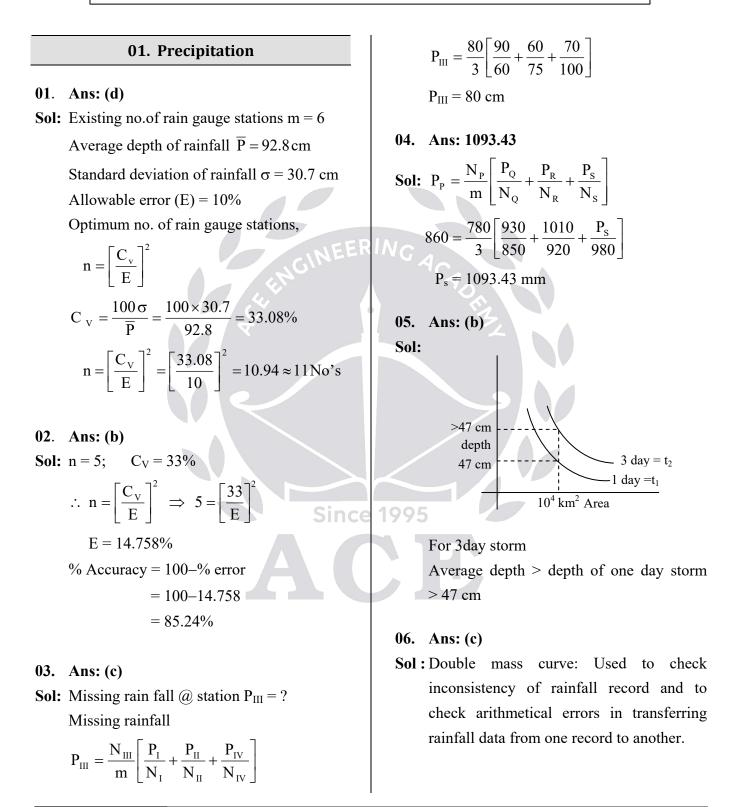


GATE | PSUs

CIVIL ENGINEERING


Hydrology

(**Text Book** : Theory with worked out Examples and Practice Questions)

Hydrology

(Solutions for Text Book Practice Questions)

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

ace online

ACE Engineering Fublications	2 CIVIL-Postal Coaching Solutions
07. Ans: (a) & (d)	02 Mean Precipitation Calculation
07. Ans: (a) & (d) Sol: Stn P Q R S N (cm) 50 48 46 40 P (mm) P _P = P _x = ? 43 42 38 (-) 10% N _x = N _P = 50 (+) 10% N _s = 40, is not within 10% of N _x , use normal ratio method $\frac{P_x}{N_x} = \frac{1}{m} \left[\frac{P_1}{N_1} + \frac{P_2}{N_2} + \dots + \frac{P_m}{N_m} \right]$ $\frac{P_p}{50} = \frac{1}{3} \left[\frac{43}{48} + \frac{42}{46} + \frac{38}{40} \right]$ P _P = 45.98 mm 08. Ans: (a) & (c) Sol: Precipitation is measured using a rain gauge (also called pluviometer, ombrometer). Lysimeter: is a device used to measure evapotranspiration which is released by plants. (Usually crops or trees). Phytometer: is generally used to measure transpiration, of plants.	1 1 1 1 1 1 1 1
	A = 4 × 4 + $\frac{\sqrt{3}}{4}$ (4) ² = 22.928 km ²
Ace Regular Live Doubt Affordable Fee Availar Availar	clearing Sessions Free Online Test Series ASK an expert ble 1M 3M 6M 12M 18M and 24 Months Subscription Packages

$$A_{1} = A_{2} = \frac{1}{2} \times 2 \times 2 = 2 \text{ km}^{2}$$

$$A_{1} = A_{2} = \frac{1}{2} \times 2 \times 2 = 2 \text{ km}^{2}$$

$$A_{3} = A_{5} = \frac{1}{2} \times 2 \times 2 + \frac{1}{3} \times \frac{\sqrt{3}}{4} \times (4)^{2} = 4.309 \text{ km}^{2}$$

$$A_{4} = \frac{1}{3} \times \frac{\sqrt{3}}{4} (4)^{2} = 2.308 \text{ km}^{2}$$

$$A_{4} = \frac{1}{3} \times \frac{\sqrt{3}}{4} (4)^{2} = 2.308 \text{ km}^{2}$$

$$A_{4} = \frac{1}{3} \times \frac{\sqrt{3}}{4} (4)^{2} = 2.308 \text{ km}^{2}$$

$$A_{6} = \sqrt{8} \times \sqrt{8} = 8 \text{ km}^{2}$$

$$\overline{P} = \frac{P_{1}A_{1} + P_{2}A_{2} + P_{3}A_{3} + P_{4}A_{4} + P_{5}A_{5} + P_{6}A_{6}}{A}$$

$$\overline{P} = \frac{8 \times 2 + 13 \times 2 + 4.8 \times 4.309 + 3.2 \times 2.309 + 5.4 \times 4.309 + 9.4 \times 8}{22.928}$$

$$\overline{P} = 7.35 \text{ cm}$$

$$04. \text{ Ans: (c)}$$
Sol: P_{1} = 45 cm,
P_{2} = 55 cm,
P_{3} = 65 cm
$$\overline{P} = \frac{A_{1} \left[\frac{P_{1} + P_{2}}{2} \right] + A_{2} \left[\frac{P_{2} + P_{3}}{2} \right]}{A}$$

$$= \frac{100 \left[\frac{45 + 55}{2} \right] + 150 \left[\frac{55 + 65}{2} \right]}{100 + 150} = 56 \text{ cm}$$

$$05. \text{ Ans: (b)}$$
Sol: $\overline{P} = \frac{A_{1} \left[\frac{P_{1} + P_{2}}{2} \right] + \dots + A_{n-1} \left[\frac{P_{n-1} + P_{n}}{2} \right]}{A}$

$$\overline{P} = \frac{92 \left[\frac{15 + 12}{2} \right] + 128 \left[\frac{12 + 9}{2} \right] + 126 \left[\frac{9 + 6}{2} \right] + 175 \left[\frac{6 + 3}{2} \right] + 85 \left[\frac{3 + 1}{2} \right]}{600}}$$

$$= 7.4 \text{ cm}$$

$$100 \text{ India's Best Online Coaching Platform for GATE, EST$$

Hydrology

6. Ans: (b) Sol

$$\overline{P} = \frac{+180 \times \left(\frac{8+6}{2}\right) + 20\left(\frac{6+4}{2}\right)}{30+140+80+180+20}$$

= 8.84 cm Note: Formula same as earlier problem

7 Ans: (b)

Sol: Hyetograph: It is a graph between time in hour (x-axis) and rainfall intensity (mm/hr) on y-axis.

Direct runoff hydrograph: From rainfall excess we can draw direct runoff hydrograph with time on x-axis and discharge on y-axis.

Isohyets: is defined as a lime joining points of equal rainfall (Rainfall averaging)

Mass curve: It is a plot of cumulative 5 rainfall and time.

08. Ans: (c)

Sol: Thiessen - Polygon method: Rainfall recorded at each station is given a Weightage on the basis of an area closest to the station.

$$P_{a} = \frac{P_{1}A_{1} + P_{2}A_{2} + \dots P_{m}A_{m}}{A_{1} + A_{2} + \dots A_{m}} = \frac{\Sigma P_{1}A_{1}}{\Sigma A_{1}}$$

The ratio $\frac{A_1}{\Sigma A_1}$ = Weightage factor where

 P_1 P_2 Are rainfalls and A_1 , A_2 Are respective theissen polygon areas.

