

HYDERABAD | DELHI | PUNE | BANGALORE | LUCKNOW | CHENNAI | VISAKHAPATNAM | VIJAYAWADA | TIRUPATHI | KOLKATA | AHMEDABAD

ESE-2021 (MAINS)

QUESTIONS WITH DETAILED SOLUTIONS

ELECTRICAL ENGINEERING

PAPER-II

ACE Engineering Academy has taken utmost care in preparing the ESE-2021 MAINS Examination solutions. Discrepancies, if any, may please be brought to our notice. ACE Engineering Academy do not owe any responsibility for any damage or loss to any person on account of error or omission in these solutions. ACE Engineering Academy is always in the fore front of serving the students, irrespective of the examination type (GATE/ESE/PSUs/PSC/GENCO/TRANSCO etc.,).

All Queries related to ESE - 2021 MAINS Solutions are to be sent to the following email address hyderabad@aceenggacademy.com Contact Us : 040-23234418,19,20

www.aceenggacademy.com

ELECTRICAL ENGINEERING

ESE_MAINS_2021_PAPER - II

Questions with Detailed Solutions

SUBJECT WISE WEIGHTAGE

S.No	NAME OF THE SUBJECT	Marks
01	Analog and Digital Electronics	58
02	Systems and signal processing	66
03	Control systems	104
04	Electrical Machines	104
05	Power Systems	64
06	Power Electronics	84

Regineering Publications		2	ESE 2021 MAINS_Paper_2 Solutions			
SECTION – A						
1(a) For a non-inverting	amplifier with $A_0 = \infty$, calc	ulate the closed loop gain.			
What happens to the	e result when $R_1 \rightarrow 0$ a	ind R	$_{3} \rightarrow 0?$ [12M]			
	$V_{in}^+ \bigcirc +A_0$ $- \bigcirc R_2 \bigcirc R_3$ $R_2 \bigcirc \nabla$		OV _{out}			
Solution:	+ GINE	EK	NG ACA			
	$ \begin{array}{c} \\ \hline \\ $	$V_{O} \downarrow I_{2}$ $\downarrow I_{1}$				
$I = \frac{V_{in}}{R_2} \rightarrow V_x = I \cdot R_3$	+ I.R ₂					
$V_{x} = \frac{V_{in}}{R_{2}} []$	$R_3 + R_2] \dots (1)$ Sin	ce	1995			
$I_{1} = \frac{V_{x}}{R_{4}} = \frac{\frac{V_{in}}{R_{2}} [R_{2} + R_{4}]}{R_{4}}$	$\frac{\mathbf{R}_{3}}{\mathbf{R}_{4}} = \frac{\mathbf{V}_{in}}{\mathbf{R}_{4}} \left[1 + \frac{\mathbf{R}_{3}}{\mathbf{R}_{2}} \right] \dots \dots$.(2)	E			
$I_2 = I_1 + I = \frac{V_{in}}{R_4} \left[1 + \frac{F_{in}}{R_4} \right]$	$\left[\frac{R_3}{R_2}\right] + \frac{V_{in}}{R_2}$					
$\mathbf{V}_0 = \left[\frac{\mathbf{V}_{in}}{\mathbf{R}_4} \left[1 + \frac{\mathbf{R}_3}{\mathbf{R}_2}\right] + \frac{\mathbf{V}_{in}}{\mathbf{R}_2}\right]$	$\frac{V_{in}}{R_2} R_1 + \frac{V_{in}}{R_4} \left[1 + \frac{R_3}{R_2} \right]$	R ₄				
$\frac{\mathbf{V}_0}{\mathbf{V}_{in}} = \left[\frac{\mathbf{R}_1}{\mathbf{R}_4} \left(1 + \frac{\mathbf{R}_3}{\mathbf{R}_2}\right) + \frac{\mathbf{R}_1}{\mathbf{R}_2}\right] + \left(1 + \frac{\mathbf{R}_3}{\mathbf{R}_2}\right)$						
ACE	Regular Live Doub	t cleari	ng Sessions Free Online Test Series ASK an expert			
	Affordable Fee Avai	lable 1	M 3M 6M 12M 18M and 24 Months Subscription Packages			

Engineering Publications	3	ELECTRICAL Engineering
$\frac{V_0}{V_{in}} = \frac{R_1}{R_2} + \left(1 + \frac{R_3}{R_2}\right)\left(1 + \frac{R_1}{R_4}\right)$		
If $R_1 \rightarrow 0$, $R_3 \rightarrow 0$		
Then, $\frac{V_0}{V_{in}} = 1$		
1(b) The accompanying figure depicts the loci	us of cl	losed loop poles of a system for 0 < K <∞. From
the plot, determine the frequency with w	hich th	e system is likely to exhibit sustained oscillation.
Determine the value of K at which one of	the clo	be been been been been been been been b
Solution: $G(s) H(s) = \frac{k}{(s+2-j2)(s+2+j2)(s+6)}$ $= \frac{k}{((s+2)^2+2^2)(s+6)}$ $GH(s) = \frac{k}{(s^2+4s+8)(s+6)}$ $CE: 1+G(s) H(s) = 0 \Rightarrow (s^2+4s+8) (s+6)$	$+j\omega$ (0, 0) +j2 (-+j2)	$+\sigma$ $+\sigma$ k = 0
$s^{3} + 4s^{2} + 8s + 6s^{2} + 24s + 48 + k =$	= 0	
s + 10s + 32s + (K + 48) = 0		
$\begin{vmatrix} s^3 \\ c^2 \end{vmatrix}$ 10		32 k +48
$\begin{vmatrix} s \\ s^{1} \end{vmatrix} = \begin{bmatrix} \frac{320 - (k + 48)}{10} \end{bmatrix} = MS$		K 740
s ⁰ (k+48)		
India's Best Enjoy a smooth on	t Online (line learr	Coaching Platform for GATE, ESE, PSUs and SSC-JE hing experience in various languages at your convenience

	ACE
$\sum_{i=1}^{n}$	Engineering Publications

4

ESE 2021 MAINS_Paper_2 Solutions

For MS $\rightarrow 320 = (k + 48)$ K = 272 the system generate sustain oscillations Frequency of oscillation AE : $10s^2 + (k + 48) = 0$

AE:
$$10s^{2} + (k + 48) = 0$$

 $10s^{2} + (272 + 48) = 0$
 $10s^{2} + 320 = 0$
 $s = \pm j\sqrt{32}$

 $w_n = \sqrt{32} = 5.656 \text{ rad/sec}$

k value at s = -8

$$32 = 5.656 \text{ rad/sec}$$

$$s = -8$$

$$|G(s)H(s)|_{s=-8} = 1$$

$$\left|\frac{k}{[(-8)^2 + 4(-8) + 8][-8 + 6]}\right| = 1$$

$$\left|\frac{k}{(64 - 32 + 8)(-2)}\right| = 1 \implies k = 80$$

1(c) A 220 V, 8-pole, 4.5 kW, 1100 rpm, lap connected dc generator has 1200 conductors. Each conductor has a resistance of 100 mΩ. The generator is run at half rated speed and is delivering rated current to load. Find the induced emf and corresponding terminal voltage under this condition. Assume constant field flux and no magnetic saturation of the machine during operation.
[12M]

Solution:

Given data:

V = 220V, P = 8, 4.5 KW, N = 1100 rpm,

A = P = 8, Z = 1200. $R/c=100m\Omega = 0.1\Omega$

No. of conductors in each parallel path $=\frac{1200}{8}=150$

 \therefore Resistance of each parallel path = $150 \times 0.1 = 15\Omega$

We Have Evolved!

Our Courses are Available on

▶ IOS (Mobile/Tab), ▶ Android (Mobile/Tab), ▶ Windows (Laptop/Desktop)

Scan QR Cocde to download the APP

www.ace.onlinehelp@ace.online

	CALE	~ ~ ~ ~ ~ ~ ~
41.H(KI	I AL FN	oineerino
		gincering
		0 0

FCF 2021	NAAINIC	D	$2 C_{-1}$
		Paner	/ Sourcione
		I apei	L JOIUUUIIS

ACE Regineering Publications	6	ESE 2021 MAINS_Paper_2 Solutions
	•	
Power delivered before fault is $P_{e1} = 1.0$ pu		
Mechanical input $(P_s) = P_{e1} = 1.0$		
$P_{m1} = \frac{EV}{X_{1eq}} = \frac{1.2 \times 1.0}{0.25 + 0.05 + \frac{0.5 \times 0.4}{0.9}}$		
$P_{m1} = \frac{1.2 \times 1.0}{0.3 + 0.22} = \frac{1.2 \times 1.0}{0.52} = 2.3$		
Before fault		
$P_{s} = P_{e1} = 1.0$		
$1.0 = P_{e1} = P_{m1} \sin \delta_0$		
$\delta_0 = \sin^{-1} \left(\frac{1.0}{P_{m1}} \right) = \sin^{-1} \left(\frac{1.0}{2.3} \right)$	ERI	NG ACAD
$\delta_0 = 25.46^\circ$		EZ
After fault cleared: Minimum power transfe	r is	2
$P_{m3} = \frac{EV}{X_{3eq}}$		
$=\frac{1.2\times1.0}{0.25+0.4+0.05}$		
$=\frac{1.2\times1.0}{0.7}$		1995
$P_{m3} = 1.71$		
$P_{s} = 1.0$		
$\delta_{\rm max} = 180 - \sin^{-1} \left(\frac{P_{\rm s}}{P_{\rm m3}} \right)$		
$\delta_{\max} = 180 - \sin^{-1} \left(\frac{1.0}{1.71} \right)$		
= 144.26°		

ACE

ESE 2021 MAINS_Paper_2 Solutions

(ii)
$$V_{0avg} = \frac{1}{\pi} \int_{\alpha}^{\pi} \left(\frac{N_2}{N_1} \right) V_m \sin(\omega t) . d\omega t$$

= $\frac{N_2}{N_1} \times V_m \times \left[-\cos(\omega t) \right]_{\alpha}^{\pi}$

$$V_{0avg} = \frac{N_2}{N_1} \times V_m \times [1 + \cos\alpha]$$

(iii)Limitations:

ACE

In this full wave rectifier circuit using single thyristor, as there are three power devices conducting together at the same time there is more conduction voltage drop and an increase in 'ON' state conduction losses and hence efficiency also reduces.

Applications:

1. This type of converter is suitable for motoring applications in D.C motor drives

2(a) (i) Analytically prove that the following Op-Amp circuit does the function of differential integrator:
[8M]

o Vo

Solution:

Let us apply super position

 V_1 alone ($V_2 = 0$)

V1 0

W R₁

$$\frac{V_0(s)}{V_1(s)} = \frac{-1}{\frac{SCF}{R_1}} = \frac{-R_1}{SCF}$$

ACE	Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert
	Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages

8

ACE Engineering Publications	9	ELECTRICAL Engineering
V ₂ alone (V ₁ = 0) V_2 alone (V ₁ = 0) $V_2 = 0$ $V_2 = 0$ $V_2 = 0$ $V_1 = 0$	TF Y _{SCF} V	7 o
$V_0(S) = \left[1 + \frac{\frac{1}{SCF}}{R_1}\right] V_P$		
$= \left[1 + \frac{1}{\operatorname{SCFR}_{1}}\right] \frac{\binom{1}{\operatorname{SCF}}}{\operatorname{R}_{1} + \frac{1}{\operatorname{SCF}}} \operatorname{V}_{2}\left(S\right)$	S) GINEER/	NG ACAA
$V_0(S) = \left[\frac{SCFR_1 + 1}{SCFR_1}\right] \frac{V_2(S)}{(1 + SCFR_1)}$		E.
$V_0(S) = \frac{V_2(S)}{SCFR_1}$		
$V_0(S) = \left[\frac{-1}{R_1 CF}\right] \frac{1}{S} V_1(S) + \frac{V_2(S)}{S[R_1 CF]}$		
$= \left[\frac{1}{R_1 CF}\right] \frac{1}{S} \left[V_2(S) - V_1(s)\right]$	Since	1995
$\therefore \mathbf{V}_0(t) = \frac{1}{\mathbf{R}_1 \mathbf{CF}} \int_0^t [\mathbf{V}_2(t) - \mathbf{V}_1(t)] dt$		F
The circuit functions as a differentia	l integrator.	
2(a) (ii) A. What is the full scale output	it of a R–2R	ladder for 4-bit numbers with R_F = 3R and state
$0 \rightarrow 0V$ state 1	$\rightarrow 5 \text{ V}?$	
B. What is the output of above	e converter w	ith input: 1001?
C. An analog signal sensed by	a sensor nee	ds to be digitized. The range of analog signal is 0–
2V, it is desired that varia	ation of 0.01	V be detected. Assuming maximum frequency
content in analog signal is	not more the	an 2 KHZ samples, calculate conversion time and
	ndia's Best Online	Coaching Platform for GATE, ESE, PSUs and SSC-IE
	mooth online lear	ning experience in various languages at your convenience

