

ESE | GATE | PSUS

NUMERICAL & VERBAL ABILITY

PRACTICE QUESTIONS BOOKLET

Analytical Aptitude

(Solutions for Practice Questions Booklet)

1.1 Logical Puzzles

01. Ans: (a)

Sol: C person is wrong, from A, B persons statements 'X' party won the elections option (a) is correct answer.

02. Ans: (Box 1)

Sol: Box 1 message is Lies.
Box 2 message is true.
Box 3 message is Lies.
∴ Box 1 has the gold.

03. Ans: 22

Sol: Rs. 15 = 15 chocolate

For 15 chocolate get 15 wrappers $\div 3 = 5$ chocolate.

For 5 chocolate get 5 wrappers = 3 wrappers

+ 2 wrappers = 1 chocolate + 2 wrappers

= 1 wrapper + 2 wrappers

1 Chocolate

- = 15 + 5 + 1 + 1 = 22
- = 22 chocolate

04. Ans: 12

Sol: By using calendar for one year

31 (7) + 28 (1) + $30 \times 4 = 365$ days comparing with given relation.

$$x = 7, y = 1, z = 4$$

 $x + y + z = 7 + 1 + 4 = 12$

05. Ans: (b)

Sol: 50 P are enough. Just select random. If the machine gives you coffee then you know that's in fact the coffee button. Then coffee-labeled button cann't be random because then Tea would be Tea. So coffee-labeled is Tea and Tea-labeled is random.

06. Ans: (b)

Sol: The person who is opening the boxes, he knew that all 3 are marked wrong.

Suppose if three boxes are labelled as below.

If he inspected from Box (1), picked one fruit, found orange, then he don't know whether Box contains oranges (or) both apples & oranges.

Similarly if he picked one fruit from box(2), found apple then he don't know whether box contain apples (or) both apples & oranges.

But if he picked one fruit from box(3), i.e., labelled as 'apples & oranges', if he found apple then he can decide compulsorily that box (3) contain apples and as he knew all boxes are labeled as incorrect, he can tell

X DEEP

Deep Learn - India's Best Online Coaching Platform for GATE, ESE, and PSUs Enjoy a smooth online learning experience in various languages at your convenience

	ACE Engineering Publications	2		Numerical Ability	
07. Sol:	box(2) contains both apples & oranges box(1) contain remaining oranges. So, he should open box labelled 'apples & oranges' to determine contents of all the three boxes. Ans: (a) (i) A, B in 2 mins (ii) A, B in 1 min (for torch)	2 6, (6 8 8 8 8 9 8	 09. Sol:	Ans: (a) b: P states that S has at least 3 cars $= \ge 3$ Q believes that S has less than 3 cars $= < 3$ R indicates that S has at least one car $= \ge 1$ P's and Q's statements are exactly opposit in nature and R's statement is proportiona to P's statement. From the given data, only one person statement is right as it mean that two person statements are wrong i.e. P and R when the	
08.	(iii) C, \overrightarrow{D} in 8 min (iv) \overrightarrow{B} in 2 min (for torch) (v) A, \overrightarrow{B} in 2 min Total time $2 + 1 + 8 + 2 + 2 = 15$ min Ans: (b)		VG 10. Sol:	has zero cars. Ans: (c) $R \rightarrow 2\left(\frac{x}{3}\right) + 4$ $S \rightarrow \frac{3}{4}\left(\frac{2x}{3} + 4\right) + 3 = \frac{x}{2} + 6$ $T = \frac{1}{2}\left(\frac{x}{2} + 6\right) + 2 = \frac{x}{4} + 5$	
Sol:	Let Q be married (m) Q Only one pair P (m) (um) (um)		11. Sol:	$\therefore \frac{x}{4} + 5 = 17$ $x = 48$ Ans: (c) $7x + 8y + 3z = 20$ $3y + 4z + 5e = 21$ $4x + 4z + 6e = 25$	
	Let Q be unmarried (um) Only one pair (um) (P) (m) (um) $(um$	e	12. Sol:	$\frac{11x + 11y + 11z + 11 e = 66}{\therefore x + y + z + e = 6}$ Ans: (c) Total distance travelled by 4 wheels $= 4 \times 40000 = 160000 \text{ km}$ So average distance travelled by the each tyre = $\frac{160000}{5} = 32000$	

X DEEP

ACE

Regular Doubt clearing Sessions | Free Online Test Series Programme Affordable Fee | Available 3M |6M |12M |18M and 24 Months Subscription Packages

	ACE Engineering Publications	3		Analytical Aptitude
13.	Ans: (a)			If A,B & C (set 1) and D, E & F (set 2) are
Sol:	Let, no of 10 rupees notes $= x$		1	not equal among set 1 and set 2 any one
	Then, no of 20 rupees notes = $14 - x$		1	them is heavier than other.
	Now, total value of all notes = $Rs 230$			If set 2 (D, E & F) is heavier than set 1, In
	i.e $10(x) + 20(14 - x) = \text{Rs} 230$:	second weighing D Vs E
	$\therefore x = 5$		•	If D and E are equal, than F is heavier
	i.e no of 10 rupee notes $= 5$		•	If D and E are unequal, then higher side one
	-			is heavier.
14.	Ans: 3			From case I and case II, the minimum
Sol:	i. Divide the coins in 3 parts (9, 9, 9)			number of weighings required to identify
	ii. Next, 9 coins as (3, 3, 3)			the heavier bag is '2'.
	iii. Last step, '3' divided as (1, 1, 1)		NC.	1
	we are getting the false in minimum 3 steps	•	16.	Ans: (b)
	4		Sol:	
15.	Ans: (a)			$16 \times 22 \times 15 \times 50 \times 65 \times 115 \times 18 \times 90$
Sol:	Let us consider eight rice bags are A, B,C		2	$2^4 \times (2 \times 11) \times (5 \times 3) \times (2 \times 5^2) \times (5 \times 13) \times (5 \times 23) \times (2 \times 9) \times $
	D, E, F, G and H			
	Case – I			Total number of times a factor of $2 = 11$
	First weighing			I otal number of times a factor of $5 = 6$
				$\begin{array}{c} \text{Minimum value of } (6, 11) = 6 \end{array}$
				The number of zeros at the end of product
	(Set 1) (Set 2)			=10
	A, B & C = D, E & F	ce 1	995	
			1/. G.L.	
	If A, B & C (set 1) and D, E and F (set 2)	501:	A h m a d = 5 h m
	are equal, in second weighing			Anned = 5 km
	either G (or) H are heavier.			Susan -7 km
	Case - II			Arun < Sugar < 7 Irm
			-	$\operatorname{Arun} < \operatorname{Susan} < / \operatorname{km}$
	<u>First weighing</u>			\therefore 5 < Arun < /
				Option (c) is correct answer.
	(Set 1) (Set 2)		10	
	$\begin{bmatrix} A, B \& C \end{bmatrix} \neq \begin{bmatrix} D, E \& F \end{bmatrix}$		18. S. I.	$\mathbf{Ans:} (\mathbf{D})$
			301:	(w, w), (D, D), (W, D)
	Deep Learn - Ind	ia's Bes	t Online	e Coaching Platform for GATE, ESE, and PSUs
	ACE LEARN Enjoy a smooth onlin	erience in various languages at your convenience		

ACE Engineering Publications

06. Ans: (a)

 $n(F \cup W) = 150 - 30 = 120$ $n(F \cup W) = n((F) - n (W) - n(F \cap W)$ $n(F) - n (F \cap W) = 120 - 85 = 35$ $\therefore n(F) - n (F \cap W) \text{ is the faculty that has}$ only Facebook account

07. Ans: (a)

Sol: n[coffee] = 35% n[Tea] = 40% $n[c \cap T] = 10\%$ $n[c \cup T] = 35 + 40-10 = 65\%$ 100 - 65% = 35%Neither tea or coffee

$$35 = C$$
 $T = 40$

= 100 - 65% = 35%

08. Ans: (d)

Sol: Read books = n(R) = 12 + 44 + 7 + 13 = 76Play sports = n(s) = 44 + 7 + 17 + 15 = 83 $n(R \cap S) = 44 + 7 = 51$ $n(R \cup S) = n(R) + n(S) - n(R \cap S)$ = 76 + 83 - 51 = 108

Sol: From the given data, the following diagram is possible.

	Deep Learn - India's Best Online Coaching Platform for GATE, ESE, and PSUs
ACE	Enjoy a smooth online learning experience in various languages at your convenience

5

1.3 Blood Relation

01. Ans: (a)

Sol: The relations may be analysed as follows. His father's wife = his mother Only brother of his mother = his uncle Son of his uncle = his cousin. So, that Rohit is Anil's cousin. Hence the answer is (a).

02. Ans: (a)

Sol: his father's wife = his mother Only son of his mother = man \therefore she is the daughter of man. So that the girl in the photograph is man's daughter. Hence the answer is (a)

03. Ans: (a)

Sol: The wife of my husband = Rita Brother of the daughter of Rita = Son Since 1995. S is parent of 'T'. So, that the man on the stage is Rita's sons. Hence the answer is (a)

04. Ans: (d)

Sol: By decoding the given information using symbols of family diagram we gat

05. Ans: (c)

6

Sol: Her father's father = grand father Only son of grand father = father His brother's father = her father So that. The women is the man's sister Hence the answer is (c).

06. Ans: (b)

Sol: Q and R are the son and Daughter of M, E is the mother of P and daughter-in-law of M means Q and E are married couples in the family

brother

S

Т

: P is the grandchild of M

R

07. Ans: (c)

Sol:

08. Ans: (a)

Sol: From given, data, the following blood relations tree can be formed

Regular Doubt clearing Sessions | Free Online Test Series Programme Affordable Fee | Available 3M |6M |12M |18M and 24 Months Subscription Packages

	Engineering Publications	7	Analytical Aptitude
	From the given information, R and W ar the married couples so, option '1' is necessarily FALSE. Remaining all othe options are may be true.	re is er	M mother Z^{-}
09. Sol:	Ans: (d) By decoding the given information usin symbols of family of diagram.	g	So that Z is daughter-in-law of M. Hence (b) is the correct answer T^{-}
	+ brother R husband + mother R Husband + Father-in-law	ERI	12. Ans: (a) Sol: By decoding the given information suing symbols of family diagram, we get \overline{W} <u>couple</u> + brother X
	So that L is related to O's father-in-low. Hence, the answer is (d)		son +(Z)
10. Sol:	Ans: (d) $\stackrel{+}{\mathbb{E}}$ Brother $\stackrel{+}{\mathbb{C}}$ $\overline{\mathbb{A}}$		So, that W is X's brother's wife Hence (a) is the correct answer.
	F Brother B + D	ce 1	Sol: By decoding the given information using symbols of family diagram, we get $\frac{R}{R}$ +
	A is the mother of 'B'.		father
11. Sol:	Ans: (b) By decoding the given information using symbols of family diagram, we get		(P) (S)+ father
			So that P is the aunt of Q Q Hence (b) is the correct answer.
	Deep Learn - Ind ACE Deep Learn - Ind Enjoy a smooth onlin	ia's Bes 1e learn	est Online Coaching Platform for GATE, ESE, and PSUs ning experience in various languages at your convenience

ACE Engineering Publications

Numerical Ability

Sol:

So that S is the niece of T Hence (b) is the correct answer.

15. Ans: (c)

- **Sol:** By decoding he given information symbol of family diagram, we
 - (a)

So that P is not mother-in-law of K.

So that P is the mother-in-law of K.

Hence (c) is correction answer.

(d) By decoding the given information using symbols of family diagram, we get

So that A is the mother of B. Hence (d) is the correct answer.

1.4 Cubes & Dice

01. Ans: (a) Sol: $6 \rightarrow adjacent \rightarrow 2, 3, 4, 5$ $6 \rightarrow apposite \rightarrow 1$ Option (a) is the correct answer.

02. Ans: (a)

Sol: $4 \rightarrow adjacent \rightarrow 5, 6, 2, 3$ $4 \rightarrow opposite \rightarrow 1$ Option (a) is the correct answer.

03. Ans: (c)

Sol: $4 \rightarrow adjacent \rightarrow 5, 6, 1, 2$ $4 \rightarrow opposite \rightarrow 3$ Option (c) is correct answer.

04. Ans: (c)

Sol: $4 \rightarrow adjacent \rightarrow 2, 3, 1, 6$ $4 \rightarrow opposite \rightarrow 5, 5, 5$ Option (c) is the correct answer.

 Regular Doubt clearing Sessions
 Free Online Test Series Programme

 Affordable Fee
 Available 3M |6M |12M |18M and 24 Months Subscription Packages

	ACE Engineering Publications	9	
05.	Ans: (b)		
Sol:	$2 \rightarrow adjacent \rightarrow 1, 4, 3, 6$		1.

 $2 \rightarrow \text{opposite} \rightarrow 5$ Option (b) is the correct answer.

06. Ans: (b)

12 C C C

Sol: $1 \rightarrow adjacent \rightarrow 4, 3, 5, 6$ $1 \rightarrow \text{opposite} \rightarrow 2$ After rotating the view of dice.

> Then we have one common number and same surface, then corresponding number are same so 6 opposite is 4.

07. Ans: (c)

Sol: $2 \rightarrow adjacent \rightarrow 4, 6, 1, 3$ $2 \rightarrow \text{opposite} \rightarrow 5$ $6 \rightarrow adjacent \rightarrow 3, 5, 2, 4$ $6 \rightarrow \text{opposite} \rightarrow 1$ Option (c) is correct answer.

08. Ans: (d)

Sol: From the folded figure. $5 \rightarrow \text{opposite} \rightarrow 3$ $2 \rightarrow \text{opposite} \rightarrow 4$ $1 \rightarrow \text{opposite} \rightarrow 6.$ Option (d) is the correct answer.

09. Ans: (c)

Sol: five dots \rightarrow opposite \rightarrow three dots Option (c) is the correct answer.

10. Ans: (d)

Sol: three dots \rightarrow opposite \rightarrow six dots.

X DEEP

Analytical Aptitude

5 Coding and Decoding Test

01. Ans: (c)

Sol: Clearly each letter in the word AMCF is moved as follows

Similarly in the same code DHLP becomes

H **Since 1995** Η Т Ρ

Hence, the answer is (c)

02. Ans: (d)

Sol: Clearly, each letter in the word IMH 0 moved as follows

X DEEP

 Regular Doubt clearing Sessions
 Free Online Test Series Programme

 Affordable Fee
 Available 3M |6M |12M |18M and 24 Months Subscription Packages

	Engineering Publications	12		Numerical Ability
13. Sol:	Ans: (b) From statements	1 S	6. Sol:	Ans: (d) Clearly each letter in the word ACT is
	The common code words are 8 = good 1= fruit So that In the first statement, the remaining code '5' mean 'sweet'	,		moved as follows $\begin{array}{c} A & C & T \\ \downarrow +22 & \downarrow +22 & \downarrow +22 \\ 23 & 25 & 16 \end{array}$
14. Sol:	Ans: (b) D=4 COVER = $3+15+22+5+18=63$ So that BASIS = $2+1+19+9+19=50$	RIA	G	Similarly in the same code BLOW becomes $ \begin{array}{c} B \\ \downarrow +22 \\ 24 \\ 8 \\ 11 \\ 19 \end{array} $ Hence the Answer is (d)
15. Sol:	Ans: (a) Clearly each letter in the word MACHINE is moved as follows $ \begin{array}{ccccccccccccccccccccccccccccccccccc$		7. Sol:	Ans: (a) Clearly each letter in the word is moved as follows $ \begin{array}{c} E & J & O & T \\ \downarrow \times 2 & \downarrow \times 2 & \downarrow \times 2 \\ 10 & 20 & 30 & 40 \end{array} $ Similarly in the same code $ \begin{array}{c} P & E & S & T \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \end{array} $
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

		13		Analytical Aptitude			
18.	Ans: (a)			Similarly			
Sol:	The letter of the words are written in	a		DEEZ = $\frac{4+5+5+26}{4} - \frac{40}{4} - 10$			
	reverse order						
	So that			\therefore Logic is <u>Sum of letters</u> = output			
	9 6 8 7 2			Honoo the Answer is (d)			
				Thenee the Answer is (u)			
			22.	Ans: (c)			
	R U S T Y		Sol:	Number of Letters -1 is coded as output			
				So that			
	Hence the Answer is (a)			Number of letters in GOVERNMENT is 10			
10			No	$\therefore 10 - 1 = 9$			
19. Sali	Ans: (c) $AT=(1)(20) = 20$			Hence the Answer is (c)			
501:	AI = (1)(20) = 20 BAT = (2)(1)(20) = 40			A DA			
	BA1 - (2)(1)(20) - 40		23.	Ans: (b)			
	CAT = (3)(1)(20) = 60		Sol:	Number of letters $= x$			
	Hence that Answer (c)			$\therefore \mathbf{x} (\mathbf{x} - 1)$			
	Tronce that This wer (c)			Contract = 8(8-1) = 56			
20.	Ans: (d)			Growth = $6(6-1) = 30$			
~ •	1+18+15+13=1 48			Distribution = $12(12 - 1) = 132$			
Sol:	AROMA = $\frac{2}{2} = \frac{2}{2} = 2$		24	Ans: (b)			
	7+18+1+14+4 22		Sol.				
	$GRAND = \frac{2}{2}$ Since	ce 1	99	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	Similarly			13 5 1 14 4 5 18			
	KWALITY	-					
	$\frac{11+23+1+12+9+20+25}{101} = \frac{101}{50.5}$			(1+3) = 451(1+4) = 545(1+8=9)			
	2 2			Similarly			
	Hence the Answer is (d)			Similarly			
				M A T H E M A T I C S			
21.	Ans: (d)			$\downarrow \downarrow $			
Sol:	BARS = $\frac{2+1+18+19}{4} = \frac{40}{4} = 10$			13 1 20 8 5 13 1 20 9 3 19			
	$\mathbf{DEEDT} = 2 + 5 + 5 + 18 + 20 50 10$			(1+3=4) 1 $(2+0=2)$ 8 5 $(1+3=4)$ 1 $(2+0=2)$ 9 3 $(1+9)$ 10 = 10 = $(1+0)$ = 1			
	BEEKI = $\frac{5}{5} = \frac{10}{5}$			Hence, the Answer is (b)			
	Deep Learn - Ind	ia's Bes	st Onlir	ne Coaching Platform for GATE, ESE, and PSUs			
	Enjoy a smooth online learning experience in various languages at your convenience						

	ACE Engineering Publications	14		Numerical Ability
25. Sol:	Ans: (d) ∴ Alternative Letter's number sum an then difference	d	03. Sol:	Ans: (c) $21 = 4^2 + 2^2 + 1^2$ $98 = 5^2 + 3^2 + 8^2$
	BANANA 2 + 14 + 14 = 30 1 + 1 + 1 = 3 $\therefore 30 - 3 = 27$			x = $6^{2} + 7^{2} + 3^{2}$ x = 94 (c) is the correct Ans.
	MOTORE 13 + 20 + 18 = 51 15 + 15 + 5 = 35 $\therefore 51 - 35 = 16$ LOFERS 12 + 6 + 18 = 36 15 + 5 + 19 = 39 $\therefore 36 - 39 = -3$	ER //	04. Sol: NG 05. Sol:	Ans: (a) $1^{st} \times 3^{rd} = 2^{nd}$ (in column wise) $4 \times 7 = 28$ $2 \times 5 = 10$ $3 \times 15 = 45$ Ans: (b) a b
01. Sol:	Ans: (a) $(2+3)^2 = 25$ $(15+6)^2 = 441$ $(10+7)^2 = 289$ $(12+13)^2 = 625$	ce 1	06. Sol:	$\therefore 1^{2} + 5^{2} = 26$ Option (b) is correct Ans. $a^{2} + b^{2}$ Ans: (b) $a \qquad b$
02. Sol:	Ans: (d) 3 16 81 406 $\times 5+1$ $\times 5+1$ $\times 5+1$ = 405(5) + 1 = 2031 Option (d) is the correct Ans.		C	$a^{2}-b^{2} = (a-b) (a + b)$ (10-7)(10+7) = 51 Option (b) is correct Ans.
	Regular Doubt Affordable Fee Ava	 clearin; ailable 3	g Sess 3M 6M	ions Free Online Test Series Programme // 12M 18M and 24 Months Subscription Packages

11. Ans: (d) Sol: $2^2 + 2^2 + 3^2 + 4^2 = 33$ $3^2 + 4^2 + 5^2 + 2^2 = 54$ $3^2 + 4^2 + 5^2 + 6^2 = 86$ Option (d) is the correct Ans 12. Ans: (a) a b b c d b c d c d			
$5 \times 13 = 65$ $2 \times 24 = 48$ Option (a) is the correct Answer 13. Ans: (c) Sol: $a^{2} \qquad b^{2}$			
$2 \times 3 = 6$ $3 \times 4 = 12$ $4 \times b = 20$ $b = 5$ $\therefore b^{2} = 25$ Option (c) is the correct Answer.			
14. Ans: (b) Sol: $2+3=5$ $P+3=S$ $5+3=8$ $S+3=V$ $8+3=11$ $V+3=Y$			

