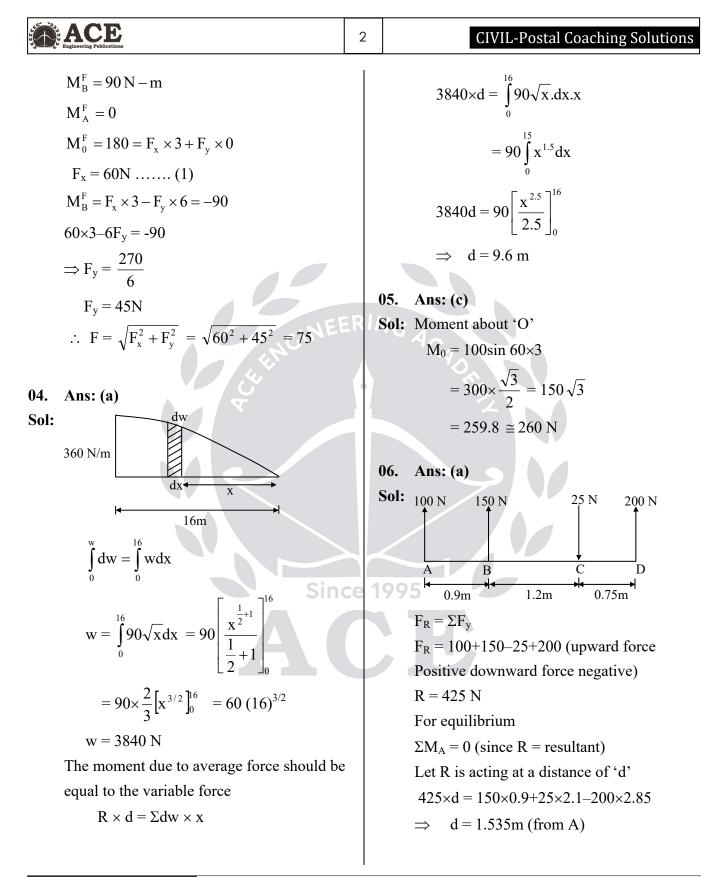
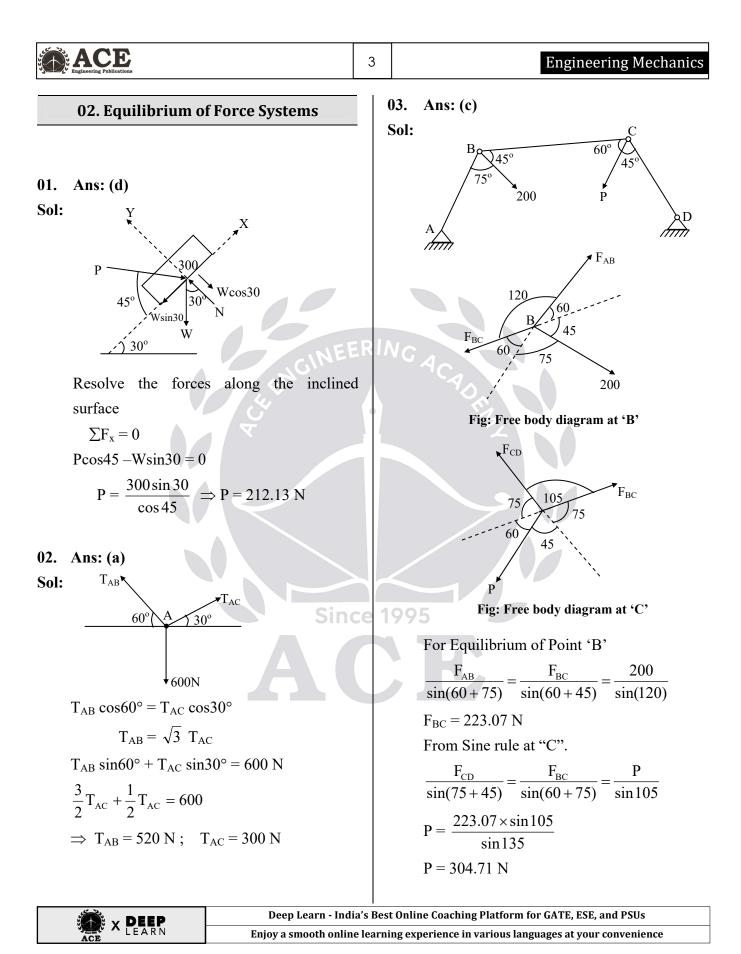

# **GATE | PSUs**

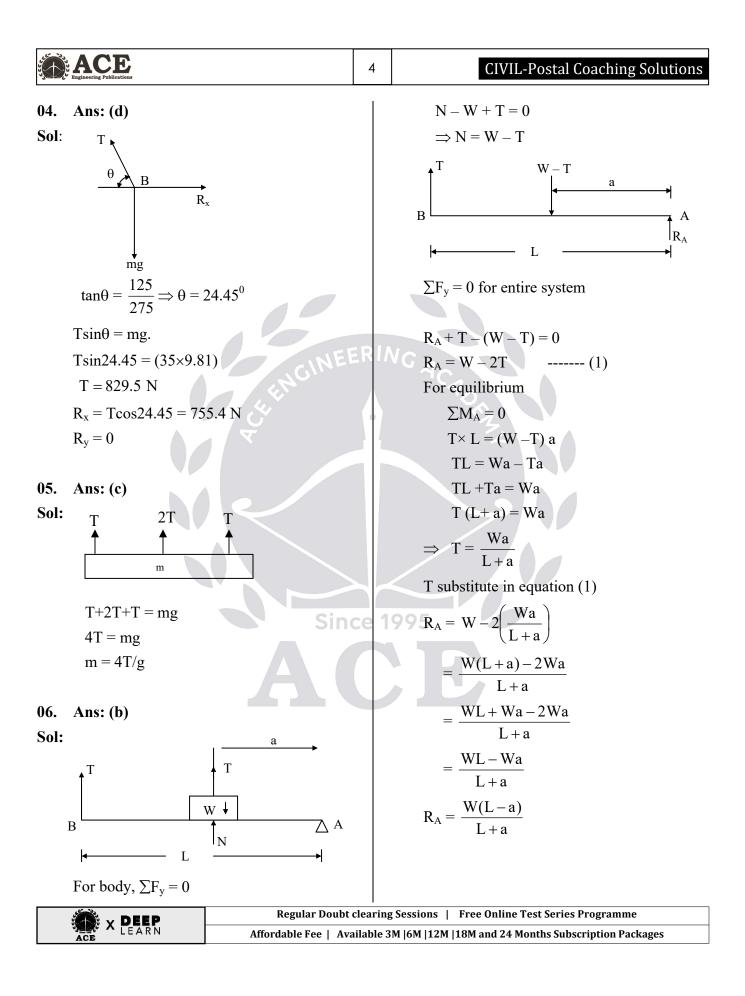
# **CIVIL ENGINEERING**

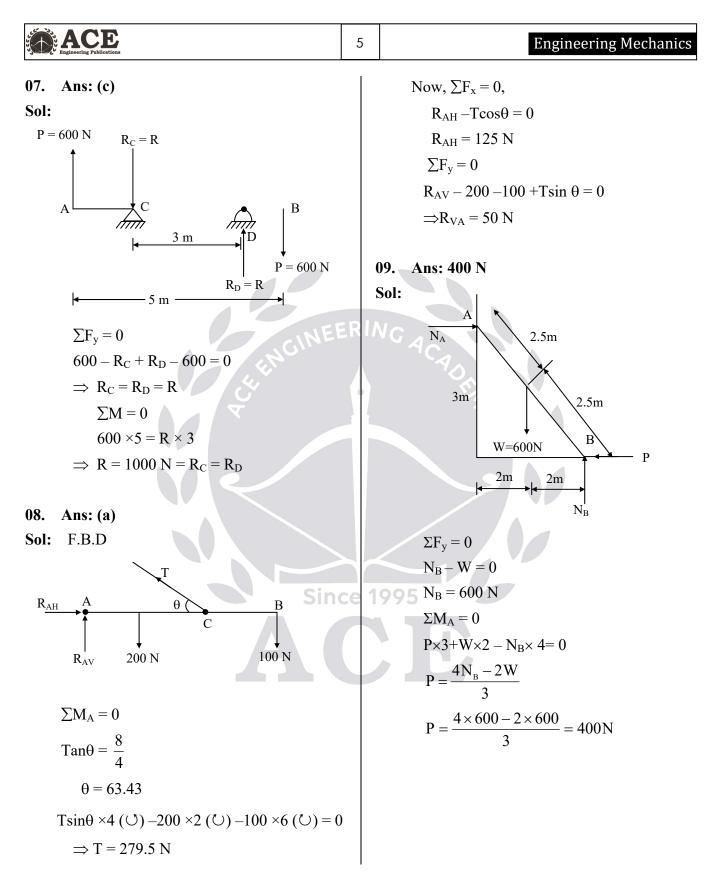

# **Engineering Mechanics**

Text Book & Work Book: Theory with worked out Examples and Practice Questions)

Hyderabad | Delhi | Pune | Bhubaneswar | Lucknow | Bengaluru | Chennai Vijayawada | Vizag | Tirupati | Ahmedabad | Kolkata



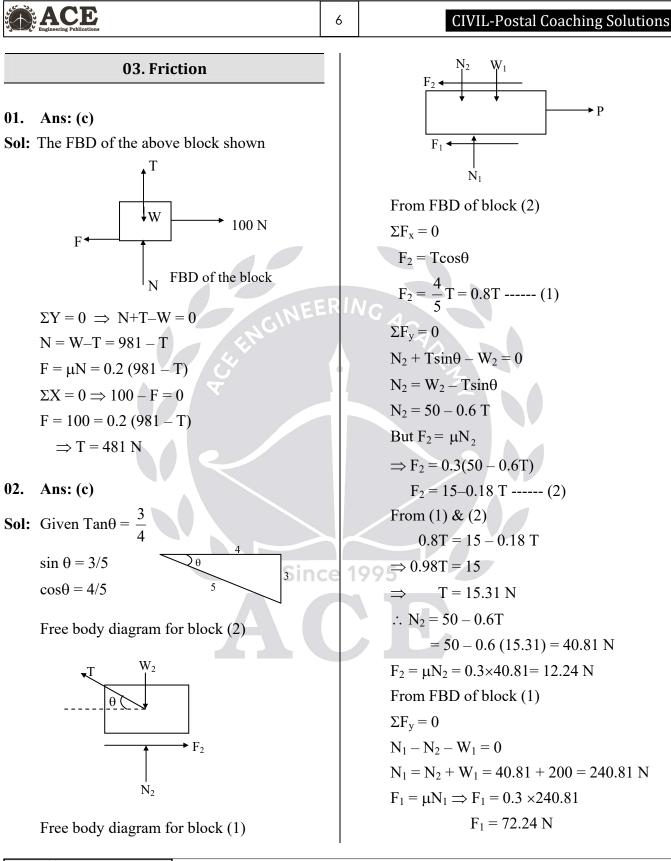


|             | Deep Learn - India's Best Online Coaching Platform for GATE, ESE, and PSUs         |
|-------------|------------------------------------------------------------------------------------|
| ACE A LEARN | Enjoy a smooth online learning experience in various languages at your convenience |




