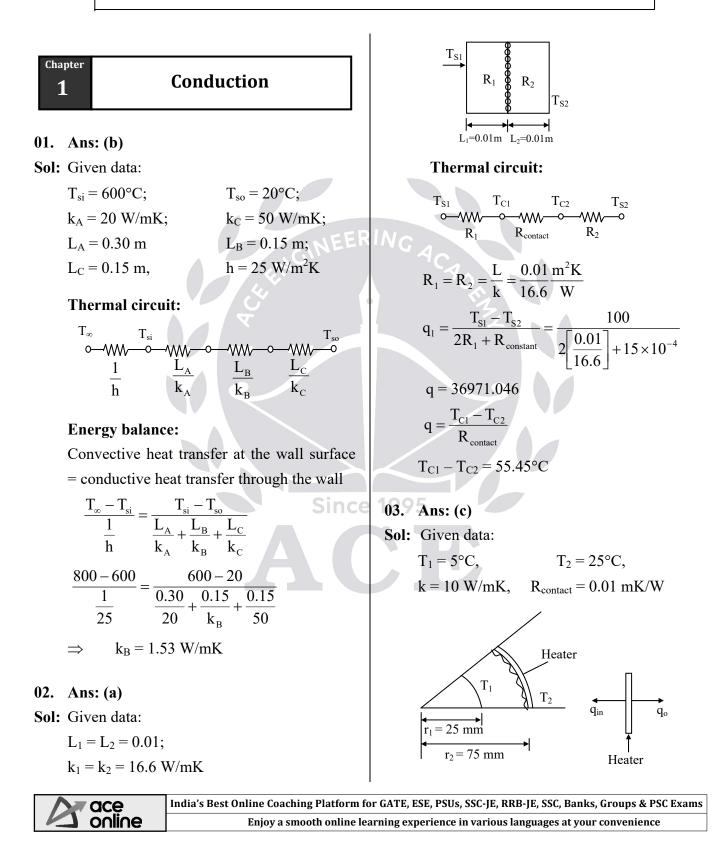


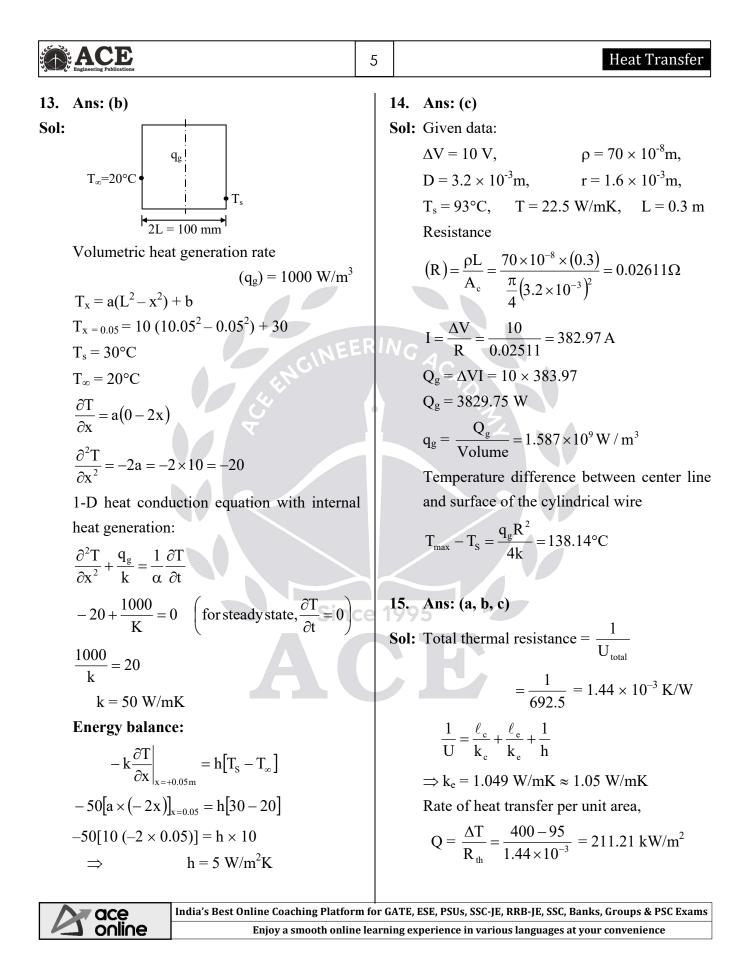
GATE | PSUs


MECHANICAL ENGINEERING

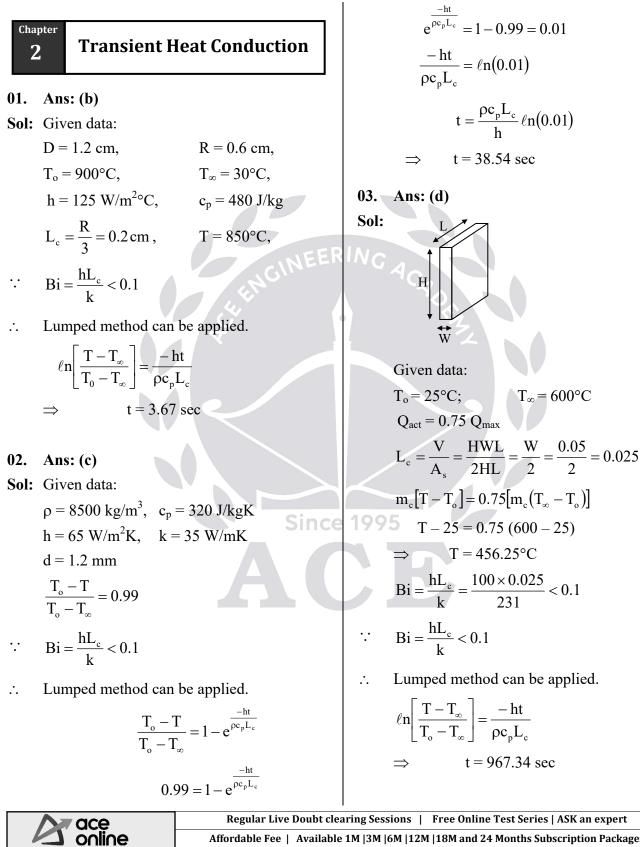
Heat Transfer

Text Book: Theory with worked out Examples and Practice Questions

Heat Transfer


(Solutions for Text Book Practice Questions)

Engineering Publications	2 GATE Text Book Solutions	
$q_{in} = \frac{T_2 - T_1}{R_{contact} + R_{cond}}$ $= \frac{25 - 5}{0.01 + \frac{\ell n \left(\frac{75}{25}\right)}{2\pi \times 10 \times 1}} = 727.67 \text{ W/m}$	05. Ans: (485 K) Sol: Given data: Volumetric heat generation rate $q_g = 0.3 \text{ MW/m}^3$ k = 25 W/mK;	
$0.01 + \frac{1}{2\pi \times 10 \times 1}$ $q_{out} = \frac{T_2 - T_{\infty}}{\frac{1}{h_0 A_0}}$ $= \frac{25 + 10}{1} = 1649.33 \text{W/m}$	$T_{\infty} = 92^{\circ}C;$ $h_{o} = 500 \text{ W/m}^{2}K$ $L=0.1 \text{ m}$ Energy balance:	
$-\frac{1}{100 \times 2\pi \times 0.075 \times 1} -1049.33 \text{ W/m}$	$Q_{in} + Q_{gen} - Q_{out} = Q_{stored}$	
Heater Power = Total Heat Loss = $q_{in} + q_{out} = 2377 \text{ W/m}$	$Q_{gen} = Q_{out}$ $q_g A' L = h A' (T_S - T_{\infty})$ $0.3 \times 10^6 \times 0.1 = 500 \times (T_S - 92)$	
04. Ans: (d) Sol: Given data: $r_m = 0.075 \text{ m}$ $T_1 = 100^{\circ}\text{C}$, $T_2 = 45^{\circ}\text{C}$	$\Rightarrow T_{\rm S} = 152^{\circ}{\rm C}$ $T_{\rm max} - T_{\rm S} = \frac{q_{\rm g}L^2}{2k}$	
$r_1 = 0.05 \text{ m}$ $r_2 = 0.1 \text{ m}$ $r_m = 0.075 \text{ m}$	(q _g = heat generation per unit volume) $T_{max} = T_{s} + \frac{q_{g}L^{2}}{2k}$ $T_{max} = 152 + \frac{0.3 \times 10^{6} \times (0.1)^{2}}{2 \times 25}$ $T_{max} = 212^{\circ}C = 485 \text{ K}$	
$\frac{T_{m} - T_{1}}{T_{2} - T_{1}} = \frac{\frac{1}{r_{1}} - \frac{1}{r_{m}}}{\frac{1}{r_{1}} - \frac{1}{r_{2}}}$	06. Ans: (b) Sol: Given data: $q_g = 2.6 \times 10^6 \text{ W/m}^3$ $k = 45 \text{ W/m}^2\text{C}$	
$\frac{T_{\rm m} - 100}{45 - 100} = \frac{\frac{1}{0.05} - \frac{1}{0.075}}{\frac{1}{0.05} - \frac{1}{0.1}} \implies T_{\rm m} = 63.3^{\circ}{\rm C}$	$T_{\infty} = 0^{\circ}C$ $h = 1200 \text{ W/m}^{2\circ}C$	
Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages		