Regineering Publications	10	ESE 2021 MAINS_Paper_2 Solutions
Q - Lottion		
Solution:		
A. $\frac{\mathbf{v}_{R}}{2^{n}} \cdot \frac{\mathbf{K}_{f}}{R} [1.2^{3} + 1.2^{2} + 1.2^{1} + 1.2^{0}]$		
$=\frac{5V}{2^4}\frac{3R}{R}[8+4+2+1]$		
$=\frac{15\times15}{16}\mathrm{V}$		
= 14.0625 V		
B. The voltage for 1001		
$=\frac{5\mathrm{V}}{2^4}\frac{3\mathrm{R}}{\mathrm{R}}[8+0+0+1]$	ERI	NGA
$=\frac{15\times9}{16}\mathrm{V}$	1	AC ADE
= 8.4375 V		2
$C. 0 \rightarrow 2V$		
0.01 V variation should detected		
$f_m(max) = 2 \text{ kHz}$		
$f_s (max) = 2. f_{m max}$		
$= 2 \times 2 \text{ kHz}$		
= 4 kHz		
$f_s(max) = \frac{1}{t} \Rightarrow t_A = \frac{1}{f_{(A)}} = \frac{1}{4kHz}$	ice	1995
$t_A = 0.25 \text{ ms}$		
2(b) (i) For the signal flow graph shown in t	he fig	gure, determine overall transfer function M(s) =
$\frac{C(s)}{D(s)}$		[12M]
R(s)	_	
$R(s) \xrightarrow{K_1} 1/s \xrightarrow{-1} 1/s$		C(s)
Regular Live Doul	bt cleari	ng Sessions Free Online Test Series ASK an expert
Affordable Fee Ava	ilable 1	M 3M 6M 12M 18M and 24 Months Subscription Packages

Regineering Publications	11	ELECTRICAL Engineering
Solution:		
No. of forward paths =	2	
$\therefore \frac{\mathrm{C}(\mathrm{s})}{\mathrm{R}(\mathrm{s})} = \mathrm{M}(\mathrm{s}) = \frac{\sum_{\mathrm{K}=1}^{2} \mathrm{M}(\mathrm{s})}{\mathrm{K}(\mathrm{s})}$	$\frac{M_{\rm K} D_{\rm K}}{D}$	
$M_1 = K_1 \cdot \frac{1}{s} \cdot 1 \cdot \frac{1}{s} \cdot K_2 = \frac{1}{s}$	$\frac{\zeta_1 K_2}{s^2}$	
$M_2 = K_1 \cdot \frac{1}{s} \cdot 1 \cdot 1 = \frac{K_1}{s}$		
No. of loops $= 3$		
$L_1 = \frac{-1}{s}, L_2 = \frac{-1}{s}, L_3$	$=\frac{-K_2K_3}{s}$	ING ACAA
Two non-touching loop	$bs = L_1 L_2 = \frac{1}{s^2}$	OF MA
	$L_1L_3 = \frac{K_2K_3}{s^2}$	
Three non-touching loo	ops = 0	
$\therefore \Delta = 1 - (L_1 + L_2 + L_3)$	$(L_1L_2 + L_1L_3)$	
$=1-\left(\frac{-1}{s}\right)$	$\frac{l}{s} - \frac{K_2 K_3}{s} + \left(\frac{1}{s^2} + \frac{K_2 K_3}{s^2}\right)$	
$\Delta_1 = 1$	Since	1995
$\Delta_2 = 1 - \left(\frac{-1}{s}\right) = 1 + \frac{1}{s}$		
$\mathbf{M}(\mathbf{s}) = \left[\frac{\mathbf{K}_1 \mathbf{K}_2}{\mathbf{s}^2} + \frac{\mathbf{K}_1}{\mathbf{s}}\right] (1)$	$+\frac{1}{s}\bigg]\div\bigg[1+\frac{2+K_2K_3}{s}+\frac{1}{s}\bigg]$	$\frac{1}{2} + \frac{K_2 K_3}{s^2} \right]$
$\frac{\mathbf{K}_{1}\mathbf{K}_{2}+\mathbf{K}_{1}\mathbf{s}\left(1\right)}{2}$	$+\frac{1}{s}$	
$= \frac{s^{2}}{\frac{s^{2} + 2s + K_{2}K_{3}s + s^{2}}{s^{2}}}$	$1 + K_2 K_3$	
$M(s) = \frac{K_1 s + K_1 H}{s^2 + (K_2 K_3 + 2)}$	$\frac{K_2 + K_1}{(s + K_2 K_3 + 1)}$	
ACE	India's Best Onlin	e Coaching Platform for GATE, ESE, PSUs and SSC-JE
	Enjoy a smooth online le	arning experience in various languages at your convenience

FREE Interview Guidance Program for ESE-2021 MAINS Qualified Students

Details:

Orientation Sessions on how to fill DAF

Mode: Online/Offline

- Free Interview Guidance Classes for Technical Subjects, Personality Development & Interview Tips
- Free Mock Interviews
- Relevant Study Materials

Ĩ	ACE Bagineering Publications		12	ESE	2021 MAINS_Paper_2	2 Solutions
2(b)	(ii) For a system rep	esented in the figure	e, resj	ponse to a unit st	tep with K = 1 is give	en. For what
	value of K does th	e steady state error	becon	ne zero?		[8M]
						[]
	R+	G y	y(1 0.8			
Solu	tion:					
	With $K > 1$ steady stat	e value $= 0.8$				
	Steady state value $= 0$.	8 K (in terms of K)	ERI	NC		
	Error = Input – output	NGING		ACA		
	= 1 - 0.8K =	0 (zero error)	A	0		
	$K = \frac{1}{0.8} = 1.25$	4				
2(c)	A three-phase, 6-pol	e, 50 Hz salient pol	e alte	rnator is directl	y connected to 3500	V, 3-phase
	supply mains to deliv	er power. It has X _d	= 8.00	$\Omega, X_q = 6.0\Omega \text{ on } p$	per phase basis. The	excitation is
	so adjusted to achiev	e an equivalent per	phas	e internal gener	ated voltage of 1500	V at a load
	angle of 15 degrees.	Find the delivered J	power	, armature curr	ent and power facto	r under this
	condition.	Sir	ice	1995		
	Now the alternator	is made to deliver	maxir	num power und	er the same value of	of excitation
	voltage. Find the new	value of load angle	and d	elivered power u	nder this situation.	[20M]
Solu	tion: A three phase, 6 – pole	e, 50 Hz salient pre al	ternate	es connected to 35	500 V, 3 – Phase suppl	y.
	Assume star connected	lalternates				
	$\therefore V_{L} = 3500 \text{ V} \Rightarrow V_{p}$	$n = \frac{3500}{\sqrt{3}} = 2020.72V$				
	$X_d = 8.0 \ \Omega \ / ph$					
	$X_q = 6.0 \ \Omega \ / ph$					
		Demolec II D	h4 cl - '		nline Teat Courses 1 4 Or	
	ACE	Affordable Fee Ava	ilable 1	mg sessions Free 0 	mme rest series ASK an ex	

Engineering Publications	13	ELECTRICAL Engineering		
Excitation emf (or) into	Excitation emf (or) internal generated voltage $E_{\lambda} = 1500 \text{ V}$ at load angle $\delta = 15^{\circ}$			
Find the delivered now	Find the delivered network P			
Armature current. I ₂ pc	ower factor. P.F.			
$P = \frac{EV}{X_{d}}\sin\delta + \frac{v^{2}}{2}\left(\frac{1}{X_{q}}\right)$	$-\frac{1}{X_{d}}\Bigg)\sin 2\delta$			
$=\frac{1500 \times 2020.72}{8}$ s	$\sin 15^{\circ} + \frac{2020 - 72^2}{2} \left(\frac{1}{6} - \frac{1}{8}\right)$	$)\sin 2 \times 15^{\circ}$		
= 98062.65 + 4253	4.47			
= 140597.12 W				
P = 140.597 kW/Ph	CINEER	INGA		
Power for 3 – phase, P	$= 3 \times 140.597 = 421.79 \text{ k}$	W SAN		
P = 421.79 kW	8	E.		
I _a I _d	$I_d \times d$ E I_a I_d I_d I_d I_d I_d I_d			
From the Phasor Dia	gram			
$E = V cos \delta - I_d \times d$	$E = V cos \delta - I_d \times d$			
$1500 = 2020.72 \cos 1$	$1500 = 2020.72 \cos 15^\circ - I_d \times 8$			
$I_q \times q = V sin \delta$	$I_q \times q = V sin \delta$			
$I_q = \frac{v\sin\delta}{X_q} = \frac{2020.7}{x_q}$	$I_{q} = \frac{v \sin \delta}{X_{q}} = \frac{2020.72 \sin 15^{\circ}}{6} = 87.166$			
Armature current I _a =	Armature current $I_a = \sqrt{Id^2 + I_q^2}$			
	India's Best Onlin	e Coaching Platform for GATE, ESE, PSUs and SSC-JE		
	Enjoy a smooth online lea	arning experience in various languages at your convenience		

ACE Regineering Publications	14	ESE 2021 MAINS_Paper_2 Solutions	
$I_a = \sqrt{56.48^2 + 87.166^2} = 103.864A$			
\therefore I _a = 103.864 A			
$I_d = I_a \sin \Psi$			
$56.48 = 103.864 \sin \Psi$			
$\sin \Psi = 0.5437$			
$\Psi = 32.94^{\circ}$		2	
$\Psi = \phi \pm \delta \qquad +' \log PF, -' H$	ead P	12	
$\Psi = \phi - \delta$	E D		
$32.94 = \phi - 15^{\circ}$	EK	NG AC	
$\therefore \phi = 32.94 + 15^{\circ} = 47.94^{\circ}$	A	NOR	
: $P.F = \cos\phi = \cos 47.94^\circ = 0.6699$ Lead		32	
$\simeq 0.67$ Lead			
P.F = 0.67 Lead			
\Rightarrow Now the alternator is made to deliver ma	ximur	n power under the same value of execution.	
i.e. $E_{ph} = 1500 V$			
Find the new value of load angle (δ) and δ	delive	red power	
$P = \frac{EV}{X_{d}}\sin\delta + \frac{v^{2}}{2}\left(\frac{1}{X_{q}} - \frac{1}{X_{d}}\right)\sin 25$	$P = \frac{EV}{X_{d}}\sin\delta + \frac{v^{2}}{2}\left(\frac{1}{X_{q}} - \frac{1}{X_{d}}\right)\sin 25$		
At maximum power output condition	At maximum power output condition		
$\frac{dp}{d\delta} = 0$	$\frac{dp}{d\delta} = 0$		
$\frac{dp}{d\delta} = \frac{EV}{X_{d}}\cos\delta + v^{2}\left(\frac{1}{X_{q}} - \frac{1}{X_{d}}\right)\cos 25 = 0$			
$=\frac{1500\times2020.72}{8}\cos\delta+2020.72^{2}\left(\frac{1}{6}-\frac{1}{8}\right)\cos 25=0$			
$= 378885 \cos \delta + 170137 \cos 2g = 0$			

 Regular Live Doubt clearing Sessions
 Free Online Test Series
 ASK an expert

 Affordable Fee
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

ACE

ACE Regineering Publications	15	ELECTRICAL Engineering
$= 378885 \cos \delta + 170137 (2\cos^2 \delta - 1) = 0$	0	
$= 378885 \cos \delta + 340274 \cos^2 \delta - 17013$	7 = 0	
$=\cos^2\delta + 1.1134\cos\delta - 0.5 = 0$		
$\cos \delta = \frac{-1.1134 \pm \sqrt{1.1134^2 - 4 \times 1(-0.5)}}{2 \times 1}$		
$\cos \delta = 0.343$		
$\delta = \cos^{-}(0.343) = 67.92^{\circ}$		
\therefore At max power deliver, load angle $\delta = 6$	59.92°	No
Maximum Power delivered		ACA
$P = \frac{EV}{X_{d}}\sin\delta + \frac{v^{2}}{2}\left(\frac{1}{X_{q}} - \frac{1}{X_{d}}\right)\sin 2\delta$		OF
$=\frac{1500\times2020.72}{8}\sin 69.92^\circ + \frac{2020.72^2}{2}\left(\frac{1}{6}\right)$	$\left(\frac{1}{5}-\frac{1}{8}\right)$	$\sin 2 \times 69.92$
= 355854 + 5486.3		
P = 410717 W/Ph = 410.717 kW		
∴ Total Power for 3 – phases		
$P_{(total)} = 3 \times 410.717$	ice	1995
= 1232.151 kW		
3(a) An induction motor of 1.5 kW, 3-PHASH	E, 415	v, 50 Hz, 1440 rpm is to undergo blocked rotor
and no load tests. The motor is locate	ed av	vay from the supply panel and the per phase

and no load tests. The motor is located away from the supply panel and the per phase impedance of the connecting cable is $(5 + j 2.5) \Omega$. The metering is done at the panel end. The motor draws 0.7 A current and takes 150 W input power under no load condition at rated voltage. For blocked rotor condition, it draws a current of 2.5 A and takes input power of 250 W when 75 V (L–L) is applied from the panel. Calculate the machine equivalent circuit parameter referred to stator side.