 Regular Doubt clearing Sessions
 Free Online Test Series Programme

 Affordable Fee
 Available 3M |6M |12M |18M and 24 Months Subscription Packages







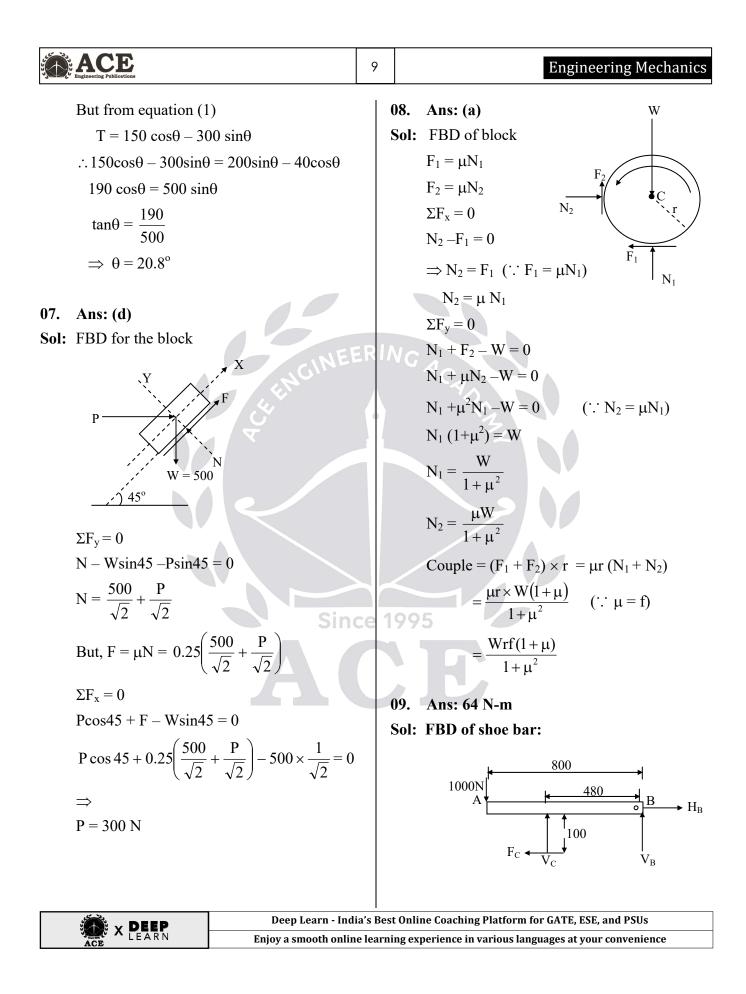

 Deep Learn - India's Best Online Coaching Platform for GATE, ESE, and PSUs

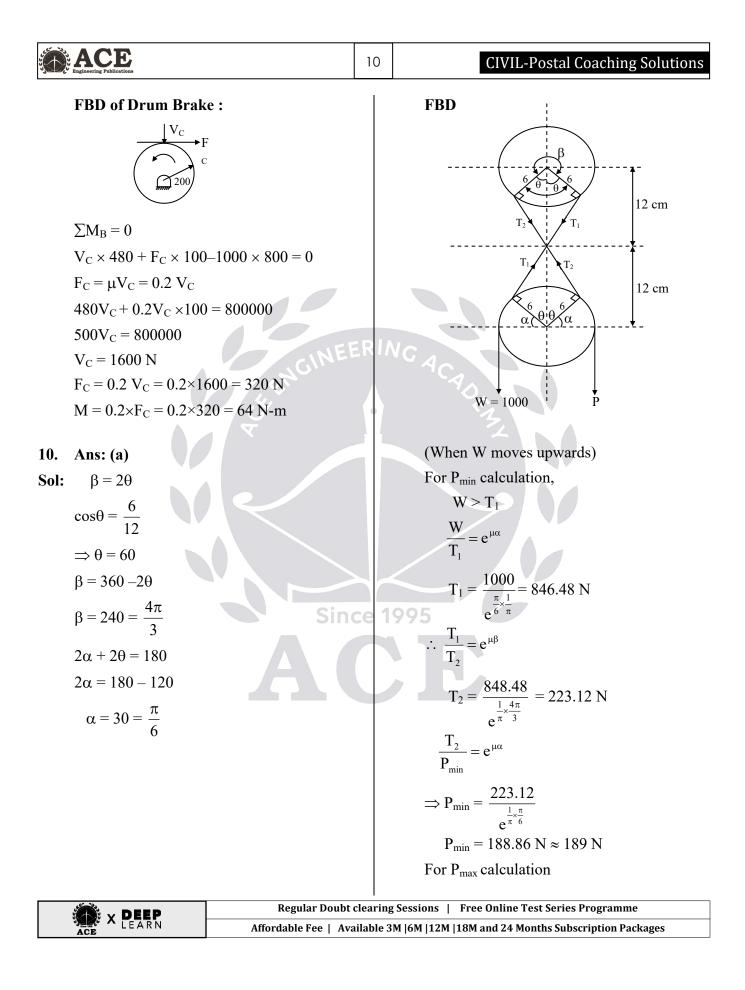
 Enjoy a smooth online learning experience in various languages at your convenience

X DEEP



Regular Doubt clearing Sessions | Free Online Test Series Programme X DEEP Affordable Fee | Available 3M |6M |12M |18M and 24 Months Subscription Packages


| Contractions                                                                                                                                    | 7 Engineering Mechanics                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| $\Sigma F_x = 0$                                                                                                                                | 04. Ans: (d)                                                                                                        |
| $P - F_1 - F_2 = 0$                                                                                                                             | <b>Sol:</b> F.B.D of both the books are shown below.                                                                |
| $P = F_1 + F_2 = 72.24 + 12.24$                                                                                                                 | $\mathbf{\uparrow}$ N <sub>2</sub>                                                                                  |
| $P = 84.48 N \simeq 84.5 N$                                                                                                                     |                                                                                                                     |
|                                                                                                                                                 | f                                                                                                                   |
| 03. Ans: (b)                                                                                                                                    | $\mathbf{h}$ m <sub>2</sub> g                                                                                       |
| Sol: Free Body Diagram                                                                                                                          | N <sub>2</sub>                                                                                                      |
| $10 \text{ cm}  20 \text{ cm}$ $F_{B}  V_{B}$ $F_{B}  V_{B}$                                                                                    | $f \leftarrow f_1 \leftarrow F$                                                                                     |
| UCINEER                                                                                                                                         |                                                                                                                     |
| $F_A$                                                                                                                                           | where, f is the friction between the two books.                                                                     |
| W = 100 N                                                                                                                                       | $f_1$ is the friction between the lower book and                                                                    |
|                                                                                                                                                 | ground.                                                                                                             |
| $F_A = \mu N_A = \frac{1}{3} N_A$                                                                                                               | Now, maximum possible acceleration of                                                                               |
|                                                                                                                                                 | upper book.                                                                                                         |
| $F_{\rm B} = \mu N_{\rm B} = \frac{1}{3} N_{\rm B}$                                                                                             | $a_{max} = \frac{f_{max}}{m_2} = \frac{\mu m_2 g}{m_2} = \mu \times g$                                              |
| $\Sigma M_{\rm B} = 0$                                                                                                                          | $m_{max} = m_2 = m_2$                                                                                               |
| $-100 \times 30(\bigcirc) + (N_A \times 20)(\bigcirc) + (F_a \times 12)(\bigcirc) = 0$                                                          | $= 0.3 \times 9.81 = 2.943 \text{ m/s}^2$                                                                           |
|                                                                                                                                                 | For slip to occur, acceleration $(a_1)$ of lower                                                                    |
| $-3000 + N_A \times 20 + \frac{1}{3} N_A \times 12 = 0$ Since                                                                                   | book. i.e, $a_1 \ge a_{max}$                                                                                        |
| $\Rightarrow$ N <sub>A</sub> = 125 N                                                                                                            | $\frac{\mathbf{F}-\mathbf{f}-\mathbf{f}_{1}}{\mathbf{m}_{1}} \ge 2.943$                                             |
| $\Sigma F_y = 0$                                                                                                                                |                                                                                                                     |
| $N_A - N_B - 100 = 0$                                                                                                                           | $F - 2.943 - 0.3 \times 2 \times 9.81 \ge 2.943$                                                                    |
| $\Rightarrow$ N <sub>B</sub> = 25 N                                                                                                             | $[ \because f = f_{max} = 2.943 \text{ and}$                                                                        |
| $\Sigma F_x = 0$                                                                                                                                | $f_1 = \mu \times (m_1 + m_2) g = 0.3 \times 2 \times 9.81$ ]                                                       |
| $\mathbf{P} = \mathbf{F}_{\mathrm{A}} + \mathbf{F}_{\mathrm{B}} = \frac{1}{3} \left( \mathbf{N}_{\mathrm{A}} + \mathbf{N}_{\mathrm{B}} \right)$ | $F \ge 11.77 N$                                                                                                     |
| $=\frac{1}{3}(125+25)=50N$                                                                                                                      | $F_{min} = 11.77 \text{ N}$                                                                                         |
|                                                                                                                                                 |                                                                                                                     |
|                                                                                                                                                 | Best Online Coaching Platform for GATE, ESE, and PSUs<br>arning experience in various languages at your convenience |
| AUE                                                                                                                                             |                                                                                                                     |