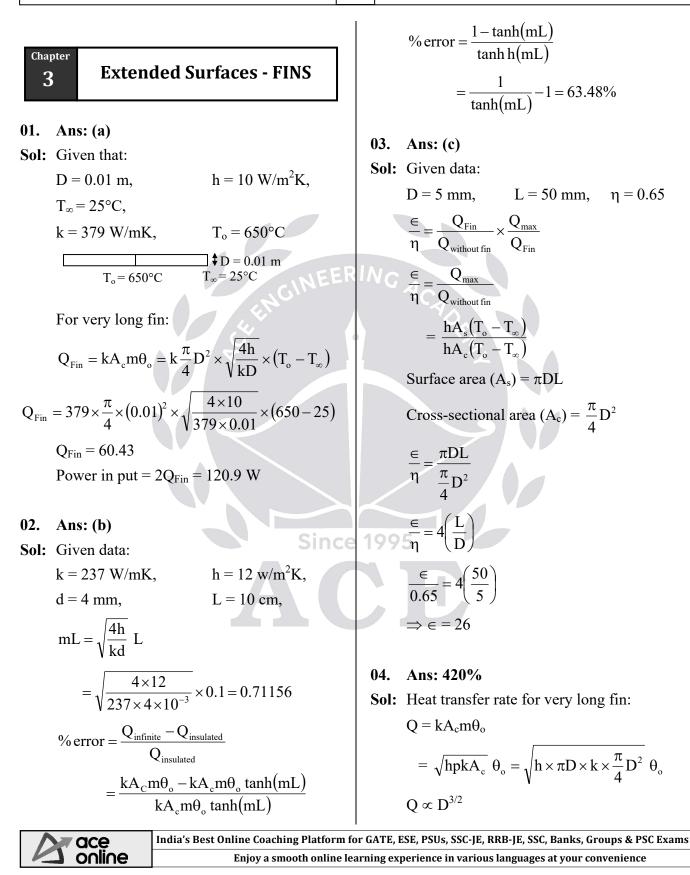

ACE Heat Transfer 3 Temperature difference between center line $T_{avg} = \frac{T_1 + T_2}{2} = \frac{500 + 350}{2} = 425^{\circ}C$ and surface of the sphere $k_T = k_0 [1 + \beta T]$ $T_{max} - T_s = \frac{q_q R^2}{C_s}$ $k_{avg} = k_0 [1 + \beta T_{avg}]$ $k_{avg} = 25[1+(8.7\times10^{-4})\times425]$ $T_{max} = T_{s} + \frac{q_{q}R^{2}}{61r}$ $k_{avg} = 34.24 \text{ W/mK}$ $Q = \frac{\frac{T_1 - T_2}{L}}{\frac{L}{k_{avo}A}}$ $= 108.33 + \frac{2.6 \times 10^6 \times (0.15)^2}{6 \times 45}$ $T_{max} = 325^{\circ}C$ 500 - 350**Energy balance:** $\frac{0.15}{34.24 \times 1.5 \times 0.6} = 30.816 \times 10^3 = \omega$ $Q_{in} + Q_{gen} - Q_{out} = Q_{stored}$ $Q_{gen} = Q_{out}$ Q = 30.816 kW $q_g \frac{4}{3}\pi R^3 = h4\pi R^2 (T_s - T_\infty)$ 08. Ans: (c) Sol: Given data: $T_s - T_{\infty} = \frac{q_g R}{3h}$ $T_1 = 400 \text{ K}, \qquad T_2 = 600 \text{ K}$ a = 0.25 D = ax. $T_{\rm S} = T_{\infty} + \frac{q_{\rm g}R}{2h}$ $x_1 = 0.05m$, $x_2 = 0.25 m$ $T_{s} = 0 + \frac{2.6 \times 10^{6} \times 0.15}{3 \times 1200}$ $A = \frac{\pi}{4}D^2 = \frac{\pi}{4}a^2x^2$ Since $199 Q = -kA \frac{dT}{dx}$ $T_{s} = 108.33^{\circ}C$ $Q = -k\frac{\pi}{4}a^2x^2\frac{dT}{dx}$ X_1 07. Ans: (b) **x**₂ Sol: $Q\frac{dx}{x^2} = -\frac{\pi ka^2}{4}dT$ $Q\int_{1}^{x_2} \frac{dx}{x^2} = \frac{-\pi ka^2}{4}\int_{1}^{T_2} dT$ Η t=0.15 m $Q\left[\frac{-1}{x}\right]^{x_2} = \frac{-\pi ka^2}{4} (T_2 - T_1)$ Given data: $T_1 = 500 \text{ K},$ H = 1.5 m $Q\left[\frac{-1}{x_1} + \frac{1}{x_2}\right] = \frac{-\pi ka^2}{4} (T_2 - T_1)$ $T_2 = 350 \text{ K},$ W = 0.6 m. L = 0.15 mIndia's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams ace online Enjoy a smooth online learning experience in various languages at your convenience

ACE Engineering Publications	4 GATE Text Book Solutions
$Q = \frac{-\pi ka^{2}(T_{2} - T_{1})}{4\left[\frac{1}{x_{1}} - \frac{1}{x_{2}}\right]}$ $- \pi \times 3.46 \times (0.25)^{2} (600 - 400)$	 ∴ r > r_c ∴ Adding the insulation will always reduce the heat transfer rate.
$= \frac{-\pi \times 3.46 \times (0.25)^2 (600 - 400)}{4 \left[\frac{1}{0.05} - \frac{1}{0.25} \right]}$ Q = -2.12 W (- sign indicates the direction	11. Ans: (c) Sol: Given data: Radius (r) = 1 mm,
of heat transfer) 99. Ans: (d) Sol: Given data:	Thermal conductivity of insulation $(k_{in}) = 0.175 \text{ W/mK}$ Heat transfer coefficient of surrounding ai $(h_o) = 125 \text{ W/m}^2\text{K}$
Thermal conductivity of insulation $(k_{in}) = 0.5 \text{ W/mK}$ Heat transfer coefficient of surrounding ai $(h_o) = 20 \text{ W/m}^2\text{K}$	Thickness = $0.2 \text{ mm} = r_{\text{new}} - r$ $r_{\text{new}} = 1.2 \text{ mm}$
Thickness of insulation for maximum heat transfer = $r_c - r = \frac{k_{in}}{h_o} - r$	
$= \frac{0.5}{20} - 0.01 = 15 \mathrm{mm}$ 0. Ans: (a) Since	. Addition of further insulation, heat transfe
Sol: Given data: Thermal conductivity of insulation $(k_{in}) = 0.1 \text{ W/mK}$ Heat transfer coefficient of surrounding ai $(h_o) = 10 \text{ W/m}^2\text{K}$ Radius $(r) = 1.5 \text{ cm}$, Critical radius of insulation $(r_c) = \frac{k_{in}}{h_o}$ $= \frac{0.1}{10} = 0.01 \text{ m} = 1 \text{ cm}$	Sol: Given data: Thermal conductivity of insulation $(k_{in}) = 0.4 \text{ W/mK}$ Heat transfer coefficient of surrounding ai $(h_o) = 10 \text{ W/m}^2\text{K}$ Critical radius of insulation for the sphere $(r_c) = \frac{2k_{in}}{h_o} = \frac{2 \times 0.04}{10} = 8 \text{ mm}$
Regular Live Doubt Affordable Fee Availa	$\begin{tabular}{ c c } Critical diameter (d_c) = 2r_c = 16 mm \\ \hline \end{tabular} \label{eq:clearing Sessions} & \end{tabular} \end{tabular} \end{tabular}$