(Assume equal distribution of resistance and leakage reactance between rotor and stator, negligible rotation losses and star connected stator of the machine). [20M]

Regineering Publications	16	ESE 2021 MAINS_Paper_2 Solutions
Solution:		
Equivalent circuit refer to stato	•	
R_{c} jX_{c} R_{1} jX_{1}		
	$rac{R_2^1}{s}$	
cable jX _m		
At no load Cable	impedance	
$N_r \approx N_s$ $Z_c = 5$	+ j2.5	
S ≈0	$= r_c + jx_c \in ERI$	NGA
$\frac{R_2^1}{C} \approx 0$ $R_c = 50$	2, NOM	AC4
5	5.0	E.
$X_c = 2.$ The equivalent circuit	5 12	
R_{c} jX_{c} R_{1} jZ_{c}	ζ1	
\rightarrow I_{n1} M $ M$ $-$	1 1	
V_{n1}	jX _m g	
		1005
$P_{n1} = 150W$	Since	1995
No-load power $V_{\rm e} = 415V_{\rm e}$ $L = 0.74$		
$v_{nl} = 415v$, $t_0 = 0.7A$		
V. /		
$Z_{n1} = \frac{\frac{1}{ph}}{1} \qquad X_{n1} = 2$	$X_m + X_1 + X_c$	
$\frac{1}{ph}$		
415/		
$=\frac{\sqrt{3}}{0.7}$		
= 342.28Ω		
$= \mathbf{R}_{n1} + \mathbf{j}\mathbf{x}_{n1}$		
	egular Live Doubt clear	ing Sessions Free Online Test Series ASK an expert
Affor	dable Fee Available 1	M 3M 6M 12M 18M and 24 Months Subscription Packages

CLASSROOM COACHING

CE | ME | EC | EE | CS | PI | IN

ESE | GATE | PSUs - 2023

College Goers Batch:

26th Nov-2021

Regular Batches:

@ ABIDS @ KUKATPALLY @ KOTHAPET

20 th Jan-2022	26 th Feb-2022	13 th Mar-2022
27 th Mar-2022	11 th Apr-2022	25 th Apr-2022
08 th May-2022	22 nd May-2022	11 th Jun-2022

Spark Batches:

8th May-2022 22nd May-2022 11th Jun-2022

Summer Short-Term Batches:

 8th May-2022
 22nd May-2022
 11th Jun-2022

 DISCOUNTS
 015COUNTS

 10%
 EARLY BIRD
 50%
 ACE OLD

 OFFE
 OFFER
 Valid till
 00% NOV.2021
 OFFE

ACE Raginsering Publications	17	ELECTRICAL Engineering		
n 150				
$\mathbf{R}_{\mathrm{n}1} = \frac{1}{3 \times 0.7^2}$				
$= 102.04\Omega$				
$X_{n1} = \sqrt{Zn_1^2 - Rn_1^2}$				
$= \sqrt{342.28^2 - 102.04^2}$				
$= 326.7 \Omega$				
Blocked rotor loss:				
$I_{BR} = 2.5 \text{ A}$				
P _{BR} =250 W				
$V_{BR} = 75V$	EER	NGAC		
During blocked rotor loss	Th.	AD.		
N _r = 0; S=1; $\frac{R_2^1}{S} = R_2^1$		EZ		
$-\underbrace{\overset{X_{C}}{\overset{JX_{C}}{\overset{X_{C}}{\overset{R_{1}}{\overset{JX_{1}}{\overset{JX_{1}}{\overset{X_{1}}}}}{\overset{X_{1}}{\overset{X_{1}}{\overset{X_{1}}{\overset{X_{1}}{\overset{X_{1}}{\overset{X_{1}}{\overset{X_{1}}{\overset{X_{1}}{\overset{X_{1}}{\overset{X_{1}}{\overset{X_{1}}{\overset{X_{1}}}{\overset{X_{1}}}{\overset{X_{1}}}{\overset{X_{1}}{\overset{X_{1}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$				
	3 JX ₂			
$Z_{\rm br} = \frac{\frac{75}{\sqrt{3}}}{25}$	nce	1995		
2.5				
$= 17.32 \Omega$				
$R_{br} = \frac{250}{3 \times 2.5^2}$				
= 13.33 Ω				
$X_{\rm br} = \sqrt{Z_{\rm br}^2 - R_{\rm br}^2}$	$\mathbf{X}_{\mathbf{br}} = \sqrt{\mathbf{Z}_{\mathbf{br}}^2 - \mathbf{R}_{\mathbf{br}}^2}$			
= 11.05 Ω	$= 11.05 \ \Omega$			
$\mathbf{X}_{br} = \mathbf{X}_c + \mathbf{X}_1 + \mathbf{X}_2^1$				
Given $X_1 = X_2^1$				
$X_{br} = X_c + 2X_1$				
ACE India's Be	st Online	Coaching Platform for GATE, ESE, PSUs and SSC-JE		
	unne leal	ning experience in various languages at your convenience		

Regineering Publications	18	ESE 2021 MAINS_Paper_2 Solutions
$2X_1 = 11.05 - 2.5 \Omega$		
= 8.55		
$X_1 = 4.275 \Omega$		
$X_1 = X_2^1 = 4.275 \Omega$		
$\mathbf{X}_{m} = \mathbf{X}_{n1} - \mathbf{X}_{1} - \mathbf{X}_{L}$		
= 326.7 - 4.275 - 2.5		
= 319.925 Ω		
$\mathbf{R}_1 = \mathbf{R}_2^1$		
$R_1 + R_2^1 = R_{01}$	- 0	
Let $X_2 = X_m + x_2^1$	EK	NG AC
= 319.925 + 4.275		NO.
= 324.2		3
$R_{br} = R_c + R_1 + R_2^1 \left(\frac{X_m}{X_2}\right)^2$		
$= R_{c} + R_{1} + R_{1} \left(\frac{319.25}{323.275}\right)^{2}$		
$= R_c + R_1 + R_1 \times 0.979$		
$R_{br} = R_c + 1.979 R_1$		1005
$R_{br} - R_c = 1.979 R_1$	ice	1775
$\frac{13.33 - 5}{1.979} = R_1$		
$R_1 = 4.209$		
$R_2^1 = 4.209$		

3(b) A three-phase, 50 Hz transmission line has a span of 250 km. It supplies a balanced load of 25 MVA at 0.8 lagging power factor. The receiving end load voltage is 132 kV. The line conductors are spaced equilaterally 3m apart. The conductor resistance is 0.11 ohm/km and its effective diameter is 1.6 cm. Using the nominal-T method, find sending end voltage and current. Also determine the voltage regulation at receiving end of transmission line. [20M]

ACE	Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert				
	Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages				

Contractions	19	ELECTRICAL Engineering

Solution:

Nominal-T parameter:

$$\begin{bmatrix} V_{s} \\ I_{s} \end{bmatrix} = \begin{bmatrix} 1 + \frac{YZ}{2} & Z\left(1 + \frac{YZ}{4}\right) \\ Y & \left(1 + \frac{YZ}{2}\right) \end{bmatrix} \begin{bmatrix} V_{r} \\ I_{r} \end{bmatrix}$$

Nominal-T circuit shown below.

UPCOMING BATCHES - CLASSROOM COACHING @ OUR CENTRES ESE | GATE | PSUs - 2023 / 2024

- Weekend Batches: 19th Dec-2021, 22nd Jan-2022,
- Regular Batches:
 21st Feb-2022, 27th Mar-2022, 16th Apr-2022,
 8th & 22th May-2022, 11th Jun-2022
- Summer Short Term Batches:
 8th & 22nd May-2022

@ Pune

O 9343499966

- Evening Batches: 13th Dec-2021, 10th Jan-2022
- Weekend Batch: 8th Jan-2022
- MPSC (Prelims) Batch: 26th Dec-2021

@ Vijayawada

10% EARLY BIRD

OFF OFFER valid till 30th Nov. 2021

O 9341699966

• Weekend Batch: 18th Dec-2021

• Weekend Batches:

S374808999

50% ACE OLD

OFF STUDENTS

18th Dec-2021, 20th Jan-2022, 26th Feb-2022

DISCOUNTS

ACE Reginsering Publications		20	ESE 2021 MAINS_Paper_2 Solutions	
x 1.005 XX/I				
L = 1.235 mH/km				
$L = 1.235 \times 250 \text{ mH}$	$L = 1.235 \times 250 \text{ mH}$			
L = 308.75 mH				
$X_{\rm L} = 308.75 \times 10^{-3} \times 2$	$\pi \times 50$			
$X_L = j96.95 \Omega$				
$R = 27.5 \Omega$				
$C = \frac{0.02412}{\log \frac{GMD}{r}} \mu F/km$	$C = \frac{0.02412}{\log \frac{GMD}{r}} \ \mu F/km$			
$C = \frac{0.02412}{\log \frac{3}{(0.8 \times 10^{-2})}}$	ENCINE	ERI	NG ACAA	
C = 9.37 nF/km	C = 9.37 nF/km			
$C_{eq} = 2342.5 \text{ nF}$	v		2	
$Y = j2\pi fC$				
$= j(100 \times 3.14 \times 234)$	12.5×10^{-9})			
Y = j0.00074				
$V_{S} = AV_{R} + BI_{R}$				
$I_S = CV_R + DI_R$				
$D = A = 1 + \frac{YZ}{2} = 1 + $	$D = A = 1 + \frac{YZ}{2} = 1 + \frac{(j0.00074) \times (27.5 + j96.96)}{2}$			
= 0.9	641 + j0.01			
A = 0.9641 + j0.01				
A = 0.9642∠0.594				
$\mathbf{B} = \mathbf{Z} \left(1 + \frac{\mathbf{Y}\mathbf{Z}}{4} \right)$				
$B = (27.5 + j96.96) \left[1 + \frac{j0.00074(27.5 + j96.96)}{4} \right]$				
B = (27.5 + j96.96)[(0.5)](0.5)](0.5)	$\mathbf{B} = (27.5 + j96.96)[(0.982) + j0.0051]$			
B = 100.78∠74.16[0.9	$B = 100.78 \angle 74.16[0.982 \angle 0.298]$			
$B = 98.965 \angle 74.46$				
ACE	Regular Live Doub	ot cleari	ng Sessions Free Online Test Series ASK an expert	
	Affordable Fee Avai	ilable 1	M 3M 6M 12M 18M and 24 Months Subscription Packages	

گ		21	ELECTRICAL Engineering
	C = Y = j0.00074		
	$V_{S} = 0.9642 \angle 0.594 \left(\frac{132 \times 10^{3}}{\sqrt{3}} \right) + 98.965 \angle 7$	4.46 >	× 109.35∠-36.86
	$V_s = 82051.98 + j7364.67$		
	$V_{\rm S} = 82,381.83 \angle 5.129 \ {\rm V}$		
	$I_S = CV_R + DI_R$		
	$I_{S} = j0.00074 \times \left(\frac{132 \times 10^{3}}{\sqrt{3}}\right) + 0.9642 \angle 0.594$	4(109.	9.35∠-36.86)
	$I_{\rm S} = 85.014 - j5.97$		
	I _s = 85.014 –j5.97 A	ERI	INGA
	Calculation of voltage Regulation:		1CA
	$VR = \frac{\left \frac{V_{s}}{A}\right - V_{R} }{ V_{R} } \times 100 = \frac{\frac{142.69}{0.9642} - 132}{132} \times 100$	00	
	%VR = 12.11%		
3(c)	0		V ⁺
	Sir	ice	$R_L = series/stray resistance$
	120 V	Z Th	C assumed ideal with ESR
	$ \begin{array}{c} \overline{O} & V_{Loa} \rightarrow \\ \hline \\ O & LOAD \\ \hline \\ R \end{array} $		R _L
	The circuit shown in the figure is in stea	ndy st	state with thyristor OFF for a long time. Find the

The circuit shown in the figure is in steady state with thyristor OFF for a long time. Find the suitable values of L and C for the circuit so that current pulse across the load $R = 550\Omega$ is approximately of 1 ms. The circuit is designed to generate a pulse of 0.75 T, where T is period of resonant circuit. It is assumed that subsequent firing of thyristor occurs after 1 ms and inductor is ideal, i.e., $R_L = 0$. Derive all expressions with $R_L \neq 0$.

