf{r}}{\sigma^2} \exp(-\frac{\mathbf{r}^2 + \mathbf{A}^2}{2\sigma^2}) I_0(\frac{\mathbf{A}\mathbf{r}}{\sigma^2})$$

04. Ans: (a)

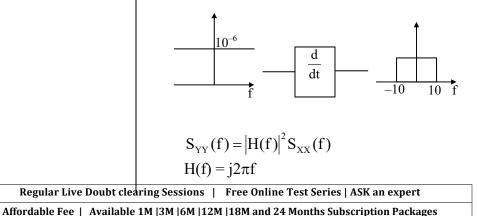
Sol: Given,

Differential equation of a system is

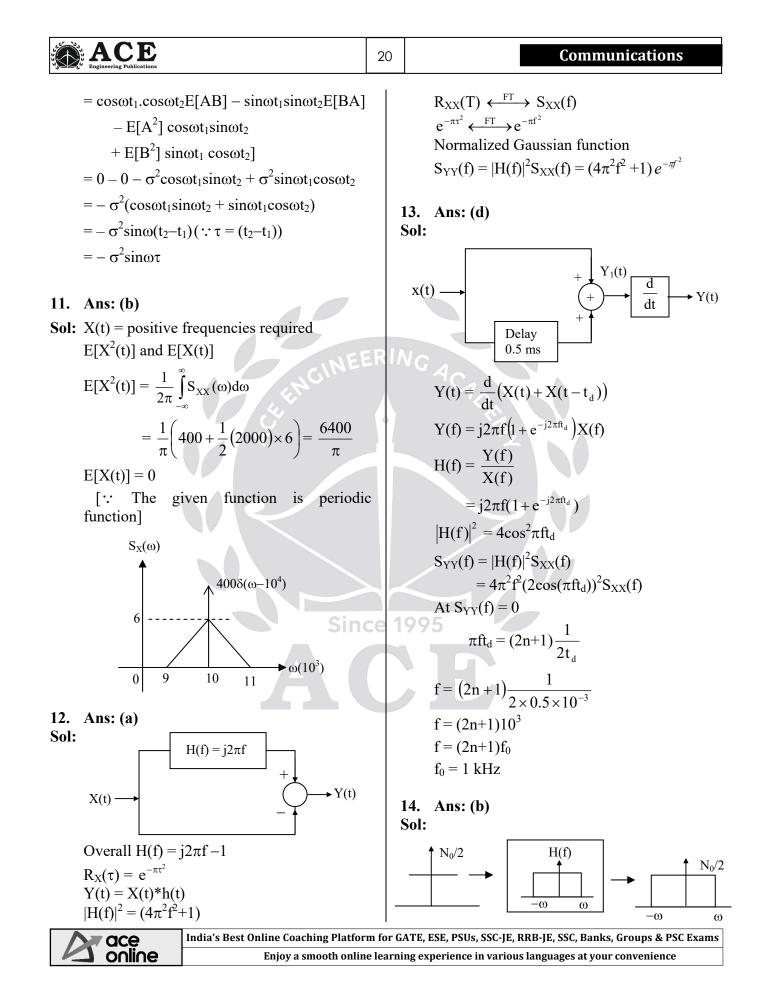
$$\frac{dy(t)}{dt} + y(t) = \frac{dx(t)}{dt} - x(t)$$

Applying Fourier transform,

$$\Rightarrow Y(f)(1+jf) = X(f)(jf-1)$$

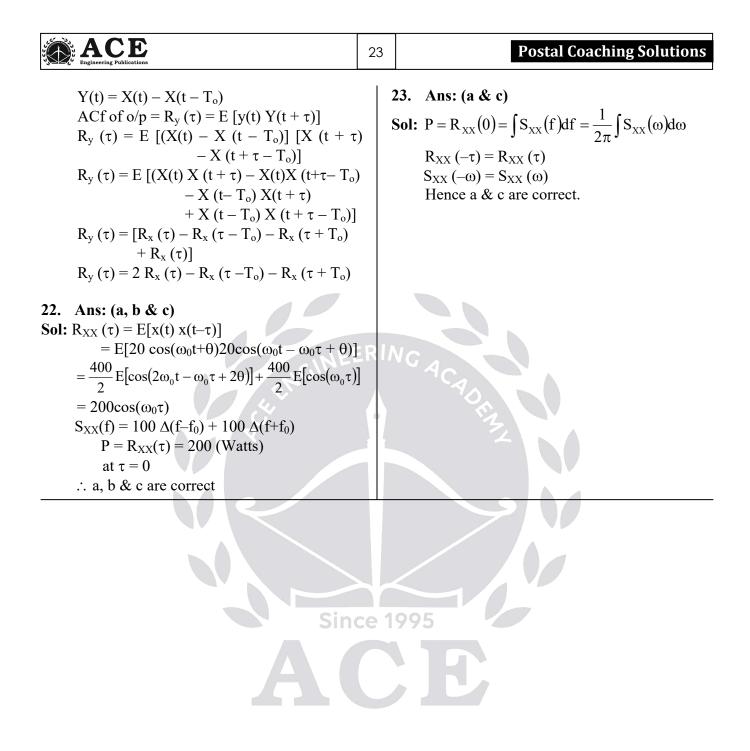

$$\frac{Y(f)}{X(f)} = \frac{-1 + jf}{1 + jf}$$

The transform function of system is a All pass filter

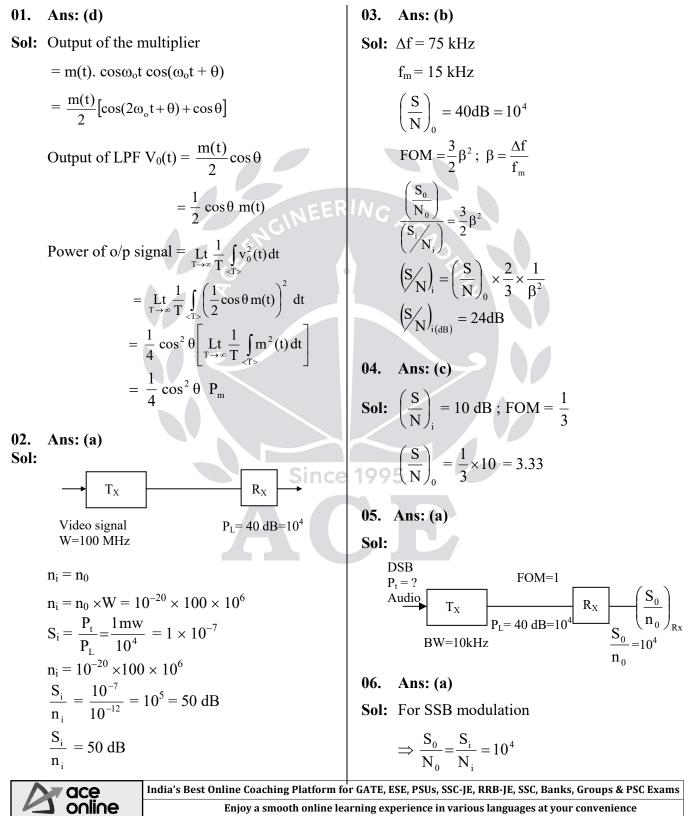

$$\therefore$$
 S_y(f) = S_x(f)