Engineering Publications		18	Numerical Ability
01. Ans: (a) Sol:	ng arrangements		Statement 3: Rahul ≠ doctor Statement 4: <u>Teacher (or) Dancer Dancer (or) Teacher</u> Statement 5: Seema Doctor
02. Ans: (d) Sol:		RIN	From above conditions, the following line can be formed Lohit Seema Rahul ↓ ↓ ↓ Doctor Teacher/Dancer Teacher/Dancer
03. Ans: (a) Sol: E F G ↑ ↑ ↑	H A B C	D	Mathew ↓ Engineer From above, an engineer in the group is Mathew.
04. (a) 05. (d) 06. (c) Sol: $\int_{C} \frac{S}{Q}$	c) R U P T $\downarrow \downarrow \downarrow \downarrow f$ girls $\uparrow f$ Since A D P F Boys	08 So 19	 Ans: (a) From the given data, eight persons are seated around a circular table as follows Y T V S U Y (or)
 07. Ans: (a) Sol: Four peoples a and Lohit and one is a doctor, dancer. Statement 1: Seema Mathew Statement 2: Lohit 	A D B E E E E E E E E E E E E E E E E E E	1 , 1	V T Y Y U S $S - Z T$ $V = V$ $V = V$ V V V V V V V V V
	Engineer Regular Doubt o Affordable Fee	learing S	∴ X is third to the left of V essions Free Online Test Series Programme

	ACE Engineering Publicatio	ns				20		Numerical Ability
16. Sol:	Ans: (b) We get t	he two	possibl	le orde	rs			1.9 Analytical Figure/Counting figure
	<u>RS</u>	<u>P</u>	<u>T</u>	Q		(01.	Ans: 11
	<u>QT</u>	<u>P</u>	<u>S</u>	<u>R</u>			Sol:	
17. Sol:	Ans: (c) M = S + T T = 3 + S	2 = M +	. 1				7	abcdpqrs
	$\Rightarrow P = 1$	+5 = N	1 1-1 = T-	-2	5			Abpq, bcqr, cdrs $\rightarrow 3$
	S < P <]	M < T			ENGINEE	RIA	۷G	ACAO
18. Sol·	Ans: (d)					(02.	Ans: 204
501.	Shiva >	Leela >	> Pavith	ira		ŝ	Sol:	For $8 \times 8 \Rightarrow 8^2 + 7^2 + 6^2 + 5^2 + 4^2 + 3^2 + 2^2 + 1^2$ = 204
19.	Ans: (d)						13	Ans: 40
Sol:	G > R I						Sol:	By using base concept
	L > S	_						1+2+3+4 = 10
	M > G				Sinc	A 1	00	1+2+3 = 6 1+2=3 1/2 = 3
	∴ M > (G > R,	L > S					$\frac{1/2}{1/2} \begin{array}{c} 3 \end{array} $
20.	And: (c))						
Sol:	10, 5, 4,	7, 2						$\Rightarrow 1+2=3+4+5+6=21$
								Total = 21 + 3 + 6 + 10 = 40
						(04.	Ans: 16
						\$	Sol:	Form with single triangles $= 8$
								Form with double triangles = 4 Form with 4 triangles = 4
								Total = 16

ACE X DEEP

Affordable Fee | Available 3M |6M |12M |18M and 24 Months Subscription Packages

	Engineering Publications	27	Analytical Aptitude
	231 +64 = 295		
	295 + 125 = 420		
	420 + 216 = 636		
	636 + 343 = 979		
19.	Ans: (c)		
Sol:			
		3011	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	3×1 GINER	<u>A</u>	ACAD
	9 ×1 = 9		23. Ans: (c)
	9×2 = 18		Sol:
	18×3 = 54		
	54×4 = 216		
	216×5 = 1080		+x +3 +4 +5
	1080×6 = 6480		13 14 15 16 = MNOP
20.	Ans: (c)		24. Ans: (c) Sol:
Sol:	14, 37, 611, 1016, 1522 Since	ce 1	68 12141 20222426
	First letter $+2, +3, +4, +5$		
	Second letter +3, +4, +5, +6		
	1522 = OV		+4 +4 +4
A 1			20222426 = TVXZ
21.	Ans: (b)		
Sol:	/G, 11K, 13 M, 17 Q		25. Ans: (b)
	: Prime numbers	;	Sol: 23, 678 12131415 2021222324
22.	Ans: (c)		
Sol:	13M, 1/Q, 198, 23W		+3 +4 +5
	Prime numbers		20 21 22 23 24 = TUVWX

	ACE Engineering Publications	28					Num	erical	Ability
26. Sol:	Ans: (c) a <u>b</u> c <u>c</u> b <u>a</u> a <u>b</u> c c b <u>a</u>			Actually	3452	135	64	13678	13791
27 Sol:	Ans: (b) <u>a</u> b a a <u>b</u> a ab <u>a</u> a <u>b</u> a			+113	+1	133	+11	3	
28. Sol:	Ans: (b) a <u>b</u> b <u>a</u> a bb a ab <u>b</u> a		05. Sol:	Ans: (d) $2 \times 7 - 7^2$, 12^2	, 2 × 8	$-8^{2}, 2$	× 10	-10^{2} ,	2 × 12 –
29. Sol:	Ans: (c) abc $\underline{d} d \underline{a} b c \underline{c} d \underline{a} b \underline{b} c$	RI	06.	12 Ans: (d)			0	22	2.4
30 Sol:	Ans: (c) P Q R P P Q R P P Q R P P Q R P		Sol:	+4 5 +4	12	2 I 5 2	8	22 23	24 2
11. ((b) Classification /odd one out			$+6 \downarrow 9 \\ 15$	2 20 25) 2 5 5	.6 ;	4 9	6 11
01. Sol:	Ans: (b) 13 23 33 43 53 33 is not a prime number		07. Sol:	Ans: (c) +6 17	+3	+ 26	$2 \rightarrow 2$		
02. Sol:	Ans: (c) $324 = 18^2$, $441 = 21^2$, $64 = 8^2$ Sim	ce 1	99	5 2	8	11	13		
03.	But 97 is not square of any numbers. Ans: (d)			13	19	22	24		
Sol:	$5^{\circ} = 125, 6^{\circ} = 216, 7^{\circ} = 343, 8^{\circ} = 512, 9^{\circ} = 729$	=	08. Sol:	Ans: (d) +8	+6	+4	•		
04. Sol:	Ans: (d)			23 9	5 17	11 23	15 1		
	13339, 13452, 13564, 13678, 1379	91		6	14	20	24		
	+113 +112 +114 +113			14	22	2	4		
	Regular Doubt Affordable Fee Ava	clearing ailable 3	g Sessi 3M 6M	ons Free C	unline Te	est Series nths Sub:	s Progra	amme on Packag	es

	ACE Engineering Publications		29		Analytical Aptitude
09. Sol:	Ans: (d) Nephew (male) rema	ining all female.		07. Sol:	Ans: (c)
10. Sali	Ans: (b)	ning all 21 days			$\begin{array}{cccccccccccccccccccccccccccccccccccc$
501:	June (30 days) remai	ning all 31 days.			Q S U W : Y A C E
1.11	l (c) Analogy				+2 +2 +2 +2 +2 +2
01. Sol: 02.	Ans: (b) $3^2: 5^3:: 4^3: 6^3$ Ans: (b)	ENGINER		08. Sol: V G	Ans: (c) F L M A D G $H-5$ -5
Sol:	$12^2 :: 12 - 2 :: 13^2 : 13^2$	3-2			-5
03. Sol:	Ans: (c) $68 = 4^3 + 4$ $130 = 5^3 + 5$ $222 = 6^3 + 6$ $350 = 7^3 + 7$	V V	(09.	$ \begin{array}{c} -5 \\ M \\ I \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 $
04.	Ans: (c)	Sine	ce 1	99	Son : Nephew : : Daughter : Niece
Sol: 05.	6×7 :: 7×8 :: 10×11 : Ans: (b)				Brother's Son Brother's Daughter
Sol:	$\frac{20}{10}:2::\frac{24}{8}:3$		1	10. Sol:	Ans: (c) Pen : write : : knife : cut
06.	Ans: (b)				Pen used for writing
Sol:	$M \rightarrow 13$				Kinte used for cutting
	$0 \rightarrow \text{opposite is } 12$ $H \rightarrow 8$				
	$J \rightarrow opposite is 17$				
		Deep Learn - Indi	ia's Best	t Onlir	ne Coaching Platform for GATE, ESE, and PSUs
		Enjoy a smooth onlin	e learni	ng exp	perience in various languages at your convenience

Quantitative Aptitude

1.1 Number System

01. Ans: (c)

Chapter

Sol: The unit place the square of natural number will not get 7.

Hence the correct answer 'c'

02. Ans: (c)

Sol: $31^{42} \times 33^{72} \times 48^{61} \times 37^{51}$ $31^{42} \Rightarrow \text{unit place} = 1$

 $= 1 \times 1 \times 8 \times 3 = 24$

- $33^{72} \Rightarrow \frac{72}{4} \Rightarrow \text{reminder} = 0 \Rightarrow 3^0 = 1$
- $48^{61} \Rightarrow \frac{61}{4} \Rightarrow \text{reminder} = 1 \Rightarrow 8^1 = 8$
- $37^{51} = \frac{54}{4} \Rightarrow \text{reminder} = 3 \Rightarrow 7^3 = 343$

Unit place of given expansion is 4

- 03. Ans: (c)
- **Sol:** $2^{1999} \times 2^{2013}$
 - $2^{1999} \Rightarrow \frac{1999}{4} \Rightarrow \text{reminder} = 3 \Rightarrow 2^3 = 8$ $2^{2013} \Rightarrow \frac{2013}{4} \Rightarrow \text{reminder} = 1 \Rightarrow 2^1 = 2$ $= 8 \times 2 = 16$

Last digit is 6

04. Ans: (b) Sol: $(217)^7 + (2172)^9 + (2173)^{11} + (2174)^{13}$ $(2171)^7 \Rightarrow \text{last digit} = 1$ $(2172)^7 \Rightarrow \frac{9}{4} \Rightarrow \text{reminder} = 1 \Rightarrow 2^1 = 2$ $(2173)^{11} \Rightarrow \frac{11}{4} \Rightarrow \text{reminder} = 3 \Rightarrow 3^3 = 27$ $(2174)^{13} \Rightarrow \text{power is odd} \Rightarrow 4$ = 1+2+7+4 = 14

05. Ans: 7 Sol: $211^{870} + 146^{127} \times 3^{424}$ $211^{870} \Rightarrow \text{last digit} = 1$ $146^{127} \Rightarrow \text{last digit} = 6$ $3^{424} \Rightarrow \frac{424}{4} \Rightarrow \text{reminder} = 0 \Rightarrow 3^0 = 1$ = 1+6(1) = 7

Hence the correct answer (7)

Since 1995
 06. Ans: (b)
 Sol: (26591749)¹¹⁰⁰¹⁶
 Given power is even so that unit place will be 1
 8 ∴ Unit digit = 9

07. Ans: (a) Sol: $(35)^{87} + (93)^{46}$ $(35)^{87}$ the unit place = 5 $(93)^{46} \Rightarrow \frac{46}{4} \Rightarrow \text{reminder} = 2 \Rightarrow 3^2 = 9$ = 5 + 9 = 1.4

	Deep Learn - India's Best Online Coaching Platform for GATE, ESE, and PSUs					
ACE A LEARN	Enjoy a smooth online learning experience in various languages at your convenience					

	ACE Engineering Publications		31		Quantitative Aptitude
08. Sol:	Ans: (d)	20 0	1	11. Sol:	Ans: (d) $63 = 9 \times 7 = 3^2 \times 7^1$ $55 = 5 \times 11 = 5^1 \times 11^1$ Number of divisors (or) factors
	$5 \underline{53}$ 71 $1420 = 2^2 \times 5^1 \times 71^1$ Number of factors	$\frac{5}{1}$			= (2+1) (1+1) (1+1) (1+1) = 3(2) (2) (2) = 24 Hence the correct answer (d)
	(1+1) (1+1)	= 3(2) (2) = 12		12. Sol:	Ans: (c) $24 = 4 \times 6 = 2 \times 2 \times 3 \times 2$ The given number must be divisible by 3
09. Sol:	Ans: 8	2014 1007 53			Hence the correct answer (c) Divisible by 3, rule $\frac{\text{sum of digit}}{3}$ Then total number divisible by 3 $\frac{7+1+5+x+4+2+3}{3} = \frac{22-1x}{3}$
	$2014 = 2^{1} \times 19^{1} \times 53$ Number of factors (1+1) (1+1) = 2	(or) divisors = $(1+1)$ (2) (2) = 8		13. Sol:	 x – is replaced by 2, then total number divisible by -3 Ans: (c) Where divisible by '3' rule.
10. Sol:	Ans: 36 2 2100 2 1050 5 525 5 105 3 21 7	Sind	ce 1	99	$\frac{4+7+6+a+b+0}{3}$ $\frac{17+a+b}{3}$ So a, b values becomes (7, 4), (8, 5) Bored on options. $4 7 6 a b 0$
	$2100 = 2^{2} \times 3^{1} \times 5^{2} \times$ Number of divisors (1+1) (2+1) (1+1) = 3(2) (3) (2)	(7^1) s (or) factors = $(2+1)$)		4 + 6 +b = 7 + a + 0 a - b = 3 So according to option 'c' is possible (8, 5)
	= 36	Deep Learn - Indi Enjoy a smooth onlin	a's Best e learni	t Onlii ng exp	.: option (c) is existing ne Coaching Platform for GATE, ESE, and PSUs perience in various languages at your convenience

	ACE Engineering Publications	32	Numerical Ability
14. Sol:	Ans: (b) Divisible by 3, rule $\frac{\text{sum of digit}}{3}$ Then total number divisible by 3 $\frac{7+1+5+x+4+2+3}{3} = \frac{22-1x}{3}$ x - is replaced by 2, then total number divisible by -3	32	$\Rightarrow 3 \times 4 \times 2 \times 3 \times 2 \times 3 = 432 \text{ sec}$ $432 \text{ sec} = 7 \text{ min} : 12 \text{ sec}$ $8 : 20 : 00$ $07 : 12$ $8 : 27 : 12 \text{ am}$ Hence the correct answer (a) $18 = \text{Ans: (d)}$
15.	Ans: (d)		10. Alis. (u)
Sol:	$\frac{\text{LCM}(5,8,11)}{\text{HCF}(2,9,14)} = 5 \times 8 \times 11 = 440$ Hence the correct ans (d)	ERI	Sol: 4, $5\frac{1}{2}$, 8 $\frac{4}{1}$, $\frac{11}{2}$, $\frac{8}{1}$
16.	Ans: (a)		LCM of numbers for fracture
Sol:	LCM (5, 6, 10, 12, 15) $5 5, 6, 10, 12, 15$ $2 1, 6, 2, 12, 15$ $3 1, 3, 1, 6, 3$ $1, 1, 1, 2, 1$ $= 5 \times 2 \times 3 \times 2 = 60 \text{ sec}$ Hence the correct answer (a)	ce 1	$\Rightarrow \frac{\text{LCM of numerator}}{\text{HCF of demonator}}$ $= \frac{\text{LCM of}(4, 11, 3)}{\text{HCF of}(1, 2, 1)}$ $= 88 \text{ hrs}$ Smallest speed 4 km/h Then $\frac{88}{4} = 22 \text{ hrs}$
17			Sol. Required least number = $I CM$ of given +
Sol:	LCM (48, 72, 108) 3 48, 72, 108 4 16, 24, 36 2 4, 6, 9 2 2, 2, 2 2 2 2 2 2 2		common remainder = LCM (20, 42, 76) + 7 = 7980 + 7 = 7987 20. Ans: (d)
	3 2, 3, 9		Sol: $xy = LCM \times HCF$
	2, 1, 3		$480 \text{ y} = 4800 \times 160$ y = 1600
	Regular Doubt	clearin	g Sessions Free Online Test Series Programme
	ACE ARN Affordable Fee Av	ailable 3	3M 6M 12M 18M and 24 Months Subscription Packages

ACE Engineering Publications

- 21. Ans: (c)
 Sol: HCF (42, 49, 63) The factors of 42 = 1, 2, 3, 6, 7, 14, 21, 42 The factors of 49 = 1, 7, 49 The factors of 63 = 1, 3, 7, 9, 21, 63 Then the greatest common factor is 7
- **22.** Ans: (d) Sol: HCF [408, 468, 516] = 12
- **23.** Ans: (c) Sol: HCF = [403, 434, 465] = 31
- 24. Ans: (b)
- Sol: x + y = 9(1) 10x + y - 45 = 10y + x(2) By solving (1) and (2) x = 7, y = 2Since number is 72

25. Ans: (d)

Sol: Given that

x + y = 26 xy = 165 $(x+y)^{2} = (x-y)^{2} + 4xy$ $(26)^{2} = (x-y)^{2} + 4(165)$ x - y = 4

Hence the correct ans (d)

2.2 Ratio, Proportion & Variation

- 01. Ans: (d)
- Sol: 70 must be divisible by a + b if ratio is a :bSo that 1 : 3 cannot represent the ratio of boys and girls in the class

02. Ans: (b)
Sol: A: D =
$$\frac{A}{B} \times \frac{B}{C} \times \frac{C}{D}$$

= $\frac{8}{15} \times \frac{5}{8} \times \frac{4}{5}$
A: D = $\frac{4}{15}$

03. Ans: (a)

Sol: Let the number of seats for Mathematics, Physics and Biology be 5x, 7x and 8x respectively.