Also, plot the time variation of $\,V_{\!C^{(*)}}\,and V_{\!Load^{(*)}}$ for one cycle.

[20M]

Regimeering Publications		22 ESE 2021 MAINS_Paper_2 Solutions
Solution:		
+ $V_{s}=120V$ $-V_{Lo}$ R	$T \qquad \qquad$	
$R = 550 \Omega$		
Load current pulse = t Assumptions:	$p = 1 \times 10^{-3} \text{ sec}$	
(ii) Thyristor is trigger	red at $t = 0$	ERINGAC
(iii) $R_L = 0;$	A LEAN	A CA
(iV) constant load curr	rent	3
For t < 0 , Thyristor =	⇒ OFF	
$i_{T} = 0 \text{ A}; i = i_{c} = i_{0}$ Capacitor charges KVL to loop; $+ V_{s} - \frac{1}{C} \int i dt - L \cdot \frac{di}{dt}$ $V_{s} = \frac{1}{C} \int i dt + L \cdot \frac{di}{dt} + I$ Taking Laplace Transf $\therefore \frac{V_{s}}{s} = \left[\frac{1}{Cs} + Ls + R\right]$ $\therefore I(s) = \frac{\left(\frac{V_{s}}{s}\right)}{\left[R + sL + \frac{1}{Cs}\right]}$	$+ V_{s} = -Ri = 0$ Ri form, $]I(s)$	
	Dogular Line Derikt	ht cleaning Speciane Ence Online Test Spring ASV or surgest
ACE	Affordable Fee Avail	ailable 1M 3M 6M 12M 18M and 24 Months Subscription Packages

$$\frac{Cs\left(\frac{V}{s}\right)}{\left[RCs+s^{2}LC+1\right]} = \frac{Cs\left(\frac{V}{s}\right)}{LCx\left[s^{2}+s\frac{R}{L}+\frac{1}{LC}\right]} = \frac{CV}{\frac{U}{L}} = \frac{\left(\frac{V}{L}\right)}{\left[s^{2}+s\frac{R}{L}+\frac{1}{LC}\right]} = \frac{\left(\frac{V}{L}\right)}{\left[s^{2}+s\frac{R}{L}+\frac{1}{LC}\right]} = \frac{\left(\frac{V}{L}\right)}{\left[s^{2}+s\frac{R}{L}+\frac{1}{LC}+\left(\frac{R}{2L}\right)^{2}-\left(\frac{R}{2L}\right)^{2}\right]} = \frac{A}{\left(s+\delta\right)^{2}+o^{2}} = \frac{A}{\left(s+\delta\right)^{2}+o^{2}}$$
Where,

$$A = \frac{V_{s}}{L}; \delta = \frac{R}{2L}; \omega = \sqrt{\frac{1}{LC}-\left(\frac{R}{2L}\right)^{2}}$$
o is natural frequency.

$$\therefore I(s) = \frac{A}{\omega} \times \frac{\omega}{(s+\delta)^{2}+\omega^{2}}$$
Taking inverse Laplace Transform

$$i(t) = \frac{A}{\omega L} \times e^{\frac{\pi}{3}} \sin(\omega t)$$

$$\therefore i(t) = i = \frac{V_{s}}{\omega L} \times e^{\frac{\pi}{3}} \sin(\omega t)$$
Indic's Best Online Coaching Platform for GATF, ESP, PSIs and SSC-IF
Endows Bast Online Coaching Platform for GATF, ESP, PSIs and SSC-IF
Endows Bast Online Coaching Platform for GATF, ESP, PSIs and SSC-IF
Endows Bast Online Coaching Platform for GATF, ESP, PSIs and SSC-IF
Endows Bast Online Coaching Platform for GATF, ESP, PSIs and SSC-IF
Endows Bast Online Coaching Platform for GATF, ESP, PSIs and SSC-IF
Endows Bast Online Coaching Platform for GATF, ESP, PSIs and SSC-IF

	24	ESE 2021 MAINS_Paper_2 Solutions
Now		
Voltage across capacitor		
$V_{\rm C} = V_{\rm S} - V_{\rm Load} - V_{\rm L}$		
$\therefore V_{\rm C} = V_{\rm S} - iR - L \frac{{\rm d}i}{{\rm d}t}$		
$\therefore V_{\rm C} = V_{\rm S} - R \frac{A}{\omega} e^{-\delta t} \sin(\omega t) - L \frac{d}{dt} \left[\frac{A}{\omega} e^{-\delta t} \right]$	sin wt	
$\therefore V_{\rm C} = V_{\rm S} - \frac{{\rm R.A}}{\omega} \cdot e^{-\delta t} \sin(\omega t) - L \frac{{\rm A}}{\omega} \times \left[e^{-\delta t} \cdot A \right]$	A.cos($\omega t - \delta e^{-\delta t} . \sin \omega t$
$\therefore V_{\rm C} = V_{\rm S} - \frac{A}{\omega} .e^{-\delta t} [R.\sin \omega t + \omega L.\cos \omega t -$	L.ð sir	n wt]
$\therefore V_{\rm C} = V_{\rm S} - \frac{A}{\omega} e^{-\delta t} \bigg[R \sin \omega t + \omega L \cos \omega t - I \bigg]$	$\frac{R}{2L}$.	sin wt
$\therefore V_{\rm C} = V_{\rm S} - \frac{A}{\omega} \cdot e^{-\delta t} \left[\frac{R}{2} \sin(\omega t) + \omega L \cdot \cos \omega t \right]$:]	
Substituting 'A' and 'δ' in above expression	ı.	
$\therefore V_{\rm C} = V_{\rm S} - \frac{V_{\rm S}}{\omega L} \cdot e^{\frac{-R}{2L}t} \left[\frac{R}{2}\sin(\omega t) + \omega L \cdot \cos(\omega t)\right]$	wt)]	
$\therefore V_{\rm C} = V_{\rm S} - \frac{V_{\rm S}}{\omega} \times e^{\frac{-R}{2L}t} \times \left[\frac{R}{2L} \cdot \sin(\omega t) + \omega \cos(\omega t)\right]$	s(ωt)	1995

 \therefore As time changes from $-\infty$ to 0^- capacitor charges to voltage $V_C = V_S$ and circuit current reaches zero value.

At **t** = **0**; thyristor turns ON

 \therefore For t > 0;

ACE Regular Liv Affordable Fee Affordable Fee	Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert
	Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages

		25	ELECTRICAL Engineering	
During $t = 0$ to $t = t_1$				
+ i i_{I} $V_{S}=120V$ T i_{I} C i_{x} C i_{x} I i_{0}	i _C ⁺ [−] ⁺ [−] ^V _C L			
Capacitor discharges an	nd charges to reverse p	oolari	ty;	
$\therefore i_x = V_s \sqrt{\frac{C}{L}} \sin(\omega_0 t)$	15	- 0 /		
Where, $\omega_0 = \frac{1}{\sqrt{LC}}$	& ENGINE	ER.	NG ACAOR	
$\therefore i_{\rm C} = -i_{\rm x} = -V_{\rm s} \sqrt{\frac{\rm C}{\rm L}} {\rm s}$	$in(\omega_0 t)$		32	
\therefore $i_{\rm C} = -I_{\rm C peak} \cdot \sin(\omega_0 t)$)			
Where $I_{C peak} = V_s \sqrt{\frac{C}{L}}$	Where $I_{C peak} = V_s \sqrt{\frac{C}{L}}$			
$i_0 = \frac{V_s}{R} = \frac{120}{550} = 0.218$	A			
$V_{Load} = V_S = 120 V$	Sin	ce	1995	
$V_{\rm C} = \frac{1}{\rm C} \int i_{\rm C} dt = \frac{1}{\rm C} \int -$	$V_s \sqrt{\frac{C}{L}}.sin(\omega_0 t)dt$		F	
$\therefore V_{\rm C} = \frac{1}{\rm C} \times V_{\rm S} \times \sqrt{\frac{\rm C}{\rm L}}.$	$\frac{\cos \omega_0 t}{\omega_0}$			
$= V_{s} \sqrt{\frac{1}{LC}} \times \frac{\cos(\omega_{0}t)}{\left(\frac{1}{\sqrt{LC}}\right)}$				
$V_{\rm C} = V_{\rm S} \cos(\omega_0 t)$	$V_{\rm C} = V_{\rm S} \cos(\omega_0 t)$			
At $t = t_1$				
$V_{C} = -V_{S}; i_{C} = 0$	$V_C = -V_S; i_C = 0$			
ACR	India's Best (Online	Coaching Platform for GATE, ESE, PSUs and SSC-JE	
	Enjoy a smooth onli	ne lear	ning experience in various languages at your convenience	

Expense of the State of the Sta	26	ESE 2021 MAINS_Paper_2 Solutions		
During $t = t_1$ to t_2				
$+ \underbrace{i}_{V_{S}=120V} T \underbrace{i_{T}}_{- \underbrace{V_{Load}}_{R}} \underbrace{i_{T}}_{I_{0}} \underbrace{i_{T}}_{- \underbrace{i_{x}}_{R}} \underbrace{i_{0}}_{L}$				
$V_{Load} = V_S = 120 V$				
$i_{\rm C} = I_{\rm C peak}.sin(\omega_0 t)$ $V_{\rm C} = V_{\rm C} cos(\omega_0 t)$				
$V_{C} = -V_{S} \cos(\omega_{0}t)$	NEERI	NGACA		
where; $I_{C peak} = V_{S} \sqrt{\frac{L}{L}}$	1	OF		
$\omega_0 = \frac{1}{\sqrt{LC}}$				
When $i_C = i_x = i_0 = 0.218$ A; Thyristor to	ırns OFF			
At $t = t_2$; Thyristor turns OFF				
During $\mathbf{t} = \mathbf{t}_2$ to \mathbf{t}_3 :				
$ \begin{array}{c} + & & \\ \uparrow & & \\ V_{S}=120V & T & & \\ - & & \\ - & & \\ R & i_{0} \end{array} $ Since 1995				
Regular Live	Doubt clear	ing Sessions Free Online Test Series ASK an expert		
Affordable Fee	Available 1	M 3M 6M 12M 18M and 24 Months Subscription Packages		

Exclusive Online Live Classes for ESE | GATE | PSUs - 2023

Batches for English

Output Description (Last Batch)

13th November, 2021

Regular Batches

Batches for Hindi + English (Hinglish)

College Goers Batch (Evening Batch)

13th November, 2021 18th December, 2021

COURSE DETAILS

- For ESE+GATE+PSUs Students
 - >> Online Live Classes Technical Subjects Only
 - >> Recorded Classes General Studies Subjects & ESE Addl. Subjects. on ACE Online (Deep Learn)
- Recorded version of the online live class will be made available through out the course (with 3 times view)
- Doubt clearing sessions and tests to be conducted regularly
- Free study material (hard copy)
- Morning Batch: 6 am 8 am
- Evening Batch: 8 pm 10 pm
- Regular Batches: 4 6 Hours on Weekdays,
 6 7 Hours on Sundays and Public Holidays
- Access the lectures from any where

Scan QR Code to Enroll

Enjoy a smooth online learning experience in various languages at your convenience