ACE Engineering Publications	4	CIVIL-Postal Coaching Solutions
03. Frequency of Point Rainfall & Probability		02. Ans: (d) Sol: For 6 cm rain fall
Probability01. Ans: (i) 2.5, (ii) 2, (iii) 1.25Sol: Return period (T) for a magnitude listed at a position "m" in a total of "n" entries is $T = \frac{n+1}{m}$ Arrange all flood data in descending order and allot rank to each flood (i.e)Manual peak flood (m^3/s) Mank130112021003804755706607508409	RI	02. Ans: (d) Sol: For 6 cm rain fall Rank m = 6 n = 10 (i) Hazen formula, $T = \frac{n}{m-0.5}$ $T = \frac{10}{6-0.5} = \frac{10}{5.5} = \frac{20}{11}$ (ii) By Weibull Formula $T = \frac{n+1}{m} = \frac{10+1}{6} = \frac{11}{6}$ 03. Ans: (d) Sol: T = 20 years $\therefore p = \frac{1}{T} = \frac{1}{20} = 0.05$ n = 12 years q = 1 - p = 1 - 0.05 = 0.95 Probability of occurring at least once $= 1 - q^n = 1 - 0.95^{12} = 45.96\% \approx 46\%$. 04. Ans: (a) Sol: n = 50 yrs
$=\frac{10}{4} = 2.5$ (ii) Return period of flood 75 m ³ /sec = $\frac{9+1}{5} = 2$ (iii) Return period of flood 50 m ³ /sec = $\frac{9+1}{8}$ $=\frac{10}{8} = 1.25$		T = 100 yrs P = $\frac{1}{T} = \frac{1}{100} = 0.01$ q =1-P = 1-0.01 = 0.99 Risk = 1-(q) ⁿ = 1-(0.99) ⁵⁰ = 0.395 = 39.5%
		g Sessions Free Online Test Series ASK an expert 3M 6M 12M 18M and 24 Months Subscription Packages

ACE Engineering Publications	5	Hydrology
05. Ans: (c) Sol: $P_{i} = 200\% = 0.2$; $p = 100m$, $T = 2$		(iii) Probability of occurring of flood
Sol: Risk = 20% = 0.2; n = 10yrs, T =?		magnitude less than 4000 m^3 / sec
Risk = 1-(q) ⁿ 0.2 = 1-(q) ¹⁰ ⇒q = 0.9778		Probability of not occurring a flood of
		magnitude $\geq 4000 m^3 / \text{sec}$
P = 1 - q = 0.022		q = 0.975
$T = \frac{1}{P} = \frac{1}{0.022} = 45.45 \approx 45 \text{ yrs}$		B. Ans: (c)
1 0.022	S	ol: The probability of a event whose
06. Ans: (d)		magnitude equal to or in excess of a
Sol: $T = 100 \text{ yr}$	RINC	specified magnitude(x) and having a
n=2		recurrence interval 'T', occurring in a
		given year, is given by
$P = \frac{1}{T} = \frac{1}{100} = 0.01$		$P = \frac{1}{T}$ where P is called exceedence
q = 1 - P = 1 - 0.01 = 0.99		probability
$Risk = 1 - (q)^{n} = 1 - (0.99)^{2} = 0.0199 = 1.99\%$		
		$T = \frac{1}{P}$
07. Ans: (i) 0.025, (ii) 0.397, (iii) 0.975		
Sol $T = 40$ years		
Circ		
(i) $p = \frac{1}{T} = \frac{1}{40} = 0.025$ Since	ce 199	5
(1) $p = \frac{1}{T} = \frac{1}{40} = 0.025$		
q = 1 - p = 1 - 0.025 = 0.975		
(ii) At least once in next 20 years		
$Risk = (1 - q^n) = 1 - 0.975^{20}$		
= 0.3973		
R = 39.73%		

Engineering Publications	6 CIVIL-Postal Coaching Solutions
04. Evaporation & Evapotranspiration	$= 0.058 \times 1000$
	$[456.04] - [336.96 - E] = 0.058 \times 1000$
01. Ans: 5.157	E = 61.08 mm
Sol: Depth of water removed,	\therefore Evaporation loss in that month
$Z = \frac{4.2 \times 10^{-3}}{\frac{\pi}{4} (1.22)^2} \times 1000 = 3.592 \mathrm{mm}$	E = 61.08 mm
4 (1.22)	04. Ans: (d)
Pan evaporation	Sol: $\Sigma I - \Sigma O = \pm \Delta S$
$E = P \pm Z = 8.75 - 3.592 = 5.157 mm$	Plan area of reservoir = 1 km^2
02 Angel1 04 mm & 9.25 mm	$= 1 \times 100 = 100$ ha
02. Ans:11.94 mm & 8.35 mm Sol: Depth of water added	$= \left[10 + \frac{3}{100} \times 100\right] - \left[20 + \frac{12 \times 0.7}{100} \times 100 + \text{seepage}\right]$
$(Z) = \frac{8.75 \times 10^{-3}}{\frac{\pi}{4} (1.2)^2} \times 1000 = 7.736 \mathrm{mm}$	$=\frac{-20}{100}\times100$
Pan evaporation, $E = p \pm Z$	
= 4.2+7.736	= change in storage
= 11.936 mm (+Z \rightarrow water added	(Ha.m)
$-Z \rightarrow$ water removed)	[10+3]-[20+8.4+seepage] = -20
(Actual evaporation = $C_P \times$ pan evaporation)	h) \therefore seepage loss = 4.6 Ha.m
= 0.7×11.936	Note: All values substitute in above
= 8.35 mm	equation in ha-m
03. Ans: 61.08	05. Ans: (a)
Sol: Increase in storage	Sol: $R = 200 \text{ watt/m}^2$
= 103.258 - 103.2 = 0.058 m	L = 2441 kJ/kg
$\sum I - \sum O = \pm \Delta S = +\Delta S$	$= 2441 \times 10^{3} \text{J/kg};$
(∵ +→ increase) [I+P]–[O+E+S] = + Δ S	$\rho_{\rm w} = 997 \ {\rm kg/m^3}$
$\left[\frac{6 \times 30 \times 24 \times 60 \times 60}{5000 \times 10^4} \times 1000 + 145\right]$	$E = \frac{R}{\rho_{w}L} = \frac{200}{997 \times 2441 \times 10^{3}}$
$-\left[\frac{6.5 \times 30 \times 24 \times 60 \times 60}{5000 \times 10^{4}} \times 1000 - E + 0\right]$	$= 8.218 \times 10^{-8} \text{ m/sec}$ $\simeq 7.1 \text{ mm/day}$
Regular Live Doubt	ot clearing Sessions Free Online Test Series ASK an expert
	ilable 1M 3M 6M 12M 18M and 24 Months Subscription Packages

ACE Engineering Publications

06. Ans: (c)

Sol: P = 7.2%,

 $T_{m} = 18^{\circ}C,$

$$K = 0.7$$

Consumptive use

$$= PET = \frac{KPT_m}{100} \times 2.54 \text{ cm/month}$$

$$PET = \frac{0.7 \times 7.2 \times (1.8 \times 18 + 32)}{100} \times 25.4 \frac{mm}{month}$$

= 82.44 mm/month

∴ consumptive use

$$PET = \frac{82.44}{30} = 2.74 \, \text{mm} \, / \, \text{day}$$

07. Ans: (a)

Sol: $K = \frac{\text{consumptive use}}{\text{pan evaporation}}$ $0.52 = \frac{\text{consumptive use}}{9.5}$

Consumptive use= 9.5×0.52

= 4.94 cm/month

January no.of days $\} = 31$

Consumptive use

$$= 4.94 \times \frac{10}{31} \simeq 1.6 \text{ mm/day}$$

08. Ans: (c)

Sol: Indian standard pan

 $\therefore C_P = 0.8$

Pan evaporation = 4.0 cm

Actual evaporation from reservoir

 $= C_p \times pan$ evaporation

 $= 0.8 \times 4 = 3.2$ cm

Hydrology

Volume of water evaporated = plan area of reservoir× actual evaporation loss

$$= 100 \times \frac{3.2}{100} \times 10^4 = 3.2 \times 10^4 \text{ m}^3 / \text{day}$$

09. Ans: (d)

7

Since

Sol: Cetyl alcohol and stearyl alchol are used to minimize the loss of water through the process of evaporation.