Number of increased seats are (140% of 5x), (150% of 7x) and (175% of 8x).

$$\Rightarrow \left(\frac{140}{100} \times 5x\right), \left(\frac{150}{100} \times 7x\right) \text{ and } \left(\frac{175}{100} \times 8x\right)$$

$$\Rightarrow$$
 7x, $\frac{21x}{2}$ and 14x

$$\therefore$$
 The required ratio = $7x:\frac{21x}{2}:14x$

$$\Rightarrow 14x : 21x : 282$$
$$\Rightarrow 2 : 3 : 4$$

04. Ans: (d)

Since

Sol: Let share of A,B and C be Rs.(3x+5),(4x+10) and (5X+15)Then Total amount=3x + 5 + 4x + 10 + 5x +15 = 12x + 30According to the question $\Rightarrow 12x + 30 = 2430$ $\Rightarrow 12x = 2400$ $\Rightarrow x = 200$

B'share= $4x + 10 = 4 \times 200 + 10 = 810$ Rs

	x	DEEP Learn
Bares 1000	^	LEARN

Ĩ	ACE Engineering Publications		34				Ν	umerical A	bility	
05.	Ans: (d)				Quantity	of tin in	100 kg	of B		
Sol:	Quantity of milk =	$=\left(60\times\frac{2}{3}\right)$ litres = 40)		$= (100 \times 100)$	$\left(\frac{1}{5}\right)$ kg				
	litres Quantity of water in litres New ratio = 1 : 2 Let the quantity of w be x litres Then milk : water = Now, $\left(\frac{40}{20+\pi}\right) = \frac{1}{2}$	it = (60 - 40) litres = 20 water to be added furthe $\left(\frac{40}{20 + x}\right)$		08. Sol: V <i>C</i>	$= 20 \text{ kg}$ $\therefore \text{ Quant}$ $= (24 + 2)$ $= 44 \text{ kg}$ Ans: (c) There ar coins in a Their ratio	ity of tir .0) kg e 25 pa a bag io is 1 : 1	n in the n uise, 10 2 : 3	ew alloy paise and	5 paise	
	(20 + x) = 2 $\Rightarrow 20 + x = 80$ $\Rightarrow x = 60$ $\therefore \text{ Quantity of water}$	to be added = 60 litres			Here total value is Rs. 30 Let exact quantity of coins be x, 2x, 3x respectively. Then value of all coins combined = $25x + 10(2) + (5)^2 = 200 + 100$					
06. Sol:	Ans: (a) Let their salries be 9 Let their expenditure According to the que $9x - 4y = 2000 \rightarrow 0$	x and 7x e be 4y and 3y estion, (1)		09. Sol:	$10(2x) + \Rightarrow 60 x =$ $\Rightarrow x = 50$ Number of Ans: (d)	(5)3x = = 30 × 1() of 5 pais	30 × 100 00 paise se coins =	= 3x = 150		
	$7x - 3y = 2000 \rightarrow (2)$ By solving above (1) x = 2000, y = 4000 So, Salary of first pers 18000 Salary of second per 14000), (2) we get on = $9 \times 2000 = \text{Rs}$ erson = $7 \times 2000 = \text{Rs}$		Allo Gold 2 $\frac{2}{5}$	$\begin{array}{c} \mathbf{y}(\mathbf{A}) \\ Copper \\ \vdots \\ 3 \\ \vdots \\ \frac{3}{5} \end{array}$	Alloy (E) Gold 3 : $\frac{3}{10}$:	 Copper 7 7 10 	Alloy (C) Gold $\frac{2}{5} + \frac{3}{10}$: $\frac{4+3}{10}$:	Copper $\frac{3}{5} + \frac{7}{10}$ $\frac{6+7}{10}$	
07.	Ans: (b)				5	10	10	:	13	
Sol:	Quantity of tin in 60 = $\left(60 \times \frac{2}{5}\right)$ kg = 24 kg) kg of A Regular Doubt	clearing	g Sess	ions Free	 Online Te	st Series Pr	ogramme]	
	ACE X LEARN	Affordable Fee Ava	ilable 3	BM 6M	1 12M 18M a	and 24 Mor	nths Subscr	iption Package	es	

	ACE Engineering Publications	35		Quantitative Aptitude
10.	Ans: (d)		12.	Ans: (b)
Sol:	Let number of boys participated = $4x$		Sol:	Let the third proportional to 12 and 30 be x.
	Number of girls participated = $3x$			Then,
	Total passed candidates = $\frac{80}{2} \times 7x = \frac{28}{2}x$			$\Rightarrow 12:30::30:x$
	1005Girls candidate who passed			$\Rightarrow x = \frac{(30 \times 30)}{12} = 75$
	$=\frac{90}{3} \times 3x = \frac{27}{3}x$			\therefore Third proportional to 12 and $30 = 75$
	100 10			Mean proportional between 9 and 25
	Boys candidate who passed = Total passed	d		$-\sqrt{9 \times 25} - 15$
	candidate - Girls candidate who passed			$= \sqrt{3} \times 23 = 13$
	$=\frac{28}{28}x-\frac{27}{28}x$			Required fatto $-75:15-5:1$
	5 10 NET	ERI	NC	Ans: (b)
	$=\frac{29}{10}x$		15. Sol·	$P^2 - 1 = K(a + 2)$
	29x 100 72 50		501.	$4^2 - 1 = K(3+2)$
	$=\frac{10\times4x}{10\times4x}\times100=72.5\%$			15 = k(5)
11	Ans: (d)			K = 3
11.	Ans. (u) 5			$\therefore P^2 - 1 = 3 (q+2)$
Sol:	Number of hens in farm $Q = \frac{3}{32} \times 416 = 65$			$P^2 - 1 = 3 (14 + 2)$
	Number of ducks in farm			$P^2 = 49 \Longrightarrow P = 7$
	$Q = \frac{14}{32} \times 416 = 182$		14.	Ans: (a)
	Number of goats in farm	ce 1	Sol:	$P+3=\frac{K}{\sqrt{a}}$
	$Q = \frac{13}{32} \times 416 = 169$			vy k
	Initially, the number of hens ducks an	d		$-2+3=\frac{1}{\sqrt{4}}$
	goats in farm P are 65. 91 and 16	9		$\therefore k = 2$
	respectively.	_		$p + 3 = \frac{2}{\sqrt{2}}$
	Al the hens, ducks, and goats are sent from	n		\sqrt{q}
	farm Q to farm P.			$p + 3 = \frac{2}{\sqrt{2}}$
	Number of hens $= 65 + 65 = 130$			$\sqrt{9}$
	Number of ducks $= 91 + 182 = 273$			$p + 3 = \frac{2}{3}$
	Number of $goats = 169 + 169 = 338$			$n = \frac{2}{3} - 3 = -\frac{7}{3}$
	\therefore the required ration = 130 : 273 : 338 = 1	0		$P^{-}3 = 3$
	: 21 : 26			$p = -\frac{7}{3}$
	Deep Learn - Ind	ia's Bes	st Onl	ine Coaching Platform for GATE, ESE, and PSUs

ACE X DEEP

Enjoy a smooth online learning experience in various languages at your convenience
	ACE Engineering Publications		36		Numerical Ability	
15. Sol:	Ans: (b) Price \propto (Length) ² \therefore Price = K (Length i.e 1600 Rs = K (10) \therefore K = 16	$1)^2$, where K is constant 2^2			Therefore, Amount = $26400 \times \left(\frac{9-6}{7+9+6}\right)$ = $26400 \times \frac{3}{22} = 1200 \times 3 = \text{Rs.}3600$	
	Total price of 2 pieces = $K(L_1^2) + K(L_2^2)$ = $K(L_1^2 + L_2^2)$ = 16 (4 ² + 6 ²) = Rs. 832		RI	03. Sol:	Ans: (a) A : B : C = (25 lakhs × 1 + 35 lakhs ×2) : (35 lakhs × 2 + 25 lakhs × 1) : (30 lakhs × 3) = 95 lakhs : 95 lakhs : 90 = 19 : 19 : 18	
	2.3 Partnership			04. Sol:	Ans: (a) Let A invest Rs 14a for 10 months and B invest Rs 15a for b months	
01. Sol:	Ans: (d) Just take care of the months of investment rest all will be simple. Yogesh : Pranab : Atul = $45000 \times 12 : 60000 \times 9 : 90000 \times 3$			The, $\frac{14a \times 10}{15a \times b} = \frac{7}{6}$ $b = \frac{840}{105} = 8$ Hence B invested money for 8 months		
	= 2:2:1 Atul's share $= \text{Rs.}20000 \times \frac{1}{5}$ = Rs. 4000	Sinc	e 1	05. Sol:	Ans: (b) For managing, A received = 5% of Rs. 7400 = Rs. 370 Balance = Rs. $(7400 - 370) = Rs. 7030$ Ratio of their investments = (6500×6) :	
02. Sol:	Ans: (c) : A: B : C = $[(3 \times 16000) + (9 \times 11000)]$: $[(3 \times 12000) + (9 \times 17000)] : [(6 \times 21000)]$ = $(48000 + 99000)$: $(36000+153000)$: (126000) = $147000 : 189000 : 126000$ = $49 : 63 : 42 = 7 : 9 : 6$				Ratio of their investments (6500×6) : $(8400 \times 5) : (10000\times 3)$ = 39000 : 42000 : 30000 = 13: 14 : 10 ∴ B's share $= \text{Rs. } 7030 \times \frac{14}{37}$ = Rs. 2660	
	Regular Doubt clearing Sessions Free Online Test Series Programme Affordable Fee Available 3M 6M 12M 18M and 24 Months Subscription Packages					

	ACE Engineering Publications	37		Quantitative Aptitude
06. Sol:	Ans: (c) A B Investments 3 : 2 10% profit \rightarrow foundation \downarrow 100–10 90% \rightarrow both A and B)8. Sol:	Ans: (d) Let B join after 'x' months A joins for 12 months with Rs 4,500 B joins for (12–x) months with Rs 5,400 $\Rightarrow \frac{4500 \times 12}{5400 \times (12-x)} = \frac{2}{1} \Rightarrow x = 7$
07. Sol:	Let total profit = x Profit $\Rightarrow A : B = 3 : 2$ $A's \text{ share} = \frac{3}{3+2} \times 90\% \text{ of } x$ $\Rightarrow \frac{3}{5} \times \frac{90}{100} \times x$ $\Rightarrow \frac{27}{50} \times x$ $\frac{27}{50} \times x$ $\frac{27}{50} \times x = 810$ $x = 1500$ Ans: (d) Suppose B invested Rs. x for y months Then, A invested Rs. 3x for 2y months So, A : B $= (3x \times 2y) : (x \times y)$ $= 6xy : xy$ $= 6 : 1$ $\therefore B's profit : Total profit = 1 : 7$ Let the total profit is Rs. X Then, $\frac{1}{7} = \frac{4000}{x}$ $x = 28000$)9. Sol: VG 10. Sol:	Ans: (a) Let A invests $\frac{x}{6}$ for $\frac{y}{6}$ Month B invests $\frac{x}{3}$ for $\frac{y}{3}$ Month C invests $\left[x - \left(\frac{x}{6} + \frac{x}{3}\right)\right]$ for y months Ratio of their investments $= \left(\frac{x}{6} \times \frac{y}{6}\right): \left(\frac{x}{3} \times \frac{y}{3}\right): \left(\frac{x}{2} \times y\right)$ $= \frac{1}{36}: \frac{1}{9}: \frac{1}{2} = 1:4:18$ \therefore B's share $= \text{Rs}\left(4600 \times \frac{4}{23}\right) = \text{Rs800}$ Ans: (a) For management A receive $= 960$ Balance amount $= (9600 - 960) = 86400$ Ratio of their investment $= 12000: 20000 = 3:5$ \therefore A's share $= 8640 \times \left(\frac{3}{8}\right) = 3240$ So, A receive $= (3240 + 960) = 4200$
	Deep Learn - Ind	ia's Best	: Onlir	ne Coaching Platform for GATE, ESE, and PSUs

	Deep Lear
ACE LEARN	Enjoy a smoot

Expinering Publications	38 Numerical Ability
2.4 Averages	From (3) 8x - 7x = 8 x = 8 So fifth day = $8x = 8(8) = 64$
 01. Ans: (a) Sol: Now each student awarded 4-grace marks. So average also increased by 4 New average = 69 + 4 = 73 02. Ans: (b) Sol: If each number is trippled Then average in also trippled Old average = 32 New average = 3(32) = 96 	05. Ans: (c) Sol: $\frac{\operatorname{sum}_9}{9} = x$ say $\frac{\operatorname{sum}_8 + 9\operatorname{th}}{9} = x$ $\frac{8[30] + (x + 20)}{9} = x [\because 9^{\operatorname{th}} \text{ person spent } 20$ more than average of '9' persons] 260 + x = 9x 8x = 260
03. Ans: (b) Sol: 10, 20, 30, 190 $Avg = \frac{first \ term + last \ term}{2}$ $= \frac{10+190}{2} = 100$	$x = \frac{260}{8} = 32.5$ Total expenditure = 8 [30] + (x+20) = 240 + 32.5 + 20 = 292.50 06. Ans: (c)
04. Ans: (a) Sol: First 4 days average Average = $\frac{A + B + C + D}{4} = 58$ $A + B + C + D = 4(58) = 232 \rightarrow (1)$ Average 2^{nd} , 3^{rd} , 4^{th} , 5^{th} day = $\frac{B + C + D + E}{4} = 60$ $B + C + D + E = 240 \rightarrow (2)$ $(2) - (1) = E - A = 8 \rightarrow (3)$ Ratio of 1^{st} and $5^{th} = A : E = 7: 8 \Rightarrow 7x, 8x$ say	Sol: $\frac{\operatorname{sum}_{11}}{11} = 50 \implies \operatorname{sum}_{11} = 550$ $\frac{\operatorname{sum}[\operatorname{First} 6 \operatorname{results}]}{6} = 49 \implies \operatorname{sum}_{6} = 6[49] = 294$ $\frac{\operatorname{sum}[\operatorname{Last} 6 \operatorname{results}]}{6} = 52 \implies \operatorname{sum}_{6} \implies 6(52) = 312$ Sixth result is = [sum _(first-6) + sum _(least 6)] - sum ₁₁ $= 294 + 312 - 550$ $= 56$
Regular Doubt of	 learing Sessions Free Online Test Series Programme

Ĩ	ACE Engineering Publications		39		Quantitative Aptitude
07.	Ans: (d)			10.	Ans: (b)
Sol:	Total 30 days		:	Sol:	In a family $=$ 7 members
	Day – 1 is Sunday				$\frac{\operatorname{sum}_7}{2}$ – 29
	So next Sundays are	8, 15, 22, 29			7
	i.e., (1, 8, 15, 22, 29)	= 5 Sundays			$Sum_7 = 7 (29) = 203$
	$Average = \frac{5[510] + 2}{30}$	$\frac{25[240]}{2} = 285$			5 years ago, every person in family also back.
					7(5) = 35 yrs less
08.	Ans: (c)				203–35 = 168
Sol:	'M' observations ave	erage is 'n'			Second and $f(m) = \frac{168}{28}$
	But there wrong o	bservations, instead o	f		So average of 6 members $-\frac{1}{6}$
	correct observations.	CINER		۷G	(\therefore 5 years ago, boy was not there, so
	Then	ENON			remaining 6 members)
	Original average $=$	Mn - (wrong - correct)			remaining o memoris)
	M			11.	Ans: (a)
	$=\frac{14(71)-[(42+74)-(56+32)]}{69}=69$				sum.
	14		:	Sol:	$\frac{3}{11} = x$
09.	Ans: (c)				$\frac{\text{sum}_9 + 26 + 29}{11} = x$
Sali	$A+B+C_{-84}$				Average of 9 persons
501.	3 - 04				sum ₉
	$A + B + C = 252 \rightarrow 0$	(1)			$\frac{1}{9} = x - 1$
	$\frac{A+B+C+D}{4} = 80$	\Rightarrow A+B+C+D = 320	ce 1	99	(\therefore 1 year less than average of whole team
	252	+ D= 320			$So \Rightarrow x-1)$
		D = 68			$Sum_9 = 9x-9$
	E = D + 3 = 68 + 3 = 68	71			$\frac{9x - 9 + 26 + 29}{9x - 9 + 26 + 29} = x$
	B+C+D+E = 70	\rightarrow D + C+ D + E			11 After simplify $y = 23$
	4 - 79	\rightarrow D + C + D + E			i.e. whole team average = 23
	= 4(79) = 316 B + C + 68 + 71 = 316 B + C = 316-139 \Rightarrow 177 From (1) A + B+ C = 252 A = 252 - (B+C) = 252-177 = 75				i.e. whole team avoluge 23
				12.	Ans: 495
				Sol:	x x +2, x +4, x +6, x +8
			'	~ 010	5x + 20 = 425
					5x = 405
					$\mathbf{x} = 81$
	EEP	Deep Learn - Indi	a's Bes	t Onli	ne Coaching Platform for GATE, ESE, and PSUs
	ACE LEARN	Enjoy a smooth onlin	e learni	ing exp	perience in various languages at your convenience

ACE Engineering Publications

Hence 12 odd numbers 81,83,85, 87, 89, 91,93, <u>95, 97, 99, 101, 103</u> Sum of last 5 numbers = 495

13. Ans: 163

Sol: Let us suppose 8 consecutive odd numbers be x, x + 2, x + 4 x +14. Given that their Sum = 656 8x + 56 = 656 $x + 7 = \frac{656}{8} = 82$ x = 75 (also smallest odd number) Now let us consider fore even numbers be x, x+2, x+4, x+6Given that Average = 87 $\frac{4x + 12}{4} = 87$ $\frac{4(x+3)}{4} = 87 \Rightarrow x = 84$ second largest even number = x + 4 = 88 sum of smallest odd number & second largest even number = 75 + 88 = 163

14. Ans: (d)

Sol: Concept Adding and removing

X DEEP

$$= \frac{MP - removing + adding}{M} = Avg$$
$$= \frac{45[52] - 5[48] + 5[54]}{45}$$
$$= 52.66 \text{ or } 52\frac{2}{3}$$

15. Ans: (d)

Sol:
$$\frac{\operatorname{sum}_{24}}{24} = 16$$

 $\operatorname{Sum}_{23} + T + B = 384...(1)$ $\frac{\operatorname{sum}_{23} + B}{24} = 17$
 $\operatorname{Sum}_{23} + B = 4080...(2)$

From (1) & (2)

Student weight not given T - B = 24So not sufficient

2.5 Problem on Ages

01. Ans: (a)

Sol: Let the present age of the man be x years Then,

$$\Rightarrow 3(x+3) - 3(x-3) = x$$

$$\Rightarrow x = 18$$

:. The present age of the man is 18 years

02. Ans: (c)
Sol:
$$\frac{5x-4}{3x+4} = \frac{1}{1}$$

 $\therefore x = 4$
 $\frac{5x+4}{3x-4} = \frac{24}{8} = 3:1$

03. Ans: (d) Sol ∴ 10x - 13 = 3(2x+5) $\Rightarrow 6x+15 = 10x-13$

$$\Rightarrow 15 + 13 = 10x - 6x$$

$$\Rightarrow$$
 x = 7

 \therefore Hema's age = $2x + 5 = 2 \times 7 + 5 = 19$ years

	ACE Engineering Publications		41		Quantitative Aptitude
04.	Ans: (c)			02.	Ans: (b)
Sol:	Let the ages of Kuna	ll and Sugar 6 years age	о ₃	Sol:	A \rightarrow 100 pages in 5 hrs = $\frac{100}{5}$ = 20 pg/hr
	be $6x$ and $5x$ years re	espectively.			100 = 25
	Then, $\frac{(6x+6)+4}{(5x+6)+4} =$	$\frac{11}{10}$			$A \approx B \rightarrow 100 \text{ pages in 4 m} - \frac{-23}{4}$
	$\Rightarrow 10(6x+10) = 11(5)$	(x+10)			pages/hr So, $B \Rightarrow (A+B) - A$
	\Rightarrow 5x =10				= 25-20 = 5 pages/hour
	$\Rightarrow x = 1$				For 20 pages \Rightarrow 4 hours
	∴ Sagar's present ag	ge = (5x+6) = 16 years		03.	Ans: (c)
•		GINE		Sol:	Equation Method
05. Sol:	Ans: (a) Let the son's presen	t age be x years. Then			$\frac{1}{10} + \frac{1}{15} + \frac{1}{12} \Rightarrow 1$ day work
	(38-x) = x		.,		10 13 12 12 + 8 + 10
	$\rightarrow 2x = 38$				12000000000000000000000000000000000000
	$\Rightarrow 2\pi 90$ $\Rightarrow x = 19$				$=\frac{30}{122}$
	∴ Son's age 5 years	back (19–5) = 14 years	5		
					$=$ - (1 day work) \therefore 1 otal 4 days
					60 60 · ·
	2.6 Time	and Work			$\frac{1}{60+60+60} = \frac{1}{15} = 4$ days
		S ine	ce 1	99	10 15 15 (OB)
					Formula
01.	Ans: (c)	22			$xyz = \frac{10[15][12]}{4} = 4 \text{ days}$
Sol:	$A \rightarrow 32 \text{ pages} \rightarrow 8 \text{ h}$	$\operatorname{hr} \Rightarrow \frac{32}{8} = 4 \text{ pages 1 hr}$			xy + yz + z 150 + 120 + 180
	$B \rightarrow 40 \text{ pages} \rightarrow 5 \text{ h}$	$r \Rightarrow \frac{40}{5} = 8$ pages 1 hr		04.	Ans: (b)
	So, $A + B = 4 + 8$ pag	ges in 1 hr	\$	Sol:	$A \rightarrow \frac{1}{3}(w) = 5 \implies 15$ days [for complete
	$12P \rightarrow 1 hr$				work]
	$120p \rightarrow ?$				$B \rightarrow \frac{2x}{5} (w) = 10 \implies 25$ days for complete
	$\frac{120}{12} = 10 \text{hrs}$				work
	12				A and B = $\frac{\text{product}}{\text{sum}} = \frac{15[25]}{40} = \frac{75}{8} \Rightarrow 9\frac{3}{8}$
		Deep Learn - Indi	ia's Bes	t Onli	ne Coaching Platform for GATE, ESE, and PSUs
		Enjoy a smooth onlin	e learni	ing ex	perience in various languages at your convenience