ACE Baginsering Publications	28	ESE 2021 MAINS_Paper_2 Solutions			
$\therefore \omega_0(t_2 - t_1) = \sin^{-1} \left(\frac{0.218}{V_s \sqrt{\frac{C}{L}}} \right)$					
Neglecting circuit turn OFF time of thyristor	r;				
During $t = t_2$ to t_3					
$i_{\rm C} = I_0$					
$C.\frac{dV_{\rm C}}{dt} = I_0$					
$\therefore \mathbf{C} \times \frac{\mathbf{V}_{\mathrm{S}}}{(\mathbf{t}_{3} - \mathbf{t}_{2})} = \mathbf{I}_{0}$					
$\therefore t_3 - t_2 = C \cdot \frac{V_s}{I_0}$	ERI	NGACAA			
Assume C = 1 μ F		E.			
$\therefore t_3 - t_2 = \frac{1 \times 10^{-6} \times 120}{0.218}$	$\therefore t_3 - t_2 = \frac{1 \times 10^{-6} \times 120}{0.218}$				
\therefore t ₃ -t ₂ = 0.55 × 10 ⁻³ sec					
$\therefore t_2 = 1 \times 10^{-3} - 0.55 \times 10^{-3}$					
$= 0.45 \times 10^{-3} \text{ sec}$					
At $t = t_2$; $V_C = 0$					
$V_{C} = 0 = V_{S} \times \cos[\omega_{0}(t_{2} - t_{1})] \qquad \qquad$	ice	1995			
$\therefore \omega_0(t_2 - t_1) = \frac{\pi}{2}$					
$\therefore (t_2 - t_1) = \frac{\pi}{2\omega_0} = \frac{\pi}{2} \times \sqrt{LC}$					
Now,					
$t_3 = t_1 + (t_2 - t_1) + t_3 - t_2)$					
$1 \times 10^{-3} = \pi \sqrt{\text{LC}} + \frac{\pi}{2} \sqrt{\text{LC}} + 0.55 \times 10^{-3}$					
Put $C = 1 \times 10^{-6} F$					
$0.45 \times 10^{-3} = \frac{5\pi}{2} \times \sqrt{L \times (1 \times 10^{-6})}$					
$\therefore L = 9.1178 \text{ mH}$					

 Regular Live Doubt clearing Sessions
 Free Online Test Series
 ASK an expert

 Affordable Fee
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

ACE

	30	ESE 2021 MAINS_Paper_2 Solutions		
(h) (i) Enom the Dada asymptotic m	agnituda plat	of a minimum phase system determine the open		
4(D) (I) From the Bode asymptotic in loop transfer function. What	is the gain m	or a minimum phase system, determine the open		
loop system?	is the gain m	argin of resulting unity negative recuback closed		
toop system:				
dB + 0	8 25	$\omega \rightarrow$		
0.1 1	10 10	0		
- +20	dB/dec	- 40 dB/dec		
Solution:				
Initial slope = 20 dB/dec	- F DI			
Portion of the OLTF $G(s) = Ks$	GINEER	NGAC		
Change in slope at the CE $1 - \frac{1}{2}$	- 0 8	40		
Change in slope at the CF $T = \frac{1}{T_1}$	$-\omega_1 - 0,$	3		
= 0 - 2	20 = -20 dB/de	c		
$G(s) = \frac{Ks}{Ks}$				
$(1+sT_1)$				
Chance in slope at the CF $2 = \frac{1}{2}$	$= \omega_2 = 25$			
T_2				
= -40 - (0) = -40 dB/dec	Since	1995		
\therefore G(s) = $\frac{Ks}{(1 - S)^2}$				
$(1+sT_1)(1+sT_2)^2$				
$ Ks _{\omega=8} = 1$ (i.e., 0 dB)				
$K\omega = 1$				
K8 = 1				
$K = 2^{-3}$				
$\therefore G(s) = \frac{2^{-3}s}{(s-s)^2}$				
$\left(1+\frac{s}{8}\right)\left(1+\frac{s}{25}\right)^{-1}$				
	ar Live Doubt cleari	ng Sessions Free Online Test Series ASK an expert		
Affordab	e Fee Available 1	M 3M 6M 12M 18M and 24 Months Subscription Packages		

ACE Regineering Publications	31	ELECTRICAL Engineering
$=\frac{(8)(25)^2(2^{-3})s}{(s+8)(s+25)^2}$		
625s		
$G(s) = \frac{023s}{(s+8)(s+25)^2}$		
The above system is always stable system		
\therefore GM = ∞		
4(b) (ii) Given the open loop transfer function		
$\mathbf{G(s)} \ \mathbf{H(s)} = \frac{\mathbf{K}}{(\mathbf{s}+4)(\mathbf{s}-8)}$		
Using Nyquist stability criteria, deter	mine	the condition for closed loop stability. Verify the
result using Routh-Hurwitz test.		[10M]
Solution: $G(s)H(s) = \frac{K}{(s+4)(s-8)}$ Img (1) (2) Real (3) (3)	ice	1995
Mapping of section (1) of NC		
$G(s)H(s)$ plane: Sub $s = j\omega$ $0 \le \omega C \le \infty$		
$G(j\omega)H(j\omega) = \frac{K}{(j\omega+4)(j\omega-8)}$		
$M = \frac{K}{\sqrt{(\omega^2 + 16)(\omega^2 + 64)}}$		
$\phi = -\left[\tan^{-1}\frac{\omega}{4} + 180 - \tan^{-1}\frac{\omega}{8}\right]$		
India's Best Enjoy a smooth on	t Online line lear	Coaching Platform for GATE, ESE, PSUs and SSC-JE ning experience in various languages at your convenience

ACE Engineering Publications	33	ELECTRICAL Engineerin
Combining all the abo	ve three sections the Nyquis	st plot is shown below.
	Img	
	$ \begin{array}{c} $	──→ Real
Let $\frac{K}{32} < 1$ (Give	en P = 1)	
i.e., K < 32	-FD	
N = 0	IGINEER	NG AC
Z = P - N	Lin A	AO.
= 1 - (0) = 1	V	3
Z = 1, closed loop		
System is unstable v	with one right half of s plane	e pole
Let $\frac{K}{32} > 1$ i.e., I	X > 32 (Given P = 1)	
N = -	-1	
Z = P - N		
= 1 - (-1)	Since	1995
Z = 2 closed loop sy	stem is unstable with two ri	ight hand poles
R.H. criterion	ion $1 + \frac{K}{K} = 0$	
1	(s+4)(s-8)	
$s^2 - 4$	4s - 32 + K = 0	
R.H. tabulation	2.1	
	$\begin{vmatrix} s^2 \\ s^1 \\ s^0 \end{vmatrix} = \begin{vmatrix} -4 \\ K - 1 \end{vmatrix}$	K –32 32
500 L A T	India's Rost Onlino	Coaching Platform for GATE ESE PSUs and SSC-IE
ACL	Enjoy a smooth online lear	rning experience in various languages at your convenience

- Detailed Analysis of relevant questions of each topic
- Duration of course 120 days.
- 20% Discount for ACE old students

Online

Test

Series CEIMEIEE

Scan to Download App

Coogle play

UTTAR PRADESH PUBLIC SERVICE COMMISSION

Assistant Engineer-2021

Starts from: **1**st **Dec-2021**

No. of Tests: **16** Subject Wise: **12** Mock Tests: **4**

All tests will be available till UPPSC AE Examination

ACE Regineering Publications	34	ESE 2021 MAIN	S_Paper_2 Solutions
What ever 'K' value is chosen the	ere are sign change	es in the 1 st column of RH ta	bulation.
System is always unstable.	6 6		
K < 32, one sign changes i.e., one	e right hand pole ex	xists.	
K > 32, two sign changes i.e., two	o right hand poles of	exists.	
(c) A single phase ac controller su output voltage of 110 V for a re	applied from a so sistive load of 10 (ource, V _{in} = 220 sin 314.2 Ω at a firing angle α. Deter	28 t produces an rm rmine
(i) the value of α ,			[4 M]
(ii) the amplitude of the seventh	harmonic currer	nt for $\alpha = \pi/6$, and	[8M]
(iii) the input power factor	HEERIA		[8M]
olution: $V_{in} = V_s = 220 \text{ Sin (314.28t) V}$ $V_{0rms} = 110 \text{ V}$ $R = 10\Omega$		OF MALE	
$ \begin{bmatrix} 1 & T_2 & T_2 \\ T_2 & T_2 & T_2 \end{bmatrix} $	V_0 Since V_s V_s V_0	π 2π 3π π π 2π π 2π	• ωt • ωt
$V_{0rms} = \left[\frac{1}{\pi} \int_{\alpha}^{\infty} V_m^2 \sin^2(\omega t) d\omega t \right]$ $V_{0rms} = \frac{V_m}{\sqrt{2\pi}} \times \left[\pi - \alpha + \frac{\sin(2\alpha)}{2} \right]$	$\left[\frac{\alpha}{2}\right]^{1/2}$		
$110 = \frac{220}{\sqrt{2\pi}} \times \left[(\pi - \alpha) + \frac{\sin(2\alpha)}{2} \right]$	$\left[\frac{\alpha}{\alpha}\right]^{1/2}$		
Regularization Afforda	ular Live Doubt clearing ible Fee Available 1M	g Sessions Free Online Test Serie 3M 6M 12M 18M and 24 Months S	es ASK an expert

ACE Engineering Publications	35	ELECTRICAL Engineering			
$(1.2533)^2 = (\pi - \alpha) + \frac{\sin(2\alpha)}{2}$					
$1.5708 = (\pi - \alpha) + \frac{\sin(2\alpha)}{2}$					
$\therefore \alpha - \frac{\sin(2\alpha)}{2} = 1.5708$					
$\therefore \alpha = \pi/2 \text{ rad}$					
(ii) $\alpha = \pi/6$					
$a_{n} = \frac{V_{m}}{2\pi R} \times \left[\frac{2}{(n+1)} \left\{\cos(n+1)\alpha - 1\right\} - \frac{1}{(n+1)}\right\}$	$\frac{2}{(1-1)}$	$\cos(n-1)\alpha-1\}$			
$\therefore a_7 = \frac{220}{2\pi \times 10} \times \left[\frac{2}{(7+1)} \left\{ \cos(7+1)\frac{\pi}{6} - \frac{1}{6} \right\} \right]$	$1\Big\}-\overline{(}$	$\frac{2}{7-1}\left\{\cos(7-1)\frac{\pi}{6}-1\right\}\right]$			
: $a_7 = 3.5014 \times \left[\frac{2}{8} \times (-1.5) - \frac{2}{6} \times (-2)\right]$:. $a_7 = 3.5014 \times \left[\frac{2}{8} \times (-1.5) - \frac{2}{6} \times (-2)\right]$				
$a_7 = 0.2917$					
$b_n = \frac{V_m}{2\pi R} \times \left[\frac{2}{(n+1)} \{\sin(n+1)\alpha - 1\} - \frac{2}{(n+1)} \}$	$b_{n} = \frac{V_{m}}{2\pi R} \times \left[\frac{2}{(n+1)} \{\sin(n+1)\alpha - 1\} - \frac{2}{(n-1)} \times \{\sin(n-1)\alpha - 1\}\right]$				
$\therefore b_7 = \frac{220}{2\pi \times 10} \times \left[\frac{2}{(7+1)} \left\{\sin(7+1) \times \frac{\pi}{6} - \frac{1}{2\pi}\right\}\right]$	$\therefore \mathbf{b}_7 = \frac{220}{2\pi \times 10} \times \left[\frac{2}{(7+1)} \left\{ \sin(7+1) \times \frac{\pi}{6} - 1 \right\} - \left\{ \frac{2}{(7-1)} \times \left\{ \sin(7-1) \right\} \frac{\pi}{6} - 1 \right\} \right]$				
$= 3.5014 \times \left[\frac{2}{8} \times (-1.866) - \frac{2}{6} \times (-1.866)\right]$	i)]e	1995			
$B_7 = 0.467$					
$\therefore C_7 = \sqrt{(a_7)^2 + (b_7)^2}$					
$\therefore C_7 = \sqrt{(0.2917)^2 + (-0.467)^2}$					
$C_7 = 0.5506$					
\therefore Amplitude of 7 th harmonic current = 0.5506 A					
(iii) Input power factor = $\frac{V_{0rms}}{V_{srms}}$					