ACE

GATE Text Book Solutions

6


Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

ACE Engineering Publications		7	Heat Transfer
04. Ans: (b)		ĺ	Temperature after next 10 s,
Sol: According to	lumped capacity analysis:		$T_o = 430^{\circ}C$; $t = 10$ sec;
$\ell n \left[\frac{T - T_{\infty}}{T_{o} - T_{\infty}} \right]$	$=\frac{-t}{\tau^*}$		$\ell n \left[\frac{T - T_{\infty}}{T_{o} - T_{\infty}} \right] = \frac{-t}{\tau^{*}}$
$\ell n \left[\frac{\frac{T_{o} + T_{\infty}}{2}}{T_{o} - T_{\infty}} \right]$	$\left[-\frac{T_{\infty}}{\tau}\right] = \frac{-t}{\tau^*}$		$\frac{T-30}{430-30} = e^{\frac{-10}{\tau^*}} \qquad (2)$ $T = 30 + 400 \times e^{-10/44.81}$
$l = ln \left[\left(\frac{T_o + T_\infty}{r_o} \right) \right]$	$\left \frac{1}{T_{1}-T_{2}}\right = \frac{-t}{\tau^{*}}$		\Rightarrow T = 350°C
	$T_{o} - T_{\infty} \int \tau$		06. Ans: 12.00 K/min
$\ell n \left(\frac{1}{2}\right) = \frac{-t}{\tau^*}$	4 ENGINE	1	Sol: Given data: D = 0.05 m;
$\ell n(2) = \frac{-t}{\tau^*}$	A C		$T_o = 900^{\circ}C,$ $T_{\infty} = 30^{\circ}C$ $\rho = \frac{m}{V}$
$\Rightarrow t = \tau * \ell n$	(2)		$p = \frac{1}{V}$ $m = \rho V = \rho \frac{4}{3} \pi R^{3}$
05. Ans: (c)			
Sol: Given data:			$= 7800 \times \frac{4}{3} \times \pi (0.025)^3 = 0.510 \mathrm{kg}$
m = 500 g =	0.5 kg;		Energy balance:
$T_{o} = 530^{\circ}C;$	Sin	co 1	99 Decrease in internal energy = Convective
$T = 430^{\circ}C;$			heat transfer from the surface
$T_{\infty} = 30^{\circ}C$ According to	lumped capacity analysis		$-\mathrm{mc}\frac{\mathrm{dT}}{\mathrm{dt}} = \mathrm{hA}_{\mathrm{s}}(\mathrm{T}_{\mathrm{o}} - \mathrm{T}_{\mathrm{\infty}})$
$\ell n \left[\frac{T - T_{\infty}}{T_{o} - T_{\infty}} \right] =$	$=\frac{-t}{\tau^*},$		$0.510 \times 2000 \times \frac{dT}{dt} = 30 \times 4\pi (0.025)^2 \times (900 - 30)$
$ln\left[\frac{430-30}{530-30}\right]$	$= \frac{-10}{\tau^*} \dots \dots \dots (1)$		$\frac{\mathrm{dT}}{\mathrm{dt}} = 0.2 \mathrm{K/sec} = 0.2 \times 60$
$\ell n \frac{400}{500}$	$=\frac{-10}{\tau^*}$		$\frac{\mathrm{dT}}{\mathrm{dt}} = 12.00 \mathrm{K} /\mathrm{min}$
\Rightarrow τ^*	s = 44.81 s		
A ace online			ATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams ing experience in various languages at your convenience

	ACEE Engineering Publications	8	GATE Text Book Solutions
07.	Ans: (c)		$t_{\infty} = 300^{\circ}C$
Sol:	Given data:		$V = \frac{\pi}{c} d^3$ d 0.706 × 10 ⁻³
	$T_{o} = 350^{\circ}C,$ $T_{\infty} = 30^{\circ}C.$		$L_{c} = \frac{V}{A_{s}} = \frac{\frac{\pi}{6}d^{3}}{\pi d^{2}} = \frac{d}{6} = \frac{0.706 \times 10^{-3}}{6}$
	$T_{\infty} = 30$ C, T = 100°C		Bi = $\frac{h L_c}{k} = \frac{400 \times 0.706 \times 10^{-3}}{20 \times 6} = 0.00235$
	$c_p = 900 \text{ J/kg.K},$		$BI = \frac{1}{k} = \frac{1}{20 \times 6} = -0.00233$
	$\rho = 2700 \text{ kg/m}^3$,		Bi < 0.1, so lumped heat parameter analysis
	k = 205 W/mK,		is valid. $\mathbf{r} = 1 + 1$
	$h = 60 \text{ W/m}^2\text{K}$		Final temperature to be reached $(t) = 298^{\circ}C$
	$m = \rho V = \rho \times \frac{4}{3} \pi R^3$	ERII	$\ell n \left(\frac{t - t_{\infty}}{t_{i} - t_{\infty}} \right) = -\frac{hA_{s}}{\rho VC} \tau = -\frac{h}{\rho C \times L_{c}} \times \tau$
	$L_{\rm c} = \frac{R}{3} = 0.02698 \mathrm{m}$		$\ell n \left(\frac{298 - 300}{30 - 300} \right) = -\frac{400 \times \tau}{8500 \times 400 \times \left(\frac{0.706 \times 10^{-3}}{6} \right)}$
	R = 0.0809 m		$8500 \times 400 \times \left(\frac{6}{6} \right)$
	$Bi = \frac{hL_c}{k} < 0.1$		$\Rightarrow \tau = 4.9 \text{ sec}$
	Lumped method can be applied.		$Fo = \frac{\alpha \tau}{L^2} = \frac{\frac{k}{\rho C} \times \tau}{L^2}$
	$\ell n \left[\frac{T - T_{\infty}}{T_{0} - T_{\infty}} \right] = \frac{-ht}{\rho c_{n} L_{c}}$		L_c^2 L_c^2
			$=\frac{20\times4.9}{1000000000000000000000000000000000000$
	$\ell n \left[\frac{100 - 30}{350 - 30} \right] = \frac{-60 \times t}{2700 \times 900 \times 0.02698} $	ce 1	$= \frac{1}{8500 \times 400 \times \left(\frac{0.706 \times 10^{-3}}{6}\right)^2}$
	\Rightarrow t = 1660 sec		= 2081.8
08.	Ans: (b, c, d)		$e^{Bi \times Fo} = e^{0.00235 \times 2081.8}$
Sol: (Given data :		$e^{\text{Bi}\times\text{Fo}} = 133.25 \approx 135$
($d = 0.706 \times 10^{-3} m,$		
	$h = 400 \text{ W/m}^3 \text{ K}$		
	$p = 8500 \text{ kg/m}^3$,		
	k = 20 W/mK,		
	C = 400 J/kgK,		
1	$t_i = 30^{\circ}C,$		
			ng Sessions Free Online Test Series ASK an expert
L.		able 1M	A 3M 6M 12M 18M and 24 Months Subscription Packages

