

HYDERABAD | DELHI | PUNE | BANGALORE | LUCKNOW | CHENNAI | VISAKHAPATNAM | VIJAYAWADA | TIRUPATHI | KOLKATA | AHMEDABAD

ESE-2021 (MAINS)

QUESTIONS WITH DETAILED SOLUTIONS

CIVIL ENGINEERING

PAPER-I

ACE Engineering Academy has taken utmost care in preparing the ESE-2021 MAINS Examination solutions. Discrepancies, if any, may please be brought to our notice. ACE Engineering Academy do not owe any responsibility for any damage or loss to any person on account of error or omission in these solutions. ACE Engineering Academy is always in the fore front of serving the students, irrespective of the examination type (GATE/ESE/PSUs/PSC/GENCO/TRANSCO etc.,).

All Queries related to ESE - 2021 MAINS Solutions are to be sent to the following email address hyderabad@aceenggacademy.com Contact Us : 040-23234418,19,20

www.aceenggacademy.com

CIVIL ENGINEERING

ESE _MAINS_2021_PAPER - I

Questions with Detailed Solutions

SUBJECT WISE WEIGHTAGE

GINEERING

S.No.	NAME OF THE SUBJECT	Marks
1	Strength of Materials	96
2	Structural Analysis	104
3	Building Materials	52
4	Design of Concrete and Masonry Structures	124
5	Steel Structures	52
6	Construction Management & Equipment	52

Engineering Publications	2 ESE 2021 Mains_Paper_1 Solutions					
SECTION A						
01.						
(a). (i). What are the functions of cement morta	ortar in brick masonry work? (6 M)					
Sol: Following are the functions of cement mo	nortar in masonry work.					
1. In masonry work, mortar is fille	lled between the joints of the building blocks (bricks /					
stones) which makes these buildin	ling blocks bond together and act as a solid mass.					
2. Mortar is used to carry out pointing	ting and plastering works on exposed surfaces of masonry					
to protect the masonry from damp	npness and to give the masonry a good appearance.					
3. Mortar is used for ornamental wor	vorks on masonry like coping, cornice and coving works.					
() WI (1) C I SCINE						
(II). What are the purposes of making frog in t	a bricks during moulding? Explain with the help of neat					
sketches.						
Sol: A small indentation made on the surface of	e of bricks during moulding is called as a frog.					
Application of frog are as follows:						
1. Shear key: When mortar is filled v	I while laying the bricks, frog helps in the formation of a					
shear key which improves the streng	ength of masonry against horizontal loads.					
2. Source: Generally, the initials of	2. Source: Generally, the initials of the manufacturer are impressioned in the frog, thus					
helping in identification of the manu	inufacturer.					
	Horizontal Joint					
	Frog					
	▼ Shear key					
Frog	Vertical Joint					
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Brick					
India's Best O	st Online Coaching Platform for GATE, ESE, PSUs and SSC-JE					
Enjoy a smooth onlin	lline learning experience in various languages at your convenience					

Engineering Publications		3	Civil Engineering		
(b). A rectangular plate i The plate (b × h × t) and v = 0.33. All dim (i) the maximum in (ii) the change in th (iii) the change in volume b = 200 mm h = 300 mm t = 15 mm E = 75 × 10 ³ MPa $\mu$ = 0.33 $\Rightarrow$ As there is So, $\sigma_1$ = $\sigma_3$ =	n biaxial stress in subjet has dimensions 200 × nensions are in mm. Det n-plane shear strain ( $\gamma_{ma}$ ie thickness of the plate olume of the plate ( $\Delta V$ )	3 ected to $300 \times 10^{10}$ termine ax) in the $(\Delta t)$ , a $\Delta t$ b on x & y	Civil Engineering normal stress $\sigma_x = 65$ MPa and $\sigma_y = -20$ MPa. 5 and is made of aluminimum with E = 75 GPa e plate, nd (12 M) $\uparrow$ h + x + $\sigma_x = 65$ MPa $\downarrow$ planes.		
ε ₁ =	$\epsilon_1 = \frac{\sigma_1}{E} - \mu \frac{\sigma_3}{E} \Longrightarrow \frac{65}{E} - 0.33 \times \frac{(-20)}{E}$				
	$= 9.546 \times 10^{-4}$				
<b>ACE</b> ONLINE	Regular Live Doubt Affordable Fee   Avail	clearing able 1M	Sessions   Free Online Test Series   ASK an expert BM  6M  12M  18M and 24 Months Subscription Packages		



We Have Evolved!



### Our Courses are Available on

▶ IOS (Mobile/Tab), ▶ Android (Mobile/Tab), ▶ Windows (Laptop/Desktop)

## Scan QR Cocde to download the APP







www.ace.onlinehelp@ace.online

## ESE 2021 Mains_Paper_1 Solutions

$$\epsilon_{3} = \frac{\sigma_{3}}{E} - \mu \frac{\sigma_{1}}{E} = \frac{-20}{E} - 0.33 \times \frac{65}{E}$$
$$= -5.526 \times 10^{-4}$$
$$\epsilon_{2} = -\mu \frac{\sigma_{1}}{E} - \mu \frac{\sigma_{3}}{E}$$
$$= \frac{-\mu}{E} (\sigma_{1} + \sigma_{3}) = \frac{-0.33}{75 \times 10^{3}} \times (65 - 20)$$
$$= -1.98 \times 10^{-4}$$

4

(i) 
$$\frac{\phi_{\text{max}}}{2} = \frac{\varepsilon_1 - \varepsilon_3}{2}$$
  
 $\phi_{\text{max}} = (9.54 + 5.526) \times 10^{-4}$   
 $= 15.066 \times 10^{-4}$ 

 $\therefore$  Max in plane shear strain =  $15.066 \times 10^{-4}$ 

(ii) 
$$\frac{\Delta t}{t}$$

ACE

$$\Rightarrow \frac{\Delta t}{15} = -1.98 \times 10^{-4}$$
$$\Delta t = -29.7 \times 10^{-4} \text{ mm}$$

 $\therefore$  Thickness decrease by 2.97 × 10⁻³ mm 1995

(iii) 
$$\frac{\Delta V}{V} = \varepsilon_1 + \varepsilon_2 + \varepsilon_3$$
$$= 2.034 \times 10^{-4}$$
$$\Delta V = 2.304 \times 10^{-4} \times 200 \times 300 \times 15$$
$$= 183.06 \text{ mm}^3$$
$$\therefore \text{ Volume increases by 182.06 mm}^3$$

$$\therefore$$
 Volume increases by 183.06 mm³



India's Best Online Coaching Platform for GATE, ESE, PSUs and SSC-JE Enjoy a smooth online learning experience in various languages at your convenience

ACE Engineering Publications	5	Civil Engineering
---------------------------------	---	-------------------

(c). The electric motor exerts a torque of 800 N on the steel shaft ABCD when it is rotating at constant speed. Design specifications require that the diameter of the shaft be uniform from A to D and that the angle of twist between A and D not exceed  $1.5^{\circ}$ . Knowing that  $\tau_{max} \le 60$  MPa and G = 77 GPa, determine the diameter of the shaft that may be used.



(12 M)

#### Sol:



Maximum torque (in AD) = 800 N-m

i. Maximum shear stress criteria

E

$$\frac{\tau_{\text{max}}}{r} = \frac{T}{J}$$
(Z_P)  $\tau_{\text{max}} = T$ 

$$\frac{\pi}{16} (D^3) (60) = 800 \times 10^3 (N - mm)$$

$$d = 40.8 \text{ mm} \dots (1)$$

 Regular Live Doubt clearing Sessions
 Free Online Test Series
 ASK an expert

 Affordable Fee
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

ii. Maximum angle of twist criteria

ACE

$$\theta_{AD} = \frac{1.5^{\circ} \times \pi}{180} = \theta_{AB} + \theta_{BC} + \theta_{CD}$$

$$\frac{1.5 \times \pi}{180} = \frac{(800 \times 10^3)(400)}{77 \times 10^3 (\frac{\pi}{32} d^4)} + \frac{(500 \times 10^3)(600)}{(77 \times 10^3) (\frac{\pi}{32} d^4)} + 0$$

$$[\because \theta_{CD} = 0]$$

$$1.5 \times 180 (d^{4}) = \frac{32}{77 \times 10^{3}} [800 \times 10^{3} \times 400 + 500 \times 10^{3} \times 600]$$
  
d = 42.07 mm......(2)

: Dia of shaft = max of 1 &  $2 = 42.07 \text{ mm} \approx 43 \text{ mm}$ .

(d). Analyse the propped cantilever beams shown in the figure. During loading the prop B sinks by 6 mm.  $E = 2 \times 10^5$  MPa.  $I = 86.04 \times 10^6$  mm⁴. Draw Shear force and Bending moment diagrams. Find the maximum BM value and its location from either of the supports.

6





# FREE Interview Guidance Program for ESE-2021 MAINS Qualified Students

## **Details:**

Orientation Sessions on how to fill DAF

**Online/Offline** Free Interview Guidance Classes for

Mode:

- Technical Subjects, Personality Development & Interview Tips
- Free Mock Interviews
- **Relevant Study Materials**



ACE Engineering Publications	7	Civil Engineering				
Boundary conditions						
( <i>a</i> ) B: $x = 0$ : $y = 6mm = 6/1000$ (m) EI = 17208 kN-m						
C ₂ =103.248						
(a) A; $x = 7m y = 0$						
$0 = R_{B}(57.16) - 6(6)^{2} - \frac{3}{4}(7-3)^{4} + C_{1}(7) + 10^{4}$	)3.248					
57.16 R _B $-304 + 7$ C ₁ $= 0 \rightarrow (1)$						
$\textcircled{0} A: x = 7m \ dy/dx = 0$						
$0 = R_{\rm B}(24.5) - 72 - 3(4^3) + C_1$						
$24.5R_{\rm B} - 264 + C_1 = 0 \to (2)$						
$5716R_{B} - 304 + 7C_{I} = 0$ $7 \times 24.5R_{B} - 264 \times 7 + 7C_{I} = 0$ $(-) (+) (-)$ $-114.34 R_{B} 1544 = 0$						
$R_{\rm B} = 13.5 \rm kN$						
From (2) $C_1 = -66.8$						
A 18 kN/m 12 kN/m						
4m E C 2m D Im	RB	=13.5kN				
58.5kN						
(4-x)=0.75m	ce 1	995				
x=3.25m	13.	5kN				
13.5kN						
33.56 kN.m						
$+$ $\frac{28.5 \text{ kN.m}}{13.5 \text{ kN.m}}$						
1.5kN.m						
61.5 kN.m						
Regular Live Doubt clearing Sessions   Free Online Test Series   ASK an expert						
Affordable Fee   Avail	able 1M	3M  6M  12M  18M and 24 Months Subscription Packages				

8	ESE 2021 Ma

Max sagging BM = 33.56 kN - m [@E, 3.25 m from A]

Max hogging BM = 61.5 kN-m [@A]

