

GATE | PSUs

COMPUTER SCIENCE & INFORMATION TECHNOLOGY

Theory of Computation

(Text Book: Theory with worked out Examples and Practice Questions)

Theory of Computation

(Solutions for Text Book Practice Questions)

1. Introduction

01. Ans: (d)

Sol: (a) $\{x | x \ge 10 \text{ or } x \le 5\}$ is infinite set

(b) $\{x | x \ge 10 \text{ or } x \le 100\}$ is infinite set

(c) $\{x | x \le 100 \text{ or } x \ge 200\}$ is infinite set

02. Ans: (b)

Sol:

(a) Set of real numbers between 10 and 100 is uncountable

(b) $\{x | x \ge 10 \text{ or } x \le 100\}$ is finite set. So countable

(c) Set of real numbers between 0 and 1 is uncountable

03. Ans: (d)

Sol: (a) $|\varepsilon| = 0$

(b) $|\{\}| = 0$

(c) $|\{\epsilon\}| = 1$

04. Ans: (b)

Sol: $\Sigma = \{0,1\}$

00, 01, 10, 11 are 2 length strings

05. Ans: (b)

Sol: w = abc

Prefix(w) = $\{\varepsilon, a, ab, abc\}$

06. Ans: (b)

Sol: w = abc

Suffix(w) = $\{\varepsilon, c, bc, abc\}$

07. Ans: (d)

Sol: w = abc

Substring(w) = $\{\varepsilon, a, b, c, ab, bc, abc\}$

08. Ans: (a)

Sol: Language accepted by finite automata is called as Regular language.

09. Ans: (d)

Sol: Every recursive language is REL but REL need not be recursive language.

10. Ans: (b)

1995

Since

Sol: Every regular grammar is CFG but CFG need not be regular grammar.

2. Regular Languages

(Finite automata, Regular expression, regular grammar)

01. Ans: (a) & (c)

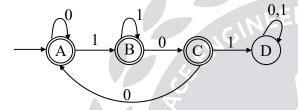
Sol: Regular Languages are closed under

i) string reversal

ii) intersection with finite sets

02. Ans: (c)

Sol: A minimal DFA that is equivalent to a NFA with n states has atmost 2ⁿ states.

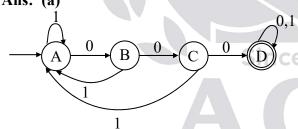

03. Ans: (a)

Sol: (a) (1+01)* (ϵ +0) generates all strings not containing '00'

- (b) (0+10)* ($\epsilon+1$) generates invalid string '00'
- (c) (1+01)* cannot generate '0'
- (d) $(\epsilon+0)$ (101)* $(\epsilon+0)$ generates invalid string '00'

04. Ans: (a)

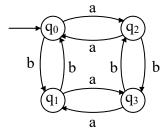
Sol:



05. Ans: (d)

Sol: Given grammar generating all strings ending in '00'

06. Ans: (a)


Sol:

= 4 states

07. Ans: (a)

Sol:

q₀: Even a's and Even b's

q₁: Even a's and odd b's

q₂: Odd a's and Even b's

q₃: Odd a's and Odd b's

q₁ should be final state.

08. Ans: (b)

Sol: Concatenation of two infinite languages is also infinite. So, infinite languages closed under concatenation.

09. Ans: (c)

Sol: $\{wxw^R \mid x, w \in (0+1)^+\} = 0(0+1)^+0+1(0+1)^+1$ \therefore It is regular language

10. Ans: (a)

Sol: (I) NFA with many final states can be converted to NFA with only one final state with the help of ϵ -moves.

- (II) Regular sets are not closed under infinite union
- (III) Regular sets are not closed under infinite intersection
- (IV) Regular languages are closed under substring operation

:. I and IV are correct.

11. Ans: (d)

Sol:
$$r = (0+1)* 00(0+1)*$$

 $A \rightarrow 0B \mid 0A \mid 1A$
 $B \rightarrow 0C \mid 0$
 $C \rightarrow 0C \mid 1C \mid 0 \mid 1$

12. Ans: (a)

Sol: $A_n = \{a^k | k \text{ is a multiple of } n\}$

For some n,

A_n is regular

Let n = 5,

 $A_n = A_5 = \{a^k | k \text{ is multiple of 5}\}\$ = regular.