ACE Engineering Publications

Heat Transfer

9

ACE Engineering Publications	10 GATE Text Book Solutions
$\frac{Q_2}{Q_1} = \frac{(D_2)^{3/2}}{(D_1)^{3/2}} = \frac{(3D_1)^{3/2}}{(D_1)^{3/2}} = 5.1962$ % increase in Heat Transfer = $\frac{Q_2 - Q_1}{Q_1}$ = $\frac{Q_2}{Q_1} - 1$ = 5.1962 - 1 = 4.19 \approx 420 %	06. Ans: (d) Sol: Given data: $a = 5 \times 10^{-3} \text{ m} = 5 \text{ mm},$ $T_o = 400^{\circ}\text{C},$ $T_{\infty} = 50^{\circ}\text{C},$ k = 54 W/mK, L = 0.08 m, $h = 90 \text{ W/m}^2\text{K},$ $\frac{P}{A_c} = \frac{3a}{\sqrt{\frac{3}{4}a^2}} = \frac{4\sqrt{3}}{a}$
Sol: Given data:	$\sqrt{\frac{1}{4}a^2}$
$\begin{split} k_{A} &= 70 \text{ W/mK}, \\ x_{A} &= 0.15 \text{ m}, \\ \text{Temperature variation for long fin:} \\ \frac{T_{o} - T_{\infty}}{T - T_{\infty}} &= e^{mx} \\ m &= \sqrt{\frac{ph}{kA_{c}}} = \sqrt{\frac{4h}{kD}} \\ m &\propto \sqrt{\frac{1}{k}} \text{(for the same diameter and same)} \end{split}$	$m = \sqrt{\frac{hP}{kA_c}} = \sqrt{\frac{4\sqrt{3}h}{ka}}$ $m = \sqrt{\frac{4\sqrt{3} \times 90}{54 \times 5 \times 10^{-3}}} = 48.05$ $mL = 3.844$ $L_c = L + \frac{A_c}{P} = 0.08 + \frac{a}{4\sqrt{3}}$ $= 0.08 + \frac{5 \times 10^{-3}}{4\sqrt{3}}$ $= 0.08072 \text{ m}$ Heat transfer rate from the fin:
$m_A x_A = m_B x_B$	$Q_{Fin} = kA_cm\theta_o tanh(mL_c)$
$\frac{\mathbf{x}}{\mathbf{x}_{1}} = \frac{\mathbf{m}_{1}}{\mathbf{m}_{2}} = \sqrt{\frac{\mathbf{k}_{B}}{\mathbf{k}_{A}}}$	$= 54 \times \left(\frac{\sqrt{3}}{4} \times 0.005^{2}\right) \times 48.05 \times (400 - 50) \times \tanh(48.05 \times 0.08072)$
$\frac{\mathbf{k}_{\mathrm{B}}}{\mathbf{k}_{\mathrm{A}}} = \left(\frac{\mathbf{x}_{\mathrm{B}}}{\mathbf{x}_{\mathrm{A}}}\right)^{2}$	$Q_{Fin} = 9.82 W$
$\frac{k_{\rm B}}{70} = \left(\frac{0.075}{0.15}\right)^2$	07. Ans: (c) Sol: Given data:
\Rightarrow k _B = 17.5 W/mK	$k = 30 \text{ W/mK}, \qquad D = 0.01 \text{ m},$
	earing Sessions Free Online Test Series ASK an expert
Affordable Fee Availabl	e 1M 3M 6M 12M 18M and 24 Months Subscription Packages

L = 0.05 m, $T_{\infty} = 65^{\circ}C$, h = 50 W/m ² K, $T_{o} = 98^{\circ}C$ mL = $\sqrt{\frac{4h}{kD}}L = \sqrt{\frac{4 \times 50}{30 \times 0.01}} \times 0.05 = 1.2909$ 09. Ans: (a) Sol: Given data: k = 200 W/m ^o C, h = 15 W/m ² °C, L = 1 c Cross-sectional area of fin	Engineering Publications	11 Heat Transfer
$Q_{\rm Fin} = k A_{\rm c} m \theta_{\rm o} \tanh(mL)$	h = 50 W/m ² K, $T_o = 98^{\circ}C$ mL = $\sqrt{\frac{4h}{kD}}L = \sqrt{\frac{4 \times 50}{30 \times 0.01}} \times 0.05 = 1.2909$ Temperature variation for insulated fin tip $\frac{T - T_{\infty}}{T_o - T_{\infty}} = \frac{\cosh(mL - x)}{\cosh mL}$ $x = L, T = T_L$ $\frac{T_L - T_{\infty}}{T_o - T_{\infty}} = \frac{1}{\cosh mL}$ $T_L = T_{\infty} + \frac{T_o - T_{\infty}}{\cosh mL}$ $T_L = 65 + \frac{98 - 65}{\cosh(1.29)}$ $T_L = 81.87^{\circ}C$ 08. Ans: (b) Sol: $\frac{h}{mk} < 1$ $\sqrt{\frac{ph}{kA_c}} \times k$ $\sqrt{\frac{hA_c}{pk}} < 1$ $\sqrt{\frac{pk}{hA_c}} > 1$ Effectiveness (\in) > 1 Using the fin will increase the heat transferrate because effectiveness of the fin in	Sol: Given data: $k = 200 \text{ W/m}^{\circ}\text{C}, h = 15 \text{ W/m}^{2}\text{C}, L = 1 \text{ cr}$ Cross-sectional area of fin $(A_c) = 0.5 \times 0.5 \text{ mm}^2$ $T_o = 80^{\circ}\text{C},$ $T_{\infty} = 40^{\circ}\text{C}$ $m = \sqrt{\frac{ph}{kA_c}}$ $= \sqrt{\frac{4 \times 0.0005 \times 15}{200 \times 0.0005 \times 0.0005}} = 24.49$ mL = 24.49 × 0.01 = 0.2449 tanh(mL) = 0.240 Heat transfer rate from fin with insulated the $Q_{\text{Fin}} = kA_c m\theta_o \tanh(mL)$ $= 200 \times (0.5 \times 10^{-3})^2 \times 24.5 \times (80-40) \times 0.24$ $Q_{\text{Fin}} = 0.01176$ No.of fin $= \frac{Q_{\text{total}}}{Q_{\text{Fin}}} = \frac{1}{0.01176} = 85$ 10. Ans: 191.5 W/mK Sol: Given data: $T_x = 150^{\circ}\text{C},$ $T_{\infty} = 30^{\circ}\text{C}$ D = 25 mm, $h = 20 \text{ W/m}^{2}^{\circ}\text{C}$

 India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams

 Enjoy a smooth online learning experience in various languages at your convenience

Engineering Publications	12	GATE Text Book Solutions
Temperature variation for long fin		
$\frac{T-T_{\infty}}{T_{o}-T_{\infty}} = e^{-mx}$		Chapter 4
$\frac{150-30}{T_{o}-30} = e^{-mx} \dots \dots$		01. Ans: 40 W/m ² K
$\frac{95-30}{T_{o}-30} = e^{-m(x+15)}$ (2) From equation (1) and (2) we get	\$	Sol: $T_{s} = 400 \text{ K}$ $T_{s} = 400 \text{ K}$ $T_{s} = 400 \text{ K}$ $T_{s} = 400 \text{ K}$ (2) $L_{1} = 1 \text{ m}$ $L_{2} = 5 \text{ m}$
$\ell n \left[\frac{150 - 30}{95 - 30} \right] = \sqrt{\frac{4h}{Dk}} \times 0.15$	ER <i>11</i>	Given that: $V_1 = 100 \text{ m/s},$ $V_2 = 20 \text{ m/s},$ $q_1 = 20,000 \text{ W/m}^2$
$\Rightarrow \qquad k = 191.5 \text{ W/mK}$		Heat transfer from object (1) = $h_1 (T_s - T_{\infty})$ 20000 = $h_1 (400 - 300)$
11. Ans: (a, d)		$h_1 = 200 \text{ W/m}^2\text{K}$
Sol: Given data: $h_{m} = 50 W/mK$		Reynold's number for object (1)
$k_{fin} = 50 \text{ W/mK}$ d = 10 mm = 0.01 m		$\operatorname{Re}_{1} = \frac{\operatorname{V}_{1}\operatorname{L}_{1}}{\operatorname{v}_{1}} = \frac{100 \times 1}{\operatorname{v}_{1}} = \frac{100}{\operatorname{v}_{1}}$
$L = 600 \text{ mm} = 0.6 \text{ m}, \qquad m = 8$		Reynold's number for object (2)
$m = \sqrt{\frac{hP}{kA_{cs}}} = \sqrt{\frac{h \times \pi d}{k \times \frac{\pi}{4}d^2}} = \sqrt{\frac{4h}{kd}}$ Since	ce 1	Re ₂ = $\frac{V_2 L_2}{v_2} = \frac{20 \times 5}{v_2} = \frac{100}{v_2}$ Since, v ₁ = v ₂ (for the same fluid)
$8 = \sqrt{\frac{4 \times h}{50 \times 0.01}}$	4	$\therefore \qquad \operatorname{Re}_1 = \operatorname{Re}_2$
\Rightarrow h = 8 W/m ² K		·· Prandtl number is the property of the fluid.
$\therefore \text{ Convective heat transfer coefficient} = 8 \text{ W/m}^2 \text{K}$		$\therefore Pr_1 = Pr_2$ Nusselt number (Nu) = f [Re.Pr]
For very long fin, efficiency of fin		$Nu_1 = Nu_2$
$\eta_{\rm fin} = \frac{1}{mL} = \frac{1}{8 \times 0.6} = 20.83\%$		$\frac{\mathbf{h}_1 \mathbf{L}_1}{\mathbf{k}_1} = \frac{\mathbf{h}_2 \mathbf{L}_2}{\mathbf{k}_2}$