#### Alternate method

By deflection method

Deflection at B due to u.d.1 & moment = deflection due to reaction at B

$$\frac{W_{AC}(L_{AC})^{4}}{8EI} + \frac{W_{AC}(L_{AC})^{3}}{6EI} \times L_{CB} + \frac{M_{D} \times (L_{AD})^{2}}{2EI} + \frac{M_{D}L_{AD} \times L_{DB}}{EI} + 6mm = \frac{R_{B} \times (L_{AB})^{3}}{3EI}$$

$$\Rightarrow \frac{18 \times (4 \times 10^{3})^{4}}{8 \times 2 \times 10^{5} \times 86.04 \times 10^{6}} + \frac{18 \times (4 \times 10^{3})^{3} \times (3 \times 10^{3})}{6 \times 2 \times 10^{5} \times 86.04 \times 10^{6}}$$

$$+ \frac{12 \times 10^{6} \times (6 \times 10^{3})^{2}}{2 \times 2 \times 10^{5} \times 86.04 \times 10^{6}} + \frac{12 \times 10^{6} \times 6 \times 10^{3} \times 1 \times 10^{3}}{2 \times 10^{5} \times 86.04 \times 10^{6}} + 6$$

$$= \frac{R_{B} \times (7 \times 10^{3})^{3}}{3 \times 2 \times 10^{5} \times 86.04 \times 10^{6}}$$

$$\Rightarrow 33.47 + 33.47 + 12.55 + 4.18 + 6 = R_{B} \times 6.64 \times 10^{-3}$$

$$R_{B} = 13.50 \text{ kN}$$

$$\Sigma V = 0 \Rightarrow R_{A} = 18 \times 4 - R_{B}$$

$$= 18 \times 4 - 13.50$$

$$\Sigma M_{A} = 0 \Rightarrow M_{A} + 13.50 \times 7 = 18 \times 4 \times 2 + 12$$

$$M_{A} = 61.50 \text{ kN.m}$$
(c). A simply supported rectangular beam (cross-section 300 mm × 400 mm) with effective span of 6 metres is carrying the following characteristic load:
(i) Characteristic Dead Load (including self-weight) = 15 \text{ kN/m}

ACE	India's Best Online Coaching Platform for GATE, ESE, PSUs and SSC-JE
ONLINE	Enjoy a smooth online learning experience in various languages at your convenience

ACE Engineering Fablications	9	Civil Engineering
---------------------------------	---	-------------------

(ii) Characteristic Imposed Load (not fixed) = 10 kN/m

(iii) Characteristic Equivalent Wind Load (acting downward) = 5 kN/m

Calculate the Design Bending Moment and Design Shear Force for most critical load combination for limit state of collapse and limit state of serviceability.

Partial Safety Factor (γ _f ) for loads							
Load Combination	Limit State of Collapse			Limit State of Serviceability			
	Dead Imposed Wind			Dead	Impose	Wind	
	Load	Load	Load	Load	d Load	Load	
Dead Load + Imposed Load	EN1.51N	1.5	ACAD	1.0	1.0	-	
Dead Load + Wind Load	0.9	÷-	1.5	<u> </u>	_	1.0	
Dead Load + Imposed Load + Wind Load	1.2	1.2	1.2	1.0	0.8	0.8	

Sol:



L.L. = 10 kN/mW.L = 5 kN/m

Calculation of Design Load (Using Limit State of Collapse):



 Regular Live Doubt clearing Sessions
 Free Online Test Series
 ASK an expert

 Affordable Fee
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages



# Image: Civil Engineering Calculation of Design Load (Using Limit State of Serviceability): $w_d = max \begin{cases} 1.(D.L + L.L) \\ 1.(D.L + W.L) \\ 1.D.L + 0.8(L.L + W.L) \\ 1.D.L + 0.8(L.L + W.L) \end{cases}$

$$= \max \begin{cases} 1.(15+10) = 25 \text{ kN/m} \\ 1.(15+5) = 20 \text{ kN/m} \\ 1 \times 15 + 0.8 \times 15 = 27 \text{ kN/m} \end{cases}$$

$$W_{design} = 27 \text{ kN/m}$$



Design S.F = 81 kN (at support)

Design B.M= 
$$\frac{w\ell^2}{8} = \frac{27 \times 36}{8} = 121.5$$
 kNm



 Regular Live Doubt clearing Sessions
 Free Online Test Series
 ASK an expert

 O N L I N E
 Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

ACE	12	ESE 2021 Mains_Paper_1 Solutions

### 02.

(a). A steel bar AB of length 3.5 m and diameter 25 mm is connected by four inextensible cables of length 2.5 m each, forming a rhombus with AB as diagonal. A 100 kN force acts at the points C and D. Determine the decrease in length of the member AB and increase in the length between points C and D. Take modulus of steel as 201 GPa.





	ACE Engineering Publications		14	ESE 2021 Mains_Paper_1 Solutions		
]	Design shear strength of bolt $V_{nsb} = \frac{f_{ub}}{\sqrt{3}} \cdot \frac{A_{nb}}{\gamma_{mb}}$					
]	Bearing strength of b	$olt = \frac{1}{\gamma_{mb}} 2.5 k_b.d.t.f_u$				
	Where $k_b = Least$ of	$\left[\frac{\mathrm{e}}{\mathrm{3d}_{\mathrm{o}}}, \left(\frac{\mathrm{p}}{\mathrm{3d}_{\mathrm{o}}}-0.25\right), \frac{\mathrm{f}_{\mathrm{ub}}}{\mathrm{f}_{\mathrm{u}}}, 1\right]$	.0			
				(20 M)		
Sol:	Given, M20 bolts, i.e	e. nominal diameter of	oolt =	20 mm		
	Grade of the bolt $= 4$	6				
	i.e. $f_{ub} = 400 \text{ MPa}$					
	$f_{yb} = 240 \text{ MPa}$	CINE	ERI	NGA		
	thickness of gusset p	late = 10 mm	Ж	1 AN		
	Step I: Calculating I	Bolt value of the given	conne	ction as per IS 800:2007		
	Bolt value minimum	$\{V_{dsb}, V_{dpb}\}$				
	$V_{dsb} = design shear s$	trength of the bolt				
	$V_{dpb} = design bearing$	g strength of the bolt				
	Now,					
	$V_{dsb} = \frac{f_{ub}}{\sqrt{3}} \frac{A_{ub}}{\gamma_{mb}}$					
	400 $0.78 \times \frac{\pi}{100}$	×20 ² Sin	ce 1	995		
	$=\frac{400}{\sqrt{3}}\times\frac{4}{1.25}$					
	{: $A_{ub}$ = tensile net area of the bolt = $0.78 \times \frac{1}{4} \times \phi^2$ , : $\gamma_{mb}$ = 1.25}					
	$V_{dsb} = 45.272 \text{ kN}$ (A)					
	Now,					
	$V_{dpb} = \frac{2.5k_{b}dtf_{u}}{\gamma_{mb}}$	{here $f_u = 4$	10 MI	Pa}		
	Here,					
ي ب	ACE	India's Best O	nline Co	oaching Platform for GATE, ESE, PSUs and SSC-JE		
3	ONLINE	Enjoy a smooth onlin	e learni	ng experience in various languages at your convenience		

# CLASSROOM COACHING

CE | ME | EC | EE | CS | PI | IN

# ESE | GATE | PSUs - 2023

# College Goers Batch:

26th Nov-2021

# Regular Batches:

@ ABIDS
@ KUKATPALLY
@ KOTHAPET

20 th Jan-2022	26 th Feb-2022	13 th Mar-2022
27 th Mar-2022	11 th Apr-2022	25 th Apr-2022
08 th May-2022	22 nd May-2022	11 th Jun-2022

# Spark Batches:

8th May-2022 22nd May-2022 11th Jun-2022

# Summer Short-Term Batches:



SA A B		
Engineering Publications	15	Civil Engineering

- $f_u$  = ultimate strength of plate = 410 MPa (given)
- d = Nominal diameter of bolt = 20 mm (given)
- t = thickness of gusset plate = 10 mm (given)

 $\gamma_{mb} = partial \ safety \ factor \ for \ bolt = 1.25$ 

$$k_{b} = min\left[\frac{e}{3d_{o}}, \frac{P}{3d_{o}} - 0.25, \frac{f_{ub}}{f_{u}}, 1.0\right]$$

Now,  $d_0 =$  diameter of bolt hole

$$= d + 2 mm$$
  
= (20 + 2) mm = 22 mm

So,

$$k_{b} = \min\left\{\frac{100}{3 \times 22} - 0.25, \frac{50}{3 \times 22}, \frac{400}{410}, 1.0\right\}$$

= minimum {0.75, 1.265, 0.9757, 1.0}

 $k_{b} = 0.75$ 

now,

$$V_{dpb} = \frac{2.5k_{b}dtf_{u}}{\gamma_{mb}} = \frac{2.5 \times 0.75 \times 20 \times 10 \times 410}{1.25}$$

 $V_{dpd} = 123 \text{ kN} \dots (B)$ 

Now,

Strength of one bolt, bolt value  $(B_v)$  = minimum  $\{V_{dsb}, V_{dpb}\}$ 

= minimum {45.272 kN, 123 kN}

Since 1995

Bolt value = 45.272 kN



 Regular Live Doubt clearing Sessions
 |
 Free Online Test Series
 | ASK an expert

 Affordable Fee
 |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages



#### **Civil Engineering**

$$\begin{split} F_{s} &= \sqrt{F_{1}^{2} + F_{1}^{'2}} \\ &= \sqrt{\left(\frac{P\sin 35}{10}\right)^{2} + \left(\frac{P\cos 35}{10}\right)^{2}} = \sqrt{\left(\frac{P}{10}\right)^{2}(\sin^{2} 35 + \cos^{2} 35)} \\ F_{s} &= \frac{P}{10} \\ \text{Direction of } F_{s} &= \tan^{-1}\!\left(\frac{F_{1}^{'}}{F_{1}}\right) \end{split}$$

 $= \tan^{-1}\left(\frac{P\cos 35^{\circ}}{P\sin 35^{\circ}}\right) = 55^{\circ}$ 

Note: you can see that he direction of ' $f_s$ ' is same as that of applied load P on the bracket with respect to horizontal.

Now consider two moments

ACE



17



#### Civil Engineering

# ACE

19

Step III: Resultant Force for Bolt (E)  $F_{R} = \sqrt{F_{S}^{2} + F_{T}^{2} + 2F_{S}F_{T} \cos Q}$   $= \sqrt{(0.1P)^{2} + (0.0266P)^{2} + 2(0.1P)(0.0266P)\cos 13.198}$   $F_{R} = 0.126 P$ Now  $F_{R} \le B_{V}$   $0.126 P \le 45.272 \text{ kN}$   $P \le 359.3 \text{ kN}$ So  $P_{max} = 359.3 \text{ kN}$ 

(c). (i). How do super plasticizers increase the mobility and made the cement concrete flow? What is the advantage of using fly ash in concrete for massive dam construction work?

(10 M)

#### Sol: Super plasticizers:

Super plasticizers are high range water reducing chemical admixtures used in the preparation of High Strength Concrete, High Performance Concrete and Self Compacting concrete.

Super plasticizers are water soluble macromolecules (many times larger than water molecules) when mixed during the preparation of concrete are adsorbed by  $C_3A$ . Because of this adsorption entrapped water gets released; thus increasing the available water in the concrete which in turn makes concrete flow more easily.

