

GATE | PSUs

INSTRUMENTATION ENGINEERING

Communication & Optical Instrumentation

(Text Book: Theory with worked out Examples and Practice Questions)

Engineering Publications	3	Postal Coaching Solutions
$X(\omega) = \frac{e^{-\frac{\omega^2}{4a}}}{\sqrt{a}}\sqrt{\pi}$ $X(\omega) = \sqrt{\frac{\pi}{e}} e^{-\frac{\omega^2}{4a}}$		10. Ans: (a) Sol: $f(t) = A \cdot e^{-a t } \stackrel{F.T}{\leftrightarrow} F(j\omega) = \frac{2Aa}{a^2 + \omega^2}$ 11. Ans: (d)
07. Ans: (d) Sol: The EFS expression of a periodic signal x(t is $x(t) = \sum_{n=-\infty}^{\infty} c_n e^{jn\omega_0 t}$ where, 'c _n ' is EFS coefficient.		Sol: $m(t) = f(t) \cos 2t$ Apply Fourier transform $M(f) = \frac{1}{2}[F(\omega - 2) + F(\omega + 2)]$ $F(\omega - 2)$ $F(\omega + 2)$
Apply F.T on both sides $X(\omega) = \sum_{n=-\infty}^{\infty} c_n FT[e^{jn\omega_0 t}]$ $\lim_{e^{jn\omega_0 t}} 2\pi\delta(\omega)$ $\lim_{e^{jn\omega_0 t}} 4\pi\delta(\omega - n\omega_0)$		1 2 3 $1 2 3$ 12. Ans: (b) Sol: For band limited signals, $S(f) \neq 0; f < W$
$X(\omega) = 2\pi \sum_{n=-\infty} c_n \delta(\omega - n\omega_0)$ So, it is a train of impulse. 08. Ans: (a) Sol: V(j\omega) = e^{-j2\omega}; \omega \le 1]	 S(f) = 0; f > W 13. Ans: (a) Sol: In a communication system, antenna is used to convert voltage variations to field variation and vice-versa.
Energy = $\frac{1}{2\pi} \int_{-\infty}^{\infty} V(j\omega) ^2 d\omega$ = $\frac{1}{2\pi} \int_{-1}^{1} e^{-j2\omega} ^2 d\omega$ = $\frac{1}{2\pi} \int_{-1}^{1} 1d\omega$		14. Ans: (d) Sol: Hilbert transform of f(t) is H.T{f(t)} = f(t) * $\frac{1}{\pi t}$ It is in the terms of 't'. 15. Ans: (a) Sol: For an ideal LPF
$= \frac{2}{2\pi}$ $= \frac{1}{\pi}$		H(f) = k e ^{-jωt₀} for -B < f < B h(t) = F ⁻¹ [H(f)] = 2Bk sinc 2B (t-t _d) H(f) ♠
109. Ans: (b) Sol: Parseval's theorem is used to find the energy of the signal in frequency domain. $\therefore \int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(j\omega) ^2 d\omega$	у	$ \xrightarrow{k} f $
CCE Regular Live Doubt Affordable Fee Availa Affordable Fee Availa	clearin able 1M	g Sessions Free Online Test Series ASK an expert 3M 6M 12M 18M and 24 Months Subscription Packages

Т

Chapter 2 Amplitude Modulation

01. Ans: (a)
Sol:
$$V(t) = A_c \cos \omega_c t + 2 \cos \omega_m t \cdot \cos \omega_c t$$
.
Comparing this with the AM-DSB-SC signal
A $\cos \omega_c t + m(t) \cos \omega_c t$, it implies that
 $m(t) = 2\cos \omega_m t \Rightarrow E_m = 2$
To implement Envelope detection,
 $A_c \ge E_m$
 $\therefore (A_c)_{min} = 2$
02. Ans: (d)
Sol: $m(t) = (A_c + A_m \cos \omega_m) \cos \omega_c t$.
 $Given$
 $A_c = 2A_m$
 $= A_c(1 + \frac{A_m}{A_c} \cos \omega_m) \cos \omega_c t$.
Given
 $A_c = 2A_m$
 $= A_c(1 + \frac{1}{2} \cos \omega_m t) \cos \omega_c t$.
 $Given$
 $A_c = 2A_m$
 $= A_c(1 + \frac{1}{2} \cos \omega_m t) \cos \omega_c t$.
 $Given$
 $A_c = 2A_m$
 $= A_c(1 + \frac{1}{2} \cos \omega_m t) \cos \omega_c t$.
 $Given$
 $A_c = 2A_m$
 $= A_c(1 + \frac{1}{2} \cos \omega_m t) \cos \omega_c t$.
 $Given$
 $A_c = 2A_m$
 $= A_c(1 + \frac{1}{2} \cos \omega_m t) \cos \omega_c t$.
 $Given$
 $A_c = 100[0.8 + 0.6 \sin \omega_1t] \cos \omega_c t$
 $V_{max} = A_c[1 - \mu] = 100[0.8 + 0.6] = 140 V$.
 $V_{max} = A_c[1 - \mu] = 100[0.8 - 0.6] = 20 V$
 $= 20V to 140 V$
5. Ans: (c)
50: $f_c = 1 MHz = 1000 kHz$
The given m(t) is symmetrical square wave of period T = 100 µsec
 $f_m = \frac{1}{T_0} = 10 \text{ kHz}$
100 μsec
 $f_m = \frac{1}{T_0} = 10 \text{ kHz}$
100 μsec
 $f_m = \frac{1}{T_0} = 10 \text{ kHz}$
100 μsec
 $f_m = \frac{1}{T_0} = 10 \text{ kHz}$
100 μsec
 $f_m = \frac{1}{T_0} = 10 \text{ kHz}$
100 μsec
 $f_m = \frac{1}{T_0} = 10 \text{ kHz}$
100 μsec
 $f_m = \frac{1}{T_0} = 10 \text{ kHz}$
100 μsec
 $f_m = \frac{1}{T_0} = 10 \text{ kHz}$
100 μsec
 $f_m = \frac{1}{T_0} = 10 \text{ kHz}$
100 μsec
 $f_m = \frac{1}{T_0} = 10 \text{ kHz}$
100 μsec
 $f_m = \frac{1}{T_0} = 10 \text{ kHz}$
100 μsec
 $f_m = \frac{1}{T_0} = 10 \text{ kHz}$
100 μsec
 $f_m = \frac{1}{T_0} = 10 \text{ kHz}$
100 μsec
 $f_m = \frac{1}{T_0} = 10 \text{ kHz}$
100 μsec
 $f_m = \frac{1}{T_0} = 10 \text{ kHz}$
100 μsec
 $f_m = \frac{1}{T_0} = 10 \text{ kHz}$
100 μsec
 $f_m = \frac{1}{T_0} = 10 \text{ kHz}$
100 μsec
 $f_m = \frac{1}{T_0} = 10 \text{ kHz}$
100 μsec
 $f_m = \frac{1}{T_0} = 10 \text{ kHz}$
100 μsec
 $f_m = \frac{1}{T_0} = 10 \text{ kHz}$
100 μsec
 $f_m = \frac{1}{T_0} \text{ kHz}$
100 μsec
 $f_m = \frac{1}{T_0} \text{ kHz}$
100 $\mu \text{sec$