Regular Live Doubt clearing Sessions | Free Online Test Series | ASK an expert

Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

A ace online

$$\frac{h_{2}}{h_{1}} = \frac{L_{1}}{L_{2}}$$

$$h_{2} = h_{1} \times \frac{L_{1}}{L_{2}} = 200 \times \frac{1}{5} = 40 \text{ W/m}^{2}\text{K}$$
02. Ans: (d)
Sol: Given data:

$$Pr = 0.7, \quad T_{x} = 400 \text{ K}$$

$$T_{x} = 300 \text{ K}, \quad \frac{u_{x}}{v} = 5000/\text{ m}$$

$$k = 0.263 \text{ W/m}\text{K}$$

$$\frac{T - T_{x}}{T_{x} - T_{x}} = 1 - e^{\left[-r^{\mu}\frac{w_{x}y}{v}\right]}$$

$$\frac{dT}{dy} = (T_{x} - T_{x} \left\{ 0 - e^{\left(-r^{\mu}\frac{w_{x}y}{v}\right)}\right\} \left[-Pr\frac{u_{x}}{v}\right)$$

$$\frac{dT}{dy} \Big|_{y=0} = (T_{x} - T_{x} \left\{ 0 - e^{\left(-r^{\mu}\frac{w_{x}y}{v}\right)}\right\} \left[-Pr\frac{u_{x}}{v}\right)$$

$$\frac{dT}{dy} = (T_{x} - T_{x} \left\{ 0 - e^{\left(-r^{\mu}\frac{w_{x}y}{v}\right)}\right\} \left[-Pr\frac{u_{x}}{v}\right)$$
Heat transfer rate = Heat conduction just adjacent on the surface (i.e. at y = 0)
$$q = -k \left(\frac{dT}{dy}\right)_{y=0}$$

$$q = -k(T_{x} - T_{x} \left(Pr\frac{u_{x}}{v}\right)$$

$$q = -0.0263 (300 - 400) [0.7 \times 5000]$$

$$q = 9205 \text{ W/m}^{2}$$

$$13$$

$$3 \text{ Ans: (c)}$$
Sol: Given data:

$$u_{yy} = Ay + By^{2} - cy^{3}}{T_{(y)} = D + Ey + Fy^{2} - Gy^{3}}$$

$$\frac{du}{dy} = A$$
According to Newton's law of viscosity:
Wall shear stress(\tau_{x}) = \mu \frac{du}{dy}
$$= \mu A$$
Skin friction coefficient (cr) = $\frac{1}{2} pu_{x}^{2}$

$$c_{1} = \frac{2\mu A}{pu_{x}^{2}}$$

$$(v = \frac{\mu}{\rho})$$
For the temperature profile:

$$\frac{dT}{dy} = E + 2Fy - 3Gy^{2}$$

$$\frac{dT}{dy}|_{y=0} = E$$
Energy balance:
Conduction heat transfer in the fluid adjacent to the wall (i.e. at y = 0) = convective heat transfer inside the fluid.

$$-k \frac{dT}{dy}|_{y=0} = h(T_{x} - T_{x})$$

A ace online India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

$$h = \frac{-k\frac{dT}{dy}\Big|_{y=0}}{T_s - T_\infty} = \frac{-kE}{T_s - T_\infty}$$
$$h = \frac{kE}{T_\infty - D}$$

 $(T_s = D, \text{ from the temperature profile})$

04. Ans: (b)

Sol: Given data:

 $\dot{m} = 2 \text{ kg/s}, \quad D = 0.04 \text{ m}, \quad T_i = 25^{\circ}\text{C},$ $T_o = 75^{\circ}\text{C}, \qquad T_s = 100^{\circ}\text{C},$ $h = 6916 \text{ W/m}^2\text{K},$ $c_p = 4181 \text{ J/kg.K}.$ $T_s = 100^{\circ}\text{C}$ $T_s = 100^{\circ}\text{C}$

$$\theta_1 = 75^{\circ}C$$

 $T_i = 25^{\circ}C$
 $T_i = 25^{\circ}C$

$$LMTD = \frac{\theta_1 - \theta_2}{\ell n \left(\frac{\theta_1}{\theta_2}\right)} = \frac{75 - 25}{\ell n \left(\frac{75}{25}\right)} = 45.51^{\circ}C$$

Heat transfer rate = $h \times A \times LMTD$ $\dot{m}c_p(T_o - T_i) = 6916 \times \pi \times 0.04 \times L \times 45.51$ $2 \times 4181 \times (75 - 25) = 39554 L$ $\Rightarrow L \approx 10.6 m$

05. Ans: (b)

Sol: Given data:

$$\label{eq:D} \begin{split} D &= 30 \mbox{ mm}, & T_\infty &= 20^{\circ} \mbox{C}, \\ h &= 11 \mbox{ W/m}^2 \mbox{K}, & L &= 1 \mbox{ m}, \end{split}$$

$$T_{avg} = 150^{\circ}$$

For laminar fully developed with constant wall temperature condition:

Nu = 3.66

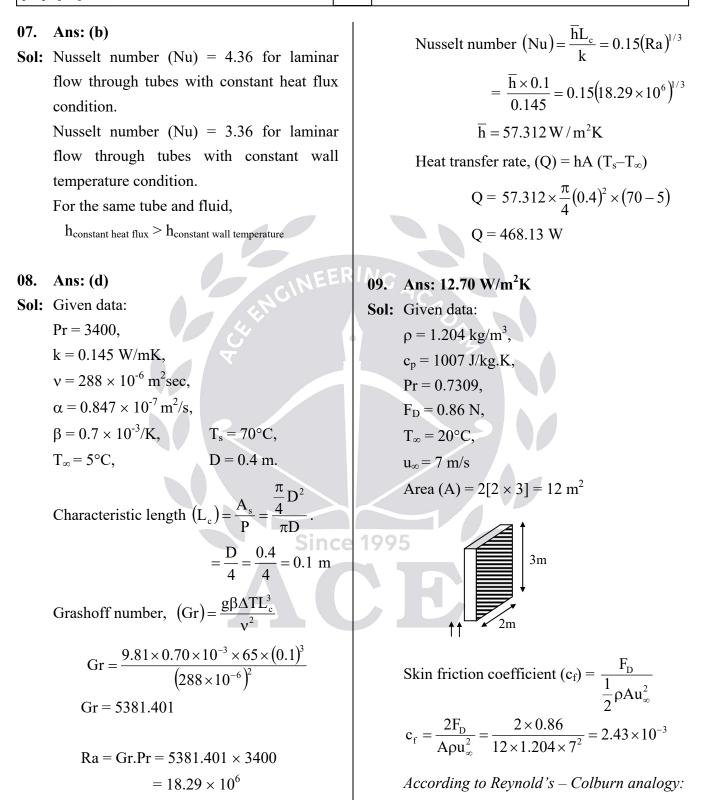
$$\frac{hD}{k} = 3.66$$

$$h = 3.66 \text{ k/D}$$

$$h = 3.66 \times \frac{0.133}{0.03} = 16.22 \text{ W/m}^2 \text{K}$$

$$q = \frac{T_{avg} - T_{\infty}}{\frac{1}{h_i} + \frac{1}{h_o}} = \frac{150 - 20}{\frac{1}{16.22} - \frac{1}{11}} = 80.3 \text{ W/m}^2$$

06. Ans: (c)


Sol: In constant wall temperature condition, mean temperature of the fluid continuously changes in the direction of fluid flow. The temperature difference between surface temperature and mean fluid temperature decreases in the direction of flow.

> Therefore, mean temperature difference is considered as log mean temperature difference in calculation.