#### Advantages of using fly ash in concrete for massive dam construction work:

When fly ash is mixed during the preparation of concrete, it improves workability and reduces the heat of hydration of concrete. Because of better workability, concrete can be handled easily and thicker placements can be done without the risk of improper compaction. Because of the reduced heat of hydration, formation of shrinkage cracks during setting and hardening is reduced.



20	ESE 2021 Mains_Paper_1 Solutions

(ii). What are the disadvantages of destructive methods of testing concrete and advantages of non-destructive testing of concrete?

(10 M)

#### Sol: Destructive Vs Non-destructive Testing of concrete:

Disadvantages of Destructive testing of concrete are as follows:

- 1. Strength of in-service structures cannot be determined without causing any damage.
- 2. Costly equipment (UTM / CTM) which are not very easy to handle are needed to determine the strength of concrete.
- 3. Internal defects like bubbles, cracks, pores, etc. cannot be determined.

Advantages of Non-destructive testing of concrete are as follows:

- 1. Equipment used for non-destructive testing of concrete are easy to handle.
- 2. Strength of in-service structures can be determined without causing them any damage.
- 3. These tests can be used to determine the internal defects in concrete.
- 4. These tests can be done quickly and easily.

#### 03.

- (a). A point on a thin plate is subjected to the two successive states of stress as shown in the figure below. Using Mohr's circle method, determine
  - (i). the resultant state of stress represented on the element oriented as shown on the right.
  - (ii). the principal stresses and principal planes caused by the superposition of these two stress states.







Enjoy a smooth online learning experience in various languages at your convenience

Engineering Publications	23	Civil Engineering
--------------------------	----	-------------------

(b). A solid RCC slab is having effect span of  $L_x = 3.0$  m and  $L_y = 4.5$  m. Position of slab S-1 is shown in the figure below.



Slab carrying total design load of 20 kN/m². In slab S-1, calculate and provide the spacing of all main reinforcement only, by limit state method of design, for 8 mm diameter high strength deformed bars. Check these spacings must not exceed the standard guidelines of IS 456:2000.

Effective thickness of slab = 120 mm

Grade of concrete M20

Grade of reinforcement Fe 415

		A state of the sta		and the second sec		
$\frac{M}{bd^2}$	0.30	0.40	0.512	0.60	0.65	0.662
$\mathbf{p}_{t}$	0.085	0.114	0.143	0.172	0.187	0.203

Since

 $p_t$  is the percentage of reinforcement



Regular Live Doubt clearing Sessions|Free Online Test Series| ASK an expertAffordable Fee|Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

# UPCOMING BATCHES - CLASSROOM COACHING @ OUR CENTRES ESE | GATE | PSUs - 2023 / 2024



- Weekend Batches: 19th Dec-2021, 22nd Jan-2022,
- Regular Batches: 21st Feb-2022, 27th Mar-2022, 16th Apr-2022, 8th & 22th May-2022, 11th Jun-2022
- Summer Short Term Batches:
   8th & 22nd May-2022

# @ Pune

**O** 9343499966

- Evening Batches: 13th Dec-2021, 10th Jan-2022
- Weekend Batch: 8th Jan-2022
- MPSC (Prelims) Batch: 26th Dec-2021

# @ Vijayawada

10% EARLY BIRD

OFF OFFER valid till 30th Nov. 2021

**Q** 9341699966

• Weekend Batch: 18th Dec-2021

• Weekend Batches:

S374808999

50% ACE OLD

**OFF** STUDENTS

18th Dec-2021, 20th Jan-2022, 26th Feb-2022

# **DISCOUNTS**

ACE Engineering Publications	24	ESE 2021 Mains_Paper_1 Solutions

T٤	Table: Bending Moment Coefficients for Rectangular Panels Supported on Four Sides with         Provision for Torsion at Corners (Clauses D.1.1 and 24.4.1)									
Case No.	Type of Panel and Moments Considered	Short Span Coefficients α _x (Values of <i>l</i> _y / <i>l</i> _x							Long Span Coefficients α _x for all	
		1.0	1.1	1.2	1.3	1.4	1.5	1.75	2.0	Values of <i>l</i> y / <i>l</i> x
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
1	Interior Panels: Negative moment at continuous edge Positive moment at	0.032	0.037	0.043	0.047	0.051	0.053	0.060	0.065	0.032
	mid-span	0.024	0.028	0.032	0.036	0.039	0.041	0.045	0.049	0.024
9	<b>Pour Edges</b> <b>Discontinuous:</b> Positive moment at mid-span	0.056	0.064	0.072	0.079	0.085	0.089	0.100	0.107	0.056

(20 M)

**Sol:** For panel of slab  $S_1$ 

Aspect ratio 
$$=\frac{L_y}{L_x} = \frac{4.5}{3.0} = 1.5 < 2$$

: it is a two way slab

Given effective thickness of slab d = 120 mm

Assume effective cover = 30 mm

Overall thickness of slab D = 120+30 = 150 mm.

Given that Total design load

 $\omega_u = 20 \text{ KN/m}^2$ 



India's Best Online Coaching Platform for GATE, ESE, PSUs and SSC-JE Enjoy a smooth online learning experience in various languages at your convenience

## Civil Engineering

Moment co-efficients

$$\label{eq:alpha} \begin{split} & - \, \alpha_x = 0.053 & - \, \alpha_y = 0.032 \\ & + \, \alpha_x = 0.041 & + \, \alpha_y = 0.024 \end{split}$$

#### **Design moments**

Support moments:

$$\begin{split} M_{ux(-)} &= (-) \; \alpha_x \; \omega_u L_x^{\; 2} = 0.053 \times 20 \times 3^2 = -9.54 \; kNm \\ M_{uy(-)} &= (-) \; \alpha_y \; \omega_u L_x^{\; 2} = 0.032 \; * \; 20 * 3^2 = -5.76 \; kNm \end{split}$$

#### Span moments

$$M_{ux(+)} = (+) \alpha_x \omega_u L_x^2 = 0.041 * 20*3^2 = +7.38 \text{ kNm}$$
$$M_{uy(+)} = (+) \alpha_x \omega_u L_x^2 = 0.024 * 20*3^2 = +4.32 \text{ kNm}$$

#### **Design of reinforcement**

Minimum reinforcement required = 0.12%

$$= \frac{0.12}{100} \times bD = \frac{0.12}{100} \times 1000 \times 150 = 180 \,\mathrm{mm^2}$$

Negative moment reinforcement:

$$\frac{M_{ux}}{bd^{2}}(-) = \frac{9.54 \times 10^{6}}{1000 * 120^{2}} = 0.662 \rightarrow p_{t} = 0.203$$

$$p_{t} = \frac{100A_{stx}(-)}{bd} = 0.203 \rightarrow Ast_{x(-)} = 243.6mm^{2} \qquad \therefore \text{ Hence provide } A_{st} = 243.6mm^{2}$$

$$\frac{M_{uy}}{bd^{2}}(-) = \frac{5.76 \times 10^{6}}{1000 \times 120^{2}} = 0.4 \rightarrow p_{t} = 0.114$$

$$P_{t} = \frac{100A_{sty}(-)}{bd} = 0.114 \rightarrow A_{sty}(-) = 136.8mm^{2} \qquad \therefore \text{ Hence provide } A_{st} = A_{st,min} = 180mm^{2}$$

#### Positive moment reinforcement

$$\frac{M_{u_x}(+)}{bd^2} = \frac{7.38*10^6}{1000*120^2} = 0.512 \rightarrow p_t = 0.143$$

$$P_t = \frac{100A_{st_x}(+)}{bd} = 0.143 \rightarrow A_{st_x}(+) = 171.6 \text{mm}^2 \qquad \therefore \text{ Hence provide } A_{st} = A_{st,min} = 180 \text{mm}^2$$

ACE	Regular Live Doubt clearing Sessions   Free Online Test Series   ASK an expert
ONLINE	Affordable Fee   Available 1M  3M  6M  12M  18M and 24 Months Subscription Packages

#### ESE 2021 Mains_Paper_1 Solutions

$$\frac{M_{uy}(+)}{bd^2} = \frac{4.32 \times 10^6}{1000 \times 120^2} = 0.3 \rightarrow p_t = 0.085$$
$$P_t = \frac{100A_{sty}(+)}{bd} = 0.085 \rightarrow A_{sty}(+) = 102mm^2$$

**ACE** 

Spacing of negative moment reinforcement

$$S_x(-) = 1000 \frac{a_{st}}{A_{st_x}(-)} = 1000 \times \frac{\frac{\pi}{4} \times 8^2}{243.6} = 206 \text{mm}$$

$$S_y(-) = 1000 \frac{a_{st}}{A_{sty}(-)} = 1000 \times \frac{\frac{\pi}{4} \times 8^2}{136.8} = 367 \text{mm}$$

Spacing of positive moment reinforcement

$$S_{x(+)} = 1000 \frac{a_{st}}{A_{st_x}(+)} = 1000 \times \frac{\frac{\pi}{4} \times 8^2}{171.6} = 293 \text{mm}$$

$$S_{y_{(+)}} = 1000 \frac{a_{st}}{A_{sty}(+)} = 1000 \times \frac{\frac{1}{4} \times 8^2}{102} = 492 \text{mm}$$

#### Max spacing of main reinforcement in a slab

(i) 3d = 3 * 120 = 360 mm(ii) 300 mm small

 $S_x(-) = 206 \text{ mm} < 300 \text{ mm}$  : ok

$$S_y(-) = 367 \text{ mm} > 300 \text{ mm}$$
 . Not ok

 $S_x(+) = 293 \text{ mm} < 300 \text{ mm}$  . ok

 $S_y(+) = 492 \text{ mm} > 300 \text{ mm}$  . Not ok

Minimum reinforcement = 
$$0.12\% = \frac{0.12\%}{100} \times b \times D$$

 $=\frac{0.12}{100}\times1000\times150=180 \text{ mm}^2$ 

Since



#### 26

ACE Englosering Publications	27	Ci	vi
---------------------------------	----	----	----

Hence this is the reinforcement to be adopted for positive moment along short span, long span and negative moment along long span.  $(M_{uy})$ .

Engineering

spacing = 
$$\frac{1000 \times \frac{\pi}{4} \times 8^2}{180}$$
$$= 279 \text{ mm}$$

Adopt spacing of 275 mm

Adopt:

Ast_x(-): 8 mm  $\phi$  @ 200 mm c/c Ast_y(-): 8 mm  $\phi$  @ 275 mm c/c Ast_x(+): 8 mm  $\phi$  @ 275 mm c/c

- $Ast_y(+): 8 \text{ mm } \phi @ 275 \text{ mm } c/c$
- (c). Design Bending moment and Shear force diagram have been given below for a two span continuous beam. Effective span of beam is 6.0 m each. Design a rectangular, singly reinforced RCC beam section at support 'B' only by LSM of design.