10. Ans: (a)

Sol: Aridity Index (AI) = $\frac{\text{PET} - \text{AET}}{\text{PET}} \times 100$

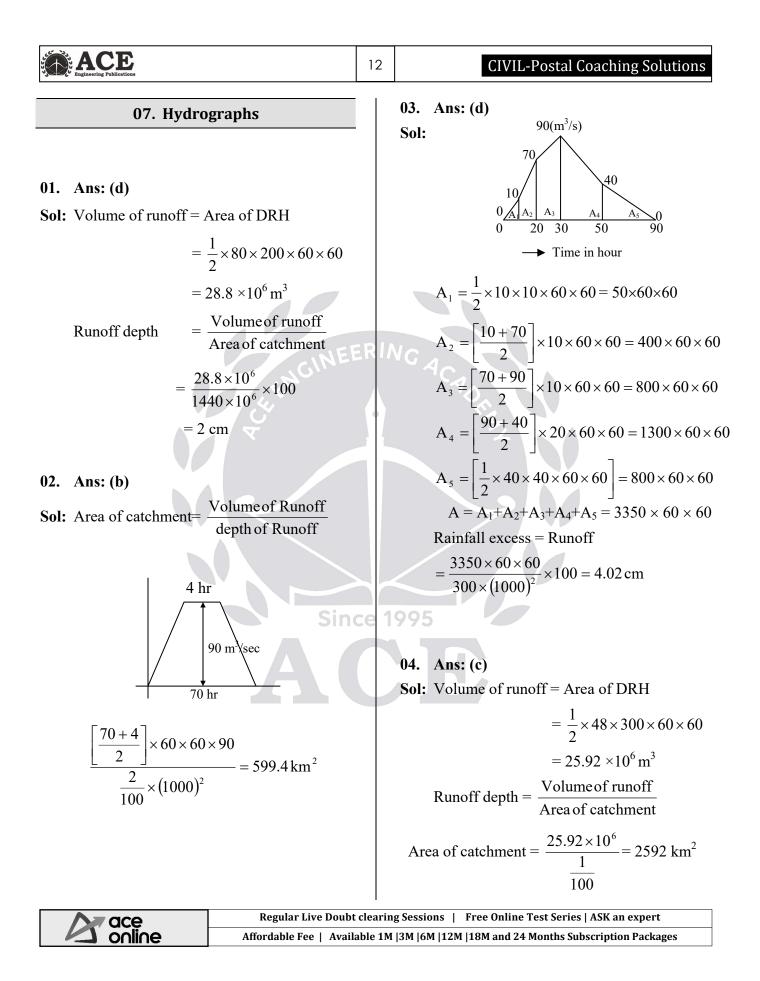
Where AET = Actual Evapotranpiration
PET = Potential Evapotranpiration
Potential Evapotranpiration (PET):
Evapotransipration which occurs when
sufficient moisture is always available to
completely meet the needs of vegetation,
fully covering the area.

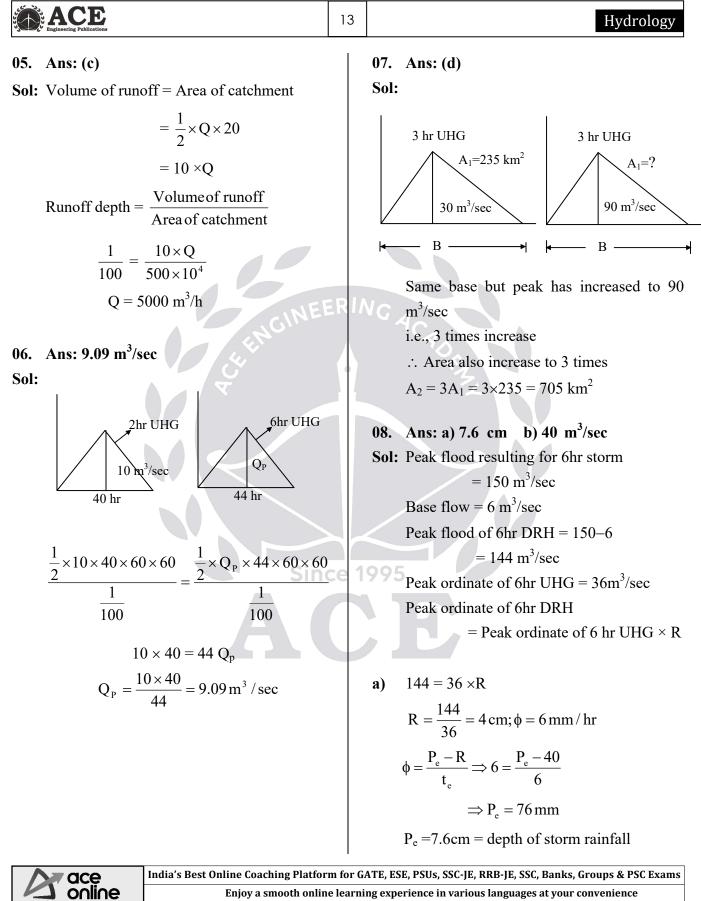
Acutal Evapotranpiration (AET) : The actual Evapotranpiration occurring in a specific situation.