> For the temperature profile, refer to the diagram in Solution of Q. No. 04

ACE	
Engineering Publications	

ace online

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience

ACE Engineering Publications

St. Pr^{2/3} =
$$\frac{c_f}{2}$$

St(0.7309)^{2/3} = $\frac{2.43 \times 10^{-3}}{2}$
St = $\frac{h}{\rho u_{\infty} c_p}$ = 1.5 × 10⁻³
h = 12.70 W/m²K

10. Ans: (c)

Sol: The variation of heat transfer coefficient (h) in the direction of fluid flow over a flat plate is shown in figure below.

As, $h \propto \frac{1}{\sqrt{x}}$

From the figure $h_1 > h_2 > h_3$ According to Newton's law of cooling, Heat flux (q) = $h\Delta t$ $q \propto h$

 $q_1 > q_2 > q_3$

The maximum local heat $flux = q_1$

(i.e. at
$$x = x_1$$
)

11. Ans: (a) Sol: Given data: L = 3 m, $h_x = 0.7 + 13.6 \text{ x} - 3.4 \text{x}^2$ Average heat transfer coefficient $(\overline{h}) = \frac{1}{L} \int_{0}^{L} h_x dx$

$$\overline{h} = \frac{1}{3} \int_{0}^{1} (0.7 + 13.6x - 3.4x^{2}) dx$$
$$\overline{h} = \frac{1}{2} \left[0.7x + \frac{13.6x^{2}}{2} - \frac{3.4x^{3}}{2} \right]^{3}$$

$$\overline{h} = \frac{1}{3} \left[0.7(3) + \frac{13.6(3)^2}{2} - \frac{3.4(3)^3}{3} \right]$$

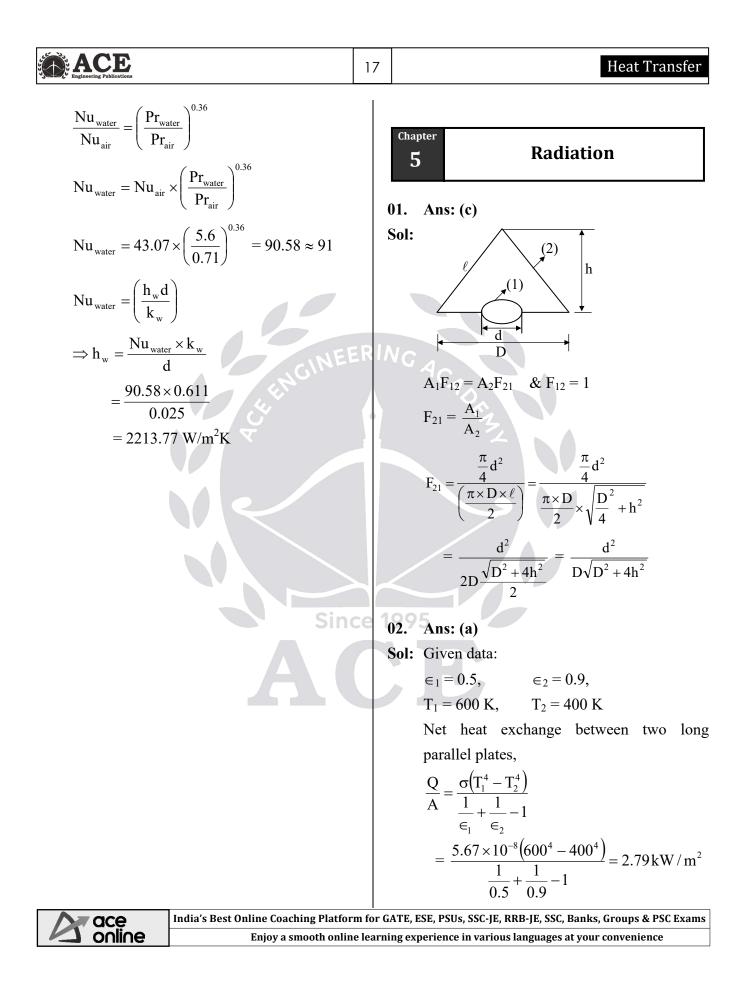
$$\overline{h} = 0.7 + \frac{13.6 \times 3}{2} - \frac{3.4 \times 3^2}{3}$$

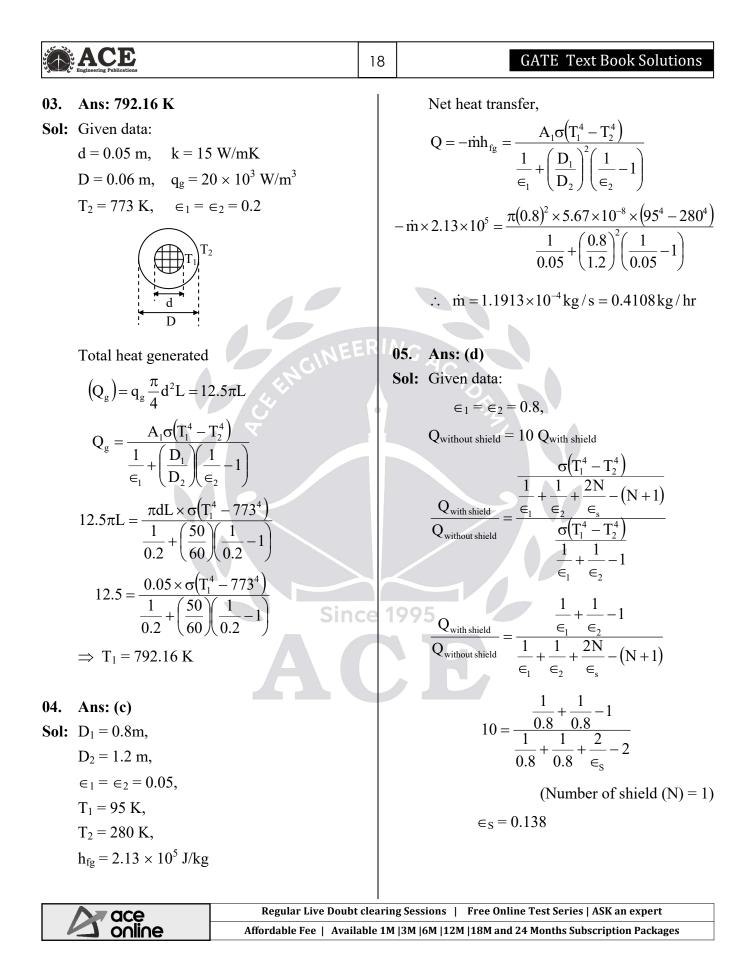
$$\overline{\mathbf{h}} = 10.9 \,\mathrm{W} / \mathrm{m}^2 \mathrm{K}$$

Heat transfer coefficient at x = L = 3 m

$$h_{x=L=3} = 0.7 + 13.6 (3) - 3.4 (3)^2$$

 $h_{x=L} = 10.9 W/m^2 K$
 $\frac{\overline{h}}{h_{x=L=3m}} = \frac{10.9}{10.9} = 1$


12. Ans: (a, c, d)**Sol:** Prandtl number of water,


199

$$Pr_{water} = \frac{\mu c_{p}}{k}$$
$$= \frac{8.18 \times 10^{-4} \times 4180}{0.611} = 5.59 \approx 5.6$$

 $Nu \propto Pr^{0.36}$ (given)