ACE Englosering Publications	28	ESE 2021 Mains_Paper_1 Solutions				
The following parameters may be used f	for design	, All notations are as per IS 456:2000.				
1. Grade of concrete M20)	Ŭ					
2. Grade of reinforcement Fe 415						
3. Nominal cover to reinforcement –	25 mm					
4. (Effective depth/width) ratio $-2$						
5. Diameter of flexural bar $-20$ mm						
6. Diameter of shear reinforcement –	8 mm (C	S Area 50 mm ² )				
7. Design shear strength of concrete	τ _c = 0.88 Ν	J/mm ²				
8. Maximum shear stress $\tau_{c max} = 2.8$	N/mm ²					
9. Round off effective (calculated) to	next high	ner multiple of 100				
10. $M_{\mu \text{ lim}}/f_{ck} bd^2 = 0.138$	EERI	NG				
11. $(x/d) = 1.2 - \left[ (1.2)^2 - \frac{6.68M_u}{f_{ck}bd^2} \right]^{1/2}$	4	A C A D H				
12. Lever arm $z = d\left(1 - 0.42\frac{x}{d}\right)$	Lever arm $z = d\left(1 - 0.42\frac{x}{d}\right)$					
$13.  A_{st} = \frac{M_u}{0.87 f_y.z}$						
14. $V_{us} = \frac{0.87 f_y \cdot A_{sv} \cdot d}{S_v}$						
15. Minimum shear reinforcement = $\frac{A_{sv}}{b.S_v} = \frac{0.40}{0.87 f_y}$						
Check all spacing of reinforcement	t as per st	andard guidelines.				
(20 N						
Sol: Design BM, $M_u = 180$ kNm (Hogging moment						
Given that $\frac{d}{b} = 2$						
Dimensions of the beam						
$M_u = M_{u \text{ limit}}$						
India's Best Online Coaching Platform for GATE, ESE, PSUs and SSC-JE						
Enjoy a smooth of	online learni	ng experience in various languages at your convenience				

Engineering Fublications	29	Civil Engineering						
$180 \times 10^6 = 0.138 \ f_{ck} \ bd^2$								
$180 \times 10^6 = 0.138 \times 20 \times \left(\frac{\mathrm{d}}{2}\right) (\mathrm{d}^2)$	(Fo	or $M_{20} \rightarrow f_{ck} = 20 \text{ N/mm}^2$ )						
$d = 507 \text{ mm} \approx 600 \text{ mm}$								
overall depth of beam, $D = d + 25 + 8 + \frac{20}{2}$								
$= 600 + 25 + 8 + \frac{20}{2}$								
$= 643 \text{ mm} \approx 650 \text{ m}$	m							
Width of beam, $b = \frac{d}{2} = \frac{600}{2} = 300 \text{ mm}$ Adopt D = 650 mm	ERI	NG ACA						
$d = 600 \text{ mm} > 507 \text{ mm} \therefore \text{ U.R.S}$		NO _B						
b = 300 mm		2						
Area of tension reinforcement required	Area of tension reinforcement required							
$A_{st} = \frac{0.5 f_{ck}}{f_{y}} \left[ 1 - \sqrt{1 - \frac{4.6M_{u}}{f_{ck}bd^{2}}} \right] bd$								
$=\frac{0.5\times20}{415}\left[1-\sqrt{1-\frac{4.6\times180\times10^{6}}{20\times300\times600^{2}}}\right]300\times$	600							
$A_{st} = 931.3 \text{ mm}^2$ Sin	ce 1	995						
Area of minimum tension reinforcement, $\frac{A}{b}$ $\frac{A_s}{300 \times 600} =$	$\frac{d_s}{d} = \frac{0.85}{415}$							
$A_s = 368.67 \text{ mm}^2 < 931.3 \text{ mm}^2 \text{ o.k}$								
Area of maximum tension reinforcement								
$0.04bD = 0.04 \times 300 \times 650 = 7800 \text{ mm}^2 > 900000000000000000000000000000000000$	931.3 1	$nm^2$ $\therefore$ o.k						
Number of 20 mm $\phi$ bars required								

Regular Live Doubt clearing Sessions |Free Online Test Series | ASK an expertAffordable Fee |Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

ACE ONLINE

# ACE

# $n = \frac{A_{st}}{a_{st}} = \frac{931.3}{\frac{\pi}{4} \times 20^2} = 2.96 \approx 3$

Provide  $3 - 20 \text{ mm} \phi$  of Fe - 415

#### Design for shear force

 $V_u = 180 + 180 = 360 \text{ kN}$ 

Nominal shear stress

$$\tau_{v} = \frac{V_{u}}{bd} = \frac{360 \times 10^{3}}{300 \times 600} = 2 \text{ N/mm}^{2}$$
  
$$\tau_{v} < \tau_{cmax} \qquad \therefore \text{ o.k}$$

 $\tau_v < \tau_c$   $\therefore$  not safe in shear

Hence design the shear reinforcement

#### Design shear force for stirrups

$$V_{us} = V_u - \tau_c bd = 360 \times 10^3 - 0.88 \times 300 \times 600$$
  
= 201.6 kN

Assume 2 legged stirrups

Spacing required for vertical stirrups

$$V_{us} = 0.87 f_y A_{sv} \frac{d}{c}$$

$$201.6 \times 10^3 = 0.87 \times 415 \times 2 \times \frac{\pi}{4} \times 8^2 \times \frac{600}{100}$$
 nce 1

S_v

 $s_v = 108 \text{ mm}$ 

spacing required for shear reinforcement

$$\frac{A_{sv}}{b.s_{r}} \ge \frac{0.4}{0.87 f_{y}}$$
$$\frac{2 \times \frac{\pi}{4} \times 8^{2}}{300 \times s_{v}} \ge \frac{0.4}{0.87 \times 415}$$

 $s_v \leq \ 302 \ mm > 108 \ mm \qquad \therefore \ o.k$ 



ESE 2021 Mains_Paper_1 Solutions

ACE Englacering Publications	31	Civil Engineering				
Maximum spacing for vertical stirrups. $0.75 d = 0.75 \times 600 = 450 \text{ mm}$ smaller						
300 mm ) $s_v = 108 \text{mm} < 300 \text{mm}$						
adopt 2 legged 8 mm $\phi$ @ 100 mm c/c						
<ul> <li>650 mm</li> <li>650 mm</li> <li>2-10 \$\overline\$</li> <li>300 mm</li> <li>4an</li> <li>6an</li> <li>6an</li> <li>6bn</li> <li></li></ul>	mm ger bars: . help of n ts in timl	$2 - 10 \text{ mm } \phi$ neat sketches.				
<b>Sol:</b> The horizontal section of a typical exogeno	us tree h	(10 M) as the following parts:				
<b>Pith:</b> This is the inner most part or core ha	<b>Pith:</b> This is the inner most part or core having soft tissues. It is found near about the centre of log					
or a timber. Its size varies from 1.5 mm to	or a timber. Its size varies from 1.5 mm to 10 mm in dia.					
Heart Wood: The inner part of the tree surrounding the pith is called Heart Wood. It imparts						
rigidity to tree and provides strong and dur	rigidity to tree and provides strong and durable timber for various engineering purposes.					
takes active pan in growth of tree. It is Light	it in colo	our and weight.				


Engineering Fublications	32	ESE 2021 Mains_Paper_1 Solutions

**Cambium Layer:** It is the thin layer between sap wood and inner bark. It indicates sap which has yet to be converted into sap wood.

**Inner Bark:** It is the Inner skin or layer covering the cambium layer. It gives protection to the cambium layer.

**Outer Bark:** It is the outer most protective layer of the tree. It consists of cells of wood fiber and it is known as cortex.

**Medullary Rays:** These are thin radial fibers extending from pith to cambium layer. It holds together the annual rings of heart wood and sapwood. One ring is added every year, which decides the age of the tree.



### **Heart Shakes:**

These are the cracks in timber which extend from pith to sapwood in the direction of medullary rays which occur due to shrinkage of interior parts of a tree.

### **Star Shakes:**

These are the cracks in timber which extend from bark towards sap wood which occur due to extreme heat or severe frost during the growth of the trees.



India's Best Online Coaching Platform for GATE, ESE, PSUs and SSC-JE Enjoy a smooth online learning experience in various languages at your convenience

## Exclusive Online Live Classes for ESE | GATE | PSUs - 2023

## **Batches for English**

## Morning & Evening (Last Batch)

13th November, 2021

## Regular Batches



## Batches for Hindi + English (Hinglish)

## College Goers Batch (Evening Batch)

13th November, 2021 (18th December, 2021

## **COURSE DETAILS**

- For ESE+GATE+PSUs Students
  - >> Online Live Classes Technical Subjects Only
  - >> Recorded Classes General Studies Subjects & ESE Addl. Subjects. on ACE Online (Deep Learn)
- Recorded version of the online live class will be made available through out the course (with 3 times view)
- Doubt clearing sessions and tests to be conducted regularly
- Free study material (hard copy)
- Morning Batch: 6 am 8 am
- Evening Batch: 8 pm 10 pm
- Regular Batches: 4 6 Hours on Weekdays,
   6 7 Hours on Sundays and Public Holidays
- Access the lectures from any where





## Scan QR Code to Enroll



## ACE

The proportion of aggregate B in the mix = b = 1-a  $FM_{mix} = FM_A \times a + FM_B \times b$   $7.18 = 7.83 \times a + 6.81 \times (1-a)$ 7.18 = 7.83a + 6.81 + 6.81a

1.02a = 0.37

$$a = 0.3627 \& b = 1 - a = 0.6373$$

Therefore, the proportion of aggregate A in the mix is 36.27% and the proportion of aggregate B in the mix is 63.73%.

- (b). A T-section beam is constructed by gluing two pieces of wood together as shown in the figure. The maximum stress in the glue joints is to be limited to 2 MPa in tension and the maximum shear stress is to be limited to 1.7 MPa
  - (i). Determine the stress components on element at point 'P'. Point 'P' is located at glued joint.
  - (ii). Determine the principal stresses at point 'P'.
  - (iii). Show these stresses on properly oriented 2-D element.
  - (iv). Determine the maximum value for load w.

