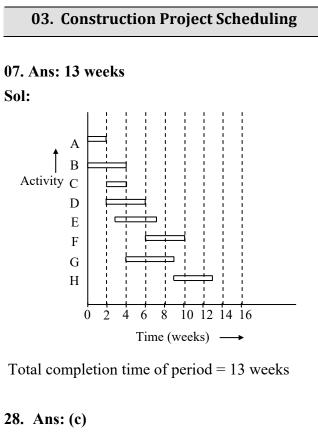
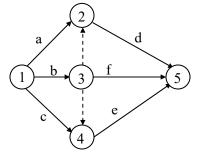


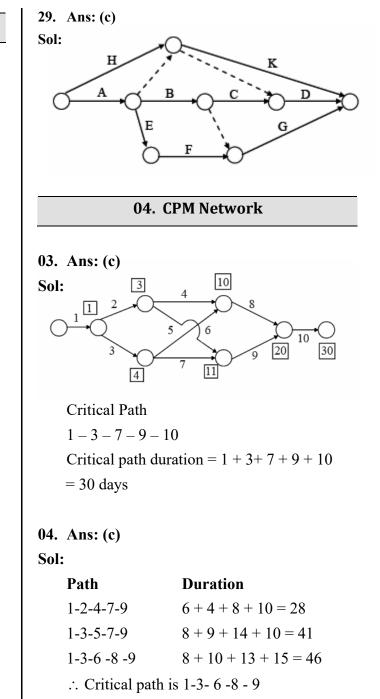
GATE | PSUs


CIVIL ENGINEERING

Construction Planning and Management & Construction Materials

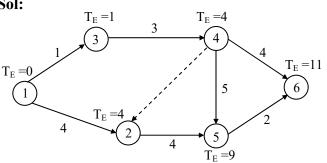

Text Book & Work Book: Theory with worked out Examples and Practice Questions)

Construction Material & Management


(Solutions for Text Book Practice Questions)

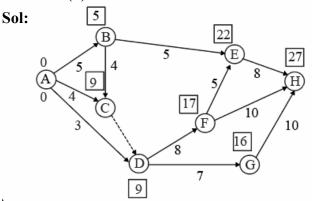
Sol:

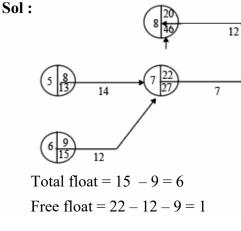
2 dummy activities are required in AOA diagram.



ACE

CIVIL-Postal Coaching Solutions


06. Ans: (c)


 \therefore Earliest start time for activity 5 - 6 = 9 days

27 days is earliest expected completion

02. Ans: (b)

Sol: $t_0 = 8 \min$, $t_{\rm m} = 10 \, {\rm min}, \quad t_{\rm p} = 14 \, {\rm min}$

$$t_{\rm E} = \frac{t_0 + 4t_{\rm m} + t_{\rm p}}{6} = \frac{8 + 4(10) + 14}{6} = 10.33 \text{ min}$$

03. Ans: (a)

Sol: Given $T_s = 27$ days From the network given $T_E = 23$ days $\sigma = \sqrt{2^2 + 2.8^2 + 2^2} = 3.98 \simeq 4$ $Z = \frac{T_{\rm s} - T_{\rm E}}{\sigma} = \frac{27 - 23}{4} = 1$ For Z = 1P = 0.841

05. Ans: (c)

Sol:
$$t_E = 36$$
 days
 $\sigma^2 = 4 \Rightarrow \sigma = 2$
 $T_S = 36$ days
 $Z = \frac{T_S - T_E}{\sigma} = \frac{36 - 36}{2} = 0;$
 $Z = 0 \Rightarrow 50\%$ probability

Sol:
$$\sigma = \sqrt{\text{sum of variances of critical path}}$$

 $\sigma = \sqrt{4 + 16 + 4 + 1}$

$$=\sqrt{25}$$

 $\sigma = 5$ units

Regular Live Doubt clearing Sessions | Free Online Test Series | ASK an expert ace online Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