ACE Engineering Publications	19 Heat Transfer
06. Ans: (c)Sol: Given data:	08. Ans: (a) Sol: Given data:
$G = 300 \text{ W/m}^2, \epsilon = 0.4, \alpha = 0.3$	$J = 5000 \text{ W/m}^2,$ $T_1 = 350 \text{ K},$ $T_{\infty} = 300 \text{ K},$
$\Rightarrow \qquad \qquad$	$h = 40 \text{ W/m}^2\text{K},$ $\alpha = 0.4 \qquad \qquad$
$\alpha GA_{\text{projected}} = \in E_b A$ $0.3 \times 300 \times \frac{\pi}{4} D^2 = 0.04 \times \sigma \times T^4 \times \pi D^2$	RING A
$0.3 \times 300 \times \frac{\pi}{4} (1)^2 = 0.04 \times 5.67 \times 10^{-8} \times T^4 \times \pi (1)^2$	Convective heat transfer $(q_{conv}) = h(T_s - T_{\infty})$ = 40 (350 - 300)
\Rightarrow T = 315.6 K \checkmark	$= 2000 \text{ W/m}^2$
07. Ans: (c) Sol: Given data: $L = 1.5 \times 10^{11} \text{ m}, R_{SUN} = 7 \times 10^8 \text{ m},$	Energy balance: $Q_{in} + Q_{gen} - Q_{out} = Q_{stored}$ $Q_{in} - Q_{out} = 0 (Q_{stored} = 0 \text{ and } Q_{gen} = 0)$ $2G - [2J + 2 q_{conv}] = 0$ $2G - [2 \times 5000 + 2 \times 2000] = 0$
, G=1400 W/m	$G = 7000 \text{ W/m}^2$
(G-1400 with)	Leaving energy (J) = $\rho G + E + \tau G$ J = ($\rho + \tau$) G + E J = ($1 - \alpha$) G + E J = ($1 - 0.40$) × 7000 + $\in E_b$
Energy balance:	$5000 = 0.6 \times 7000 + \epsilon \times 5.67 \times 10^{-8} \times (350)^4$
$E_b \times A_{SUN} = G \times A_{Hemisphere}$	$\Rightarrow \in = 0.940$
$\sigma T_{SUN}^4 \times 4\pi R^2 = G \times 4\pi L^2$	09. Ans: (d)
$T_{SUN}^{4} = \left(\frac{L}{R}\right)^{2} \frac{G}{\sigma}$ $T_{SUN} = 5802.634 \approx 5800 \text{ K}$	Sol: Black body emission does not depend on the size of the object.
	m for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams e learning experience in various languages at your convenience

Engineering Publications	20	GATE Text Book Solutions
10. Ans: (b)	1	2. Ans: (a, c, d)
Sol: Given data:		Sol:
$T_w = 533 \text{ K}, \qquad T_{tc} = 1066 \text{ K},$		D = 4 m
$\epsilon = 0.5, \qquad \overline{h} = 114 W / m^2 K$		
Energy balance:		$\left \left\langle \cdot \right\rangle \right\rangle \cap \mathbf{T} \setminus$
Heat transfer by convection = Heat transfe	r	((1) h = 1m)
by radiation		
$q_{conv} = q_{rad}$		d = 1m
$\overline{h}(T_{air} - T_{tc}) = \in \sigma(T_{tc}^4 - T_w^4)$		
$114(T_{air} - 1066) = 0.5 \times 5.67 \times 10^{-8} (1066^4 - 533^4)$	RIA	$A_1 = \frac{\pi}{4}d^2 + \pi dh + \frac{\pi}{4}d^2$
\Rightarrow T _{air} = 1367 K		4^{1} 4
44		$=2\times\frac{\pi}{4}d^2+\pi dh$
11. Ans: (a)		3
Sol: $T_{sky} = -30^{\circ}C,$		$=\left(2\times\frac{\pi}{4}\times(1)^2\right)+(\pi\times1\times1)$
$h = 4.36 \text{ W/m}^2 \text{K}$		$= 1.5 \pi m^2$
$T_s = 25^{\circ}C, T_{\infty} = 0^{\circ}C$		$A_2 = \pi D^2 = \pi \times 4^2 = 16 \pi m^2$
\rightarrow D = 30 cm		$F_{1-1} = 0$
→		By summation rule,
4 100 m →		$F_{1-1} + F_{1-2} = 1$
Power required by resistance heater = Hea	t ce 1	$99 \Rightarrow F_{1-2} = 1$
loss by convection from the surface + Hea	it	By reciprocity theorem,
loss by radiation from surface		$A_1 F_{1-2} = A_2 F_{2-1}$
$P = hA (T_{s} - T_{\infty}) + \epsilon \sigma A_{s} (T_{s}^{4} - T_{sky}^{4})$		$\mathbf{F}_{2-1} = \frac{\mathbf{A}_1}{\mathbf{A}_2} \times \mathbf{F}_{1-2}$
$= 4.36 \times \pi \times D \times L (25 - 0) + 0.8 \times 5.67 \times 10^{-8} D \times L (200^4 - 242^4)$	×	A_2 A_2
$10^{-8} \times \pi \times D \times L (298^4 - 243^4)$	_	$=\frac{1.5\pi}{1.5\pi}\times 1=0.09375\approx 0.094$
$= 4.36 \times \pi \times 0.3 \times 100 (25 - 0) + 0.8 \times 5.6$		16π
$\times 10^{-8} \times \pi \times 0.3 \times 100 \ (298^4 - 243^4)$		By summation rule, $E_{1} = 1$
= 29080.64 W P = 29.08 kW		$F_{2-1} + F_{2-2} = 1$ $F_{2-2} = 1 - F_{2-1}$
r = 27.00 K/W		$F_{2-2} = 1 - F_{2-1}$ = 1 - 0.094 = 0.906
		-1 - 0.074 - 0.700
Decile Line Decile		Sessions Free Online Test Series ASK on expert

ACE

Chapter 6

Heat Exchangers

- 01. Ans: (d)
- Sol: Given that:
 - $T_{h1} = 70^{\circ}C, \qquad T_{c1} = 30^{\circ}C$ $T_{h2} = 40^{\circ}C, \qquad T_{c2} = 50^{\circ}C$ $\Delta T_1 = T_{h1} - T_{c2} = 20$ $\Delta T_2 = T_{h2} - T_{c1} = 10$ T_{h1}

 T_{c2}

Log Mean Temperature Difference

$$(LMTD) = \frac{\Delta T_1 - \Delta T_2}{\ell n \left[\frac{\Delta T_1}{\Delta T_2}\right]} = \frac{20 - 10}{\ell n \left(\frac{20}{10}\right)} = 14.42^{\circ}C$$

02. Ans: (c)

Sol:

 T_{h1} T_{h2} T_{c2} T_{c1}

LMTD = 20° C, $T_{c1} = 20^{\circ}$ C, $T_{h1} = 100^{\circ}$ C $\dot{m}_{c} = 2\dot{m}_{h}$ $c_{\rm h} = 2c_{\rm c},$ $C_h = \dot{m}_h c_h = 2 \dot{m}_h c_c$ $C_c = \dot{m}_c c_c = 2 \dot{m}_h c_c$

When $C = \frac{C_{min}}{C_{max}} = 1$, Temperature profile

will be linear for the counter flow heat exchanger and the mean temperature difference between hot fluid and cold fluid will be same at every section.

$$LMTD = \Delta T_{1} = \Delta T_{2}$$
$$LMTD = \Delta T_{1} = T_{h1} - T_{c2}$$
$$20 = 100 - T_{c2}$$
$$T_{c2} = 100 - 20 = 80^{\circ}C$$

Ans: 0.9 03.

21

Sol: This is the counter flow type of heat exchanger because exit temperature of cold fluid is greater than that of hot fluid.

Energy balance:

Heat released by hot fluid = heat received by cold fluid

 T_{c1}

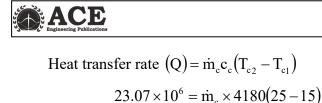
$$\dot{m}_{h}c_{h}(T_{h1}-T_{h2}) = \dot{m}_{c}c_{c}(T_{c2}-T_{c1})$$

$$\dot{m}_{h}c_{h} \times 90 = \dot{m}_{c}c_{c} \times 25$$

From the above equation $\dot{m}_c c_c > \dot{m}_h c_h$

ace online

India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams Enjoy a smooth online learning experience in various languages at your convenience