05. Ans: (a) Sol:

Since



Engineering Publications	Postal Coaching Solutions
$ H(f) ^2 = 4\pi^2 f^2$	08. Ans: (b)
$S_{YY}(f) = 4\pi^2 f^2 S_{XX}(f)$	Sol: $E(X) = \int_{-1}^{3} x \cdot p(x) dx = \frac{1}{4} \left[\frac{x^2}{2} \right]_{-1}^{3} = 1$
The Noise power at the output of the LPF is $_{10}$	
$N_{o} = \int_{-10}^{-10} S_{YY}(f) df$	$E(X^{2}) = \int_{-1}^{3} x^{2} p(x) dx = \frac{1}{4} \left[\frac{x^{3}}{3} \right]_{-1}^{3} = \frac{7}{3}$
$N_{o} = \int_{-10}^{10} 4\pi^{2} f^{2} \times 10^{-6} df$	Var(X) = E(X ²) - [E(X)] ² = $\frac{7}{3} - 1 = \frac{4}{3}$
$= 2 \times 4\pi^2 \times 10^{-6} \int_{0}^{10} f^2 df$	
ů,	09. Ans: (d) Sol: $R_{XX}(t_1, t_2) = E[X(t_1)X(t_2)]$
$= 2 \times 4\pi^2 \times 10^{-6} \times \frac{10^3}{3}$	$= E[A\cos\omega t_1 A\cos\omega t_2]$
GINE	$= \cos\omega t_1 \cos\omega t_2 \operatorname{E}[\operatorname{A}^2] [\because \operatorname{E}[\operatorname{A}^2] = 1/3]$
$\therefore N_{o} = 0.0263W$	$=\frac{1}{3}\cos\omega t_1\cos\omega t_2$
C.	$f_{A}(A)$
06. Ans: (a)	
Sol: Given, $n_{c} \qquad \uparrow S_{N}(f)$	
PSD of Noise = $\frac{\eta_0}{2}$ $\eta_0/2$	
$T = 27^{\circ} C \Rightarrow 300 K$	$(1)^2$
$P_n = K.T.B$ PSD of Noise f(H _z	12
$\eta_0 = KT$	$E[A^2] = \sigma^2 + [E[A]]^2$
	ce 1995 $=\frac{1}{12}+\frac{1}{4}$
$PSD = \frac{\eta_0}{2}$	
$=1.38 \times 10^{23} \times 150$	$E[A^2] = \frac{4}{12} = \frac{1}{3}$
	10. Ans: (b)
$=\frac{207}{10^{23}}$	Sol: $R_{XY}(t_1, t_2) = E[X(t_1)Y(t_2)]$
	Let $t_2 - t_1 = \tau$
07. Ans: (b)	$E[(A\cos\omega t_1 + B\sin\omega t_1)(B\cos\omega t_2 - A\sin\omega t_2)]$
Sol: $P_n = K.T.B$	$\therefore E[AB] = E[A] E[B]$
$=\left(\frac{1}{2} \times 1.38 \times 10^{-23} \times 300\right) \times 2 \times 10^{6} \times 2$	E[AB] = 0 $E[BA] = 0$
$-(2^{-1.50\times10})^{2\times10}\times2$	$E[BA] = 0$ $E[A^2] = \sigma^2$
$= 8.28 \times 10^{-15} \mathrm{W}$	$E[\mathbf{A}] = \mathbf{\sigma}^2$
Regular Live Doubt	clearing Sessions Free Online Test Series ASK an expert
	ble 1M 3M 6M 12M 18M and 24 Months Subscription Packages



Engineering Publications	21 Postal Coaching Solutions
Uncorrelated $\Rightarrow \operatorname{cov}(\tau) \Rightarrow R_{XX}(\tau) - \mu^2 \times (\tau)$ $\operatorname{cov}(\tau) = R_{XX}(\tau) \Rightarrow R_{n_0}(\tau) = 0$	17. Sol: Since
$\Rightarrow N\omega_0 \sin(2\omega\tau) = 0, \sin Cx = 0; x \text{ is a}$ integer $2\omega\tau = m$	an $y(t) = g_{p}(t) + X(t) + \sqrt{3/2}$ and $g_{p}(t)$ and X (t) are uncorrelated, then $C_{Y}(\tau) = C_{g_{n}}(\tau) + C_{X}(\tau).$
$\tau = \frac{m}{2\omega}$, integer m = 1, 2, 3	Where $C_{gp}(\tau)$ is the auto covariance of the periodic component and $C_x(\tau)$ is the auto covariance of the random component $C_Y(\tau)$
15. Ans: (b)Sol: We know that,	is the plot figure shifted down by $3/2$, removing the DC component $C_{gp}(\tau)$ and $C_x(\tau)$ are plotted below
$ACF \xleftarrow{F.T} S_x(f)$	ERINO C _{gp} (J)
Taking Inverse Fourier Transform $F^{-1}[S_y(t)] = \int_{0}^{\infty} S_y(t) e^{j2\pi f \tau} df$	0.5
$R_{y}(\tau) = \int_{-B_{0}}^{B_{0}} \frac{N_{0}}{2} e^{j2\pi f\tau} df = \frac{N_{0}}{2} \left[\frac{e^{j2\pi f\tau}}{j2\pi \tau} \right]_{-B_{0}}^{B_{0}}$	
$=\frac{N_0}{2\pi\tau}\left[\frac{e^{j2\pi B_0\tau}-e^{-j2\pi B_0\tau}}{2j}\right]$	0.5
$=\frac{N_0}{2\pi\tau}\sin(2\pi B_0\tau)$	$C_{x}(J)$ 1.0
$= N_0 B_0 \frac{\sin(2\pi B_0 \tau)}{2\pi B_0 \tau} $	ce 1995
$R_{y}(\tau) = N_{0}B_{0}\sin c(2B_{0}\tau)$	
16. Ans: (b) Sol: $R_x(\tau)$ N_0B_0	-T 0 T
	f
$\frac{-4}{2B_0} \frac{-3}{2B_0} \frac{-2}{2B_0} \frac{-1}{2B_0} + \frac{1}{2B_0} \frac{2}{2B_0} \frac{3}{2B_0} \frac{4}{2B_0}$	
$ \mathbf{t}_1 - \mathbf{t}_2 = \text{multipleof} \frac{1}{2B} \mathbf{t}_1 \mathbf{t}_2$	J
	ot clearing Sessions Free Online Test Series ASK an expert ilable 1M 3M 6M 12M 18M and 24 Months Subscription Packages
	המסוב ביי אסן וייטן אינטיין ארא אויטן אינטן אינן איז

	22 Communications
Both $g_p(t)$ and $X(t)$ have zero mean Average (a) The power of the periodic component $g_p(t)$ is therefore, $\frac{1}{T_0} \int_{-T_0/2}^{T_0/2} g_p^2(t) dt = C_{g_p}(0) = \frac{1}{2}$ (b) The average power of the random component $x(t)$ is $E[X^2(t)] = C_x(0) = 1$	 therefore equal to f₀. (d) If the sampling rate is f₀/n, where n is an integer, the samples are uncorrelated. They are not, however, statistically independent. They would be statistically
 18. Sol: (a) The power spectral density consists of two components: (b) to b be for all the formula (b) to b be formula (b) to be formula (b) to b be formula (b) to b be formula (b) to b be	$\frac{\text{Pre amp}}{\text{NF} = 2\text{dB}}$
 A delta function δ(t) and the origin whose inverse Fourier transform i one. A triangular component of uni amplitude and width 2f₀, centered a the origin; the inverse Fourie 	s t t t t t t t t t t t t t
transform of this component is $f_{sinc}^2(f_0\tau)$ Therefore, the autocorrelation function of $X(t)$ is $R_X(\tau) = 1+f_0 sinc^2 (f_0\tau)$	= 169.36 K
Which is sketched below: $R_X(\tau)$ $1+f_0$ Sine	20. Ans: 100 W Sol: $E[x^2(t)] = E[(3V(t) - 8)^2]$ $= E[(9V(t)^2 + 64 - 2 \times 3V(t) \times 8]$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$= E[(9V^{2}(t) + 64 - 48V(t)] \\= 9E[V^{2}(t)] + E[64] - 48E[V(t)] \\[EV(t)]=0, E[V^{2}(t)]=MS=R(0)=4e^{-5(0)}=4, \\E[constant] = constant] \\E[x^{2}(t)] = 9\times4 + 64 = 36 + 64 \\= 100$
(b) Since $R_X(\tau)$ contains a constant component of amplitude 1. It follows that the dc power contained in $X(t)$ is 1.	Sol
(c) The mean-square value of X(t) is given by $E[X^{2}(t)] = R_{X}(0)$ $= 1+f_{0}$	X $X(t)$ $Delay T_0$ $Y(t)$
India's Best Online Coaching Platfor	m for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams e learning experience in various languages at your convenience