A ace online

Engineering Publications	8 CIVIL-Postal Coaching Solutions
05. Infiltration	05. Ans: 40320 m ³
	Sol: In 24 hrs Rainfall = 10 cm
01. Ans: (a)	In 24 hrs evaporation = $C_P \times pan$
Sol: $f < f_c$ when $i < f_c$	evaporation
	$= 0.7 \times 0.6$
02. Ans: (b)	In 24 hrs infiltration = $f_c \times t + \frac{f_0 - f_c}{K}$
Sol: Hydraulic conductivity of soil	
$f_c = 0.2 \text{ cm/hr}$	$= 0.3 \times 24 + \frac{1 - 0.3}{5}$
$i = 0.5 \text{ cm/hr}$ [$\therefore i > f_c$]	
f = f = 0.2 cm/hr	$=7.34\mathrm{cm}$
$I_a = I_c = 0.2$ cm/hr	
03. Ans: (d)	Runoff (R) = $10-(0.7\times0.6)-7.34=2.24$ cm
Sol: $f_t = f_c + (f_0 - f_c) e^{-kt}$	Depth of runoff = 2.24 cm
$f_t = 1.34 + (7.62 - 1.34)e^{-4.182t}$	Volume of runoff
	= Area of catchment × depth of Runoff
$f_2 = 1.34 + (7.62 - 1.34)e^{-4.182 \times 2} = 1.34$	$= 1.8 \times (1000)^2 \times \frac{2.24}{100}$
$\mathbf{f}_2 = \mathbf{f_c}$	$= 40320 \text{ m}^3$ 100
∴ steady state attained	= 40320 m
Total infiltration in 2hrs	
$= f_c \times t + \frac{f_0 - f_c}{K}$	06. Ans: (d)
$= I_c \times t + \frac{K}{K}$ Since	Sol: Runoff = Area of hyetograph above IC
$=1.34 \times 2 + \frac{7.62 - 1.34}{4.182} = 4.18 \mathrm{cm}$	curve
$= 1.54 \times 2 + \frac{4.182}{4.182} = 4.18 \text{ cm}$	
	20 Runoff
04. Ans: 4.375	
Sol: $f_0 = 2 \text{ cm/hr}; f_c = 0.5 \text{ cm/hr}; K = 4 \text{hr}^{-1}$	
Infiltration in 8hr = $f_c \times t + \frac{f_o - f_c}{K}$	
0.5	Area of hyetograph above IC curve
$= 0.5 \times 8 + \frac{1.5}{4} = 4.375$ cm	$= \begin{bmatrix} \text{Total area of hyetograph} \\ \text{between lhr to 3hr} \end{bmatrix} - \begin{bmatrix} \text{Area below IC} \\ \text{curve between lhr to 3hr} \end{bmatrix}$
	$= [20 \times 1 + 10 \times 1] - \int_{1}^{3} f_{t} dt$
Domion Line Doubt	t clearing Soccions Free Online Test Series ASV on sympat
	t clearing Sessions Free Online Test Series ASK an expert able 1M 3M 6M 12M 18M and 24 Months Subscription Packages

PHydrology
$$30 - \left[\int_{1}^{1}(6.8 + 8.7e^{-1})t\right]$$
909. Ans: (a) $30 - \left[6.8 \times (t)_{1}^{1} + \frac{8.7}{e^{-1}} \left[e^{-1}\right]_{1}^{1}\right]$ 99. Ans: (a) $30 - \left[6.8 \times (t)_{1}^{1} + \frac{8.7}{e^{-1}} \left[e^{-1}\right]_{1}^{1}\right]$ 99. Ans: (a) $30 - \left[6.8 \times (1)_{1}^{1} + \frac{8.7}{e^{-1}} \left[e^{-1}\right]_{1}^{1}\right]$ 99 $30 - \left[6.8 \times (1)_{1}^{1} + \frac{8.7}{e^{-1}} \left[e^{-1}\right]_{1}^{1}\right]$ 99 $30 - \left[6.8 \times (1)_{1}^{1} + \frac{8.7}{e^{-1}} \left[e^{-1}\right]_{1}^{1}\right]$ 99 $30 - \left[6.8 \times (1)_{1}^{1} + \frac{8.7}{e^{-1}} \left[e^{-1}\right]_{1}^{1}\right]$ 99 $30 - \left[6.8 \times (1)_{1}^{1} + \frac{8.7}{e^{-1}} \left[e^{-1}\right]_{1}^{1}\right]$ 99 $30 - \left[6.8 \times (1)_{1}^{1} + \frac{8.7}{e^{-1}} \left[e^{-1}\right]_{1}^{1}\right]$ 99 $30 - \left[6.8 \times (1)_{1}^{1} + \frac{8.7}{e^{-1}} \left[e^{-1}\right]_{1}^{1}\right]$ 99 $30 - \left[6.8 \times (1)_{1}^{1} + \frac{8.7}{e^{-1}} \left[e^{-1}\right]_{1}^{1}\right]$ 99 $30 - \left[6.8 \times (1)_{1}^{1} + \frac{8.7}{e^{-1}} \left[e^{-1}\right]_{1}^{1}\right]$ 99 $50 \cdot t^{1} + \frac{8}{2} = 0.5 \text{cm/h}^{1}$ 10Ans: (a)Sol: $11 - 4n$ $11 - 4n$ 99 $0.5 - \frac{2.2 \times 10^{6} \text{m}^{2}}{280 \times (1000)^{2}} \times 100 = 9 \text{ cm}$ 11Average infiltration $= \frac{12.2 \times 10^{6} \text{m}^{2}}{280 \times (1000)^{2}} \times 100 = 9 \text{ cm}$ Average infiltration $= \frac{81 - 39}{4} = 0.55 \text{ cm/hr}$ $= \frac{81 - 39}{6} = 7 \text{ cm}/hr$ Average infiltration $= \frac{11.2 - 9}{4} = 0.55 \text{ cm/hr}$ $= \frac{81 - 39}{6} = 7 \text{ cm}/hr$ Average infiltration $= \frac{9 - R}{1} = \frac{11.2 - 9}{4} = 0.55 \text{ cm/hr}$ -5.5 mn/hr


ACE Engineering Publications	10	CIVIL-Postal Coaching Solutions
13. Ans: (b)		15. Ans: (c)
Sol: W _{index} :		Sol: W _{index} :
$\mathbf{P} = \sum i_i \times t_i$		$P = \sum i_i t_i = 0.5 + 2.8 + 1.6 = 4.9 \text{ cm}$ R = 3.2 cm
$P = [1.6 + 3.6 + 5 + 2.8 + 2.2 + 1] \times \frac{30}{60} = 8.1 \text{ cm}$	n	$W_{index} = \frac{P - R - losses}{t} = \frac{4.9 - 3.2 - 0}{6}$
t = 3hr; R = 3.6cm		= 0.283 cm/hr
ψ_{index} $\phi_{\text{index}} > W_{\text{index}}$ $P_{e} = [1.6 + 3.6 + 5 + 2.8 + 2.2] \times \frac{30}{60} = 7.6 \text{ cm}$	R//	$\begin{array}{c c} & 2.8 \\ \hline 0.5 \\ \hline 0 \\ \hline 1 \\ \hline 2 \\ \hline 0 \\ \hline 1 \\ \hline 2 \\ \hline 1 \hline$
$t_e = 2.5 \text{ hr}; R = 3.6 \text{ cm}$		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$
$\phi_{\text{index}} = \frac{P_e - R}{t_e} = \frac{7.6 - 3.6}{2.5} = 1.6 \text{ cm/hr}$		$P_e = 1.4 \times 2 + 0.8 \times 2 = 4.4 \text{ cm}$ $t_e = 4 \text{ hr}, R = 3.2 \text{ cm}$
14. Ans: (a)		$\phi_{index} = \frac{P_e - R}{t_e} = \frac{4.4 - 3.2}{4}$
Sol: W _{index} :		t_e 4
D = 1.6 + 5.4 + 4.1 - 11.1		= 0.3 cm/hr
P = 1.6 + 5.4 + 4.1 = 11.1 cm R = 4.7cm, t = 24hr, losses = 0.6 cm	ce 1	1995
		16. Ans: (c)
$W_{index} = \frac{P - R - losses}{t} = \frac{11.1 - 4.7 - 0.6}{24}$		Sol: $\phi_{index} = 10 \text{ mm/hr}$
= 0.241 cm/h		$P_e = i_e \times t_e$ $(i_e \rightarrow i > \phi_{index})$
∳ _{index} :		$= 28 \times 1 + 12 \times 1 = 40 \text{ mm}$
$\phi_{index} > W_{index}$		$t_e = 2 hr$
$P_{e} = [5.4 + 4.1] = 9.5 \mathrm{cm}$		
$t_e = 16 hr$		$\phi_{\text{index}} = \frac{P_e - R}{t_e} \Longrightarrow 10 = \frac{40 - R}{2} = 20 \text{ mm}$
$\phi_{\text{index}} = \frac{P_e - R}{t_e} = \frac{9.5 - 4.7}{16} = 0.3 \text{cm/hr}$		