	Engineering Publications	42		Numerical Ability
05.	Ans: (d)		07.	Ans: (a)
Sol:	$P \Rightarrow 12 (8) = 96 \text{ hrs}$			Г
	$Q \Rightarrow 8 (6) = 48 \text{ hrs}$		Sal.	L.C.M of (given)
	P & Q Together = $\frac{96(48)}{144}$ \Rightarrow 32 hrs		501:	$\left[\frac{\overline{\text{L.C.M}}}{x} + \frac{\text{L.C.M}}{y} + \frac{\text{L.C.M}}{z}\right]$
	But they work 8 hrs per day			Г
	$\frac{32}{8} = 4 \text{ days}$			$2\left\lfloor \frac{60}{\frac{60}{12} + \frac{60}{15} + \frac{60}{20}} \right\rfloor \Longrightarrow 2\left\lfloor \frac{60}{5 + 4 + 3} \right\rfloor = 2[5] = 10$
06.	Ans: (d)			days
Sol:	5 Skilled workers can build a wall in 2	0		
	days 1 skilled workers $5 \times 20 = 100$ days	EKI	08.	Ans: (a)
	1 day work of skilled worker = $\frac{1}{100}$		Sol:	$\frac{1}{9} + \frac{1}{12} = [A + B] = 2 \text{ days}$
	8 semi-skilled workers can build-wall = 25			1 + 2
	1 semi-skilled worker = $8 \times 25 = 200$ days			$2days = \frac{4+5}{36}$
	1 day work of semi-skilled worker = $\frac{1}{200}$			$2 \text{ days} = \frac{7}{26}$
	10 unskilled workers can build a wall			36
	= 30 days			$10 \text{ days} = \frac{35}{26}$
	1 unskilled workers		<	30
	$= 10 \times 30 = 300 \text{ days}$	co 1	00	Remaining Work = $\frac{1}{26}$
	1 day work of unskilled worker			11 th day start with A
	$=\frac{1}{300}$			
	∴ 2 skilled + 6 semi- killed + 5unskilled			$\frac{9}{1} = \frac{?}{1}$ $\left \because \frac{D_1}{W} = \frac{D_2}{W} \right $
	$-2\begin{pmatrix} 1 \\ -2 \end{pmatrix}+6\begin{pmatrix} 1 \\ -2 \end{pmatrix}+5\begin{pmatrix} 1 \\ -2 \end{pmatrix}$			$\frac{1}{36}$
	$= \frac{1}{50} + \frac{3}{100} + \frac{1}{60} = \frac{6+9+5}{300} = \frac{1}{15}$			01 1
				$3 \times \frac{36}{36} - \frac{3}{4}$
				So 10 days + $\frac{1}{2}$ = 10 ¹ / ₂ days
	\therefore 2 skilled+6 semi+skilled + 5 unskille	d		4 10 74 days
	can build a wall $= 15$ days			

	ACE Engineering Publications	43		Quantitative Aptitude
09.	Ans: (d)		12.	Ans: (c)
Sol:	$2\left[\frac{1}{8} + \frac{1}{10} + \frac{1}{12}\right] + x\left[\frac{1}{10} + \frac{1}{12}\right] = 1$		Sol:	$5\left[\frac{1}{10} + \frac{1}{15}\right] \times 2\left[\frac{1}{x}\right] = 1$
	$\Rightarrow \frac{2[15+12+10] + x[12+10]}{120} = 1$			$\frac{25}{30} + \frac{2}{x} = 1$ 2 1-25 5
	22x = 120-74 = 46			$\frac{2}{x} = \frac{1}{30} \frac{25}{30} = \frac{5}{30}$
	$x = \frac{46}{22} = 2$ hrs (approximate)			$\frac{2}{x} = \frac{1}{6}$
	9 am + 2 hr + 2 hr = 1 pm			x = 12 days Days 10, 15, 12
10.	Ans: (b)	ERI	NG	$=\frac{1}{10}:\frac{1}{15}:\frac{1}{12}$
Sol:	Equation Method:			$=\frac{5}{10}:\frac{5}{15}:\frac{2}{12}$
	$3\left[\frac{1}{12}\right] + x\left[\frac{1}{12} + \frac{1}{15}\right] + 3\left[\frac{1}{15} + \frac{1}{30}\right] = 1$	1		$=\frac{30:20:10}{60}$
	$\frac{15 + x[5 + 4] + 3[4 + 2]}{60} = 1$			= 30: 20: 10 = 3: 2:1
	\Rightarrow 9x = 60-33			$A = \frac{3}{5} \times 450 = 225$
	$x = \frac{27}{9} = 3$		12	
	So total days		15. Sol	LCM of (given)
	\Rightarrow 3 + 3 + 3 = 9 Sin	ce 1	99	$\frac{\text{L.C.M}}{\text{N}} + \frac{\text{L.C.M}}{\text{N}} + \frac{\text{L.C.M}}{7}$
				A = 18
11.	Ans: 100			$B = 6$ $\therefore \left(\frac{18}{2} = 6\right)$
Sol:	A and C completed the work : $\frac{15}{23}$			(3)
	(Difference 4 parts out of 23 done by B)			$C = 3.6$ $\therefore \left(\frac{-5}{5} = 3.6\right)$ days
	$\frac{4}{23} \times 575 \Longrightarrow 100/-$			$=\frac{18}{\frac{18}{10}+\frac{18}{6}+\frac{18}{26}}$
	[: Amount shows is equal to working	g		18 6 3.6 18 2.1
	Ratio]			$=\frac{1}{1+3+5}=2$ days
				Hint: (For L.C.M)
				L.C. M of (3.6, 6, 18) = 18
	DEED Deep Learn - Ind	ia's Bes	st Onlii	ne Coaching Platform for GATE, ESE, and PSUs

	ACE Engineering Publications	44		Numerical Ability
14. Sol:	Ans: (b) Chain rule		18. Sol:	Ans: (a) $M_1D_1 = M_2D_2$
	$\frac{M_1 D_1 H_1}{W_1} = \frac{M_2 D_2 H_2}{W_2}$ $\frac{7[7]}{7} = \frac{100(x)}{100}$ $x = 7$			52[10] = 40 [x] x = 13 days but we need (here many more) 13-10 = 3 days (OR)
15. Sol:	Ans: (a) Chain rule $\frac{M_1 D_1 H_1 x \%}{W_1} = \frac{M_2 D_2 H_2 y \%}{W_2}$ $2[12[8]90] 3[6]80[x]$	ERIA	19. Sol:	52[10] = 40[10+x] 10+x = 13 x = 3 Ans: (c) $1200 \text{ M} + 500 \text{ W} = \frac{1}{2} \times 1$
16. Sol:	$\frac{1}{9000} = \frac{1}{12000}$ x = 16 hr/day Ans: (d) $\frac{30[104][8]}{\frac{2}{5}} = \frac{26[104 + x]9}{\frac{3}{5}}$ 160 = 104 +x			2 $900 \text{ M} + 250 = \frac{1}{3} \times 2$ $1200 \text{ M} + 500 \text{ W} = \frac{1}{2}$ $1800 \text{ m} + 500 \text{ W} = \frac{2}{3}$ $600 \text{ m} = \frac{2}{3} - \frac{1}{2} = \frac{4-3}{6} = \frac{1}{6}$
	X = 56 men (additional men) Sin	ce 1	99	600 m = 6 weeks ? = 1 week
17. Sol:	Ans: (c) Q R 5[12] : 7[18] : 600 20 : 21 Here 'Q' participated only '5' days only Hint: Q - Total capability = 12(25) = 300 R = 12 × 50 = 600		20. Sol:	$600(6) = x(1)$ $x = 3600$ Ans: (a) $x + y = 8 \text{ days}$ $\Rightarrow x + y = \frac{1}{8} \rightarrow (1)$ $\frac{x}{2} + 2y = 5 \text{ day} \Rightarrow \frac{x + 4y}{2} = \frac{1}{5}$ $x + 4y = \frac{2}{5} \qquad \rightarrow (2)$ From (1) & (2)
				x = 30 days

	ACE Engineering Publications	4	5				Quant	itative Apti	itude
	2.7 Pipes and Cistern	S	0 S)4. Sol:	Ans: (P	(b) O	R		
•					$\frac{1}{30}$	$\frac{1}{20}$	$\frac{1}{10}$. .	
01.	Ans: (a)				All	are	opened	3-min	\Rightarrow
Sol:	If 3-pipes are opened				$3 \frac{1}{-}$	$[:3] \frac{1}{2}$	$3 \boxed{1}$		
	Then 1 hr work = $\frac{1}{10} + \frac{1}{12} - \frac{1}{20}$				30 1	$\begin{bmatrix} 20 \end{bmatrix}$	2:3:5		
	$=\frac{6+5-3}{60}=\frac{8}{60}\Rightarrow\frac{2}{15}$				$\Rightarrow \frac{1}{30}$	$\frac{1}{20} \cdot \frac{1}{10}$	\Rightarrow		
	Then total tank filled in = $\frac{15}{2}$ hr				i.e., -6	$\overline{0}$ $\overline{60}$ $\overline{6}$	50		
	$=7\frac{1}{2}$ hrs	31112-			$\Rightarrow 2$: So, pr	oportion	of solution '	R' is $\frac{6}{11}$	
02.	Ans: (a)					~~~			
	1 1 6-10 -4 -1		0)5.	Ans: ((b)			
Sol:	$\overline{10} - \overline{6} \Longrightarrow \overline{60} = \overline{60} = \overline{15}$		S	ol:	Half ta	ank alrea	dy filled, so	3 hrs	
	i.e., tank empty in 15 min				Rema	ining hal	f tank -?		
	2				Filled	by 4 – p	ipes		
	but $\frac{2}{5}$ tank only field								
	2				Let, by	y using 4	-pipes tank	filled in	
	so $\frac{2}{5}$ the of tank empty in -?	Since	19	99	5		$=\frac{1}{6}+\frac{1}{6}+$	$-\frac{1}{6}+\frac{1}{6}$	
	$\frac{2}{5}(t)-?$						$=\frac{4}{6}=\frac{2}{3}(1)$	hr work)	
	5^{\times} $15 \times \frac{2}{-} = 6 \text{ min for empty tank}$				Tank	filled in =	$=\frac{3}{2} \Rightarrow 1:3$	0	
	5				We ne	ed half t	ank only, so		
03	Ans: (b)				3		•		
05.	Ans. (b) $1 + 1 + 5 + 1 + 8 + 2$				2	$\frac{3}{hrs} = \frac{1}{2}$	$\frac{3}{-15}$ r	nin	
Sol:	$\frac{1}{5} + \frac{1}{4} - \frac{1}{20} \Rightarrow \frac{1}{20} = \frac{3}{20} = \frac{2}{5}$				2	4	4		
	Tank filled in $=\frac{5}{2}$ hrs				Total	time = 31	mr + 45 mm =	= 3 : 45	
	$2\frac{1}{2}$ hrs = 2.50 hrs								
		earn - India's	Best	Onlir	ne Coach	ing Platforn	n for GATE, ESE,	and PSUs	
	ACE LEARN Enjoy a sm	ooth online le	arnir	ıg exp	erience	in various la	anguages at you	r convenience	

	ACE Engineering Publications		46		Numerical Ability
06.	Ans: (b)		1		4x = 60 - 27
Sol:	(A+ B)'s 1 hr work	$= \frac{1}{12} + \frac{1}{15} = \frac{5+4}{60} = \frac{9}{60}$	-		$x = \frac{33}{4} = 8\frac{1}{4} = 8\min.\frac{1}{4} \times 60\sec$
	\rightarrow (1)				
	(A+C)'s 1 hr work	$= \frac{1}{12} + \frac{1}{20} = \frac{5+3}{60} = \frac{8}{60}$	-		= 8 min. 15 sec
	\rightarrow (2)			09.	Ans: (a)
	(1) + (2) means 2 hrs	work		Sol:	$10\left(\frac{1}{15} + \frac{1}{20} - \frac{1}{25}\right) + x\left(\frac{1}{15} + \frac{1}{20}\right) = 1$
	$\frac{9}{60} + \frac{8}{60} = \frac{17}{60}$				$(13 \ 20 \ 23)$ $(13 \ 20)$ 10(20+15-12)+x(20+15)
	$2 hr = \frac{17}{10}$	10			300 = 1
	2 m = 60	GINE	EKII	NG	35x = 300 - 230
	$6hr = \frac{51}{60}$	44 HNV			$x = \frac{70}{35} = 2 \text{ hrs}$
	Remaining work = 1	$-\frac{51}{60} \Rightarrow \frac{9}{60}$			Total time = $10 + 2 = 12$ hrs
	This remaining work	done by ne xT hrs		10.	Ans: (c)
	With $(A + B)$, (throu	ght-1)		Sol:	$\frac{1}{1+1} = \frac{1}{1-1}$
	So 6 + 1 = 7 hrs			~ • • • •	20 24 x 15
07.	Ans: (a)				$\frac{1}{20} + \frac{1}{24} - \frac{1}{15} = \frac{1}{x}$
Sol:	$4\left[\frac{1}{6}-\frac{1}{12}\right]+6\left[\frac{1}{9}-\frac{1}{12}\right]$	$\left[+ x \left[\frac{1}{9} \right] = 1 \right]$		00	$\frac{6+5-8}{120} = \frac{1}{x}$
	4(6-3)+6(4-3)+4	X 1			1_1
	36	-=1			40^{-1} x
	4x = 36 - 18 = 18				$x = 40 \min$
	$x = \frac{18}{4} = 4.50 \text{hr}$				i.e., pipe c can emply the tank in 40 min
	Total time = $4+6+4.5$	50 = 14.50			• each min -3 gallons water out
					$=40 \times 3 = 120$ gallons
08.	Ans: (d)				
Sol:	$3\left(\frac{1}{12} + \frac{1}{15}\right) + x\left(\frac{1}{15}\right) =$	=1			
	$\frac{3(5+4)+4x}{60} = 1$				
	X DEEP	Regular Doubt	clearing	g Sessi	ons Free Online Test Series Programme
	ACE	Anorable i ce Ava	mubic .	1014	i san i son una a i montais subscription i actages

		47		Quantitative Aptitude
01. Sol:	2.8 Time, Speed and Distance Ans: (c) 5m 5m 5m 5m 6m 6m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m	d	05. Sol:	Ans: (d) Speed = 80 km/h \rightarrow 2hr : 15 min \rightarrow 160 + 20 = 180 Next speed = 60 kmph 180 $170 km$ 350
02. Sol:	$10 \text{ km} \rightarrow 60 \text{ min}$ $5 \text{ km} \rightarrow 30 \text{ min}$ 30 m + 20 min (for rest) = 50 min Ans: (c) 5 + 2 = 7 hrs	ERIA	VG	$60 \text{ km} \longrightarrow 60 \text{ min}$ $170 \text{ km} \xrightarrow{?} \longrightarrow$ $\frac{60 \times 170}{60} = 170 \text{ min}$ $\frac{170}{60} = 2 \text{hr} 50 \text{ min}$ $5 : 20 + 2:15 + 2:50 = 10 : 25$
03. Sol:	Ans: (d) $21 \rightarrow$ Poles i.e., 20 spaces $20 \times 50 = 1000$ meteres $1000 \rightarrow 1$ min $1000 \rightarrow 60$ gas		06. Sol:	Ans: (b) $60 \text{ km} \rightarrow 60 \text{ min}$ $48 \text{ km} \rightarrow 60 \text{ min}$ $12 \text{ km} \rightarrow ?$
04. Solv	Speed = $\frac{1000}{60}$ m/s = $\frac{1000}{60} \times \frac{18}{5} \Rightarrow 60$ km/s Ans: (a) $\Delta = ST$ P	ce 1	99 07. Sol:	$\frac{60 \times 12}{60} = 12 \text{ min}$ Ans: (c) $T_1 \sim T_2 = 2 \text{ hr}$ $\frac{715}{s} - \frac{715}{s+10} = 2$ Use options, s = 55 km/h
501:	$A = \frac{5}{4} (S)(T-6)$ $ST = \frac{5}{4} (S)(T-6)$ 4T = 5(T-6) T = 30		D8. Sol:	Ans: (c) $D = 20(T)$ [:: $D = speed \times Time$] $D = 30 \left(T - 1\frac{1}{2} - 2\frac{1}{2} \right)$ 20T = 30 (T-4)

	Deep Learn - India's Best Online Coaching Platform for GATE, ESE, and PSUs				
ACE ACE	Enjoy a smooth online learning experience in various languages at your convenience				

 Regular Doubt clearing Sessions
 Free Online Test Series Programme

 Affordable Fee
 Available 3M |6M |12M |18M and 24 Months Subscription Packages

	ACE Engineering Publications	49		Quantitative Aptitude
14. Sol: 15. Sol:	Ans: (c) $ \frac{D/2}{60} + \frac{D/2}{10} + \frac{D}{40} = \frac{1}{1+1+3} \Rightarrow 24 \text{ km/h} $ Ans: (b) Average speed = $\frac{T.D}{T.Time}$ $= \frac{1(50) + 2(48) + 3(50)}{1+2+3}$ $\Rightarrow 50^{-1} \text{ km/h}$		17. Sol: 18. Sol:	Ans: (a) $10 = \frac{L(T)}{40}$ L(T) = 400 meter $30 = \frac{400 + L(Bridge)}{40}$ 1200 = 400 + L(B) L(B) = 800 m Ans: (d) $25 = \frac{L(T) + L(P)}{15} \rightarrow (1)$ $14 = \frac{L(T)}{(54 - 9) \times \frac{5}{18}}$ $L(T) = 14 \times 45 \times \frac{5}{18} \Rightarrow 175$ From(1) $25 = \frac{175 + L(P)}{15}$
16. Sol:	Ans: (a) $7 \sec = \frac{L(T)}{S(T)}$		19.	15 (L(P) = length of platform) Then L(P) = 200 Ans: (c)
	25 sec = $\frac{L(T) + 378}{S(T)}$ (1) and (2) $\frac{7}{25} = \frac{L}{L + 378}$ 7L(T) + 7(378) = 25 L(T) L(T) = 147 From (1) S(T) = $\frac{L(T)}{Time} = \frac{147}{7} \times \frac{18}{5}$ $\Rightarrow 75.6 \text{ km/h}$		Sol:	Train Distance 120 240 Jogger $= \frac{T.D}{R.S} = \frac{\text{total distance}}{\text{relative speed}}$ $\Rightarrow \frac{120 + 240}{(45 - 9) \times \frac{5}{18}}$ $= \frac{360(18)}{36 \times 5}$ $\Rightarrow 36 \text{ sec}$
	Deep Learn - Indi	ia's Bes	t Onlin	e Coaching Platform for GATE, ESE, and PSUs

ACE X DEEP

	ACE Engineering Publications	50	Numerical Ability
20. Soli	Ans: (d)		23. Ans: (c)
501:	7am 110 7am $8am$ 8am $8am$		Sol: Time = $\frac{1.D}{R.S} \Rightarrow \frac{30 \text{ km}}{75 - 60} = 2 \text{ hrs}$ Distance = 95 km/hr × 2hr = 150 km
	Compare with 8 am $= = \frac{T.D}{R.S} = \frac{90}{20 + 25} = 2 hrs$ 8 am + 2 hrs = 10 am		(after started the first train 2^{nd} train start 75 km/h. and also gap between at the time of 2^{nd} train start 30 kms.
21.	8 am + 2 nrs = 10 am Ans: (b)		$\Rightarrow T_2 \frac{(1/2 \text{ hr})}{30} T_1$
Sol:	In 1 hr, one car cover 10 km more than other. So at the time of meeting one ca cover 120 km more than other car. 1hr \longrightarrow 10 km ? \longrightarrow -120 km $\frac{120 \times 1}{10} = 12$ hrs First car $\Rightarrow 12 \times 50 = 600$ 2^{nd} car $\Rightarrow 12 \times 60 = 720$ Total covered distance = 1320	n R I/	24. Ans: (a) Sol: $T_1 \rightarrow hr$ Meerut • • Delhi $1.5 hrs \leftarrow$ Train (speed ₁) = $\frac{D}{1}$ Train (speed ₂) = $\frac{D}{1.5}$ Total distance (D) = S ₁ T + S ₂ T
22. Sol:	Ans: (b) 540 kms $\begin{cases} 7am \\ 100 km/h \\ 80 km/h \end{cases}$ $T = \frac{T.D}{R.S} = \frac{540}{100 + 80} = 3 hrs$ 7 am + 3 hrs = 10 am	ce 1	D = S ₁ T + $\frac{D}{1.5}$ T (they travel same 'T' hrs than they are meet each other) D = DT $\left[1 + \frac{1}{\frac{3}{2}} \right]$ 1 = T $\left[\frac{5}{3} \right]$ T = $\frac{3}{5}$ hr = $\frac{3}{5} \times 60 = 36$ min = 4hr and 36 min

Regular Doubt clearing Sessions|Free Online Test Series ProgrammeAffordable Fee|Available 3M |6M |12M |18M and 24 Months Subscription Packages

	Deep Learn - India's Best Online Coaching Platform for GATE, ESE, and PSUs				
ACE ARN	Enjoy a smooth online learning experience in various languages at your convenience				

ACE Engineering Publications		53	Quantita	tive Aptitude
By the rule of allegat CP of 1 litre mixture in 1 st can $\frac{3}{4}$ Me $\frac{1}{8}$ \therefore Ratio of two mixtur So, quantity of mixtur $= \left(\frac{1}{2} \times 12\right) = 6$ litres 06. Ans: (c) Sol: Let the rate of the set per kg By the rule of allegat C.P. of 1 kg wheat of 1 st kind 930 p Mean pu 1000 (100x-1000)p 100x-1000/70 = 8/7 So 700x - 7000 = 560 700x = 7560 x = Rs. 10.80	ion, we have: CP of 1 litre mixture in 2 nd can an price $\frac{5}{8}$ ures = $\frac{1}{8} : \frac{1}{8} = 1:1$ are taken from each can excond quantity be Rs. X tion we have: C.P. of 1 kg wheat of 2 nd kind (100 x rice 0p 70 p		07. Ans: (c) Sol: Since first and second varieties equal proportions. So, their average price = Rs. Rs. 130.50 So, the mixture is formed by varieties, one at Rs. 130.50 p other at say, Rs x per kg in the iteration is the iteration of the iteration is the iteration i	es are mixed in $\left(\frac{126+135}{2}\right) =$ by mixing two oper kg and the the ratio 2 : 2, have: C.P. of 1 kg wheat of 2 nd kind Rs. x 22.50 er now
	Deep Learn - India Enjoy a smooth online	a's Best e learni	est Online Coaching Platform for GATE, ESE, and ning experience in various languages at your co	l PSUs nvenience