	ACE Engineering Publications	25	Postal Coaching Solutions
	(Only SSB modulation in one sided $n/2$) $P_t = ?$ $\uparrow n/2$		$SNR_{o/p,dB} = SNR_{I/P,dB} - Nf_{dB} = 37 - 3$ $= 34 \text{ dB}$
ı S	$\frac{S_{i}}{n_{i}} = \frac{S_{0}}{n_{0}} = 10^{4}$ $S_{i} = 10^{4} \times 10 \times 10^{3} \times 2 \times 10^{-9} \text{ w/Hz}$		09. Ans: (a, c & d) Sol: FOM Sinusoidal = $\frac{\mu^2}{2 + \mu^2} = \frac{\frac{1}{4}}{2 + \frac{1}{4}} = \frac{1}{9} = 0.111$
((F	$S_{i} = 20 \times 10^{-2}$ $(S_{i})_{dB} = (P_{t})_{dB} - (P_{t})_{dB}$ $(P_{t})_{dB} = (S_{i})_{dB} + (P_{L})_{dB}$ $P_{t} = S_{i}P_{L} = 20 \times 10^{-2} \times 10^{4}$ $P_{L} = 2 \text{ kW}$	RI	FOM Triangular = $\frac{\mu^2 p_{mn}}{1 + \mu^2 p_{mn}} = \frac{\frac{1}{12}}{1 + \frac{1}{12}} = \frac{1}{13} = 0.0769$ Here $P_{mn} = \frac{1}{3}$
Sol: F	Ans: (c) For AM FOM = $\frac{1}{3}$ (if $\mu = 1$) $\frac{S_0}{N_0} = \left(\frac{1}{3}\right) \frac{S_i}{N_i} \implies S_i = 3 \left(\frac{S_0}{N_0}\right) \times N_i$ $= 3 \times 10^4 \times 2 \times 10^{-9} \times 10 \text{ kHz} = 0.6$ $\therefore P_t = S_i \times P_L = 0.6 \times 10^4 = 6 \text{ kW}$		FOM Square wave $= \frac{\mu^2 p_{mn}}{1 + \mu^2 p_{mn}} = \frac{\frac{1}{4}}{1 + \frac{1}{4}} = \frac{1}{5} = 0.2$ Here $P_{mn} = 1$ FOM Square wave (at $\mu = 1$) = $\frac{1}{1 + 1} = \frac{1}{2} = 0.5$ a, c & d are correct.
08. A	Ans: (b)		10. Ans: (b & c)
	Noise figure = $\frac{(SNR)_{I/P}}{(SNR)_{O/P}}$ Since $Nf_{,dB} = SNR_{i,dB} - SNR_{o/p,dB}$	ce 1	995

Baseband Data Transmission

- 01. Ans: (d) Sol: $\Delta = \frac{V_{max} - V_{min}}{2^{n}}$ $\Delta \alpha \frac{1}{2^{n}}$; $\frac{\Delta_{1}}{\Delta_{2}} = \frac{2^{n_{2}}}{2^{n_{1}}}$ $\frac{0.1}{\Delta_{2}} = \frac{2^{n+3}}{2^{n}}$ $\Delta_{2} = 0.1 \times \frac{1}{8}$ = 0.0125
- 02. Ans: (3)
- **Sol:** (BW)_{PCM} = $\frac{n f_s}{2}$

Where 'n' is the number of bits to encode the signal and $L = 2^n$, where 'L' is the number of quantization levels.

$$\begin{split} L_1 &= 4 \Longrightarrow n_1 = 2 \\ L_2 &= 64 \Longrightarrow n_2 = 6 \\ \frac{(BW)_2}{(BW)_1} &= \frac{n_2}{n_1} = \frac{6}{2} = 3 \\ (BW)_2 &= 3 \ (BW)_1 \end{split}$$

03. Ans: (c)

Sol: Given, Two signals sampled are with $f_s = 44100 \text{ s/sec}$ sample and each contains '16' bits Due to additional bits there is a 100%overhead. Out put bit rate =? $R_{h} = n^{\dagger}f_{s}^{\dagger}$ $f_{s}^{\mid} = 2f_{s\mid} = 2 \text{ [44100]}$ (: two signals sampled simultaneously)

 $n^{|}=2n$

(:: due to overhead by additional bits)

 $R_b = 4 (nf_s) = 2.822 Mbps$

04. Ans (c)

Sol: Number of bits recorded over an hour = $R_b \times 3600 = 10.16$ G.bits

05. Ans: (c)

Sol:
$$p(t) = \frac{\sin(4\pi W t)}{4\pi W t (1-16 W^2 t^2)}$$

At
$$t = \frac{1}{4W}$$
; $P\left(\frac{1}{4W}\right) = \frac{0}{0}$

Use L-Hospital Rule

$$Lt_{t \to \frac{1}{4W}} p(t) = Lt_{t \to \frac{1}{4W}} \frac{4\pi W \cos(4\pi W t)}{4\pi W - 64\pi W^3 (3t^2)}$$
$$= \frac{4\pi W (-1)}{4\pi W - 64\pi W^3 3 \left(\frac{1}{16W^2}\right)}$$
$$= \frac{-4\pi W}{-8\pi W} = 0.5$$

06. Ans: 35

Since

Sol: Given bit rate $R_b = 56$ kbps, Roll of factor $\alpha = 0.25$

BW required for base band binary PAM system

BW =
$$\frac{R_b}{2}[1 + \alpha] = \frac{56}{2}[1 + 0.25]kHz = 35kHz$$

e 07. Ans: 16
Sol:
$$R_b = nf_s = 8bit/sample \times 8kHz = 64 kbps$$

 $(B_T)_{min} = \frac{R_b}{2 \log_2 M}$
 $= \frac{R_b}{2 \log_2 4} = \frac{R_b}{2 \times 2}$
 $= \frac{R_b}{4} = \frac{64}{4}$
 $= 16kHz$

Engineering Publications	27	Postal Coaching Solutions
08. Ans: (b) Sol: Given $f_s = 1/T_s = 2k$ symbols/sec If $P(f) \Leftrightarrow p(t)$, Condition for zero ISI is given by $\frac{1}{T_s} \sum_{n=-\infty}^{\infty} P(f - n / T_s) = p(0)$ $\Rightarrow \sum_{n=-\infty}^{\infty} P(f - n / T_s) = p(0)T_s$ p(0) = area under P(f)		Option (a) is correct if pulse duration is from -1 to + 1 Option (c) is correct if the transition is from 0.8 to 1.2, -0.8 to -1.2 Option (d) is correct if the triangular duration is from -2 to +2 09. Ans: 200 Sol: m(t) = sin 100 π t + cos 100 π t = $\sqrt{2}$ cos [100 π t + ϕ]
$\frac{1}{-1.2 - 0.8 0 0.8 1.2} f(kHz)$ Area = $2 \times \frac{1}{2}(1)(0.4)k + 2 \times 0.8k = 2k$ $p(0) T_s = 2k \times \frac{1}{2k} = 1$ $\Rightarrow \sum_{n=-\infty}^{\infty} P(f - n/T_s) = 1$ The above condition is satisfied by only option (b) $\sum_{n=-\infty}^{\infty} P(f - n2k)$	y s	$\Delta = 0.75 = \frac{V_{max} - V_{min}}{L} = \frac{\sqrt{2} - (-\sqrt{2})}{L} = \frac{2\sqrt{2}}{L}$ $L = \frac{2\sqrt{2}}{0.75} \approx 4 = 2^{n}$ So n = 2 f = 50 Hz so Nyquist rate = 100 So, the bit rate = 100 × 2 = 200 bps 10. Ans: (b) Sol: Given $f_{m_{1}} = 3.6 \text{kHz} \Rightarrow f_{s_{1}} = 7.2 \text{kHz}$ $f_{m_{2}} = f_{m_{3}} = 1.2 \text{kHz} \Rightarrow f_{s_{2}} = f_{s_{3}} = 2.4 \text{kHz}$ $f_{s} = f_{s_{1}} + f_{s_{2}} + f_{3}$
$-2 - 1.2 - 0.8 \qquad 0 \qquad 0.8 \qquad 1.2 \qquad 2 \qquad f(kH)$ $\downarrow \qquad \qquad$		= 12kHz No. of Levels used = 1024 \Rightarrow n = 10bits \therefore Bit rate = nf _s =10 × 12 kHz =120 kbps 11. Ans: (a) Sol: $(f_s)_{min} = (f_{s_1})_{min} + (f_{s_2})_{min}$ $+ (f_{s_3})_{min} + (f_{s_4})_{min}$ = 200 + 200 + 400 + 800 = 1600 Hz
		g Sessions Free Online Test Series ASK an expert 3M 6M 12M 18M and 24 Months Subscription Packages