ACE Engineering Publications

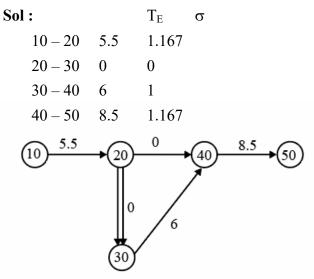
07. Ans: (d) Sol: Given , $\sigma^2 = 4 \Rightarrow \sigma = 2$ $T_s = 24$ days $T_E = ?$ From the given network diagram, $T_E = 20$ days $Z = \frac{T_s - T_E}{\sigma} = \frac{24 - 20}{2} = 2$

For Z = 2, probability of completion = 97.7%

13. Ans: (a)

Sol:
$$t_E = \frac{t_o + 4t_L + t_P}{6}$$

= $\frac{8 + 4 \times 9 + 13}{6} = 9.5$
Variance, $\sigma^2 = \left(\frac{t_P - t_o}{6}\right)^2 = \left(\frac{13 - 8}{6}\right)^2$
 $\sigma^2 = \frac{25}{36}$


18. Ans: (*) **Sol:** $t_0 = 9$ days $t_p = 21$ days $t_m = 15$ days $T_S = 13$ days $t_E = \frac{t_0 + 4t_m + t_p}{6} = \frac{9 + 4(15) + 21}{6} = 15$ days $\sigma = \frac{t_p - t_o}{6} = \frac{15 - 9}{6} = 1$ day $Z = \frac{t_s - t_e}{\sigma} = \frac{13 - 15}{1} = -2$ For Z = -2, probability $\approx 2.30\%$

Construction Material & Management

19. Ans : (b)

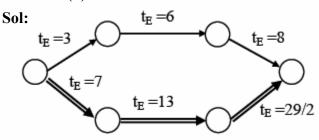
3

Sol:
$$Z = 1.647$$
 for 95%
 $\sigma^2 = 9$ weeks $\sigma = 3$
 $T_{\varepsilon} = 70$ weeks
 $T_{s} = ?$
 $Z = \frac{T_{s} - T_{\varepsilon}}{\sigma}$
 $1.647 = \frac{T_{s} - 70}{3}$
 $T_{s} = 70 + 4.941 = 74.94$ weeks

Total duration =
$$5.5 + 6 + 8.5$$

= 20 days
Standard deviation = $\sqrt{1.167^2 + 1^2 + 1.167^2}$
= 1.93

 India's Best Online Coaching Platform for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams


 Enjoy a smooth online learning experience in various languages at your convenience

ACE Engineering Publications

4

CIVIL-Postal Coaching Solutions

22. Ans: (d)

$$t_{E} = \frac{t_{o} + 4t_{m} + t_{p}}{6}$$

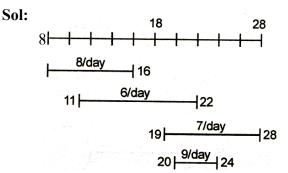
$$t_{E} = \frac{6 + 4(7) + 8}{6} = 7$$

$$t_{E} = \frac{12 + 4(12) + 18}{6} = 13$$

$$t_{E} = \frac{9 + 4(15) + 18}{6} = \frac{29}{2}$$

Project duration = 7 + 13 + 14.5 = 34.5

$$\sigma_{cp} = \sqrt{\left(\frac{8-6}{6}\right)^2 + \left(\frac{18-12}{6}\right)^2 + \left(\frac{18-9}{6}\right)^2}$$
$$= \sqrt{\left(\frac{1}{3}\right)^2 + 1 + \left(\frac{3}{2}\right)^2}$$
$$= \sqrt{\frac{1}{9} + 1 + \frac{9}{4}}$$
$$= \sqrt{\frac{4+36+81}{36}} = \frac{11}{6}$$