Ő			7	Posta	al Coaching Solutions
10. Sol:	Ans: (d) Amax = 10V Amin = 5V $\mu = 0.1$ $\mu = \frac{A_{max} - A_{min}}{A_{max} + A_{min}} = \frac{1}{3} = \frac{1}{3}$ $A_{C} = \frac{A_{max} + A_{min}}{2} = \frac{10}{3}$	= 0.33 $\frac{0+5}{2} = 7.5 \text{ V}$ $A_{c}(1+\mu) = A_{c} + A_{c}\mu$ $\Rightarrow 10V = 7.5 + 2.5$	7	Posta $P_{c} = \frac{4^{2}}{2} = 8 W$ $P_{m} = \frac{1}{2} + \frac{1}{2} = 1 W$ $\frac{P_{m}}{P_{c}} = \frac{1}{8} = 0.125$ I.3. Ans: (a, c & d) Sol: S _{AM} (t)=10cos(2\pi \times 50) + 25cos(2\pi \times 50) $\therefore USB Frequency = LSB Frequency = 0$	al Coaching Solutions 000t) + 25cos(2π×5200t) <4800t) = 5200 Hz = 4800 Hz
11. Sol:	Amplitude deviation A _C µ $\mu_2 = 0.1 \Rightarrow A_{c2}\mu_2 = 2.5$ $A_{c2} = 25$ V Which must be added to Ans: (d) Modulation index $\mu = k_a m(t) _{max}$ $k_a = \frac{2b}{a} = \frac{2(\text{square termine})}{\text{linear termine}}$ $ m(t) _{max} = 1$ $\mu = 2\left(\frac{b}{a}\right)$ $P_{SB} = \frac{1}{2}P_C \Rightarrow P_C \frac{\mu^2}{a} = \frac{1}{2}$	$A_{c}(1-\mu) = A_{c} - A_{c}\mu$ 5V = 7.5 - 2.5 $\mu = 7.5 \times \frac{1}{3} = 2.5 V$ to attain = 17.5 m coefficient Since $\frac{1}{2}P_{c}$		$\frac{A_c \mu}{2} = 25$ $\frac{10 \times \mu}{2} = 25$ $\therefore \mu = 5$ a, c & d are correct. NOTE: options are (a) $\mu = 5$ (b) $14. \text{ Ans: (a & c)}$ Sol: $S_{AM}(t) = K_1 \cos(2\pi \times 50t)$ $+ K_3 \cos(2\pi \times 50t)$ $K_1 = 10 = A_C$ $\mu = 0.5$ $\therefore \frac{A_c \mu}{2} = K_2 = K_3$	changed for $\mu = 2.5$ 5000t)+K ₂ cos(2 π ×5200t) t×4800t) 00t) $f_c + f_m = 5200 \text{ Hz}$ $f_c - f_m = 4800 \text{ Hz}$ $\therefore 2f_m = 400 \text{ Hz}$
12. Sol:	$\mu^{2} = 1 \Rightarrow \left(2\frac{b}{a}\right)^{2} = 1$ $\Rightarrow 2\frac{b}{a} = 1 \Rightarrow \frac{a}{b} = 2$ Ans: 0.125 $s(t) = \cos (2000\pi t) + 4$ $+ \cos (2000\pi t)$ Here 4cos(2400\pi t) is cos (2000\pi t) and cos sideband message sign	$\cos (2400\pi t)$ the carrier signal. $\cos (2000\pi t)$ are the nals. Regular Live Doubt of Affordable Fee Available	learing	$\frac{10 \times 0.5}{2} = K_2 = K_3$ $\therefore K_2 = K_3 = 2.5$ a & c are correct. $\frac{3M 6M 12M 18M \text{ and } 24 \text{ Mont}}{24 \text{ Mont}}$	f _m = 200 Hz Series ASK an expert hs Subscription Packages

Chapter

Sideband Modulation Techniques

Power = $\frac{A_c^2 A_m^2}{4}$ $= \frac{1600 \times 1}{4}$ = 400 W

03. Ans: (c)

Sol: Carrier = $\cos 2\pi (100 \times 10^6)$ t Modulating signal = $\cos(2\pi \times 10^6)$ t Output of Balanced modulator $= 0.5 [\cos 2\pi (101 \times 10^6)t + \cos 2\pi (99 \times 10^6)t]$ The Output of HPF is $0.5 \cos 2\pi (101 \times 10^6)$ t Output of the adder is $= 0.5 \cos 2\pi (101 \times 10^6) t + \sin 2\pi (100 \times 10^6) t$ $= 0.5 \cos 2\pi [(100+1)10^{6}t] + \sin 2\pi (100\times10^{6})t$ $= 0.5 [\cos 2\pi (100 \times 10^6) t. \cos 2\pi (10^6) t]$ $-\sin 2\pi (100 \times 10^6)$ t. $\sin 2\pi (10^6)$ t] $+\sin 2\pi (100 \times 10^6)t$ = 0.5 cos 2π (100 ×10⁶)t. cos 2π (10⁶)t + sin $2\pi(100\times10^6)$ t [1-0.5 sin 2π (10⁶)t] Let $0.5 \cos 2\pi (10^6)t = r(t) \cos \theta(t)$ $1 - 0.5 \sin 2\pi (10^6)t = r(t).\sin \theta(t)$ The envelope is $\mathbf{r}(t) = [0.25 \cos^2 2\pi \ (10^6)t]$ + {1-0.5 sin 2π (10⁶)t}²]^{1/2} $= [1.25 - \sin 2\pi (10^6)t]^{1/2}$

$$= \left[\frac{5}{4} - \sin 2\pi \, (10^6) t\right]^{1/2}$$

	ACE Engineering Publications		9		Postal Coaching Solutions
04. Sol:	Ans: (b) Output of 1 st balance	ed modulator is			$S(t)/T_{x} = \frac{A_{c}A_{m}}{2}\cos 2\pi [f_{c} - f_{m}]t$
	-13 -11 -10 -9 -7	7 9 10 11 13 f(kHz	z)		$S(t) / R_{X} = \left[\frac{A_{c}A_{m}}{2}\cos 2\pi(f_{c} - f_{m})t\right]\cos 2\pi(f_{c} + 10)t$ $\longrightarrow \frac{A_{c}A_{m}}{2}[\cos 2\pi(2f_{c} + 10 - f_{c})t + \cos 2\pi(10 + f_{c})t]$
	Output of HPF is	\wedge			$= \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000000000000000000000000000000000$
	$\frac{1}{-13} - 11 - 10 $ The Output of 2 nd	0 11 13 $f(kHz)balanced modulator i$	s	07. Sol:	Ans: (b) BW of Basic group = $12 \times 4 = 48$ kHz BW of super group = $5 \times 48 = 240$ kHz
	consisting of the foll	owing +ve frequencies		VG	$\int w dr super group = \int v v s = 2 v v r r r$
	$\frac{1}{0} \frac{1}{2} \frac{3}{3} \frac{2}{2}$ Thus, the spectral and 24 kHz.	3 24 26 f(kHz) peaks occur at 2 kH	z	və. Sol:	Given 11 voice signals B.W. of each signals = 3 kHz Guard Band Width = 1 kHz
05. Sol:	Ans: (c) Given				Lowest $f_c = 300 \text{ kHz}$ Highest $f_c =$
	$f_{m_1} = 100 \text{Hz}, f_{m_2} =$	200Hz, $f_{m_3} = 400$ Hz,			$\Rightarrow f_{c_H} + f_{m_{lost}} = 300 \text{ kHz} + 11(3 \text{ kHz}) + 10(1 \text{ kHz})$ $= 343 \text{ kHz}$ $f_{c_H} = 242 \text{ kHz}$
	$f_{c} = 100 \text{ KHZ}, f_{c_{L0}} = S(t) / T_{X} = \frac{A_{c}A_{m}}{2} [cc$	$f_{c}(f_{c} + f_{m_{1}})t + $		<	$I_{c_{\rm H}} = 340 \mathrm{kHz}$
	$\cos(f_{c} + t)$ $S(t) / R_{x} = [S(t) / T_{x}]$	$f_{m_2}(t) + \cos(f_c + f_{m_3}(t))$] $A_c \cos 2\pi f_{e_{10}} t$	ce 1	09.	Ans: (b) $f = 5$ hus $h = 0$
	$\Rightarrow \frac{A_c^2 A_m}{4} [\cos(f_c + f_c)]$	$f_{Lo} + f_{m_1}) + \cos(f_{m_1} - 20) +$		501.	$f_{m1} = 3 \text{ KHz} \rightarrow \text{AW}$ $f_{m2} = 10 \text{ kHz} \rightarrow \text{DSB}$ $f_{m3} = 10 \text{ kHz} \rightarrow \text{SSB}$
	$\cos(f_c + f_{c_{Lo}} + f_{m_2})$	$+\cos(f_{m_2}-20)+$			$f_{m4} = 2kHz \rightarrow SSB$
	$\cos(f_c + f_{c_{Lo}} + f_{m_3}) + \cos(f_{m_3} - 20)$] Detector output frequencies:				$f_{m5} = 5 \text{ KHz} \rightarrow A \text{ M}$ $f_g = 1 \text{ kHz}$
06.	80H Ans: (b)	Iz, 180Hz, 380Hz			$BW = (2fm_1 + 2f_{m2} + f_{m3} + f_{m4} + 2f_{m5} + 4f_g)$ = 2×5 + 2×10 + 10 + 2 + 2×5 + 4×1
Sol:	Given				= 10 + 20 + 10 + 10 + 6
	SSB AM is used, LS	B is transmitted			= 56 kHz
	$f_{LO} = (f_c + 10)$				\therefore BW = 30 KHZ
		Regular Live Doubt	clearin	Ig Sess	sions Free Online Test Series ASK an expert 6M 12M 18M and 24 Months Subscription Packages