 Regular Live Doubt clearing Sessions
 Free Online Test Series | ASK an expert

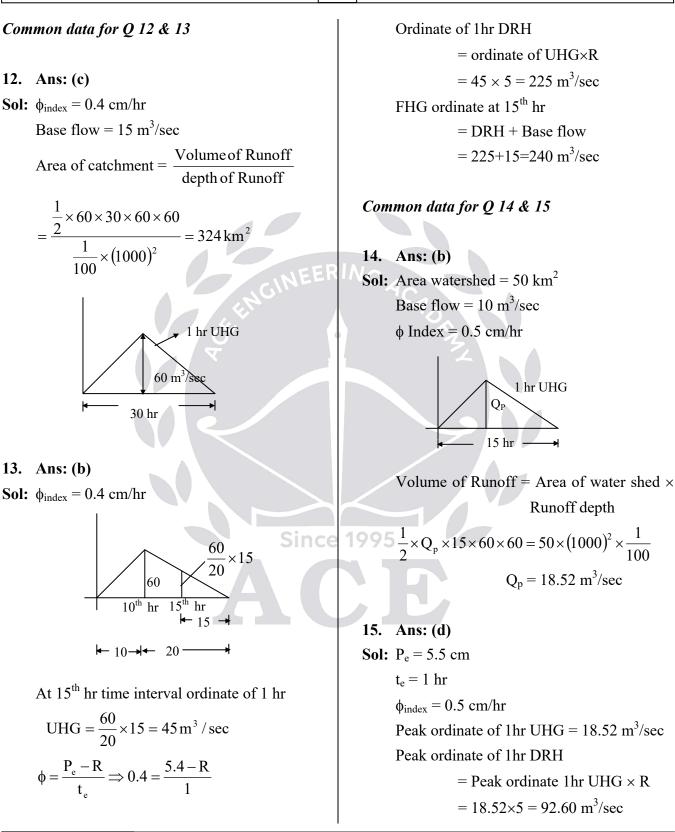
 Affordable Fee |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

Engineering Publications	11 Hydrology
17. Ans:(1.816 cm, 1.616 cm) Sol: $f_t = f_c + (f_o - f_c) e^{-kt}$	06. Runoff
= 3+ e ^{-2t} (i) Infiltration in 30 minutes (or) 0.5 hr	 01. Ans: (d) Sol: Runoff can also be known as i. Effective rainfall ii. Rainfall excess
$= \int_{0}^{0.5} (3 + e^{-2t}) dt$ = $3(t)_{0}^{0.5} + \frac{\left[e^{-2t}\right]_{0}^{0.5}}{-2}$ = $3 \times 0.5 - 0.5 \left[e^{-1} - e^{2 \times 0}\right]$ = 1.816 cm	 iii. Net rain iv. direct runoff 02. Ans: (a)
(ii) Infiltration in 2 nd 30 minutes First we have to calculate infiltration in 0 hr to 1 hr $= \int_{0}^{1} (3 + e^{-2t}) dt$ $= [3t]_{0}^{1} + \frac{\left[e^{-2t}\right]_{0}^{1}}{-2}$ $= 3 - 0.5[e^{-2} - e^{0}] = 3.432 \text{ cm}$ But in question he ask next 30 minutes so we subtract 1 st 30 min infiltration = 3.432 cm - 1.816 cm = 1.616 cm	 Sol: Methods to estimate runoff are 1. Regression analysis (Runoff – Rainfall relationship). 2. Binnie's percentages 3. Barlow's Tables 4. Stranges Tables 5. Water shed simulations 6. Hortone's infiltration capacity 7. Infiltration indices 8. SCN –CN method. 03. Ans: (a) Sol: The ratio between runoff to rainfall is know as runoff factor.
18. Ans: (a) & (d) Sol: R = $\frac{57.2 \times 10^6}{650 \times 10^6} = 0.088 \text{ m} = 8.8 \text{ cm}$ P = i × t = 1.6 × 8 = 12.8 cm $\phi - \text{Index} = \frac{12.8 - 8.8}{8} = 0.5 \text{ cm/hr}$ = 5 mm/hr	04. Ans: (a)Sol: A conventional flow duration curve is a plot between flow rate and percentage time flow is exceeded (Percentage probability).

ace online

Enjoy a smooth online learning experience in various languages at your convenience

		Publications			14		CIVIL-Postal Coaching Solutions
b)	15 th	hr				Link	ked answers (10 & 11)
		Time interval	6hr UHG			10.	Ans: (b)
		0	0				: Area of catchment = 720 km^2
		3	15				Base flow = $30m^3$ /sec
		6	36				$\phi_{index} = 1 \text{mm/hr}$
		9	30				$P_e = 4 \text{ cm}, t_e = 4hr = 40 \text{ mm}$
		12	17.5				1
		15	8.5				4hr UHG
	6hr UHG ordinate at 15 th hr = 8.5 m ³ /sec EER 6hr DRH ordinate at 15 th hr = 6 hr UHG ×R = 8.5×4 = 34 m ³ /sec 6hr storm flow at 15 th hr = 34 + 6 = 40 m ³ /sec 09. Ans: (b) Sol: P _e = 2.7 cm, t _e = 3hr, ϕ = 0.3 cm/hr $\phi = \frac{P_e - R}{r} \Rightarrow 0.3 = \frac{2.7 - R}{2} \Rightarrow R = 1.8 cm$.R //	VG ,	$\therefore \text{ UHG runoff depth} = 1 \text{ cm}$ $\text{Volume of runoff} = \text{Area of catchment} \times \text{Depth of runoff}$ $\frac{1}{2} \times \text{Q}_{\text{P}} \times 80 \times 60 \times 60 = 720 \times (1000)^{2} \times \frac{1}{100}$ $\text{Q}_{\text{P}} = 50 \text{ m}^{3}/\text{sec}$		
		of 3hr FHG = 2 flow = 20 m^3/ca					Ans: (a)
	Base flow = 20 m^3 /sec Peak of 3hr DRH = Peak of 3hr FHG			Sol:	: $\phi_{index} = \frac{P_e - R}{t_e} \Longrightarrow 1 = \frac{40 - R}{4}$		
	Base flow = $210 - 20$				R = 36 mm = 3.6 cm		
	$= 190 \text{ m}^3/\text{sec}$					Peak ordinate of 4hr DRH = Peak ordinate	
	Peak of 3hr					of 4hr UHG \times R	
	UHC	$B = \frac{\text{Peak of 3hr I}}{P}$	$\frac{\text{DRH}}{\text{I}} = \frac{190}{1.0}$				$= 50 \times 3.6 = 180 \text{ m}^3/\text{sec}$
		R	1.8			Peak	k flood discharge = Peak DRH+ Base flow
		$=105.55 \mathrm{m}^3 /\mathrm{se}$	ec				$= 180+30 = 210 \text{ m}^3/\text{sec}$


