

ESE GATE PSUs

ENGINEERING MATHEMATICS

(A)

Text Book : Theory with worked out Examples and Practice Questions

CE | ME | EE EC | IN | PI

un

読料

and the

uà,

(7)

Arthur Cayley (1821 – 1895)

01. Ans: (c)
Sol: Consider
$$|A| = \begin{vmatrix} 2 & 2 & 3 & 3 \\ 2 & 1 & 4 & 2 \\ 3 & 2 & 3 & 2 \\ 3 & 1 & 2 & 4 \end{vmatrix}$$

 $R_{2} \rightarrow R_{2} - R_{1};$
 $\Rightarrow |A| = \begin{vmatrix} 2 & 2 & 3 & 3 \\ 0 & -1 & 1 & -1 \\ 3 & 2 & 3 & 2 \\ 3 & 1 & 2 & 4 \end{vmatrix}$
 $R_{2} \rightarrow R_{2} - R_{1};$
 $\Rightarrow |A| = \begin{vmatrix} 2 & 2 & 3 & 3 \\ 0 & -1 & 1 & -1 \\ 3 & 2 & 3 & 2 \\ 3 & 1 & 2 & 4 \end{vmatrix}$
 $C_{2} \rightarrow C_{2} + C_{3}; C_{4} \rightarrow C_{4} + C_{3}$
 $\Rightarrow |A| = (-1) \begin{vmatrix} 2 & 5 & 3 & 6 \\ 0 & 0 & 1 & 0 \\ 3 & 5 & 3 & 3 & 2 & 6 \end{vmatrix}$
 $\Rightarrow |A| = (-1) \begin{vmatrix} 2 & 5 & 3 & 6 \\ 0 & 0 & 1 & 0 \\ 3 & 5 & 3 & 3 & 2 & 6 \end{vmatrix}$
 $\Rightarrow |A| = (-1) \begin{vmatrix} 2 & 5 & 3 & 6 \\ 0 & 0 & 1 & 0 \\ 3 & 5 & 3 & 3 & 6 \end{vmatrix}$
 $\Rightarrow |A| = (-1) \begin{vmatrix} 2 & 5 & 6 \\ 3 & 5 & 3 & 6 \end{vmatrix}$
(expanding along 2^{nd} row)
 $\Rightarrow |A| = (-1) [2(30 - 15) - 5(18 - 5) + 6(9 - 15)]$
 $\therefore |A| = (-1) [30 - 15 - 36] = 21$
02. Ans: (b)
Sol: Given $A = \begin{bmatrix} 6 & 7 \\ 2 & 2 \end{bmatrix}$
 $\Rightarrow |A| = 12 - 14 = -2$
Consider $|A^{2004} - 2A^{2003}| = |A^{2003} (A - 21)|$
 $\Rightarrow |A| = 12 - 14 = -2$
Consider $|A^{2004} - 2A^{2003}| = |A^{2003} (A - 21)|$
 $\Rightarrow |A| = 12 - 14 = -2$
Consider $|A^{2004} - 2A^{2003}| = |A^{2003} (A - 21)|$

Arthur Cayley was probably the first mathematician to realize the importance of the notion of a matrix and in 1858 published book, showing the basic operations on matrices. He also discovered a number of important results in matrix theory. ACE

04. Ans: (a, b, c) **Sol:** Let $A = \begin{vmatrix} a & b \\ c & d \end{vmatrix} \Rightarrow a, b, c, d \neq 0$ Then $\mathbf{A}^{2} = \begin{bmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{bmatrix} \begin{bmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{bmatrix} = \begin{bmatrix} \mathbf{a}^{2} + \mathbf{b}\mathbf{c} & \mathbf{a}\mathbf{b} + \mathbf{b}\mathbf{d} \\ \mathbf{a}\mathbf{c} + \mathbf{c}\mathbf{d} & \mathbf{b}\mathbf{c} + \mathbf{d}^{2} \end{bmatrix}$ Given that $A^2 = I$ $\Rightarrow \begin{bmatrix} a^2 + bc & ab + bd \\ ac + cd & bc + d^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ \Rightarrow a² + bc = 1, ab + bd = 0, ac + cd = 0 and $bc + d^2 = 1$ \Rightarrow c(a + d) = 0, b (a + d) = 0 $\Rightarrow a + d = 0 \qquad (\because b \neq 0 \text{ and } c \neq 0)$ \Rightarrow tr (A) = 0 \therefore I is true Consider |A| = ad - bc $\Rightarrow |A| = a(-a) - bc \quad (\because a + d = 0 \Leftrightarrow d = -a)$ $\Rightarrow |\mathbf{A}| = (-1) (\mathbf{a}^2 + \mathbf{b}\mathbf{c})$ Since $\Rightarrow |\mathbf{A}| = (-1) (1) \qquad (\because a^2 + bc = 1)$ ∴ II is false Hence, option (a), (b), (c) are correct. 05. Ans: 16