13. Ans: (d)

Sol: $L = \{a^m b^n | m \ge 1, n \ge 1\} = a^+ b^+$ is regular.

14. Ans: (c)

Sol: DFA accepts L and has m states

It has 2 final states. It implies (m-2) non-final states.

DFA that accepts complement of L also has m states but it has (m-2) final states and 2 non-final states.

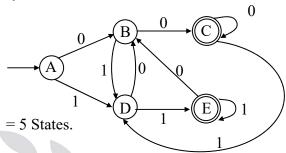
15. Ans: (d)

Sol: (a) 0* (1+0)*; It generates invalid string '100'

- (b) 0* 1010*; It cannot generate valid string ' ϵ '
- (c) 0* 1*01*; It cannot generate valid string ' ϵ '
- (d) 0* (10+1)*; It generates all strings not containing '100' as substring

16. Ans: (a)

Sol: P1: Membership problem for FA is decidable


P2 : Infiniteness problem for CFG is decidable

For P1, CYK algorithm exist

For P2, Dependency graph exist

17. Ans: (b)

Sol: L = set of all binary strings whose last 2 symbols are same.

18. Ans: (a)

Sol: L = aⁿ bⁿ is not regular

It can be proved using Pumping Lemma

L does not satisfy Pumping Lemma

19. Ans: (c)

Sol: It requires 29099 remainders to represent the binary numbers of the given language. So, 29099 states required.

20. Ans: (d)

Sol: The following problems are decidable for regular languages. Equivalence, Finiteness, Emptiness, infiniteness, totality, containment, Emptiness of complement, Emptiness of intersection, Emptiness of complement of intersection.

21. Ans: (a)

Sol: I. $\{a^n b^{2m} | n \ge 0, m \ge 0\} \Rightarrow Regular$ II. $\{a^n b^m | n = 2m\} \Rightarrow not regular$ III. $\{a^n b^m | n \ne m\} \Rightarrow not regular$ IV. $\{x \subset y | x, y \in \{a, b\}^*\} \Rightarrow Regular$ So, I & IV are correct.

22. Ans: (c)

Sol: Let n = 3

If w = abc,

Substrings of $w = \{\epsilon, a, b, c, ab, bc, abc\}$ non empty substrings of

 $w = \{a,b,c, ab, bc, abc\}$

number of substrings of w of length n is $\leq (\Sigma n)+1$

number of non empty substrings of w of length $n \le (\Sigma n)$.

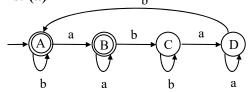
23. Ans: (c)

Sol:

δ	a	b 5
\rightarrow A	3 choices	3 choices
В	3	3
C	3	3

 $3\times3\times3\times....6$ times = 3^6 machines possible with 'A' as initial state.

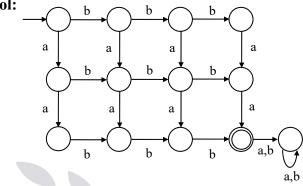
Final states can be any of subset of {A, B, C}


So, 2³ possible final states combinations.

Total 8×3^6 DFAs.

Number of DFAs with atleast 2 final states $= 4 \times 3^6$.

24. Ans: (a)


Sol:

= 4 states

25. Ans: (b)

Sol:

= 13 states

26. Ans: (b)

Sol: (i)
$$A \rightarrow aAB L = \phi$$

(ii)
$$S \rightarrow aA \mid bB$$

 $A \rightarrow a$ $L = \{aa\}$

$$S \rightarrow aA
(iii) A \rightarrow aA
B \rightarrow b$$

$$L = \phi$$

(iv)
$$\xrightarrow{S \to aA \mid bB} L = \{bb\}$$

(i) & (iii) are equivalent.