	inications
12. Ans: (c) $2^n = 500$ Sol: $n = 9$ $C_1 C_2 \dots C_N $ $R_b = n(f_S)_{TDM} + 9$ $K_b = n(f_S)_{TDM} + 9$ $f_S = R_N + 20\% R_N = R_N + 0.1$ W_i T W_i T W_i T W_i T W_i T $Minimum B.W of TDM is \sum_{i=1}^{N} W_i$ 13. Ans: (b) $R_b = (nf_S) + 0.5\%(nf_S)$ Sol: Number of patients = 10 MC	
ECG signal B.W = 100Hz $(Q_e)_{max} \le (0.25) \ \%V_{max}$ $\frac{2V_{max}}{2 \times 2^n} \le \frac{0.25}{100} V_{max}$ $2^n \ge 400$ $n \ge 8.64$ n = 9 Bit rate of transmitted data = 10×9×200 = 18kbps = 108540 bps 15. Ans: (b) Sol: To avoid slope over loading the o/p of the Integrator are the Base band signal should $\therefore \Delta f_s =$ slope of base band stand $\Delta \times 32 \times 10^3 = 125$ $\Delta = 2^{-8}$ Volts.	nd rate of rise of l be the same.
14. Ans: (a) Since 1995 16. Ans: (b)	
Sol: Peak amplitude $\rightarrow A_m$ Peak to peak amplitude A_m $\frac{-\Delta}{2} \le Q_e \le \frac{\Delta}{2}$ Sol: $x(t) = E_m \sin 2\pi f_m(t)$ $\frac{\Delta}{T_s} < \left \frac{dm(t)}{dt}\right \rightarrow slope \text{ ov}$ takes place	verload distortion
PCM maximum tolerable $\frac{\Delta}{2} = 0.2\% A_{\rm m}$ $\Delta = \frac{\text{Peak to peak}}{L} \Rightarrow \frac{2A/m}{2L} = \frac{0.2}{100} A_{\rm m}$ $\Rightarrow \frac{\Delta f_{\rm s}}{2\pi} < E_{\rm m} f_{\rm m} \qquad (\because A_{\rm s})$	$\Delta = 0.628)$
$(:: \Delta = \frac{2A_{m}}{L})$ $\Rightarrow L = 500$ $\Rightarrow 2L = 100$ 2π $\Rightarrow \frac{2A_{m}}{2\pi} < E_{m}f_{m}$ $f_{s} = 40 \text{ kHz} \Rightarrow 4 \text{ kHz} < E_{m}$	
India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Enjoy a smooth online learning experience in various languages at your	_

	ACE Engineering Publications	29	Postal Coaching Solutions
17.	Check for options (a) $E_m \times f_m = 0.3 \times 8 \text{ K} = 2.4 \text{ kHz}$ $(4K \leq 2.4 \text{ K})$ (b) $E_m \times f_m = 1.5 \times 4K = 6 \text{ kHz}$ (4K < 6 K) correct (c) $E_m \times f_m = 1.5 \times 2 \text{ K} = 3 \text{ kHz}$ $(4K \leq 3K)$ (d) $E_m \times f_m = 30 \times 1 \text{ K} = 3 \text{ kHz}$ $(4K \leq 3K)$ Ans: (a)		 20. The message signal m(t) = Sinc (400t) × Sinc(600t) is sampled then which of the following option is/are correct. NOTE: options are changed (a) Nyquist rate = 2 kHz (b) Nyquist rate = 1 kHz (c) Nyquist interval = 0.5 ms (d) Nyquist interval = 1 ms 20. Ans: (b & d) Sol:
Sol:	GINE	RI	$NG_{AC} \xrightarrow{-200} \stackrel{10}{\longrightarrow} \stackrel{200}{f}$
	m(t) = 6 sin $(2\pi \times 10^{3} t) + 4 sin (4\pi \times 10^{3} t)$ $\Delta = 0.314 V$ Maximum slope of m(t) = $\frac{d}{dt} (m(t))/t = \frac{\pi}{2}$ $= 2\pi \times 10^{3}(6) + 4\pi \times 10^{3}[4] = 28\pi \times 10^{3}$ Ans: (c) Pulse rate which avoid distortion $\Delta f_{s} = \frac{d}{dt} m(t)$ $f_{s} = \frac{28\pi \times 10^{5}}{0.314}$ $f_{s} = 280 \times 10^{3}$ pulses/sec Ans: (a, b & c)		Sinc(600t) \underbrace{CTFT}_{-300} $\underbrace{0}_{-300}$ $\xrightarrow{0}_{-300}$ $\xrightarrow{0}_{-300}$ $\xrightarrow{0}_{-300}$ $\xrightarrow{0}_{-300}$ $\xrightarrow{0}_{-300}$ $\xrightarrow{-500}_{-500}$ to 500 Hz $\therefore f_q = 2f_{max} = 1 \text{ kHz}$ $T_s = \frac{1}{f_q} = 1 \text{ ms}$ b & d are correct
	Ans. (a, b & c) a. $r_b = (Nn + EB)f_s$ $r_b = (80 + 5) 5000 = 425(kbps)$ b. $r_b = Nnf_s$ $r_b = 10(8+1) 5000 = 450(kbps)$ c. $r_b = (Nn + EB)f_s$ $r_b = (80 + 10) 5000 = 450(kbps)$ d. $r_b = Nnf_s$ $r_b = 10(8+0.8) 5000 = 440(kbps)$ \therefore a, b & c are correct		

Bandpass Data Transmission

01. Ans: (c) 04. Ans: (a) **Sol:** $(BW)_{BPSK} = 2f_b = 20 \text{ kHz}$ Sol: Non coherent detection of PSK is not possible. So to overcome that, DPSK is $(BW)_{OPSK} = f_b = 10 \text{ kHz}$ implemented. A coherent carrier is not required to be generated at the receiver. 02. Ans: (b) **Sol:** $f_H = 25 \text{ kHz}$; $f_L = 10 \text{ kHz}$ 05. Ans: (c) .: Center frequency **Sol:** In QPSK baud rate = $\frac{\text{bit rate}}{2} = \frac{34}{2}$ $=\left(\frac{25+10}{2}\right)$ kHz = 17 Mbps= 17.5 kHz06. Ans: (d) : Frequency offset, Sol: $\Omega = 2\pi \ (25 - 17.5) \times 10^3$ b(t) $o/p b^{1}(t)$ $=2\pi$ (7.5) × 10³ $= 15 \times 10^3 \pi \text{ rad/sec}$ Delay The two possible **FSK** signals are orthogonal, if $2\Omega T = n\pi$ 0 0 b(t)0 0 0 $b^{1}(t)_{(Ref.bit)}$ 0 1 0 $\Rightarrow 2(15\pi) \times 10^3 \times T = n\pi$ Phase 0 π π π π $\Rightarrow 30 \times 10^3 \times T = n$ (integer) This is satisfied for, $T = 200 \mu sec.$ 07. Ans: (b) Sol: Given Bit stream 110 111001 Since 03. Ans: (a) Reference bit = 1**Sol:** $r_b = 8$ kbps Coherent detection b(t) $\Delta f = \frac{nr_b}{2}$ Q(t)Best possible n = 1 $\Delta f = \frac{8K}{2} = 4K$ $b^{l}(t) = b(t) \odot Q(t)$ $1 \ 1 \ 0 \ 1 \ 1 \ 1 \ 0 \ 0 \ 1$ To verify the options $\Delta f = 4k$ i.e. $f_{C2} - f_{C1} = 4K$ (a) 20 K - 16 K = 4 K1 1 0 0 0 0 1 0 0 (b) 32 K - 20 K = 12 K(c) 40 K - 20 K = 20 KΟΟππππΟππ (d) 40 K - 32 K = 8 KIndia's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams ace online Enjoy a smooth online learning experience in various languages at your convenience