	10	Communication
10. Ans: (b & c) Sol: Power in $AM = P_C + P_{USB} + P_{LSB}$ Power in DSB-SC = $P_{USB} + P_{LSB}$, power in SSB-SC = P_{USB} (or) P_{LSB} \therefore Power in AM > DSB-SC > VSB = SSB Option (b) is correct BW in AM = $2f_{max}$ BW in DSB-SC = $2f_{max}$ BW in SSB-SC = f_{max} BW in VSB-SC = $f_{max} + \Delta f$ \therefore BW in AM = BW in DSB-SC > BW of VSB > BW of SSB Option (c) is correct		11. Ans: (a, c & d) Sol: For DSB-SC $\eta = 100\%$ $BW = 2f_{max} = 2 \times 3 \times 10^4 = 60(\text{kHz})$ S(t) = m(t) c(t) $= 50 \cos(2\pi \times 10^7 t) \cos(2\pi \times 10^4 t)$ $+ 50\cos(2\pi \times 10^7 t) 5\cos(5\pi \times 10^4 t)$ $+ 50\cos(2\pi \times 10^7 t) 4\cos(6\pi \times 10^4 t)$ $P_t = 26.25(\text{kW})$ (a, c & d are correct)
CE ENGINIES		

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

Angle Modulation

- 01. Ans: (a) Sol: $s(t) = 10 \cos(20\pi t + \pi t^2)$ $f_i = \frac{1}{2\pi} \frac{d\theta_i(t)}{dt}$ $f_i = \frac{1}{2\pi} [20\pi + 2\pi t]$ $\frac{df_i}{dt} = \frac{1}{2\pi} \times 2\pi \times 1 = 1$ Hz/sec
- 02. Ans: (d)
- **Sol:** $P_{fc} = \frac{A_c^2 J_0^2(\beta)}{2}$

$$\xrightarrow{1}_{2.4}^{J_0^2(\beta)} \xrightarrow{2.4}_{5.5} \xrightarrow{8.6}_{11.8} \xrightarrow{\beta}$$

So, $J_0^2(\beta)$ is decreasing first, becoming zero and then increasing so power is also behave like $J_0^2(\beta)$.

03. Ans: (a)

Sol: In an FM signal, adjacent spectral components will get separated by $f_m = 5 \text{ kHz}$

Since BW =
$$2(\Delta f + f_m) = 1MHz$$

= 1000×10^3
 $\Delta f + f_m = 500 \text{ kHz}$

 $\Delta f = 495 \text{ kHz}$

The n^{th} order non-linearity makes the carrier frequency and frequency deviation increased by n-fold, with the base-band signal frequency (f_m) left unchanged since n = 3,

:.
$$(\Delta f)_{New} = 1485 \text{ kHz} \&$$

 $(f_c)_{New} = 300 \text{ MHz}$
New BW = 2(1485 + 5) ×10³
= 2.98 MHz
= 3 MHz

04. Ans: (d) Sol: $S(t) = A_c \sum_{n=-\infty}^{\infty} J_n(\beta) \cos 2\pi (f_c + nf_m) t$

$$\Delta f = 3(2f_m) = 12 \text{ kHz}$$
$$\beta = \frac{\Delta f}{f} = 6$$

 $\therefore S(t) = \sum_{n=-\infty}^{\infty} 5.J_n(6) \cos 2\pi (f_c + nf_m)t$ $f_c = 1000 \text{ kHz}, f_m = 2 \text{ kHz}$ $= \cos 2\pi (1008 \times 10^3)t$ $= \cos 2\pi (1000 + 4 \times 2) \times 10^3 t$ i.e., n = 4 The required coefficient is 5.J₄(6)

05. Ans: (c)
Sol:
$$2\pi f_m = 4\pi \ 10^3$$

 $\Rightarrow f_m = 2k$
 $J_0(\beta) = 0 \text{ at } \beta = 2.4$
 $\beta = \frac{k_f \ A_m}{f_m} \Rightarrow 2.4 = \frac{k_f \times 2}{2k}$
 $k_f = 2.4 \text{ KHz /V}$
 $at \beta = 5.5$

A ace online

 Regular Live Doubt clearing Sessions
 |
 Free Online Test Series
 | ASK an expert