27. Ans: (c)

Sol: L = (a+ba)*b (a+b)*

strings of length ≤ 3 :

b, ab, ba, bb, aab, aba, abb, baa, bab, bba, bbb

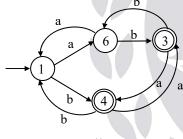
Number of strings = 11

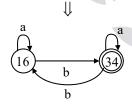
28. Ans: (b)

Sol:
$$r = (0* + (10)*)* = (0+10)*$$

 $s = (0*+10)*$
 $\therefore L(r) = L(s)$

Sol: The following sets are countable sets.


- 1) Set of regular sets
- 2) Set of CFLs
- 3) Set of Turing Machines


The set of real numbers is uncountable

The set of formal languages is uncountable.

30. Ans: (a)

Sol:

2 Equivalence classes.

31. Ans: (c)

Sol:
$$L = ((01)^* \ 0^*)^*$$

$$h^{-1}(L) = (b^* a^*)^* = (a+b)^*$$

32. Ans: (a)

Sol:
$$L_1 = a * b$$

$$L_2 = ab*$$

$$L_1/L_2 = a*b/ab* = \{a*b/ab, a*b/a, ...\}$$

= $\{a*, \phi, ...\}$
= $a*$

33. Ans: (d)

Sol: (a)
$$L(r^*) \supset L(r^+)$$

(b)
$$L((r+s)^*) \supset L(r^*+s^*)$$

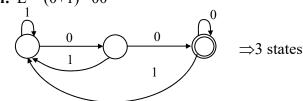
(c)
$$L((r+s)^*) \supset L((rs)^*)$$

(d)
$$L(r^*) = L((r^+)^*)$$

34. Ans: (b)

Sol: Arden's lemma cannot be applied to NFA with ε moves.

Arden's lemma applied to both DFA and NFA without ϵ moves.


35. Ans: (d)

Since

Sol: Logic circuits, neural sets, toy's behavior can be modeled with regular sets.

36. Ans: (a)

Sol: L = (0+1)*00

37. Ans: (c)

Sol:

	0	1
$\rightarrow q_0$	q_0	q_1
q_1	q_2	q_3
q_2	q_4	q_0
q_3	q_1	q_2
q_4	q_3	q_4

$$= 5 \text{ states}$$

38. Ans: (a)

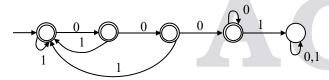
Sol: 3rd symbol from ending is '1'

DFA has 2³ states.

39. Ans: (a)

Sol: $L = \{a^i b^j | i < 100, j < 10000\}$ $= \{\varepsilon, a, b,, a^{99} b^{10000}\}\$

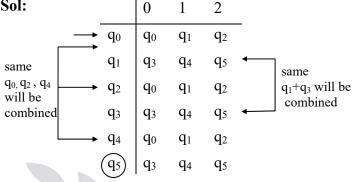
L is finite set


40. Ans: (a)

Sol: L = (0+1)*0001(0+1)*

DFA accepts L with 5 states

DFA that accepts complement of L also requires 5 states.


DFA that accepts complement of L.

41. Ans: (a)

Sol: $(00)^* + 0 (00)^* + 00 (000)^*$ (00)*= set of all even strings 0(00)*= set of all odd strings (00)*+0(00)* = set of all strings = 0*(00)*+0(00)*+00(000)*=0*

Sol:

Number of states = 3

$$\{q_0, q_2, q_4\}, \{q_1, q_3\}, \{q_5\}$$

43. Ans: (b)

Sol: i) $\{a^{2^n} \mid n \ge 1\}$ is not regular

ii) a^{prime} is not regular

iii) $\{0^i \ 1^j \mid i \le j \le 1000\}$ is finite. So regular

iv) Complement of L where L=(0+1)* 000010101001010010(0+1)* is also regular

∴(iii) & (iv) are regular sets.

44. Ans: (b)

Sol: i) n^{th} symbol from right end is '1' \Rightarrow 2ⁿ states ii) n^{th} symbol from left end is '1' \Rightarrow (n+2) states.

 \therefore (i) has 64 states (ii) has 7 states.

45. Ans: (c)

Sol: $L = \{w | w \in (a+b+c)^*, n_a(w) = n_b(w) = n_c(w)\}$ L is not regular because symbols have dependency.

7

46. Ans: (a)

Sol: If X = r+Xs and s has no ' ε ' then x has unique solution otherwise infinite solutions.