	ACE Engineering Publications	31		Communications
08. Sol:	Ans: (d) $r_b = 1.544 \times 10^6$ $\alpha = 0.2$ $BW = \frac{r_b}{\log_2^M} (1 + \alpha)$		11. Sol:	Ans: (b) Here 16-points are available in constellation which are varying in both amplitude and phase. So, it 16QAM.
	62		12.	Ans: (d)
	$=\frac{1.544\times10^{6}}{2}(1+0.2) (:: M=4)$		Sol:	$BW = \frac{r_b}{\log_2 M} (1 + \alpha)$
	$BW = 926.4 \times 10^3 \text{ Hz}$			$36 \times 10^6 = \frac{r_b}{2} (1 + 0.2) (:: M = 4, QPSK)$
09. Sol:	Ans: 0.25 BW = 1500 Hz BW required for M ary BSK is	RI	NOT	$r_b = 60 \times 10^6$ bps FE: new question 13th is added in text book
	BW required for M-ary PSK is $\frac{R_{b}[1+\alpha]}{\log_{2} 16} = 1500 \text{Hz}$ $\Rightarrow R_{b} [1+\alpha] = 1500 \times 4 = 6000$ $\Rightarrow (1+\alpha) = \frac{6000}{4800}$		13.	Which among the following modulation, schemes consume less bandwidth (a) B-PSK (b) Q-PSK (c) 64-PSK (d) 64-QAM Ans: (c & d)
	1000		Sol:	Bandwidth of 64-PSK = $\frac{2r_b}{6} = \frac{r_b}{3}$
	Roll off factor $\Rightarrow \alpha = \frac{6000}{4800} - 1 = 0.25$			Bandwidth 64-QAM = Bandwidth of 64-PSK
10. Sol:	Ans: (b) Since Here only phase is changing. From options (b) is the optimum answer.	e		Ans: (a, b & d) M-ary ASK constellation plot will always come on a single line (either x-axis or y-axis).

Noise in Digital Communication

Noise Ratio

01. Ans: (b)

Chapter

Sol: Signal to quantization noise ratio only depends on no. of quantization levels (L) and no. of bits per sample(n)

For sinusoidal input SQNR = 1.76+6n dB= $1.76+6\times12$ = 73.76 dB

For uniform distributed signal = 6ndB= 6×12 = 72 dB

02. Ans: (a) Sol: For Bipolar pulses,

$$PSD = \frac{|P(\omega)|^2}{T_b} \cdot \sin^2\left(\frac{\omega T_b}{2}\right)$$

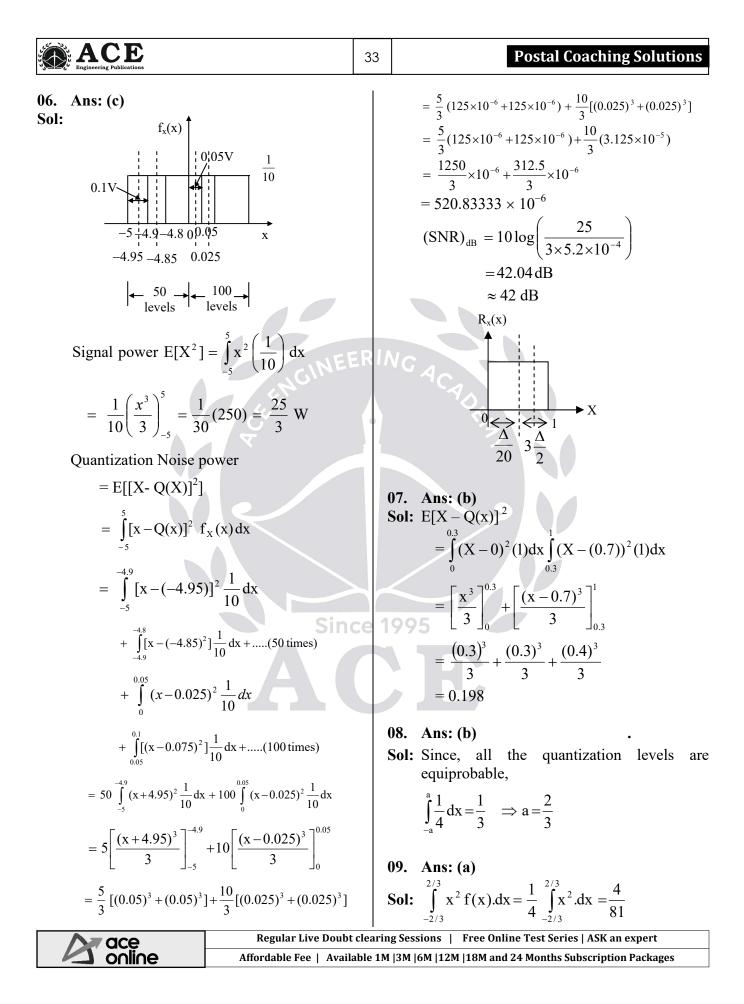
The zero magnitude occurs for $f = n/T_b$. \therefore The width of the major lobe = $1/T_b$ $= f_b$ \therefore (B.W)_{min} = f_b Here, Data rate = nf_s = 8(8 kHz) = 64 kbps \therefore (B.W)_{min} = 64 kHz

03. Ans: (c)Sol: Since the signal is uniformly distributed,

$$f(x) = \frac{1}{10} \text{ for } -5 \le x \le 5$$
$$= 0 \quad : \text{ else where.}$$

Signal Power = $\int_{-5}^{5} x^2 f(x) dx = \frac{25}{3} \text{ volts}^2$ Step size = $\frac{V_{p-p}}{L} = \frac{10}{2^8} = 0.039 \text{ V}$ $N_q = \frac{\Delta^2}{12} = 0.126 \text{ mW}$

Signal to noise ratio, SNR in dB is


SNR =
$$10 \log \left(\frac{\text{signal power}}{\text{Noise power}} \right)$$

= $10 \log \left(\frac{25/3}{0.126 \times 10^{-3}} \right)$
= 48 dB

04. Ans: (b)
Sol: For every one bit increase in data word length, quantization Noise Power becomes ¹/₄ th of the original. Hence, Data word length for n = 9 bits is, ∴ L = 2ⁿ = 2⁹ = 512

05. Ans: (c) Sol: $V_{P-P} = -5V$ to 5V $20\log L = 43.5$ $L = 10^{2.175}$ = 149.6 $\Rightarrow \Delta = \frac{V_H - V_L}{L}$ $= \frac{5 - (-5)}{10^{2.175}}$ $\Delta = 0.06683$

Since

Communications

Matched Filter

01. Ans: (d)

Sol: The time domain representation of the o/p of a Matched filter is proportional to Auto correlation function of the i/p signal, except for a time delay

$$R_{ss}(\tau) = \int_{0}^{10^{-4}} S(t) \cdot S(t+\tau) dt$$

= $\int_{0}^{10^{-4}} 10 \sin(2\pi \times 10^{6} t) \cdot 10 \sin(2\pi \times 10^{6} (t+\tau)] dt$
= $50 \int_{0}^{10^{-4}} [\cos(2\pi \times 10^{6} \tau) - \cos(4\pi \times 10^{6} t + 2\pi \times 10^{6} \tau)] dt$
= $50 \times 10^{-4} \cos(2\pi \times 10^{6}) \tau$

 \therefore The Peak is 5mV

02. Ans: (b)

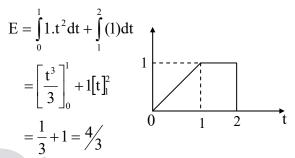
Sol: The matched filter has maximum value of output at t = T is energy of the signal

 $\Rightarrow \mathbf{E}_{s} = \int_{0}^{1} \mathbf{A}^{2} dt + \int_{2}^{3} \mathbf{A}^{2} (1) dt$ $= \mathbf{A}^{2} + \mathbf{A}^{2} = 2\mathbf{A}^{2}$

Sol:
$$(SNR)_0 = \frac{E_s}{N_0} = \frac{\frac{B}{2} \cdot T}{N}$$
$$= \frac{B^2 T}{2N}$$

04. Ans: (b)

Sol: Given,


$$\frac{S_{02}(t)}{N} = \frac{S_{01}(t)}{N} \Longrightarrow \frac{2E_{s_1}}{N} = \frac{2E_2}{N}$$
$$A^2T = \frac{B^2}{N}T \implies A = \frac{B}{N}$$

 $\sqrt{2}$

2

05. Ans: (d)

Sol: Output of the matched filter is maximum which is equal to the energy in the signal

The time instant which occurs the maximum value is its time period T = 2

06. Ans: (c)

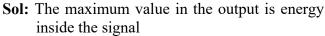
Sol: Given,

$$H(f) = \frac{1 - e^{-j\omega t}}{j\omega}$$

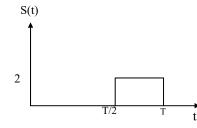
$$H(f) = \frac{1}{j\omega} - \frac{e^{-j\omega t}}{j\omega}$$
Applying I.F.T
$$h(t) = 0.5(sgn(t) - sgn(t - T_0))$$

$$\left(\because F(sgn(t)) = \frac{2}{j\omega}\right)$$

$$= 0.5[2 u(t) - 1 - [2u(t - T_0) - 1]]$$


$$= [u(t) - u(t - T_0)]$$
We know that
$$h(t) = s^*(t - T)$$

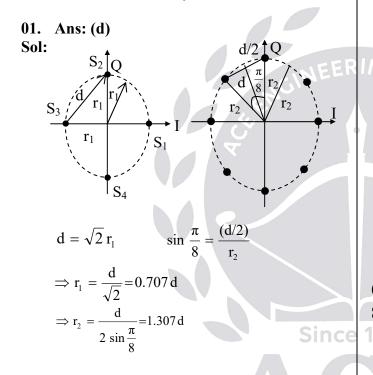
$$h(t) = s^{*}(t - T)$$


$$\therefore S_{i}(t) \qquad 0 \qquad T$$

07. Ans: (d)

Since 19

→ t


 OCE
 India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams

 Enjoy a smooth online learning experience in various languages at your convenience

ACE Engineering Publications

$$\Rightarrow S_0(t)\Big|_{max} = \int_{\frac{T}{2}}^{T} 2^2 dt$$
$$= 4\int_{\frac{T}{2}}^{T} 1 dt$$
$$= 4[T - T/2]$$
$$= 2T$$

Probability of Error

02. Ans: (d)

Sol: 4-PSK, 8-PSK both have same error probability when both signals have same minimum distance between pairs of signal points.

$$P_{e} = Q\left(\frac{\sqrt{d_{min}^{2}}}{2N_{0}}\right)$$
$$P_{e} = 2Q\left(\sqrt{\frac{2E_{s}}{N_{0}}\sin^{2}\left(\frac{\pi}{M}\right)}\right)$$

Where E_s is the average symbol energy

Given both constellation d_{min} is same i.e., 'd'

Average Symbol Energy:

$$(\mathbf{E}_{s})_{4\text{PSK}} = \frac{\mathbf{E}_{s_{1}} + \mathbf{E}_{s_{2}} + \mathbf{E}_{s_{3}} + \mathbf{E}_{s_{4}}}{4}$$

Where E_{s_k} is the symbol 'S_k' Energy

= (distance from the origin to the symbol $(S_k)^2$

$$(E_s)_{4PSK} = \frac{r_1^2 + r_1^2 + r_1^2 + r_1^2}{4} = r_1^2$$

Similarly, For 8 PSK

$$(E_{s})_{8PSK} = r_{2}^{2}$$
$$\frac{(E_{s})_{8PSK}}{(E_{s})_{4PSK}} = \left(\frac{r_{2}}{r_{1}}\right)^{2} = \left(\frac{1.307d}{0.707d}\right)^{2}$$
In dB.

$$(E_{s})_{8PSK (dB)} - (E_{s})_{4PSK (dB)} = 10 \log \left(\frac{1.307}{0.707}\right)^{2}$$

= 5.33 dB
$$(E_{s})_{8PSK} = (E_{s})_{4PSK} + 5.33 dB$$

8 PSK required additional 5.33 dB

03. Ans: (b) Sol: Constellation 1: $s_1(t) = 0$;

 $s_{2}(t) = -\sqrt{2} a \phi_{1} + \sqrt{2} a \phi_{2}$ $s_{3}(t) = -2\sqrt{2} a \phi_{1} ;$ $s_{4}(t) = -\sqrt{2} a \phi_{1} - \sqrt{2} a \phi_{2}$

Energy of $S_1(t) = E_{S1} = 0$; $E_{S2} = 4a^2$; $E_{S3} = 8a^2$; $E_{S4} = 4a^2$

Average Energy of constellation 1

$$=\frac{E_{s1}+E_{s2}+E_{s3}+E_{s4}}{4}=4a^{2}$$

Constellation 2:

$$s_1(t) = a\phi_1 \implies E_{S1} = a^2$$

$$s_2(t) = a.\phi_2 \implies E_{S2} = a^2$$

 Regular Live Doubt clearing Sessions
 Free Online Test Series | ASK an expert

 Affordable Fee |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

ACE Engineering Publications

$$\begin{split} s_3(t) &= -a.\varphi_1 \implies E_{S3} = a^2\\ s_4(t) &= -a.\varphi_2 \implies E_{S4} = a^2\\ \text{Average Energy of constellation 2}\\ &= \frac{E_{S1} + E_{S2} + E_{S3} + E_{S4}}{4} = a^2 \end{split}$$

The required Ratio is 4

04. Ans: (a)

Sol: The distance between the two closest points in constellation 1 is $d_1 = 2a$.

The same in constellation 2,

$$\mathbf{d}_2 = \sqrt{2} \mathbf{a}$$

Since $d_1 > d_2$, Probability of symbol error for constellation 1 is lower

05. Ans: (a)
Sol:
$$S(t) = \sqrt{\frac{2E}{T_b}} \left[\cos(\omega_c t + \frac{2\pi}{m}(i-1)) \right]$$

 $= \sqrt{\frac{2E}{T_b}} \left[\cos\omega_c t..\cos\left(\frac{2T}{m}(i-1)\right) - \sin\omega_c t.\sin\frac{2\pi}{m}(i-1) \right]$
 $= \sqrt{\frac{2}{T_b}} \cos\omega_c \sqrt{E} \cos\left(\frac{2\pi}{m}(i-1)\right) - \sqrt{\frac{2}{T_b}} \sin\omega_c \sqrt{E} \sin\frac{2\pi}{m}(i-1)$
Given binary digital communication m = 2
 $\sqrt{\frac{2}{T_b}} \cos\omega_c t \sqrt{E} \cos\pi$
 \therefore basic function = 2 cos $\omega_c t$

$$\Rightarrow T_b = \frac{1}{2}$$

$$2\cos\omega_{c}t\left(\sqrt{E}\cos\pi(f-1)\right) - [2\sin\omega_{c}t]\sqrt{E}\sin\pi(i-1)$$

$$\begin{array}{c|c} -\mathbf{x} & \mathbf{x} \\ (-\sqrt{E},0) & (\sqrt{E},0) \end{array}$$

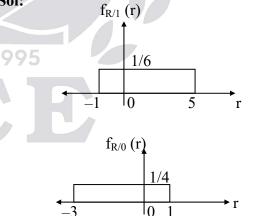
Distance between two points is:

$$\sqrt{(\sqrt{E} + \sqrt{E})^2} + 0$$
$$\sqrt{4E} = 2\sqrt{E}$$

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

Energy of the signal:

$$\int_{0}^{T_{b}} (A \cos \omega_{c} t)^{2} = \frac{A^{2}T}{2}$$


$$\Rightarrow d = 2\sqrt{\frac{A^{2}T_{b}}{2}} = 2\sqrt{\frac{A^{2} \times T_{b}}{2}} = A$$

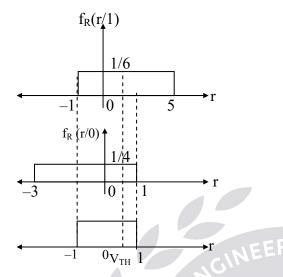
$$\left(:: T_{b} = \frac{1}{2}\right) \qquad \therefore \quad d = A$$

06. Ans: (c)

Sol:
$$P_e = Q\left[\sqrt{\frac{E_b}{N_o}}\right]$$

 $E_b = \frac{\alpha^2 T_b}{2} = \frac{\alpha^2}{2R_b}$
 $\alpha = 4mV, R_b = 500 \text{ kbps},$
 $N_o = 10^{-12} \text{W/Hz}.$
 $\frac{E_b}{N_o} = \frac{16 \times 10^{-6}}{2 \times 500 \times 10^3 \times 10^{-12}} = 16$
 $P_e = Q\left[\sqrt{16}\right] = Q[4]$

07. Ans: (d) Sol:


P(0) = 1/3; P(1) = 2/3

The probability of error of the symbols 0 & 1 are not the same.

 \therefore The intersection point of the two pdf's is

not the threshold of detection.

Assume the threshold value to be V_{TH}

For minimum error the V_{TH} should lie in the area of intersection of the 2 pdf's.

$$P_{e_{1}} = \int_{-1}^{V_{TH}} \left(\frac{1}{6}\right) dr = \frac{1}{6} (V_{TH} + 1)$$
$$P_{e_{0}} = \int_{V_{TH}}^{1} \left(\frac{1}{4}\right) dr = \frac{1}{4} (1 - V_{TH})$$

Decision error probability

$$= P_{e_0} P(0) + P_{e_1} P(1)$$

= $\frac{1}{4} (1 - V_{TH}) \left(\frac{1}{3}\right) + \frac{1}{6} (1 + V_{TH}) \left(\frac{2}{3}\right)$
P_e = $\frac{1 - V_{TH}}{12} + \frac{2(1 + V_{TH})}{18}$

For minimum decision error probability, $-1 < V_{TH} < 1$

For
$$V_{TH} = -1$$

BER $= \frac{1 - (-1)}{12} = \frac{1}{6}$ (min value)

 \therefore Decision error probability = 1/6

08. Ans: (c)

Sol: The optimum threshold value is

$${}^{\Lambda}_{x} = \frac{\sigma^{2}}{x_{1} - x_{2}} \left[\ell n \frac{P(x_{2})}{P(x_{1})} + \frac{x_{1}^{2} - x_{2}^{2}}{2\sigma^{2}} \right]$$

$$x_1 = 1, x_2 = -1$$

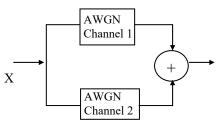
 $P(x_1) = 0.75, \quad P(x_2) = 0.25$ $\stackrel{\Lambda}{x} = \frac{\sigma^2}{2} \left[\ell n \frac{0.25}{0.75} \right] = -\frac{\sigma^2}{2}$

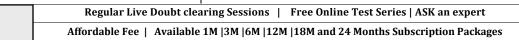
So $\stackrel{\Lambda}{x}$ should be strictly negative.

09. Ans: (c)

a = 6

Sol: Y = X + ZZ is Gaussian RV with mean βx


> $x \in \{-a, +a\}$ when $\beta = 0$ E[y] = E[x] + E[z]E[y] = E[x] = +a


BER = Q(a) = 1 × 10⁻⁸
Q(v) =
$$\frac{1}{\sqrt{2\pi}} \int_{v}^{\infty} e^{\frac{-v^2}{2}} du \cong e^{\frac{-v^2}{2}}$$

Q(a) = 1 × 10⁻⁸ ≈ $e^{\frac{-a^2}{2}}$

when
$$\beta = -0.3$$
 mean = $6 \times -0.3 = -1.8$
so E (y) = E(x)+E(z)
= $6 - 1.8 = 4.2$

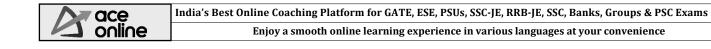
1995 so BER = Q (4.2) \cong e $\frac{-(4.2)^2}{2}$ $\cong 0.0001$ $\cong 10^{-4}$

10. Ans: 1.414 Sol: When the signal is transmitted through a channel BER = $Q[\sqrt{r}]$.

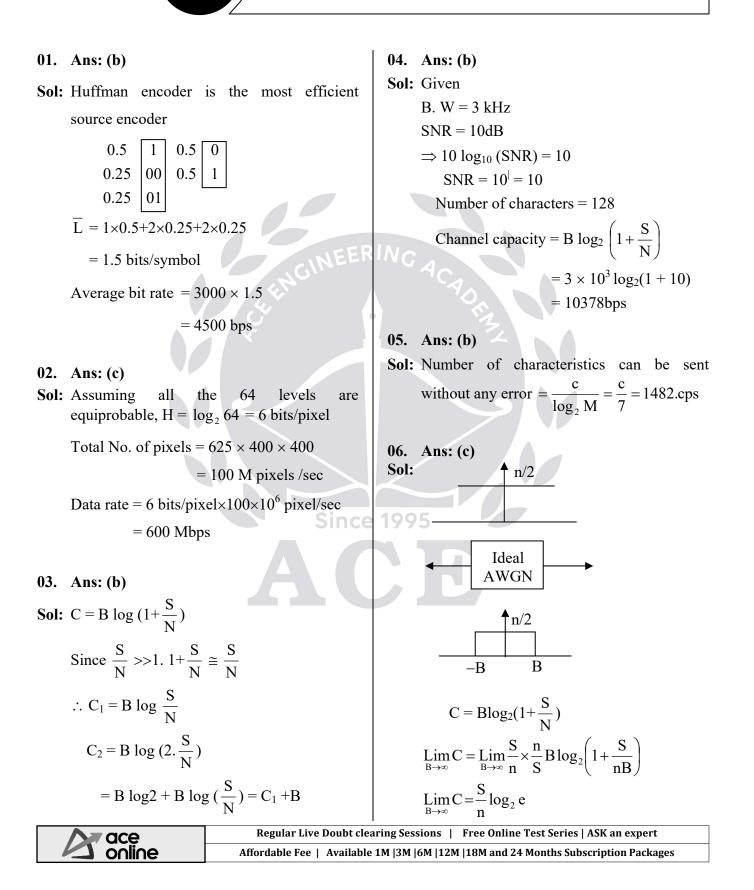
ACE	
Engineering Publications	

At the input of the receiver signal amplitude $E_{d,d} = 4 \int (t)^2 dt = \frac{4}{3}$ is doubled. But when two independent Gaussian Random Variables are added, the P_e is minimum when E_d is maximum resultant random variables is also a Gaussian random. The pdf is the E_d of signal (a) is more when compared to convolution of individual pdf's. E_d of other signals. The variance indicates the noise power .: Probability of error is minimum for But the variance is doubled. signal (a). Signal power increased by a factor of 12. Ans: (b) 4(mean is doubled). **Sol:** o/p Noise Power = o/p PSD × B.W But the noise increases by a factor of 2 $=10^{-20} \times 2 \times 10^{6}$ So the signal to noise increases by a factor of 2 $= 2 \times 10^{-14} \text{ W}$ So $b = \sqrt{2} = 1.414$ Since mean square value = Power BER = $Q[\sqrt{2r}] = Q[\sqrt{2}\sqrt{r}] = Q[1.414\sqrt{r}]$ $\frac{2}{\alpha^2} = 2 \times 10^{-14} \Longrightarrow \alpha = 10^7$ So b = 1.41413. Ans: (d) 11. Ans: (a) Sol: When a 1 is transmitted: $Y_k = a + N_k$ Sol: Probability of error for an AWGN channel for binary transmission is given as Threshold $Z = \frac{a}{2} = 10^{-6}$ $P_e = Q\left(\sqrt{\frac{E_d}{2N_e}}\right)$ $\Rightarrow a = 2 \times 10^{-6}$ For error to occur, $Y_k < 10^{-6}$ $2 \times 10^{-6} + N_k < 10^{-6}$ Where $E_{d} = \int_{0}^{T} [s_{1}(t) - s_{2}(t)]^{2} dt$ $N_k < -10^{-6}$ $\therefore P(0/1) = \int^{-10^{-6}} P(n) dn$: Given $s_1(t) = g(t)$ Since $s_{2}(t) = -g(t)$ $= \int_{0}^{10^{\circ}} (0.5) \alpha e^{-\alpha n} dn, \text{ with } \alpha = 10^{7}$ $E_{d} = \int_{0}^{T} [g(t) - (-g(t))]^{2} dt$ $= 0.5 \times e^{-10}$ $=4\int_{0}^{T}g^{2}(t)dt$ When a '0' is Transmitted: $E_{d,a} = 4 \int_{}^{1} (1)^2 dt = 4$ $Y_k = N_k$ For error to occur, $Y_k > 10^{-6}$ $E_{d,b} = 4 \left| \int_{0}^{1/2} (2t)^2 dt + \int_{0}^{1} (-2t+2)^2 \right| dt$: $P(1/0) = \int_{0}^{\infty} P(n) dn = 0.5 \times e^{-10}$ Since, both bits are equiprobable, the $=\frac{4}{6}+\frac{4}{6}=\frac{4}{3}$ Probability of bit error $=\frac{1}{2} \left[P(0/1) + P(1/0) \right]$ $E_{d,c} = 4 \int_{0}^{1} (1-t)^{2} dt = \frac{4}{3}$ $= 0.5 \times e^{-10}$ India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams ace online Enjoy a smooth online learning experience in various languages at your convenience