	ACE Engineering Publications	54	Numerical Ability
09. Sol:	Ans: (d) Quantity left after n operation $= x \left(1 - \frac{y}{x} \right)^{n}$ Where, x = initial quantity y = amount of mixture with drawn each time (this should be same every time) n = no. of times operation performed $= 10 \left(1 - \frac{1}{10} \right)^{n}$	1	2.10 Percentages 01. Ans: (b) Sol: $A \xrightarrow{15\%}_{C=100 \text{ say}}_{20\%}$
10.	$= 10 \left(\frac{9}{10}\right)^{3}$ = 10 × 0.9 × 0.9 × 0.9 = 10 × 0.729 = 7.29 litres Hence, option d is correct Ans: (b)	RI	NG $\frac{85}{80} \times 100 \Rightarrow 106.25$ 02. Ans: (b) Sol: 100 M=60 F=40
Sol:	Let the quantity of the wine in the cash originally be x litres The, quantity of wine left in cask after 4 operations= $\left[x\left(1-\frac{8}{x}\right)^4\right]$ litres $\therefore \left[\frac{x\left(1-\frac{8}{x}\right)^4}{x}\right] = \frac{16}{81}$ $\Rightarrow \left[1-\frac{8}{x}\right]^4 = \left(\frac{2}{3}\right)^4$ $\Rightarrow x = 24$		Let people 100 say 80% invited i.e. 80 all female attended the party 80–40 = 40 belongs to male M: F = 40 : 40 = 1:1 03. Ans: (d) Sol: $\frac{X=3000}{3} \frac{y=100}{2}$
			$\frac{5}{400} \times 100 = 1.25$

	ACE Engineering Publications	55		Quantitative Aptitude
04. Sol:	Ans: (a) $\frac{P}{40}$ $= \frac{60}{25} \times 25 = 15$ $\frac{Q}{60}$ $= 40 \times \frac{15}{60} = 6$		08. Sol: 09.	Ans: (a) = $\frac{147}{1400} \times 100$ = 10.50 Ans: (c)
	$\begin{array}{c c} 100 & & 100 \\ = 40-6+15, & = 30-15+6 \\ = 49\% & = 51\% \end{array}$ $51-49=2\%$ $2\% = 2 \text{ votes}$ $100\% = 100 \text{ votes}$	ER//	Sol:	23% = 92 marks $100\% \Rightarrow 400$ [$\therefore 22\% \rightarrow 52 \text{ (failed)}$ $45\% \rightarrow 40 \text{ (passed)}$ $23\% \rightarrow 52 + 40$ 23% = 62 marks So $100\% = ?$
05. Sol:	Ans: (c) Let = $100 \xrightarrow{50\%}$ infected $50 \times \frac{30}{100} = 1$ developed the disease Remaining = $50-15 = 35$	5	10. Sol:	$\frac{92 \times 100}{23} = 400$] Ans: (d) S + T = 95 → (1)
06. Sol:	Ans: (d) Delay $\% \Rightarrow 75\% = 1200$ Then $25\% = 400$ (correct time flyin flights) Ans: (h)	nge 1	99 11. Sol:	By solving (1) and (2) T = 80 Ans: (a) $7500 \xrightarrow{20\%}$ invalid i.e., 1500
v7. Sol:	Ans: (D) (A) (B) 6% 7% 1% 80 1% = 80 100% = 8000			$7500 - 1500 = 6000$ 6000 $A = 55\%$ $B = 45\%$ $\frac{45}{100} \times 6000 = 2700$
	DEEP Deep Learn - Ind ACE Enjoy a smooth onli	lia's Bes ne learn	st Onlin ing exp	ne Coaching Platform for GATE, ESE, and PSUs perience in various languages at your convenience

ity
00
<u></u> 90;
Ă

X DEEP

 Regular Doubt clearing Sessions
 |
 Free Online Test Series Programme

 Affordable Fee
 |
 Available 3M |6M |12M |18M and 24 Months Subscription Packages

	ACE Engineering Publications		57	Quantitative Aptitude		
L				We need 108% = ?		
18.	Ans: (b)			10,000×108		
Sol:	(100-30) $(100-40)$) $100-50$ -3864		$=\frac{100 \times 120}{100 \times 120}$		
501.	$10,400 \times \frac{100}{100} \times \frac{100}{100}$	$-\times \frac{100}{100} = 3804$		= 90/- (each reem)		
19.	Ans: (c)		(03. Ans: (b)		
Sol:	$10\% \rightarrow 3 \text{ kg}$		5	Sol: CP (40 ranges) = $SP(50)$		
	$100\% \rightarrow 30 \text{ kg}$			$\frac{CP}{CP} = \frac{50}{100}$ (** CP = 50, SP = 40)		
	30kg = 225			8P 40 (1 C1 50, 51 10)		
	$kg = \frac{225}{30} \Rightarrow 7.5$			Loss $\% = \frac{10}{50} \times 100 = 20\%$		
		NEE	RIA	NG A		
20.	Ans: (c)	NCILL	(04. Ans: (c)		
Sale	$-\frac{25}{100}$.(x ~100)	4.	Sel Diff 100		
501.	$-\frac{125}{125}$	100 + x (100)		Sol: $\frac{1}{\text{Least}} \times 100$		
	= 20%			$\frac{200}{100} \times 100 - 25\%$		
				800 ~100 - 2570		
	2.11 Profit and	l Loss	(05. Ans: (c)		
			5	Sol: C.P of 12 balloons = $10/-$		
				1 balloon = $\frac{10}{10}/-$		
01.	Ans: (a)					
Sol:	90% = 450/-	Since	e 1	99 S.p of 10 balloons = $12/-$		
	? = 540/-			1 balloon = $\frac{12}{10}/-$		
	$=\frac{90\times340}{450} \Longrightarrow 108\% \qquad \text{i.e}$., 8% profit		Have sp > cp, so we are getting profits		
	100			12 - 10		
02.	Ans: (d)			$P\% = \frac{10 \ 12}{10} \times 100$		
Sol:	$120 \text{ (reems)} \times 80 = 9600$			$\frac{10}{12}$		
	Transport = 280			12		
	Coold = 72/-			144 – 100		
	120(40P) = 4800 (Paise) =	48/-		$\frac{144}{120}$ 100		
	10,000			$=\frac{10}{10}\times100$		
	$100\% = \frac{10,000}{120}$ ((per reem)		12 = 44%		
		Deep Learn - India's	s Best	t Online Coaching Platform for GATE, ESE, and PSUs		
		Enjoy a smooth online learning experience in various languages at your convenience				

	Engineering Publications		58		Numerical Ability
06. Sol:	Ans: (a) For A 100% = ? 125% = 100 $CP \Rightarrow \frac{1000 \times 100}{125} \Rightarrow$ So profit = 200 For B 25% profit on S.P $\frac{25}{100} \times 1000 = 250$ B's profit = 250 Compare with A, I	800 3 is getting 50/- mc	58 ER//	09. Sol: 10. Sol:	Numerical Ability Ans: (e) Profit = 575 – CP Loss = CP – 295 575– CP = CP – 295 (\because profit amount = loss amount) 2(CP) = 870 CP = $\frac{870}{2} = 435$ Ans: (a) 100,000 x (1,00,000–x)
07. Sol:	profit Ans: (c) % SP 111% = x/2 118% = x + 17 7% = 175 $100\% = ? \Rightarrow \frac{175 \times 10}{7}$	$\frac{2}{75/-}$ $\frac{00}{2} \Rightarrow 2500$ Sin	nce 1	99	$[0.1x + 0.12 (1,00,000-x]] - \{[0.12x + 0.1 (1,00,000-x]]\} = 120$ 0.2x - 0.24x + 12000 - 10000 = 120 2000 - 120 = 0.04x $x = \frac{1880}{0.04} \Rightarrow 47000$ Remaining = 53000 47000 : 53000 = 47 : 53
08. Sol:	Ans: (c) 87.5% = x/- (say) 110% = x + 108 22.5% = 108/- We need 12.5%, bec 12.5% = ? 108×12.5 $22.5 \Rightarrow 60/-$	ause loss%	t clearin	11. Sol:	Ans: (d) $\frac{x^2}{100}$ % always loss $\frac{10^2}{100} = 1\%$ loss
	ACE X DEEP	Affordable Fee A	vailable 3	3M 6N	M 12M 18M and 24 Months Subscription Packages

	ACE Engineering Publications	59	Quantitative Aptitude
12. Sol:	Ans: (c) 2 fans $\cos t = 2 \times 1200 = 2400$		2.12 Simple & Compound Interest
	S.P ₁ ⇒ $1200 \times \frac{(100-5)}{100}, \ 1200 \times \frac{100+10}{100} = SP_2$ 1140 + 1320 = 2460 So 60 rupees profit $P\% = \frac{60}{2400} \times 100 \Rightarrow 2.5\%$ (Profit)		01. Ans: (a) Sol: 5% per annum for 3 years = 15% p 4% per annum for 4 years = 16% p Difference = 1% $p = \frac{500}{100} = 5$
13. Sol:	Ans: (d) $30-10-\frac{30(10)}{100}=17\%$	ERI	02. Ans: (a) Sol: $P \frac{R\%pa}{2 \text{ years}} I_1 = (2R\%)P$ $P \frac{(R+4)\%P.a}{2} I_2 = (2R\%+8\%)P$
14. Sol:	Ans: (a) In 500, 10% discount 450/- 125% = 450 $100\% = ? \Rightarrow \frac{450 \times 100}{125} \Rightarrow 360$		$I_{2} = (21070 + 676)I$ $I_{2} - I_{1} = 8\%P = 72$ $\frac{8}{100}P = 72$ $P = 900$
15. Sol:	Ans: (b) $252 = CP \times \frac{100 - 30}{100} \times \frac{100 - 20}{100} \times \frac{100 - 10}{100}$ $252 = CP \times \frac{70}{100} \times \frac{80}{100} \times \frac{90}{100}$ $CP = 500$	ce 1	 03. Ans: (d) Sol: For 100% increment in 12 years More 100% increment in 12 years So that 200% increment in 24 years 04. Ans: (a) Sol: P + 2I = 1260
			$\frac{P + 5I = 1350}{3I = 90}$ $I = 30$ $I = \frac{PTR}{100} \Longrightarrow 30 = \frac{1200 \times 1 \times R}{100}$ $R = 2.5\% Pa$

 Deep Learn - India's Best Online Coaching Platform for GATE, ESE, and PSUs

 Enjoy a smooth online learning experience in various languages at your convenience

		60		Numerical Ability
05	Ang. (b)			Ans. (a)
05.	Alls: (b) PTR		vo. Sol·	Ans: (a) $P \times 105\% \times 110\% \times 120\% = 1386$
Sol:	$S.I = \frac{111}{100}$		501.	(105)(110) (120)
	$P(2 \times 4) = 8P$			$P\left(\frac{103}{100} \mid \frac{110}{100}\right) \times \left(\frac{120}{100}\right) = 1386$
	First 2 years 4% pa = $\frac{1}{100} = \frac{1}{100}$			P = 1000
	$P(6 \times 4) = 24P$			
	Next 4 years 6% pa = $\frac{1}{100}$ = $\frac{1}{100}$	(09.	Ans: (b)
	Next (0, 6) years $\frac{89}{100} = P(3 \times 8) = 24P$;	Sol:	$R = 10\% \rightarrow 1$ year
	Next (9-0) years 8% pa $-\frac{100}{100} = \frac{100}{100}$		Ţ	$\div 4 \downarrow \qquad \qquad \downarrow \div 4$
	$\frac{8P}{24P} + \frac{24P}{24P} = 1120$			$2.5\% \rightarrow 3 \text{ months}$
	100 100 100 - 1120		No	T = 2 years 3 months
	P = 2000			$CI = 4000 (110\%)^2 (102.5\%) - 4000$
				CI = 961
06.	Ans: (a)		10	3
Sol:	$10\% \rightarrow 1$ year = 365 days		10. G.J.	Ans: (c) $-$ 1 (12 (12 (12
	$\downarrow \div 5 \qquad \downarrow \div 5$		501:	$R = 2\%$ \rightarrow 1 year (12 months)
	$2\% \rightarrow 73 \text{ days}$			$\overline{}$
	Time = 2 years 73 days			5% 5% 5%
	I = (22% + 2%) P		<	
	I = 22% P Sin	co 1	00	5
	I = 2200			
	1 - 2200			9 months
07				$CI = 16000 (105\%)^3 - 16000 = 2522$
07.				-C1 = 2522
Sol:	$800 \frac{R\%Pa}{3vears}$ 956		11	Ans: (b)
			11. Sol·	Ans. (b) $P \rightarrow 10\% \rightarrow 10\% \rightarrow 10\% \rightarrow 10\% \rightarrow 10\%$
	$800 \frac{(R+4)\%pa}{3years} 956 + 12\%p$		501.	$10\% \rightarrow 10$ lakhs
				$P(110\%)^5 = 10,00,000$
	$=956 + \frac{12}{100}(800)$			$P = \frac{1000000}{620020} = 620020 0$
	- 1052			$\Gamma = \frac{1}{(1.1)^5} = 020920.9$
	- 1052			P = 6,21,000
	Regular Doubt	clearing	g Ses	sions Free Online Test Series Programme
	ACE ACE ACE	ailable 3	3M 6	M 12M 18M and 24 Months Subscription Packages

	ACE Engineering Publications		61		Quantitative Aptitude	
12. Sol: P ⁴ ?	Ans: (c) $P \frac{4 \text{ years}}{\times 3} 3p$ $\frac{\text{years}}{\times 3} 3P \frac{4 \text{ years}}{\times 3} 3^2 P \frac{4}{\times 3}$ 16 years = 81 P	$\frac{1}{\times 3}$ 3^{3} P $\frac{4 \text{ years}}{\times 3}$ 3^{4} P		15. Sol:	Ans: (a) Simple interest = 10% P = 60 \Rightarrow P = 600 Compound interest = 5 + 5 + $\frac{5 \times 5}{100}$ = 10.25% = 10.25(60) = 615	
13. Sol:	Ans: (a) P 0 yrs				2.13 Areas and Volumes	
	×2 2200 — 3 y ×2	3 yrs 3 3 yrs		01. Sol: 02. Sol:	Ans: (c) 12 + 1 + 6 + 3 + 1 + 2 + 1 + 6 = 32 Ans: (b)	
14	$4400 - 6 y_1$ P = 1100 Ans: (d)	rs			Diagonal of square = diameter of circle (\therefore 14 = 14)	
Sol:	$\frac{12500 \frac{1 \text{st year}}{20\%}}{\frac{-2}{11}}$	12500 2500 15000 2000 3000		99 03. Sol:	Area of square = $\frac{1}{2}$ (diagonal) ² = $\frac{1}{2}(14)^2 = 98 \text{ m}^2$ Ans: (a) $2\pi r = 4a = 35 = \text{k}$	
	$\frac{2^{nd} \text{ year}}{20\%}$	13000 +2600 -2000 13600			$r = \frac{k}{2\pi} \left a = \frac{k}{4} \right s = \frac{k}{3}$ Area of circle = $\pi r^2 = \frac{\pi k^2}{4\pi^2} = \frac{k^2}{4\pi}$	
	$\frac{3^{\rm rd} \text{ year}}{20\%}$	13600 2720 -2000 14320			Area of square = $a^2 = \frac{k^2}{16}$ Area of equilateral triangle = $\frac{\sqrt{3}}{4}s^2 = \frac{k^2\sqrt{3}}{36} = \frac{k^2}{12\sqrt{3}}$ \therefore The circle has the largest area	
		Deep Learn - Ind	ia's Best	t Onlir	ne Coaching Platform for GATE, ESE, and PSUs	
	Enjoy a smooth online learning experience in various languages at your convenience					

	ACE Engineering Publications		62		Numerical Ability
04. Sol:	Ans: (a) Area of parallelogra	m = area of triangle			Area of path = $\frac{11}{25}$ area of pool
	$b \times h_2 = \frac{1}{2} \times b \times h_1$				$\pi (r+10)^2 - \pi r^2 = \frac{11}{25} (\pi r^2)$
	$h_1 = 2h_2$				r = 50
05.	Ans: (b)	\wedge		08.	Ans: (c)
Sol:	,	a a	2	Sol:	
	$5a = 6$ a $= \frac{6}{12} = 1.2$	a	- 11		r r 2r
	5	CIGINER		VC	Area of triangle = $\frac{1}{2} \times 2r \times r = r^2$
	Area of window	= area of equilatera	u		
	$\sqrt{2}$			09.	Ans: (d)
	$=\frac{\sqrt{5}}{4}a^2 + a^2$			Sol:	(i) $V = lbh = 10 \times 8 \times 6 = 480 \text{ cm}^3$
	$\sqrt{3}$ ()? ()?				(ii) $V = a^3 = 8^3 = 512 \text{ cm}^3$
	$=\frac{\sqrt{3}}{4}(1.2)^2 + (1.2)^2$				(iii) V = $\pi r^2 h = \pi (7)^2 (7) = 343\pi \text{ cm}^3$
	= 2.06				(iv) $V = \frac{4}{3}\pi r^3 = \frac{4}{3}\pi (7^3) = 343 \left(\frac{4}{3}\right)\pi$
06.	Ans: (c)			<	
Sol:	A	Sin		10.	Ans: (a)
				Sol:	
	B D C				at h=a
Area	a of triangle = $\frac{AB \times B}{2}$	$\frac{BC \times CA}{R} = \frac{1}{2} \times BC \times AD$			a a a a a $b=a$
	17.5×9_3				Total surface area of cubolld
	$\frac{1}{4R} = \frac{1}{2}$				$=2(3a^2+a^2+3a^2)$
	R = 26.25 m				$= 14a^2 \rightarrow (1)$
~-					Sum of total surface area at 3 cubes
07. Sala	Ans: (a)				$= 6a^2 + 6a^2 + 6a^2 = 18a^2 \longrightarrow (2)$
501:	◆10 feet				$=\frac{14a^2}{18a^2}=\frac{7}{9}$
		Regular Doubt	clearing	g Sessi	ions Free Online Test Series Programme
		Affordable Fee Ava	ailable 3	3M 6N	I 12M 18M and 24 Months Subscription Packages

	ACE Engineering Publications	63		Quantitative Aptitude
11. Sol:	Ans: (c) Volume of 6 spherical balls = volume of cylinder $6\left(\frac{4}{3}\pi r^3\right) = \pi r^2 h$	f	14. Sol:	Ans: 58° 90° 120° 108° y x
12. Sol:	h = 8r Ans: (a) r=4.2 cm r f 6 cm f 4.2 cm f 4.2 cm	ER //	V C 15.	$x + y = 180^{\circ}$ Sum of all interior angles = (5–2)×180° 918 + y = 540 y = 122° x = 58° Ans: (c)
13. Sol:	Volume of toy = volume of cone + volum of hemisphere Volume of toy = $\frac{1}{3}\pi(4.2)^2 \times 6 + \frac{2}{3}\pi(4.2)^3$ Volume of toy = 266 cm ³ Ans: (c) Sine $a = \frac{3a}{4} + \frac{a}{4}$ $A_1 = \frac{3a}{4} = 33n$ $A_2 = a = \frac{a}{\pi} = a$	e	Sol:	Volume of cone = $\frac{1}{3}\pi r^2 h$ As per question, radius and height both increase by 10% We know that, change in volume = Successive change of increase in radius and height. \therefore Successive change of 10%, 10% and $10\% = \text{successive of } 10 + 10 + \frac{10(10)}{100} = 21\%$ and $10\% = 21 + 10 + \frac{21(10)}{100} = 33.1\%$ Thus, change in volume = 33.1%
	$a^{2} = 1936$ ∴ a = 44 $A_{1}+A_{2}=33^{2} + \frac{\pi}{4} \times \left(\frac{44}{\pi}\right)^{2} = 33^{2} + \frac{\pi}{4} \times \frac{44^{2}}{\pi}$ $= 33^{2} + \frac{44^{2}}{4\pi} = 1243.06 \text{ m}^{2}$ Deep Learn - Ind	ia's Bes	16. Sol:	Ans: (a) $OM = ON$ (\therefore radius of circle) Given that $\frac{1}{2}(OM)(ON) = 50$ $\frac{1}{2}(OM)^2 = 50$ OM = 10 Then area of circle $= \pi(10)^2 = 100\pi$ ine Coaching Platform for GATE. ESE, and PSUS
	X DEEP ACE Enjoy a smooth onlin	e learni	ng ex	xperience in various languages at your convenience
	ACE Enjoy a smooth onlin	e learni	ng ex	xperience in various languages at your convenience