47. Ans: (a), (b) & (d)

Sol: i.
$$\phi + \varepsilon = \varepsilon$$

ii.
$$\{\epsilon\}^* = \epsilon = \epsilon^*$$

48. Ans: (b) & (d)

Sol: Option (a) is regular because it is finite language therefore it is regular.

Options (b) & (d) non regular because it is not satisfying the pumping lemma

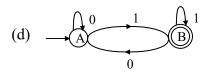
49. Ans: (a) & (d)

Sol: 1.
$$\longrightarrow$$
 $\stackrel{\varepsilon}{\longrightarrow}$ $\stackrel{\circ}{\bigcirc}$ $\stackrel{\circ}{\Rightarrow}$ $r = a^*$

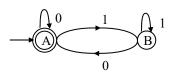
2.
$$\rightarrow \bigcirc \rightarrow \bigcirc \Rightarrow r = 8$$

$$3. \longrightarrow \bigcirc \xrightarrow{a} \bigcirc \Rightarrow r = a$$

4.
$$\longrightarrow \bigcirc \xrightarrow{a,\varepsilon} \bigcirc \Rightarrow r = a, \varepsilon$$


50. Ans: (a) & (d)

Sol: Mealy machine does not responds for ε.


Moore machine output depends only on current state

51. Ans: (b) & (d)

Sol: (b) We know that $L = \Sigma^* - L$

DFA for $(0+1)^*1 = (0+1)^*11^*$ Interchange final & Non-final states

$$L = (0+11^*0)^*$$

$$L = (0+1^+0)^*$$

$$L = (1^*0)^*$$

$$0+1^+0=1^*0$$

3. Context Free Languages (CFG, PDA)

01. Ans: (c)

Sol: CFLs are closed under:

- i) Finite union
- ii) Union
- iii) Concatenation
- iv) Kleene closure
- v) Reversal

CFLs are not closed under:

- i) Intersection
- ii) Complement
- iii) Infinite union

02. Ans: (a)

Since

Sol: CFLs are closed under:

- i) Finite union
- ii) Homomorphism
- iii) Inverse Homomorphism
- iv) Substitution
- v) Reversal
- vi) Init
- vii) Quotient with regular set.

Sol: CFLs are not closed under:

- i) Intersection
- ii) Intersection with non CFL
- iii) Infinite union

04. Ans: (a)

Sol: Decidable problems for CFLs.

- i) Emptiness
- ii) Finiteness
- iii) Non emptiness
- iv) Non finiteness (infiniteness)
- v) Membership

Following problems are undecidable about CFLs:

- i) Equivalence
- ii) Containment
- iii) Totality

05. Ans: (a)

Sol: i) $\{0^n \ 1^n | \ n > 99\}$ is CFL

- ii) $\{a^n b^n c^n \mid n \le 990\}$ is finite, So CFLSINCE
- iii) $\{a^n b^m c^l | m = l \text{ or } m = n\}$ is CFL
- iv) $\{ww|w\in(a+b)^* \text{ and } |w|<1000\}$ is finite, so CFL

All languages are CFLs

06. Ans: (a)

Sol: $L_1 = \{ww|w \in (0+1)^*\}$ is not CFL

$$\overline{L}_1 = \Sigma^* - L_1$$
 is CFL

 $L_2 = \{a^n b^n c^n | n > 1\}$ is not CFL

$$\overline{L}_2 = \Sigma^* - L_2$$
 is CFL.

07. Ans: (b)

Sol: i) $\{ww^R | w \in (a+b)^*\}$ is CFL but not DCFL

- ii) $\{w\$w^R|w\in(a+b)^*\}$ is DCFL but not regular
- ∴ (ii) accepted by DPDA but (i) accepted by PDA.

08. Ans: (b)

Sol: i) $\{0^n \ 1^n | \ n > 1\}$ is DCFL

- ii) $\{0^n\ 1^{2n}\ |\ n>1\}\ \cup\ \{0^n\ 1^n\ |\ n>10\}$ is CFL but not DCFL
- ∴ (i) accepted by DPDA and (ii) accepted by PDA.

09. Ans: (c)

Sol: S→SS|a|ε

It is ambiguous CFG.