Sign convention for shear force and bending moment are as follows:





### ESE 2021 Mains_Paper_1 Solutions

 Bit Mence, maximum SF = 3 wkN

Maximum BM = 4 w Knm  $\overline{y} = \frac{150 \times 50 \times 25 + 50 \times 150 \times (50 + 75)}{50 \times 150 + 150 \times 50} = 75 \text{ mm}$  $I_{xx} = \frac{50 \times 150^3}{12} + 50 \times 150 \times 50^2 + \frac{150 \times 50^3}{12} + 150 \times 50 \times 50^2$  $= 53.125 \times 10^6 \text{ mm}^4$  $(A)_{total} = 150 \times 50 + 150 \times 50 = 15000 \text{ mm}^2$  $\tau_{\rm p} = \frac{Va \, \overline{y}}{Ib} \Longrightarrow \frac{3w \times 150 \times 50 \times 50}{53.12\delta \times 10^6 \times 50}$  $\Rightarrow \tau_P \leq 1.7$  $\Rightarrow \frac{3 \mathrm{w} \times 150 \times 50 \times 50}{53.125 \times 10^6 \times 50} \leq 1.7$  $W \le 4013 \text{ N/m}$  $W \le 4.013 \text{ kN/m}$  $\sigma_{\rm P} = \frac{M}{I} y_{\rm P}$  $=\frac{4w \times 10^{3} \times 25}{53.125 \times 10^{6}} \le 2$  $\Rightarrow$  w  $\leq$  1.062 kN/m  $\Rightarrow$  Therefore man value of w = 1.062 kN/m Stress components on element at point P I.  $\tau_P = 0.45 \text{ MPa}$ Р  $\sigma_P = 2 MPa$  $\sigma_{\rm P} = 2 \, \rm MPa$ India's Best Online Coaching Platform for GATE, ESE, PSUs and SSC-JE Enjoy a smooth online learning experience in various languages at your convenience

### ACE Engineering Publications

**Civil Engineering** 

$$\tau_{p} = \frac{3w \times 150 \times 50 \times 50}{53.125 \times 10^{6} \times 50}$$

$$= 0.45 \text{ MPa}$$

$$\Pi. \sigma_{max} / \sigma_{min} = \frac{\sigma_{p}}{2} \pm \sqrt{\left(\frac{2}{2}\right)^{2} + \tau_{p}^{2}}$$

$$= \frac{2}{2} \pm \sqrt{\left(\frac{2}{2}\right)^{2} + (0.45)^{2}}$$

$$= 1 \pm \sqrt{1 + 0.2028}$$

$$= 1 \pm 0.965 \text{ MPa}$$

$$\sigma_{max} = 2.096 \text{ MPa}$$

$$\sigma_{min} = 0.0965 \text{ MPa}$$
III.
$$\tau_{p} = 0.45 \text{ MPa}$$

$$\sigma_{p} = 2 \text{ MPa}$$

$$P + \sigma_{p} = 2 \text{ MPa}$$

$$Tv. w = 1.062 \text{ kN/m}$$

(c). An RCC cantilever retaining wall is to be designed to support the soil as shown below. Design and sketch the reinforcement for vertical wall only. Also sketch the position of main reinforcement in Toe and Heel slab. (Do not design Toe and Heel slab). Neglect the effect of passive earth pressure and self-weight of vertical wall. Water table is not affecting the moisture condition of retained soil.





<b>p</b> t	0.15	0.25	0.5	0.75
$\tau_{\rm c}$	0.28	0.36	0.48	0.56

(20 M)

E

India's Best Online Coaching Platform for GATE, ESE, PSUs and SSC-JE Enjoy a smooth online learning experience in various languages at your convenience

## ACE

**Civil Engineering** 

Sol: 
$$K_a = \frac{1-\sin\phi}{1+\sin\phi} = \frac{1-\sin 30}{1+\sin 30} = \frac{1}{3}$$
  
Moment at the base of stem  
 $M = K_a \frac{\gamma H^3}{6} = \frac{1}{3} \times 20 \times \frac{4^2}{6} = 71.11 \text{ kN-m}$   
Design BM,  $M_a = 1.5 \text{ m} = 1.5 \times 71.11 = 106.665 \text{ kN-m}$   
 $d = \frac{M_a}{R_{ab}} = \sqrt{\frac{106.665 \times 10^9}{0.138 \times 20 \times 1000}} = 196.58 \text{ mm}$   
Adept min effective thickness - 400 mm > 196.58 mm  
 $\therefore$  U.R.S  
Area of main reinforcement - required  
 $\frac{M_a}{bd^2} = \frac{106.665 \times 10^9}{1000 \times 400^2} = 0.667 \rightarrow P_t = 0.204$   
 $P_t = \frac{100.665}{bd} = 0.204$   
 $A_{at} = \frac{0.204 \times 1000 \times 450}{100} = 816 \text{ mm}^2$   
• Area of min tension reinforcement  
 $\frac{0.12}{100} \text{ bd} = \frac{0.12}{100} \times 1000 \times 450 = 540 \text{ mm}^2 \times 816 \text{ mm}^2$   
 $\therefore$  O.K  
(Assume effective cover = 50 mm)  
• Area of max tension reinforcement  
 $0.04bD = 0.04 \times 1000 \times 450 = 18000 \text{ mm}^2 > 816 \text{ mm}^2$   
 $\therefore$  O.K  
• Distribution reinforcement in a stem  
Let us provide min steel = 540 mm^2  
Spacing of main reinforcement in stem

Regular L Affordable Fo

Regular Live Doubt clearing Sessions|Free Online Test Series| ASK an expertAffordable Fee|Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

### ESE 2021 Mains_Paper_1 Solutions





- Detailed Analysis of relevant questions of each topic
- Duration of course 120 days.
- 20% Discount for ACE old students

Online

Test

**Series** CE | ME | EE

# Scan to

Download App Google play

## UTTAR PRADESH **PUBLIC SERVICE COMMISSION**

# **Assistant Engineer-2021**

Starts from: **1**st **Dec-2021** 

No. of Tests: 16 Subject Wise: 12 Mock Tests: 4

All tests will be available till **UPPSC AE Examination** 

	41	Civil Engineering
--	----	-------------------

### **SECTION-B**

### 05.

(a). A rectangular pre-stress concrete beam has a cross-section of 200 mm × 300 mm. Its effective span is 8 metres. This beam is pre-stressed by a straight cable, 50 mm below the central longitudinal axis. This beam supports an imposed load of 20 kN/m.

Find the magnitude of pre-stressing force which can balance the stresses due to dead load and imposed load at bottom fibre of mid-span. Unit weight of concrete :  $25 \text{ kN/m}^3$ .



### ACE Engineering Publications

# $M = \frac{w\ell^2}{8} \text{ (at centre)}$ $= \frac{21.5 \times 8^2}{8} = 172 \text{ kNm}$

Now, to balance the stress at bottom fibre

 $\sigma_{B}=0$ 

 $\Rightarrow$ 

$$\Rightarrow \frac{P}{200 \times 300} + \frac{P \times 50 \times 6}{200 \times 300^2} = \frac{172 \times 10^6 \times 6}{200 \times 300^2}$$

$$P + \frac{P \times 50 \times 6}{300} = \frac{172 \times 10^6 \times 6}{300}$$

$$2P = 3440 \text{ kN}$$

$$P = 1720 \text{ kN}$$

(b) The compound beam is subjected to a uniform dead load of 1.5 kN/m and a single live load of 10 kN. Determine

i. The maximum negative moment created by these loads at 'A', and

ii. Maximum positive shear at 'B'.

Assume A is a fixed support, B is a pin and C is a roller.



42

ESE 2021 Mains_Paper_1 Solutions



	ACE Englosering Publications	44	ESE 2021 Mains_Paper_1 Solutions
(c).	Drive the expression for displacement of	f an un-dar	nned free vibration of motion for a single degree
	of freedom system from first principles.	Plot the ur	n-damped free vibration response.
			(12 M)
Sol:	Consider a mass 'm' on a free surface at	tached to a	wall through a spring.
	K	 	
	Where the system is disturbed by a forc	e (say F) t	to start the vibrations, the spring generates force
	$(F_K)$ that tends to pull the system to equi	librium.	
	$F_K = Kx$		
	F = ma	EERIA	IG ,
	= mx		
	To be in equilibrium		E.
	$F_k + F = 0$		
	$\Rightarrow$ m $\ddot{x}$ + kx = 0		
	$\Rightarrow \ddot{\mathbf{x}} + \frac{\mathbf{k}}{\mathbf{m}}\mathbf{x} = 0$		m
	But $\sqrt{\frac{K}{m}} = \omega_n$ (natural frequency)		
	$\therefore  \ddot{\mathbf{x}} + \omega_n^2 \mathbf{x} = 0$		
	Solution of the differential equation	ince is	795
	$\mathbf{x} = \mathbf{A} \sin \omega_{n} \mathbf{t} + \mathbf{B} \cos \omega_{n} \mathbf{t}$		
	Let at time $t = 0$ , $x = x_0$		
	$V = V_0$		
	$\therefore \qquad x(0) = A\sin(0) + B\cos(0)$	$)) = \mathbf{x}_0$	
	$\Rightarrow$ B = x ₀		
	$\dot{\mathbf{x}}(0) = \mathbf{A}\omega_{n}\cos(\omega_{n}t) - \mathbf{B}\omega_{n}\sin\omega_{n}t = \mathbf{V}$	0	
3	India's Be	est Online Coa	ching Platform for GATE, ESE, PSUs and SSC-JE
3,	Enjoy a smooth o	nline learning	g experience in various languages at your convenience

## ACE

45

### Civil Engineering



Engliseering Publications	46	ESE 2021 Mains_Paper_1 Solutions

(d). Calculate the safe load of a compression member made up to a welded box section as shown in the figure. The effective lengths along major axis and minor axis are 5 m and 2m respectively. The yield stress of the material is 340 MPa.

KL	Design compressive
r	Stress f _{cd} (MPa)
20	299
30	278
40	256



(12 M)

16 mm

Sol: Given:

Effective length along major axis = 5 m Effective length along minor axis = 2m Yield stress of material = 340 MPa Now,

 $I_{zz} = MOI$  about z-z axis 16mm  $=\frac{1}{12}\times182\times482^{3}-\frac{1}{12}\times150\times450^{3}$ 450 mm ī Z  $= 559.303 \times 10^{6} \text{ mm}^{4}$  $I_{yy} = MOI$  about y-y axis 16 mm Y  $=\frac{1}{12} \times 482 \times 182^{3} - \frac{1}{12} \times 450 \times 150^{3}$  $I_{yy} = 115.584 \times 10^6 \text{ mm}^4$ Hence, z-z is major axis y-y is minor axis  $A_g = gross area = A$  $=482 \times 182 - 450 \times 150 = 20224 \text{ mm}^2$ India's Best Online Coaching Platform for GATE, ESE, PSUs and SSC-JE Ð Enjoy a smooth online learning experience in various languages at your convenience ACE Engineering Publications

47

### **Civil Engineering**

Now, calculating radius of gyration about major and minor axis

$$r_{yy} = \sqrt{\frac{I_{yy}}{A}} = \sqrt{\frac{115.564 \times 10^6}{20224}} = 75.59 \text{ mm}$$
$$r_{zz} = \sqrt{\frac{I_{zz}}{A}} = \sqrt{\frac{559.303 \times 10^6}{20224}} = 116.3 \text{ mm}$$

Calculating slenderness ratio

$$\left(\frac{\text{KL}}{\text{r}}\right)_{zz} = \frac{5000}{166.3} = 30$$
$$\left(\frac{\text{KL}}{\text{r}}\right)_{yy} = \frac{2000}{75.59} = 26.458$$

Choosing the maximum of the above two values i.e.  $\frac{KL}{r} = 30$ , hence  $f_{cd} = 278$  MPa (Given)

Factored load =  $f_{cd} \times A_g$ 

$$= 278 \times 20224 = 5622.272 \text{ kN}$$

Safe/working load =  $\frac{5622.272}{1.5}$  = 3748.181 kN

(e). (i). What information is generally needed to be provided in tender documents? (6 M)

Sol: The following documents/details need to be provided in Tender documents

- i. Name of the authority inviting the bids/tenders.
- ii. Name of the project and brief details of the project
- iii. Conditions for eligibility of contracting agencies to submit a bid.
- iv. Estimated cost and time of completion of the project.
- v. Technical specifications and drawings.
- vi. Earnest money to be deposited with the completed tender.
- vii. The date and time by which the bids are to be submitted and the place of submission.
- viii. Terms and conditions like general conditions of contract (GCC) and special conditions of contract.