 Affordable Fee
 |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

Engineering Publications	12 Communication			
$-2.4 \text{k} \times 2$	From f_c to $f_c + 4f_m$ pass through ideal BPF			
$5.5 = \frac{1}{f_m}$	Powers in these frequency components			
\Rightarrow f _m = 872.72 Hz				
06. Ans: (c)	$P = \frac{A_{C}^{2}}{2R}J_{0}^{2}(\beta) + 2\frac{A_{C}^{2}}{2R}J_{1}^{2}(\beta) + 2\frac{A_{C}^{2}}{2R}J_{2}^{2}(\beta)$			
Sol: $\beta = 6$	A_{α}^2 A_{α}^2 A_{α}^2			
$J_0(6) = 0.1506$; $J_3(6) = 0.1148$	$+2\frac{C}{2R}J_3^2\beta+2\frac{C}{1R}J_4^2(\beta)$			
$J_1(6) = 0.2767$; $J_4(6) = 0.3576$	$\Lambda^{2} \left[(0.178)^{2} + 2(0.0328)^{2} + 2(0.049)^{2} \right]$			
$J_2(6) = 0.2429$;	$= \frac{A_{\rm c}}{2R} \begin{bmatrix} (-0.178)^2 + 2(-0.328)^2 + 2(0.049) \\ + 2(0.365)^2 + 2(0.391)^2 \end{bmatrix}$			
$\frac{P_{f_c^{\pm 4f_m}}}{P_r} = ? \qquad P_T = \frac{A_c^2}{2R}$	= 41.17 Watts			
SINEE SINEE	08. Ans: (d)			
$P_{f_{c \pm 4f_{m}}} = \frac{A_{C}^{2}}{R} \left \frac{J_{0}^{2}(\beta)}{2} + J_{1}^{2}(\beta) + J_{2}^{2}(\beta) + J_{3}^{2}(\beta) + J_{4}^{2}(\beta) \right $	Sol: $P_t = \frac{A_c^2}{2R}$ (R =1 Ω)			
$P_{f_{c}\pm4f_{m}} = \frac{A_{c}^{2}}{R} \left[\frac{J_{0}^{2}(\beta)}{2} + J_{1}^{2}(\beta) + J_{2}^{2}(\beta) + J_{4}^{2}(\beta) \right]$	$=\frac{100}{2}=50$ W			
$\frac{P_{f_c \pm 4f_m}}{P_T} = \frac{0.2879}{\frac{1}{2}} = 0.5759 = 57.6 \%$	% Power = $\frac{Power in components}{total power} \times 100$			
07. Ans: (c)	$=\frac{41.17}{50}\times 100$			
Sol: $m(t) = 10\cos 20\pi t$	= 82.35%			
f _m = 10 Hz	ce 1995			
inserting correct signal and frequency	09. Ans: (d) Sol: In frequency modulation the spectrum			
$k_{\rm f} A_{\rm m} = 5 \times 10$	contains $f_c \pm nf_1 \pm mf_2$, where n & m =			
$\beta = \frac{1}{f_m} = \frac{1}{10} = 5$	0, 1, 2, 3			
···· A _C J ₀ (β)	10. Ans: (c)			
$A_{\rm C} I_1(\beta) \xrightarrow{2} A_{\rm C} J_1(\beta)$	Sol: Given $f_c = 1MHz$			
$\frac{ACJ(\beta)}{2}$ $\frac{2}{2}$ A $\alpha J_{\alpha}(\beta)$	$f_{max} = f_c + k_f A_m$			
$\frac{A_C J_2(\beta)}{2}$	$k_p = 2\pi k_f$			
$\frac{A_{C}J_{3}(\beta)}{2} \uparrow \frac{2}{2} \uparrow \frac{4}{2}$	$k_{\rm f} = \frac{k_{\rm p}}{2\pi} = \frac{\pi}{2\pi}$			
	- 1			
$f_C\text{-}3f_m f_C\text{-}2f_m f_C\text{-}f_m f_C f_C\text{+}f_m f_C\text{+}2f_m f_C\text{+}3f_m$	$=\frac{1}{2}$			
India's Best Online Coaching Platform	m for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams			
Enjoy a smooth online learning experience in various languages at your convenience				

-

Г

		13	Postal Coaching Solutions
$= \left(10^{6} + \frac{1}{2} \times 1\right)$ $= \left(10^{6} + 5 \times 10^{6} + $	$ \begin{array}{c} 0^{5} \\ 0^{5} \\ 0^{4} \\ 0^{3} \\ k \\ 0^{5} \\ 10^{5} \\ 0^{4} \\ 3 \\ \end{array} $	13 13 Sc RIN	Postal Coaching Solutions $f_{i} = f_{c} \pm \Delta f$ $= f_{c} \pm k_{f} A_{m}$ $= 100 \times 10^{3} \pm 10 \times 10^{3} (m(t))$ $= 110 \text{ kHz } \& 90 \text{ kHz}$ 3. Ans: (c) bl: S(t) = A_{c} \cos (2\pi f_{c}t + k_{p}m(t)) $f_{i} = \frac{1}{2\pi} \frac{d}{dt} \theta_{i}(t) \qquad \theta_{i}(t)$ $= \frac{1}{2\pi} \frac{d}{dt} (2\pi f_{c}t + k_{p}m(t))$ $= f_{c} + \frac{1}{2\pi} k_{p} \frac{d}{dt} m(t)$ $f_{max} = f_{c} + \frac{k_{p}}{2\pi} \frac{1}{(\frac{10^{-3}}{4})} = f_{c} + \frac{k_{p}}{2\pi} \times 4 \times 10^{3}$ $= 100 \text{ kHz} + \frac{\pi}{2\pi} \times 4 \times 10^{3}$
11. Ans: (d) Sol: $\beta = \frac{\Delta f}{f_m}$			$= 100 \text{ kHz} + \frac{\pi}{2\pi} \times 4 \times 10^{3}$ $= 102 \text{ kHz}$ $f_{\text{min}} = f_{\text{e}} - k_{\text{p}} \frac{1}{(10^{-3})}$
$\Delta \phi = \frac{\Delta c}{f_m}$ $\Delta f = \Delta \phi f_m$ $= k_p A_m f_m$ 12. Ans: (c)	Sinc	ce 19	
Sol: Given $+1^{-1}$ T/4 $f_c = 100 \times 10^3 \text{ Hz}$ $k_f = 10 \times 10^3 \text{ Hz}$ $m(t) _{max} = +1$, $m(t) _m$	$r = 10^{-3} \text{sec}$	So	bl: Given, $S(t) = A_{c} \cos (\theta_{i}(t))$ $= A_{c} \cos (\omega_{c}t + \phi(t))$ $m(t) = \cos (\omega_{m}t)$ $f_{i}(t) = f_{c} + 2\pi k (f_{m})^{2} \cos \omega_{m}t$ $f_{i} = \frac{1}{2\pi} \frac{d\theta_{i}(t)}{dt}$
A ace online	Regular Live Doubt Affordable Fee Availa	clearing s ble 1M 3	Sessions Free Online Test Series ASK an expert BM 6M 12M 18M and 24 Months Subscription Packages

Radio Receivers

01. Ans: (d)

Sol: The image channel selectivity of super heterodyne receiver depends upon Pre selector and RF amplifier only.

02. Ans: (b)

Sol: The image (second) channel selectivity of a super heterodyne communication receiver is determined by the pre selector and RF amplifier.

03. Ans: (d)

Sol: Given $f_s = 4$ to 10 MHz

IF = 1.8 MHz $f_{si} = ?$ $f_{si} = f_s + 2 \times IF$ = 7.6 MHz to 13.6 MHz

04. Ans: (a)

Sol: Image frequency $f_{si} = f_s + 2 \times IF$ $= 700 \times 10^{3} + 2(450 \times 10^{3})$ = 1600 kHzLocal oscillator frequency, $f_l = f_s + IF$ $(f_l)_{max} = (f_s)_{max} + IF = 1650 + 450$ = 2100 kHz $(f_l)_{\min} = (f_s)_{\min} + IF = 550 + 450$ = 1000 kHz $R = \frac{C_{\text{max}}}{C_{\text{min}}} = \left(\frac{f_{l \text{max}}}{f_{l \text{min}}}\right)^2 = \left(\frac{2100}{1000}\right)^2 = 4.41$

05. Ans: (a) **Sol:** $f_s(range) = 88 - 108MHz$ Given condition $f_{IF} < f_{LO}$, $f_{si} > 108$ MHz $f_{si} = f_s + 2 \times IF$ $f_{si} > 108 \text{ MHz}$ $f_{s} + 2IF > 108 \text{ MHz}$

 $88MHz + 2 \times IF > 108 MHz$ IF > 10MHzAmong the given options IF = 10.7 MHz

06. Ans: (a)

- Sol: Range of variation in local oscillator frequency is $f_{Lmin} = f_{smin} + IF$ = 88 + 10.7 $f_{Lmin} = 98.7 \text{ MHz}$ $f_{Lmax} = f_{smax} + IF$ =108 + 10.7
 - $f_{Lmax} = 118.7 \text{ MHz}$
- 07. Ans: 5