Every string generated by the grammar has more than one derivation tree.

10. Ans: (a), (b) & (c)

Sol: $S \rightarrow a | A$

 $A \rightarrow a$

It is ambiguous CFG and has 2 parse trees for string 'a'

For string 'a', 2 parse trees, 2 LMD's and 2 RMD's are there.

Sol:
$$L = \{a^l b^m c^n | l, m, n > 1\}$$

$$L = \{aa^+bb^+cc^+\}$$

unambiguous CFG that generates L:

 $S \rightarrow ABC$

A→aA|aa

B→bB|bb

C→cC|cc

For given L, there exist unambiguous CFG,

So L is called as Inherently unambiguous language.

12. Ans: (d)

Sol: i) $\{a^p \mid p \text{ is prime}\}$ is not regular

ii) {a^p | p is not prime} is not regular

iii) $\{a^{2^n} \mid n \ge 1\}$ is not regular

iv) $\{a^{n!} \mid n \ge 0\}$ is not regular

If language over 1 symbol is not regular then

it is also not CFL. So all are not CLFs

13. Ans: (c) & (d)

Sol: i) $\{w|w \in (a+b)^*\} = (a+b)^*$ is regular

ii) $\{ww|w\in(a+b)^*\}$ is not CFL

iii) {www| $w \in (a+b)^*$ } is not CFL

iv) $\{ww^R w | w \in (a+b)^*\}$ is not CFL

Only (i) is regular and remaining are not regular.

So, only (i) is CFL and remaining are not CFLs.

14. Ans: (c)

Sol: Decidable problems about CFLs:

- i) Emptiness
- ii) Infiniteness
- iii) Membership

15. Ans: (b)

Sol: Finiteness, Infiniteness, Membership are decidable for CFLs.

16. Ans: (c)

Sol: DCFLs are closed under:

- i) Complement
- ii) Inverse homomorphism
- iii) Intersection with regular set

17. Ans: (a)

Sol: DCFLs can be described by LR(k) grammars.

18. Ans: (a)

Since

Sol: $L = \{1,01,...,110,0110,...,...\}$ It is neither regular nor CFL.

19. Ans: (a)

Sol: L = 0*10*1

L is regular, so CFL.

20. Ans: (d)

Sol: In CNF, if length of string is n then derivation length is always 2n–1.

If Derivation length is k then string length is (k+1)/2

21. Ans: (a)

Sol: Top down parsing can use PDA.

GNF CFG can be converted to PDA. Such PDA derives a string using LMD.

22. Ans: (a)

Sol: If PDA simulated by GNF CFG then the derivation of a string uses LMD.

23. Ans: (b)

Sol:

- i) $L = \{w \mid w \in (a+b)^*, n_a(w) \text{ is divisible by 3}$ and $n_b(w)$ is divisible by 5} is regular
- ii) $L = \{w \mid w \in (a+b)^*, n_a(w) = n_b(w)\}$ is not regular but CFL
- iii) $L = \{w \mid w \in (a+b)^*, n_a(w) = n_b(w),$ $n_a(w) + n_b(w)$ is divisible by 3} is not regular but CFL
- iv) L={w | w \in (a+b)*, $n_a(w) \neq n_b(w)$ } is not regular but CFLs.

So, (i) is regular and remaining are CFLs.

24. Ans: (c)

Sol:

- i) L = (a+b+c)* is regular
- ii) $L = \{w \mid w \in (a+b+c)^*, n_a(w) = n_b(w) \text{ or } n_a(w) = n_c(w)\}$ is CFL.
- iii) L ={w | w \in (a+b+c)*, $n_a(w) = n_b(w) + n_c(w)$ } is CFL.
- iv) $L = \{w \mid w \in (a=b+c)^*, n_a(w) = n_b(w), n_a(w) = 4n_c(w)\}$ is not CFL.