 Regular Live Doubt clearing Sessions
 |
 Free Online Test Series
 | ASK an expert

 Affordable Fee
 |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

AC Engineering P	<b>DE</b>	4	8	ESE 2021 Mains_Paper_1 Solutions
Bid d	locumer	nts are to be prepared in the fol	low	ing volumes
Volu	me	<b>Bid Documents</b>		
Ι	:	Notice Inviting Tender (NIT)		
	:	Instructions to Bidders (ITB)		
	:	General Conditions of Contra	ct (	GCC)
	:	Special Conditions of Contrac	et (S	SCC)
II	:	Technical Specifications		
III	:	Forms of Bid		
	:	Bill of Quantities		
	:	Bid Security, Performance Se	cur	ity Forms
	:	Schedules for Supplementary	Inf	ormation
	:	Sample Forms for updating qu	uali	fication data

Drawings IV : Documents to be furnished by the bidder V :

#### (ii). Differentiate between 'Lump sum contract' and 'Unit price contract'. (6 M)

Sol:

	Lump-sum Contract	Unit Price (or) Item rate Contract
1.	The lump-sum amount refers to the	1. In this contract, the tender
	total sum of money for which the	document contains a detailed bill
	contractor agrees to build the	of quantities (BOQ) and the
	required facility with all possible	contractor has to specify the unit
	risks.	price (or) item rate against each
		item
2.	The owner/client knows before hand	2. The contractor agrees to carryout a
	exactly what the work will cost.	unit quantity of a particular work.
		Hence, the total cost can be arrived
		after completion of the work.

India's Best Online Coaching Platform for GATE, ESE, PSUs and SSC-JE

Enjoy a smooth online learning experience in various languages at your convenience

Storie Difference Publications
--------------------------------

3.	Detailed measurements of the work	3.	Detailed measurements of the
	done are not required.		work done need to be considered.
4.	Easy to prepare a comparative	4.	Difficult to prepare a comparative
	statement.		statement.
5.	Not suitable when the work has lot	5.	Suitable for all kinds of works,
	of additions or alterations.		however 'BOQ' is required.
6.	Technical specifications and	6.	Tight inspection and supervision is
	drawings are provided before the		required when the quantities are
	execution		increased or decreased.

**06.** 

## INEERING

(a). Design an RCC square column with the following data. Provide the main reinforcement and stirrups. Check the standard guidelines of IS 456 : 2000.

Since 1995

- 1. Column size : 500 mm × 500 mm
- 2. Concrete grade M 20
- 3. Steel reinforcement Fe 415
- 4. Design load : 1600 kN
- 5. Design moment  $M_{ux} = M_{uy} = 100 \text{ kN}$
- 6. Eccentricities  $e_x = e_y = 20 \text{ mm}$
- 7. Minimum reinforcement : 1.2%

8. Check 
$$\left[\frac{M_{ux}}{M_{ux_1}}\right]^{\alpha_n} + \left[\frac{M_{uy}}{M_{uy_1}}\right]^{\alpha_n} \le 1.5$$
, where  $\alpha_n = \frac{P_u}{P_{uz}}$ 

- 9. Diameter of longitudinal reinforcement : 20 mm
- 10. Diameter of lateral ties : 8 mm
- 11. Nominal cover to reinforcement : 40 mm

Compression with Bending – Rectangular Section – Reinforcement Distributed equally on four sides.



 Regular Live Doubt clearing Sessions
 Free Online Test Series
 ASK an expert

 Affordable Fee
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

ESE 2021 Mains_Paper_1 Solutions



50

ACE



	ACE Engineering Publications		52	ESE 2021 Mains_Paper_1 Solutions		
Sol:	effective cover d ['] =	$= 40 + 8 + \frac{20}{2} = 58$ mm				
	$\frac{d'}{D} = \frac{58}{500} = 0.11 \simeq$	0.1				
	Given minimum pe	ercentage of steel $p = 1$ .	.2%, I	Let us take 1.4%		
	$\frac{p}{f_{ck}} = \frac{1.4}{20} = 0.07$					
	$\frac{\mathbf{p}_{u}}{\mathbf{f}_{ck}\mathbf{b}\mathbf{D}} = \frac{1600 \times 1}{20 \times 500 \times 100}$	$\frac{0^3}{500} = 0.32$				
	From the chart	GINE	ERI	NGAC		
	For $\frac{p}{f_{ck}} = 0.07$ and	$\frac{p_u}{f_{ck}bD} = 0.32$	4	YORX		
	$\frac{M_u}{f_{ck}bD^2} = 0.12$					
	$M_{ux1} = 0.12 f_{ck}bD^{2}$	$^{2} = 0.12 \times 20 \times 500 \times 50$	$00^2 = 3$	300 kNm		
	$M_{uy1} = M_{ux1}$	(b = D)				
	$P_{uz} = 0.45 f_{ck} Ac + 0$	0.75 f _y Asc	Ce 1	995		
	$A_{\rm s} = \frac{1.4}{100} \times 500 \times 5$	$300 = 3500 \mathrm{mm^2}$		F.		
	$Ac = (500 \times 500 - 3500) = 246500 \text{ mm}^2$					
	$P_{uz} = 0.45 \times 20 \times 246500 + 0.75 \times 415 \times 3500$					
	= 3307.875 kN					
	$\frac{p_{u}}{P_{uz}} = \frac{1600}{3307.875} =$	0.48				
5555		India's Best O Enjoy a smooth onlin	nline Co e learni	eaching Platform for GATE, ESE, PSUs and SSC-JE ng experience in various languages at your convenience		



## **Pre-Recorded Classes**

For ESE I GATE I PSUs | SSC-JE curated by India's best minds. Access courses through Mobile / Tablet / Laptop / Desktop from anywhere.

We have subscriptions options of **1 Month**, **3 Months**, **6 Months**, **12 months**, **18 months and 24 months**.

## CE | ME | EC | EE | CS | IN | PI

## **OUR COURSES**

- GATE + PSUs (650+ Hours) (English)
- GATE + PSUs (650+ Hours) (Hinglish)
- ESE: General Studies (250+ Hours)
- ESE + GATE + PSUs (1000+ Hours)
- SSC-JE : Technical (CE) (400+ Hours)
- SSC-JE : GS (200+ Hours)
- APPSC / TSPSC-AEE: Tech. (CE) (500+ Hours)
- APPSC / TSPSC-AEE/AE: GS (350+ Hours)
- GENCO / TRANSCO / DISCOMs: EE (550+)
- APPSC-AE (Technical Paper-II) (100+ Hours)
- Quick Revision Course: CSE (250+ Hours)



#### ACE Engineering Publications

### **Civil Engineering**





Engineering Publications	55	Civil Engineering
BM under 90 kN (from right support) = 67.	2 ( 8 –	- 1.28)
= 451	.58 kl	Nm
: Absolute bending moment = maximum (	399.68	8, 451.58)
= 451.58 kNn	n	
(or)		
06. (b) $20 \text{ kN}$ 50 kN R 90 kN 3  m 5 m Reference log 2.44  m X = 2.56 m A 16 m	B	NGACADERAZ

**Note:** In this problem the section of the beam is not specified. We have to choose the location of maximum BM. Maximum BM occurs near center.

To get maximum BM under a chosen wheel load, the resultant of load system & the chosen load, must be at equal distance from centre. Then maximum BM occurs under the chosen load.

To locate the resultant (R), use varignon's theorem

$$\overline{\mathbf{x}} = \frac{90 \times 0 + 50 \times 5 + 20 \times 8}{90 + 50 + 20} = 2.56 \text{ m}$$

In this problem, wheel load is not chosen. We have to choose the wheel load under which maximum BM may happen. In this case 50 kN is nearer to the resultant but greater load is 90 kN is slightly away from the resultant. So we have to check the possibility of getting max BM under 50 kN and 90 kN



Regular Live Doubt clearing Sessions|Free Online Test Series| ASK an expertAffordable Fee|Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

## ESE 2021 Mains_Paper_1 Solutions





<b>ACE</b>	
State Lagineering Publication	

57

Maximum BM under 90 kN =  $20 \times 0.536 + 50 \times 1.79 + 90 \times 3.89$ = 450.32 kN-m

Maximum BM occur under 90 kN when it is at distance of 9.28 m from left support and magnitude of maximum BM is 450.32 kN-m

(c). (i). Briefly discuss various factors affecting the output of power shovel to excavate earth.

(10 M)

**Sol:** Factors affecting the output of power shovel:

- 1. Angle of swing: The horizontal angle between the place of the dipper or bucket, when it is digging and the place when discharging the soil load. The output of the power shovel is inversely proportional to the cycle time i.e., the angle of swing.
- 2. Job conditions: Job conditions can be classified as excellent, good, fair and poor depending on the conditions of the work site and climatic conditions.
- 3. Optimum Depth of Cut: The optimum depth of a cut is the depth which produces the greatest output and at which the dipper comes up with a full load without undue-crowding. The optimum depth of cut varies with class of soil material and the size of dipper or bucket.
- 4. Management Conditions: Excellent management conditions achieve maximum excavation production while poor can minimum yield. The small size of the hauling unit demands a small shovel size. A skilled operator can increases the output, by his skill and experience of manipulation of excavator. The physical condition of the shovel increases the production. The bad components subject to wear and tear.
- 5. Site Condition: The output performance of shovel depends on site conditions also which includes the physical conditions of site such as topography and geology of the site, geotechnical conditions of ground or rocks etc. Excavation might be tough for site containing hard soil. Rate of excavation may vary with respect to climatic changes also like temperature, rain snow etc.



Regular Live Doubt clearing Sessions|Free Online Test Series| ASK an expertAffordable Fee|Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

6. Cycle Time: Cycle time is defined as the amount of time taken by machine to perform a repetitive segment of an operation, typically measured as the time it takes the machine to return to the same position. It is the time taken to complete one entire excavating process of an excavator which includes excavation time, time to swing to dumping position, dumping time and time to return to the digging position. Greater angle of swing results in greater cycle time which may lead the work to delay.

58

ACE

- 7. Bucket Size: A bucket or dipper is a bulk material handling component provided at the end of the dipper stick arm of an excavating machine. Selection of bucket size depends on the material to be excavated. The size of this bucket determines its capacity to excavate the material in one particular cycle. Thus, maximum capacity of bucket can save number of cycle and time required for excavation.
- 8. Repairs and Maintenance of Equipment: A regular maintenance is one of the most important factors in terms of cost and performance. Good maintenance will minimize maintenance and repair costs and maximize production and profits, with greatest impact on profit. It helps to control costs and service intervals, lengthens equipment life, minimizes downtime and adds resale value.
- **9. Operator's Skill:** An operator plays a major role in working of any equipment. Proper use of equipment is what we need to obtain best result from the machine. A skilled or trained operator can handle the equipment in an effective manner providing maximum output from machine. Improper use equipment can cause damages to it and injuries to the operator as well. Thus, operator's skill is an important parameter to be considered.

(ii). What are the precautions to be taken for labour safety during excavation works?