| Engineering Publications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8 CIVIL-Postal Coaching Solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>05.</b> Ans: (d)<br><b>Sol:</b> $Tan\theta = \frac{3}{4} \Rightarrow sin\theta = \frac{3}{5}$<br>$cos\theta = \frac{4}{5}$<br>FBD for bar AB (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | But, $F_1 = \mu N_1 = 0.4 \times 600$<br>$F_1 = 240 \text{ N}$<br>$\Sigma F_x = 0$<br>$P = F_1 + F_2 = 240 + 80$<br>P = 320  N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| H $10  m$ $4  m$ $6  m$ $4  m$ $6  m$ | 06. Ans: (a)<br>Sol: Given, $W_A = 200 \text{ N}$ , $\mu_A = 0.2$<br>$W_B = 300 \text{ N}$ , $\mu_B = 0.5$<br>FBD for block 'B'.<br>$\Sigma F_y = 0$<br>$N_B = W_B \cos\theta$<br>$N_B = 300 \cos\theta$<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $W_{1}$ $F_{2}$ $F_{1}$ $Given W = 280 \text{ N},  W_{1} = 400 \text{ N}$ $Now, \Sigma M_{B} = 0$ $-W \times 4 (\bigcirc) + N_{2} \times 8(\bigcirc) - F_{2} \times 6 (\bigcirc) = 0$ $-280 \times 4 + N_{2} \times 8 - \mu N_{2} \times 6 = 0$ $\Rightarrow N_{2} = 200 \text{ N}$ $But, F_{2} = \mu N_{2} = 0.4 \times 200 = 80 \text{ N}$ From FBD of block (1)<br>$\Sigma F_{y} = 0$ $N_{1} - N_{2} - W_{1} = 0$ $N_{1} = N_{2} + W_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | But, $F_B = \mu N_B = 0.5 \times 300 \cos\theta$<br>$= 150 \cos\theta$<br>$\Sigma F_x = 0$<br>$T + W_B \sin\theta - F_B = 0$<br>$T = F_B - W_B \sin\theta$<br>$T = 150 \cos\theta - 300 \sin\theta - (1)$<br>FBD for block 'A'<br>$\Sigma F_y = 0$<br>$N_A - W_A \cos\theta = 0$<br>$N_A = 200 \cos\theta$<br>$F_A = \mu N_A = 0.2 \times 200 \cos\theta$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$<br>$W_A$ |
| = 200 + 400<br>N <sub>1</sub> = 600 N<br>Regular Doubt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $T = W_{A}\sin\theta - F_{A}$ $T = 200 \sin\theta - 40\cos\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| ACE | Х | DEEP<br>Learn |
|-----|---|---------------|
|-----|---|---------------|

 Regular Doubt clearing Sessions
 Free Online Test Series Programme

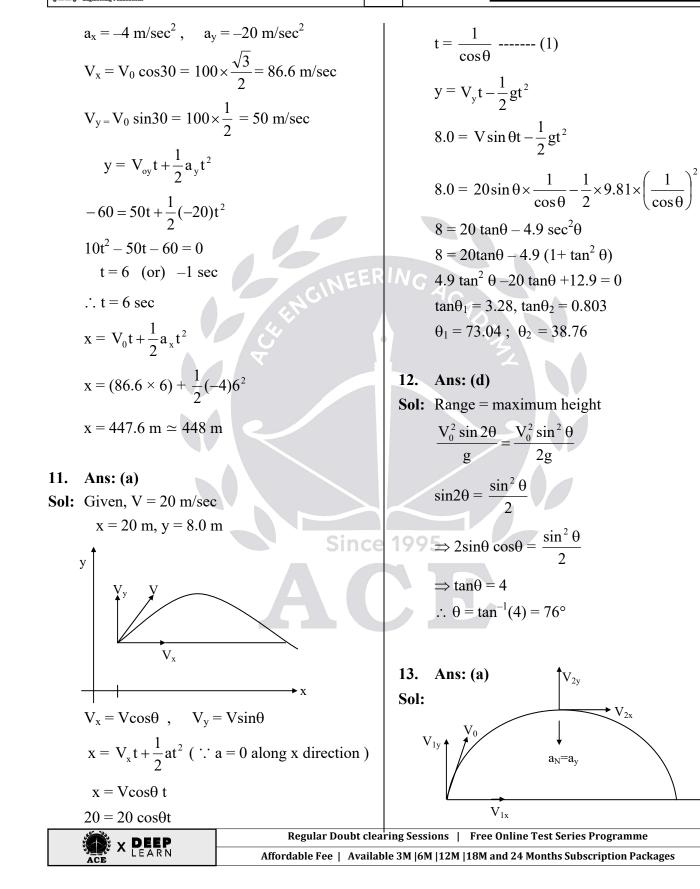
Affordable Fee | Available 3M |6M |12M |18M and 24 Months Subscription Packages





| Engineering Publications                                                           | 11          | Engineering Mechanics                                        |
|------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------|
| $\frac{T_1}{W} = e^{\mu\alpha}$                                                    |             | From FBD (1)                                                 |
| $\frac{1}{W} = e$                                                                  |             | $\Sigma F_y = 0$                                             |
| $T_1 = 1000 \times e^{\frac{1}{\pi} \times \frac{\pi}{6}}$                         |             | $N_2 - W_2 \cos\theta = 0$                                   |
|                                                                                    |             | $N_2 = W_2 \cos\theta = W \times 0.8$                        |
| $T_1 = 1181.36 \text{ N}$                                                          |             | $N_2 = 0.8 W$                                                |
| $\frac{T_2}{T_1} = e^{\mu\beta}$                                                   |             | $\therefore F_2 = \mu N_2 = 0.2 \times 0.8 \text{ W}$        |
| 1                                                                                  |             | $F_2 = 0.16 W$                                               |
| $T_2 = 1181.36 \times e^{\frac{1}{\pi} \times \frac{4\pi}{3}} = 4481.65 \text{ N}$ |             | $\Sigma F_{\rm x} = 0$                                       |
| P <sub>max</sub> ur                                                                |             | $T_1 - W_2 \sin \theta - F_2 = 0$                            |
| $\frac{P_{max}}{T_2} = e^{\mu\alpha}$                                              |             | $T_1 = F_2 + W_2 \sin\theta = 0.16 \text{ W} + 0.6 \text{W}$ |
| $\frac{1}{2} \frac{\pi}{2}$                                                        | EERII       | $T_1 = 0.76 W$                                               |
| $P_{max} = 4481.68 \times e^{\frac{1}{\pi} \times \frac{\pi}{6}}$                  |             | From FBD (2)                                                 |
| $P_{max} = 5300 \text{ N}$                                                         |             | $\Sigma F_{\rm v} = 0$                                       |
| 7                                                                                  |             | $N_2 + W_1 \cos\theta = N_1$                                 |
| 11. Ans: (b)                                                                       |             | $N_1 = N_2 + W_1 \cos\theta$                                 |
| <b>Sol:</b> Given $\mu = 0.2$ , $\tan \theta = \frac{3}{4}$                        |             |                                                              |
| 4                                                                                  |             | $N_1 = 0.8W + 1000 \times \frac{4}{5}$                       |
| $\Rightarrow \cos \theta = \frac{4}{5}$                                            |             | $N_1 = 0.8 W + 800$                                          |
|                                                                                    |             | $F_1 = \mu N_1 = 0.2$ ( 0.8 W+800)                           |
| $y$ $T_1$ $\sin\theta = \frac{3}{5}$                                               |             | = 0.16  W + 160                                              |
|                                                                                    | nce 1       | 995 <sub>T2</sub> uß                                         |
|                                                                                    |             | $\frac{I_2}{T_1} = e^{\mu\beta}$                             |
|                                                                                    |             | $T_2 = T_1 e^{\mu\beta} = 0.76 W e^{0.2 \times \pi}$         |
| $W_2 \sin \theta = F_2 = W_2 \cos \theta = X_1 X_2$                                |             | $T_2 = 1.42 \text{ W}$                                       |
| $W_2 = W$ $T_2$                                                                    |             | $\Sigma F_x = 0$                                             |
| Fig: FBD (1) $V_{N_2}$ F                                                           |             | $T_2 + F_1 + F_2 = W_1 \sin \theta$                          |
| $F_1$                                                                              |             | $1.42W+0.16W+160+0.16W = 1000 \times \frac{3}{5}$            |
|                                                                                    |             | 1.74  W = 440                                                |
| $W_1 \sin \theta$ $W_1 \cos \theta$                                                |             | $\Rightarrow$ W = 252.87 N                                   |
| $W_1 = 1000$                                                                       |             | $\rightarrow$ yy = 252.07 IN                                 |
| Fig: FBD (2)                                                                       |             |                                                              |
|                                                                                    |             | t Online Coaching Platform for GATE, ESE, and PSUs           |
| ACE Enjoy a smooth on                                                              | line learni | ing experience in various languages at your convenience      |




| Egineering Publications                                                        | 13 Engineering Mechanics                                                                                                       |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 02. Ans: (a)                                                                   | 04. Ans: (a)                                                                                                                   |
| <b>Sol:</b> $V = kx^3 - 4x^2 + 6x$                                             | <b>Sol:</b> Given $A = -8S^{-2}$                                                                                               |
| $V_{\text{at x}=2 \text{ if } k=1} = 2^3 - 4(2)^2 + 6(2) = 4$                  | $\Rightarrow \frac{dV}{dt} = \frac{d^2s}{dt^2} = -8s^{-2} = a$                                                                 |
| $a = \frac{dV}{dt} = k.3x^2 \frac{dx}{dt} - 8x \frac{dx}{dt} + 6\frac{dx}{dt}$ | $dt  dt^2$<br>We know that, $\int V dv = \int a ds$                                                                            |
| $a = 3x^{2}(V) - 8x(V) + 6(V)$                                                 | $V^2$                                                                                                                          |
| $= 3(2)^2 \times 4 - (8 \times 2 \times 4) + 6(4)$                             | $\frac{\mathrm{V}^2}{2} = \int -8\mathrm{s}^{-2} \mathrm{d}\mathrm{s}$                                                         |
| $= 8 \text{ m/s}^2$                                                            | $\frac{V^2}{2} = \frac{8}{S} + C_1$                                                                                            |
| 03. Ans: (d)                                                                   | Given, at $S = 4m$ , $V = 2 m/sec$                                                                                             |
| Sol: Given, $a = 6\sqrt{V}$<br>$\frac{dV}{dt} = 6\sqrt{V}$                     | ER $\Rightarrow \frac{2^2}{2} = \frac{8}{4} + C_1$                                                                             |
|                                                                                |                                                                                                                                |
| $\int \frac{\mathrm{dV}}{\sqrt{\mathrm{V}}} = \int 6 \mathrm{dt}$              | $\Rightarrow C_1 = 0$                                                                                                          |
| $2\sqrt{V} = 6t + C_1$                                                         | $\therefore \frac{V^2}{2} = \frac{8}{S}$                                                                                       |
| Given, at $t = 2 \sec$ , $V = 36$                                              | $V = \frac{4}{\sqrt{s}}$                                                                                                       |
| $\Rightarrow 2\sqrt{36} = 6(2) + C_1$                                          | $\sqrt{s}$                                                                                                                     |
| $\Rightarrow C_1 = 0$                                                          | $\Rightarrow \frac{ds}{dt} = \frac{4}{\sqrt{s}}$                                                                               |
| $2\sqrt{V} = 6t$                                                               |                                                                                                                                |
| $V = 9t^2$ Sin                                                                 | $\Rightarrow \int \sqrt{s}  ds = \int 4  dt$                                                                                   |
| But V = $\frac{ds}{dt} = 9t^2$                                                 | $\frac{2}{3}s^{3/2} = 4t + C_2$                                                                                                |
| $\int ds = \int 9t^2 dt$                                                       | At $t = 1$ , $S = 4$                                                                                                           |
| $S = 3t^3 + C_2$                                                               | $\Rightarrow \frac{2}{3}(4)^{3/2} = 4(1) + C_2$                                                                                |
| At, $t = 2 \text{ sec}$ , $S = 30 \text{ m}$                                   | $3^{(1)}$                                                                                                                      |
| $\Rightarrow$ 30 = 3(2) <sup>3</sup> + C <sub>2</sub>                          | $\Rightarrow C_2 = \frac{16}{3} - 4 = \frac{4}{3}$                                                                             |
| $\Rightarrow$ C <sub>2</sub> = 6                                               | 5 5                                                                                                                            |
| $\therefore$ S = 3t <sup>3</sup> + 6                                           | $\therefore \frac{2}{3}s^{3/2} = 4t + C_2$                                                                                     |
| At $t = 3 \sec \theta$                                                         | 2 3/2 4                                                                                                                        |
| $S = 3(3)^3 + 6$                                                               | $\Rightarrow \frac{2}{3}s^{3/2} = 4t + \frac{4}{3}$                                                                            |
| S = 87 m                                                                       |                                                                                                                                |
|                                                                                | dia's Best Online Coaching Platform for GATE, ESE, and PSUs<br>ne learning experience in various languages at your convenience |