25. Ans: (a)

 $\begin{aligned} \textbf{Sol:} \ L &= \{ w \mid w \in (a+b+c+d)^*, \ n_a(w) = n_b \ (w) \\ &= n_c(w) = n_d(w) \} \\ L \ \text{is not CFL but } \overline{L} \ \text{is CFL} \\ L_1 &= \{ ww \mid w \in (a+b)^* \} \\ L_1 \ \text{is not CFL but } \overline{L} \ \text{is CFL}. \end{aligned}$

26. Ans: (a) & (b)

Sol: DTM \cong NTM

Every DCFL has equivalent DTM
Every CFL can have either DPDA and
NPDA

Every Recursive Language is REL but vice versa not true

27. Ans: (a) & (c)

Sol: Decidable for PDAs or CFG includes Membership, infiniteness and emptiness Any 2 PDAs are not necessary equivalent Ambiguity problem for CFGs is undecidable

28. Ans: (c) & (d)

Sol: Complement of CFL is recursive.

Intersection and difference operations are not closed for CFL's

29. Ans: (a) & (c)

Since

Sol: (a) $\{wxw^R \mid w \in \{a,b\}^*, x \in \{a,b\}^+\}$ is regular hence it can be DCFL

- (b) $\{xww^R \mid w \in \{a,b\}^*, x \in \{a, b\}\}\$ is CFL but not DCFL
- (c) $\{wxw^R \mid w \in \{a,b\}^*, x \in T\}$ is odd palindrome hence it is DCFL
- (d) $\{ww^Rx \mid w \in \{a,b\}^*, x \in \{a,b\}^*\}$ is CFL

Sol: (i) $L_1 = \{1^n \ 0^n \ 1^n \ 0^n \ / \ n > 0\}$ as there is association all four members it cannot be CFL.

(ii) $L_2 = \{a^n b^n\} \cup \{a^n b^{2n}\}$ it is equivalent $L_2 = \{a^n b^k/n \le k \le 2n\}$ is CFL

31. Ans: (a), (c) & (d)

Sol: (a), (c) & (d) we can have PDA therefore they are CFLs.

32. Ans: (a) & (d)

Sol: (a) & (d) are true statements because it length of the derivations k and derivation appears as LMD.

33. Ans: (a) & (b)

Sol: (a) S→aSbb S→aabb

(b) S→aSbb

S→aaSAbb

S→aaaAbb

S→aaabBbb

S→aaabbbb

Since

34. Ans: (b) & (d)

Sol: The given grammar generates the odd length palindromes and recognizes by the DPDA. Given grammar is not ambiguous.

35. Ans: (a) & (b)

Sol: (a) $\{a^n \ b^n\}$ is DCFL and $\{a^n \ b^n\}^+$ is also DCFL

- (b) {ww^R} is CFL and {ww^R} is also CFL
- (c) {a* b*} is regular and {a* b*}* is also regular
- (d) $\{a^n b^n c^n \mid n \ge 0\}$ is CSL but it is not closed under Kleene closure

4. Recursive Enumerable Languages (REG, TM, REL, CSG, LBA, CSL, Undecidability)

01. Ans: (d)

Sol: Turing machine is equivalent to the following:

- TM with single tape
- TM start with blank tape
- TM with 2-way infinite tape
- TM with 2 symbols and blank

02. Ans: (a) & (c)

Sol: (a) TM with one push down tape and read only is equivalent to push down automata

- (b) TM with two push down tapes is equivalent to TM
- (c) TM without alphabet is not equivalent to any machine.

03. Ans: (d)

Sol: (a) TM with 4 counters is equivalent to TM

- (b) TM with 3 counters is equivalent to TM
- (c) TM with 2 counters is equivalent to TM

04. Ans: (d)

Sol: (a) TM with multiple heads \cong TM

- (b) Multi dimensional tape TM ≅ TM
- (c) n-dimensional tape $TM \cong TM$

05. Ans: (a)

Sol: (a) TM that have no ink is equivalent to finite automata

- (b) TM with 3 pebbles \cong TM
- (c) 2-way infinite tape $TM \cong TM$
- (d) 100000 tape $TM \cong TM$

06. Ans: (a) & (b)

Sol: (a) TM that cannot leave their input is equivalent to LBA

- (b) TM that cannot use more than n! cells on 'n' length input is not equivalent to TM.
- (c) 3-tape TM is equivalent to TM
- (d) TM with single symbol alphabet is equivalent to TM

07. Ans: (d)

Sol: The set of partial recursive functions represent the sets computed by turing machines.