 Regular Live Doubt clearing Sessions
 Free Online Test Series | ASK an expert

 Affordable Fee |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

ACE Engineering Publications

15

Hydrology

	ACE incering Publications				16		CIV	IL-Postal Co	oaching So	lutions
Peak ordinate of 1hr SHG				17. <i>A</i>	Ans: (c)					
= DRH+ Base flow					Area of catc	hment				
		=	92.60 +	- 10			Volum	eof Runoff		
		=	102.6 n	n ³ /sec			=	of runoff		
$= 102.6 \text{ m}^{3}/\text{sec}$ Common data for Q 16 & 17 16. Ans: (b) Sol: P _e = 16 cm, t _e = 12 hr $\phi_{\text{index}} = 0.5 \text{ cm/hr}$ $\phi_{\text{index}} = \frac{P_e - R}{t_e} \implies 0.5 = \frac{16 - R}{12}$ R = 10 cm 6 hr UHG $\frac{30}{\text{m}^{3}/\text{sec}} = \frac{30}{12} \times 6$ $\frac{30}{12} \times 6$		EERI	$= \frac{\frac{1}{2} \times 30 \times 18 \times 60 \times 60}{\frac{1}{100} \times 10^{4}} = 9720 \text{ ha}$ 18. Ans: (d) Sol: Catchment area = $\frac{\text{Volume of Runoff}}{\text{depth of Runoff}}$ $= \frac{1 \times 60 \times 60 \left[\frac{0+0}{2} + (2+6+4+2+1) \right]}{\frac{1}{100} \times (1000)^{2}}$ $= 5.4 \text{ km}^{2}$ 19. Ans: (c)			ff f				
Time	6hr UHG ordinate	18 hr 6hr lagged 6hr UHG	12hr DRH R=2 cm	12 hr UHG ordinate	nce 1	Sol: Time (hr)	1hr UHG ordinate (m ³ /sec)	1hr delayed 1 hr UHG ordinate	2hr delay 1hr UHG	3 hr DRH R = 3 cn
0	0	—	0				(m/sec)	(m ³ /sec)	(m ³ /sec)	(m ³ /sec)
6	30	0	30	15		0	0	_	-	0
12	15	30	45	22.5		1	2	0	-	2
18	0	15	15	7.5		2	6	2	0	8
		0	0	0		3	4	6	2	12
				2		4	2	4	6	12
		-		$= 22.5 \text{ m}^3/\text{s}$	ec	5	1	2	4	7
Peak discharge 12hr DRH						6	0	1	2	3
	= Peak discharge of 12 hr UHG \times R						0	1	1	
=		-						0	1	1
=	$= 22.5 \times 10^{\circ}$	-						0	1	1

Engineering Publications	17 Hydrol
At time interval (t) = 3 hr 3hr DRH ordinate = $12m^3/\text{sec}$; R = 3 cm 3hr UHG ordinate = $\frac{3\text{hr DRH ordinate}}{R}$ $=\frac{12}{3} = 4 \text{ m}^3/\text{sec}$ 20. Ans: (c) Sol: $Q_{\text{equi}} = 2.778 \frac{\text{A}}{\text{D}}$ $A = 270 \text{ km}^2$ D = 3 hr $Q = 2.778 \times \frac{270}{3} = 250 \text{ m}^3/\text{sec}$	21. Ans: 160 m ³ /sec Sol: $t_p = 64$ hours $Q_P = 30 \text{ m}^3$ /sec Volume of runoff = Area of DRH $= \frac{1}{2} \times 64 \times 30 \times 3600 = 3.456 \times 10^6 \text{ m}$ Runoff depth = 1 cm = 0.01 m Runoff depth = $\frac{\text{Volume of runoff}}{\text{Area of catchment}}$ Area of catchment = $\frac{3.456 \times 10^6}{0.01}$ $= 345.6 \text{ km}^2$ Equilibrium discharge = $2.778 \frac{\text{A}}{\text{D}}$ $Q_{eq} = 2.778 \times \frac{345.6}{6}$ $Q_{eq} = 160 \text{ m}^3$ /sec
22. Ans: 256 m ³ /sec Sol:	

22. Ans: 256 m³/sec Sol:

Time	4H UHG ordinate	S-curve addition	S-curve ordinate (S _A)
0	0	Since 1995	0
2	6		6
4	33	0	33
6	90	6	96
8	119	33	152
10	103	96	199
12	79	152	231
14	50	199	249
16	25	231	256
18	7	249	256
20	0		

ace online

ACE
Engineering Publications

Common data for 23 & 24

23. Ans: (c)

Sol: Area of catchment =
$$\frac{\text{Volume of Runoff}}{\text{depth of Runoff}} = \frac{\text{Area of UHG}}{\text{depth of Runoff}}$$

= $\frac{1 \times 60 \times 60 \left[\frac{0+0}{2} + (3+8+6+3+2) \right]}{\frac{1}{100} \times (1000)^2}$ = 7.92 km²

24. Ans: (a)

Sol:

Time (hr)	2hr UHG Ordinate (m ³ /sec)	S-curve Additions (m ³ /sec)	S-curve Ordinates (m ³ /sec)	3hr lagged S-curve ordinate (m ³ /sec)	3hr DRH S _A -S _B (m ³ /sec)	$\frac{3 \text{hr UHG}}{\left(\text{S}_{\text{A}} - \text{S}_{\text{B}}\right)^{2}} \text{ (m}^{3}/\text{sec)}$
0	0		0		0	0
1	3		3	-	3	2
2	8	A 2	8	-	8	16/3
3	6	3	9	0	9	6
4	3	8	11	3	8	16/3
5	2	9	11	8	3	2
6	0	11	11	9	2	4/3
		11	11 5	nfe 1995	0	0

 $P_e = 6.6 \text{ cm} = 66 \text{ mm}$

$$\phi_{index} = 2 \text{ mm/hr}$$

$$t_e = 3 hr$$

$$\phi_{index} = \frac{P_e - R}{t_e}$$
$$= 5 \text{ m}^3/\text{sec} \qquad 2 = \frac{66 - R}{3}$$

base flow =
$$5 \text{ m}^3/\text{sec}$$

 \Rightarrow R = 60 mm = 6 cm

Peak ordinate of $3hr UHG = 6 m^3/sec$

Peak ordinate of 3hr DRH = Peak ordinate 3hr UHG \times R= 6 \times 6 = 36 m³/sec

Peak ordinate of 3hr SHG = Peak of 3hr DRH + Base flow = $36 + 5 = 41m^3$ /sec

	Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert
A ace online	Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages

18

ACE Engineering Publications

19

Common Data for 25 & 26

25. Ans: (b)
Sol:
$$Q = 1 - (1 + t)e^{-t}$$

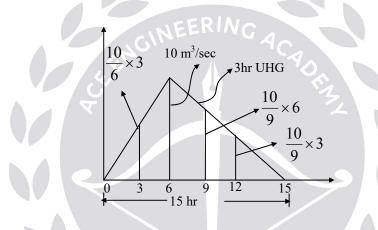
 $\frac{1}{D} = 1 \text{ cm/hr} \Rightarrow D = 1 \text{ hr}$
At $t = \infty$, $Q = E_{quilibrium}$
 $Q_{equi} = 1 - (1 + \infty)e^{-\infty} = 1 \text{ m}^3/\text{sec}$
But $Q_{equi} = 2.778 \frac{\text{A}}{D}$
 $1 = 2.778 \frac{\text{A}}{1}$
 $\Rightarrow A = \frac{1}{2.778} = 0.36 \text{ km}^2$

26. Ans: (c)

Time	S _A S-curve ordinates Q= 1-(1+t)e ^{-t}	S _B 2 hr delayed S-curve ordinate	2hr DRH (S _A –S _B)
0	0	Since 1995	
1	0.264		
2	0.593	0	
2		0.264	0.8-0.264
3	0.8	0.264	= 0.536

2hr UHG ordinate =
$$\frac{(S_A - S_B)D}{T} = \frac{0.536 \times 1}{2}$$

= 0.27 m³/sec



Engineering Publications	20	CIVIL-Postal Coaching Solutions
--------------------------	----	---------------------------------