| Engineering Publications                                                                                                                                             | 14         CIVIL-Postal Coaching Solutions                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| At t = 2 sec<br>$\frac{2}{3}s^{3/2} = 4(2) + \frac{4}{3}$<br>$\Rightarrow s = 5.808 \text{ m}$<br>$a = \frac{-8}{s^2} = \frac{-8}{5.808^2} = -0.237 \text{ m/sec}^2$ | .:. at t = 4 sec<br>$x = \frac{4^{4}}{3} - 4^{2} - \frac{29}{3}(4) - 2$ $= 28.67 \text{ m}$ 06. Ans: (b)                                              |
| <b>05.</b> Ans: (c)<br>Sol: Given, $a = 4t^2 - 2$<br>$\frac{dv}{dt} = 4t^2 - 2$                                                                                      | Sol:<br>$u_A = 20 \text{ m/sec}$ $u_B = 60 \text{ m/sec}$<br>$a_A = 5 \text{ m/sec}^2$ $a_B = -3 \text{ m/sec}^2$<br>O O O                            |
| dt<br>dt $dt = (4t^2 - 2) dt$<br>$v = \frac{4t^3}{3} - 2t + C_1$                                                                                                     | Pt "A" Pt "B" A & F<br>$S_B$<br>Let $S_A$ be the distance traveled by "A"<br>Let $S_B$ be the distance traveled by "B"                                |
| $\frac{\mathrm{dx}}{\mathrm{dt}} = \frac{4t^3}{3} - 2t + C_1$ $\int \mathrm{dx} = \int \left(\frac{4t^3}{3} - 2t + C_1\right) \mathrm{dt}$                           | $S_A = S_B + 384$<br>$u_A t + \frac{1}{2}a_A t^2 = u_B t + \frac{1}{2}a_B t^2 + 384$                                                                  |
| $x = \frac{4t^{4}}{3 \times 4} - 2 \cdot \frac{t^{2}}{2} + C_{1}t + C_{2}$ $x = \frac{t^{4}}{3} - t^{2} + C_{1}t + C_{2}$ Sin                                        | $20t + \frac{1}{2}5t^{2} = 60t - \frac{1}{2}3t^{2} + 384$<br>$4t^{2} - 40t - 384 = 0$<br>1995 t = 16 sec (or) t = -6 sec<br>$\therefore$ t = 16 sec   |
| Given condition,<br>At t = 0, $x = -2 m$<br>$\Rightarrow -2 = C_2$<br>At t= 2, $x = -20 m$                                                                           | <b>07.</b> Ans: (b)<br>Sol: Take , $y = x^2 - 4x + 100$                                                                                               |
| $\Rightarrow -20 = \frac{2^4}{3} - 2^2 + 4(2) + (-2)$ $\Rightarrow C_1 = \frac{-29}{3}$                                                                              | Initial velocity, $V_0 = 4\hat{i} - 16\hat{j}$<br>If $V_x$ is constant<br>$V_y$ , $a_y$ at $x = 16$ m                                                 |
|                                                                                                                                                                      | $V_x = V_{1x} = \frac{dx}{dt} = 4$ clearing Sessions   Free Online Test Series Programme ailable 3M  6M  12M  18M and 24 Months Subscription Packages |

| ACE<br>Exgineering Publications                                                                                                                                                                                                                                                                           | 15       | Engineering Mechanics                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $V_{y} = \frac{dy}{dt} = 2x \frac{dx}{dt} - 4 \frac{dx}{dt}$<br>(V <sub>y</sub> ) = 2x (4) - 4(4)<br>V <sub>y</sub> = 8x - 16<br>(V <sub>y</sub> ) <sub>at x = 16</sub> = 8 (16) - 16 = 112 m/sec<br>a <sub>y</sub> = $\frac{dV}{dt} = \frac{d}{dt} (2xV_{x} - 4V_{x})$<br>(:: V <sub>x</sub> = constant) |          | ⇒ 18 t = 36<br>⇒ t = 2 sec<br>∴ $x_1 = \frac{1}{2}(9.81).2^2 = 19.62$ m (from the top)<br>$x_2 = 36 - 19.62$<br>= 16.38 m (from the bottom)<br>09. Ans: (b) |
| $= 2V_x \frac{dx}{dt} = 2V_x. V_x$                                                                                                                                                                                                                                                                        |          | Sol: $V = u + at$<br>V = 0 + 9.81 (5)<br>V = 49.05  m/sec<br>V = u + at<br>S                                                                                |
| 08. Ans: (c)<br>Sol:<br>$1  \downarrow u_1 = 0  \downarrow x_1$                                                                                                                                                                                                                                           |          | V = velocity with which stone strike the<br>glass<br>Velocity loss = 20% of V<br>= $\frac{49.05 \times 20}{100}$ = 9.81 m/sec                               |
| h = 36<br>$u_2 = 18 \text{ m/sec}$                                                                                                                                                                                                                                                                        |          | <ul> <li>∴ Initial velocity for further movement in<br/>glass = 49.05 - 9.81 = 39.24 m/sec</li> <li>Distance traveled for 1 sec of time is given</li> </ul> |
| Let at distance of "x <sub>1</sub> ' ball (1) crossed ball (2)<br>$\therefore x_1 + x_2 = 36$ $x_1 = 0(t) + \frac{1}{2}gt^2  (\because s = ut + \frac{1}{2}at^2)$                                                                                                                                         |          | S = ut + $\frac{1}{2}$ at <sup>2</sup><br>S = 39.24(1) + $\frac{1}{2}$ (9.81)(1) <sup>2</sup><br>S = 44.145 m                                               |
| $x_{1} = \frac{1}{2}gt^{2} - \dots (1)$ $x_{2} = 18(t) - \frac{1}{2}gt^{2}$ ( $\therefore a = -g \text{ moving upward}$ )                                                                                                                                                                                 |          | <b>10.</b> Ans: (a)<br>Sol: $V_y$ , $V_0 = 100 \text{ m/sec}$                                                                                               |
| $x_1 + x_2 = 36$<br>$\Rightarrow \frac{1}{2}gt^2 + 18t - \frac{1}{2}gt^2 = 36$<br>Deep Learn - Ind                                                                                                                                                                                                        | ia's Bes | $V_x$<br>$V_x$<br>x = ?<br>f = 0 m<br>f = 0 m<br>f = 0 m<br>f = 0 m<br>f = 0 m                                                                              |
|                                                                                                                                                                                                                                                                                                           |          | ing experience in various languages at your convenience                                                                                                     |

#### ACE Engineering Publications

### **CIVIL-Postal Coaching Solutions**

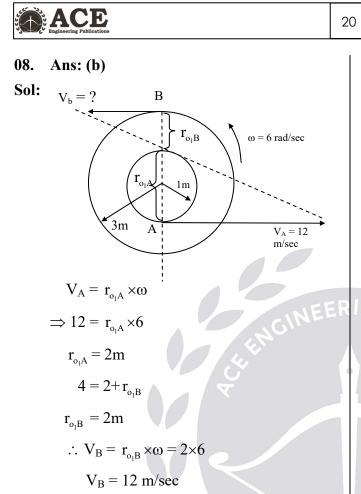




 Deep Learn - India's Best Online Coaching Platform for GATE, ESE, and PSUs

 Enjoy a smooth online learning experience in various languages at your convenience

| <b>02.</b> Ans: (c)<br>Sol: Given $\omega = 4\sqrt{t}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sol: Given $\omega = 4\sqrt{t}$<br>$\theta = 2$ radians at $t = 1$ sec<br>$\theta = ? \alpha = ?$ at $t = 3$ sec<br>$\omega = \frac{d\theta}{dt} \Rightarrow \int d\theta = \int \omega dt$<br>$\theta = \int 4\sqrt{t} dt$<br>$\theta = \int 4\sqrt{t} dt$<br>$\theta = \frac{8}{3}t^{3/2} + c(1)$<br>From given condition, at $t = 1, \theta = 2$ rad<br>$(1) \Rightarrow 2 = \frac{8}{3}(1)^{3/2} + c_1 \Rightarrow c_1 = \frac{-2}{3}$<br>$\therefore \theta = \frac{8}{3}t^{3/2} - \frac{2}{3}$<br>At $t = 3$ sec, $\theta = \frac{8}{3}(3)^{3/2} - \frac{2}{3}$<br>$\theta_{t=3} = 13.18$ rad<br>$\alpha = \frac{d\omega}{dt} = \frac{d(4\sqrt{t})}{dt} = \frac{2}{\sqrt{t}}$<br>$\alpha_{t=3} = \frac{2}{\sqrt{3}} = 1.15$ rad/sec <sup>2</sup><br>O3. Ans: (b)<br>Sol: $r = 2$ cm, $\omega = 3$ rad/sec, $a = 30$ cm/s <sup>2</sup><br>$a_N = r\omega^2 = 2(3)^2 = 18$ cm/sec <sup>2</sup><br>Since total acceleration $a = \sqrt{a_T^2 + a_N^2}$<br>$\Rightarrow a^2 = a_T^2 + a_N^2$<br>$30^2 = a_T^2 + 18^2$<br>$a_T = 24$ cm/sec <sup>2</sup><br>$a_T = r\alpha = 24$<br>$\alpha = \frac{24}{2} = 12$ rad/sec <sup>2</sup> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