08. Ans: (a)

Sol: (a) Turing machines are equivalent to C programs.

- (b) TMs that always halt are equivalent to halting C programs.
- (c) Halting C programs not equivalent to turing machines
- (d) C++ programs are equivalent to turing machines.

09. Ans: (c)

Sol: Set of turing machines is logically equivalent to set of LISP programs.

10. Ans: (b)

Sol: Class of halting turing machines is equivalent to class of halting prolog programs

... The class of prolog programs describes a richer set of functions.

11. Ans: (a)

Sol: The class of an assembly programs is equivalent to class of all functions computed by turing machines.

12. Ans: (a)

Sol: Set of regular languages and set of recursive languages are closed under intersection and complement.

13. Ans: (c)

Sol:

- Non-deterministic TM is equivalent to deterministic TM
- Non-deterministic halting TM is equivalent to deterministic halting TM.

14. Ans: (d)

Sol: Universal TM is equivalent to TM.

15. Ans: (a)

Sol: L = Set of regular expressions

 $\overline{L} = \phi$

L is REL and \overline{L} is also REL So, L is recursive language.

16. Ans: (a)

Sol: Algorithms \cong Procedures \cong TMs

17. Ans: (a)

Sol: Hyper computer is equivalent to TM. TM can accept non-regular.

18. Ans: (b)

Sol: TM head restricted to input accepts CSL

19. Ans: (b)

Sol: Type 0 grammar is equivalent to turing machine.

20. Ans: (c)

Sol: Type 1 grammar is equivalent to linear bounded automata.

21. Ans: (a) & (d)

Sol: $L = \{wwwwwww / w \in (a + b + c)^*\}$ L is CSL but not CFL So, L is also recursive language

22. Ans: (a) & (d)

Sol: $L = \{a^n b^{n!} c^{(n!)!} | n > 1\}$ L is CSL but not CFL So, L is also recursive language So (a) & (d) are false

23. Ans: (d)

Sol: $L = \{ww^R / w \in (a + b)^*\}$ L is CFL but not regular

24. Ans: (d)

Sol: (0 + 1 + ---+ n + A + B ++F)* 1 (0 + 1 ++ 9 + A + B+ C+ D + E + F)*

It is regular language

25. Ans: (c)

Sol: $L = a^{47^n}$ L is CSL

26. Ans: (d)

Sol: Recursive languages are closed under union, intersection, complement, reversal and concatenation.

Recursive languages are not closed under substitution, homomorphism, quotient and subset.

27. Ans: (d)

Sol:

- Regular sets are closed under finite union, intersection, complement, homomorphism, inverse homomorphism and reversal.
- Containment, equivalence, emptiness, totality problems are decidable for regular sets.

28. Ans: (d)

Since

Sol: The following problems are undecidable for CFL's

- 1991, Equivalence
 - 2. Totality
 - 3. Containment

29. Ans: (c)

Sol: The following problems are undecidable for CSL's

- 1. Finiteness
- 2. Emptiness
- 3. Totality (Σ^*)
- 4. Equivalence
- 5. Containment

Sol: Undecidable problems for recursive sets:

- 1. Emptiness
- 2. Infiniteness
- 3. Regularity
- 4. Equivalence
- 5. Containment

Membership problem is decidable for recursive sets

31. Ans: (d)

Sol: Given TM accepts only 2 strings of length one $L = \{0, 1\}$

32. Ans: (a), (b) & (c)

Sol: All conversions are possible other than convert NPDA to DPDA.

33. Ans: (c) & (d)

Sol: $L = \{a^n b^n c^n | n \ge 1\}$

L is CSL and it can be defined by DTM in polynomial space

∴ L is in CSL and Recursive Languages

34. Ans: (a) & (c)

Sol: Equality of DPDA is decidable and can be decided in polynomial time So on the same argument (c) and (a) are true.

35. Ans: (a) & (d)

Sol: CSL is accepted by LBA and LBA is a TM with finite read and write tape-bounded so it won't be accepted by DFA even if we add any no. of states because the tape of DFA is read only.

> Again regular expression always generates regular language