27. Ans: 43.33m³/sec

Sol:

Storm I	Strom II
$P_{e1} = 3.8 \text{ cm}$	$P_{e2} = 4.8 \text{ cm}$
$t_{e1} = 3 hr$	$t_{e2} = 3 hr$
$\phi = 0.6$	$\phi = 0.6$
$0.6 = \frac{3.8 - R_1}{3}$	$0.6 = \frac{4.8 - R_2}{3}$
$R_1 = 2 cm$	$R_2 = 3 \text{ cm}$

Time	3hr	I st storm	H nd storm	6hr H
1 me	UHG m ³ /sec	=UHG× R_1 m ³ /sec	$=$ UHG \times R ₂ m ³ /sec	Ordinate m ³ /sec
0	0	0		0
3	5	10	0	10
6	10	20	15	35
9	6.66	13.33	30	43.33
12	3.33	6.66	20	26.66
15	0	0	10	10
	-	-	0	0

Peak discharge of resulting DRH = $43.33 \text{ m}^3/\text{sec}$

ACE Engineering Publications	21	Hydrology
---------------------------------	----	-----------

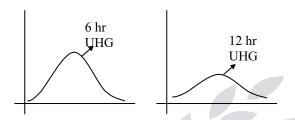
28. Ans: 715 m³/sec

Sol:

I st storm	II nd storm	
$t_e = 6hr$	$t_e = 6hr$	
$P_e = 3 cm$	$P_e = 5 cm$	
$\phi_{index} = 0.25 \text{ cm/hr}$	$\phi_{index} = 0.25 \text{ cm/hr}$	
$\phi = \frac{P_e - R_1}{t_e}$	$\phi = \frac{P_e - R_2}{t_e}$	
$0.25 = \frac{3 - R_1}{6}$	$0.25 = \frac{5 - R_2}{6}$	
$R_1 = 1.5 \text{ cm}$	$R_2 = 3.5 \text{ cm}$	
<u>_</u>	IGINEE	RINGAC

Time	6hr UHG	1 st storm UHG×R ₁	II nd storm UHG×R ₂	12 hr DRH
0	0	0	- 3	0
6	20	30	0	30
12	60	90	70	160
18	150	225	210	435
24	120	180	525	705
30	90	135	420	
36	66	99	315	
42	50	75 Sinc	e 1995 ²³¹	
48	32	48	175	
54	20	30	112	
60	10	15	70	
66	0	0	35	
			0	

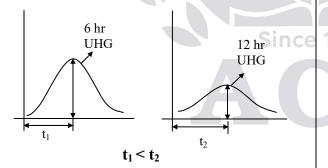
<u>24th hr</u>


ace online

DRH ordinate = 705 m³/sec Base flow = 10 m³/sec Storm discharge = DRH + Base flow = 705+10 = 715 m³/sec

ACE

29. Ans: (d)


Sol: 6 hr UHG peak ordinate = $30 \text{ m}^3/\text{sec}$ Peak ordinate of 12hr UHG =? **Explanation**:

Storms of shorter duration produce more peak than storms of longer duration storm. Peak of 12hr UHG<peak of 6hr UHG \therefore Peak ordinate of 12hr UHG < 30 m³/s

30. Ans: (c)

Sol: Time to peak for shorter duration storms occur much faster then time to peak for longer duration storm.

31. Ans: (d)

ace

- Sol: The ordinate of the instantaneous unit Hydrograph (IUH) of a catchments at time
 - $\left(\frac{ds}{dt}\right)$ of the S-curve with t is the slope

effective rainfall intensity of 1 cm/hr.

22

- Sol: A watershed got transformed from rural to urban over a period of time. The effect of urbanization on storm runoff hydrograph from the watershed is to decrease the time base. Due to urbanization
 - 1. Increase the volume of runoff
 - 2. Decrease the time to peak discharge.
 - **3.** Increase the peak discharge.

33. Ans: (b) & (c)
Sol: Area of UH = C.A × 0.01
$$\Delta t \Sigma o'' = C.A × 0.01$$

 $3 × 3600 × (20 + 80 + + 15 + 5)$
 $= C.A × 0.01$
 $3 × 3600 × 699 = C.A × 0.01$
C.A = 754920000 m²
C.A = 75492 ha
C.A = 754.92 km²

Regular Live Doubt clearing Sessions Free Online Test Series | ASK an expert online Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

CIVIL-Postal Coaching Solutions

ACE

08. Maximum Flood Estimation

01. Ans: (d)

Sol: A = 90 ha

I = 4.5 cm/h = 45 mm/hR = 0.40 $Q = \frac{AIR}{360} = \frac{90 \times 45 \times 0.40}{360}$ $Q = 4.5 \text{ m}^{3}/\text{sec}$

- 02. Ans: (b)
- Sol: $30\% \rightarrow 0.40$

 $70\% \rightarrow 0.60$

$$I = \frac{\frac{30}{100} \times A \times 0.40 + \frac{70}{100} \times 0.60 \times A}{A}$$
$$I = 0.54$$

03. Ans: (d)

Sol: A = 1.5 km² = 150 Ha, I = 0.42
R =
$$\frac{48}{28} \times 60 = 102.86$$
 mm/h
Since
Q_P = $\frac{A I R}{360}$
= $\frac{150 \times 0.42 \times (48/28) \times 60}{360} = 18$ m³/sec

04. Ans: 7.08 m^3/s

Sol: I = 0.30

 $A = 0.85 \text{km}^2 = 85 \text{ ha}$

25 frequency \rightarrow Culvert design for a rain

of 25 year frequency

Duration of storm = time of concentration

= 30 mins

Hydrology

$$R = \frac{\text{depth of rainfill}}{\text{duration of rain}} = \frac{50}{30} \text{ mm/min}$$
$$R = 100 \text{ mm/h}$$
$$Q = \frac{\text{AIR}}{360} = \frac{85 \times 0.30 \times 100}{360}$$
$$Q = 7.083 \text{ m}^3/\text{sec.}$$

05. Ans: (c)

23

Sol: An isochrone is a line on the basis map joining points having equal time of travel of surface runoff to the catchments outlet.

06. Ans: (c)

Sol: Rational method: Applicable for small size catchments (< 50 km²) for urban drainage design, small culverts and bridges.

07. Ans: (a) Sol: Peak flood discharge $1995 Q_{\rm P} = \frac{\rm AIR}{360}$

> There is no term of duration in the formula, so the peak discharge remains same.

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams ace online Enjoy a smooth online learning experience in various languages at your convenience

c

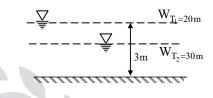
ACE Engineering Publications

09. Flood Routing

01. Ans: 17.748 m³/sec

Sol: $t_1 = 3 \text{ hr}, t_2 = 4 \text{ hr}, I_3 = 18 \text{ m}^3/\text{s},$ $I_4 = 42 \text{ m}^3/\text{s}, C_0 = 0.042, C_1 = 0.538,$ $Q_3 = 15 \text{ m}^3/\text{s}, Q_4 =?,$ $C_2 = 1 - C_0 - C_1 = 1 - 0.042 - 0.538 = 0.42$ $Q_4 = C_0 I_4 + C_1 I_3 + C_2 Q_3$ $= 0.042 \times 42 + 0.538 \times 18 + 0.42 \times 15$ $= 17.748 \text{ m}^3/\text{s}$

02. Ans: (a)


ace online

Sol: When outflow from a storage reservoir is uncontrolled as in freely operating spillway, then the peak of outflow hydrograph will occur at the point of intersection of the inflow if outflow curves, whereas if outflow from a reservoir is controlled, the peak will occur after the intersection of the curve.