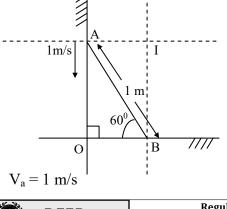

ACE X DEEP

Regular Doubt clearing Sessions | Free Online Test Series Programme

Affordable Fee | Available 3M |6M |12M |18M and 24 Months Subscription Packages

ACE 19 **Engineering Mechanics** 06. Ans: (c) **04**. Ans: (d) **Sol:** Given angular acceleration,  $\alpha = \pi \operatorname{rad/sec}^2$ **Sol:** angular speed,  $\omega = 5$  rev/sec Angular displacement in time  $t_1$  and  $t_2$  $= 5 \times 2\pi$  rad/sec  $=\pi$  rad  $=\theta_2-\theta_1$  $\omega = 10\pi \text{ rad/sec}$  $\omega_{t2} = 2\pi \text{ rad/sec}$ Radius, r = 0.1m $\omega_{t1} = ?$ If  $\omega$  is constant,  $d\omega = 0$  $\omega_{t1}^2 - \omega_0^2 = 2\alpha\theta_1$  $\Rightarrow \alpha = 0 \Rightarrow a_T = 0$  (since  $a_T = r\alpha$ )  $\omega_{t2}^2 - \omega_0^2 = 2\alpha\theta_2$ Since  $a_T = 0$  $\omega_{t2}^2 - \omega_{t1}^2 = 2\alpha (\theta_2 - \theta_1)$  $a = \sqrt{a_N^2 + a_T^2}$  $4\pi^2 - \omega_{t1}^2 = 2\pi^2$  $a = a_N = \frac{v^2}{r} = \frac{(r\omega)^2}{r} = r\omega^2$  $\omega_{t1}^2 = 2\pi^2$  $\omega_{t1} = \pi \sqrt{2}$  $= 0.1 \times (10\pi)^2 = 10\pi^2 \text{ m/sec}^2$ Ans:  $a = 40 \text{m/s}^2$ 07. 05. Ans: (c) Sol: Given retardation Sol:  $\alpha = -3t^2$  $\frac{d\omega}{dt} = -3t^2$ 2 m  $\alpha = 12 \text{ rad/s}^2$  $\int d\omega = \int -3t^2 dt$ Since  $\omega = 4 \text{ rad/s}^2$  $\omega = -t^3 + c_1$ From given condition at t = 0. Tangential acceleration  $\omega = 27 \text{ rad/sec}$  $a_T = r \alpha = 2 \times 12 = 24 m/s^2$  $27 = -0^3 + c_1$ Normal acceleration,  $a_N = r \omega^2$  $\Rightarrow$  c<sub>1</sub> = 27  $= 2 \times 4^2 = 32 \text{ m/s}^2$  $\therefore \omega = -t^3 + 27$ The resultant acceleration Wheel stops at  $\omega = 0$ .  $a = \sqrt{a_{T}^{2} + a_{N}^{2}}$  $\Rightarrow 0 = -t^3 + 27$  $\Rightarrow$  t = 3sec  $=\sqrt{24^2+32^2}=40$  m/s<sup>2</sup>

X DEEP




#### 09. Ans: (a)

**Sol:** Instantaneous centre will have zero velocity because the instantaneous centre is the point of contact between the object and the floor.

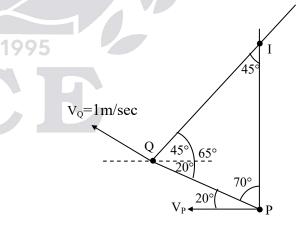
#### 10. Ans: (a)





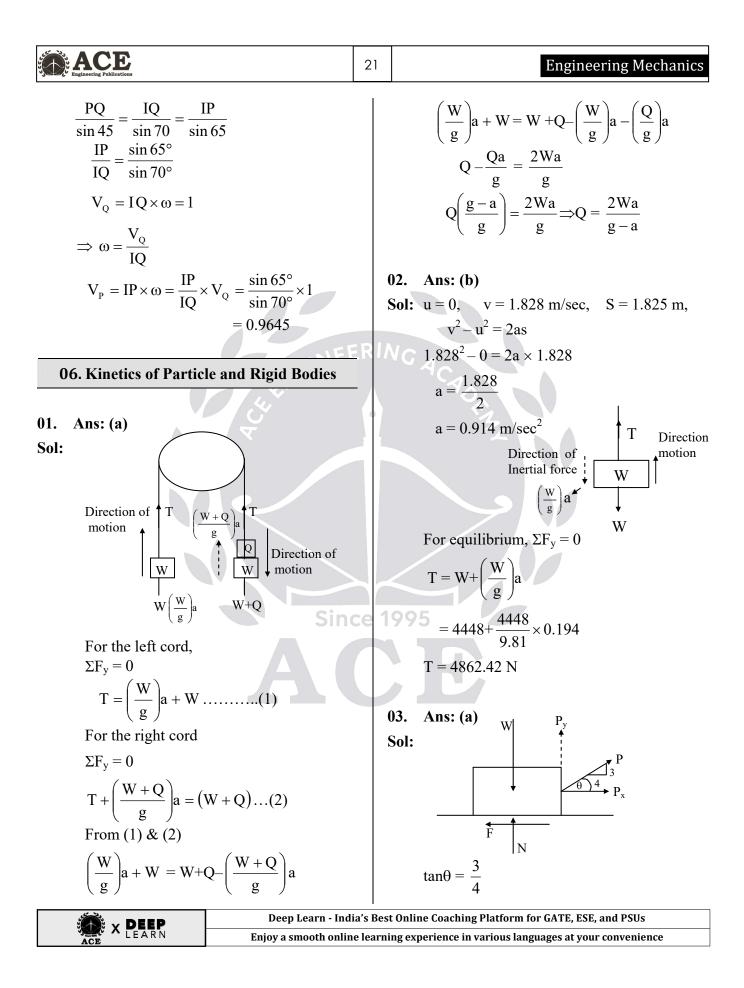
 $V_a = along vertical$ 

V<sub>b</sub> = along horizontal


So instantaneous center of  $V_a$  and  $V_b$  will be perpendicular to A and B respectively

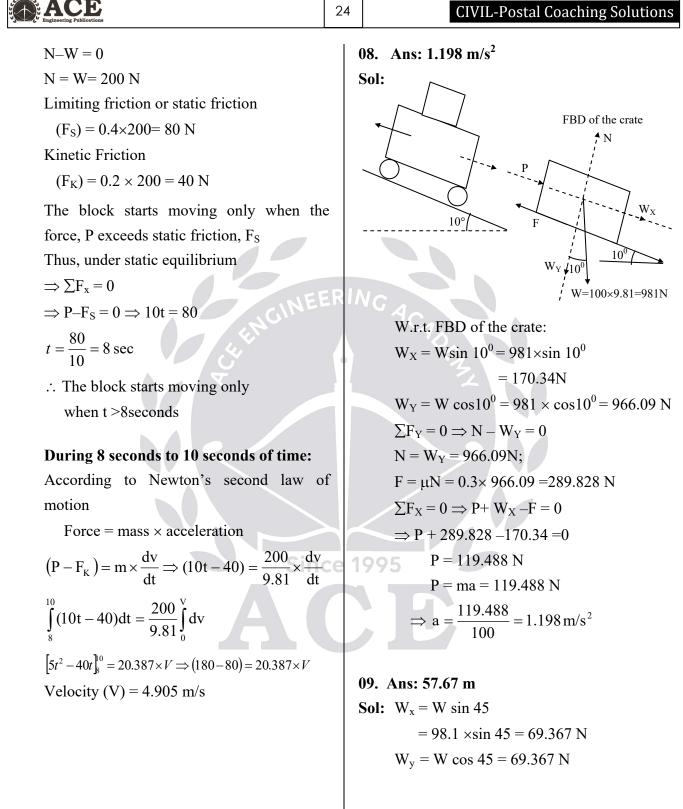
IA = OB = 
$$1 \times \cos \theta = 1 \times \cos 60^{\circ} = \frac{1}{2} \text{ m}$$
  
IB = OA =  $1 \times \sin \theta = 1 \times \sin 60^{\circ} = \frac{\sqrt{3}}{2} \text{ m}$   
 $V_a = \omega \times IA$ 

$$\Rightarrow \omega = \frac{V_a}{IA} = 2 \text{ rad/sec}$$


#### 11. Ans: (d)

**Sol:** Refer the figure shown below, by knowing the velocity directions instantaneous centre can be located as shown. By knowing velocity (magnitude) of Q we can get the angular velocity of the link, from this we can get the velocity of 'P using sine rule.




'I' is the instantaneous centre. From sine rule

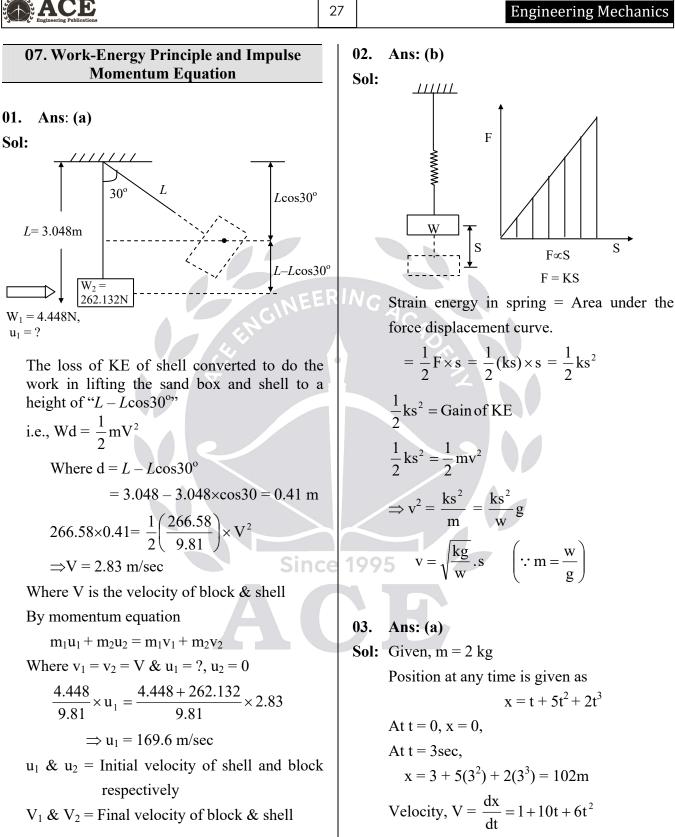
|           | Regular Doubt clearing Sessions   Free Online Test Series Programme             |
|-----------|---------------------------------------------------------------------------------|
| ACE LEARN | Affordable Fee   Available 3M  6M  12M  18M and 24 Months Subscription Packages |