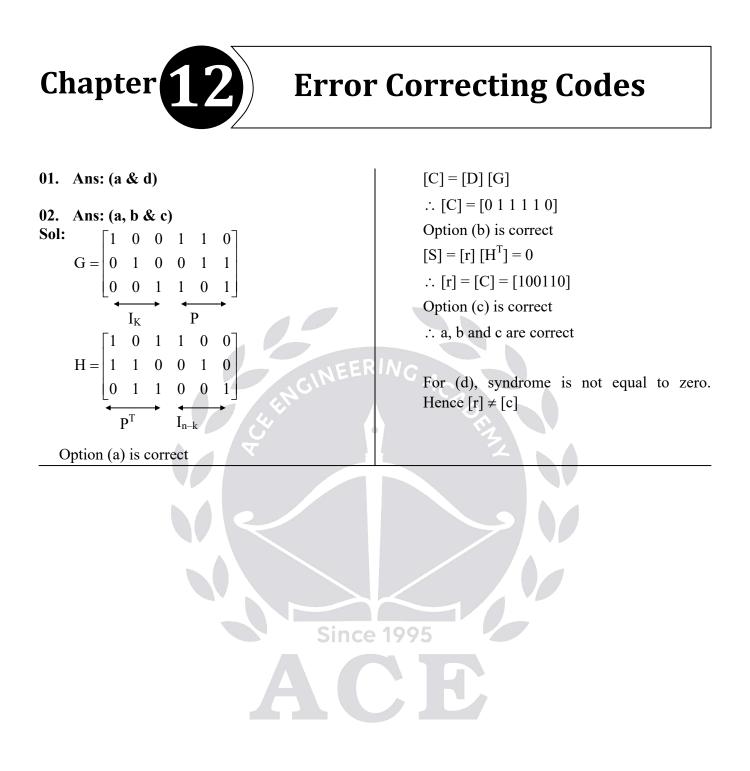
ACE Engineering Publications


39

- Ans: 0.125 14. Ans: (a) 18. **Sol:** P(0/1) = P(1/0) = pSol: $f_N(n)$ $\Rightarrow P(1/1) = P(0/0) = 1 - p.$ 0.5 Reception with error means getting at most 1/4 1/4 P(N<−1) one 1. P(N>1) \therefore P(reception with error) = P(X = 0) + P(X = 1) $= 3_{C_{0}} (1-p)^{0} p^{3} + 3_{C_{1}} (1-p)^{1} p^{2}$ $P(E) = P(x = -1)P\left(\frac{R}{x = -1} > 0\right) + P(x = 1)P\left(\frac{R}{x = +1} < 0\right)$ $= p^{3} + 3p^{2}(1-p)$ 15. Ans: (d) = 0.5P(x+N>0) + 0.5 P(x+N<0)**Sol:** $p = probability of a bit being in error = 10^{-3}$ q = probability of the bit not being in error = 0.5 P(-1+N>0) + 0.5P(1+N<0) $= 1 - p = 1 - 10^{-3}$ = 0.5 P(N > 1) + 0.5P(N < -1)= 0.999(1) Total number of bits = 10; $=0.5\left|\frac{1}{2}\frac{1}{4}(1)\right|+0.5$ $P_e = probability of error$ = 1 - P(X = 0)P(X = 0) = Probability of no error $=\frac{1}{8}=0.125$ $\therefore P_e = 1 - [{}^{10}C_0(10^{-3})^0(1 - 10^{-3})^{10}] = 0.00995$ (2) Total number of bits = 100 $P_{e} = 1 - [^{100}C_{0}(10^{-3})^{0}(1 - 10^{-3})^{100}]$ 19. Ans: -0.5 = 0.0952 $\mathbf{x} = \{-0.5, 0.5\}$ Sol: (3) Total number of bits = 1000 $P_{e} = 1 - [{}^{1000}C_{0}(10^{-3})^{0}(0.999^{1000})]$ $P(x = -0.5) = \frac{1}{4}, P(x = 0.5) = \frac{3}{4}$ $P_{e} = 0.632$ (4) If total number of bits = 10,000-0.5 $= 1 - [(^{10,000}C_0)(1 - 10^{-3})^0(0.999)^{10,000}]$ = 0.9999Conclusion: As the number of bits increases, the probability of error increases and it approaches unity. P_e in the overlap region $-0.5 < \alpha < 0.5$ 16. Ans: (a) $P_{e} = \frac{1}{4} \frac{1}{2} (0.5 - \alpha) + \frac{3}{4} (\frac{1}{2}) (\alpha + 0.5)$ Sol: Higher modulation techniques requires more power i.e., to achieve same probability of error, bit energy has to be increased. $=\frac{0.5}{8}+\frac{1.5}{8}+\left(\frac{3}{8}-\frac{1}{8}\right)\alpha$ So, power also increased. 17. Ans: (a) $=\frac{2}{8}+\frac{2}{8}\alpha$ Sol: Higher modulation techniques requires more power i.e., to achieve same probability \therefore P_e is minimum for $\alpha = -0.5$ of error, bit energy has to be increased.
 - So, power also increased.


online

Engineering Publications	40	Communications
20. Ans: (a & c) Sol: $f_m = 15 \text{ kHz}$ $f_s = 2f_m = 30 \text{ kHz}$ L = 128 n = 7 (Bits/sample) $R_b = nf_s = 7 \times 30 \times 10^3 = 210 \text{ (Kbps)}$ ∴ a & c are correct.		21. Ans: (a & d) Sol: $s(t)$ occurs at $t = T_b = T(sec)$ $s(t)_{MAX} = E\{s(t)\} = \int_{0}^{\frac{T}{2}} \frac{A^2}{4} dt + \int_{\frac{T}{2}}^{T} \frac{A^2}{4} dt = \frac{A^2}{4}T$ \therefore a & d are correct



Information Theory & Coding

Chapter

ACE Engineering Publications	42 Communications
$(:: \lim_{n \to \infty} x \log \left(1 + \frac{1}{Q} \right) = \log e)$ $\lim_{B \to \infty} C = 1.44 \frac{S}{n}$	$=\frac{0.8\times\frac{1}{7}}{0.8\times\frac{1}{7}+0.2\times\frac{6}{7}}=0.4$
07. Ans: (b)	10. Ans: (a & d)
Sol: Max. entropy = $512 \times 512 \times \log_2 8$ = 786432 bits	11. Ans: (b & c) Sol: $P(x_1) = \frac{1}{3}$
08. Ans: (d) Sol: Maximum entropy of a binary source: $H(x)/_{max} = \log_{2} M$ $H(x)/_{max} = \log_{2} 2 = 1 \text{ bit/symbol}$ 09. Ans: 0.4 Sol: $P\left(\frac{x=1}{y=0}\right) = \frac{P(x=1, y=0)}{P(y=0)}$ $= \frac{P(x=1)P\left(\frac{y=0}{x=1}\right)}{P(x=1)P\left(\frac{y=0}{x=1}\right) + P(x=0)P\left(\frac{y=0}{x=0}\right)}$	$P(x_{2}) = 1 - \frac{1}{3} = \frac{2}{3}$ $P(y_{1}) = P(x_{1})P\left(\frac{y_{1}}{x_{1}}\right) + P(x_{2})P\left(\frac{y_{1}}{x_{2}}\right)$ $P(y_{1}) = \frac{1}{3}(0.9) + \frac{2}{3}(0.2)$ $P(y_{1}) = \frac{1.3}{3} = 0.433$ $P(y_{2}) = P(x_{1})P\left(\frac{y_{2}}{x_{1}}\right) + P(x_{2})P\left(\frac{y_{2}}{x_{2}}\right)$ $P(y_{2}) = \frac{1}{3}[0.1] + \frac{2}{3}[0.8] = \frac{1.7}{3} = 0.5666$ \therefore b & c are correct
Sinc	ce 1995

	India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams
l l l l l l l l l l l l l l l l l l l	Enjoy a smooth online learning experience in various languages at your convenience

Chapter 13 Optical Fiber Communication