ACE Engineering Publications	37	ELECTRICAL Engineering
	•	
$\operatorname{Input} X(\mathbf{n}) = \operatorname{Acos} (W_0 \mathbf{n} + \Theta)$ $U(c_1^{(0)}) = 1$		
$H(e^{e}) = 1$ $H^{(ej\omega)} \swarrow H^{(ej\omega)}$		
Steady state O/P = A $ H^{(ej\omega)} \cos (\omega_0 n + \theta + \theta)$	∠ H ^{(e}	ω)
5(b) Forward path transfer function of a	unity	negative feedback system is $G(s) = \frac{25}{s(s+20)^2}$.
Without drawing graph, analytically dete	rmine	e the gain margin. [12M]
Solution:		
$G(s) = \frac{25}{s(s+20)^2}$	ERI	NGAC
$\left \angle \frac{25}{j\omega(j\omega+20)^2} = -180^{\circ} \right _{\omega=\omega_{\rm pc}}$	1	PORT
$-\left[90+2\tan^{-1}\frac{\omega_{\rm pc}}{20}\right] = -180^{\circ}$	1	
$\omega_{\rm pc} = 20$		
$ G(j\omega_{\rm pc}) = \frac{25}{\omega_{\rm pc}.(\omega_{\rm pc}^2 + 400)} = \frac{25}{16000}$		
Sir	ice	1995
$GM = \frac{1}{ G(j\omega_{pc}) } = \frac{16000}{25} = 640$		
$GM = 640 \text{ (or) } 20 \log(640) = 56 \text{ dB}$		

5(c) A transformer of 150 kVA with 1% resistance and 4% leakage reactance is operating in parallel with another 300 kVA transformer having 1% resistance and 6% leakage reactance. The combination is delivering a load of 450 kVA at 400 V and unity power factor. Find the kVA loading on the 150 kVA transformer and the additional reactance to be connected in series with it to provide rated kVA loading on this transformer. [12 M]

Engineering Publications	38	ESE 2021 MAINS_Paper_2 Solutions			
Solution:					
$T_1 \Rightarrow 150 \text{ kVA} \Rightarrow \% Z_1 = (1+i4) \%$					
$T_2 \Rightarrow 300 \text{ kVA} \Rightarrow \%Z_2 = (1+j6)\%$					
Load kVA = S_L = 450 kVA @ UPF					
kVA Loading of T ₁					
$\therefore S_1 = 450 \angle 0 \times \frac{1 + j6}{(3 + j14)}$					
Let common base kVA = 300 kVA					
$\therefore \ \%Z_1 = \frac{300}{150} \times (1 + j4) = (2 + j8)\%$	NEER	NGAC			
$%Z_2 = (1 + j6)$		AD.			
$\therefore S_1 = 450 \angle 0 \times \frac{1+j6}{(3+j14)}$		EZ			
=191.1∠2.63°					
: Additional Reactance to be conr	ected in s	eries with T ₁ to provide Rated kVA loading on			
transformer is.					
$Z_1(p.u) = Z_2(p.u)$					
[1+j(4+X]=[1+j6]					
$\therefore X = 2\%$ (or) (X = 0.02 p.u)	Since	1995			
5(d) (i) A single phase overhead transm	5(d) (i) A single phase overhead transmission line of 50 km length is to be designed with copper				
conductor of 5.04 cm diameter.	conductor of 5.04 cm diameter. It is expected to have a maximum line reactance of 31.4Ω.				
Determine the optimal spacing between the conductors. [6M]					
Solution:					
l = 50 km					
$r = \frac{5.04}{2} = 2.52 \text{ cm}$	b				
$X_L = 31.4 \Omega$	d = ?				
ACE Regular Liv Affordable Fee Affordable Fee	ve Doubt cleari e Available 1	ng Sessions Free Online Test Series ASK an expert M 3M 6M 12M 18M and 24 Months Subscription Packages			

Engineering Publications		ACE Engineering Publications
--------------------------	--	--

39

$$\omega L = 31.4$$

$$2\pi f L = 31.4$$

$$L = \frac{31.4}{2\pi \times 50} = 0.1 H$$

$$L = 0.4 \ln \left(\frac{d}{r^{1}}\right) mH/km$$
 [Since, loop inductance to be considered]

$$L = \left[0.4 \ln \left(\frac{d \times 100}{0.7788 \times 2.52}\right)\right] \times 10^{-3} H/km$$

$$L = 0.4 \ln \left(\frac{d \times 100}{0.7788 \times 2.52}\right) \times 10^{-3} \times 50 H$$

$$0.1 = 0.4 \ln \left(\frac{d \times 100}{0.7788 \times 2.52}\right) \times 10^{-3} \times 50$$

$$d = 291.27 \text{ cm}$$

5(d) (ii) Discuss the impact on line reactance if the conductors in the above case are replaced by stranded bundle conductors of the same outer diameter and line spacing. Assume an ACSR conductor with 6 conductors of Aluminum of 1.68 cm diameter each around one central steel conductor for your analysis. [6M]

Since 1995

Solution:

For bundled conductor

$$L = 0.2 \ln \left(\frac{GMD}{self GMD} \right) mH/km/ph$$

As self GMD >> GMR

Inductance gets increases

 $X_L = \omega L$

Inductive reactance also gets increases.

Pre-Recorded Classes

For ESE I GATE I PSUs | SSC-JE curated by India's best minds. Access courses through Mobile / Tablet / Laptop / Desktop from anywhere.

We have subscriptions options of **1 Month**, **3 Months**, **6 Months**, **12 months**, **18 months and 24 months**.

CE | ME | EC | EE | CS | IN | PI

OUR COURSES

- GATE + PSUs (650+ Hours) (English)
- GATE + PSUs (650+ Hours) (Hinglish)
- ESE: General Studies (250+ Hours)
- ESE + GATE + PSUs (1000+ Hours)
- SSC-JE : Technical (CE) (400+ Hours)
- SSC-JE : GS (200+ Hours)
- APPSC / TSPSC-AEE: Tech. (CE) (500+ Hours)
- APPSC / TSPSC-AEE/AE: GS (350+ Hours)
- GENCO / TRANSCO / DISCOMs: EE (550+)
- APPSC-AE (Technical Paper-II) (100+ Hours)
- Quick Revision Course: CSE (250+ Hours)

ACE Regineering Publications		40	ESE 2021 MAINS_Paper_2 Solutions		
5(e) A huck converter i	s operating from a '	24 V	de input voltage with variation of $+$ 10%. The		
required output vol	tage is 9 V dc with s	allow	when we will be a set 100 mV and 100 mV m m m m m m m m m m m m m m m m m m m		
rated canacity of 20	W and is operating	at a si	witching frequency of 40 kHz. Find the minimum		
values of inductanc	e and canacitance to	n he r	provided in the output filter for (i) Keening the		
inductor current per	ak to peak ripple at 0.	.5 A. a	and (ii) inductor current to be just continuous.		
(Assume the converter is operating at rated power). [12M]					
		•			
Solution:	V_{s} D Z	с <u>–</u>	$R \gtrless^+_{V_0}$		
$V_{s} = 24V \pm 10 \%$			3		
$V_0 = 9V$					
$\Delta V_0 = 100 \times 10^{-3} = 0.1$	V				
$P_0 = 20 W;$					
$f_s = 40 \times 10^3 \text{ Hz}$					
L_{\min} and $C_{\min} = ?$					
(i) $\Delta I_L = 0.5 \text{ A}$					
(ii) I_L is just continuou	s. Sir	nce	1995		
$D = \frac{V_0}{V_s} = \frac{9}{24} = 0.3$	375				
(i) $\Delta I_L = \frac{V_s}{L} \times D(1-D) \times$	Т				
$\therefore \mathbf{L} = \frac{\mathbf{V}_{s}}{\Delta \mathbf{I}_{L}} \times \mathbf{D} \times$	(1–D) × T				
For L_{min} ; $V_s = V_{sr}$	$_{\rm nin} = 24 - 24 \times 0.1$				
	= 21.6 V				
$\therefore L_{\min} = \frac{21.6}{0.5} \times 0$	$0.375 \times (1-0.375) \times \left[\frac{1}{4}\right]$	$\frac{1}{40 \times 10}$	3		
	Regular Live Dou	bt clear	ing Sessions Free Online Test Series ASK an expert		
	Affordable Fee Ava	ailable 1	M 3M 6M 12M 18M and 24 Months Subscription Packages		

ACE Engineering Publications	4	1	ELECTRICAL Engineering
$\therefore L_{\min} = 253.125 \ \mu$ $\Delta V_0 = \frac{V_s}{8 \times f^2 \times LC} \times$ $\therefore C_{\min} = \frac{V_s}{\Delta V_0 \times f^2 \times I}$ $= \frac{21.6 \times 0.37}{0.1 \times (40 \times 10^3)^2}$ $C_{\min} = 125 \ \mu F$	H $E_{\rm D}$ (1–D) $\overline{L_{\rm min}} \times D(1-D)$ 75(1-0.375) $\times 253.125 \times 10^{-6}$	1	ELECTRICAL Engineering
(ii) $L = \frac{(1-D) \times RT}{2}$ $P_0 = \frac{V_0^2}{R}$	CE ENGINEE	R <i>11</i>	NG ACADE
$R = \frac{V_0^2}{P_0} = \frac{9^2}{20} = 4.05$ $L = \frac{(1 - D) \times \left[\frac{V_0^2}{P_0}\right]}{2}$ $(1 - 0.375) \times \left[\frac{1}{2}\right]$	5Ω $\times T$ $\frac{9)^2}{20} \times \left[\frac{1}{40000}\right]$ Since	e 1	995
$L = \frac{(1 - D)}{16f^2 \times L} = \frac{1}{16f^2}$ $C = 0.77 \ \mu F$	$\frac{(1-0.375)}{5 \times (40 \times 10^3)^2 \times (31.64 \times 10^3)^2}$	μΗ 10 ⁻⁶	
ACE	India's Best Onl Enjoy a smooth online	line C	oaching Platform for GATE, ESE, PSUs and SSC-JE ing experience in various languages at your convenience

	Publicatio	ons				42		ESE 202	21 MAINS_Pap	er_2 Solutions
(a) Consider the function V (A.B. C) given in the truth table.										
(u) cons	140				B		C	V(A.B.C)]	
					A		C	1(11,12,0)		
				0	0		0	1		
				0	0		• 1	0	-	
				0	1		1 0	0		
				0	1		<u> </u>	0	-	
				1	0		0	1		
				1	0		1	1		
				1	1	-ED	0	0		
				1	G'1	951	1	1		
								140A		
(i) W	/rit	e a l	ogic	e expression for Y(A,B,C)	°		3		
(ii) I	mp]	lemo	ent \	Y (A,B,C) using or	ıly 2-in	put ga	tes.			
(iii) l	lmp	lem	ent	Y (A,B,C) using o	nly 2-ir	iput N	AND ga	tes.		[20M]
								$\mathbf{>}$		
olution:										
	A	В	С	Y(A, B, C)						
0	0	0	0	1						
1	0	0	1	0	Si	nce	1995			
2	0	1	0	0						
3	0	1	1	0						
4	1	0	0	1						
5	1	0	1	1						
6	1	1	0	0						
7	1	1	1	1						
(i) Y	/ (A	., B,	C) =	$= \Sigma m (0, 4, 5, 7)$						
				$=\pi M(1, 2, 3, 6)$)					
				×						
See 24	A	1	١T	Regula	r Live Do	ubt clear	ing Session	s Free Online	e Test Series ASK	an expert

: н: 👘	Regular Live boubt clearing sessions Free Online Test series ASK an expert
	Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages

Reginsering Publications	45	ELECTRICAL Engineering

6(c) The signal flow graph of a system relating output y(t) to input u(t) is shown in the figure. Represent the state variable model of the system. Determine its transfer function $\frac{y(s)}{u(s)}$ from the state model. [20M] Derive corresponding state transition metric

Derive corresponding state transition matrix.

Y = [0.5 -0.5]X + [0.5]U

 $TF = C[sI - A]^{-1}B + D$

Regissering Publications	46	ESE 2021 MAINS_Paper_2 Solutions
$(sI - A)^{-1} = \frac{\begin{bmatrix} s + 0.5 & -0.5 \\ 0.5 & s + 0.5 \end{bmatrix}}{s^2 + s + 0.5}$		
$TF = \frac{\begin{bmatrix} 0.5 - 0.5 \end{bmatrix} \begin{bmatrix} s + 0.5 & -0.5 \\ 0.5 & s + 0.5 \end{bmatrix}}{s^2 + s + 0.5}$	$\begin{bmatrix} -0.5\\ 0.5 \end{bmatrix}$	+ 0.5
$= \left[\frac{(0.5s + 0.25 - 0.25 - 0.25 - 0.5s)}{s^2 + s + 0.5}\right]$ $= \frac{-0.25s - 0.25s - 0.25s}{s^2 + s + 0.5} + 0.5$	s-0.2:	$5)\begin{pmatrix} -0.5\\ 0.5 \end{pmatrix} + (0.5)$
$= \frac{0.5s^2 + 0.5s + 0.25 - 0.5s - 0.25}{s^2 + s + 0.5}$ $TF = \frac{0.5s^2}{s^2 + s + 0.5}$		
State transition matrix $e^{At} = L^{-1}[sI - A]^{-1}$		
$e^{At} = L^{-1} \begin{bmatrix} \frac{s+0.5}{(s+0.5)^2+0.5^2} & \frac{-0.5}{(s+0.5)^2+0.5^2} \\ \frac{0.5}{(s+0.5)^2+0.5^2} & \frac{s+0.5}{(s+0.5)^2+0.5^2} \end{bmatrix}$	ce	1995
$= \begin{bmatrix} e^{-0.5t} \cos 0.5t & -e^{-0.5t} \sin 0.5t \\ e^{-0.5t} \sin 0.5t & e^{-0.5t} \cos 0.5t \end{bmatrix}$	C	E
a) (i) The frequency response of a steady st	ate ga	in already adjusted open loop transfer functio

(a) (i) The frequency response of a steady state gain already adjusted open loop transfer function is shown in figure. Appropriately using the parameters highlighted in the figure. Design a Lag compensator to achieve a desired phase margin of +30° with a tolerance considered as 8°. Illustrate the design procedure clearly. [12M]

---- Online Test Series

No. of Tests : 65 + Free 52 Practice Tests of GATE - 2021 Online Test Series Total Tests : 117

ESE – 2022 Prelims

No. of Tests : 44 + Free 30 Practice Tests of ESE - 2021 Online Test Series Total Tests : 74

All tests will be available till GATE - 2022 & ESE -2022 (Prelims) examinations respectively.

TEST SERIES HIGHLIGHTS

Detailed Solutions are Available | Video Solutions are Available for Difficult Questions. All India rank will be given for each test | Comparison with all India toppers of ACE student

TEST WISE STATISTICS:

QUESTION WISE STATISTICS:

Time	Usage
Your Time :	67% of Avg. Time
1 minute 21 seconds	
Avg. Time :	2 minutes 1 seconds
2 minutes 1 seconds	
Top 10 Avg. Time :	2 minutes 37 seconds
2 minutes 37 seconds	
Top 50 Avg. Time :	2 minutes 41 seconds
2 minutes 41 seconds	
Top 100 Avg. Time :	2 minutes 48 seconds
2 minutes 48 seconds	

Phone No.: 040-48539866, 040-40136222 | Email: Testseries@aceenggacademy.com

ACE ELECTRICAL Engineering 47 dB 20 dB 12 dB ω 0 0.1 4 10 100 r/sec ω Deg 0° - -90° -142° ·142° -180° -270° Solution: Let $G_1(s) = \frac{1 + aTS}{1 + TS}$, (a < 1) is the desired lag compensator From the given figure it is clear that lag compensator must provide an attenuation of 12dB at 4 rad/sec to obtain a phase margin of 38° $20 \log a = -12 \, dB$ a = 0.25 upper corner frequency of a lag compensator, must be taken as one decade below 4 rad/sec $\therefore \frac{1}{aT} = \frac{4}{10} = 0.4$ $\frac{1}{T} = 0.4 a = 0.4 (0.25)$ Since 1995 $\frac{1}{T} = 0.1$ 1 : Desired lag compensator T аŤ $G_1(s) = \frac{(1 + aTS)}{(1 + TS)}$ $=\frac{a\left(s+\frac{1}{aT}\right)}{s+\frac{1}{T}}=\frac{0.25(s+0.4)}{(s+0.1)}$ India's Best Online Coaching Platform for GATE, ESE, PSUs and SSC-JE

Enjoy a smooth online learning experience in various languages at your convenience

ESE-2022 (Prelims) OFFLINE TEST SERIES OFFLINE TEST SERIES No. of Tests : 24 20 Grand Tests 04 Mock Tests Streams: EC | EE | CE | ME

HIGHLIGHTS:

- 1. Meticulously designed tests series, which maximizes your potentials.
- 2. All India rank will be given for each test.
- 3. Detailed solutions will be provided for each test.

Call: 040-48539866, 40136222 | E-mail: testseries@aceenggacademy.com

Call: 040-48539866, 40136222 | E-mail: testseries@aceenggacademy.com

Engineering Publications	48	ESE 2021 MAINS_Paper_2 Solutions				
7(a) (ii) Consider a system described by the s	7(a) (ii) Consider a system described by the state model					
$\begin{bmatrix} -3 & 1 \end{bmatrix}_{\mathbf{V}} \begin{bmatrix} 0 \end{bmatrix}_{\mathbf{W}}$						
$\mathbf{X} = \begin{bmatrix} -2 & 0 \end{bmatrix}^{\mathbf{X}} + \begin{bmatrix} 1 \end{bmatrix}^{\mathbf{U}};$						
$\mathbf{Y} = [1 \ 0] \mathbf{X}.$						
Design a control law u = -KX so that	t the cl	osed loop poles of the system occupy in s-plane at				
$-2\pm j2.$		[8M]				
Solution:						
Desired pole location $-2 \pm j2$	+ 2 ²					
\therefore Desired characteristic equation = $(s+2)^2$	+ 22					
$= s^{-} + 4s +$	8 = 0	$(A - \mathbf{P} \mathbf{K}) = 0$				
Where $k = [K, K_0]$	g 51 –	$(\mathbf{A} - \mathbf{B}\mathbf{K}) = 0$				
$\begin{bmatrix} -3 & 1 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$		rz.				
$(A - BK) = \begin{bmatrix} -3 & 1 \\ -2 & 0 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \end{bmatrix} [K_1 K_2]$						
$= \begin{bmatrix} -3 & 1 \\ -2 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ \mathbf{K}_1 & \mathbf{K}_2 \end{bmatrix}$						
$ = \begin{bmatrix} -3 & 1 \\ -(K_1 + 2) & -K_2 \end{bmatrix} $						
$sI - (A - BK) = \begin{bmatrix} s+3 & -1 \\ K_1 + 2 & s+K_2 \end{bmatrix} ce 1995$						
$ sI - (A - BK) = s^{2} + (K_{2} + 3) s + 3k_{2} + k_{1} + 2 = 0$ (2)						
Comparing equation (1) and (2)						
(1) = (2)						
$K_2 + 3 = 4,$ $K_2 = 1$						
$3 K_2 + K_1 + 2 = 8$						
$3(1) K_1 + 2 = 8$						
$K_1 = 3$						
$\therefore K = [K_1 K_2]$						
$\therefore K = \begin{bmatrix} 3 & 1 \end{bmatrix}$						
ACE Regular Live Do	ubt cleari vailable 1	ing Sessions Free Online Test Series ASK an expert M 3M 6M 12M 18M and 24 Months Subscription Packages				

Engineering Publications	49	ELECTRICAL Engineering

7(b) A 415 V, 4-pole, 3-phase, 50Hz, 1440 rpm induction motor has per phase standstill rotor resistance and reactance of 0.4 Ω and 1.3 Ω respectively at rated frequency. Find torque at rated speed and the ratios of starting torque to maximum torque and rated torque to maximum torque.

Now, the motor is supplied from a source of 40 Hz at 20% reduced voltage. Find the operating slip at rated torque and the new ratios of rated torque to maximum torque and starting torque to maximum torque. [20M]

(Assume no saturation and negligible stator impedances)

Solution:

Motor poles (P) = 4 Supply voltage (V_L) = 415 V Supply frequency = 50 Hz

Rated speed $N_r = 1440$ rpm

Rotor resistance/ph

 $R_2 = 0.4 \Omega/Ph$

Rotor stand still reactance

 $X_{20} = 1.3 \Omega$

Torque at rated speed rated speed/full load speed

$$N_{rfl} = 1440 \text{ rpm}$$

$$N_s = \frac{120f}{P} = 1500 \text{ rpm}$$

NI

$$\mathbf{S}_{\mathrm{fl}} = \frac{\mathbf{N}_{\mathrm{s}} - \mathbf{N}_{\mathrm{rf1}}}{\mathbf{N}_{\mathrm{s}}}$$

NT

$$=\frac{1500-1440}{1500}$$

$$= 0.04$$

Since stator impedance is not given, stator voltage will appear across rotor. since, turns ratio also not given, we will consider it as 1

Enjoy a sm	India's Best Online Coaching Platform for GATE, ESE, PSUs and SSC-JE
	Enjoy a smooth online learning experience in various languages at your convenience

Since 1995

Experimentary Publications	50	ESE 2021 MAINS_Paper_2 Solutions
$T = \frac{3}{\omega s} \cdot \frac{E_2^2}{\left(\frac{r_2}{s}\right)^2 + x_2^2} \times \frac{r_2}{s}$		
$= \frac{3 \times 60}{2\pi \times 1500} \times \frac{\left(\frac{415}{\sqrt{3}}\right)^2}{\left(\frac{0.4}{0.04}\right)^2 + (1.3)^2} \times \frac{0}{0}$).4 .04	
$= 0.0191 \times \frac{57411.70}{100 + 1.69} \times 10$		
$= 0.0191 \times 564.575 \times 10$		
T = 107.83 Nm	ERI	NGAC
Slip at maximum torque	Ä	AD.
$S_{Mt} = \frac{R_2}{X_{20}} = \frac{0.4}{1.3} = 0.3076$		EZ
$\frac{T_{st}}{T_{max}} = \frac{2s_mT}{s_{mT}^2 + 1}$		
$=\frac{2\times0.3076}{0.3076^2+1}$		
= 0.5619		
$\frac{T_{f1}}{T_{max}} = \frac{2s_{f1}s_{mT}^2}{s_{f1}^2 + s_{mT}^2}$	nce	1995
$=\frac{2\times0.04\times0.3076}{0.04^2+0.3076^2}=0.255$		
$f_2 = 40Hz$; $V_2 = 0.8 \times 415 V$		
$T \propto \frac{SV^2}{f}$ Assumes 415 as phase volt	age	
$\frac{\mathrm{SV}^2}{\mathrm{f}} = \mathrm{constant}$		
$\frac{0.04 \times 415^2}{50} = \frac{s_2 \times (0.8 \times 415)^2}{40}$		
Regular Live Doul	bt clear	ing Sessions Free Online Test Series ASK an expert
Affordable Fee Ava	ilable 1	M 3M 6M 12M 18M and 24 Months Subscription Packages

	51	ELECTRICAL Engineering			
$S_{-} = 0.05$					
$S_2 = 0.03$	$S_2 = 0.05$				
New sip	2				
$X_{20} (\text{new}) = 0.8 \times 1.$	3				
= 1.042					
$S_{mT}(new) = \frac{0.4}{1.04}0.3$	846				
$\frac{T_{f1}(\text{new})}{T_{\text{max}}} = \frac{2 \times 0.05}{0.05^2 + 1000}$	$\frac{\times 0.3846}{0.3846^2}$				
= 0.255					
$\frac{T_{st}}{T_{max(new)}} = \frac{2s_{mT(new)}}{S_{mT(new)^2}}$	$\frac{T_{st}}{T_{max(new)}} = \frac{2s_{mT(new)}}{S_{mT(new)^2} + 1} = 0.67$				
7(c) A 100 MVA, 20 kV, :	7(c) A 100 MVA, 20 kV, 50 Hz three-phase generator is connected to a 100 MVA 20/400 kV three-				
phase transformer. T	he machine has the follow	wing per unit reactance and time constants:			
X _d "=0.15 pu	$\tau_{\rm d}"=0.035~{\rm sec}$				
$X_{d}' = 0.25 \text{ p}$	$\mathbf{u} \qquad \tau_{\mathrm{d}}' = 0.5 \; \mathrm{sec}$				
X _d = 1.25 pu	$\tau_{\rm d} = 0.3~{ m sec}$				
The transformer read	ctance is 0.25 per unit. T	he generator is operating at the rated voltage and			
no-load when a three	phase short-circuit occur	rs at the secondary terminals of the transformer.			
Find the sub transie	ent, transient and the ste	eady state short circuit currents in per unit and			
actual amperes on bo	oth sides of the transforme	er. [20M]			
Solution:					
Generator rating					
20 kV, 100 MVA					
Transformer rating: 100 MVA, 20/400 kV					
$X''_{d} = 0.15$					
$X'_{d} = 0.25$ Generator reactances					
$X_d = 1.25$					
ACE	India's Best Online	e Coaching Platform for GATE, ESE, PSUs and SSC-JE			
	Enjoy a smooth online lea	arning experience in various languages at your convenience			

Transformer reactance: 0.25 pu

Fault at secondary side of transformer

Sub-transient current is

$$I_F = \frac{E_{R1}}{Z_{1eq}} = \frac{1.0}{X_d'' + X_{T/F}} = \frac{1.0}{0.15 + 0.25} = \frac{1.0}{0.4}$$

 $I_F = 2.25 \ pu$

ACE

Actual fault current =
$$2.5 \times \frac{100}{\sqrt{3} \times 400}$$

$$= 2.5 \times \frac{1}{\sqrt{3} \times 4} = 0.36 \text{ kA}$$

Sub-transient current on LV side of transformer also 2.5 pu

Actual sub-transient current on LV side is

 $2.5 \times \frac{100}{\sqrt{3} \times 20} = \frac{12.5}{1.732} = 7.21 \text{ kA}$

Transient current on HV side

$$I_{F} = \frac{E_{R1}}{Z_{1eq}} = \frac{1.0}{X'_{d} + X_{T/F}} = \frac{1.0}{0.25 + 0.25}$$
$$I_{F} = \frac{1.0}{0.5} = 2.0 \text{ pu}$$
$$I_{F(actual)} = 2.0 \times \frac{100}{\sqrt{3} \times 400} = \frac{0.5}{1.732}$$

 $I_{F\,(actual)} = 0.288 \ kA$

Transient current on LV side of transformer is 2.0 pu

Actual transient current is

$$2.0 \times \frac{100}{\sqrt{3} \times 20} = \frac{2.0 \times 5}{1.732} = \frac{10}{1.732} = 5.77 \text{ kA}$$

Steady state fault current:

Since 1995

52

53ELECTRICAL EngineeringIt
$$r = \frac{F_{R1}}{Z_{1:eff}} = \frac{F_{R1}}{X_e^+ X_{1:F}} = \frac{1.0}{1.25 + 0.25} = \frac{1.0}{1.5}$$
If $r = \frac{F_{R1}}{X_e^+ X_{1:F}} = \frac{F_{R1}}{1.25 + 0.25} = \frac{1.0}{1.5}$ IF $r = 0.66$ puIf $r = 0.66$ puIf $r = 0.66$ puIf $r = 0.66$ puActual current on LV side is also 0.66 puActual current on LV side is also 0.66 puActual current on LV side is also 0.66 puActual current on LV side is0.666 $\times \frac{100}{\sqrt{3} \times 20} = \frac{0.666 \times 5}{1.732} = 1.9$ kASteady state current on LV side is also 0.66 puActual current on LV side is0.666 $\times \frac{100}{\sqrt{3} \times 20} = \frac{0.666 \times 5}{1.732} = 1.9$ kASteady state current on LV side is(1) $(1 \times 1)^{+} = \frac{1.0}{\sqrt{3} \times 20} = \frac{0.666 \times 5}{1.732} = 1.9$ kASteady state current on LV side is also 0.66 puActual current on LV side is also 0.66 puActual current on LV side is also 0.66 pu(1) $(1 \times 1)^{+} = \frac{1.0}{\sqrt{3} \times 20} = \frac{0.666 \times 5}{1.732} = 1.9$ kAState of the property used, if any, in each step.(1) $(1 \times 1)^{+} = \frac{1.0}{\sqrt{2}} = \frac{1.0}{\sqrt{2}}$ ULT. of signalsTime shifting $x(1 - 1) \leftarrow 1 \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}$ (1) $(1 \times 1) + e^{-2t}$ | |

ACE Engineering Academy, the leading institute for GATE, ESE, PSUs and SSC-JE offers postal coaching (Distance learning programme) for engineering students.

ACE PUBLICATIONS ACE × DEEP E × DEEP E × DEEP GATE 2022 GATE 2022 GATE 2022 GATE 2022 GATE 2022 GATE 2022 MECHANICAL ELECTRICAL nstru -34 CA . DATE ACT × DELER ESE 2021 ESE 2021 MECHANICAL **ESE 2021 ESE 2021** ESE 2021 ESE 2021 rics & Te MECHANICAL ENGINEERING 40 -0 (23) ESE 2022 A PILLP ESE 2022 ESE 2022 ESE 2022 ACE ACE ESE 2021 ESE 2021 30 ELECTRONICS & TELECOMMUNICATION ENGINEERING ELECTRICAL MECHANICAL CIVIL ENGINEERING ELECTRICAL (23) 40 ESE 2022 ESE 2022 ESE 2022 ESE 2022 ACE ACR SSC - JE SSC - JE 29 29 MECHANICAL ELECTRICAL CIVIL MECHANICAL ENGINEERING 0 0 **KPWD** ACE APPSC (\bigcirc) SSC - JE CIVIL ENGINEERING SSC - JE MPSC ELECTRICAL INFERIN 3480 CIVIL 1 www.aceengineeringpublications.com amazon Flipkart 🙀

ACE Regineering Publications	54	ESE 2021 MAINS_Paper_2 Solutions

8(b) A 10kVA, 50Hz single-phase transformer has maximum efficiency of 97% at rated frequency and rated voltage while delivering 90% at rated load at 0.8 pf lag. The same transformer shows maximum efficiency of 96% at same load when supplied from a 35 Hz source at rated voltage. Find

- (i) The hysteresis and core losses of the transformer under rated condition and
- (ii) Efficiency of the transformer at rated voltage and rated load at 0.8 pf lag. [20M]

(Assume no stray losses and a steinmetz constant of 2.0 for the core)

Solution:

Given data:

10 kVA, 50 Hz, 1-\phi transformer

 η_{max} = 97% at 90% rated load, 0.8 pf lag at rated voltage and frequency 50 Hz

 $\eta_{max} = 96\%$ at 90% rated load, 0.8 pf lag at rated voltage and frequency 35 Hz

$$\eta_{max(at 90\% load)} = \frac{9000 \times 0.8}{9000 \times 0.8 + 2W_i} = 0.97$$

$$=\frac{7200}{7200+2W_{\rm i}}=0.97$$

By solving $W_i = 111 W$

$$\eta_{\text{max(at 90\% load)}} = \frac{9000 \times 0.8}{9000 \times 0.8 + 2W_{i}} = 0.96$$

$$=\frac{7200}{7200+2W_{i}}=0.96$$

By solving $W_i = 150 W$

Iron loss at rated voltage, 50 Hz is $W_i = 111 W$

Iron loss at rated voltage, 35 Hz is $W_i = 150 \text{ W}$

V₁ constant, f is varying

$$\frac{V_1}{f} \neq constant$$

 $W_h \propto V_1^x f^{1-x}$ and $W_e \propto V_1^2$ As V_1 constant, x = 2

SALACE	Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert
	Affordable Fee Available 1M 3M 6M 12M 18M and 24 Months Subscription Packages

ELECTRICAL Engineering

ACE Regineering Publications	55	ELECTRICAL Engineeri			
$W_h \propto \frac{1}{f}$ and $W_e = constant$					
$W_i = W_h + W_e$					
$\Rightarrow A V_1^2 f^{-1} + B V_1^2 = 111$					
As V_1 is constant					
$\Rightarrow \frac{A}{f} + B = 111 \dots (1)$					
$\frac{A}{f} + B = 150$ (2)					
By solving $A = 4550$ and $B = 20$					
(i) W_h at rated voltage, rated frequency 50 I	Hz	NGAC			
$=\frac{A}{f}=\frac{4550}{50}=91$ W					
W _h at rated voltage, rated frequency 35 Hz					
$=\frac{A}{A}=\frac{4550}{27}=130$ W					
f 35	f 35				
Iron loss at rated voltage, 50 Hz is $W_i = 111 W$					
Iron loss at rated voltage, 35 Hz is $W_i = 150 W$					
(ii) As efficiency is maximum at 90% load,					
Copper loss at 90% load = Iron loss = 111 W					
$\therefore \text{ Full loa copper loss} = \frac{111}{0.9^2} = 1$	137 W				
Efficiency at full laod = $\frac{10000 \times 0}{10000 \times 0.8 + 13}$.8 37+11				
= 96.99%					

Enjoy a smooth online learning experience in various languages at your convenience

Hearty Congratulations to our

GATE - 2021 TOP RANKERS

8(c)	A 10 kW, 220V, 1750 rpm dc separately excited motor is controlled by three-phase fully
	controlled converter. The connecting cable between motor and converter has a resistance of 1.0
	Ω . The input side of the converter is supplied from a 3-phase 300V, 50Hz ac source. The dc
	motor has armature resistance $r_a = 0.5 \Omega$. The armature current is flat and ripple free.
	Determine

- (i) The triggering angle of the converter when the motor delivers rated power at rated voltage and speed.
- (ii) The converter input rms current and power factor under the above condition of (i).
- (iii) No load speed of the motor when the triggering angle is same as (i) and the motor takes 10% of rated current. [20M]

Since 1995

(Assume constant field current at rated value for the entire operation)

Solution:

 $3-\phi$ fully controlled converter

$$R = 1\Omega; V_5 = 300V; f = 50Hz$$

$$r_a = 0.5\Omega;$$
 $i_0 = I_0$

(i)
$$\alpha = ?$$

ACE

At rated power; rated voltage and speed.

(ii)
$$i_{srms} = ?$$
; Power factor = ?

(iii)No load speed = ?
$$(N_{NL} = ?)$$

(i)
$$P_0 = V_0 \times I_0$$

:.
$$I_0 = \frac{P_0}{V_0} = \frac{10 \times 10^3}{220} = 45.45 \text{ A}$$

Converter output = V_0 + Voltage drop across 1 Ω resistance

$$\frac{3V_{ml}}{\pi} \times \cos(\alpha) = 220 + I_0 \times 1$$
$$\frac{3 \times 300 \times \sqrt{2}}{\pi} \cos(\alpha) = 220 + 45.45 \times 1$$
$$\therefore \alpha = 49.06^{\circ}$$

56

ACE Reginsering Publications		57	ELECTRICAL Engineering
(ii) $i_{srms} = I_0 \times \sqrt{\frac{2}{3}}$	$\frac{1}{5} = 45.45 \times \sqrt{\frac{2}{3}}$		
$I_{\rm srms} = 37.109$	9 A		
Power factor = $\frac{3}{\pi} \times$	Power factor = $\frac{3}{\pi} \times \cos(\alpha)$		
$=\frac{3}{\pi}\times$	cos (49.06°)		
Power factor $= 0.62$	26 (lag)		
(iii) At no load			
$I_a = I_{a2} = \frac{10}{100} \times I_0 =$	= 0.1 × 45.45	ERI	No
$I_{a2} = 4.545 \text{ A}$	NGINE		ACA
No load speed = N_2	$_{2} = ?$		On
At rated condition	R R		32
$I_a = I_{a1} = I_0 = 45.45$	$I_a = I_{a1} = I_0 = 45.45 $ A		
$E_{b1} = V_0 - i_{a1} \times r_a$			
= 220 - 45.43	5×0.5		
$E_{b1} = 197.275 V$			
No load emf	No load emf		
$E_{b2} = \frac{3V_{ml}}{\pi} \times \cos(\alpha)$	$E_{b2} = \frac{3V_{ml}}{\pi} \times \cos(\alpha) - i_{a2} \times (1+0.5)$ Since 1995		
$=\frac{3\times300\times\sqrt{2}}{\pi}\times\cos(49.06) - 4.545\times1.5$			
$E_{b2} = 258.66$	$E_{b2} = 258.66$		
$\therefore \frac{\mathbf{E}_{b2}}{\mathbf{E}_{b1}} = \frac{\mathbf{N}_2}{\mathbf{N}_1}$			
$\therefore N_2 = \frac{E_{b2}}{E_{b1}} \times N_1$			
$=\frac{258.66}{197.275}\times1750$			
N ₂ = 2294.5 rpm			
	India's Best C	Online	Coaching Platform for GATE, ESE, PSUs and SSC-JE
	Enjoy a smooth onlir	ne lear	ning experience in various languages at your convenience

Hearty Congratulations to our

ESE - 2020 TOP RANKERS