| ACE<br>Engineering Publications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22 CIVIL-Postal Coaching Solutions                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\theta = \tan^{-1}(3/4) = 36.86$ $(F_{net})_x = ma$ $P_x - F = \left(\frac{W}{g}\right)a$ $P\cos 36.86 - F = \left(\frac{W}{g}\right)a$ $0.8P - F = \left(\frac{2224}{g}\right)(0.2g)$ $0.8P - F = 444.8$ $0.8P - F = 444.8 + F$ $P = 556+1.25F \dots (1)$ $\Sigma F_y = 0$ $N + P_y - W = 0$ $N = W - P_y (since \mu = \frac{F}{N})$ $F = \mu N$ $F = \mu (W - P_y)$ $= 0.2(2224 - P \sin 36.86)$ $F = 444.8 - 0.12P \dots (2)$ From (1) & (2)<br>P = 556+1.25(444.8 - 0.12P) $1.15P = 1112$ $P = 966.95$ $P = 967 N$ | From static equilibrium condition<br>$\Sigma F_y = 0$ $N-W = 0$ $N = W = 44.48N$ From dynamic equilibrium condition<br>$\Sigma F_x = 0$ $F = ma$ $\mu N = \frac{W}{g}a$ $\mu = \frac{a}{g}$ $a = \mu g \dots (1)$ Since v <sup>2</sup> - u <sup>2</sup> = 2as<br>0 - (9.126) <sup>2</sup> = 2(-a) \times 13.689 $a = 3.042 \dots (2)$ From (1) & (2)<br>3.042 = \mu(9.81)<br>$\Rightarrow \mu = 0.31$ 05. Ans: (a)<br>Sol:<br>From (b) M = M = M = M = M = M = M = M = M = M |
| 04. Ans: (d)<br>Sol:<br>W<br>$u=9.126 \text{ m/s}$ $\rightarrow V=0$<br>F<br>N<br>N<br>Regular Doubt                                                                                                                                                                                                                                                                                                                                                                                                                    | clearing Sessions   Free Online Test Series Programme                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | hilable 3M  6M  12M  18M and 24 Months Subscription Packages                                                                                                                                                                                                                                                                                                                                                                                                                 |

| Engineering Publications                                                                                                 | 23 Engineering Mechanics                                              |
|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| $\Sigma F_{\rm v} = 0$ (static equilibrium)                                                                              | Work done by A & B equal                                              |
| $N - W\cos\theta = 0$                                                                                                    | $T_A S_A = T_B S_B$                                                   |
| $N = W\cos\theta = mg\cos\theta$                                                                                         | $2T_BS_A = T_B S_B$                                                   |
| Since $F = \mu N = \mu \operatorname{mgcos}\theta(1)$                                                                    | $2S_A = S_B$                                                          |
| $\Sigma F_x = 0$ (Dynamic equilibrium)                                                                                   | $2a_{\rm A} = a_{\rm B} \qquad \qquad \dots (2)$                      |
| $F+ma - Wsin\theta = 0$                                                                                                  | For 'B' body                                                          |
| $F = -ma + mgsin\theta$                                                                                                  | $T_{\rm B} = m_{\rm B}a_{\rm B} + m_{\rm B}g \qquad \dots (3)$        |
| $F = mgsin\theta - ma(2)$                                                                                                | For 'A' body                                                          |
| From (1) & (2)                                                                                                           | $T_A = m_A g - m_A a_A \qquad \dots (4)$                              |
| $\mu$ mg cos $\theta$ = mgsin $\theta$ – ma                                                                              | (2), (3) & (4) sub in (1)                                             |
| $\Rightarrow$ a = gsin $\theta$ – $\mu$ gcos $\theta$                                                                    | $m_A g - m_A a_A = 2(m_B(2a_A) + m_B g)$                              |
| $\Rightarrow$ a = gcos $\theta$ (tan $\theta$ – $\mu$ )                                                                  | $m_A g - m_A a_A = 4m_B a_A + 2m_B g$                                 |
| Given $PQ = s$                                                                                                           | $m_A a_A + 4m_B a_A = m_A g - 2m_B g$                                 |
| $s = ut + \frac{1}{2}at^2$                                                                                               | $a_{\rm A} = \frac{m_{\rm A}g - 2m_{\rm B}g}{m_{\rm A} + 4m_{\rm B}}$ |
| 2                                                                                                                        |                                                                       |
| $s = 0(t) + \frac{1}{2}at^2 \implies t = \sqrt{\frac{2s}{a}}$                                                            | $=\frac{150-2(50)}{150-(50)}$                                         |
|                                                                                                                          | $-\frac{150}{10}+4\left(\frac{50}{10}\right)$                         |
| $=\sqrt{\frac{2s}{g\cos\theta(\tan\theta-\mu)}}$                                                                         | _ 50 _ 50 _ 1.42                                                      |
| $\sqrt{g}\cos(\tan\theta - \mu)$                                                                                         | $=\frac{50}{15+20}=\frac{50}{35}=1.42$                                |
| 06. Ans: (a) Sin                                                                                                         | nce 1995                                                              |
| 06. Ans: (a) Sin<br>Sol:                                                                                                 | 07. Ans: 4.905 m/s                                                    |
|                                                                                                                          | <b>Sol:</b> $\mu_{\rm S} = 0.4$ ; $\mu_{\rm K} = 0.2$ W = 200 N       |
|                                                                                                                          | FBD of the block                                                      |
|                                                                                                                          | $\mathbf{P} = 10t$                                                    |
| $T_{B}$ $B$ $\overline{50N}$ $\uparrow$ $a$                                                                              |                                                                       |
| $\mathbf{v} \mathbf{v} \mathbf{v}$<br>$\mathbf{m}_{\mathrm{B}}\mathbf{a}_{\mathrm{B}} \mathbf{m}_{\mathrm{B}}\mathbf{g}$ | I N                                                                   |
|                                                                                                                          | W.r.t free body diagram of the block:                                 |
| $A [150N] \downarrow [m_A a_A]$                                                                                          | $F_{\rm S} = \mu_{\rm S} N$ ;                                         |
| v<br>m <sub>A</sub> g                                                                                                    | $F_{\rm K} = \mu_{\rm K} N$                                           |
| $T_{\rm A} = 2T_{\rm B}$ (1)                                                                                             | $\Sigma F_{\rm y} = 0$                                                |
|                                                                                                                          | ndia's Best Online Coaching Platform for GATE, ESE, and PSUs          |
|                                                                                                                          | line learning experience in various languages at your convenience     |




X DEEP

24

| ACE<br>Engineering Publications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25 | Engineering Mechanics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EXERCISE<br>$V_{x} = W \sin \frac{45^{\circ}}{45^{\circ}} + V_{y} = \cos 45^{\circ}$ $V_{y} = \cos 45^{\circ}$ $V_{y} = 0$ $N - W_{Y} = 0$ $N - W_{Y} = 69.367 \text{ N}$ $F = \mu_{K}N = 0.5 \times 69.367 = 34.683N$ $\Sigma F_{x} = 0 \text{ (Dynamic Equilibrium D' Alembert principle)}$ $W_{x} - F - ma = 0$ $69.367 - 34.683 - 10 \times a = 0$ $a = 3.468 \text{ m/s}^{2}$ $S = ut + \frac{1}{2}at^{2}$ $\therefore \text{ t is unknown we can not use this equation So use V^{2} - u^{2} = 2as$ $V = 20 \text{ m/s}^{2};  u = 0;  a = 3.468 \text{ m/s}^{2}$ $V^{2} = 2as$ $S = \frac{V^{2}}{2 \times a} = \frac{20^{2}}{2 \times 3.468} = 57.67 \text{ m}$ 10. Ans: 2.053 rad/s <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R  | $M = I\alpha$ $M = 29.43 \times 3 = 88.29N-m$ $I = I_0 + Ad^2 = \frac{m\ell^2}{12} + md^2 = \frac{3 \times 8^2}{12} + 3 \times 3^2$ $= 16 + 27 = 43kg - m^2$ $\alpha = \frac{M}{I} = \frac{88.29}{43} = 2.053 \text{ rad/s}^2$ 11. Ans: (d)<br>Sol:<br>$V_A = \frac{L}{12}$ $\Sigma F_y = 0$ $V_A + ma = W$ $V_A = m(g-a)(1)$ $Where, a = \frac{L}{2}\alpha$ Since, M = I\alpha $W \times \frac{L}{2} = \left(\frac{mL^2}{12} + m\left(\frac{L}{2}\right)^2\right)\alpha$ $mg \times \frac{L}{2} = \frac{4mL^2}{12} \times \frac{2a}{L}$ $a = \frac{3}{4}g(2)$ from (1) & (2) |
| 10. Ans: 2.053 rad/s <sup>2</sup><br>Sol:<br>$1 m \xrightarrow{\Delta} 7 m$<br>$4 m \xrightarrow{A} 7 m$<br>$4 m \xrightarrow$ |    | $V_{A} = m\left(g - \frac{3}{4}g\right) = \frac{mg}{4}$ $V_{A} = \frac{W}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    | t Online Coaching Platform for GATE_ESE_and PSIIs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

|           | Deep Learn - India's Best Online Coaching Platform for GATE, ESE, and PSUs         |  |  |  |
|-----------|------------------------------------------------------------------------------------|--|--|--|
| ACE LEARN | Enjoy a smooth online learning experience in various languages at your convenience |  |  |  |