(10 M)

**Sol:** Excavation work is the first activity on any construction site. It starts from digging the pit for the structure for either shallow or for deep foundations. It is completed by filling excavated soil or soil brought from outside in the same pit.

	India's Best Online Coaching Platform for GATE, ESE, PSUs and SSC-JE
	Enjoy a smooth online learning experience in various languages at your convenience

# ---- Online Test Series



No. of Tests : 65 + Free 52 Practice Tests of GATE - 2021 Online Test Series Total Tests : 117

# ESE – 2022 Prelims

No. of Tests : 44 + Free 30 Practice Tests of ESE - 2021 Online Test Series Total Tests : 74



All tests will be available till GATE - 2022 & ESE -2022 (Prelims) examinations respectively.

## **TEST SERIES HIGHLIGHTS**

Detailed Solutions are Available | Video Solutions are Available for Difficult Questions. All India rank will be given for each test | Comparison with all India toppers of ACE student

## **TEST WISE STATISTICS:**





## **QUESTION WISE STATISTICS:**

Time Usage			
Your Time :	67% of Avg. Time		
1 minute 21 seconds			
Avg. Time :	2 minutes 1 seconds		
2 minutes 1 seconds			
Top 10 Avg. Time :	2 minutes 37 seconds		
2 minutes 37 seconds			
Top 50 Avg. Time :	2 minutes 41 seconds		
2 minutes 41 seconds			
Top 100 Avg. Time :	2 minutes 48 seconds		
2 minutes 48 seconds			





ACE Englosering Publications	59	Civil Engineering
---------------------------------	----	-------------------

### Safety Precaution for labour safety while Excavation Work:

- Prepare firm and broad approach roads.
- Avoid work in rainy season.
- The nail should not be lying around, after the completion of layout work.
- Barricade the site to restrict the entry of animal and the unauthorised person on site.
- Ensure that workers are wearing personal protective equipment.
- Safety belt, helmet, rubber hand gloves, goggles, facemask and rubber shoes are of ISI mark.
- Provide ladder to Excavation workers to climb in and out of the pit.
- First-Aid kits should be immediately available on site.
- Provide proper ventilation and electric lights at a time of work.
- Provide barricading to excavated pit. Check the shoring for adequate support.
- Check the material transporting machine for safe operation.
- The movement of the trucks should be away from the pit.
- Machine operator must have recognised agency's license.
- Do the sufficient pit size by providing extra working space on all sides.
- Cleaning of area and housekeeping of material is necessary.
- **07.**

(a). A four-storey reinforced concrete (RC) office building located in seismic zone IV is shown in the figure. The RC frames are infilled with brick masonry. The lumped weights due to dead loads is 15 kN/m² on the floors and 12 kN/m² on the roof. The floors have to cater to a live load of 4 kN/m² on the floors and 1.5 kN/m² on the roof. Calculate the design seismic load on the structure at different floors using Linear Static (Equivalent Static) analysis, along x-axis.



 Regular Live Doubt clearing Sessions
 |
 Free Online Test Series
 | ASK an expert

 Affordable Fee
 |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages



	ACE Engineering Publications		61	Civil Engineering
Sol:	Given,			
	At floor level:			
	Dead load = $15 \text{ kN/m}^2$			
	Live load = $4 \text{ KN/m}^2$			
	At roof level:			
	Dead load = $12 \text{ KN/m}^2$	2		
	Live load = $15 \text{ kN/m}^2$			
	Z= 0.4, I = 1.2; R = 5	INE	ERI	NG
	Step 1: Seismic weigh	t ENGINE	Ж	ACAD.
	Floor area = $20 \times 12 =$	240m ²		E
	As per IS 1893			
	As live load >4 kN/m ²	in floors, 50% is cons	sidere	ad States and States
	At roof, live load need	not be considered		
	∴ Seismic weight of f	loors = 240 $(15 + 0.5)$	<4)	
	$\Rightarrow W_1 = W_2 = W_3 = 40$	080 kN Sin	ce 1	995
	$roof = W_4 = 240(12)$			
	= 2880 kN			
	Total seismic weight o	f structure		
	$= 3 \times 4080 + 2880$			
	=15120 KN			
			<u> </u>	
500 C		Regular Live Doubt	clearin ble 1M	g Sessions               Free Online Test Series         ASK an expert          3M  6M  12M  18M and 24 Months Subscription Packages

ACE Engineering Publications	62	ESE 2021 Mains_Paper_1 Solutions
Step 2: Fundamental period and base shear		
(a) Along x-direction		
$T = \frac{0.09h}{\sqrt{d}}$		
h =3.6+3.3+3.3+3.4 = 13.6 m		
d = 20 m		
$\therefore T = \frac{0.09 \times 13.6}{\sqrt{20}}$		
= 0.2737  sec	ERI	NGAC
As T < 0.55 sec, $\frac{S_a}{g} = 2.5$	4	YO HIZ
Horizontal acceleration $A_h = \frac{z}{2} \frac{I}{R} \frac{S_a}{g}$		
$=\frac{0.24}{2} \times \frac{1.2}{5} \times 2.5$		
= 0.072		
Design Base shear = $A_h W$	ce	1995
= 0.072×15120		
= 1088.64  kN		
Step 3: Distribution of base shear		
Base shear along height = $Q_1 = V_B \frac{W_i h_i^2}{\Sigma W_i h_1^2}$		
India's Best O	nline Co	paching Platform for GATE, ESE, PSUs and SSC-JE
<b>NEW ONLINE</b> Enjoy a smooth online	e learni	ng experience in various languages at your convenience

	63	Civil Engineering
Lagineering Publications		

Storage level	h _i	W _i (kN)	$W_i h_i^2$ in $(x10^3)$	$\frac{W_ih_i^2}{\Sigma W_ih_i^2}$	$V_{\rm B} \times \frac{W_{\rm i} h_{\rm i}^2}{\Sigma W_{\rm i} h_{\rm i}^2} (KN)$
4	13.6m	2880	532.68	0.442	481.18
3	10.2m	4080	424.48	0.352	383.2
2	6.9m	4080	194.248	0.1613	175.6
1	3.6m	4080	52.876	0.0439	47.79
	$\Sigma W_i h_i^2 = 12$	$204.284 \times 10^{3}$			



(b). Analyse a continuous beam shown in the figure. During loading, the support B sinks by 12 mm.  $E = 210 \text{ GPa. } 1 = 5131.6 \times 10^4 \text{ mm}^4$ . EI is constant. Draw BMD and Elastic Curve.


# ESE-2022 (Prelims) OFFLINE TEST SERIES OFFLINE TEST SERIES No. of Tests : 24 20 Grand Tests 04 Mock Tests Streams: Starts from: 27th Nov-2021

# **HIGHLIGHTS:**

- 1. Meticulously designed tests series, which maximizes your potentials.
- 2. All India rank will be given for each test.
- 3. Detailed solutions will be provided for each test.

Call: 040-48539866, 40136222 | E-mail: testseries@aceenggacademy.com



Call: 040-48539866, 40136222 | E-mail: testseries@aceenggacademy.com

ACE Engineering Fublications	64 ESE 2021 Mains_Paper_1 Solutions
Sol:	
$A \xrightarrow{90 \text{ kN}} 20 \text{ kN/m}$ $A \xrightarrow{3 \text{ m}} 4 \text{ m}$ $B \xrightarrow{5 \text{ m}} 5 \text{ m}$	12  kN
$\delta_{\rm B}=12~mm=12\times10^{-3}~m$	
$E = 210 \text{ GPa} = 210 \times 10^9 \text{ N/m}^2 = 210 \times 10^6$	$kN/m^2$
$I = 5131.6 \times 10^4 \text{ mm}^4 = 5.1316 \times 10^{-5} \text{ m}^4$	
Distribution factor $(DF) = \frac{K}{\Sigma K}$	ERINGACA
Joint Member Relative Stiffness To	otal stiffness (ΣK) DF
BA 1/7	I 3I 41I 0.49
B BC $\frac{3}{4} \times I/5$	$\overline{7}^{+}\overline{20}^{-}=\overline{140}$ 0.51

I/5

1

0

Fixed End moments (FEM):

CB

CD

С

Assume all supports are fixed/locked & find the fixed end moments for each span

I/5



**Civil Engineering** 







ACE Engineering Academy, the leading institute for GATE, ESE, PSUs and SSC-JE offers postal coaching (Distance learning programme) for engineering students.

### **ACE PUBLICATIONS** ACE × DEEP GATE 2022 GATE 2022 GATE 2022 GATE 2022 GATE 2022 GATE 2022 MECHANICAL CIVIL ENGINEERING ELECTRICAL 14 14 DELP . ESE 2021 ESE 2021 MECHANICAL ESE 2021 ESE 2021 ESE 2021 **ESE 2021** ics & Te CIVIL ENGINEERING MECHANICAL ENGINEERING 0 0 33 ESE 2022 ESE 2022 **ESE 2022** ESE 2022 ACE ACE ESE 2021 E 2021 30 ELECTRONICS & TELECOMMUNICATION ENGINEERING ELECTRICAL MECHANICAL CIVIL ELECTRICAL (33) 40 ESE 2022 ESE 2022 ESE 2022 ESE 2022 ACR ACR SSC - JE SSC - JE 29 29 MECHANICAL CIVIL ELECTRICAL ENGINEERING TELECTR CIVIL ENGINEERING MECHANICAL ENGINEERING 2700 0 0 **KPWD** $( \bigcirc )$ SSC - JE CIVIL ENGINEERING SSC - JE MPSC ELECTRICAL GINEERING 3480 CIVIL 1 www.aceengineeringpublications.com amazon Flipkart 🙀

ACE Engineering Publication	67	Civil Engineering
--------------------------------	----	-------------------

(c). Differentiate between optimistic time estimate and pessimistic time estimate in a PERT network. A construction company has an opportunity to submit a bid for the construction of a residential building and a commercial building. The 3 time estimates (in months) for completion of each building are as follows:

	Optimistic Time (in months)	Most likely time (in months)	Pessimistic Time (in months)
Residential Building	3	4	6
Commercial Building	4	6	8

Determine the expected time for completion of each building. Also analyse which building has more reliable time estimate.

(20 M)

### Sol:

	Optimistic time estimate		Pessimistic time Estimate
1.	The estimate of minimum possible time in	1.	The maximum time taken by an activity with
	which an activity can complete under ideal		delay is called pessimistic time estimate.
	condition is called optimistic time estimate		
2.	This is the shortest possible time	2.	It is the longest time taken.
3.	It is a lower bound for the activity	3.	It is an upper bound for activity duration
4.	Probability of getting optimistic time is less	4.	Probability of getting pessimistic time is less
5.	It does not delay at any stage.		If there is any delay at every stage is
			included.
6.	If the working conditions are extremely good	6.	If the working conditions are extremely bad,
	then optimistic time is possible		then the activity will take pessimistic time.
7.	7. It is generally denoted by ' $t_o$ '		It is denoted by 't _p '
Residential building			
	Regular Live Doubt clearing Sessions   Free Online Test Series   ASK an expert		
	Affordable Fee   Available	1M  3M	6M  12M  18M and 24 Months Subscription Packages

## ESE 2021 Mains_Paper_1 Solutions

Given

ACE

 $t_o = 3$  months  $t_m = 4$  months,  $t_p = 6$  months

Expected time (t_e) = 
$$\frac{t_o + 4t_m + t_p}{6}$$
  
=  $\frac{3 + 4(4) + 6}{6}$   
= 4.167

 $\therefore$  Expected time of completion of residential building  $\cong$  4.2 months.