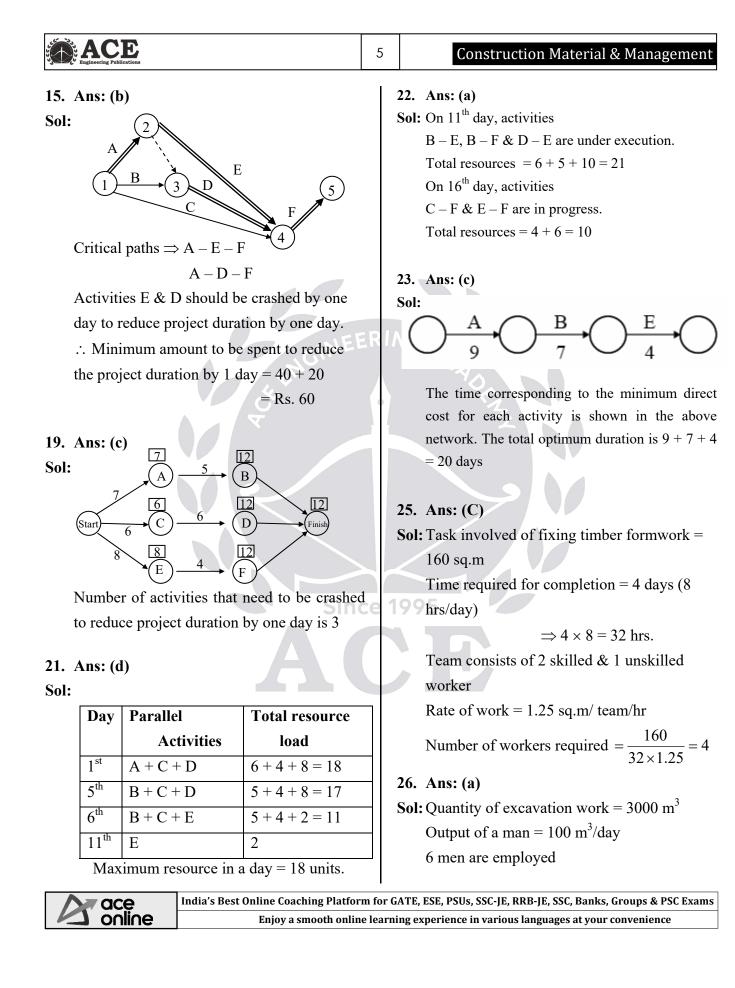

06. Project Crashing & Resource Allocation

Sol:

Week	Parallel	Total Resource
	Activities	Load
9 th	А	6
11 th	A + B	6 + 4 = 10
13 th	A + B+ D	6 + 4 + 7 = 17
15 th	A + B + C + D	6+4+3+7=20

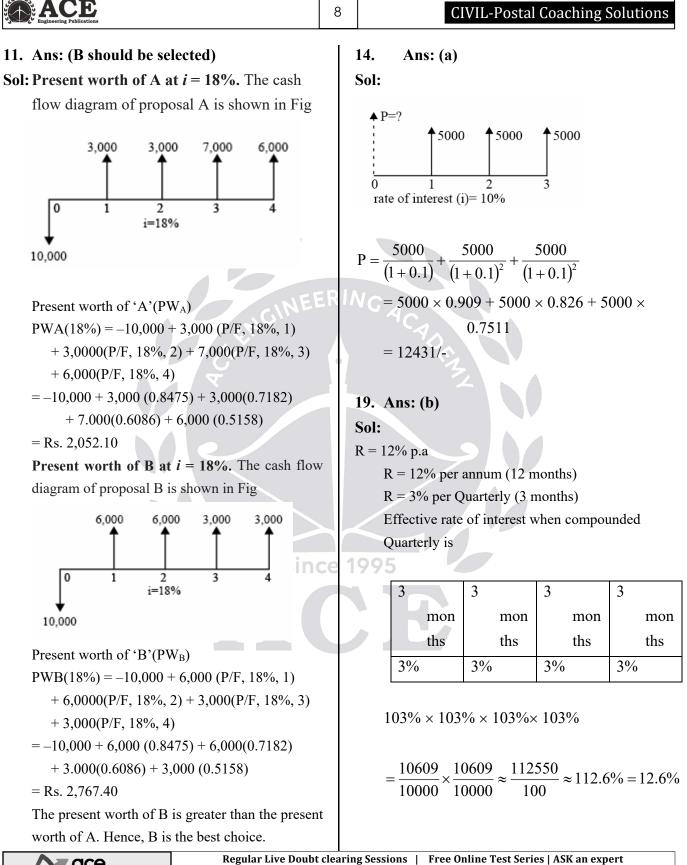
From the above, the maximum resource load per week is 20

12. Ans: (a)



From the given diagram, on the 21^{st} & 22^{nd} day three concurrent activities are there with a total resources of 6 + 7 + 9 = 22.

Minimum resource occurs when only one activity exists. In the present case it is 6 per day.