ACE	х	DEEP Learn
-----	---	---------------

	ACE Engineering Publications	66		Numerical Ability
	2.14 Logarithm	(5)4. Sol:	Ans: (b) $\therefore \frac{1}{\log_x^y} = \log_y^x$
01. Sol:	Ans: (b) $\log \begin{pmatrix} \tan 1^{\circ} \times \tan 2^{\circ} \times \tan 3^{\circ} \\ \times \tan 45^{\circ} \times \tan 88^{\circ} \times \tan 89^{\circ} \end{pmatrix}$ $\therefore \tan 88^{\circ} = \cot 2^{\circ}$ $\therefore \tan 89^{\circ} = \cot 1^{\circ}$ $\therefore \tan \theta = \cot(90 - \theta)$ $\tan \theta \times \cot \theta = 1$ $= \log \tan 45^{\circ} = \log 1 = 0$ (b) is the correct Ans.)5. Sol:	$\frac{1}{\log_{c+a}^{b}} + \frac{1}{\log_{c-a}^{b}} = \log_{b}^{c+a} + \log_{b}^{c-a}$ $= \log_{b}(c^{2} - a^{2})$ $= \log_{b}^{b^{2}} = 2.$ Ans: (d) $\log_{4}^{2} - \log_{8}^{2} + \log_{16}^{2} - \cdots - to \infty$ $= \log_{2} 2^{2} - \log_{2} 3^{2} + \log_{2} 4^{2} - \cdots - to \infty$ $= \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5} + \frac{1}{6} - \cdots - $
02. Sol: 03. Sol:	Ans: (a) $\log_{x}\left(\frac{5}{7}\right) = -\frac{1}{3}$ $\frac{5}{7} = x^{-1/3}$ $x = \left(\frac{7}{5}\right)^{3} = \frac{343}{125}$ Option (a) is the correct Ans. Ans: (d) $\log_{2}[\log_{3}(\log_{2} x)] = 1$ $\log_{2}(\log_{2}^{2}) = 2^{1} = 2$ $\log_{2}^{x} = 3^{2} = 9$ $x = 2^{9} = 512$ Option (d) is the correct answer		99)6. Sol:	$= e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + \dots + \infty$ $\ell n(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots + \infty$ $\ell n 2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \infty$ $\ell n 2 = 1 - \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \dots + \infty$ $= 1 - \ell n 2$ Option (d) is the correct answer. Ans: (b) $\log P = \frac{p}{2} \log Q = \frac{1}{3} \log R = k(cons \tan t)$ $P = 10^{k}, \ Q = 10^{2k}, R = 10^{3k}$ $\therefore 10^{4k} = PR = Q^{2}$ Option (b) is the correct answer.
				Option (b) is the correct answer

 Regular Doubt clearing Sessions
 |
 Free Online Test Series Programme

 Affordable Fee
 |
 Available 3M |6M |12M |18M and 24 Months Subscription Packages

	ACE Engineering Publications	67	Quantitative Aptitude
07.	Ans: (a)		
Sol:	$\log a + \log b + \log c = a$		2.15 Permutation & Combinations
	$\log^{abc} = Q$		
	$abc = 10^{\circ} = 1$		
	$abc = 1 \implies a = 1, b = 1, c = 1$		01. Ans: 720
	∴ a,b,c non-ve integers		Sol: We have children to be seated
	$\mathbf{A} + \mathbf{b} + \mathbf{c} = 3$		Youngest
	option (a) is the correct Ans .		
08.	Ans: (a)		
Sol:	$\log a + \log b + \log c = 0$	= R I /	$1 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 \times 1$
	$\log \mathbf{a} \mathbf{b} \mathbf{c} = 0$		$N_{2} = (1 + 5) + (1 + 2) + (1 - 72)$
	a b c =1		No. ways = $6 \times 5 \times 4 \times 5 \times 2 \times 1 = 720$
	$(a + b + c)_{minimum} = -1 - 1 - 1 = -3$		ways
	$(a + b + c)_{maximum}$ 1+1+1 = 3		02 Ans: 6336
	Option (a) is the correct Ans		Sol:
00			Girls – 6
09.			Boys – 8 Treasurer (Girl)6 ways
Sol:	$\frac{1}{\log_{w} w + \log_{w} w} + \frac{1}{\log_{v} v + \log_{w} w} + \frac{1}{\log_{v} v + \log_{w} w}$		
			Boys – 8 Secretary (Boy)
	$= \frac{1}{\log^{uvw}} + \frac{1}{\log^{uvw}} + \frac{1}{\log^{uvw}}$		8 ways
	$= \log^{W} + \log^{U} + \log^{V}$	ce 1	99 Treasurer (Girl) – 6 ways
	$-\log_{uvw} + \log_{uvw} + \log_{uvw}$		Secretary (Boy) -8 ways
	$= \log_{uvm} = 1$		
	Option (c) is the correct Ans		Girls – 5
			Boys - 7;
10.	Ans: (b)		Total = 12
Sol:	$\log^{P}=10 \text{ (y-z)} \Rightarrow P = 10^{10(y-z)}$		President Vice President
	$\log^{Q}=10 \text{ (z-x)} \Rightarrow Q=10^{10(z-x)}$		
	$\log^{R} = 10(x - y) \Longrightarrow R = 10^{10(x - y)}$		
	$PQR = 10^{10y - 10z + 10z - 10x + 10x - 10y}$		
	$PQR = 10^{\circ}$		12 ways 11 ways
	PQR = 1		$Total = 6 \times 8 \times 12 \times 11$
	DEED Deep Learn - Ind	ia's Bes	t Online Coaching Platform for GATE, ESE, and PSUs
	ACE EARN Enjoy a smooth onlin	e learni	ing experience in various languages at your convenience

	ACE Engineering Publications		68		Numerical Ability
03. Sol:	Ans: (b) 57	$\frac{1}{7 \times 6 \times 5 \times 4}$	0 S	5. fol:	Ans: (i) 48 (ii) 100 (i) Hundred's place can be filled in 4 ways. Ten's place can be filled in 4 ways. Unit's place can be filled in 3 ways. Required number = $4 \times 4 \times 3 = 48$
04. Sol:	Ans: (i) 240 (ii) 120 (a) 3, 4, 5, 6, 7, 8	(iii) 60 (iv) 180			(ii) Similarly, the required number = $4 \times 5 \times 5 = 100$
Digita availa 5	s Position able 3 3	Arrangement	0 s .R/A	6. ol: C	Ans: 4464 Number of four-digit numbers = $9 \times 10 \times 10$ $\times 10 = 9000$
5 5 5	3 - 3 - 3 -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Number of four-digit numbers with no repetition = $9 \times 9 \times 8 \times 7 = 4536$ \therefore Number of four-digit numbers what at least one digit repeated = 9000 , $4526 =$
(b)	Number of 4 digit nu Digits available – 5(Number of 4 digit nu 120 ways	umbers with $3 = 4 \times {}^{5}P_{3}$ 4, 5, 6, 7, 8) umber without $3 = {}^{5}P_{4} =$	- 0 S	7. Jol:	Ans: (c) Total number of three digit numbers
(c)	3 Mumber of digits available Number of position a Number of 4 digit f ${}^{5}P_{3} = 60$ ways	ailable = 5 available = 3 number start with '3' =		99	Number of possibilities for digit '1' to be immediate right of digit '2' are 2 1 x 1 x 10 = 10
(d)	4 digit numbers cont = 4 digit number with with '3' at = solution (a) $-$ solut = 4. ${}^{5}P_{3}-$	tain '3' but not at first ith '3' – 4 digit number ation (c)			$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	ACE X DEEP	Regular Doubt c Affordable Fee Avai	learing ilable 3M	Sessi M 6M	ions Free Online Test Series Programme 1 12M 18M and 24 Months Subscription Packages

	Engineering Publications		69			Juantitativ	e Aptitude
08.	Ans: (b)				∴ Total number o	of distinct	passwords
Sol:	Each letter can be	posted in 4 ways. So),		possible = $10 \times 26 \times 20$	$26 \times 3! = 40$).560
	total number of way	ys in which all the	7		Total distinct possible	e passwords	= 40.560
	letters can be posted	,			rour distinct possion	pubbili or ub	10,200.
	$\Rightarrow 4 \times 4 $	$4 \times 4 = 4^7$		12.	Ans: 1728		
				Sol:	Chamiotry	Dhyaina	Marc
09.	Ans: (d)				$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	1 2	1 2 3 4
Sol:		2 2			. — ~ . — ~		
		$ - \underbrace{ $	-	Intr	a subject	2	
	${}^{5}P_{4} \times 2 \times 3$	even $2/4/$	6	Arr	angements \rightarrow ${}^{3}P_{3}$	$^{2}P_{2}$	${}^{4}P_{4}$
		eve	n		Inter subject arrangen	hent	
	$= 120 \times 6 = 720$	INE	ERI/	VC	inter subject arrangen		
	120 × 0 / 20	NGINE			Phy Chem M	faths \rightarrow Arra	ngement = $_{3}P_{3}$
10	Ans: (a)				Total number of arrea		$D(2n^2)$
ru. Soli	Alls. (c)	C C			2 + 4 + 2 + 21 + 21 + 21 + 21 + 21 + 21	au	3F3 (Sp3 X
501.					$p_2 \times p_4 = 3! \times 3! \times$	2!	
	42			13	Ans: (b)		
	$P_3 \div 2$			Sol·	11IIS. (D)		
	9 (12 16 24 2		,	501.	3 consonants		5 vowels
	8 ways (12, 16, 24, 32	2, 36, 52, 56, 64)			<u> </u>		_
	$= 24 \times 8 = 192$					<u>6</u> !	
				\leq	(10000	
11.	Ans: (c)	Sin	- 1	00	$6 \times 3 \times 5 = 720 \times 15 =$	= 10800	
Sol:	Given data,			773 14	Ans: 60480		
	Password must contain	in 3 characters.		Sol·	Treating the yowels	as one unit	we have 7
	One character (C_1) has	as to be a number from	n ľ	501.	unite	is one unit,	we have /
	0 to 9				Those can be arranged	tin 71 Way	G
	One character (C ₂) h	as to be an upper cas	e		The vowels can be arr	ranged in 4!	s. Ways.
	English A to Z				Total ways = $7! \times 2! >$	$\times 2! = 6048$	0 ways.
	One character (C ₃) h	has to be a lower cas	e		• ()		
	English a to z.			15.	Ans: (a)		
	Let C_1 , C_2 , C_3 be the	3 characters		Sol:		s↓ B↓ F	3 [
	Total possibilities for	$C_1 = 10$			$\mathbf{G}_1 \mathbf{G}_2 \mathbf{G}_3 \mathbf{G}_4$	$\mathbf{G}_5 \mathbf{G}_6$	G ₇
	Total possibilities for	$C_2 = 26$			7	-	
	Total possibilities for	$C_3 = 26$			6! [′] C ₄ . 4!		
	C_1, C_2, C_3 can be arran	ged in 3! Permutation	s		$= 6! {}^{7}P_{4}$		
	X DEEP	Deep Learn - Ind	ia's Bes	t Onlin	e Coaching Platform for GAT	E, ESE, and PS	Us
	ACE	Enjoy a smooth onlin	e learni	ng exp	erience in various languages	at your conven	ience

	ACE Engineering Publications	70		Numerical Ability
16. Sol:	Ans: (b) Starting \rightarrow b Starting \rightarrow g So that $\Rightarrow 5! \times 5! \times 2$ ways		21. Sol:	Ans: (b) If select 8 persons first, make them seat an one table. The other 6 persons sit on the next table. $=\frac{14!}{8! 6!}$
17. Sol:	Ans: (c) $\downarrow \qquad \downarrow \qquad$: : : :	22. Sol: V G	Ans: (a) by using circular permutation $=\frac{(n-1)!}{2}$ $=\frac{(11-1)!}{2}=\frac{10!}{2}$
18. Sol:	Ans: (c) ${}^{5}P_{1} + {}^{5}P_{2} + {}^{5}P_{3} + {}^{5}P_{4} + {}^{5}P_{5} = 325$		23. Sol:	Ans: (d) ⁿ C _r = ⁹ C ₃ = $\frac{9!}{3!6!} = \frac{9 \times 8 \times 7}{3 \times 2} = 84$
19. Sol:	Ans: (c) The work 'LAUNCHER' has 8 different Letters	it	24. Sol:	Ans: (b) <u>6 men</u> <u>P, VP</u> <u>6</u> + 1 = 7
	$\overrightarrow{4} \qquad = 8 \times 8 \times 8 = 8$ 8 ways 8 ways 8 ways $\therefore \text{ (Repetition of Letters is allowed)}$	3 ³ 1	99 25. Sol:	= $6! \times 2!$ Ans: (b) $nC_r = nC_{n-r}$ Here $r = 7$
20. Sol:	Ans: (b) Total number of people $h = 8$ We know that, Total number of arrangements in an circula table $-(n - 1)!$ (8 - 1)! = 7! = 5040 ways	ır i	26. Sol:	Here $r = 7$ n - r = 5 $\Rightarrow n = 12$ Ans: (c) i. 1 boy + 3 girls = ${}^{5}C_{1} \times {}^{4}C_{3} = 5 \times 4 = 20$ ii. 2 boy + 2 girls = ${}^{5}C_{2} \times {}^{4}C_{3} = 60$ iii. 3 boy + 1 girls = ${}^{5}C_{3} \times {}^{4}C_{1} = 40$ = 20 + 60 + 40 = 120

71

Quantitative Aptitude

Ans: (c) 27. **Sol:** $nc_2 = 66$ $\Rightarrow \frac{n(n-1)}{2} = 66 \Rightarrow n(n-1) = 132 = 12 \times 11$ 28. Ans: (d) **Sol:** Total number of balloons = 5 + 4 + 2 = 11Since color are repeating so we sued this formula $\frac{n!}{p! \ q! \ r!}$ The number of arrangement $=\frac{11!}{5!4!2!}=6930$ 29. Ans: (b) **Sol:** $7C_3 = 35$ 30. Ans: (i) 105 (ii) 96 Through two given point and unique Sol: straight line (a) ${}^{15}C_2$ (b) 5 points collinear \equiv ⁵C₂ distinct line \rightarrow considered as one number of straight line = ${}^{15}C_2 - {}^{5}C_2 + 1$. 31. Ans: (a) **Sol:** r + r + 2 = 18r = 8 ${}^{8}C_{5} = 56$ 32. Ans: (c) Sol: P(dice roll = Green) = $\frac{4}{6} = \frac{2}{3} = P_g$ $P(\text{dice roll} = \text{Red}) = \frac{2}{6} = \frac{1}{3} = P_r$ $\therefore P_g = \frac{2}{3} \qquad P_r = \frac{1}{3}$

ACE

(a) P(G = 3, R = 4) = {^7C_4} \left(\frac{2}{3}\right)^3 \left(\frac{1}{3}\right)^4 = \frac{280}{3^7}
(b) P(G = 4, R = 3) = {}^{7}C_{3}\left(\frac{2}{3}\right)^{4}\left(\frac{1}{3}\right)^{3} = \frac{560}{3^{7}}
(c) P(G = 5, R = 2) = ${}^{7}C_{5}\left(\frac{2}{3}\right)^{5}\left(\frac{1}{3}\right)^{2} = \frac{672}{3^{7}}$
(d) P(G = 6, R = 1) = {^7C_6} \left(\frac{2}{3}\right)^6 \left(\frac{1}{3}\right)^1 = \frac{448}{3^7}
From the above analysis the most likely

ly outcome is the one with highest probability which in this case is option (c) i.e. Five green and Two red balls.

33. Ans: (b)

Sol: The sum of all 'n' digit numbers that can be formal by using 'n' distinct non zero digits.

= (n-1)! ×(sum of digits)×(111....n times) $= (5-1)! \times (1+3+5+7+9) \times (11111)$ $= 4! \times 25 \times 11111$ = 6666600

34. Ans: (d)

Sol: More than 3000, 4 digit number means, the First digit may be 3 (or) 4, the second third and fourth digits are three in each (i,e)

2	3	3	3

$$= 2 \times 3 \times 3 \times 3 = 54$$

35. Ans; (d)

Sol: Total ways in which shirts can be distributed among Arun, Gulab, Neel and Shweta (T) = 4! = 24

	Deep Learn - India's Best Online Coaching Platform for GATE, ESE, and PSUs				
ACE LEARN	Enjoy a smooth online learning experience in various languages at your convenience				

Since
15 22	ACE
	ACE
N-24-1	Engineering Publications

Number of ways in which shirts are distributed so that only Arun gets a shirt color he dislikes(red) are $(A) = 2 \times 2 \times 1 = 4$ Number of ways in which shirts are distributed so that only Shweta gets a shirt color she dislikes(white) are $(S) = 2 \times 2 \times 1 = 4$ Number of ways in which shirts are distributed so that both Arun and Shweta gets a shirt color he/she dislikes(red an white respectively) are $(B) = 2 \times 1 = 2$

Total number of cases in which shirts can be distributed so that no one has a shirt with a colour he or she dislikes = T-(A+S+B) = 24-(4+4+2) = 14

36. Ans: (b)

Sol: P, Q, R, S \rightarrow Women

V, W, X, Y, Z \rightarrow Men

P is not to be paired with Z

Y must necessarily be paired with some one.

The possible ways P can be paired with men = 4×4 (without z) = 16

The possible ways Q can be paired with $men = 4 \times 5 = 20$

The possible ways S can be paired with men = $4 \times 5 = 20$

The total no. of ways = 16 + 20 + 20 + 20 = 76

37. Ans: (b)

Sol: (3!) 3 = 18 chances

(:: 'R' should not be seated at second position from the left end)

- **Sol:** P and R can not adjacent 'S' is seated right of Q.
 - (i) <u>P</u> <u>Q</u> <u>S</u> <u>R</u>

After interchanging 'P' and 'R' we get one more chance.