| Engineering Publications                                  | 26                                                                      | CIVIL-Postal Coaching Solutions                                             |  |
|-----------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|
| 12. Ans: (d)                                              |                                                                         | 14. Ans: (a)                                                                |  |
| <b>Sol:</b> $I = 5kg.m^2$                                 | ;                                                                       | Sol:                                                                        |  |
| R = 0.25m                                                 |                                                                         | Thread                                                                      |  |
| F = 8N                                                    |                                                                         | T                                                                           |  |
| Mass moment of inertia, $I_x = I_y = \frac{mr^2}{4}$      |                                                                         |                                                                             |  |
| $I_z = \frac{mr^2}{2}$                                    |                                                                         |                                                                             |  |
| $M = I\alpha$                                             |                                                                         | ↓ mg                                                                        |  |
| $8 \times 0.25 = 5 \times \alpha$                         | and the second second                                                   | a = linear acceleration,                                                    |  |
| $\alpha = 0.4$                                            | EER1/                                                                   | k = radius of gyration                                                      |  |
| $\omega^2 - \omega_0^2 = 2\alpha\theta$                   |                                                                         | For vertical translation motion                                             |  |
| $\omega^2 - 0^2 = 2(0.4) \times \pi$ (since for half      |                                                                         | mg - T = ma (1)                                                             |  |
| revolution $\theta = \pi$                                 | ;)                                                                      | For rotational motion                                                       |  |
| $\omega = 1.58 \text{ rad/sec}$                           |                                                                         | $T \times r = I\alpha$                                                      |  |
| 13. Ans: 4.6 seconds                                      |                                                                         | $Tr = mk^2 \alpha = mk^2 \times \frac{a}{r}$                                |  |
| Sol: $M = 60 \text{ N} - \text{m}$                        |                                                                         | $mk^2$                                                                      |  |
| $L = 2m, \qquad \omega_0 = 0,$                            |                                                                         | $\Rightarrow T = \frac{mk^2}{r^2} \times a (2)$                             |  |
| $\omega = 200 \text{ rpm} = \frac{200 \times 2\pi}{60}$   |                                                                         | $mg - \frac{mk^2}{r^2} \times a = ma \implies a = \frac{gr^2}{(k^2 + r^2)}$ |  |
| $\omega = 20.94 \frac{\text{rad}}{\text{sec}}$            | ince 1                                                                  | 995                                                                         |  |
| sec                                                       |                                                                         |                                                                             |  |
| Moment, $M = I\alpha$                                     |                                                                         |                                                                             |  |
| $60 = \frac{mL^2}{12} \times \alpha$                      |                                                                         |                                                                             |  |
| $\Rightarrow 60 = \frac{40 \times 2^2}{12} \times \alpha$ |                                                                         |                                                                             |  |
| $\alpha = 4.5 \text{rad/sec}^2$                           |                                                                         |                                                                             |  |
| $\omega = \omega_0 + \alpha t$                            |                                                                         |                                                                             |  |
| 20.94 = 4.5t                                              |                                                                         |                                                                             |  |
| $\Rightarrow$ t = 4.65 sec                                |                                                                         |                                                                             |  |
| Regular Do                                                | <br>Regular Doubt clearing Sessions   Free Online Test Series Programme |                                                                             |  |
| ACE CEARN Affordable Fee                                  | Available 3                                                             | 8M  6M  12M  18M and 24 Months Subscription Packages                        |  |



X DEEP

Deep Learn - India's Best Online Coaching Platform for GATE, ESE, and PSUs Enjoy a smooth online learning experience in various languages at your convenience

## **Engineering Mechanics**

S

F∝S

F = KS

## ACE

X DEEP

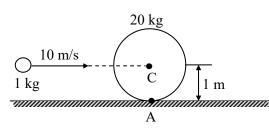
**CIVIL-Postal Coaching Solutions** 

L-b

Initial velocity i.e., t = 0, is  $v_i = 1$  m/s **06.** Ans: (c) Final velocity i.e., at  $t = 3 \sec$ , Sol: dW = wdxis  $v_f = 1 + 10(3) + 6(3)^2 = 85 \text{m/s}$ b Work done = change in KE  $=\frac{1}{2}mv_{f}^{2}-\frac{1}{2}mv_{i}^{2}$  $=\frac{1}{2} \times 2(85^2 - 1^2) = 7224 \text{ J}$ Ans: (a) **04**. **Sol:** Given force  $F = e^{-2x}$ Work done =  $\int_{0}^{x_2} F dx$ Where w = weight per unit meter dw = a small work done in moving small elemental "dx" of chain through a d/s "x"  $= \int_{0.2}^{1.5} e^{-2x} dx = \left[\frac{e^{-2x}}{-2}\right]_{0.2}^{1.5} = 0.31J$ Work done = change in KE  $\left(\int_{0}^{b} dw \times x\right) + (w(L-b) \times b) = \frac{1}{2} \left(\frac{wL}{g}\right) v^{2}$ 05. Ans: (b) **Sol:**  $F = 4x - 3x^2$  $\int^{b} w dx.x + w(L-b)b = \frac{1}{2} \frac{wLv^{2}}{\sigma}$ Potential Energy at x = 1.7 = work required to move object from 0 to 1.7m  $\frac{wb^2}{2} + w(L-b)b = \frac{1}{2}\frac{wLv^2}{g}$  $PE = \int_{0}^{1.7} Fdx$ Since 19  $\frac{wb^2}{2} + wLb - wb^2 = \frac{1}{2}\frac{wLv^2}{g}$  $= \int_{-\infty}^{\infty} (4x - 3x^2) dx$  $wLb - \frac{wb^2}{2} = \frac{1}{2} \frac{wLv^2}{\sigma}$  $= \left[4\left(\frac{x^2}{2}\right) - 3\left(\frac{x^3}{3}\right)\right]^{1.7}$  $b\left(L-\frac{b}{2}\right) = \frac{1}{2}\frac{Lv^2}{\sigma}$  $= \left[2x^2 - x^3\right]_{0}^{1.7}$  $v^2 = 2gb\left(1-\frac{b}{2L}\right)$  $= 2(1.7)^2 - (1.7)^3 = 0.867 \text{ J}$  $v = \sqrt{gb\left(2 - \frac{b}{r}\right)}$ 

Regular Doubt clearing Sessions | Free Online Test Series Programme Affordable Fee | Available 3M |6M |12M |18M and 24 Months Subscription Packages

|                            | ACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                  | 29 | Engineering Mechanics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sol:<br>V <sub>1</sub> = 4 | Ans: (d)<br>W <sub>1</sub> = 10N<br>HOm/s<br>(<br>m <sub>1</sub> = 1kg, m <sub>2</sub> = 2kg, (sind<br>Velocities before impact<br>v <sub>1</sub> = 40 m/sec, v <sub>2</sub> = -10m/<br>Velocities after impact<br>u <sub>1</sub> = ? u <sub>2</sub> = ?<br>Coefficient of restitution of<br>From momentum equation<br>m <sub>1</sub> v <sub>1</sub> +m <sub>2</sub> v <sub>2</sub> = m<br>$\Rightarrow 1(40) + 2(-10) = 1(u_1)$<br>$\Rightarrow u_1 + 2u_2 = 20$<br>$= \frac{u_2 - u_1}{v_1 - v_2} = \frac{\text{relative veloc}}{\text{relative veloc}}$<br>$0.6 = \frac{u_2 - u_1}{40 - (-10)}$<br>$\Rightarrow u_2 - u_1 = 30$<br>From 1 & 2<br>$u_1 = -13.33 \text{ m/sec}$<br>$u_2 = 16.66 \text{ m/sec}$ | e = 0.6<br>$1u_1 + m_2u_2$<br>$1u_1 + m_2u_2$ | R  | $m_{1}u_{1} + m_{2}u_{2} = m_{1}v_{1} + m_{2}v_{2}$ $3(4) + 6(-1) = 3(0) + 6(v_{2})$ $\Rightarrow 6 = 6v_{2}$ $\Rightarrow v_{2} = 1m/s$ Coefficient of restitution, $e = \frac{V_{2} - V_{1}}{u_{1} - u_{2}}$ $e = \frac{1 - 0}{4 - (-1)} = \frac{1}{5}$ 09. Ans: (c)<br>Sol:<br>$KE = \frac{1}{2}mV^{2} + \frac{1}{2}I\omega^{2}$ $Where, \omega = \frac{V}{2R}$ $I = \frac{1}{2}m((2R)^{2} + R^{2}) = \frac{5}{2}mR^{2}$ $KE = \frac{1}{2}mV^{2} + \frac{1}{2}(\frac{5}{2}mR^{2})(\frac{V}{2R})^{2}$ $KE = \frac{1}{2}mV^{2} + \frac{1}{2}(\frac{5}{2}mR^{2})(\frac{V}{2R})^{2}$ |
| Sol: (                     | Ans: (b)<br>Given, $m_1 = 3 \text{ kg}$ , $m_2 = 6$<br>Velocities before impact<br>$u_1 = 4 \text{ m/s}$ , $u_2 = -1 \text{ m/s}$<br>Velocities after impact<br>$v_1 = 0 \text{ m/s}$ , $v_2 = ?$<br>From momentum equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s                                                                                                                                                                                                                                                                                                                                                                                |    | $= \frac{1}{2}mV^{2} + \frac{5}{4}mR^{2} \times \frac{V^{2}}{4R^{2}}$ $= \frac{1}{2}mV^{2} + \frac{5}{16}mV^{2}$ $KE = \frac{13mV^{2}}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                            | X DEEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Deep Learn - India's Best Online Coaching Platform for GATE, ESE, and PSUs                                                                                                                                                                                                                                                                                                       |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |


ACE X DEEP

Enjoy a smooth online learning experience in various languages at your convenience

#### ACE Engineering Publications

#### 10. Ans: (a)

Sol:



#### Method I :

By conservation of linear momentum ,we get  $1 \times 10 = (20 + 1) \times V_{cm}$  (where,  $V_{cm}$  = velocity of centre of mass)

 $\Rightarrow V_{cm} = \frac{10}{21} m/s$ 

Applying angular momentum conservation about an axis passing through the contact point (A) and perpendicular to the plane of paper, we get

$$1 \times 10 \times 1 = I_{cm}\omega + 21 \times \frac{10}{21} \times 1$$

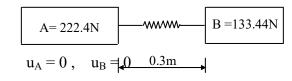
[Angular momentum about any axis passing through A can be written as,  $\vec{L}_A = \vec{L}_{cm} + m(\vec{r} \times \vec{V}_{cm})$ ]  $\Rightarrow \omega = 0 \text{ rad/sec}$ 

#### Method II :

Applying angular momentum conservation about an axis passing through centre of wheel and perpendicular to the plane of paper.