CIVIL-Postal Coaching Solutions

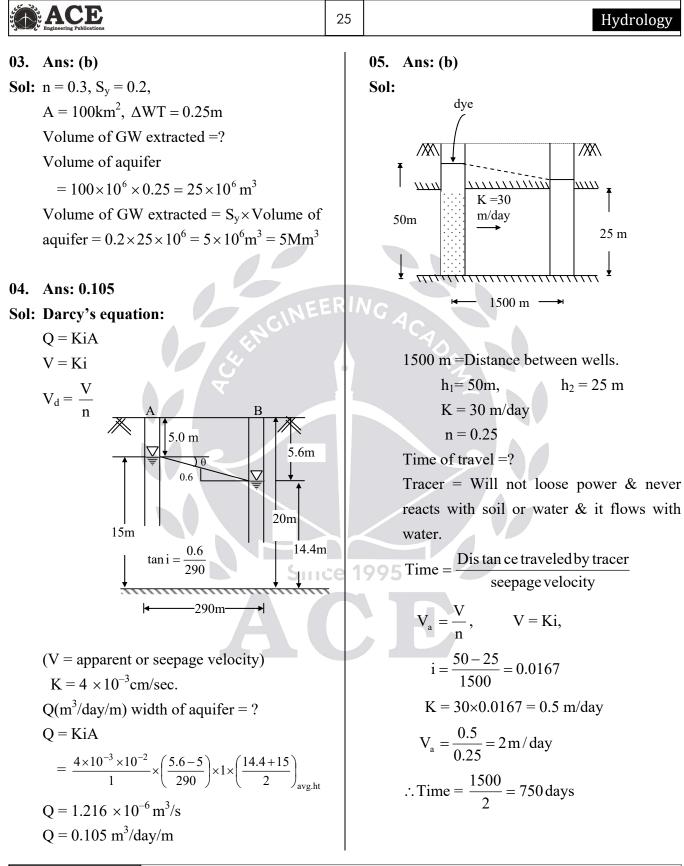
10. Well Hydraulics

01. Ans: (b) Sol: A = 150Ha, n = 0.4, S_r = 0.15, $\Delta GW = ?$

 $\Delta GW = s_y \times volume of aquifer$

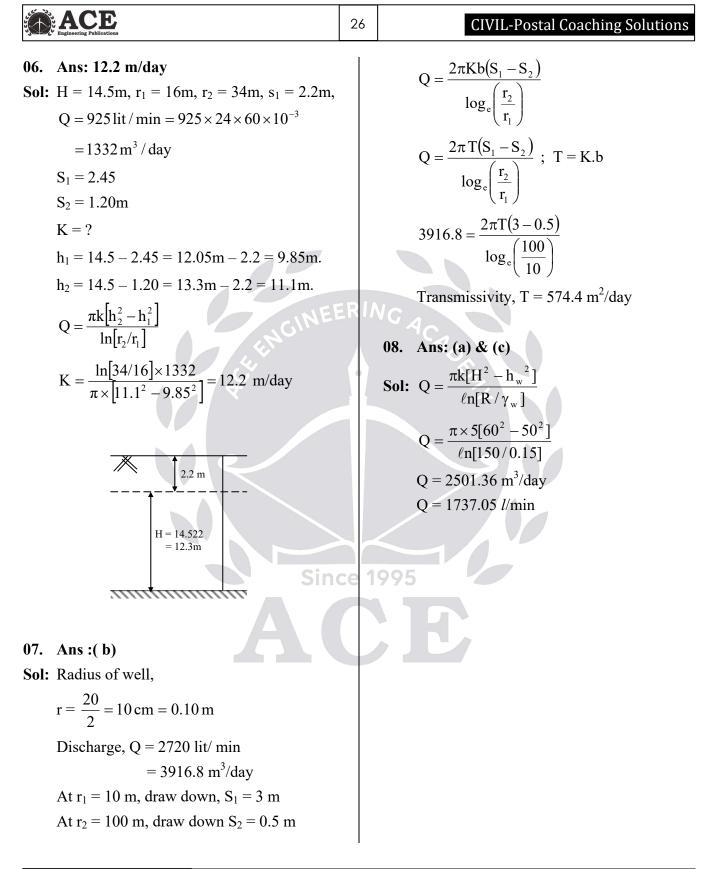
$$\begin{split} S_y &= n - S_r = 0.4 - 0.15 = 0.25 \\ \text{volume of aquifer} = \text{area of aquifer} \times \text{drop} \\ & \text{in level of W.T.} \\ \Delta GW &= 0.25 \times 150 \times (23 - 20) \\ \Delta GW &= 112.5 \text{ Ha.m} \\ &= \text{volume of water extracted.} \end{split}$$

Since


Sol: Volume of GW extracted = $3 \times 10^6 \text{ m}^3$ area = 5km^2 Drop in water table level =102 - 99 = 3mSpecific yield, S_y = ? S_y = $\frac{\text{volume of G.W extracted}}{\text{volume of aquifer}}$

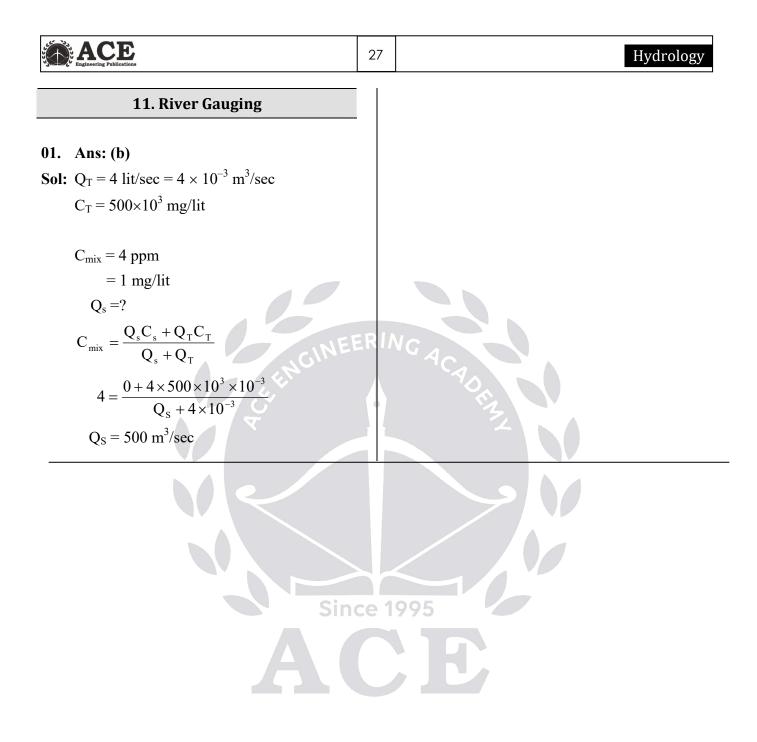
$$=\frac{3\times10^{6}}{5\times10^{6}\times3}=0.2$$

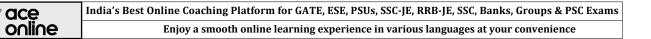
 Regular Live Doubt clearing Sessions
 Free Online Test Series | ASK an expert


 Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

24

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams online Enjoy a smooth online learning experience in various languages at your convenience


ace



 Regular Live Doubt clearing Sessions
 Free Online Test Series
 ASK an expert

 Affordable Fee
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

ace online