<u>R O S P</u>

(i) $\underline{O} _ \underline{S} _$ (here two chances)

(ii) <u>Q</u> <u>S</u> (here two chances)

```
39. Ans: (d)
```

40.	Ans: (a)				
Sol:	1. S	R	Р	Т	Q
	2. Q	R	Р	Т	S
	3. S	R/	Т	Р	Q

2.16 Probability

01. Ans: (c)

Sol: The number of ways of randomly picking 3 cards out of 52 cards $n(s) = {}^{52}C_3 = 22100$ Total number of spadrs = 13 Total number of red green = 2 Total number of black king = 2 Probability of getting 1 spade, 1 rad queen and 1 black king

$$=\frac{13_{c_1}.2_{c_1}.2_{c_1}}{52_{c_2}}=\frac{52}{22100}$$

= 0.00235

Hence the correct and 'c'

72

	Engineering Publications
02.	Ans: (c)
Sol:	Total chances = $6 \times 6 = 36$

Sum is a multiple either of 3 (or) 4 Event getting a multiple of 3 as the sum (1, 2), (1, 5), (2,1), (2,4), (3, 3), (3, 6), (4, 2), (4, 5), (5, 1), (5, 4), (6, 3), (6, 6) = 2 Event of getting a multiple of 4 as the sum (1, 3), (2, 2), (3,1), (4, 4), (3, 5), (5,3), (2, 6), (6, 2), (6, 6) = 9

But (6, 6) we get already

Total number of cases sum is a multiple either of 3 (or) 4 = 20

The probability that their sum is a multiple

either of 3 (or) $4 = \frac{20}{36} = \frac{5}{9}$

Hence the correct answer option c

03. Ans: 0.81

Sol: Total number at bulbs non-defective = 100-5 = 95

The probability that the current batch is accepted

$$= \frac{95}{100} \times \frac{94}{99} \times \frac{93}{98} \times \frac{95}{97} = 0.82 = 0.812$$

(or) $\frac{95_{C_4}}{10_{c_4}} = \frac{\frac{95!}{91!4!}}{\frac{100!}{96!4!}} = 0.812$

04. Ans: (a)

Sol: Let total no at students in the Class = 100

Then girls = 60% of 100 = 60

Poor girls = 25% of 60=15

Probability that a poor girl is selected leader

$$=\frac{15}{100}=15\%$$

X DEEP

05. Ans: (b)

Sol: Let n(E) = even of the sum 9 from twothrows at a dice (3,6), (6, 3), (5, 4) = 4 $Two throws at a dice <math>n(s) = 6 \times 6 = 36$ $P(E) = \frac{n(E)}{n(s)} = \frac{4}{36} = \frac{1}{9}$ 06. Ans: (a)

Sol: Total chances $n(6) = 6 \times 6 = 36$

Let E = Event that the sum is a prime number then

 $E = \{ (1,1), (1, 2), (1, 4), (1,6), (2, 1), (2,3), (2,5), (3, 2), (3, 4), (4, 1), (4, 3), (5, 2), (5,6), (6, 1), (6,5) \}$ $\therefore n(E) = 15$

The probability that the total score is a prime number is $=\frac{15}{36}=\frac{5}{12}$

07. Ans: (b)

Sol: Total outcomes of when two dice are thrown simultaneously $n(s) = 6 \times 6 = 36$ Let E = event of getting two numbers whose product is even E= {(1,2), (1,4), (1,6), (2, 1), (2, 2), (2, 3),

 $\begin{array}{l} \begin{array}{l} (1,2), (1,4), (1,0), (2,1), (2,2), (2,3), \\ (2,4), (2,5), (2,6), (3,2), (3,4), (3,6), (4,1), \\ (4,2), (4,3), (4,4), (4,5), (4,6), (5,2), (5,4), \\ (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6) \\ \end{array} \\ \begin{array}{l} n \ (E) = 27 \end{array}$

:.
$$P(E) = \frac{n(E)}{n(s)} = \frac{27}{36} = \frac{3}{4}$$

Deep Learn - India's Best Online Coaching Platform for GATE, ESE, and PSUs Enjoy a smooth online learning experience in various languages at your convenience

73

	ACE Engineering Publications		74	Numerical Ability
08. Sol:	Ans: (b) Total number of factorial cards is 12 cards $\frac{12C_1}{52_{C1}} = \frac{12}{52} = \frac{3}{13}$	ce cands in pack of 52	2	Un favarable outcomes = $36-3 = 33$ \therefore odds in favour of sum of $4 = \frac{3}{33} = \frac{1}{11}$ (ii) E = { (1,4), (2,3), (3, 2), (4, 1)}
09. Sol:	Ans: (c) Total number of oute n(s) = 10 + 25 = 35 Total number of priz $P(E) = \frac{10C_1}{35C_1} = \frac{10}{35} =$	comes possible es n(E) = 10 $\frac{2}{7}$	RI	Farounable outcomes = 4 Unfurounrable outcomes = 36–4 = 32 ∴ odd in favour of sum $S = \frac{4}{32} = \frac{1}{7}$ (iii) $E = \{(1,5), (1,5), (2,4), (4,2), (3,3)$ n(E) = 5 Total chances $h(s) = 6 \times 6 = 36$
10. Sol:	Ans: 1/7 Required probability ∴ When the case together is taken, considered as one to ways in which 5 lette Also the 3 vowels co themselves in 3! Wa	$= \frac{5!\times3!}{7!} = \frac{1}{7}$ of three vowels being than three vowels are unit, so the number of ers can around = 5! an be arranged amongs ys.	g f t ce 1	Odds in favour = $\frac{5}{36-5} = \frac{5}{31}$ 13. Ans: (b) Sol: Leap year has 366 days (i.e., $7 \times 52 + 2$) 52 weeks and 2 extra days The sample space for these 2 days The two odd days can be {Sunday, Monday}, {Monday, Tuesday}, {Tuesday}
 Sol: 12. Sol: 	Ans: (c) Total chances $n(s) =$ Let $E =$ event of gett king of heart $\therefore n(E) = 2$ $\therefore P(E) = \frac{n(E)}{n(s)} = \frac{2}{52}$ Ans: (i) 1 : 11 (ii) 1 (i) $n(s) = 6 \times 6 = 36$ Let $E = \{(1, 3), (2, 2)\}$ Favourable outcome	52 ing a queen of club or a $=\frac{1}{26}$ 1:8 (iii) 5:31 , (3,1)} s = 3	1	Wednesday}, {Wednesday, Thursday}, {Thursday, Friday}, {Friday, Saturday}, {saturaday, Sunday} So There are 7 possibilities at of which 2 have a Sundays. So the probability of 53 Sundays in a leap year is $\frac{2}{7}$
		Regular Doubt of Affordable Fee Ava	clearing ilable 3	g Sessions Free Online Test Series Programme 3M 6M 12M 18M and 24 Months Subscription Packages

	ACE Engineering Publications		75		Quantitative Aptitude
14. Sol: 15. Sol:	Ans: (d) Let Event E = numbers a 100. E = {7,14, 21, 28, 35 84, 91, 98} P(E) = $\frac{14}{100}$ Probability that see divisibly by 7 = 1-n(= $1 - \frac{14}{100}$ = $\frac{86}{100} = \frac{43}{50}$ Ans: (a) Given that P(F) = $\frac{60}{100} = \frac{3}{5}$	are divisible by 7 in 1 to 5, 42, 49, 56, 63, 70, 77 lected number is no (E)	75 5 t	16. Sol: 17. Sol: 18. Sol: 19. Sol:	Quantitative Aptitude Ans: (b) Required probability = $1 - \frac{6_{c_3}}{14_{c_3}}$ Ans: (a) Required probability = $1 - \frac{11_{c_3}}{14_{c_3}}$ Ans: (b) Required probability = $\frac{5_{c_3}}{14_{c_3}}$ Ans: (d) Required probability = $\frac{6_{c_2} \times 3_{c_1}}{14_{c_3}}$
	$P(S) = \frac{50}{100} = \frac{1}{2}$ $CP(F \cap S) = \frac{30}{100} = \frac{30}{100} = \frac{30}{100}$ $P(FUS) = Probability$ at random has passed $P(FUS) = F(f) + P(S)$ $= \frac{3}{5} + \frac{1}{2} - \frac{3}{10} = \frac{8}{10} = \frac{3}{10}$ The probability that random has failed into the probability that is the probability that is the probability that is the probability that is the probability that random has failed into the probability that is the probability that is the probability that random has failed into the probability that is the probability that random has failed into the probability the probability that random has failed into the probability that random has failed into the probability the probability that random has failed into the probabili	$\frac{3}{0}$ Since y that a student selected d in both examinations) -P (F S) $\frac{4}{5}$ t a student selected at h both the examination	t n	20. Sol: 21. Sol: Sol:	Ans: (d) Required probability = $\frac{3_{C_2} + 4_{C_2} + 3_{C_2}}{11_{C_2}}$ = $\frac{4}{15}$ Ans: (a) Required probability = $\frac{10}{25} \times \frac{15}{24} + \frac{15}{25} \times \frac{10}{24} = \frac{1}{2}$ Ans: (d) Required probability = $\frac{4_{C_1} + 4_{C_1} + 4_{C_1}}{52_{C_3}} = \frac{16}{5525}$
		Deep Learn - Indi Enjoy a smooth onlin	a's Best e learni	t Unlin ing exj	ne Coaching Platform for GATE, ESE, and PSUs perience in various languages at your convenience

Engineering Publications	76		Numerical Ability
23. Ans: (a) Sol: $H_1 H_2^1 H_3^1 + H_2 H_1^1 H_3^1 + H_3 H_1^1 H_2^1$ $= \frac{1}{7} \times \frac{7}{8} \times \frac{6}{7} + \frac{1}{8} \times \frac{6}{7} \times \frac{6}{7} + \frac{1}{7} \times \frac{6}{7} \times \frac{7}{8}$ $= \frac{120}{7 \times 7 \times 8}$		26. Sol:	Ans: (b) (1,1), (1, 4), (4, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6) \Rightarrow n(E) = 8 n(s) = 6 × 6 = 36 required probability = $\frac{8}{36}$
$=\frac{15}{49}$	2	27. Sol:	Ans: 42 Let the probability that A and B speak truth
 24. Ans: (b) Sol: Given 4 men throw a die and 2 people ge the same number. The first die can give any of the 6 numbers. The second die can give any of the remaining 5 numbers. The third die can give any of the remaining 4 numbers. The fourth die can give any of the remaining 3 numbers. So, the total possible outcomes will be = 6 × 5 × 4 × 3 Probability of all getting different numbers. = 1 - 5/18 25. Ans: (a) 	t 6 e e e r	99	be P(A) and P(B) respectively. Therefore, $P(A) = \frac{60}{100} = \frac{3}{5}$ and $P(B) = \frac{90}{100} = \frac{9}{10}$ A and B can contradict in stating a fact when one is pecking the truth and other is not speaking the truth. Case 1: A is speaking the truth and B is not speaking the truth. Required probability = P(A) × (1 – P(B)) $= \frac{3}{5} \times \left(1 - \frac{9}{10}\right) = \frac{3}{50}$ Case 2: A is not speaking the truth and B is separately the truth. Required probability = (1 – P(A)) × P(B) $= \left(1 - \frac{3}{5}\right) \times \frac{9}{10} = \frac{9}{25}$ Therefore, percentage of cases in which they are likely to contradict in stating the same fact
Sol: with replacement $=\frac{8}{15} \times \frac{8}{15} \times \frac{8}{15} = \frac{512}{2197}$ Without replacement $=\frac{8}{5} \times \frac{7}{4} \times \frac{6}{3}$			$= \left(\frac{3}{50} + \frac{9}{25}\right) \times 100\% = \left(\frac{3+18}{50}\right) \times 100\% = 42\%$ From case 1, it is clear that it not necessary that the statement of B will carry more weight as he speaks truth in more number of cases than A.
Regular Doubt ACE Affordable Fee Ava	clearing nilable 3	; Sessi M 6M	ons Free Online Test Series Programme

ACE Engineering Publications

77

Quantitative Aptitude

28. Ans:

- **Sol:** (1, 2, 3) (2, 3, 4) (28, 29, 30)
 - There are total 28 sets

1 set is selected in ${}^{28}C_1$ ways = 28

Total outcomes is ${}^{30}C_3$

 $= 30 \times 29 \times 28 / 3 \times 2 \times 1$

= 4060

Probability = 28/4060 = 1/145

- 29. Ans: (c)
- Sol: The even numbers on the dice are 2, 4, 6 The probability of even number on a dice

 $=\frac{3}{6}$

 \therefore The probability that an even number is rolled out on each dice is $\frac{3}{6} \times \frac{3}{6} = \frac{1}{4}$

 $2 \underbrace{\qquad }_{6}^{2} \underbrace{\qquad }_{6}^{4} \underbrace{\qquad }_{6}^{2} \underbrace{\qquad }_{6}^{2$

30. Ans: (4/11)

Sol: Required probability =
$$\frac{5_{C_2} \times 7_{C_1} + 5_{C_3}}{12_{C_2}}$$

$$=\frac{80}{220}=\frac{4}{11}$$

DEEP

31. Ans: (c)

Sol: Two friends A and B

The probability that they will meet on that day

$$= 1 - 2 \left[\frac{1}{2} \times \frac{45}{60} \times \frac{45}{60} \right]$$

(Area of ABCD)

$$= \left[1 - \left(\frac{3}{4} \times \frac{3}{4}\right)\right] = 1 - \frac{9}{16} = \frac{16 - 9}{16} = \frac{7}{16}$$

32. Ans: (a) Sol: (2, 14), (14, 2), (3, 13), (13, 3), (4, 12), (12, 4), (5, 11), (11, 5).

Required probability $=\frac{8}{40}=0.20$

33. Ans: (c)

Sol: Probability = $\frac{\text{no.of favorable cases}}{\text{total no. of possible cases}}$

Among two children's (boys), the older one is a boy = 1 and two children's are boys only.

Probability =
$$\frac{1}{2}$$

Deep Learn - India's Best Online Coaching Platform for GATE, ESE, and PSUs Enjoy a smooth online learning experience in various languages at your convenience

	ACEE Engineering Publications	78		Numerical Ability
34. Sol:	 Ans: (a) There are total 100 numbers, out of which 50 numbers are divisible by 2, 33 numbers are divisible by 3, 20 numbers are divisible by 5 Following are counted twice above 16 numbers are divisible by both 2 and 3 10 numbers are divisible by both 2 and 5 6 numbers are divisible by both 3 and 5 		01. Sol	2.17 Progressions 1. Ans: (b) ol: $1+2+3+ 12$ times in 12 hrs $\frac{12(12+1)}{2} = 78$ times in 12 hrs So in a day = 2(78) = 156 In 2 days = 2 (156) = 312
35. Sol:	Following is counted thrice above 3 numbers are divisible by all 2, 3 and 5 So total numbers divisible by 2, 3 and 5 are = $50 + 33 + 20 - 16 - 10 - 6 + 3 = 74$ Required probability = $\frac{100 - 74}{100} = 0.26$ Ans: (c)		02. Sol 03. Sol	2. Ans: (c) pol: $a_n = a + (n - 1)d$ -54 = 11 + (n - 1)(-5) n = 14 3. Ans: 100 pol: 201, 204,498 $n = \frac{498 - 201}{3} + 1 = \frac{292}{3} + 1 = 100$
	k digits Each digit can be filled in 7 ways as 0, 1 and 9 is not allowed so, each of these place can be filled by 1, 2, 3, 4, 6, 7, 8. So, required probability $= \left(\frac{7}{10}\right)^k = (0.7)^k$	se i	04. Sol	4. Ans: (a) b1: divisible by 3, 4 and 8 Means checking with L.CM of (3, 4, 8) = 24 72, 96,

X DEEP

	ACE Engineering Publications		79		Quantitative Aptitude
05.	Ans: (c)		(09.	Ans: (a)
Sol:	$t_{12} = a + 11d = 22$	\rightarrow (1)	5	Sol:	$S_1 = c. diff = 4$
	Latance of 22 to mag	$-\mathbf{s} = \frac{\mathbf{n}}{\mathbf{a}} \left(\mathbf{a} + \mathbf{a} \right)$			$S_2 = c. diff = 5$
	Let sum of 23 terms	$= S_{23} = \frac{1}{2}(a + \ell)$			L. CM of $(4, 5) = 20$, so we need coefficient
	$-\frac{23}{(a+a)}$	+(n-1)d			= 20
	2 (4 + 4				21, 41, 61, 81,
	$=\frac{23}{2}(a+a)$	+ 22d)			$S_{n} = \frac{n}{2} (2a + (n-1)d) = \frac{100}{2} [2(21) + 99(20)]$
	$-\frac{23}{2}(2(a))$	114))			= 50(42+1980)
	$-\frac{1}{2}(2(a +$	110))			= 50 (2022)
	$=\frac{23}{(2)(22)}$	from(1)			= 1,01,100
	2 (2)(22	CINER	ERIA	VC	A
	= 506	ENO	1	10.	Ans: (c)
				Sal.	$s = \frac{a}{1} - 2$
06.	Ans: (a)	र्षे	ĸ	501.	$S_{\infty} - \frac{1}{1-r} = \frac{1}{1-r} - \frac{1}{2}$
Sol:	11 (a+10d) = 16 (a+1)	15d)			2
	5a + 130d = 0	$\therefore (a + 26d = 0)$			
	$27^{\text{un}} \text{ term} = a + 26d$		1	11.	Ans: 144
	a + 26d = 0		5	Sol:	3(24 + 12 + 6+3+)
	Then $2/m$ term = 0				$\left(\begin{array}{c}21\end{array}\right)$
07	Amer (d)			<	$3 \frac{24}{1} = 3(24)2 = 144$
U/.	Alls: (u)	57 Cin	201	00	$\begin{pmatrix} 1-2 \end{pmatrix}$
Sol:	Common $\frac{34-2}{7+1}$ =	$=\frac{32}{8}=4$	Ceri	77	a
	2 6 10 14 18 22 2	26 30 34			$S_{\infty} = \frac{1-r}{1-r}$
	1 r r r				
	$S_n = \frac{1}{2}[30+6] = 7(13)$	8)=126		12.	Ans: (d)
	$n \left[2 + (n-1) \right]$	1	5	Sol:	$B = 2^{54} + 2^{53} + \dots 2^{\circ}$
	$S_n = \frac{1}{2} [2a + (n-1)a]$]			a = 1
	n = 23 terms (:: 44, 4	42, 40 2, 0)			r = 2
	23 г				n = 55
	$S_n = \frac{1}{2} [44 + 0] = 23$	(22) = 506			$S_n = \frac{1(2^{55} - 1)}{1} = 2^{55} - 1$
08.	Ans: (c)				But $A \Rightarrow 2^{55}$
	~~ \~/				A is larger than 'B' by (1)
		Deep Learn - Ind	ia's Best	t Onli	ne Coaching Platform for GATE, ESE, and PSUs
	ACE LEARN	Enjoy a smooth onlin	e learni	ng exp	perience in various languages at your convenience

	ACE Engineering Publications	80	Numerical Ability
13. Sol:	Ans: 3960 = $360 + 2 (300 + 250 + \dots + \dots 2)$		a + 5d = 10 which is (T ₆) again reciprocal = $\frac{1}{10}$ is in HP
	$= 360 + 2\left(\frac{300}{1 - \frac{5}{6}}\right)$ [:: $36 \times \frac{5}{6} = 300, 300 \times \frac{5}{6} =$ $= 360 + 2\left(\frac{300}{\frac{1}{6}}\right)$ $= 360 + 2(300) 6 \Rightarrow 360 + 3600$	250]	16. Ans: 20/9 Sol: $S = 1 + \frac{3}{4} + \frac{5}{4^2} + \dots \infty \rightarrow (1)$ $\frac{S}{4} = \frac{1}{4} + \frac{3}{4^2} + \frac{5}{4^3} + \dots \infty \rightarrow (2)$ (1) - (2) $= 1 + \frac{3}{4} - \frac{1}{4} + \frac{5}{4^2} - \frac{3}{4^2} + \dots \infty$ $= 1 + \frac{2}{4} - \frac{2}{4} + \frac{2}{4} $
14. Sol:	= 3960 Ans: 1 $\frac{1}{a+9d} = 21 \Rightarrow 21a+189d = 0 \rightarrow (1)$ $\frac{1}{a+20d} = 10 \Rightarrow 10a+200d = 0 \rightarrow (2)$		$= 1 + \frac{1}{4} + \frac{1}{4^2} + \dots + \infty$ $= S - \frac{S}{4} = 1 + \frac{2}{4} \left(1 + \frac{1}{4} + \frac{1}{4^2} + \dots + \infty \right)$ $= 1 + \frac{2}{4} \left(\frac{4}{3} \right)$ $\frac{3S}{4} = \frac{5}{3}$
	By solving (1) and (2) $a = d$, $a = d$ $d = \frac{1}{10}$ We need 210 th term $= \frac{1}{a + (n-1)d} = \frac{1}{\frac{1}{210} + \frac{209 \times 1}{210}} = \frac{1}{\frac{210}{210}}$	$\frac{1}{210}$, since 1 $\frac{1}{0} = 1$	S = $\frac{20}{9}$ 17. Ans: (b) Sol: 8 [1+11+111+n] = 8. $\frac{9}{9}$ (1+11+111+n) = $\frac{8}{9}$ (9+99+n) = $\frac{8}{9}$ (9+99+n) = $\frac{8}{9}$ ((10'-1)+(10 ² + 1)-(10 ⁿ - 1))
15. Sol:	Ans: (b) The reciprocal of 11 terms of HP as = A Sum of 11 terms $= \frac{n}{2}(2a + (n-1)d) = \frac{11}{2}(2a + (10)d) = 11$ $\Rightarrow 2a + 10d = 20$ Regular D	A.P 0 oubt clearin	$= \frac{8}{9} \left(\left(10 + 10^2 + -10^n \right) - n \right)$ $= \frac{8}{9} \left(\frac{10(10^n - 1)}{10 - 1} - n \right)$ $\Rightarrow \frac{8}{9} \left(\frac{10(10^n - 1)}{9} - n \right)$ $\text{rg Sessions Free Online Test Series Programme}$
	ACE A CE A CE	Available :	3M 6M 12M 18M and 24 Months Subscription Packages

	ACEE Engineering Publications	81	Quantitative Aptitude
18. Sol:	Ans: (d) 10 + 84 +734 = (9+1) + (9 ² +3) - (9 ³ +5) + = 9 + 9 ² +9 ³ + + (1+3+5+n) = $\frac{9(9^{n}-1)}{9-1}$ + n ² = $\frac{9(9^{n}-1)}{9-1}$ + n ²	+	20. Ans: (d) Sol: A.m = $\frac{a+b}{2} = p$ G.m = $\sqrt{ab} = q$ Quadratic Equation = $x^2 - (\alpha - \beta) x + \alpha\beta = 0$ $x^2 - 2px + q^2 = 0$ is satisfied
19. Sol:	$= \frac{1}{8} + n$ Ans: (c) 11 + 103 + 1005 + = (10 + 1) + (10 ² + 3) + (10 ³ + 5)n) = (10 + 10 ² +10 ⁷) + (1+3+5+n) = \frac{10(10 ⁿ - 1)}{10 - 1} + n ² = \frac{10(10 ⁿ - 1)}{9} + n ²	R I/	VG ACAONALA
01. Sol:	2.18 Data Ans: (b) Sum of angles in a pie chart = 360° Sin The relation between angle and percentage in $100 \% = 360^{\circ}$ $1\% = 3.6^{\circ}$	Inte	erpretation 995

∴ 40% = ?

$$=40 \times 3.6 = 144^{\circ}$$

02. Ans: (d)

Sol: The total monthly budget of an average household = 4000+1200+2000+1500+1800 = Rs. 10500 Percentage of the monthly budget spent on savings

 $= \frac{\text{savings amount}}{\text{Total expenses}} = \frac{1500}{10500} \times 100 = 14.285\%$

:. The approximate percentage of the = $100 - 14.285 = 85.714 \approx 86\%$ monthly budget NOT spent on savings

	Deep Learn - India's Best Online Coaching Platform for GATE, ESE, and PSUs				
ACE ARN	Enjoy a smooth online learning experience in various languages at your convenience				

ACE Engineering Publications	82	Numerical
---------------------------------	----	-----------

03. Ans: (d)

Sol:

Category	Ye	ars	Increment	% of increment	
Category	2010	2011	merement	/o or merement	
Raw material	5200	6240	1040	$\frac{1040}{5200} \times 100 = 20\%$	
Power & fuel	7000	9450	2450	$\frac{2450}{7000} \times 100 = 35\%$	
Salary & wages	9000	12600	3600	$\frac{3600}{9000} \times 100 = 40\%$	
Plants & Machinery	20000	25000	5000	$\frac{5000}{20000} \times 100 = 25\%$	
Advertising	15000	19500	4500	$\frac{4500}{15000} \times 100 = 30\%$	
Research & development	22000	26400	4400	$\frac{4400}{22000} \times 100 = 20\%$	

Raw material and research and development are increased by same percentage in year 2010-2011

Ans: 48 **04**.