 $\therefore 0 = I_{cm} \omega$ 

$$\Rightarrow \omega = 0 \text{ rad/sec}$$


11. Ans: (a)  
Sol:  
$$(m+M)g$$
  
 $F_d$   
 $(m+M)a$   
 $m_1 = m \rightarrow mass of bullet$   
 $m_2 = M \rightarrow mass of block$   
 $u_1 = V \rightarrow bullet initial velocity$   
 $u_2 = 0 \rightarrow block initial velocity$   
 $v_1 = v_2 = v \rightarrow velocity of bullet and block after impact.$ 

**CIVIL-Postal Coaching Solutions** 

$$\begin{split} F_{d} &= \mu N \\ (M+m)a &= \mu (M+m)g \\ \Rightarrow a &= \mu g \\ From momentum equation \\ m_{1}u_{1} + m_{2}u_{2} &= m_{1}v_{1} + m_{2}v_{2} \\ mV + m(0) &= (m+M)V \\ v &= \frac{mV}{m+M} \\ Now from v^{2} - u^{2} &= 2as \\ 0 - \left(\frac{mV}{m+M}\right)^{2} &= 2\mu gs \\ V &= \frac{m+M}{m}\sqrt{2\mu gs} \end{split}$$

12. Ans: (a)

K = 10.6 kN/m

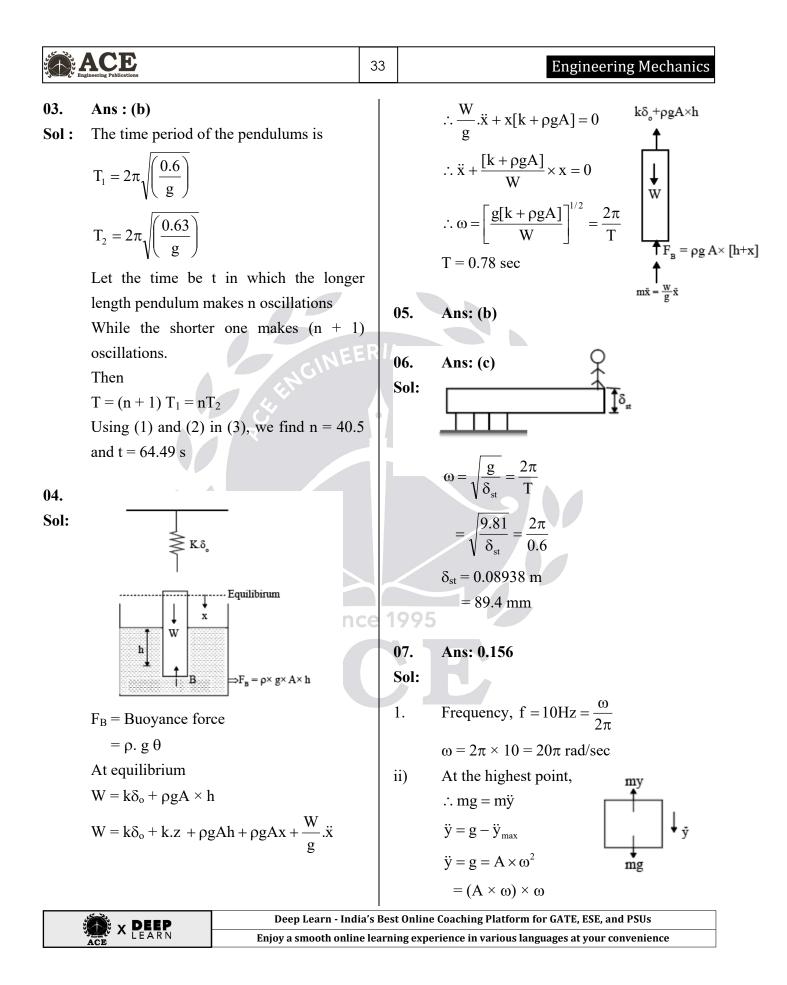




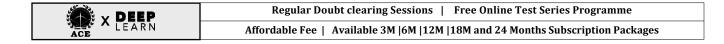
Regular Doubt clearing Sessions | Free Online Test Series Programme

 $\label{eq:affordable} Affordable\ Fee\ |\ Available\ 3M\ |6M\ |12M\ |18M\ and\ 24\ Months\ Subscription\ Packages$ 

30


#### ACE 31 **Engineering Mechanics** From momentum equation are $\frac{2}{7}\delta_{y}$ and $\frac{4}{7}\delta_{y}$ $m_A u_A + m_B u_B = m_A v_A + m_B v_B$ $0 = 222.4V_{A} + 133.44V_{B}$ .....(1) By virtual work principle, $R_{A} \times 0 - 25 \times \frac{2}{7} \delta_{y} - 25 \times \frac{4}{7} \delta_{y} + R_{B} \times \delta_{y} = 0$ $\frac{1}{2}ks^{2} = \frac{1}{2}m_{A}v_{A}^{2} + \frac{1}{2}m_{B}v_{B}^{2}$ $10.6 \times 10^{3} \times 0.15^{2} = \frac{222.4}{9.81} v_{A}^{2} + \frac{133.44}{9.81} v_{B}^{2}$ $\Rightarrow \left(\frac{-150}{7} + R_{\rm B}\right) \delta_{\rm y} = 0$ .....(2) Since $\delta_y \neq 0$ , $R_B - \frac{150}{7} = 0$ From 1 & 2 $v_A = -1.98 \text{ m/s}$ , $v_B = 3.3 \text{ m/s}$ $R_{\rm B} = \frac{150}{7} kN$ Now let us give virtual displacement at A as δ<sub>v</sub>', **08.** Virtual Work Therefore corresponding displacement at C & D are $\frac{5}{7}\delta'_{y}$ & $\frac{3}{7}\delta'_{y}$ **01.** Ans: $\frac{200}{7}$ kN, $\frac{150}{7}$ kN Sol: 25kN 25kN $5/7 \delta'_{\rm v}$ 3/7 8' Α 3m 2m D С 2m R<sub>A</sub>T R<sub>B</sub> ₩B 2m 2m 3m С D 1995 Let R<sub>A</sub> & R<sub>B</sub> be the reactions at support A ... By virtual work principle, & B respectively. $R_{A} \times \delta'_{y} - 25 \times \frac{5}{7} \delta'_{y} - 25 \times \frac{3}{7} \delta'_{y} + R_{B} \times 0 = 0$ Let $\delta_v$ displacement be given to the beam at $\left(R_{A} - \frac{125}{7} - \frac{75}{7}\right)\delta'_{y} = 0$ B without giving displacement at 'A' $\delta'_{y} \neq 0$ , $R_{A} - \frac{200}{7} = 0$ $\delta_y$ $4/7 \delta_v$ $R_A = \frac{200}{7} kN$ $2/7 \delta_v$ В

 DEEP
 Deep Learn - India's Best Online Coaching Platform for GATE, ESE, and PSUs


 EARN
 Enjoy a smooth online learning experience in various languages at your convenience

The corresponding displacement at C & D

|             | ACE<br>Engineering Publications                                                                                                                                                                                            |                 | 32     |                                                          | CIVIL-Postal Coaching Solutions                                                                                                                                                                                                                                                           |  |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 02.         | Ans: 750 N                                                                                                                                                                                                                 |                 |        |                                                          | At extreme position                                                                                                                                                                                                                                                                       |  |
|             | Let the displacement of p<br>By virtual work me<br>done by all the force<br>$-P \times dx + 250 \times (3)$<br>[ $\therefore$ At A force a<br>opposite direction]<br>$\Rightarrow P = 750 \text{ N}$<br>Note: At hinge the |                 | s<br>t |                                                          | At extreme position<br>$B \bigoplus_{A} L - L \cos\theta$ extra energy at A = Total energy at B<br>m.v <sup>2</sup> = mg(1 - cos $\theta$ )<br>$\frac{v^{2}}{2} = g.L \times (1 - \cos\theta)$ From (1)<br>$\frac{0.01}{2} = (1 - \cos\theta)$ $\therefore \theta \simeq 0.1 \text{ rad}$ |  |
| 0           | 9. Free Vibrations o                                                                                                                                                                                                       | f Undamped SDOF |        |                                                          |                                                                                                                                                                                                                                                                                           |  |
| 01.<br>Sol: | At lowest pint,                                                                                                                                                                                                            | em              |        |                                                          | Ans: (b)<br>At extreme position                                                                                                                                                                                                                                                           |  |
|             | T = 1.01  mg<br>T = 1.01  mg<br>$mv^2/L$                                                                                                                                                                                   | Sinc            | ce 1   |                                                          | At extreme position,<br>Spirng force, $F_s = m \times \ddot{x}$<br>$= m \times A \omega^2$                                                                                                                                                                                                |  |
|             | $T = mg + \frac{mv^2}{L}$                                                                                                                                                                                                  | 2               |        |                                                          | $= \mathbf{m} \times \mathbf{A} \times \left[\frac{2\pi}{T}\right]^2$ $\left[2\pi\right]^2$                                                                                                                                                                                               |  |
|             | $0.01 \text{mg} = \text{mg} + \frac{\text{mv}^2}{\text{L}}$                                                                                                                                                                |                 |        | $= 4 \times 2 \times \left[\frac{2\pi}{2}\right]^2$      |                                                                                                                                                                                                                                                                                           |  |
|             | $0.01 \times g = \frac{v^2}{L} \dots$                                                                                                                                                                                      | (1)             |        |                                                          | $\simeq 78.96 \text{ N}$                                                                                                                                                                                                                                                                  |  |
|             | Regular Doubt clea           ACE         Affordable Fee   Available                                                                                                                                                        |                 |        | 5                                                        |                                                                                                                                                                                                                                                                                           |  |
|             |                                                                                                                                                                                                                            |                 |        | ble 3M  6M  12M  18M and 24 Months Subscription Packages |                                                                                                                                                                                                                                                                                           |  |



|             | ACE<br>agineering Publications                                                                                                                                               | 34   | CIVIL-Postal Coaching Solutions |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------|
|             | $= v_{max} \times \omega$<br>$\therefore v_{max} = \frac{g}{\omega} = \frac{9.81}{20\pi}$ $= 0.156 \text{ m/s}$                                                              |      |                                 |
| 08.<br>Sol: | Ans: (b, c)                                                                                                                                                                  |      |                                 |
| 1.          | Let, K = spring stiffness of original spring                                                                                                                                 | g    |                                 |
|             | Stiffness of cut spring = $2 \times k$                                                                                                                                       |      |                                 |
|             | $K\alpha \frac{1}{N}$                                                                                                                                                        | ERI  | NGA                             |
| 2.          | For series arrangement,                                                                                                                                                      |      | A CA                            |
|             | $\frac{1}{K_e} = \frac{1}{2K} + \frac{1}{2K} \qquad K_e = K$                                                                                                                 |      | TZ I                            |
|             | $\omega = \sqrt{\frac{K}{m}} = \frac{2\pi}{T} \dots \dots$             |      |                                 |
| 3.          | For parallel arrangement,                                                                                                                                                    |      |                                 |
|             | $K_e = 2K + 2K = 4 K$                                                                                                                                                        |      |                                 |
|             | $\therefore \omega = \sqrt{\frac{4K}{m}} = \frac{2\pi}{T} \dots \dots$ |      |                                 |
|             | From (1) and (2)                                                                                                                                                             | ce 1 | 995                             |
|             | $\omega_{\text{series}} < \omega_{\text{parallel}}$                                                                                                                          |      |                                 |
|             | $T_{series} > T_{parallel}$                                                                                                                                                  |      |                                 |
|             |                                                                                                                                                                              |      |                                 |