Sol: $f_s = 58 \text{ MHz} - 68 \text{ MHz}$ When $f_s = 58 \text{ MHz}$ $f_{si} = f_s + 2IF > 68 \text{ MHz}$ 2IF > 10 MHz $IF \ge 5 MHz$

= 3485 MHz

Enjoy a smooth online learning experience in various languages at your convenience

Engineering Publications	17	Postal Coaching Solutio
09. Ans: (a, b & c) Sol: → $f_{IM} = f_S + 2f_{IF} = 555 \times 10^3 + 2(455 \times 10^3)$ = 1465 kHz $\rightarrow f_{IF} = f_{Io} - f_S = 1010 \times 10^3 - 555 \times 10^3$ $= 455 \times 10^3 \text{ Hz}$ $\rightarrow IRR = \sqrt{1 + Q^2 \rho^2} = 113$ Q = 50 $\rho = \frac{f_{IM}}{f_S} - \frac{f_S}{f_{IM}} = \frac{1465}{555} - \frac{555}{1465}$ \therefore a, b & c are correct.		10. Ans: (b & c) Sol: → $f_{lo} - f_s = f_{IF}$ $f_{lo} = f_{IF} + f_s$ $= 555 \times 10^3 + 1500 \times 10^3$ = 2055 kHz → $f_{IM} = f_s + 2f_{IF}$ $= 1500 \times 10^3 + 2(555 \times 10^3)$ = 2610 kHz \therefore b & c are correct.

1S

Chapter

Baseband Data Transmission

- 01. Ans: (d) Sol: $\Delta = \frac{V_{max} - V_{min}}{2^{n}}$ $\Delta \alpha \frac{1}{2^{n}}$; $\frac{\Delta_{1}}{\Delta_{2}} = \frac{2^{n_{2}}}{2^{n_{1}}}$ $\frac{0.1}{\Delta_{2}} = \frac{2^{n+3}}{2^{n}}$ $\Delta_{2} = 0.1 \times \frac{1}{8}$ = 0.0125
- 02. Ans: (3)
- **Sol:** (BW)_{PCM} = $\frac{n f_s}{2}$

Where 'n' is the number of bits to encode the signal and $L = 2^n$, where 'L' is the number of quantization levels.

$$\begin{split} L_1 &= 4 \Longrightarrow n_1 = 2 \\ L_2 &= 64 \Longrightarrow n_2 = 6 \\ \frac{(BW)_2}{(BW)_1} &= \frac{n_2}{n_1} = \frac{6}{2} = 3 \\ (BW)_2 &= 3 \ (BW)_1 \end{split}$$

03. Ans: (c)

Sol: Given, Two signals sampled are with $f_s = 44100 \text{ s/sec}$ sample and each contains '16' bits Due to additional bits there is a 100%overhead. Out put bit rate =? $R_{h} = n^{\dagger} f_{s}^{\dagger}$ $f_s^{|} = 2f_{s|} = 2$ [44100] (: two signals sampled simultaneously)

 $n^{|}=2n$

(:: due to overhead by additional bits)

 $R_b = 4 (nf_s) = 2.822 Mbps$

04. Ans (c)

Sol: Number of bits recorded over an hour = $R_b \times 3600 = 10.16$ G.bits

05. Ans: (c)

Sol:
$$p(t) = \frac{\sin(4\pi W t)}{4\pi W t (1-16 W^2 t^2)}$$

At
$$t = \frac{1}{4W}$$
; $P\left(\frac{1}{4W}\right) = \frac{0}{0}$

Use L-Hospital Rule

$$\lim_{t \to \frac{1}{4W}} p(t) = \lim_{t \to \frac{1}{4W}} \frac{4\pi W \cos(4\pi W t)}{4\pi W - 64\pi W^3 (3t^2)}$$

$$= \frac{4\pi W (-1)}{4\pi W - 64\pi W^3 3 \left(\frac{1}{16W^2}\right)}$$

$$= \frac{-4\pi W}{-8\pi W} = 0.5$$

06. Ans: 35

Since

Sol: Given bit rate $R_b = 56$ kbps, Roll of factor $\alpha = 0.25$

BW required for base band binary PAM system

BW =
$$\frac{R_b}{2}[1+\alpha] = \frac{56}{2}[1+0.25]kHz = 35kHz$$

07. Ans: 16
Sol:
$$R_b = nf_s = 8bit/sample \times 8kHz = 64 kbps$$

 $(B_T)_{min} = \frac{R_b}{2 \log_2 M}$
 $= \frac{R_b}{2 \log_2 4} = \frac{R_b}{2 \times 2}$
 $= \frac{R_b}{4} = \frac{64}{4}$
 $= 16kHz$

Engineering Publications	19	Postal Coaching Solutions
08. Ans: (b) Sol: Given $f_s = 1/T_s = 2k$ symbols/sec If P(f) $\stackrel{F.T}{\leftrightarrow} p(t)$, Condition for zero ISI is given by $\frac{1}{T_s} \sum_{n=-\infty}^{\infty} P(f - n / T_s) = p(0)$ $\Rightarrow \sum_{n=-\infty}^{\infty} P(f - n / T_s) = p(0)T_s$ p(0) = area under P(f) p(f) 1 1 -1.2 -0.8 0 0.8 1.2 $f(kHz)Area = 2 \times \frac{1}{2}(1)(0.4)k + 2 \times 0.8k = 2kp(0) T_s = 2k \times \frac{1}{2k} = 1$	09. So	Option (a) is correct if pulse duration is from -1 to + 1 Option (c) is correct if the transition is from 0.8 to 1.2, -0.8 to -1.2 Option (d) is correct if the triangular duration is from -2 to +2 Ans: 200 I: m(t) = sin 100 π t + cos 100 π t = $\sqrt{2}$ cos [100 π t + ϕ] $\Delta = 0.75 = \frac{V_{max} - V_{min}}{L} = \frac{\sqrt{2} - (-\sqrt{2})}{L} = \frac{2\sqrt{2}}{L}$ $L = \frac{2\sqrt{2}}{0.75} \approx 4 = 2^{n}$ So n = 2 f = 50 Hz so Nyquist rate = 100 So, the bit rate = 100 × 2 = 200 bps
	, 10. Sol	Ans: (b) 1: Given $f_{m_1} = 3.6 \text{kHz} \Rightarrow f_{s_1} = 7.2 \text{kHz}$ $f_{m_2} = f_{m_3} = 1.2 \text{kHz} \Rightarrow f_{s_2} = f_{s_3} = 2.4 \text{kHz}$ $f_s = f_{s_1} + f_{s_2} + f_3$ = 12 kHz No. of Levels used = 1024
-2 -1.2 -0.8 0 0.8 1.2 2 f (kH ↓	z) 11. So	$\Rightarrow n = 10bits$ $\therefore Bit rate = nf_s$ $= 10 \times 12 \text{ kHz}$ = 120 kbps . Ans: (a) I: $(f_s)_{min} = (f_s)_{min} + (f_s)_{min}$
$\therefore \sum_{n=-\infty}^{\infty} P(f - n2k) = 1$ Regular Live Doubt	clearing S	$+ (f_{s_3})_{min} + (f_{s_4})_{min}$ $= 200 + 200 + 400 + 800$ $= 1600 \text{ Hz}$ Sessions Free Online Test Series ASK an expert
Affordable Fee Availa	ble 1M 3	M 6M 12M 18M and 24 Months Subscription Packages