Sol: Men & Women who do not own any vehicle

= 20 + 50 = 70

Men & Women who own only a car but not scooter = 40 + 34 = 74

Total respondents who do not own a scooter

Total respondents who participated in survey = 300

$$\text{percentage} = \frac{144}{300} \times 100 = 48\%$$

05. Ans: (c)

Sol: Total Revenues of Mola from all types of Rides = 170 + 320 + 215 + 190(pool) + 110 + 220 + 180+70(Mini) + 75 + 180 + 120 + 90(prime) = 1940

Revenue contribute by prime ride = 75 + 180 + 120 + 90 = 465

: The percentage of share of revenue contributed by prime to the total revenue of Mola

$$=\frac{465}{1940} \times 100 = 23.97$$

Regular Doubt clearing Sessions | Free Online Test Series Programme Affordable Fee | Available 3M |6M |12M |18M and 24 Months Subscription Packages

= 144

ACE Engineering Publications

06. Ans: (b)

	Elegance	Smooth	Soft	Executive
	27300	20009	17602	9999
	25222	19392	18445	8942
	28976	22429	19544	10234
	21012	18229	16595	10109
	102510	80059	72186	39284
Total Sum	Rs. ×48	Rs. ×63	Rs. ×78	Rs. ×173
Total Revenue	4920480	5043717	5630508	6796132

More revenue is on executive

07. Ans: (d)

Sol:

Stretch	Distance (km)	Consumption (kwh)
М	20	12
Ν	45 - 20 = 25	25 - 12 = 13
0	75 - 45 = 30	45 - 25 = 20
Р	100 - 75 = 25	57 - 45 = 12

Cost per km (sketch M) = $\frac{12}{20} = 0.6$ Cost per km (sketch N) = $\frac{13}{25} = 0.52$ Cost per km (sketch O) = $\frac{20}{30} = 0.66$ Cost per km (sketch P) = $\frac{12}{25} = 0.48$

: Stretch P has least consumption per km

84	Numerical Ability

08. Ans: (c)

- Sol: From the given bar graph,
 - (i) The number of beds made by carpenter C_2 = The number tables made by carpenter C_3 8 Nos = 8 Nos

 $\delta INOS - \delta INO$

 \therefore Statement (i) is true

(ii) The total number of chairs made by all carpenters = $C_1 + C_2 + C_3 + C_4 + C_5$

= 2+10+5+2+4 = 23 Nos

The total numbers of tables made by all carpenters = $C_1 + C_2 + C_3 + C_4 + C_5$

- 23 Nos < 29 Nos
- : Statement (ii) is also true
- : Both the statements (i) and (ii) are true

09. Ans: 6

Sol:	Sunday	65 > 110 % (55)	(Y > X)
	Saturday	60 > 110 % (50)	(X > Y)
	Friday	35 > 110 % (20)	(Y > X)
	Wednesday	60 > 110 % (50)	(X > Y)
	Tuesday	65 > 110 % (55)	(Y > X)
	Monday	70 > 110 % (45)	(Y > X)
	T + 1 < 1		0/ 1

Total 6 days, one student is 10% more than another student.

Since 1995

10. Ans: (c)

Sol: Average number of students enrolled in school P in 5 years = $\frac{3000 + 5000 + 5000 + 6000 + 4000}{5} = 4600$

5

Average number of students enrolled in school Q in 5 years

$$=\frac{4000+7000+8000+7000+5000}{5}=6200$$

Average of the difference of the number of students in school,

P and Q = 6200 - 4600 = 1600

Desired ratio =
$$\frac{4600}{1600} = \frac{23}{8}$$

Answer is 23:8

	ACE Engineering Publications	85	Quantitative Aptitude
11. Sol:	Ans: (b) Suppose Rs x (amount) invested every year by P from 2013-2018 is	by Co	mpany P, and Company Q, then the total revenue
	$[110 + 120 + 140 + 140 + 150 + 140] \times \frac{x}{100} =$	8x	\therefore The revenue = Investment + Profit
	And the total revenue by Q company from 2	2013-2	2018 is
	$[120 + 130 + 130 + 150 + 160 + 160] \times \frac{x}{100} =$	$\frac{17x}{2}$	
	$\therefore \text{ Required ratio is } 8x: \frac{17x}{2} \Rightarrow 16:17$		
12.	Ans: (c)	ERI	NGAO
Sol:	P - Success rate = $\frac{280}{500} \times 100 = 56\%$		A DE
	Q - Success rate = $\frac{330}{600} \times 100 = 55\%$		32
	R - Success rate = $\frac{455}{700} \times 100 = 65\%$		
	S - Success rate = $\frac{240}{400} \times 100 = 60\%$		
	Average success rate of four schools		
	$=\frac{56+55+65+60}{4}$	=59% ce 1	995
13.	Ans: (b)		F

Sol: From the given bar chart,

The total expenditure = 500*5 = 2500 million

The total revenue from 2014-2018 = 500 + 700 + 800 + 600 + 400 = 3000 million

- \therefore Profit = Revenue Expenditure = 3000 2500 = 500 million
- \therefore The profit on the total expenditure

$$=\frac{500}{2500}\times100=20\%$$

	ACE
2000	Engineering Publications

14. Ans: 2006

Sol:

Year	Trade deficit (Imp-Exp)		$\frac{1}{5}$ (Exports)
2005	20	≠	$14 = \frac{1}{5} \times 70$
2004	10	≠	$14 = \frac{1}{5} \times 70$
2007	10	≠	$22 = \frac{1}{5} \times 110$
2006	20		$20 = \frac{1}{5} \times 100$

15. Ans: 120

Sol: Installed capacity ≥ 200 tonnes \Rightarrow large plant Installed capacity ≤ 200 tonnes \Rightarrow small plant Form given multiple pie chart, the large plants are 1, 4, 8 & 9 Total production of large plants = 160 + 190 + 230 + 190 = 770 tonnes Total production of small plants = 150 + 160 + 120 + 100 + 120 = 650 tonnes \therefore The difference between total production of large plants and small plants in tonnes

= 770 - 650 = 120 Since 1995

16. Ans: 1900

Sol: Total number of management degree holder among the executive in companies

$$C_{2} = \frac{5}{100} \times \frac{1}{5} \times 1000 = 100$$
$$C_{5} = \frac{20}{100} \times \frac{9}{10} \times 10000 = 1800$$
$$C_{2} + C_{5} = 1900$$

y T	ACE
3000	Engineering Publications

87

17. Ans: (c)

Sol: Money spent on Education = 15%

Money spent on transport = 10%

Extra money spent on Education compared to transport

$$=\frac{15-10}{10}\times 100 = 50\%$$

18. Ans:(a)

Sol: Total number of students registered in the university = 5000 Total number of the registered girls = 1500

The boys enrolled in arts = 20% of 5000 - 30% of 1500 = 550

The girls enrolled in management = 15 % of 1500 = 225

: The ratio of boys enrolled in arts to the girls enrolled in management = $\frac{550}{225} = \frac{22}{9} \Rightarrow 22:9$

Hence option (a) is correct.

19. Ans: (b)

Sol: The total employment in 2010 at all skill level = 600

Total employment increased from 2010 to 2016

$$=15\% \text{ of } 600 = \frac{15}{100} \times 600 = 90$$

 \therefore The employment increased from 2010 to 2016 at S and T skill level = 90

(The total employment at skill levels P, Q and R remained unchanged during this period) The employment at skill level 'S' in 2010

 $=25 \times 6 = 150$ (::100%=600,1%=6)

The employment at skill level S increased by 40 % from 2010 to 2016 = 40% of 150

$$=\frac{40}{100} \times 150 = 60$$

Increased number of employees at skill level T from 2011 to 2016 = 90 - 60 = 30Total employee at level T in 2016

 $= 600 \times 5\% + 30$

= 30 + 30 = 60

Engineering Publications	88	Numerical Ability
	1	

20. Ans: (b)

Sol: Panel (a), Bar diagram represents, proportion of illiterates (%) dark shaded represents female and male illiterates in 2001 and light shaded represents female and male illiterates in 2011. Panel (b) and panel (c) male and females in 2001 and 2011 respectively.

Assume population in 2001 = 100 nos

from given data, population in 2011 also 100.

From the given Bar charts and pie charts, the following table can be possible.

	2001		2011		
	Males	Females	Males	Females	
Total	60	40	50RING	50	
Illiterates	50% of 60 = 30	60% of 40 = 24	40% of 50 = 20	40% of 50 = 20	
Literates	60 - 30 = 30	40 - 24 = 16	50 - 20 = 30	50 - 20 = 30	

Total literates in 2001 = 30 + 16 = 46

Total literates in 2011 = 30 + 30 = 60

... The percentage increase in the total number of literates from 2001 to 2011

$$= \frac{60-46}{46} \times 100$$

= $\frac{14}{60} \times 100 = 30.43\%$ ince 1995

21. Ans: (d)

Sol: Revenue generated through export of item per kilogram

Total Revenue from Item Export of the item

Ratio of the revenue generated per kg through export of

Item 1Item 412% of 250 crores6% of 250 crores11% of 51 akh tonnes22% of 51 akh tonnes $\frac{12}{11} : \frac{6}{22} \Rightarrow 4:1$

	Regular Doubt clearing Sessions Free Online Test Series Programme
ACE LEARN	Affordable Fee Available 3M 6M 12M 18M and 24 Months Subscription Packages

ACE Engineering Publications

22. Ans: 22000

Sol: The expense on labour in 2012 is 4,50,000Labour = 15% of total cost = 4,50,000

$$=\frac{15}{100}$$
 × total cos t = 4,50,000

Total cost = 30,00,000

Expense on Raw material in 2012

= 20% of 3000000 = 6,00,000

Expense on all other expenses in 2012

= 80% of 3000000 = 240000

Expense on Raw material in 2013

= 6000000 + 30% of 6000000

= 780000

Exp on all other exp in 2013

= 2400000+20% of 2400000

= 2880000

Total cost in 2013

= 780000 + 2880000 = 36,60,000

Percentage increase in the total cost for company in 2013

 $=\frac{3660000 - 3000000}{30000000} \times 100 = 22000$

23. Ans: (d)

Since 1995

Sol: The amounts invested in the companies of, P and Q in 2006 = 8 : 9 The rate of interest of company 'P' in 2006 = 6% The rate of interest of company 'Q' in 2006 = 4%

The amounts received after one year by P and Q companies in 2006 year

Р		Q
6% of 8	:	4% of 9
$\frac{6}{100} \times 8$:	$\frac{4}{100} \times 9$
4	:	3

	Deep Learn - India's Best Online Coaching Platform for GATE, ESE, and PSUs
ACE LEARN	Enjoy a smooth online learning experience in various languages at your convenience

NT .		-1 11-	
	norici	al An	
INUU			1111.V

ACE Engineering Publications

90

24. Ans: (a)

Sol: From the graph statement (i) is correct

- the time taken for curd formation @ $25^{\circ}C = 120 \text{ min}$
- the time taken for curd formation (a) $37^{\circ}C = 80 \text{ min}$
- : Statement (ii) is not correct.

25. Ans: (b)

Sol: From the given graph,

The difference between the maximum and the minimum pollutant concentrations in the winter = 8

-0 = 8 ppm

The difference between the maximum and the minimum pollutant concentrations in the summer =

10.5 - 1.5 = 9 ppm

Over the given months, these differences are not equal.

 \therefore Therefore statement (i) is not correct.

From the given graph, the statement (ii) is correct.

26. Ans: (c)

Sol: The total rainfall during the day = 300 mm = 0.3 mObstruction free area = 50 m^2 50% of rain fall = 50% of 0.3 m = 0.15 mVolume of water collected = Area × Depth = $50 \times 0.15 \text{ m} = 7.5 \text{ m}^3 = 7500 \text{ L}$

27. Ans: (d)

Sol: The odometer reading increases from starting point to end point Area of the given diagram = Odometer reading

Area of the velocity and time graph per second

$$1^{\text{st}} \text{sec} \Rightarrow \text{triangle} = \frac{1}{2} \times 1 \times 1 = \frac{1}{2}$$

 2^{nd} sec \Rightarrow square = $1 \times 1 = 1$

 3^{rd} sec \Rightarrow square + triangle

$$= 1 \times 1 + \frac{1}{2} \times 1 \times 1 = 1\frac{1}{2}$$

91

 $4^{\text{th}} \sec \Rightarrow \text{triangle} = \frac{1}{2} \times 1 \times 2 = 1$ $5^{\text{th}} \sec \Rightarrow \text{straight line} = 0$ $6^{\text{th}} \sec \Rightarrow \text{triangle} = \frac{1}{2} \times 1 \times 1 = \frac{1}{2}$ $7^{\text{th}} \sec \Rightarrow \text{triangle} = \frac{1}{2} \times 1 \times 1 = \frac{1}{2}$

Total Odometer reading at 7 seconds

$$= \frac{1}{2} + 1 + 1\frac{1}{2} + 1 + 0 + \frac{1}{2} + \frac{1}{2} = 5$$

28. Ans: (d)

Sol: P, Q, R and S are four types of dangerous microbes recently found in a human habitat

In the graph

- on X-axis represents probability that microbe will over come human immunity system and
- on Y-axis represents Toxicity (in milligrams of microbe required to destroy half of the body mass in kilograms

Microbe 'S' will have 80% of probability that microbe will overcome human immunity system and less weight of milligrams of microbe required to destroy half of the body mass in kgs.

Since 1995

 \therefore Microbe 'S' is danger to human beings.

29. Ans: (c)

:. The path from P to Q is Down-Up-Down option (c) is satisfies this path

30. Ans: (c)

Sol: The given contour is a hill station, the peak point of this hill station is P, it is under a contour of 550. At floods, the water level is 525 m. So, the village of R, S and T are under a contour of 525. Therefore these villages are submerged.

	Deep Learn - India's Best Online Coaching Platform for GATE, ESE, and PSUs
ACE ARN	Enjoy a smooth online learning experience in various languages at your convenience

31. Ans: (c)

Sol:

Region	Air pressure difference
Р	0.95 - 0.90 = 0.05
Q	0.80 - 0.75 = 0.05
R	0.8 - 0.65 = 0.15
S	0.95 - 0.90 = 0.05

In general thunderstorms are occurred in a region where suddenly air pressure changes (i.e.,) sudden rise (or) sudden fall of air pressure. From the given contour map in 'R' Region only more changes in air pressure so, the possibility of a thunderstorms in this region.

32. Ans: (d)

- Sol: (i) is incorrect as it has move directly
 - (ii) is incorrect as it stayed for maximum duration on the ground floor

33. Ans: (a)

Sol: Before getting promotion 'T' sharing with R and P and Q's are working together means they are in same office.

Option '(b)' is not correct due to T is sharing with R (i.e.) before getting promotion T is not worked alone.

Option '(c)' is not correct due to 'T' place of work is not defined.

Option '(d)' is also not correct due to after 'T' getting promotion P and Q is are not working together.

34. Ans: (a)

Sol:
$$=\frac{20}{100} \times 2040 : \frac{20}{100} \times 1450$$

= 240 : 145

35. Ans: (a)

	KEY for 3.1 Series											
01. (c)	02. (c)	03. (c)	04. (e)	05. (d)	06. (d)	07. (c)	08. (b)	09. (d)	10. (d)			
11. (c)	12. (d)	13.(a)	14. (c)	15. (c)	16. (c)	17. (e)	18. (c)					

			KEY for	3.2 Patte	ern Comp	oletion			
01. (a)	02. (c)	03. (d)	04. (a)	05. (c)	06. (a)	07. (a)	08. (b)	09. (b)	10. (d)
11. (c)	12. (a)	13.(a)	14. (a)						

KEY for 3.3 Spotting out Embedded Figure											
01. (b)	02. (c)	03. (c)	04. (b)	05. (b)	06. (d)	07. (b)	08. (a)	09. (a)	10. (d)		
11. (d)	12. (b)	13.(a)	14. (c)								
			Æ				1				

	KEY for 3.4 Odd one out / Classification											
01. (d)	02. (d)	03. (d)	04. (b)	05. (d)	06. (d)	07. (c)	08. (c)	09. (c)	10. (c)			
11. (b)	12. (c)	13.(d)	14. (b)	15. (d)								

	Deep Learn - India's Best Online Coaching Platform for GATE, ESE, and PSUs
ACE LEARN	Enjoy a smooth online learning experience in various languages at your convenience

Engineering Publications

94

	KEY for 3.5 Mirror & Water Images										
01. (a)	02. (d)	03. (c)	04. (c)	05. (b)	06. (d)	07. (b)	08. (d)	09. (d)	10. (d)		
11. (d)	12. (c)	13.(b)	14. (d)	15. (c)	16. (d)	17. (b)	18. (b)	19. (b)	20. (c)		
21. (d)	22. (a)	23. (d)	24. (c)	25. (b)	26. (d)	27. (a)					

	KEY for 3.6 Analogy											
01. (c)	02. (c)	03. (a)	04. (b)	05. (b)	06. (d)	07. (c)	08. (b)	09. (d)	10. (b)			
11. (e)	12. (a)	13.(e)	<u> </u>				3					
			Y				~					

KEY for 3.7 Paper Folding											
01. (a)	02. (b)	03. (b)	04. (d)	05. (c)	06. (c)	07. (c)	08. (d)	09. (b)	10. (a)		
11. (d)	12. (c)	13.(d)	14. (b)	15. (a)	16. (b)	17. (c)	18. (d)	19. (a)	20. (b)		

Since 1995

KEY for 3.8 Paper Folding & Cutting										
01. (b)	02. (b)	03. (b)	04. (b)	05. (b)	06. (c)	07. (c)	08. (a)	09. (b)	10. (b)	

KEY for 3.9 Grouping of Figures										
01. (d)	02. (a)	03. (d)	04. (b)	05. (b)	06. (c)	07. (a)	08. (b)	09. (a)	10. (a)	

	Regular Doubt clearing Sessions Free Online Test Series Programme
ACE LEARN	Affordable Fee Available 3M 6M 12M 18M and 24 Months Subscription Packages

	ACE gineering Publications
--	-------------------------------

Γ

KEY for 3.10 Figure Formation / Assembling										
01. (c)	02. (c)	03. (c)	04. (a)	05. (b)	06. (b)	07. (a)				

KEY for 3.11 Figure Matrix										
01. (d)	02. (b)	03. (a)	04. (a)	05. (a)	06. (c)	07. (b)				
08. (d)	09. (b)	10. (d)	11. (b)	12. (b)	13. (b)	AC				

	2	V						
01. (d)	02. (c)	03. (d)	04. (b)	05. (d)	06. (d)	07. (c)	Ş	

KEY for 3.13 Diagrammatic Logical Thinking										
01. (a)	02. (b)	03. (a)	04. (a)	05. (b)	06. (b)	07. (c)	08. (c)	09. (b)	10. (d)	
11. (c)	12. (a)	13. (a)	14. (c)			52				

* Verbal Ability Explanations already included in the practice booklet.