Variance (V_t) for Residential building = 
$$\left(\frac{t_p - t_o}{6}\right)^2 = \left(\frac{6-3}{6}\right)^2 = \left(\frac{3}{6}\right)^2 = (0.5)^2 = 0.25$$

Commercial building

Given

 $t_o = 4$  months  $t_m = 6$  months  $t_p = 8$  months

Expected time (t_e) =  $\frac{4+4(6)+8}{6}$ 

= 6 months

Variance (V_t) for commercial building =  $\left(\frac{t_p - t_o}{6}\right)^2 = \left(\frac{8 - 4}{6}\right) = \left(\frac{4}{6}\right)^2 = 0.44$ 

 $V_t$  for residential building  $< V_t$  for commercial building

:. Residential building has more reliable time estimate.

**08.** 

(a). Design an open cylindrical water tank of 350 m³ capacity. This tank will rest on ground and have a free-flexible joint at base. Overall height of tank is 4.0 m, including the free board of 200 mm. Design the vertical cylindrical wall of tank and sketch the details. Consider only maximum hoop tension for entire height. The following parameters may be used for design, if required.
1. Permissible direct tensile stress of concrete σ_{ct} = 1.2 MPa

		CED e Publications	69	Civil Engineering
	2. Permissible tensile stress of steel $\sigma_{st} = 150$ MPa up to 225 mm from water fall = 190 MPa beyond 225 mm from water fall			
	3.	Molecular ratio $M = 13$		
	<ul> <li>4. Minimum thickness required = 180 mm</li> </ul>			
	5.	Minimum % of reinforcement upto	100 mi	n thickness 0.24 % linearly reduces to 0.16% for
		more than 450 mm thickness.		
	6.	Use 16 mm diameter, high strength	deforme	ed bar for hoop reinforcement.
	7.	Use 8 mm diameter, high strength c	eformed	l bar for vertical distribution reinforcement.
	8.	Minimum diameter of tank required	= 11.0	m
	9.	Unit weight of water = $10 \text{ kN/m}^3$ .		
	10.	Tensile stress in concrete = $\frac{1}{A_{e} - (n)}$	n-1)A _s	NGACADE (20 M)
Sol:	Cap	acity of tank = $350 \text{ m}^3$		2
	Heig	ght of tank = 4m		
	Heig	ght of water = $4 - 0.2$ (Free boa	rd = 200	)mm)
		= 3.8 m		
	Dia	meter of the tank		
	volu	ame of tank = capacity of tank	ince 1	1995
	$\frac{\pi}{4}D^2H = 350$			E
	$\frac{\pi}{4}D^2 \times 3.8 = 350$			
	$D = 10.8 m \simeq 11m$			
	Hoop tension $T = \gamma H \frac{D}{2} = 10 \times 3.8 \times \frac{11}{2} = 209 \text{ kN}$			
2		ACE Regular Live Do	ubt clearin	g Sessions   Free Online Test Series   ASK an expert
5		ONLINE Affordable Fee   Av	ailable 1M	3M  6M  12M  18M and 24 Months Subscription Packages

ACE Engineering Publications	70	ESE 2021 Mains_Paper_1 Solutions			
Horizontal reinforcement to resist hoop tens	Horizontal reinforcement to resist hoop tension				
$A_{s} = \frac{T}{\sigma_{st}} = \frac{2.09 \times 10^{3}}{150} = 1393 \mathrm{mm}^{2}$	$A_{s} = \frac{T}{\sigma_{st}} = \frac{2.09 \times 10^{3}}{150} = 1393 \mathrm{mm}^{2}$				
Using 16 mm bars, spacing required					
$S = \frac{1000 \times \frac{\pi}{4} \times 16^2}{1393} = 144 \text{mm} \simeq 140 \text{ mm}$					
Actual area, $A_s = \frac{\frac{\pi}{4} \times 16^2 \times 1000}{140} = 1436$ mm Thickness of wall required	Actual area, $A_s = \frac{\frac{\pi}{4} \times 16^2 \times 1000}{140} = 1436 \text{mm}^2$				
$\sigma_{ct} = \frac{T}{1000 + (m-1)As}$	4	CAORA			
$1.2 = \frac{209 \times 10^3}{1000t + (13 - 1)1436}$					
t = 157 mm					
Provide min thickness = 180 mm					
Vertical reinforcement		0.05			
$t = 100 \text{ mm} \rightarrow p = 0.24\%$		775			
$t = 450 \text{ mm} \rightarrow p = 0.16\%$					
for t = 180 mm $\rightarrow$ p =0.24 $-\frac{0.24 - 0.16}{450 - 100} \times (10^{-100})$	80-1	(00) = 0.22			
$A_{s} = \frac{0.22}{100} \times t \times 1000$					
$=\frac{0.22}{100}\times180\times1000=396\text{mm}^2$					
India's Best O Enjoy a smooth onlin	nline Co e learni	aching Platform for GATE, ESE, PSUs and SSC-JE ng experience in various languages at your convenience			

	71	Civil Engineeri
--	----	-----------------

Use 8 mm , spacing required

$$S = 1000 \frac{ast}{As} = 1000 \times \frac{\frac{\pi}{4} \times 8^2}{396} = 127 mm$$

Provide 8 mm $\phi$  @ 120 mm c/c

(b). Two loads W₁ (equal to 1.5 kN) and W₂, resting on two inclined rough planes OA and OB are connected by a horizontal link PQ as shown in the figure. Find the maximum and minimum values of W₂ for which the equilibrium can exist. Take angle of friction for both the planes as 20°.





ng

Sol: At minimum value of W₂, the block W₂ impends to move up & the block W1 impends to move down





# Hearty Congratulations to our

# **GATE - 2021 TOP RANKERS**





(c). A rolled steel joist ISMB 450 is used as beam for the roof of a hall 7.5 m × 12 m. Thickness of RC slab is 125 mm. The rolled steel joists are spaced at 3 m centre to centre. The floor finishing load is  $1.5 \text{ kN/m}^2$  and the roof slab has to support a live load of 4 kN/m². Assume the self-weight of the beam as 1 kN/m. Take the width of bearing for the beam as 300 mm. The limiting deflection of the beam is span/240.  $\gamma_{mo} = 1.1$ ,  $f_y = 250$  MPa. Check the adequacy of the section against any two modes of failure.



E

 Regular Live Doubt clearing Sessions
 |
 Free Online Test Series
 | ASK an expert

 Affordable Fee
 |
 Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

	Engineering Fublications		74	ESE 2021 Mains_Paper_1 Solutions	
	Properties of ISMB 450 :				
	Elastic Section Modu	Elastic Section Modulus = $30390.8 \times 10^3 \text{ mm}^3$			
	Plastic Section Modu	$1 \ln Z_{\rm P} = 1533.36 \times 10^3$	mm ³		
	Depth of section $h =$	450 mm			
	Width of flange $b_f =$	150 mm			
	Thickness of flange t	$t_{\rm f} = 17.4 \ \rm mm$			
	Thickness of web t _w	= 9.4 mm			
	Radium at root $= 15$	mm			
	Shear capacity $V_d =$ Design bending stren	$\frac{A_{v}.f_{y}}{\sqrt{3}\gamma_{mo}}$ in the M _d = $\frac{\beta_{b}.Z_{p}.f_{y}}{\gamma_{mo}}$	ER <i>II</i>	VG ACAO	
	Slenderness ratio	Design compression S	Stress	(f _{cb} )	
	100	107			
	110	94.6			
	120	83.7			
	Buckling strength $F_b$ Capacity of web at it	$= (b_1 + n_1) t_w . f_{cd}$ s connection to the flan	ge F _w	$=\frac{(b_1 + n_2)t_w.f_{yw}}{\gamma_{mo}}$	
	The section ISMB 45	50 may be assumed as j	plastic	(20 M)	
5	Sol: Given, $f_y = 250$ MPa				
	Dead load (due to sla	$(b) = w_c \times \text{thickness slat}$	b × c/c	c spacing	
	= 2	$25 \times 0.125 \times 3 = 9.3751$	kN/m		
	Dead load (beam) = $\frac{1}{2}$	1 kN/m			
	Live load = $4 \text{ kN/m}^2 \times \text{c/c}$ spacing				
	$= 4 \times 3 = 12 \text{ kN/}$	'n			
	ACE	India's Best Oı	nline Co	aching Platform for GATE, ESE, PSUs and SSC-JE	
	ONLINE	Enjoy a smooth online	e learnii	ng experience in various languages at your convenience	

### Civil Engineering



75

CE

Regular Live Doubt clearing Sessions | Free Online Test Series | ASK an expert Affordable Fee | Available 1M |3M |6M |12M |18M and 24 Months Subscription Packages

ACE Engineering Publications	76	ESE 2021 Mains_Paper_1 Solutions			
Check for High or Low Shear	Check for High or Low Shear				
$0.6 V_d = 0.6 \times 555.043 = 333.026 \text{ kN} > 130.026  k$	$0.6 V_d = 0.6 \times 555.043 = 333.026 \text{ kN} > 130.89 \text{ kN}$				
Hence it is low shear case.					
Check for Design Bending Strength	Check for Design Bending Strength				
$M_{d} = \frac{\beta_{b} z_{p} f_{y}}{\gamma_{mo}} \qquad (\text{for plastic } \beta_{b} = 1.0)$	0)				
$=\frac{1\times1533.36\times10^{3}\times250}{1.1}$					
= 348.49 kN-m > 255.242 kN					
$M_d$ should also be $\leq 1.2 \frac{z_e f_y}{\gamma_{mo}}$	ERI	NGA			
So					
$\frac{1.2ze}{1.2 \times 30390.8 \times 10^3 \times 250}$					
$\gamma_{nw}$ 1.1		2			
= 8288.4 kN-m> 348.49 kNm (OK)	= 8288.4 kN-m> 348.49 kNm (OK)				
Check for Deflection:					
Service load = 22.375 kN/m					
Permissible deflection = $\frac{\text{span}}{240}$					
$=\frac{7500}{240}=31.25$ mm Sin	ce 1	995			
Maximum deflection = $\frac{5}{384} \times \frac{22.375 \times (7500)^4}{2 \times 10^5 \times 303908 \times 10^3} = 151.66 > 31.2$ (Not OK)					
Check for Bearing Strength = $\frac{(b_1 + h_1)t_w f_{y_w}}{\gamma_{mo}}$					
$h_1 = 2.5 (t_y + R_1) = 2.5 \times (17.4 + 15) = 81 \text{ mm}$					
$f_{w} = \frac{(300+81) \times 9.4 \times 250}{1.1}$					
= 813.954  kN > 130.89  kN (Hence OK)					
India's Best O	nline Co	oaching Platform for GATE, ESE, PSUs and SSC-JE			
Enjoy a smooth onlin	e learni	ng experience in various languages at your convenience			

# Hearty Congratulations to our

# **ESE - 2020 TOP RANKERS**