Heat Transfer

Engineering Publications	22 GATE Text Book Solutions
Effectiveness $(\in) = \frac{Q_{act}}{Q_{max}} = \frac{\dot{m}_h c_h (T_{h1} - T_{h2})}{\dot{m}_h c_h (T_{h1} - T_{c1})}$ $= \frac{T_{h1} - T_{h2}}{T_{h1} - T_{c1}} = \frac{90}{200 - 100}$ $= \frac{90}{100} = 0.9$	05. Ans: (a) Sol: Given data: $T_{h1} = T_{h2} = 75^{\circ}C,$ $\dot{m}_{h} = 2.7 \text{ kg/s}$ $T_{c1} = 21^{\circ}C,$ $T_{c2} = 28^{\circ}C,$ $A = 24 \text{ m}^{2},$ $T_{c1} = 255.7 \text{ kJ/kg}$
04. Ans: (c) Sol: Given data: $\dot{m}_{h} = 3.5 \text{ kg/s}$, $T_{h1} = 80^{\circ}\text{C}$, $c_{c} = 4180 \text{ J/kg}^{\circ}\text{C}$, $U_{i} = 250 \text{ W/m}^{2}^{\circ}\text{C}$ $c_{h} = 2560 \text{ J/kg}^{\circ}\text{C}$, $T_{h2} = 40^{\circ}\text{C}$, $T_{c1} = 20^{\circ}\text{C}$, $T_{c2} = 55^{\circ}\text{C}$ $T_{h1}^{\dagger} = T_{h1}^{\dagger} - T_{c2} = 25$	A = 24 m ² , $h_{fg} = 255.7 \text{ kJ/kg}$ $\Delta T_1 = T_{h1} - T_{c1} = 54^{\circ}\text{C}$ $\Delta T_2 = T_{h2} - T_{c2} = 47^{\circ}\text{C}$ Log Mean Temperature Difference (LMTD) $= \frac{\Delta T_1 - \Delta T_2}{\ln\left(\frac{\Delta T_1}{\Delta T_2}\right)} = \frac{54 - 47}{\ln\left(\frac{54}{47}\right)} = 50.149^{\circ}\text{C}$ Heat transfer rate $(Q) = \dot{m}_h \times h_{fg} = U \times A \times LMTD$ $2.7 \times 255.7 \times 10^3 = U \times 24 \times 50.419$ $\Rightarrow U = 571 \text{ W/m}^{2\circ}\text{C}$ 06. Ans: (c)
$\Delta T_2 = T_{h2} - T_{c1} = 20^{\circ}$ Log Mean Temperature Difference $(LMTD) = \frac{\Delta T_1 - \Delta T_2}{\ell n \left[\frac{\Delta T_1}{\Delta T_2}\right]} = \frac{25 - 20}{\ell n \left(\frac{25}{20}\right)} = 22.40^{\circ}C$ Heat transfer rate $(Q) = \dot{m}_h c_h (T_{h1} - T_{h2}) = U_i \times A_i \times LMTD$ $35 \times 2560 (80-40) = 250 \times A_i \times 22.4$ $A_i = 64 \text{ m}^2$	Sol: $T_{h1} = 150^{\circ}C$, $T_{c1} = 25^{\circ}C$ $T_{h2} = 80^{\circ}C$, $T_{c2} = 60^{\circ}C$ $Th_{1} \longrightarrow Th_{2}$ $Tc_{1} \longrightarrow Tc_{2}$ $\Delta T_{1} = T_{h1} - T_{c1} = 125$ $\Delta T_{2} = T_{h2} - T_{c2} = 20$ $LMTD = \frac{\Delta T_{1} - \Delta T_{2}}{\ell n \left(\frac{\Delta T_{1}}{\Delta T_{2}}\right)} = \frac{125 - 20}{\ell n \left(\frac{125}{20}\right)} = 57.29^{\circ}C$
Regular Live Doubt	 clearing Sessions Free Online Test Series ASK an expert

A ace online

Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

ACE Engineering Publications	23	Heat Transfer
Exercy balance: Heat released by hot fluid = heat receively by cold fluid $\dot{m}_h c_h (T_{h1} - T_{h2}) = \dot{m}_c c_c (T_{c2} - T_{c1})$ $\dot{m}_h c_h (T_{b1} - T_{h2}) = \dot{m}_c c_c (60 - 25)$ $\dot{m}_h c_h \times 70 = \dot{m}_c c_c \times 35$ From the above equation $\dot{m}_c c_c > \dot{m}_h c_h \Rightarrow C_{min} = \dot{m}_h c_h$ Heat transfer rate (Q) $\dot{m}_h c_h (T_{h1} - T_{h2}) = U \times A \times LMTD$ $C_{min} (T_{h1} - T_{h2}) = U \times A \times LMTD$ $NTU = \frac{UA}{C_{min}} = \frac{T_{h1} - T_{h2}}{LMTD} = \frac{70}{57.29} = 1.22$ 07. Ans: (c) Sol: Given data: $T_{c1} = 20^{\circ}C, \qquad T_{h1} = 80^{\circ}C,$ $\dot{m}_c = 20 \text{ kg/s}, \qquad \dot{m}_h = 10 \text{ kg/s},$ $c_h = c_c = 4.2 \times 10^3 \text{ J/kg.K},$ $\dot{m}_h c_h = C_{min}$ Case - I, For parallel flow heat exchanger T_{h1}	ed ER //	$\dot{m}_{h}c_{h}(T_{h1} - T_{h2}) = \dot{m}_{c}c_{c}(T_{c2} - T_{c1})$ $10(80-T) = 20(T-20)$ $80 - T = 2(T-20)$ $80 - T = 2T - 40$ $120 = 3T$ $\Rightarrow T = 40^{\circ}C$ <i>Case - II</i> , For counter flow heat exchanger: T_{h1} T_{c2} $T_{h2} = T_{c1} = T$ Energy balance: Heat released by hot fluid = heat received by cold fluid $\dot{m}_{h}c_{h}(T_{h1} - T_{h2}) = \dot{m}_{c}c_{e}(T_{c2} - T_{c1})$ $10(80 - T_{c1}) = 20 (T_{c2} - T_{c1})$ $10(80 - T_{c1}) = 20 (T_{c2} - T_{c1})$ $10(80 - 20) = 20 (T_{c2} - 20)$ $\Rightarrow T_{c2} = 50^{\circ}C$ 98. Ans: (b) Sol: Given data: $Q = 23.07 \times 10^{6} \text{ W}, T_{h1} = T_{h2} = 50^{\circ}C,$ $T_{c1} = 15^{\circ}C, T_{c2} = 25^{\circ}C,$ $D = 0.0225 \text{ m}, c_{c} = 4180 \text{ J/kg.K}$
T_{c1} Energy balance: Heat released by hot fluid = heat received by cold fluid	ed	$u_{avg} = 2.5 \text{ m/s},$ $U = 3160.07 \text{ W/m}^2\text{K},$ LMTD = 29.72°C $T_{h1} = T_{h2} = T_{c2}$
		ATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams ing experience in various languages at your convenience

$$\dot{m}_{c} = 551.91 \text{ kg/sec}$$

$$\dot{m}_{each tube} = \rho A u_{avg} = \rho \frac{\pi}{u_{avg}} D^2 u_{avg}$$
$$- 998.8 \times \frac{\pi}{2} (0.0225)^2 \times 2.5$$

$$=998.8 \times \frac{\pi}{4} (0.0225)^2 \times 2.5$$

 $\dot{m}_{\text{each tube}}=0.7942\,kg\,/\,sec$

No.of tubes
$$\times \dot{m}_{each tube} = \dot{m}$$

No. of tubes
$$=\frac{551.91}{0.7942}=695$$

Heat transfer rate (Q) = U × A × LMTD $23.07 \times 10^{6} = 3160.17 \times A \times 29.72$ \Rightarrow A = 245.64 m²

A = π DL × No. of tubes × No. of passes 245.64 = π ×0.0225×2.5×695 ×No. of passes No. of passes = 2

When C = 1

$$\in = \frac{1 - e^{-2NTU}}{2},$$

$$\in = \frac{1 - e^{-2\times 2.5}}{2} = 0.4966 = 50\%$$

10. Ans: (b, c, d)

 Sol: In heat exchanger design calculations, it is more convenient to work with effectiveness
 – NTU relations of the form

$$NTU = f\left(\epsilon, \frac{C_{min}}{C_{max}}\right)$$

Condition	Parallel flow	Counter flow
	heat exchanger	heat exchanger
1) If	$1 - e^{-2NTU}$	$\varepsilon = \frac{1 + \text{NTU}}{\text{NTU}}$
$C_{\min} = C_{\max}$	$\varepsilon = \frac{1}{2}$	NTU
\Rightarrow C _r = 1		
2) If $C_r = 0$	$\varepsilon = 1 - e^{-2NTU}$	$\epsilon = 1 - e^{-NTU}$

09. Ans: (d)

Sol: Effectiveness (\in) of heat exchanger will be

minimum when $C\left(\frac{C_{min}}{C_{max}}\right) = 1$ Effectiveness of parallel flow heat exchanger = $\frac{1 - e^{-(1+C)NTU}}{1+C}$

	Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert
	Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages

1995

24