	ACE Engineering Publications		20		Communication
12.	Ans: (c)				$2^{n} = 500$
Sol:					n = 9
					$R_{\rm b} = n(f_{\rm S})_{\rm TDM} + 9$
	C_1 C	2C _N			$f_{\rm S} = R_{\rm N} + 20\% R_{\rm N} = R_{\rm N} + 0.2 R_{\rm N}$
					$f_s = 1.2R_N = 1.2 \times 2 \times \omega$
	♥ Wi				$f_S = 2.4 \text{ K samples/sec}$
	│ ◀──	T			$(f_S)_{TDM} = 5(f_S)$
		N			$= 5 \times 2.4 \text{ K}$
	Minimum B.W	V of TDM is $\sum_{i=1}^{n} w_i$			= 12 K sample/sec
					$R_b = (nf_S) + 0.5\%(nf_S)$
13.	Ans: (b)		:D1/	No	$=(9 \times 12k) + \frac{0.5}{100}(9 \times 12k)$
Sol:	Number of pati	ients = 10	SNU		100
	ECG signal B.	W = 100Hz			= 108540 bps
	$(Q_e)_{max} \leq (0.25)$	$)\%V_{max}$		15	Ans: (b)
	$\frac{2V_{\text{max}}}{2} \le \frac{0.25}{100}$	V _{max}		10. Sali	To avoid slope over loading, rate of rise of
	2×2 100 $2^n > 400$			501.	To avoid slope over loading, fact of fise of
	$2 \ge 400$ $n \ge 8.64$				the o/p of the integrator and rate of rise of
	n = 9				the Base band signal should be the same.
	Bit rate of trans	smitted data = $10 \times 9 \times 200$			$\therefore \Delta f_s =$ slope of base band signal
		= 18kbps			$\Delta \times 32 \times 10^3 = 125$
					$\Delta = 2^{-8}$ Volts.
14.	Ans: (a)	Sine	ce 1	99	5
Sol:	Peak amplitude	$e \rightarrow A_m$		16.	Ans: (b)
	Peak to peak an	mplitude A _m		Sol:	$\mathbf{x}(t) = \mathbf{E}_{\mathrm{m}} \mathrm{sin} 2\pi \mathbf{f}_{\mathrm{m}}(t)$
	$-\Lambda$ Λ				$\Delta \leq \mathrm{dm}(t) \rightarrow \mathrm{slope}$ overload distortion
	$\frac{-2}{2} \le Q_e \le \frac{2}{2}$				T_s dt r slope overload distortion
	DCM maximum	$\Delta = 0.20$			takes place
		$\frac{11}{2} = 0.2\% A_{\rm m}$			$\Delta f_S \leq E_m 2\pi f_m$
	$\Delta = \frac{\text{Peak to per}}{L}$	$\frac{ak}{2L} \Rightarrow \frac{2A/m}{2L} = \frac{0.2}{100}A_m$			$\Rightarrow \frac{\Delta f_{s}}{2\pi} < E_{m} f_{m} \qquad (:: \Delta = 0.628)$
	$(::\Delta = \frac{2A_m}{L})$				$\Rightarrow \frac{0.628 \times 40 K}{2 \pi} < E_m f_m$
	\Rightarrow L = 500				$f_{S} = 40 \text{ kHz} \implies 4 \text{ kHz} < E_{m}f_{m}$
	ace	India's Best Online Coaching Platfor	m for G	ATE, E	SE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams
	J online	Enjoy a smooth onlin	e learni	ing exp	perience in various languages at your convenience

	Engineering Publications	21		Postal Coaching Solutions
	Check for options (a) $E_m \times f_m = 0.3 \times 8 \text{ K} = 2.4 \text{ kHz}$ $(4K \leq 2.4 \text{ K})$ (b) $E_m \times f_m = 1.5 \times 4K = 6 \text{ kHz}$ (4K < 6 K) correct (c) $E_m \times f_m = 1.5 \times 2 \text{ K} = 3 \text{ kHz}$ $(4K \leq 3K)$ (d) $E_m \times f_m = 30 \times 1 \text{ K} = 3 \text{ kHz}$ $(4K \leq 3K)$		20 20 20 So	 0. The message signal m(t) = Sinc (400t) × Sinc(600t) is sampled then which of the following option is/are correct. NOTE: options are changed (a) Nyquist rate = 2 kHz (b) Nyquist rate = 1 kHz (c) Nyquist interval = 0.5 ms (d) Nyquist interval = 1 ms 0. Ans: (b & d) ol:
17.	Ans: (a)			Sinc(400t) \xrightarrow{CIFI}
Sol:	Given	ERII	N	$-200 \begin{array}{c} -200 \\ \hline \end{array} \begin{array}{c} 0 \\ \hline \end{array} \begin{array}{c} 200 \\ \hline \end{array} \begin{array}{c} 0 \\ \hline \end{array} \end{array} \begin{array}{c} 0 \\ \hline \end{array} \begin{array}{c} 0 \\ \hline \end{array} \begin{array}{c} 0 \\ \hline \end{array} \end{array} \end{array} \end{array} \begin{array}{c} 0 \\ \hline \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} 0 \\ \hline \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} 0 \\ \hline \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array}$
	$m(t) = 6 \sin (2\pi \times 10^3 t) + 4 \sin (4\pi \times 10^3 t)$			CAN INTERNAL
	$\Delta = 0.314 \text{ V}$			CTFT
	Maximum slope of $m(t) = \frac{d}{dt}(m(t))/t = \frac{\pi}{2}$			$Sinc(600t) \longrightarrow \frac{1}{-300} + \frac{1}{0} \frac{1}{300} $
18	$= 2\pi \times 10^{3}(6) + 4\pi \times 10^{3}[4] = 28\pi \times 10^{3}$			M(f) frequency will range from -500 to 500 Hz
Sol:	Pulse rate which avoid distortion			$\therefore f_q = 2f_{max} = 1 \text{ kHz}$
	$\Delta f_s = \frac{d}{dt} m(t)$		<	$T_{S} = \frac{1}{f_{q}} = 1 \text{ ms}$ b & d are correct
	$f = 28\pi \times 10^5$	cen	9	795
	$1_{s} = -0.314$			
	$f_s = 280 \times 10^3$ pulses/sec			
19. Sol:	Ans: (a, b & c) a. $r_b = (Nn + EB)f_s$ $r_b = (80 + 5) 5000 = 425(kbps)$ b. $r_b = Nnf_s$ $r_b = 10(8+1) 5000 = 450(kbps)$ c. $r_b = (Nn + EB)f_s$ $r_b = (80 + 10) 5000 = 450(kbps)$ d. $r_b = Nnf_s$ $r_b = 10(8+0.8) 5000 = 440(kbps)$ ∴ a, b & c are correct			

Chapter 7

Bandpass Data Transmission

01. Ans: (c) 04. Ans: (a) **Sol:** $(BW)_{BPSK} = 2f_b = 20 \text{ kHz}$ Sol: Non coherent detection of PSK is not possible. So to overcome that, DPSK is $(BW)_{OPSK} = f_b = 10 \text{ kHz}$ implemented. A coherent carrier is not required to be generated at the receiver. 02. Ans: (b) **Sol:** $f_H = 25 \text{ kHz}$; $f_L = 10 \text{ kHz}$ 05. Ans: (c) .: Center frequency **Sol:** In QPSK baud rate = $\frac{\text{bit rate}}{2} = \frac{34}{2}$ $=\left(\frac{25+10}{2}\right)$ kHz = 17 Mbps= 17.5 kHz06. Ans: (d) : Frequency offset, Sol: $\Omega = 2\pi \left(25 - 17.5 \right) \times 10^3$ b(t) $o/p b^{1}(t)$ $=2\pi$ (7.5) × 10³ $= 15 \times 10^3 \pi \text{ rad/sec}$ Delay The two possible **FSK** signals are orthogonal, if $2\Omega T = n\pi$ 0 0 b(t)0 0 0 $b^{1}(t)_{(Ref.bit)}$ 0 1 0 $\Rightarrow 2(15\pi) \times 10^3 \times T = n\pi$ Phase 0 π π π π $\Rightarrow 30 \times 10^3 \times T = n$ (integer) This is satisfied for, $T = 200 \mu sec.$ 07. Ans: (b) Sol: Given Bit stream 110 111001 Since 03. Ans: (a) Reference bit = 1**Sol:** $r_b = 8$ kbps Coherent detection b(t) $\Delta f = \frac{nr_b}{2}$ Q(t)Best possible n = 1 $\Delta f = \frac{8K}{2} = 4K$ $b^{l}(t) = b(t) \odot Q(t)$ $1 \ 1 \ 0 \ 1 \ 1 \ 1 \ 0 \ 0 \ 1$ To verify the options $\Delta f = 4k$ i.e. $f_{C2} - f_{C1} = 4K$ (a) 20 K - 16 K = 4 K1 1 0 0 0 0 1 0 0 (b) 32 K - 20 K = 12 K(c) 40 K - 20 K = 20 KΟΟππππΟππ (d) 40 K - 32 K = 8 KIndia's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams ace online Enjoy a smooth online learning experience in various languages at your convenience

	ACE Engineering Publications	23	Communication
08. Sol:	Ans: (d) $r_b = 1.544 \times 10^6$ $\alpha = 0.2$ $BW = \frac{r_b}{\log_2^M} (1 + \alpha)$ $= \frac{1.544 \times 10^6}{2} (1 + 0.2)$ (: M = 4) $BW = 926.4 \times 10^3$ Hz		11. Ans: (b) Sol: Here 16-points are available in constellation which are varying in both amplitude and phase. So, it 16QAM. 12. Ans: (d) Sol: $BW = \frac{r_b}{\log_2 M} (1 + \alpha)$ $36 \times 10^6 = \frac{r_b}{2} (1 + 0.2) (\because M = 4, QPSK)$
09. Sol:	Ans: 0.25 BW = 1500 Hz BW required for M-ary PSK is $\frac{R_{b}[1+\alpha]}{\log_{2} 16} = 1500 Hz$ $\Rightarrow R_{b} [1+\alpha] = 1500 \times 4 = 6000$ $\Rightarrow (1+\alpha) = 6000$	RI	 r_b = 60×10⁶ bps NOTE: new question 13th is added in text book 13. Which among the following modulation, schemes consume less bandwidth (a) B-PSK (b) Q-PSK (c) 64-PSK (d) 64-QAM 13. Ans: (c & d)
10. Sol:	$\Rightarrow (1 + \alpha) = \frac{1}{4800}$ Roll off factor $\Rightarrow \alpha = \frac{6000}{4800} - 1 = 0.25$ Ans: (b)	ce 1	Sol: Bandwidth of 64-PSK = $\frac{2r_b}{6} = \frac{r_b}{3}$ Bandwidth 64-QAM = Bandwidth of 64-PSK 14. Ans: (a, b & d) Sol: M-ary ASK constellation plot will always come on a single line (either x-axis or y-axis).
	Here only phase is changing. From options (b) is the optimum answer.		

Optical Sources & Detectors

Chapter

Enjoy a smooth online learning experience in various languages at your convenience

	CE ring Publications		25	Optical Instrumentation
$I_{p} =$ $I_{p} =$ $I_{p} =$ $V_{L} =$ $\therefore V$ 04. Ans Sol: Give $\eta =$ $\lambda =$ $P_{0} =$ $I_{m} =$ $M =$ $M =$ We $\eta =$ 0.65 $\Rightarrow 0$ \Rightarrow	$\frac{0.5A}{W} \times A \times I$ $\frac{0.5A}{W} \times 10 \text{mm}^2 \times 10 \text{mm}^2 \times 10^{-5} \text{ amp}$ $= I_p \times R_L = 5 \times 10^{-5} \text{ M}$ $= I_p \times R_L = 5 \times 10^{-5} \text{ M}$ $= 0.5 \text{ gen:}$ $= 0.65$ $= 900 \text{ nm}$ $= 0.5 \text{ µW}$ $= 10 \text{ µA}$ $= ?$ $= \frac{I_m}{I_p} = \frac{10 \text{µA}}{I_p}$ know $\frac{EI_p}{P_0 \text{q}}$ $= \frac{10 \text{µA}}{2 \text{ (a)} + 10^{-7}}$ $M = \frac{10 \text{µA}}{2 \text{ (b)} + 10^{-7}}$	$\left(\frac{1 \text{mW}}{10 \text{mm}^2}\right)$ Amp $\times 100 \text{ k}\Omega$ $\frac{10^{-34} \times 3 \times 10^8}{\times 10^{-6} \times 1.6 \times 10^{-19}} \times I_p$		Photodiode current I _p = Area × sensitivity × Intensity I _p = 10 mm ² × 0.5 A/W × 4W/m ² I _p = 20 μ A I to V converter sensitivity is 100 mV/ μ A So, V _o = $\frac{100 \text{mV}}{\mu \text{A}} \times 20 \mu$ A = 2 Volt 07. Ans: 75.18 Sol: $\frac{\text{I}}{\text{P}} = \frac{\eta e \lambda}{hc}$ I = $\frac{\eta e \lambda}{hc} \times \text{P}$ = $\frac{0.75 \times 1.6 \times 10^{-19} \times 830 \times 10^{-9} \times 100 \times 10^{-6}}{6.624 \times 10^{-34} \times 2 \times 10^8}$ I = 75.18 μ A 08. Ans: (a, b & d) Sol: The sensitivity of photovoltaic cell is almost constant when it is short circuited & is almost negligible when the load resistance is about 10 kΩ. The sensitivity of a photovoltaic cell decreases with increase of load resistance.
05. Ans Sol: Outp	$2.36 \times 10^{-7} A$ $= 42.4 \approx 43$ $= -1V$ put is independent	A nt V _r		09. Ans: (a & b)Sol: The photodiode is used in the detection of both visible & invisible light.
06. Ans Sol: Give Area Sens Inte	$a = 10 \text{ mm}^2$ sitivity = 0.5 A/V nsity = 4 W/m^2	W Regular Live Doubt	clearin	g Sessions Free Online Test Series ASK an expert
	online	Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages		

LED's & LASERs

Chapter

	Engineering Publications	27		Optical Instrumentation
08. Sol:	$P_{1} = 50 \times 51 \times 10^{-6} (W)$ $P_{2} = 50 \left(\frac{W}{m^{2}}\right) \times 49 \times 10^{-6} (m^{2})$ $P_{2} = 50 \times 49 \times 10^{-6} (W)$ Difference between photo currents $\Delta I = I_{D1} - I_{D2}$ $= Photodiode sensitivity \times \Delta P$ $= 0.4 \left(\frac{A}{W}\right) \times (P_{1} - P_{2})$ $= 0.4 \times 50(51 - 49) \times 10^{-6}$ $= 0.4 \times 50 \times 2 \times 10^{-6}$ $= 40 (\mu A)$ Ans: 2 $E_{g} = \frac{hC}{\lambda}$ $E_{g} = \frac{4.13567 \times 10^{-15} \times 3 \times 10^{8}}{620 \times 10^{-9}}$ $= 2eV$	R /	09. Sol:	Ans: (a, b, c & d) The laser light exhibits some peculiar properties compared with the conventional light which make it unique, these are (i) Monochromatic (ii) Coherence (iii) Directionality (iv) Highly intense brightness (v) High radiant energy (vi) Polarized
	Sin	ce 1	199	

01.				\rightarrow	$t = \frac{515 \times 10^{-9}}{-8.58 \times 10^{-7}}$	
Sol:	Given data:				1.6-1	
	$t = 5 \ \mu m$			\Rightarrow	$t = 0.85 \ \mu m$	
	n = 5		03.			
	$\lambda = 589 \text{ nm}$		Sol:	Given	data	
	$\mu_g = ?$			t = 1	.5 μm	
	We know	GINEER	ING	$\lambda = 0$	0.5 μm	
	$t(\mu_g - 1) = n\lambda$	L.E.N.C		n = 2 Wo km	?	
	\Rightarrow 5×10 ⁻⁶ (μ_g -	$(g-1) = 5 \times 589 \times 10^{-9}$ = $\frac{5 \times 589 \times 10^{-9}}{5 \times 10^{-6}}$			ηλ	
	\Rightarrow ($\mu_g - 1$) = $\frac{1}{2}$			t = -	$\overline{2}$ ($n \times 0.5 \times 10^{-6}$	
	$\Rightarrow (\mu_g - 1) = 0$.589		$\Rightarrow 1.5$	$\times 10^{-6} = 1100000000000000000000000000000000000$	
	$\Rightarrow \mu_g = 1.589$			$\Rightarrow \frac{1.5}{0}$	$\frac{5 \times 10^{-6} \times 2}{0.5 \times 10^{-6}} = n$	
02.		Since	100	\Rightarrow n =	- 6	
Sol:	Given data:	Since	04.	5		
	$\lambda = 515 \text{ nm}$	$\lambda = 515 \text{ nm}$	Sol: Given data:			
	Refractive index $(\mu) = 1.6$		n = 1	100		
	$\theta_R = 45^{\circ}$	$=45^{\circ}$		$\lambda = 0$ t = 2	6328A°	
	t =?			μ='	?	
	we know			We kr	low	
	$t(\mu - 1) = n\lambda$				$2t(\mu - 1) = n\lambda$	
	$t = -\frac{n^2}{2}$	λ		$\Rightarrow 2 \times 2$	$20 \times 10^{-2} (\mu - 1) = 100 \times 6328 \times 10^{-10}$	
	(μ -	-1)		$\mu = 1.$	0001582 ≈ 1	
	ace	India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams				
		Enjoy a smooth online lea	rning exp	perience i	in various languages at your convenience	

Engineering Publications	29	Optical Instrumentation
05.	(07. Ans: (c & d)
Sol: Given data	5	Sol: The phenomenon of interference is shown
$R.I = \mu_g = 1.53$		both by longitudinal and by transverse
$\mu_{air}=1.0$		waves.
$\mathbf{R} = \left(\frac{\mu_{g} - \mu_{air}}{\mu_{g} + \mu_{air}}\right)^{2}$		
R = 0.044		
R = 4.4 % of loss		
06. Ans: (b & c)	ERIA	VGAC
Sol: A Michelson interferometer consists of		AD.
(i) Movable mirror		E.
(ii) Fixed mirror		
(iii) Source (monochromatic)		
(iv) Detector		
(v) Half silvered glass plate		
Sin	ce 1	995
A		E

Fiber Optics

	ACE Engineering Publications	31		Optical Instrumentation
07.	Ans: (d)		09.	Ans: 0.75
Sol:	$\frac{\mu_{t}}{\mu_{g}} = \frac{1.33}{1.5} = \frac{C}{V_{t}} \times \frac{V_{g}}{C}$		Sol:	$\frac{n_1}{n_2} = \frac{t_1}{t_2} = 0.75 (n \propto t)$
	$\frac{V_{t}}{V} = \frac{1.55}{1.33}$		10.	Ans: (a, b, c & d)
	v _g 1.55		Sol:	Factors affecting the propagation of light
08.	Ans: (b)			through optical sensors:
Sol:	NA = ?			(i) The size of fiber
				(ii) The amount of light injected into fiber
	10 mm			(iii) The coherence of light source
			No	(iv) The composition of fibers
	/20 mm		' C	(v) The N.A of the source & fiber
	50 mm		11.	Ans: (a, b, & c)
	$NA = \sqrt{n_1^2 - n_2^2}$		Sol:	In case of optical fiber to get TIR the
	$NA = \mu_0 \sin \theta_0$			condition is RI of core \geq RI of cladding.
	$NA = \sin \theta_0$			We know R.I of glass is greater than R.I of
	NA = 10			plastic so from this information we can say
	$1NA - \frac{1}{\sqrt{10^2 + 50^2}}$			that option (a), (b) & (c) are correct.
	= 0.196		\leq	
	≈ 0.2 Sin	ce '	199	5

ACE

ace online Chapter B UV VIS Spectrophotometer

01. Ans: 4.35

Sol: In a TOF mass spectrometer

$$\begin{split} t &= L \sqrt{\frac{m}{2eV}} \\ L &= 85 \text{ cm} \\ m_A &= 200 \times 1.66 \times 10^{-27} \\ m_B &= 300 \times 1.66 \times 10^{-27} \\ eV &= 1.6 \times 10^{-19} \times 2 \times 10^3 \\ t_A &= L \sqrt{\frac{m_A}{2eV}} \\ &= 0.85 \sqrt{\frac{200 \times 1.66 \times 10^{-27}}{2 \times 1.6 \times 10^{-19} \times 2 \times 10^3}} = 19.36 \text{ } \mu\text{sec} \\ t_B &= L \sqrt{\frac{m_B}{2eV}} \\ &= 0.85 \sqrt{\frac{300 \times 1.66 \times 10^{-27}}{2 \times 1.6 \times 10^{-19} \times 2 \times 10^3}} = 23.71 \text{ } \mu\text{sec} \\ \Delta t &= t_B - t_A = 4.35 \text{ } \mu\text{sec} \end{split}$$

02. Ans: 0.707 m

Sol: In case of mass spectrometer

$$t = L \sqrt{\frac{m}{2eV}}$$

for ion A \rightarrow t_A = L_A $\sqrt{\frac{m_A}{2eV}}$

for ion
$$B \rightarrow t_B = L_B \sqrt{\frac{2\pi A}{2eV}}$$

 $t_B = L_A \sqrt{m_A}$

$$\frac{\overline{r}}{t_{\rm B}} = \frac{\overline{A}}{L_{\rm B}} \sqrt{\frac{A}{m_{\rm B}}}$$
$$\frac{m_{\rm A}}{m_{\rm B}} = \frac{1}{2} \text{ (given)}$$

We want to find distance of ion B crossed from starting point when ion A reached at the end of tube i.e. $t_A = t_B$

$$= \frac{1}{L_{B}} \sqrt{\frac{1}{2}}$$

 $L_{B} = \frac{1}{\sqrt{2}} = 0.707 \text{ m}$

1

03. Ans: 524

Sol: Resolving power of mass spectrometer mass of sulphur

mass of sulphur – mass of oxygen $= \frac{32.0600}{32.0600 - 31.9988}$ = 523.86 $\cong 524$

04. Ans: (a & b)

Since

- **Sol:** A mass spectrum is a graph obtained by performing mass spectrometry.
 - It is a relation between the mass to charge ratio of ion signal.
 - A mass spectrum used for working out the relative atomic mass or relative molecular mass of the substance.

05. Ans: (b, c & d)

Sol: Mass spectroscopy is an analytical technique in which sample is converted into rapidly moving ions which are then separated & characterized. The composition analysis of an alloy, a natural gas, a solid is not done using mass spectrometer.