: Maximum resources is 22 and minimum is 6

A ace online

Engineering Publications	6	CIVIL-Postal Coaching Solutions
Duration of excavation activity $=\frac{3000}{100 \times 6}$ = 5 days		$= \frac{15}{100} \times 12 = 1.8 \text{ cr}$ % of saving = $\frac{1.8}{8} \times 100 = 22.5\%$
27. Ans: (a)		
Sol: $Peak = 40$		29. Ans: (b)
		Sol: Crew : 2 carpenters
		1 helper
20% 70%		Hourly rate of crew = $(2 \times 85 + 69.5) = 239.5$
<u>20%</u> 70%		Average hourly rate per worker $=\frac{239.5}{3}$
?	NGIN	=79.83~ 80
Average number	of workers/day	
$= \frac{1}{2} \times 0.2 \times 40 + 0.7 \times 40 + \frac{1}{2} \times 0.1 \times 40$		07. Engineering Economics and Depreciation
= 34	-	
Working time/week = over time ×number of working days = $1.5 \times 5 = 6.5$ days No. of man days available = $6.5 \times 34 = 221$ No. of man days required = 1200		01. Ans: (a) Sol: P = Rs. 1000 i = 12% n = 5 years $F = P(1 + i)^n = 1000 (1 + 0.12)^5 = Rs.$ 1762.34
	$= 5.42 \simeq 5.5$ weeks	02. Ans: (b)
		Sol: $i = 18\%$
28. Ans: (c)		n = 10 years
Sol: Labour cost = $100 \times \frac{20}{100} = 20$ Cr		Equal payment series compound amount
100		factor (F/A, i, n)
Non-productive cost = $\frac{60}{100} \times 20 = 12$ cr		$=\left\lceil \frac{(1+i)^n - 1}{i} \right\rceil$
Productive $cost = \frac{40}{100}$	$\times 20 = 8 \text{ cr}$	
15% of wastage r	resulting from Non-	$= \left \frac{(1+0.18)^{10} - 1}{0.18} \right = \frac{4.23}{0.18} = 23.52$
productive time is elim	ninated	
Regular Live Doubt clearing Sessions Free Online Test Series ASK an exper		
Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages		

Engineering Publications	7 Construction Material & Management	
03. Ans: (d)	06. Ans: (a)	
Sol: i = 14%	Sol: i = 18%	
n = 10 years	n = 10 years	
Equal payment series sinking found factor	F = Rs. 20000	
$(A/F, i, n) = \left[\frac{i}{\left(1+i\right)^n - 1}\right]$	$P = F\left[\frac{1}{(1+i)^n}\right] = 20000\left[\frac{1}{(1.18)^{10}}\right]$	
$= \left[rac{0.14}{\left(1+0.14 ight)^{10} -1} ight]$	P = Rs. 3821	
0.14 0.051	07. Ans: (a)	
$=\frac{0.14}{2.707}=0.051$	Sol: P = ?	
NGINE	A = 10,00,000	
04. Ans: (a)	i = 18%	
Sol: P = Rs. 20,000	n = 20 years	
i = 14%	$\mathbf{P} = \mathbf{A} \left[\frac{(1+i)^n - 1}{i(1+i)^n} \right] = 1000000 \left[\frac{(1+0.18)^{20} - 1}{0.18(1.18)^{20}} \right]$	
n = 5 years	$\begin{bmatrix} i(1+i)^n \end{bmatrix} \begin{bmatrix} 0.18(1.18)^{20} \end{bmatrix}$	
$A = P\left[\frac{i(1+i)^n}{(1+i)^n - 1}\right]$	= Rs. 53,52,746 Given initial outlay of project = Rs. 5000000	
$= 20,000 \left[\frac{0.14(1.14)^5}{(1.14)^5 - 1} \right]$	Present worth of the project = 53,52,746 - 50,00,000 = Rs. 3,52,746	
A = Rs. 5825	e 1995	
	09. Ans: (d)	
05. Ans: (c)	Sol: 23000 36000	
Sol: P = 10,000		
n = 5 years		
F = 20,000		
i = ? $E = D(1 + i)^n$	50000	
$F = P(1+i)^n$ 20000 = 10000 (1 + i) ⁵		
$(2)^{1/5} = 1 + i$	Net present value $-50000 \pm 22000 \text{ (P/E} - 16\% - 1) \pm 26000$	
i = 1.14 - 1	= -50000 + 23000 (`P/F, 16%, 1) + 36000 (P/F, 16%, 2)	
$i = 0.14 \approx 14\%$	= -50000 + 19827 + 26753 = -3420	
	n for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams	
Enjoy a smooth online learning experience in various languages at your convenience		

Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

ACE Engineering Publications	9 Construction Material & Management
20. Ans: (a) Sol: Compound Quarterly (Interest added to principal every Quarter) For 2 years = 24 months, R = 10% p.a R = 10% per annum R = 2.5% per quarterly (3 months) Rs.1000 After 2 years. Amount = 1000 × (102.5%) ⁸ = 1000 × (1.025) ⁸ = 1000 × 1.2184 Amount \approx 1218.4 21. Ans: (c) Sol: $d = \frac{2}{n} = \frac{2}{5}$ $BV_m = P (1 - d)^m$	24. Ans: (c) Sol: Initial cost = P Salvage value = SV Annual depreciation $= \frac{P - SV}{n} = \frac{(P - 0.4P)}{5} = \frac{0.6P}{5}$ Annual accounting rate of return $= \frac{\text{Annual savings} - \text{Annual depreciation}}{\text{Initial cos t}}$ $0.2 = \frac{50000 - \frac{0.6P}{5}}{P}$ $0.2P = 50000 - \frac{0.6P}{5}$ $0.2P = \frac{5 \times 50000 - 0.6P}{5}$
$BV_m = P (1 - d)^m$ = 200000 $\left(1 - \frac{2}{5}\right)^2$	$0.2P = \frac{5 \times 50000 - 0.6P}{5}$ 1.6P = 5 × 50000 P = 1,56,250
= 72,000 22. Ans: (b) Sol: SFF = $\frac{i}{(1+i)^n - 1} = \frac{0.04}{(1+0.04)^5 - 1}$ = 0.184	Cost of two machines = $2 \times 156250 =$ 3,12,500/- 25. Ans: (c) Sol: Annual depreciation = $\frac{10000 - 1000}{5}$
23. Ans: (c) Sol: Annual depreciation $=\frac{25000-1600}{8}$ = 2925 Residual book value at beginning of 6 th year	= 1800 Book value = 10000 - (1800 × 2) = Rs. 6400
$= 25000 - (2925 \times 5)$ $= 10375$ India's Best Online Coaching Platfor	rm for GATE, ESE, PSUs, SSC-JE, RRB-JE, SSC, Banks, Groups & PSC Exams ne learning experience in various languages at your convenience

CIVIL-Postal Coaching Solutions

ACE Engineering Publications

08. Construction Contracts and Tendering

04. Ans: (a)

Sol: In cost plus fixed fee contract, the owner pays the contractor an agreed amount over and above the documented cost of work

05. Ans: (a)

Sol:

- Guaranteed maximum price contract is a cost-type contract where the contractor is compensated for actual costs incurred plus a fixed fee subject to ceiling price.
- Savings, if any, are returned to the owner.
- It is different from lump-sum contract where cost savings are retained by contractor.

07. Ans: (c)

Sol: Turn key contract:

An agreement under which a contractor completes a project, then hands it over in fully operational form to the client, which needs nothing to do but 'turn a key' to set it in motion.

Generally 'turnkey' refers to ready for immediate use.

08. Ans: (d)

Sol: When work is to be completed very quickly (or) no contractor prefers to accept the work (The tender is floated) then a notice with

short duration is again published by the client. Such a tender notice is called 'Short tender notice'. The terms and conditions remain the same as that of ordinary tender notice.

09. Ans: (b)

Sol: Limited or Closed tender:

In limited tenders, only pre-qualified bidders are allowed to participate. These tenders are not advertised in newspapers.

11. Ans: (a)

Sol: Earnest money deposit (E.M.D)

While submitting a tender the contractor is to deposit a certain amount, about 2% of the contract value, as EMD as guarantee of the tender. The amount is for a check so that the contractor may not refuse to accept the work or run away when his tender is accepted.

12. Ans: (b)

Sol: Security deposit:

On acceptance of the tender, the contractor has to deposit 10% of the tendered amount as security deposit which is inclusive of the earnest money already deposited.

It is refunded to the contractor after the satisfactory completion of the whole work after a specified time (generally after maintenance period).

 Regular Live Doubt clearing Sessions
 |
 Free Online Test Series | ASK an expert

 Affordable Fee
 |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages