

HYDERABAD | DELHI | PUNE | BANGALORE | LUCKNOW | CHENNAI | VISAKHAPATNAM | VIJAYAWADA | TIRUPATHI | KOLKATA | AHMEDABAD

ESE-2021 (MAINS)

QUESTIONS WITH DETAILED SOLUTIONS

ELECTRICAL ENGINEERING

PAPER-I

ACE Engineering Academy has taken utmost care in preparing the ESE-2021 MAINS Examination solutions. Discrepancies, if any, may please be brought to our notice. ACE Engineering Academy do not owe any responsibility for any damage or loss to any person on account of error or omission in these solutions. ACE Engineering Academy is always in the fore front of serving the students, irrespective of the examination type (GATE/ESE/PSUs/PSC/GENCO/TRANSCO etc.,).

All Queries related to ESE - 2021 MAINS Solutions are to be sent to the following email address hyderabad@aceenggacademy.com Contact Us : 040-23234418,19,20

www.aceenggacademy.com

ELECTRICAL ENGINEERING

ESE_MAINS_2021_PAPER - I

Questions with Detailed Solutions

SUBJECT WISE WEIGHTAGE

and and a

S.No	NAME OF THE SUBJECT	Marks
01	Engineering Mathematic	84
02	Electrical Materials	62
03	Electric Circuits and Fields	72+32
04	Electrical and Electronic Measurements	82
05	Computer Fundamentals	64
06	Basic Electronics Engineering	84
	AUL	

Engineering Publications	2	ESE 2021 MAINS_Paper_1 Solutions
	SECTIO	DN - A
l(a) The average number of mistakes	s committed b	y a typist is 3 per page. Find the probability that
the typist commits		
(i) no mistake		
(ii) at least two mistakes per page	e	[12M]
Solution:		
$\lambda = 3$		
Let X = number of mistakes comm	itted.	
(i) P (X=0) = $\frac{\lambda^0 e^{-\lambda}}{0!} = e^{-3}$	GINEER	NGAC
(ii) $P(X \ge 2) = 1 - P(x < 2)$		AO.
$= 1 - \{P(x=0) + P(x=0)\}$	<pre></pre>	3
$= 1 - \{ e^{-3} + \lambda e^{-x} \}$		
$= 1 - \{ e^{-3} + 3e^{-3} \}$		
$= 1 - 4e^{-3}$		
		tric field of strength 7×10 ⁶ V/m as shown in the
		e in nature and each equal to the charge of an
	_	ance of 2 angstrom. Both, field and dipoles are in
same plane. Calculate the magnit	tude and direc	tion of the dipole moment and torque. [12M]
	E	
Â		
-Q (=	120°	
		+Q
	: :	

Engineering Publications	3	ELECTRICAL Engineerin
Solution:		
Given:		→ Z↑
Electric field strength		
$\vec{E} = 7 \times 10^6 \hat{a}_z V/m$		-0 (-)
$Q = 1.6 \times 10^{-19} C$		
Spacing, $d = 2 A^{\circ} = 2 \times 0.1 \times 10^{-9}$ = $2 \times 10^{-10} m$		120° d
Dipole moment, $\vec{P} = Q\vec{d}$, $\theta = 60^{\circ}$		
$\overrightarrow{\mathbf{P}} = \mathbf{Q} \left[\mathbf{d} \sin 60^\circ \ \hat{\mathbf{a}}_{y} - \mathbf{d} \cos 60^\circ \hat{\mathbf{a}}_{z} \right]$		× Q+Q
$= 1.6 \times 10^{-19} \times 2 \times 10^{-10} \times \frac{1}{2} \left[\sqrt{3} \hat{a}_{y} - \hat{a}_{y} \right]$	â _z]	
$\therefore \vec{P} = (2.77 \hat{a}_{y} - 1.6 \hat{a}_{z}) \times 10^{-29} \text{ C-m}$	ER	NG
Magnitude of dipole moment, $P = 3.2 C$		d
Torque, $\vec{\tau} = \vec{P} \times \vec{E}$		
= $(2.77 \ \hat{a}_y - 1.6 \ \hat{a}_z) \times 7 \times 10^{-10}$) ⁶ â ×	10 ⁻²⁹
	z	
$\vec{\tau} = 19.40 \times 10^{-23} \hat{a}_x \text{ N-m}$	T	
Magnitude of torque, $\tau = 19.40 \times 10^{-23}$ l	N-m	
l(c) Define magnetostriction. Explain differer	it type	es of magnetostriction. [12M]
Solution:		
Sir	nce	1995
	ial tha	t generates mechanical strain (or) change in physic
dimension by applying magnetic filed.		
	Chana	e in physical dimension
N s	• Chang	te in physical dimension
Types of magnetostriction:		
1. Longitudinal magnetostriction:		
It is the ability of material that can	gener	ate mechanical strain in longitudinal direction b
applying magnetic field.		
11 7 8 8		

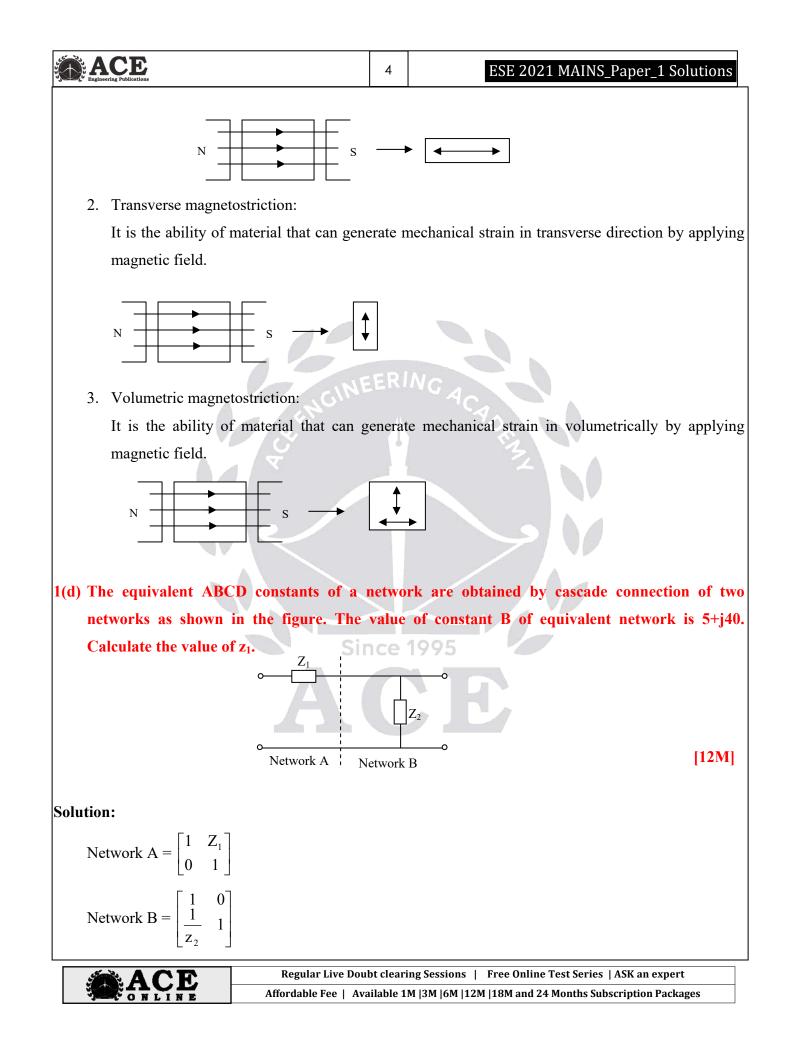
India's Best Online Coaching Platform for GATE, ESE, PSUs and SSC-JE

Enjoy a smooth online learning experience in various languages at your convenience

We Have Evolved!

Our Courses are Available on

▶ IOS (Mobile/Tab), ▶ Android (Mobile/Tab), ▶ Windows (Laptop/Desktop)


Scan QR Cocde to download the APP

www.ace.onlinehelp@ace.online

Engineering Publications	5	ELECTRICAL Engineeri
Eq Network = $\begin{bmatrix} 1 & Z_1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \frac{1}{Z_2} & 1 \end{bmatrix}$	L	
$= \begin{bmatrix} 1 + \frac{Z_1}{Z_2} & Z_1 \\ \frac{1}{Z_2} & 1 \end{bmatrix}$		
$ = \begin{bmatrix} A & B \\ C & D \end{bmatrix} $		
So, here 'B' parameter equivalent of net	work it	self is 5 + j40 given
Hence, $Z_1 = B = (5 + j40) \Omega$		
	EER	NG
«NGIII		ACA
1(e) Write a C-program to check whether a	numbe	r is a perfect number or not. [12M]
प		2
Solution:		
Two ways to write c-program for this: 1. U	-	r loop 19 while loop.
Using for loop	2. 0511	ig while loop.
#include < stdio.h>		
#include < conio.h>		
void main ()		
{ S	ince	1995
int num, rem, sum=0, i; printf ("Enter a number \n"); scanf ("%d", & num);		
for (i = 1; i <num; i++)<="" td=""><td></td><td></td></num;>		
{		
rem = num%i;		
if(rem = =0)		
{		
sum = sum + i;		
}		
,		
India's R.	est Online	Coaching Platform for GATE, ESE, PSUs and SSC-JE
		rning experience in various languages at your convenience

<pre>if (sum = = num) printf("%d is a perfect number"); clse printf("\n %d is not a perfect number"); getch(); } Using while loop #include <stdio.h> #include <stdio.h> #include <conio.h> void main() { int i = 1, num, sum=0; printf("Enter any number \n"); scanf ("%d", & num); while (i< num) { if (num% i = = 0) sum = sum +i; i++; if (sum = = num) printf("\n %d is perfect number", num); else printf("\n %d is not a perfect number", num); getch(); }</conio.h></stdio.h></stdio.h></pre>	ACE Engineering Publications	6	ESE 2021 MAINS_Paper_1 Solutions
<pre>printf("%% is a perfect number"); else printf("\n %d is not a perfect number"); getch(); } Using while loop #include <stdio.h> #include <stdio.h> #include <conio.h> void main() { int i = 1, num, sum=0; printf("Enter any number \n"); scanf ("%d", & num); while (i< num) { if (num% i == 0) sum = sum +i; i++; } if (sum == num) printf("\n %d is not a perfect number", num); else printf("\n %d is not a perfect number", num);</conio.h></stdio.h></stdio.h></pre>	if(sum = = num)		
<pre>else printf("\n %d is not a perfect number"); getch(); } Using while loop #include <stdio.h> #include <stdio.h> #include <conio.h> void main() { int i = 1, num, sum=0; printf("Enter any number \n"); scanf ("%d", & num); while (i< num) { if (num% i = = 0) sum = sum +i; i++; } if (sum = = num) printf("\n %d is perfect number", num); else printf("\n %d is not a perfect number", num);</conio.h></stdio.h></stdio.h></pre>			
<pre>printf("\n %d is not a perfect number"); getch(); } Using while loop #include <stdio.h> #include <conio.h> void main() { int i = 1, num, sum=0; printf("Enter any number \n"); scanf ("%d", & num); while (i< num) { if (num% i = = 0) sum = sum +i; i++; } if (sum = = num) printf("\n %d is perfect number", num); else printf("\n %d is not a perfect number", num);</conio.h></stdio.h></pre>			
<pre>getch(); } Using while loop #include <stdio.h> #include <conio.h> void main() { int i = 1, num, sum=0; printf("Enter any number \n"); scanf ("%d", & num); while (i< num) { if (num% i = = 0) sum = sum +i; i++; } if (sum = = num) printf("\n %d is perfect number", num); else printf("\n %d is not a perfect number", num);</conio.h></stdio.h></pre>		ner").	
<pre>} Using while loop #include <stdio.h> #include <conio.h> void main() { int i = 1, num, sum=0; printf("Enter any number \n"); scanf ("%d", & num); while (i< num) { if (num% i = = 0) sum = sum +i; i++; } if (sum = = num) printf("\n %d is perfect number", num); else printf("\n %d is not a perfect number", num);</conio.h></stdio.h></pre>		, , , , , , , , , , , , , , , , , , ,	
<pre>#include <stdio.h> #include <conio.h> void main() { int i = 1, num, sum=0; printf("Enter any number \n"); scanf ("%d", & num); while (i< num) { if (num% i = = 0) sum = sum +i; i++; } if (sum = = num) printf("\n %d is perfect number", num); else printf("\n %d is not a perfect number", num);</conio.h></stdio.h></pre>	}		
<pre>#include <stdio.h> #include <conio.h> void main() { int i = 1, num, sum=0; printf("Enter any number \n"); scanf ("%d", & num); while (i< num) { if (num% i = = 0) sum = sum +i; i++; } if (sum = = num) printf("\n %d is perfect number", num); else printf("\n %d is not a perfect number", num);</conio.h></stdio.h></pre>	,		
<pre>#include <conio.h> void main() { int i = 1, num, sum=0; printf("Enter any number \n"); scanf ("%d", & num); while (i< num) { if (num% i = = 0) sum = sum +i; i++; } if (sum = = num) printf("\n %d is perfect number", num); else printf("\n %d is not a perfect number", num); </conio.h></pre>	Using while loop		
<pre>void main() { int i = 1, num, sum=0; printf("Enter any number \n"); scanf ("%d", & num); while (i< num) { if (num% i = = 0) sum = sum +i; i++; } if (sum = = num) printf("\n %d is perfect number", num); else printf("\n %d is not a perfect number", num);</pre>			
<pre>{ int i = 1, num, sum=0; printf("Enter any number 'n"); scanf ("%d", & num); while (i< num) { if (num% i = = 0) sum = sum +i; i++; } if (sum = = num) printf("\n %d is perfect number", num); else printf("\n %d is not a perfect number", num); } } </pre>	#include <conio.h></conio.h>		
<pre>{ int i = 1, num, sum=0; printf("Enter any number 'n"); scanf ("%d", & num); while (i< num) { if (num% i = = 0) sum = sum +i; i++; } if (sum = = num) printf("\n %d is perfect number", num); else printf("\n %d is not a perfect number", num); } } </pre>	void main()		
<pre>printf("Enter any number \n"); scanf ("%d", & num); while (i< num) { if (num% i == 0) sum = sum +i; i++; } if (sum == num) printf("\n %d is perfect number", num); else printf("\n %d is not a perfect number", num);</pre>		ERI	NG .
<pre>scanf ("%d", & num); while (i< num) { if (num% i = = 0) sum = sum +i; i++; } if (sum = = num) printf("\n %d is perfect number", num); else printf("\n %d is not a perfect number", num);</pre>	int i = 1, num, sum=0;		ACA
<pre>while (i< num) { if (num% i = = 0) sum = sum +i; i++; } if (sum = = num) printf("\n %d is perfect number", num); else printf("\n %d is not a perfect number", num);</pre>	printf("Enter any number \n");		0
<pre>{ if (num% i == 0) sum = sum +i; i++; } if (sum == num) printf("\n %d is perfect number", num); else printf("\n %d is not a perfect number", num);</pre>	scanf ("%d", & num);		3
<pre>sum = sum +i; i++; } if (sum = = num) printf("\n %d is perfect number", num); else printf("\n %d is not a perfect number", num);</pre>	while (i< num)		
<pre>sum = sum +i; i++; } if (sum = = num) printf("\n %d is perfect number", num); else printf("\n %d is not a perfect number", num);</pre>	{		
<pre>i++; } if (sum = = num) printf("\n %d is perfect number", num); else printf("\n %d is not a perfect number", num);</pre>	if $(num\% i = = 0)$		
<pre>} if (sum = = num) printf("\n %d is perfect number", num); else printf("\n %d is not a perfect number", num);</pre>	sum = sum + i;		
printf("\n %d is perfect number", num); ce 1995 else printf("\n %d is not a perfect number", num);	i++;		
printf("\n %d is perfect number", num); ce 1995 else printf("\n %d is not a perfect number", num);	}		
else printf("\n %d is not a perfect number", num);	if (sum = = num)		
else printf("\n %d is not a perfect number", num);	printf("\n %d is perfect number", num)	ice 1	995
	else		
getch();	printf("\n %d is not a perfect number", r	num);	
}	getch();		
)	}		
Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert			

FREE Interview Guidance Program for ESE-2021 MAINS Qualified Students

Details:

Orientation Sessions on how to fill DAF

Free Interview Guidance Classes for

Mode: **Online/Offline**

Technical Subjects, Personality Development & Interview Tips

- Free Mock Interviews
- **Relevant Study Materials**

Engineering Publications	7	ELECTI	RICAL Engineering
2(a) (i) Expand $f(x) = e^{-x}, -\pi < x$	<π in a complex F	ourier series.	[10M]
(ii) Find the frequency spec	trum of the perio	odic square wave given by th	e extension of the
function			[10M]
$\mathbf{f}(\mathbf{x}) = \begin{cases} 0, & \frac{-1}{2} < \mathbf{x} < \frac{-1}{4} \\ 1 & \frac{-1}{4} < \mathbf{x} < \frac{1}{4} \\ 0 & \frac{1}{4} < \mathbf{x} < \frac{1}{2} \end{cases}$			
Solution:			
(i) Given that $f(x) = e^{-x}$, $-\pi < x$	$x < \pi$ G(1)	NG ACA	
We know that $f(x) = \sum_{n=-\infty}^{\infty} C$	_n e ^{inx} (2)	TOR	
Where $C_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx}$ = $\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-x} e^{-inx}$	dx ^{inx} dx		
$=\frac{1}{2\pi}\int_{-\pi}^{\pi}e^{-(1+in)}$	Since Since	1995	
$=\frac{1}{2\pi}\left[\frac{\mathrm{e}^{-(1+\mathrm{i}\pi)}}{-(1+\mathrm{i}\pi)}\right]$	$\rightarrow -\pi$	E	
$=\frac{-1}{2\pi(1+in)}$	$e^{-(1+in)\pi} - e^{(1+in)\pi}$]		
$C_n = \frac{-1}{2\pi(1+in)} \Big[e^{-\pi} \Big(\cos n\pi + \frac{1}{2\pi(1+in)} \Big) \Big]$	$-i\sin n\pi$) $-e^{\pi}(\cos n\pi)$	$\pi + i \sin n\pi$)	
$=\frac{-1}{2\pi(1+\mathrm{in})}\Big[\mathrm{e}^{-\pi}(-$	$(-1)^n - e^{\pi}(-1)^n$		
$=\frac{\left(-1\right)^{n}}{\pi\left(1+\mathrm{in}\right)}\left[\frac{\mathrm{e}^{\pi}-\mathrm{e}^{\pi}}{2}\right]$	<u>e^{-π}</u>]		
		Coaching Platform for GATE, ESE, PSUs an rning experience in various languages at yo	

Engineering Publications	8 ESE 2021 MAINS_Paper_1	Solutions
$=\frac{(-1)^n(1-\mathrm{in})}{(1+n^2)}{\rm sinh}\pi$	(3)	
$\therefore e^{-x} = \sum_{n=-\infty}^{\infty} \frac{(-1)^n (1-in)}{(1+n^2)} \sinh \theta$	$\tau.e^{-inx}$	
(ii) $C_0 = \frac{(1)\left(\frac{1}{2}\right)}{1} = \frac{1}{2}$	$f(\mathbf{x})$	
$T = 1 \Longrightarrow \omega_0 = 2\pi$ $C_n = \frac{1}{T} \int_0^T x(t) e^{-jn\omega_0 t} dt$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
0	NEERINGACA	
$= \left[\frac{e^{-j2\pi nt}}{-j2\pi n}\right]_{-\frac{1}{4}}^{\frac{1}{4}}$	OF	
$= \frac{e^{j2\pi n} \int_{-1}^{-1}}{2j\pi n}$		
$= \frac{\sin\left(\frac{\pi n}{2}\right)}{\sin\left(\frac{\pi n}{2}\right)}$		
$\Rightarrow C_1 = \frac{1}{2}$	Since 1995	
$\Rightarrow C_2 = 0$ $C_3 = \frac{\sin \frac{3\pi}{2}}{3\pi}$		
$=-\frac{1}{3}\pi$	C_n	
Exponential FS spectrum	$ \begin{array}{ccc} 1 \\ \frac{1}{2} & \frac{1}{\pi} \end{array} $	
	$0 1 2 3 4 \qquad p(2\pi)$	
Regular Liv	 I 2 3 4 n(2π) re Doubt clearing Sessions Free Online Test Series ASK an ex Available 1M 3M 6M 12M 18M and 24 Months Subscription Pa 	-

				0					
Η.	. H		к	(A	I. H	nσ	ine	erii	nσ
		U.				чъ	me		ъ

2(b) (i) What is piezoelectricity? Explain the construction and working of a piezoelectric device. State any two applications of piezoelectric devices. [10M]

9

Solution:

PIEZO-ELECTRIC TRANSDUCERS

A piezo-electric material is one in which an electric potential appears across certain surfaces of a crystal if the dimensions of the crystal are changed by the application of a mechanical force. This potential is produced by the displacement of charges. The effect is reversible i.e, conversely, if a varying potential is applied to the proper axis of the crystal, it will change the dimensions of the crystal thereby deforming it. This effect is known as **piezo-electric effect**. Elements exhibiting piezo-electric qualities are called as electro-resistive elements.

Common piezo-electric materials include Rochelle salts, ammonium dihydrogen phosphate, lithium_ sulphate, dipotassium tartrate, potassium dihydrogen phosphate, quartz and ceramics A and B. Except for quartz and ceramics A and B, the rest are man-made crystals grown from aqueous solutions under carefully controlled conditions. The ceramic materials are poly-crystalline in nature. They are, basically, made of barium titanate. They do not have piezo-electric properties in their original state but these properties are produced by special polarizing treatment.

The materials that exhibit a significant and useful piezoelectric effect are divided into two categories Natural group and

Synthetic group.

Since 1995

Quartz and Rochelle salt belong to natural group while materials like lithium sulphate, ethylene diamine tartrate belong to the synthetic group.

The piezo-electric effect can be made to respond to (or cause) mechanical deformations of the material in many different modes. The modes can be: thickness expansion, transverse expansion, thickness shear and face shear. The mode of motion affected depends on the shape of the body relative to the crystal axis and location of the electrodes. A piezo-electric element used for converting mechanical motion to electrical signals may be thought as charge generator and a capacitor. Mechanical deformation generates a charge and this charge appears as a voltage across the electrodes. The voltage is E = Q/C.

CLASSROOM COACHING

CE | ME | EC | EE | CS | PI | IN

ESE | GATE | PSUs - 2023

College Goers Batch:

26th Nov-2021

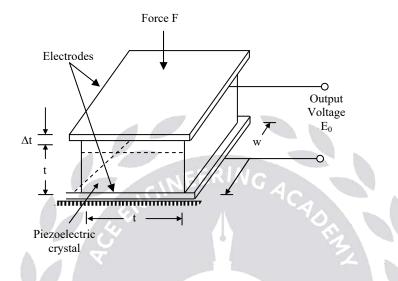
Regular Batches:

@ ABIDS
@ KUKATPALLY
@ KOTHAPET

20 th Jan-2022	26 th Feb-2022	13 th Mar-2022
27 th Mar-2022	11 th Apr-2022	25 th Apr-2022
08 th May-2022	22 nd May-2022	11 th Jun-2022

Spark Batches:

8th May-2022 22nd May-2022 11th Jun-2022


Summer Short-Term Batches:

Engineering Publications	10	ESE 2021 MAINS_Paper_1 Solutions
--------------------------	----	----------------------------------

The piezo-electric effect is direction sensitive. A tensile force produces a voltage sit one polarity while a compressive force produces a voltage of opposite polarity

A piezo-electric crystal is shown in Fig.

Applications:

(i) The desirable properties expected out of a piezo-electric material are, stability, high output, insensitivity to temperature variations, insensitivity to variations in humidity and also the ability to be formed into a usable component. Undoubtedly the most stable material is quartz. However, its output is low. Rochelle salt, on the other hand provides, the highest output out of any of the piezo-electric materials. But it required protection from moisture and hence cannot be used above a temperature of 45°C.

Because of its stability, quartz is commonly used for stabilizing electronic oscillators. The crystal is ground to proper shape and is connected in an appropriate electronic circuit whose frequency is controlled by it.

- (ii) The use of piezo-electric transducer elements is confined primarily to dynamic measurements. The voltage developed by application of strain is not held under static conditions. Hence, the elements are primarily used in the measurement of such quantities as surface roughness and in accelerometers and vibration pickups.
- (iii) Ultrasonic generator elements also use barium titanate, a piezo-electric material. Such elements are used in industrial cleansing apparatus and also in underwater detection system known as sonar.

 Regular Live Doubt clearing Sessions
 Free Online Test Series
 ASK an expert

 Affordable Fee
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

ELECTRICAL Engineering

2(b) (ii) A pn junction is doped with an acceptor ion concentration $N_A = 2 \times 10^{16} \text{ cm}^{-3}$ and a donor ion concentration $N_D = 9 \times 10^{15} \text{ cm}^{-3}$. Determine the capacitance of the device with $V_R = 2V$. Dielectric constant of silicon $\varepsilon_{Si} = 11.7 \times 8.85 \times 10^{-14} \text{ F/cm}$ [10M]

Solution:

$$N_{A} = 2 \times 10^{16} / \text{cm}^{3}$$

$$N_{D} = 9 \times 10^{15} / \text{cm}^{3}$$

$$V_{R} = 2V$$
Capacitance $C = \frac{\varepsilon A}{w}$

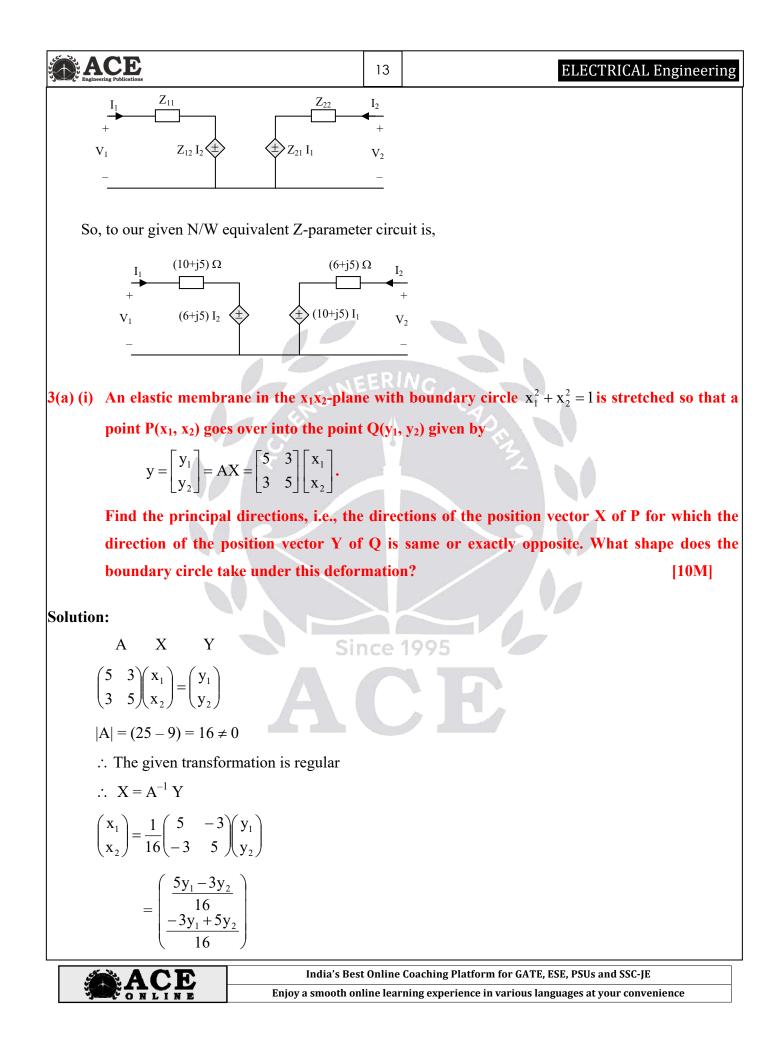
$$\Rightarrow C' = \frac{C}{A} = \frac{\varepsilon}{w}$$
(ε)_{si} = 11.7 × 8.85 × 10⁻¹⁴ F/cm
w - width of the depletion region

$$w = \sqrt{\frac{2\varepsilon V_{j}}{q} \left(\frac{1}{N_{A}} + \frac{1}{N_{D}}\right)}, V_{j} = V_{0} + V_{R}$$

$$V_{0} = V_{T} \ln \left(\frac{N_{A} N_{D}}{n_{i}^{2}}\right)$$

$$= 0.026 \times \ln \left[\frac{2 \times 10^{16} \times 9 \times 10^{15}}{(1.5 \times 10^{10})^{2}}\right]$$

$$= 0.713 V$$


$$w = \sqrt{\frac{2 \times 11.7 \times 8.85 \times 10^{-14} (0.713 + 2)}{1.6 \times 10^{-19}} \left(\frac{1}{2 \times 10^{16}} + \frac{1}{9 \times 10^{15}}\right)}$$

$$w = 7.52 \times 10^{-5} \text{ cm}$$

$$C' = \frac{c}{A} = \frac{\varepsilon}{w} = \frac{11.7 \times 8.85 \times 10^{-14}}{7.52 \times 10^{-5}} = 0.138 \text{ nF/cm}^{2}$$

India's Best Onlin Enjoy a smooth online lea

Engineering Publications	12 ESE 202	21 MAINS_Paper_1 Solutions
2(c) Draw the equivalent z parameters whether the circuit is (i) reciproc		in the figure and determine [20M]
$V_{1} \qquad \overbrace{I_{1}}^{I_{1}} \qquad 4\Omega$ $V_{1} \qquad \overbrace{I_{1}}^{I_{1}} \ \overbrace{I_{1}} \ \overbrace{I_{1}}^{I_{1}} \ \overbrace{I_{1}}^{I_{1}} \ \overbrace{I_{1}} \ I_$	$4I_1 - I_2 - + + 6\Omega + + $	
Solution:		
Z - parameter equation $V_1 = Z_{11} I_1 + Z_{12} I_2$		
$V_1 - Z_{11} I_1 + Z_{12} I_2$ $V_2 = Z_{21} I_1 + Z_{22} I_2$	$I_1 \land 4\Omega \land 4I_1 \land I_2$	
$V_2 = Z_{21} I_1 + Z_{22} I_2$ KVL in (i)	+ $\qquad \qquad \qquad$	+
$V_1 = 4I_1 + 6 (I_1 + I_2) + j5 (I_2 + I_1)$	V_1 V_1 V_1 V_1 V_1 V_2 V_2	V ₂
or, $V_1 = (6+j5)I_2 + (10+j5)I_1$		
KVL in (ii)		
$-V_2 + 4I_1 + (6 + j5) (I_1 + I_2) = 0$		
\Rightarrow V ₂ = 4 I ₁ + 6 I ₁ + 6I ₂ + j5I ₁ +	j5I ₂	
$\Rightarrow V_2 = (10 + j5)I_1 + (6 + j5)I_2$		
$z_{11} = 10 + j5$ $z_{12} = 6 + j5$		
$z_{21} = 10 + j5$ $z_{22} = 6 + j5$	Since 1995	
For symmetrical,		
$z_{11} = z_{22}$, but it is not		
Hence, it is not symmetric		
For reciprocals		
$z_{12} = z_{21}$ but it is not		
Hence, it is not reciprocal		
Now, equivalent circuit		
From equation		
$V_1 = Z_{11} I_1 + Z_{12} I_2$		
$V_2 = Z_{21} I_1 + Z_{22} I_2$		
Regul	ar Live Doubt clearing Sessions Free Online	e Test Series ASK an expert
Affordab	le Fee Available 1M 3M 6M 12M 18M and 2	4 Months Subscription Packages

		14	ESE 2021 MAINS_Pap	er_1 Solutions
$\therefore \mathbf{x}_1 = \left(\frac{5\mathbf{y}_1 - 3\mathbf{y}_2}{16}\right)$	(1)			
and $x_2 = \left(\frac{-3y_1 + 5}{16}\right)$	$\left(\frac{y_2}{2}\right)$ (2)			
$(x_1^2 + x_2^2) = 1$ (Giv	en)			
$\left(\frac{5y_1 - 3y_2}{16}\right)^2 + \left(\frac{-3}{16}\right)^2$	$\left(\frac{y_1 + 5y_2}{16}\right)^2 = 1$			
$(5y_1 - 3y_2)^2 + (5y_2 - $	$(3y_1)^2 = 256$			
$(25y_1^2-30y_1y_2+9$	$(y_2^2) + (25y_2^2 - 30y_1y_2 +$	$(9y_1^2) = 25$	6	
$(34y_1^2 - 60y_1y_2 + 34)$	$(y_2^2) = 256$ (NE	ERING	Ac	
$(17y_1^2 - 30y_1y_2 + 17y_1^2)$	y_2^2) = 128		AD.	
It is in the form $(ax^2 +$	$-2hxy + by^2 + 2gx + 2f$	$(\dot{y} + c) = 0$	3	
$(ab - h^2) = (17)^2 - ($	$-15)^2$			
=(289-2)	25)			
= 64 > 0				
Hence the shape of the	e required boundary is	an ellipse.		
3(a) (ii) Using the contou	r integration, evaluate	the integr	al $\int_{-\infty}^{\infty} \frac{\mathrm{d}x}{1+x^4}$.	[10M
Solution: $I = \int_{-\infty}^{\infty} \frac{1}{1 + x^4} dx$	A	Im (z)		
Let $f(z) = \frac{1}{1+z^4}$	• <u>i37</u> e 4	$\frac{\pi}{e^{\frac{i\pi}{4}}}$	Re (z)	
$\lim_{R\to\infty}\int_{C_R} f(z) dz = 0$	$-\mathbf{R}$ \mathbf{C}_1	F	2	
$\lim_{R\to\infty}\int_{C_1}f(z)dz=\int_{-\infty}^{\infty}f(x)dz$	x = I			
	Regular Live Doub	t clearing Sessi	ions Free Online Test Series ASK	an expert
ONLINE	Affordable Fee Avai	lable 1M 3M 6	5M 12M 18M and 24 Months Subscript	ion Packages

Engineering Publications	15	ELECTRICAL Engineering
By the reside theorem		
$I = \lim_{R \to \infty} \int_{C_1 + C_R} f(z) dz = 2\pi i \sum \text{residues of f inside}$	le the c	contour
The poles of f are all simple and at		
$e^{\frac{i\pi}{4}}, e^{\frac{i3\pi}{4}}, e^{\frac{i5\pi}{4}}, e^{\frac{i7\pi}{4}}$		
Only $e^{\frac{i\pi}{4}}$ and $e^{\frac{i3\pi}{4}}$ are inside the contour		
We compute their residues as limits using L	' hosp	ital rule.
For $z_1 = e^{i\pi/4}$:		
Res (f, z ₁) = $\lim_{z \to z_1} (z - z_1) f(z) = \lim_{z \to z_1} \frac{z - z}{1 + z^2}$	ER	NGAO
$= \lim_{z \to z_1} \frac{1}{4z^3} = \frac{1}{4e^{\frac{i3\pi}{4}}} = \frac{e^{-i3\frac{\pi}{4}}}{4}$	4	POR
For $z_2 = e^{i3\frac{\pi}{4}}$:		
Res (f, z ₂) = $\lim_{z \to z_2} (z - z_2) f(z) = \lim_{z \to z_2} \frac{z - z_2}{1 + z_4} =$	$\lim_{z \to z_2} \frac{1}{4z}$	$\frac{1}{z^3}$
$=\frac{1}{4e^{\frac{i9\pi}{4}}}=\frac{e^{\frac{+i\pi}{4}}}{4}$		
So, $I = 2\pi i (\text{Res}(f, z_1) + \text{Res}(f, z_2))$	ice	1995
$= 2\pi i \left(\frac{-1-i}{4\sqrt{2}} + \frac{1-j}{4\sqrt{2}}\right) = 2\pi i \left(\frac{-2i}{4\sqrt{2}}\right)$		
$=\frac{\pi}{\sqrt{2}}$		

ACE O N L I N E India's Best Online Coaching Platform for GATE, ESE, PSUs and SSC-JE

Enjoy a smooth online learning experience in various languages at your convenience

	16	ESE 2021 MAINS_	Paper_1 Solutions
	I	l	
		figure. Calculate the energy t	
		Amp current flows in the coil	
		e number of turns in the coil	
tringing effect and the	e reluctance of magnetic c	circuit in the core.	[20M]
Solution.	3A		
Solution:	INEER	ING A	
Given: I = 3A	ENC.	A CAN	
N = 2000 turn		E	
$A = 50 \text{ cm}^2$	113 V		
Gap length, $x = 2$ c	m		
, in gas, in the			
Energy stored per u	unit volume carried by the c	coil is	
$W = \frac{B^2}{2\mu_0}$	(Neglecting reluctance in	I=3A	
$l_{\rm g} = {\rm gap \ length}$			\rightarrow x \leftarrow gap
8 8 1 8	ere are two air-gaps under e	each pole)	
$B=\mu_0\frac{NI}{2x}$	61	1)	
$W = \frac{\left(\mu_0 \frac{NI}{2x}\right)^2}{2\mu_0}$			
$= \frac{\mu_0^2 N^2 I^2}{8 \mu_0 x^2}$			
		ing Sessions Free Online Test Series M 3M 6M 12M 18M and 24 Months Subs	

ACE Engineering Publications	17	ELECTRICAL Engineering
$=\frac{\mu_0 N^2 I^2}{8x^2}$		
$=\frac{4\pi\times10^{-7}\times(2000)^2\times(3)^2}{8\times(2\times10^{-2})^2}$		
$=\frac{4\pi\!\times\!10^{-7}\!\times\!4\!\times\!10^{6}\!\times\!9}{8\!\times\!4\!\times\!10^{-4}}$		
$= 14.1378 \times 10^{3}$		
$\therefore W = 14.137 \text{ K J/m}^3$		
Force on armature is given by		
$F = \left(\frac{B^2}{2\mu_0}\right) (Area); Area = Total area or$	f the air-	gaps between the poles $= 2A$
$=\frac{B^2}{2\mu_0}(2A)$		OFA
$= 14.137 \times 10^3 \times 2 \times 50 \times 10^{-4}$		
$= 14.137 \times 10^5 \times 10^{-4}$		
\therefore F = 141.37 N		
2(a) (i) A connection of 0.025 uE has the loss	angla	$\delta = 0.0286^{\circ}$. Calculate the dielectric loss of the
capacitor when it carries a current of		
	nce 1	
Solution:		
$C = 0.025 \ \mu F, \ \delta = 0.0286^{\circ}$		
I = 100 A and f = 25 kHz		
$X_{c} = \frac{1}{\omega C} = \frac{1}{2\pi f C}$		
$V = IX_{c} = \frac{I}{2\pi fC} = \frac{100}{2\pi \times 25 \times 10^{3} \times 0.025}$	×10 ⁻⁶	
= 25464.8 V		
Dielectric loss = VI tan δ		
$= 25464.8 \times 100 \tan(0.0)$	286°)	
= 1271 watt		
		oaching Platform for GATE, ESE, PSUs and SSC-JE ing experience in various languages at your convenience
		mg enperence in the low hunganges at your contenience

Engineering Publications	18	ESE 2021 MAINS_Paper_1 Solutions
--------------------------	----	----------------------------------

3(c) (ii) An iron piece of 50 kg mass, 7500 kg/m³ density is subjected to an AC supply of 50 Hz frequency; its hysteresis loop area is found to be 160 cm². The scale factors on ordinate and abscissa are 1cm = 0.008 Wb/m² and 1 cm = 20 AT/m, respectively. Calculate the loss of energy per hour due to hysteresis in the specimen. [10M]

Solution:

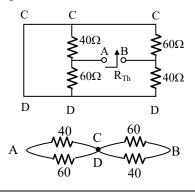
Volume of sample = $\frac{50}{7500} = \frac{1}{150} \text{ m}^3$

Number of cycle per sec = 50

Hysteresis loss = $B \times H = 160 \times 0.008 \times 20$

Energy loss/sec = $\frac{1}{150} \times 50 \times 160 \times 0.008 \times 20$

= 8.533 J/sec = 8.533 × 60 × 60 J/hr = 30720 J/hr


4(a) Determine the value of resistance 'R' which will extract the maximum power from the circuit shown in the figure. Also calculate the value of maximum power. [20M]

$$60V \pm 40\Omega$$
 R 60Ω 40Ω 40Ω 40Ω

Solution:

Value of 'R' for maximum power transfer will be equal to R_{Th.}

To find R_{Th} short the voltage source

 Regular Live Doubt clearing Sessions
 |
 Free Online Test Series
 | ASK an expert

 Affordable Fee
 |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

UPCOMING BATCHES - CLASSROOM COACHING @ OUR CENTRES ESE | GATE | PSUs - 2023 / 2024

- Weekend Batches: 19th Dec-2021, 22nd Jan-2022,
- Regular Batches:
 21st Feb-2022, 27th Mar-2022, 16th Apr-2022,
 8th & 22th May-2022, 11th Jun-2022
- Summer Short Term Batches:
 8th & 22nd May-2022

@ Pune

O 9343499966

- Evening Batches: 13th Dec-2021, 10th Jan-2022
- Weekend Batch: 8th Jan-2022
- MPSC (Prelims) Batch: 26th Dec-2021

@ Vijayawada

10% EARLY BIRD

OFF OFFER valid till 30th Nov. 2021

Q 9341699966

• Weekend Batch: 18th Dec-2021

• Weekend Batches:

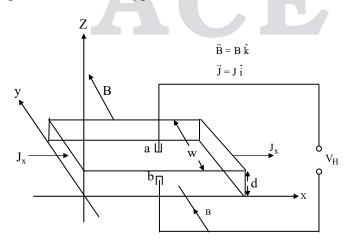
S374808999

50% ACE OLD

OFF STUDENTS

18th Dec-2021, 20th Jan-2022, 26th Feb-2022

DISCOUNTS


Engineering Publications	19	ELECTRICAL Engineering
$R_{Th} = 40 60 + 60 40$		
$= 24 + 24 = 48 \Omega$		
To find V _{Th} :		≥40Ω ≥60Ω
601	v (±	$V_{A} $
$V_{\rm A} = 60 \times \frac{60}{100} = 36 V$		$\begin{cases} 60\Omega & 10 \\ 10 & 30$
$V_{\rm B} = 60 \times \frac{40}{100} = 24 \text{ V}$		
$V_{Th} = V_A - V_B = 36 - 24 = 12V$		
$\therefore \text{ Maximum power} = \frac{(V_{Th})^2}{4R_{Th}}$	ER	INGAC
$=\frac{12\times12}{4\times48}=\frac{144}{4\times48}=0.75$ V	w	YOR .
The second se		2

 4(b) (i) Define Hall effect. With a sketch, explain the concept of Hall effect and arrive at an equation for Hall voltage V_{H.}
 [10M]

Solution:

Hall Effect:

This effect is based on the behaviour of a charge carrier in electric and magnetic fields. It was primarily used to find the sign of the charge carriers in conductors. It is also useful in finding the drift velocity (V_d), carrier concentration, magnetic field strength, conductivity / resistivity of the material, mobility of charge carriers and the type of semiconductor.

ESE 2021	MAINS	_Paper_i	1 So	lutions
----------	-------	----------	------	---------

Consider a uniform, thick metal strip, with its length along x-axis: 'w' be the width, and d be the thickness of the strip. A uniform transverse magnetic field \vec{B} is applied along the y-axis.

20

When a current 'i' established along the x-axis, the charge carriers experience a deflecting force along z-axis given by $\vec{F} = q(\vec{V}_d \times \vec{B})$.

From Fleming's left hand rule, we get that, let the charge carriers be +ve (or) –ve, this force deflects charges towards upper surface of the strip. This accumulation of charges develops a potential difference across upper and lower surfaces called Hall potential difference V_{ab} .

If the charge carriers are +ve, Hall PD $V_H = V_{ab} = +ve$

If the charge carriers are -ve, Hall PD $V_H = -ve$

Thus by the sign of Hall emf, we can find the sign of charge carriers. This Hall emf, produces a transverse stall off electric field $E_H = \frac{b}{n}$ 'a' and 'b'. This E_H acts in opposite direction to magnetic

nce 1995

force.

ACE

Soon an equilibrium position is reached where the net force on the carriers is zero. i.e.,

$$qE_{\rm H} + q(V_{\rm d} \times B) = 0$$
$$E_{\rm H} = -(V_{\rm d} \times B)$$

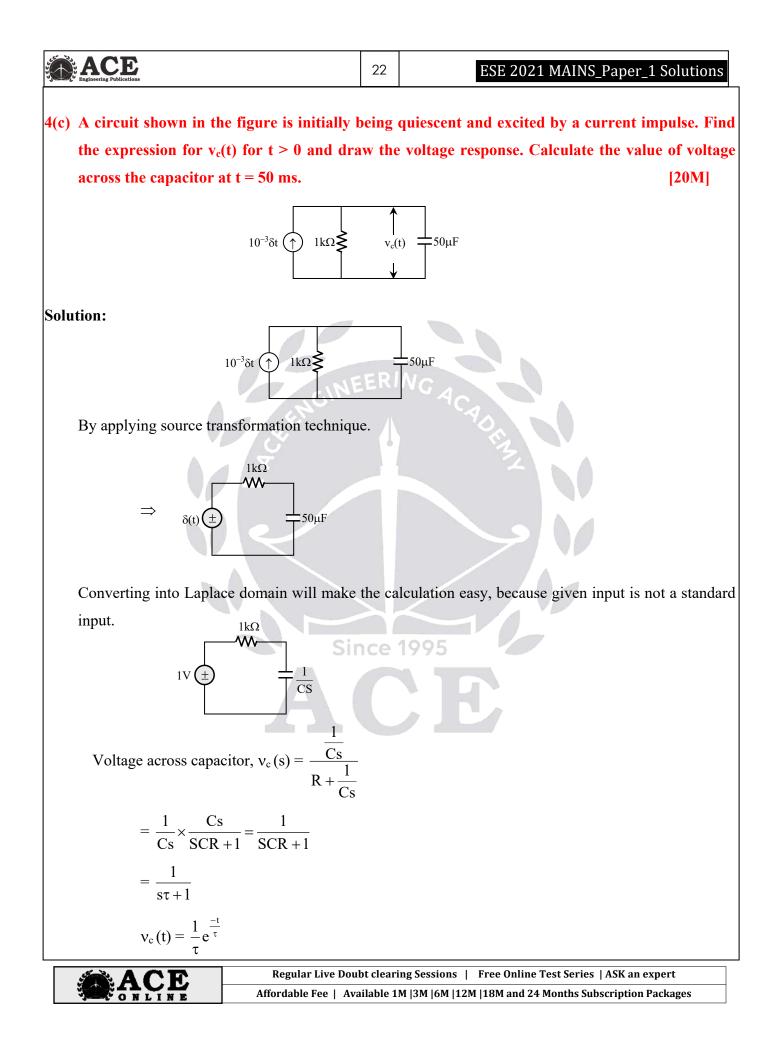
$$E_{\rm H} = -(V_{\rm d} \times B)$$

 $|\mathbf{E}_{\mathrm{H}}| = \mathbf{V}_{\mathrm{d}}\mathbf{B} \qquad (2)$

Thus drift velocity can be measured as

We can find the carrier concentration 'n' also. From (2) and (3) we have

The ratio is defined as Hall coefficient.


This Hall coefficient R_H is -ve, if the sign 'q' of charge carriers is -ve.

$$R_{\rm H} = \frac{1}{nq}$$
 is +ve for +ve charge carriers.
 $\frac{E_{\rm H}}{JB} = \frac{1}{nq}$

Also we have
4
kaline earth metals like Mg, Zn etc., $R_{\rm H} =$
ole conduction.
critical temperature of 7.26 K at zero
0 K. Estimate the critical field at 5 K for
[10M]

India's Best Online Coaching Platform for GATE, ESE, PSUs and SSC-JE

Enjoy a smooth online learning experience in various languages at your convenience

Exclusive Online Live Classes for ESE | GATE | PSUs - 2023

Batches for English

Output Description (Last Batch)

13th November, 2021

Regular Batches

Batches for Hindi + English (Hinglish)

College Goers Batch (Evening Batch)

13th November, 2021 (18th December, 2021

COURSE DETAILS

- For ESE+GATE+PSUs Students
 - >> Online Live Classes Technical Subjects Only
 - >> Recorded Classes General Studies Subjects & ESE Addl. Subjects. on ACE Online (Deep Learn)
- Recorded version of the online live class will be made available through out the course (with 3 times view)
- Doubt clearing sessions and tests to be conducted regularly
- Free study material (hard copy)
- Morning Batch: 6 am 8 am
- Evening Batch: 8 pm 10 pm
- Regular Batches: 4 6 Hours on Weekdays,
 6 7 Hours on Sundays and Public Holidays
- Access the lectures from any where

Scan QR Code to Enroll

ACE Engineering Publications	23	ELECTRICAL Engineering
$v_{c}(t) = \frac{1 \times 10^{6}}{1 \times 10^{3} \times 50} e^{-\frac{10^{6}}{1 \times 10^{3} \times 50}t}$		
$=20e^{-20t}u(t)$	V _c (t)	
2	20V +	
		$20 e^{-20t}$
20(60,10 ⁻³)	0	t (sec)
$v_{\rm c}(t) = 20 {\rm e}^{-20(50 \times 10^{-3})}$		
$v_{c}(t) = \frac{20}{e} = 7.38 \text{ V}$		
GIN	EER	NGAC
La Star S	SECTI	ON-B
5(a) Form the homogeneous system of equati	ons to	balance the chemical equation
$C_2H_6 + O_2 \rightarrow CO_2 + H_2O.$		
Solve it by Gauss-Jordan elimination me	ethod t	o obtain the balanced chemical equation. [12M]
Solution: Let $a(C_2H_6) + b(O_2) \rightarrow c(CO_2) + d(H_2)$		
$\Rightarrow 2a = c \qquad \text{or} \qquad (2a - c) = 0$	- /	
a = 2d or $(3a - d) = 0$		
2b = (2c + d) or $(2b - 2c - d)$		
From (1), (2) & (3)	u) e o .	
$\begin{bmatrix} 2 & 0 & -1 & 0 \\ 3 & 0 & 0 & -1 \\ 0 & 2 & -2 & -1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \dots$	C	(4)
$A \sim \begin{bmatrix} 2 & 0 & -1 & 0 \\ 0 & 2 & -2 & -1 \\ 3 & 0 & 0 & -1 \end{bmatrix} \qquad (R_2 \leftrightarrow R_3)$		
		e Coaching Platform for GATE, ESE, PSUs and SSC-JE
Enjoy a smooth o	nline lea	rning experience in various languages at your convenience

Engineering Publications	24	ESE 2021 MAINS_Paper	r_1 Solutions
$\sim \begin{bmatrix} 2 & 0 & -1 & 0 \\ 0 & 2 & -2 & -1 \\ 0 & 0 & 3 & -2 \end{bmatrix} $ (2R ₃ - 3R	R_1)		
$\therefore 3c = 2d \qquad \dots \dots (5)$			
2a = c(6)			
And $2b = (2c + d)$ (7)			
= (4a + 3a) [from (5) and (6)	in (7)]		
$\therefore 2b = 7a \qquad \dots \dots \dots (8)$	7		
Let $a=2 \implies b=7$ & $c=4 \implies d=$	= 6		
$\therefore \qquad \mathbf{X} = \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{bmatrix} = \begin{bmatrix} 2 \\ 7 \\ 4 \\ 6 \end{bmatrix}$	EERIA	IG ACAO	
i.e., $(2C_2H_6 + 7O_2) \rightarrow (4CO_2 + 6H_2O_2)$			and L place
(b) The circuit shown below, shows two did in parallel.	Jues with I	reverse saturation currents of 1 _{S1}	and 1 _{S2} place
(i) Prove the parallel combination operation	ates as a d	liode.	[6M
(ii) If the total current is I _T , then detern			[6N
$V_B - D_1$	ince 19	E.	
Solution:			
Let diode specifications are as below:			
Reverse saturation currents: I_{s1} for D1	and I_{s2} for	r D2 (given)	
Cut-in voltage voltages: $V_{d1} = V_{d2} = V_{d2}$	V _d (Assum	e both diodes have same cut in volt	age)
Thermal voltage: V _T			

ELECTRICAL Engineeri	ng
-----------------------------	----

Let diode D1 carries I_1 current and diode D2 carries I_2 current. Then

$$\mathbf{I}_{\mathrm{T}} = \mathbf{I}_1 + \mathbf{I}_2 \quad \dots \dots \quad (1)$$

Also, for diodes D1 and D2

Total current through both diodes will be (from equation-1)

$$I_{T} = I_{s1} \left[e^{\frac{V_{d}}{V_{T}}} - 1 \right] + I_{s2} \left[e^{\frac{V_{d}}{V_{T}}} - 1 \right]$$

Or

ACE

$$I_T = (I_{s1} + I_{s2}) \left[e^{\frac{V_d}{V_T}} - 1 \right] \qquad \dots \dots \dots (4)$$

Let $I_{s1} + I_{s2} =$

Then

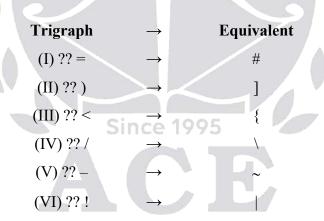
$$I_{T} = I_{s} \left| e^{\frac{V_{d}}{V_{T}}} - 1 \right|$$

Which is similar to forward diode current for a diode with reverse saturation current as $I_s = I_{s1} + I_{s2}$. i.e., parallel combination of both diodes acts as a diode with reverse saturation current $I_{s1} + I_{s2}$.

(ii) Current through diode -1

$$I_1 = I_{s1} \left[e^{\frac{V_d}{V_T}} - 1 \right]$$

From equation (4)


$$I_1 = \left(\frac{I_{s1}}{I_{s1} + I_{s2}}\right) I_T$$
(5)

Current through diode-2

ACE Engineering Publications		26	ESE 2021	MAINS_Paper_	1 Solutions
$I_2 = I_{s2} \left[e^{\frac{V_d}{V_T}} - \right]$	1				
From equation	n (4)				
$I_2 = \left(\frac{I_{s2}}{I_{s2}}\right)$)I _T (6)				
$(\mathbf{I}_{s1} + \mathbf{I}_{s2})$					
5(c) (i) What are tri	igraph characters ? Ho		useful? Transl	ate the follow	
5(c) (i) What are tri sequences int	o their equivalent symbo	ols:			[6M]
5(c) (i) What are tri sequences int		ols:			[6M]

A trigraph is a three-character sequence that represents a single character. Trigraph sequences are starting from double question marks(??) that the compiler replaces with their corresponding punctuation characters. It can be used in "C" source files with a character set that doesnot contain convenient graphic representations for some punctuation characters.

Whenever any symbol is not present in a character set then trigraph provides a way to represent those characters with a sequence of three characters.

		27		ELECTRICAL Engineering
5(c) (ii) From the keyw	ords and identif	fiers given bel	ow, segregate the ke	ywords and identifiers i
two separate group	s:			
(I) break	(II) ifloat	ifloat (III) unsigned (IV) size		(V) vshort
(VI) goto	(VII) sizeof	f (VIII) reverse (IX) enum		(X) register
(XI) iff	(XII) continu	ie	[6 M]	
Solution:				
	Keywo	rds	Identifiers	
	I. brea	ık	II. ifloat	
III. unst		gned	IV. size	
	VI. go	to	V. vshort	
	VII. siz	eofEERIN	VIII. reverse	
	IX. enur		XI. iff	
	X. regis	ster	E L	
	XII. cont	inue	2	
(d) Draw the schematic (i) Closed loop ga		ries-series feed	lback amplifier and	obtain expression for
(:) Instant instant				
(ii) Input impeda	nce			
(ii) Input impedation (iii) Output impedation		Since 10	05	
(iii) Output imped	dance.	Since 19 terized by fin	95 nite input impedan	ce R _i and finite outpu
(iii) Output impe	dance.	Since 19 terized by fin	95 nite input impedan	ce R _i and finite outpu [3 + 3 × 3 = 12]
(iii) Output imped The forward amp	dance. Jlifier is charac	Since 19 terized by fin	nite input impedan	ce R _i and finite outpu [3 + 3 × 3 = 12]
(iii) Output imped The forward amp impedance R ₀ .	dance. difier is charac			_
(iii) Output imped The forward amp impedance R ₀ .	dance. Ilifier is charac		E	
(iii) Output imped The forward amp impedance R ₀ .	dance. lifier is charac + Vs Vin - Vin + Vi	I_{in} $A = G_m$		
(iii) Output imped The forward amp impedance R ₀ .	dance. olifier is charace $+ V_S + V_{in}$	I_{in} $A = G_m$		

- Detailed Analysis of relevant questions of each topic
- Duration of course 120 days.
- 20% Discount for ACE old students

Online

Test

Series CE | ME | EE

UTTAR PRADESH PUBLIC SERVICE COMMISSION

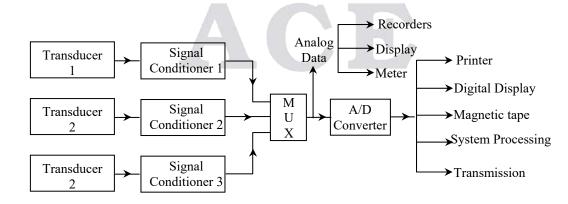
Assistant Engineer-2021

Starts from: **1**st **Dec-2021**

Google play

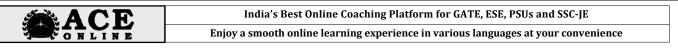
No. of Tests: 16 Subject Wise: 12 Mock Tests: 4

All tests will be available till **UPPSC AE Examination**


	28	ESE 2021 MAINS_Paper_1 Solutions				
$\mathbf{A} = \frac{\mathbf{I}_0}{\mathbf{V}_{in}} \ ; \ \boldsymbol{\beta} = \frac{\mathbf{V}_f}{\mathbf{I}_0}$						
$A_{f} [closed loop gain] = \frac{I_{0}}{V_{s}} = \frac{I_{0}}{V_{in} + V_{f}}$						
$A_{f} = \frac{I_{0}}{V_{in} + \beta I_{0}} = \frac{I_{0}}{V_{in} + \beta A V_{in}}$						
$\rightarrow A_{f} = \frac{\frac{I_{0}}{V_{in}}}{1 + A\beta} = \frac{A}{1 + A\beta}$						
(or) $G_{mf} = \frac{G_m}{1 + G_m R_m}$ EERING						
(ii) Input resistance:						
$R_{in (Basic Amp)} = \frac{V_{in}}{I_{in}}$						
$R_{in (Feedback)} = \frac{V_s}{I_s} = \frac{V_{in} + V_f}{I_s} = \frac{V_{in} + \beta I_o}{I_s} = \frac{V_{in} + \beta A V_{in}}{I_s}$						
But $I_S = I_{in}$						
$\therefore R_{inf} = \frac{V_{in}(1 + A\beta)}{I_{in}}$						
$R_{inf} = R_{in (Basic Amp)} [1 + A\beta]$		1005				
(iii) Output impedance Since 1995						
For calculation of output resistance, the input V_s is short circuited						
Io	= I _f					
V_{in} H_{in} V_{in} V_{in} K_{in}						
$V_{f} \qquad \qquad \beta = Rm \\ = V_{f}/I_{0} $						
$KVL: V_{in} + V_f = 0 \rightarrow V_f = -V_{in}$						
Regular Live Doubt clearing Sessions Free Online Test Series ASK an expert						
Affordable Fee Ava	ilable 1	M 3M 6M 12M 18M and 24 Months Subscription Packages				

	29	ELECTRICAL Engineering
KCL:		
$I_0 = \frac{1}{R_0} + G_m V_{in}$		
$=\frac{1}{R_{0}}+G_{m}\left(-V_{f}\right)$		
$=\frac{1}{R_0}+G_m\left(-\beta I_0\right)$		
$I_0 \left[1 + G_m \beta \right] = \frac{1}{R_0}$	7	
$R_{of} = \frac{1}{I_0} = R_0 [1 + G_m.\beta]$	EER	NGAC
$\mathbf{R}_{of} = \mathbf{R}_0 \left[1 + \mathbf{A} \cdot \mathbf{\beta} \right]$	1	40. ···
Where $G_m = A$, $R_m = \beta$		EZ .
$\therefore R_{of}$ can also be written as	a market	
$\mathbf{R}_{0\mathrm{f}} = \mathbf{R}_{0(\mathrm{BasicAmp})} \left[1 + \mathbf{G}_{\mathrm{m}} \cdot \mathbf{R}_{\mathrm{m}}\right]$		
5(e) With a block schematic, explain the	essent	ial functional operations of a generalized data

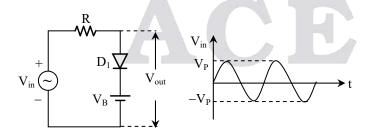
acquisition system.


Solution:

Block diagram of a general Data Acquisition System (DAS):

→ Data acquisition system (DAS) is a computerized system that collects data from the real world, converts it into the form of electrical signals and do required processing on it for storage, and presentation on computers.

[12M]


→ Transducers: They are converting physical quantities such as temperature, pressure etc into electrical quantities, or measuring electrical quantities directly. They collect data from the physical world.

Eg: of transducers: Thermocouples, thermistors, Photosensors, Straingage's, Microphase, potentiometer, etc.

- → Signal conditioning unit: The signal produced by the transducers may or may not be very suitable for our system to work properly. It may be very weak, very strong or may have some noise.
 To convert this signal into the most suitable from, amplification and filtration is done respectively by signal conditioning unit.
- → Multiplexer/MUX: the multiplexer receives multiple analog input and provide a single output signal according to the requirements.
- → Analog to digital converters (A/D Converters): the data is converted into digital form by A/D converters. After the conversion of data into digital form, it is displayed with the help of oscilloscopes, numerical displays, panel meters to monitor the complete system.

Also the data can be either permanently or temporarily stored or recorded accorded to the requirement.

6(a) For the diode-resistor-battery circuit shown below, the diode D_1 is assumed to be ideal. Sketch the time-average of V_{out} , as the battery voltage V_B is varied from $-\infty$ to ∞ , if the input voltage is a sinusoidal voltage with an amplitude equal to V_P .

[20M]

Solution:

ACE

Let us sketch V_0 and calculate $V_{0(avg)}$ for different values of V_B .

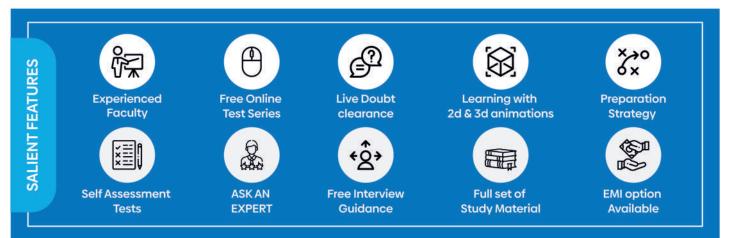
 V_B is varied from $-\infty$ to $+\infty$. Consider $V_B = 0, +\infty, -\infty, \frac{V_P}{2}$ and $\frac{-V_P}{2}$

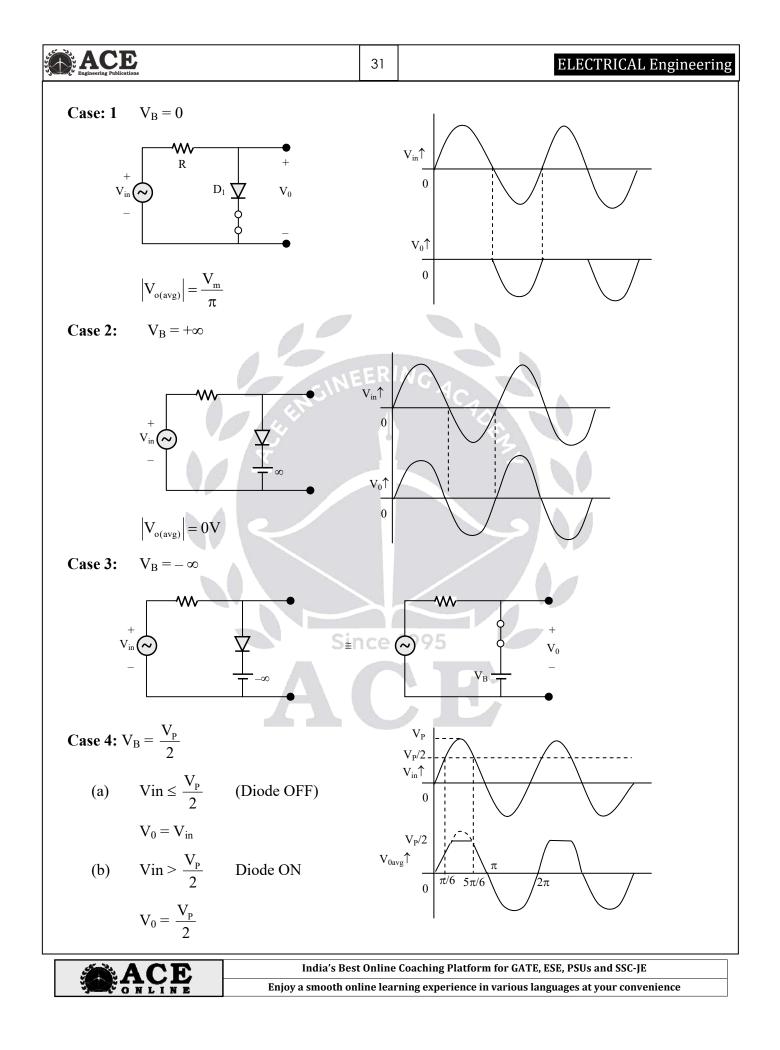
 Regular Live Doubt clearing Sessions
 Free Online Test Series
 ASK an expert

 Affordable Fee
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

30

Pre-Recorded Classes


For ESE I GATE I PSUs | SSC-JE curated by India's best minds. Access courses through Mobile / Tablet / Laptop / Desktop from anywhere.


We have subscriptions options of **1 Month**, **3 Months**, **6 Months**, **12 months**, **18 months and 24 months**.

CE | ME | EC | EE | CS | IN | PI

OUR COURSES

- GATE + PSUs (650+ Hours) (English)
- GATE + PSUs (650+ Hours) (Hinglish)
- ESE: General Studies (250+ Hours)
- ESE + GATE + PSUs (1000+ Hours)
- SSC-JE : Technical (CE) (400+ Hours)
- SSC-JE : GS (200+ Hours)
- APPSC / TSPSC-AEE: Tech. (CE) (500+ Hours)
- APPSC / TSPSC-AEE/AE: GS (350+ Hours)
- GENCO / TRANSCO / DISCOMs: EE (550+)
- APPSC-AE (Technical Paper-II) (100+ Hours)
- Quick Revision Course: CSE (250+ Hours)

ACE	32	ESE 2021 MAINS_Paper_1 Solutions		
Engineering Publications	02	LSL 2021 MAINS_1 aper_1 Solutions		
$V_0(avg) = \frac{1}{2\pi} \left[\int_0^{\pi/6} V_p \sin t dt + \int_{\pi/6}^{5\pi/6} V$	$\frac{V_{p}}{2}$ dt	$+\int_{5\pi/6}^{2\pi} V_p \sin t \bigg]$		
$=\frac{1}{2\pi} \Big[Vp(-\cos t)_0^{\pi/6} \Big] + \frac{V_p}{2} \Big[5\pi/6 - \frac{1}{2} \Big] + \frac{V_p}{2} \Big[\frac{1}{2} \Big] + \frac{1}{2} \Big] + \frac{1}{2} \Big[\frac{1}{2} \Big] + \frac{1}{2} \Big[\frac{1}{2} \Big] + \frac{1}{2} \Big[\frac{1}{2} \Big] + \frac{1}{2} \Big] + \frac{1}{2} \Big[\frac{1}{2} \Big] + \frac{1}{2} \Big[\frac{1}{2} \Big] + \frac{1}{2} \Big] + \frac{1}{2} \Big] + \frac{1}{2} \Big] + \frac{1}{2} \Big[\frac{1}{2} \Big] + \frac{1}$	π/6]+	$-V_{p}(-\cos t)^{2\pi}_{5\pi/6}$		
$= \frac{1}{2\pi} \left[Vp \left[1 - \frac{\sqrt{3}}{2} \right] + \frac{V_p}{2} \left[\frac{4\pi}{6} \right] + V \right]$	_P [-0.8	66 - 1]		
$=\frac{1}{2\pi} \Big[0.1339 \mathrm{V_p} + 1.0471 \mathrm{V_p} - 1.86 \Big]$	$6V_{p}$]			
$=\frac{1}{2\pi}[-0.685]=-0.109$	ER	NGA		
Case 5: $V_B = -\frac{V_P}{2}$		C PORT		
$V_{in}\uparrow$ $7\pi/6$ $-V_{P}/2$				
	V_0^{\uparrow} $-V_{P/2}$ Since 1995			
$V_0(avg) = \frac{1}{2\pi} \left[\int_0^{7\pi/6} \frac{-V_P}{2} dt + \int_{7\pi/6}^{11\pi/6} \frac{-V_P}{2} dt + \int_{7\pi/6}^{11\pi/$	$^{6}V_{p}\sin$	$ht + \int_{11\pi/6}^{2\pi} - \frac{V_{\rm P}}{2}$		
$=\frac{1}{2\pi}\left[\frac{-V_{p}}{2}\left[\frac{7\pi}{6}\right]+V_{p}\left[-c\right]\right]$	$[\cos t]_{7\pi/6}^{11\pi/6}$	$\int_{6}^{6} + \left(\frac{-\mathrm{V}_{\mathrm{p}}}{2}\right) \left[2\pi - \frac{11\pi}{6}\right]$		
$=\frac{1}{2\pi}\left[\frac{-V_{p}}{2}\left[\frac{7\pi}{6}\right]+V_{p}\left[-0.866-0.866\right]\right]\frac{-V_{p}}{2}\left[\pi/6\right]$				
$=\frac{V_{p}}{2\pi}\left[-1.8325 - 1.732 - 0.2617\right]$				
$= -0.608 V_P$				

Regular Live Doubt clearing Sessions | Free Online Test Series | ASK an expert

Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

ACE ONLINE

Engineering Pablications	33	ELECTRICAL Engineering

6(b) A dynamometer ammeter is arranged so that 1% of total current passes through the moving coil and rest through the fixed coil. The mutual inductance between the two coils varies with the angle of displacement of the moving coil from its zero position as follows:

Angle (degree)	0	15	30	60	90	105	120
Mutual inductance μH)	-336	-275	-192	0	192	275	336

If a torque of 10.5×10^{-6} Nm is required to give the full scale defection of 120°, calculate the current at half and full scale defection. (Graph sheet attached) [20M]

Since 1995

Solution:

Half FSD = $\frac{120}{2} = 60^{\circ}$

It is clear from the data given, 'M' varies linearly about $\theta = 60^{\circ}$

$$\left(\frac{\mathrm{dM}}{\mathrm{d\theta}}\right)_{\mathrm{\theta}=60^{\circ}} = \frac{192 - (-192)}{90 - 30} = 6.4 \ \mathrm{\mu H/deg}$$

 $= 366.7 \ \mu H/deg$

Torque at $\frac{1}{2}$ FS, $T_d = \frac{1}{2} \times 10.5 \times 10^{-6}$

 $= 5.25 \times 10^{-6}$ Nm

Current through fixed coil, $I_1 = I_C = 0.99I$

Current through moving coil, $I_2 = I_P = 0.01I$

$$\therefore T_{d} = I_{c}I_{P} \frac{dM}{d\theta}$$

5.25 × 10⁻⁶ = 0.99(I) 0.01(I) 366.7 × 10⁻⁶
$$\therefore I = 1.2 \text{ A}$$

Engineering Publications	34	ESE 2021 MAINS_Paper_1 Solutions
At FSD of $\theta = 120^\circ$:		
$\left(\frac{\mathrm{dM}}{\mathrm{d\theta}}\right)_{120^{\circ}} = \frac{336 - 200}{120 - 77} = 3.16 \mu\mathrm{H/deg}$		
= 181.2 µH/rad		
$T_{dFS} = 10.5 \times 10^{-6} \text{ Nm}$		
$10.5 \times 10^{-6} = 0.99 \text{ I} (0.01) \text{I} \times 181.2 \times 10^{-6}$		
I = 2.42 A		
(c) Using any high level language, write a	compu	iter program to compute the area enclosed by
curve $f(x) = x^2 + 1$, between $x = A$ and x	= B, by	using trapezoidal approximation. [20M]
olution:	EERI	NG
// Trapezoida1 rule		A Ca
#include <stdio.h></stdio.h>		0
float f(float x)	•	3
{		
//function given as $f(x)=x^*x+1$		
return x*x+1;		
<pre> float calcTrap(float a, float b, float n) </pre>		
float $h = (b-a)/n;$		
float sum = $f(a) + f(b)$;		
	ince	1995
sum = sum + 2*f(a+i*h);		
return (h/2)*sum;		
int main()		
//Lets take A as 65 and B as 66		
float $a = 65, b=66;$		
	1 \)	
printf("Answer is %6.2f\n", calcTrap(a,	b, n));	
return 0;		
} Output		
Answer is 4291.34		

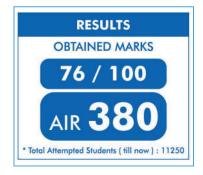
Enjoy a

---- Online Test Series

No. of Tests : 65 + Free 52 Practice Tests of GATE - 2021 Online Test Series Total Tests : 117

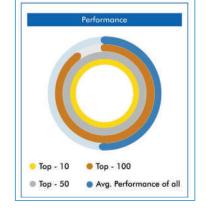
ESE – 2022 Prelims

No. of Tests : 44 + Free 30 Practice Tests of ESE - 2021 Online Test Series Total Tests : 74


All tests will be available till GATE - 2022 & ESE -2022 (Prelims) examinations respectively.

TEST SERIES HIGHLIGHTS

Detailed Solutions are Available | Video Solutions are Available for Difficult Questions. All India rank will be given for each test | Comparison with all India toppers of ACE student


TEST WISE STATISTICS:

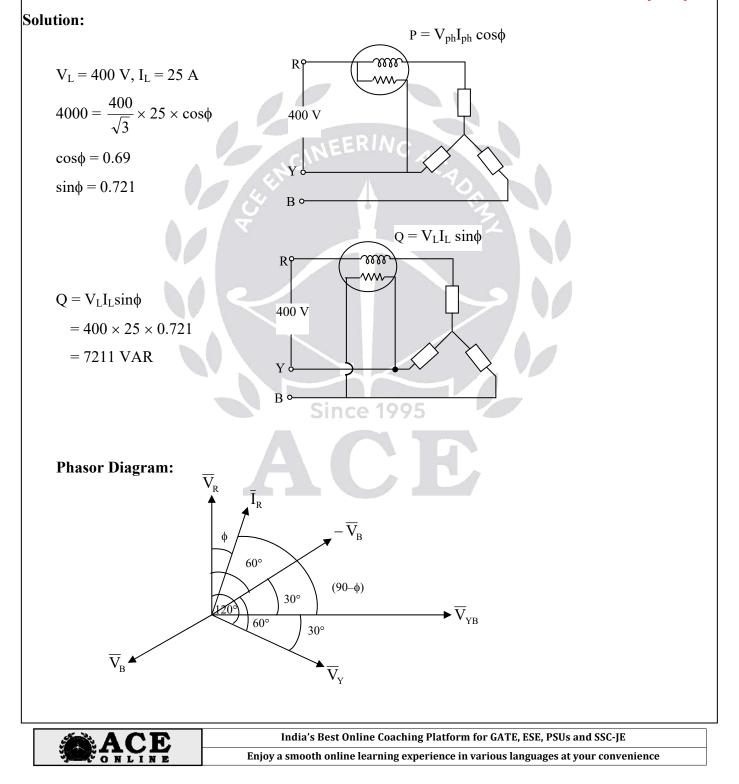
QUESTION WISE STATISTICS:

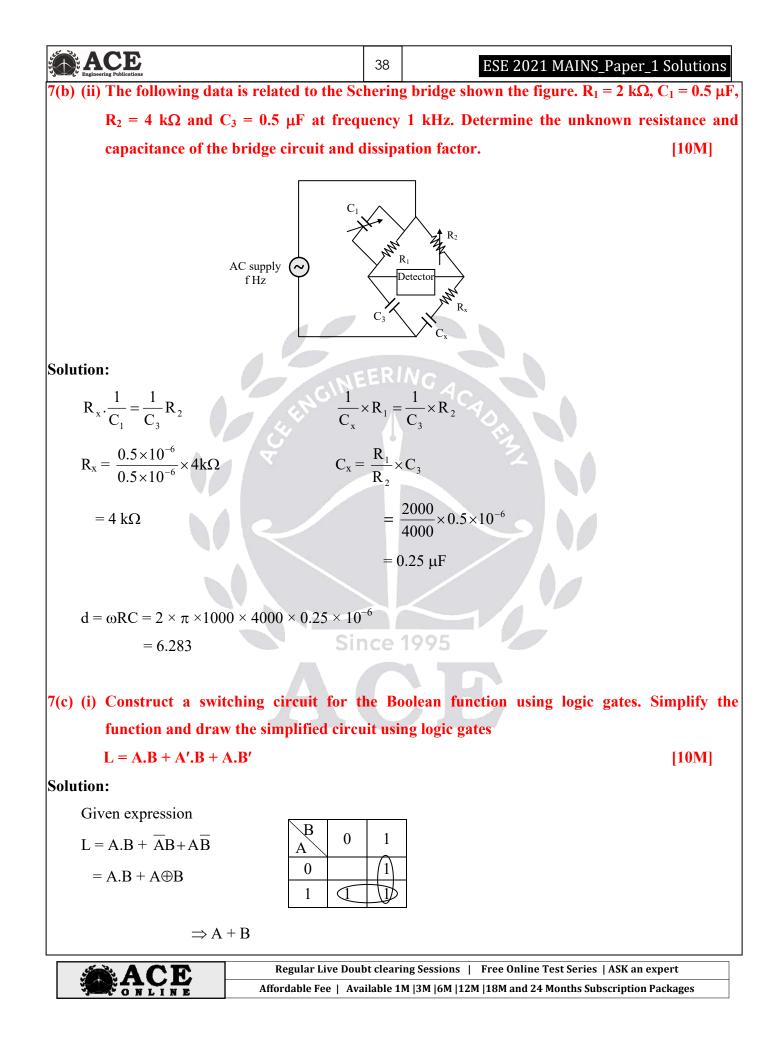
Time l	Jsage
Your Time :	67% of Avg. Time
1 minute 21 seconds	
Avg. Time :	2 minutes 1 seconds
2 minutes 1 seconds	
Top 10 Avg. Time :	2 minutes 37 seconds
2 minutes 37 seconds	
Top 50 Avg. Time :	2 minutes 41 seconds
2 minutes 41 seconds	
Top 100 Avg. Time :	2 minutes 48 seconds
2 minutes 48 seconds	and the second

Phone No.: 040-48539866, 040-40136222 | Email: Testseries@aceenggacademy.com

ESE 2021 MAINS_Paper_1 Solutions

$$\frac{36}{10}$$


$$\frac{3$$


36

ACE Engineering Publications	37	ELECTRICAL Engineering
---------------------------------	----	------------------------

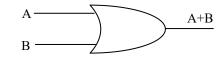
7(b) (i) A wattmeter reads 4 kW when its current coil is connected in R phase of a symmetrical 3phase system supplying a balanced 3-phase inductive load of 25A at 400V. What will be the reading of the wattmeter if the connections of the current coil remain unchanged and voltage coil be connected between B and Y phases? Draw the corresponding phasor diagram.

[10M]

ESE-2022 (Prelims) OFFLINE TEST SERIES OFFLINE TEST SERIES No. of Tests : 24 20 Grand Tests 04 Mock Tests Streams: Starts from: 27th Nov-2021

HIGHLIGHTS:

- 1. Meticulously designed tests series, which maximizes your potentials.
- 2. All India rank will be given for each test.
- 3. Detailed solutions will be provided for each test.


Call: 040-48539866, 40136222 | E-mail: testseries@aceenggacademy.com

Call: 040-48539866, 40136222 | E-mail: testseries@aceenggacademy.com

ELECTRICAL Engineerir	ıg
------------------------------	----

Simplified equation will be OR of A and B

7(c) (ii) A 36-bit floating point binary number has eight bits plus sign for the exponent and twentysix bits plus sign for mantissa. The mantissa is a normalized fraction. Numbers in the mantissa and exponent are in signed-magnitude form. Determine the largest and smallest positive quantities that can be represented, excluding zero. [10M]

39

Solution:

ACE

◀	Dal	36 —	Δ.
s ①	E (8)	s ①	M 26

Given information: Exponent and mantissa are expressed in signed magnitude format Smallest +ve number E range is -255 to + 255

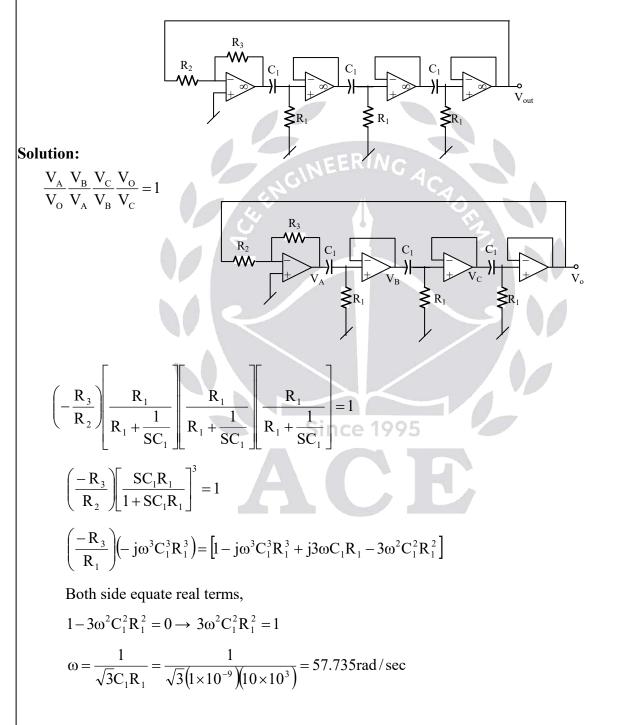
 $E_{min} = -256$

Normalized $M_{min} = 0.100...0$ (26)

Minimum value = $0.1_2 \times 2^{-255} = 2^{-1} \times 2^{-255}$ = $+2^{-256}$ Since 1995

Max. value = $E_{max} = 255$

M = 111....1 (26)+ 0.1111....1 ×2²⁵⁵ = (1-2⁻²⁶) ×2²⁵⁵


$$\cong 2^{255}$$

+ve value range is 2^{-256} to 2^{255}

8(a) For the RC phase shift oscillator circuit shown below, determine the condition of oscillation and the frequency of oscillation. What will be the frequency of oscillation (in Hz) if $R_1 = R_2 = 10 \text{ k}\Omega$ and $C_1 = 1.0 \text{ nF}$? Also calculate the minimum value of R_3 required to sustain sinusoidal oscillations. [20M]

40

ACE

ELECTRI	E a antes	
HI.HI I KI	Fnoin	aaring
	LIISIII	
	0	0

[20M]

41

$$f = \frac{1}{2\pi\sqrt{3}C_{1}R_{1}} = 9.18 \text{ kHz}$$

$$\left(\frac{R_{3}}{R_{1}}\right) (\omega^{3}C_{1}^{3}R_{1}^{3}) = 3\omega C_{1}R_{1} - \omega^{3}C_{1}^{3}R_{1}^{3}$$

$$\left(\frac{R_{3}}{R_{1}}\right) (\omega^{2}C_{1}^{2}R_{1}^{2}) = 3 - \omega^{2}C_{1}^{2}R_{1}^{2}$$

$$\left(\frac{R_{3}}{R_{1}}\right) \frac{1}{3} = 3 - \frac{1}{3}$$

$$R_{2} = 8R_{1} = 8(10k) = 80 \text{ kO}$$

EERING

- 8(b) A parallel plate capacitive transducer uses plates of area 450 mm² which are separated by a distance 0.3 mm and having air as dielectric. Determine:
 - (i) The change in capacitance if the transducer is subjected to a linear displacement which reduces distance between plates to 0.27 mm
 - (ii) The ratio of per unit change of capacitance to per unit change of displacement.
 - (iii) If a mica sheet of 0.02 mm is inserted in the gap, determine the value of actual capacitance and the change in capacitance for the same displacement and the ratio of per unit change in capacitance to per unit change in displacement. Assume the dielectric constant of mica to be

Since 1995

8.

Solution:

Initial capacitance

$$C = \frac{\varepsilon_0 A}{d}$$

$$=\frac{8.85\times10^{-12}\times450\times10^{-6}}{0.3\times10^{-3}}$$
F = 13.27 pF

(i) Change in displacement,

 $\Delta d = (0.3 - 0.27) \text{ mm}$

ACE Engineering Academy, the leading institute for GATE, ESE, PSUs and SSC-JE offers postal coaching (Distance learning programme) for engineering students.

ACE PUBLICATIONS GATE 2022 GATE 2022 GATE 2022 GATE 2022 GATE 2022 GATE 2022 MECHANICAL CIVIL ENGINEERING ELECTRICAL 14 14 DELP . ESE 2021 ESE 2021 MECHANICAL ESE 2021 ESE 2021 ESE 2021 **ESE 2021** ics & Te CIVIL ENGINEERING MECHANICAL ENGINEERING 0 0 33 ESE 2022 ESE 2022 **ESE 2022** ESE 2022 ACE ACE ESE 2021 E 2021 30 ELECTRONICS & TELECOMMUNICATION ENGINEERING ELECTRICAL MECHANICAL CIVIL ELECTRICAL (33) 40 ESE 2022 ESE 2022 ESE 2022 ESE 2022 ACR ACR SSC - JE SSC - JE 29 29 MECHANICAL CIVIL ELECTRICAL ENGINEERING TELECTR CIVIL ENGINEERING MECHANICAL ENGINEERING 2700 0 0 **KPWD** (\bigcirc) SSC - JE CIVIL ENGINEERING SSC - JE MPSC ELECTRICAL GINEERING 3480 CIVIL 1 www.aceengineeringpublications.com amazon Flipkart 🙀

42

ESE 2021 MAINS_Paper_1 Solutions

Capacitance after application of displacement

$$C + \Delta C = \frac{8.85 \times 10^{-12} \times 450 \times 10^{-6}}{0.27 \times 10^{-3}} F$$
$$= 14.7 \text{ pF}$$

Change in capacitance $\Delta C = 14.75 \text{ pF} - 13.27 \text{ pF}$

(ii) Ratio=
$$\frac{\Delta C/C}{\Delta d/d} = \frac{\left(1.48/13.27\right)}{\left(\frac{0.03}{0.3}\right)} = 1.115$$

(iii)Initially the displacement between the plate is 0.3 mm. since thickness of mica is 0.02mm, the

length of air gap between the plate is 0.28 mm

Initial capacitance of transducer,

$$C = \frac{\varepsilon_0 A}{\frac{d_1}{\epsilon_1} + \frac{d_2}{\epsilon_2}}$$
$$= \frac{8.85 \times 10^{-12} \times 450 \times 10^{-6}}{(0.28/1 + 0.02/8) \times 10^{-3}} F = 14.09 \text{ pF}$$

When a displacement of 0.03 mm is applied, the length of airgap is reduced to (0.28 - 0.03)mm = 0.25 mm.

Capacitance after application of displacement

$$C + \Delta C = \frac{8.85 \times 10^{-12} \times 450 \times 10^{-6}}{(0.25/1 + 0.02/8) \times 10^{-3}} F = 15.77 \text{ pF}$$

Change in capacitance $\Delta C = 15.77 \text{ pF} - 14.09 \text{ pF}$

(ii) Ratio=
$$\frac{\Delta C/C}{\Delta d/d} = \frac{\left(1.68/15.77\right)}{\left(\frac{0.03}{0.3}\right)} = 1.06$$

Hearty Congratulations to our

GATE - 2021 TOP RANKERS

Engineering Publications	43	ELECTRICAL Engineering		
8(c) Show that:				
(i). $\int_{C} (yz-1)dx + (z+xz+z^2)dy + (y+xy+2)dy$	2yz)dz	is independent of path of integration from		
(1, 2, 3) to (4, 5, 6). Hence, evaluate th	e inte	gral. [10 M]		
Solution:				
$\int_{C} (yz-1)dx + (z+xz+z^{2})dy + (y+xy+2yz)dy + (y-xy+2yz)dy + (y-x+2yz)dy + (y-x+2yz)dy + (y-x+2yz)dy + (y-$)dz			
$= \int_C yz dx - dx + z dy + xz dy + z^2 dy + y dz + z$	xy dz -	+ 2y zdz		
(456)				
$= \int_{(1,2,3)} \{yz dx + xz dy + xy dz\} + (zdy + ydz) $	dy + 2	2yz dz) - dx		
$= \int_{(1,2,3)}^{(4,5,6)} d(xyz) + d(yz) + d(yz^{2}) - dx$	1	CROFT		
$= (xyz + yz + yz^{2} - x)_{(1,2,3)}^{(4,5,6)}$				
= (120 + 30 + 180 - 4) - (6 + 6 + 18 - 1)				
= 326 - 29				
= 297				
Now, let us calculate the line integral along	the pa	th from (1,2,3) to (4,5,6)		
Equation of straight line passing through (1,	,2,3) a	nd (4,5,6)		
$\frac{x-1}{3} = \frac{y-2}{3} = \frac{z-3}{3} = t$ Sir	nce	1995		
x = 3t + 1, $y = 3t + 2,$ $z = 3t + 3$				
x = 3t + 1, $y = 3t + 2$, $z = 3t + 3dx = 3dt$, $dy = 3dt$, $dz = 3dt$				
If $x = 1$, then $t = 0$				
If $x = 4$, then $t = 1$				
$\int_{C} (yz-1)dx + (z + xz + z^{2})dy + (y + xy + 2yz)dy$	z)dz			
$= \int_{0}^{1} \left[\frac{\{(3t+2)(3t+3)-1\}(3dt) + \{(3t+3)+(3t+3)+(3t+2)+(3t+2)+(3t+2)+(3t+1)(3t+2)+2(3t+3)+(3t+2)+(3t+3)+$	(3t+2)(3t)(3t+2)	$+3)+(3t+3)^{2}3dt +)(3t+3)3dt$		

India's Best Online Coaching Platform for GATE, ESE, PSUs and SSC-JE

Enjoy a smooth online learning experience in various languages at your convenience

÷6

Engineering Publications	44	ESE 2021 MAINS_Paper_1 Solutions			
The integral value is independent of pat	h.				
$\int_{0}^{1} \{(3t+2)(3t+3)-1\}(3dt) = \int_{0}^{1} (27t^{2}+45t+15t)(3dt) = \int_{0}^{1} (27t^$	dt				
$\int_{0}^{1} \left\{ (3t+3) + (3t+1)(3t+3) + (3t+3)^{2} \right\} 3dt = \int_{0}^{1} \left(5t + 3 \right)^{2} dt = \int_{$	$54t^2 + 2$	99t + 45)dt			
$\int_{0}^{1} \{(3t+2)+(3t+1)(3t+2)+2(3t+2)(3t+3)\}$	$3dt = \int_{0}^{1}$	$(81t^2 + 126t + 48)dt$			
$= \int_{0}^{1} \left(27t^{2} + 45t + 15 + 54t^{2} + 99t + 4 \right)$	5+81	$t^{2} + 126t + 48)dt$			
$= \int_{0}^{1} (162t^{2} + 270t + 108) dt$	ERI	NGACAD			
= 297		E.			
8(c) (ii) Let $\overline{F} = z\hat{j} + z\hat{k}$ represent the flow of	a liqu	id. Find the flux of $\overline{\mathbf{F}}$ through the surface S given			
by that portion of the plane $z = 6 - 3x$	– 2y i	n the first octant oriented upward. [10M]			
Solution:					
Given: $\vec{F} = z\vec{j} + z\vec{k}$		1005			
Let $\phi: z = 6 - 3x - 2y$	ice	1995			
$\phi: 3x + 2y + z - 6 = 0$					
$\hat{\mathbf{n}} = \frac{\nabla \phi}{ \nabla \phi } = \frac{3\vec{\mathbf{i}} + 2\vec{\mathbf{j}} + \vec{\mathbf{k}}}{\sqrt{9 + 4 + 1}}$					
$\hat{n} = \frac{3}{\sqrt{14}} \vec{i} + \frac{2}{\sqrt{14}} \vec{j} + \frac{1}{\sqrt{14}} \vec{k}$					
$\vec{F} \cdot \hat{n} = \frac{2z}{\sqrt{14}} + \frac{z}{\sqrt{14}} = \frac{3z}{\sqrt{14}}$					
Let R be the projection of the surface on xy	Let R be the projection of the surface on xy plane				
z = 0 and $3x + 2y = 6$					

Regular Live Doubt clearing Sessions | Free Online Test Series | ASK an expert

 $\label{eq:affordable} Affordable\ Fee\ |\ \ Available\ 1M\ |3M\ |6M\ |12M\ |18M\ and\ 24\ Months\ Subscription\ Packages$

ACE ON LINE

Engineering Publications	45	ELECTRICAL Engineering
$\hat{\mathbf{n}} \cdot \hat{\mathbf{k}} = \frac{1}{\sqrt{14}}$		
$ds = \frac{dxdy}{ \hat{n} \cdot \hat{k} } = \frac{dxdy}{\frac{1}{\sqrt{14}}} = \sqrt{14}dxdy$		
$\iint_{S} \vec{F} \cdot \hat{n} ds = \iint_{S} \frac{3z}{\sqrt{14}} \sqrt{14} dx dy$		y A
$=3\iint_{R} (6-3x-2y) dx dy \qquad \dots$	(1)	(0,3) $3x + 2y = 6$
$\iint_{S} \vec{F} \cdot \hat{n} ds$	ER	NG
$=3\int_{x=0}^{2}\int_{y=0}^{\frac{6-3x}{2}}(6-3x-2y)dydx$	1	(0,0) (2,0) x
$=3\int_{0}^{2} \left\{ 6y - 3xy - y^{2} \right\}_{y=0}^{\frac{6-3x}{2}} dx$		
$=3\int_{0}^{2} \left\{ 3(6-3x) - 3x \left(\frac{6-3x}{2}\right) - \left(\frac{6-3x}{2}\right) \right\} dx$		
$=3\int_{0}^{2} \left\{ 18 - 9x - 3x\left(3 - \frac{3}{2}x\right) - \left[\frac{36}{2}\right]^{2} \right\}$		
$=3\int_{0}^{2} \left\{ 18 - 9x - 9x + \frac{9}{2}x^{2} - 9 - \frac{9}{4}x \right\}$	² + 9x	}dx
$=3\int_{0}^{2} \left\{9-9x+\frac{9}{4}x^{2}\right\} dx$		
$= 3\left(9x - \frac{9x^2}{2} + \frac{9}{12}x^3\right)_0^2 = 3[18 - 10]$	$8 + \frac{9}{12}$	$\frac{9}{2}(8)] = 18$

India's Best Online Coaching Platform for GATE, ESE, PSUs and SSC-JE

Enjoy a smooth online learning experience in various languages at your convenience

Hearty Congratulations to our

ESE - 2020 TOP RANKERS