Sol: The number of multiplication involved in computing the matrix product (PQ)R is 48 & the matrix product P(QR) is 16.

> ... The minimum number of multiplication is 16.

06. Ans: (c)

Sol: Now,
$$B = A^{-1} = \frac{adj(A)}{|A|}$$

$$\Rightarrow B = \frac{1}{|A|} \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix}^{T}$$

$$= \frac{1}{|A|} \begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix}$$
where $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$

 \therefore The element in the 2nd row and 3rd column of B is given by

$$\frac{1}{|A|}A_{32} = \frac{1}{|A|}(-1)^{3+2}M_{32}$$
$$= \frac{1}{2}(-1)(1-0) = \frac{-1}{2}$$

07. Ans: 0

Sol: Given that A and B are symmetric matrices. $\Rightarrow A^{T} = A \text{ and } B^{T} = B$ Consider $(AB - BA)^{T} = (AB)^{T} - (BA)^{T}$ $((A - B)^{T} = A^{T} - B^{T})$ $\Rightarrow (AB - BA)^{T} = B^{T} A^{T} - A^{T} B^{T} (\therefore (AB)^{T})^{T}$ $= \mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}}$ \Rightarrow (AB - BA)^T = BA - AB $\Rightarrow (AB - BA)^{T} = -(AB - BA)$ \Rightarrow (AB – BA) is a skew symmetric matrix of order (3×3) $\therefore |AB - BA| = 0$

	ACE Engineering Publications	3		Linear Algebra
08.	Ans: 46		11.	Ans: (a)
Sol:	Here, $ adj A = A ^2$ (:: $ adj(A_{n \times n}) = A ^{n-1}$))	Sol:	Each element of the matrix in the principal
	$\Rightarrow 2116 = \mathbf{A} ^2$			diagonal and above the diagonal, we can
	\Rightarrow A = ± 46			chosen in q ways.
	∴ Absolute value of A is 46			Number of elements in the principal
				diagonal = n
09.	Ans: (d)			Number of elements above the principal
Sol:	\therefore adj (adj (A _{n×n})) = $ A ^{n-2} A_{n×n}$			diagonal = $n\left(\frac{n-1}{2}\right)$
	$\Rightarrow \mathrm{adj} \ (\mathrm{adj} \ (\mathrm{A}_{3\times 3})) = \mathrm{A} ^{3-2} \ \mathrm{A}_{3\times 3}$			By product rule, number of ways we can
	\Rightarrow adj (adj (A _{3×3})) = [1 (0-4) -2 (a-4) + (a -4) + (a	ERI	NG	choose these elements = $q^{n} \cdot q^{n\left(\frac{n-1}{2}\right)}$
	0)]A	3		Required number of symmetric matrices
	$\Rightarrow A = (4 - a) A (\therefore adj (adj (A)) = A)$			$=q^{n\left(rac{n+1}{2} ight)}$
	$\Rightarrow 4 - a = 1$			
	$\therefore a = 3$		12.	Ans: 4
10.	Ans: 1			$\begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \end{bmatrix}$
Sol:	Given that $B = adj(A)$ and $C = 5A$		Sol:	Given $A = \begin{bmatrix} 0 & 1 & -1 & 0 & 0 \end{bmatrix}$
	Consider $\frac{ adj(B) }{ C } = \frac{ adj(adj(A)) }{ 5A }$			$\begin{bmatrix} -1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1 \end{bmatrix}$
	$\Rightarrow \frac{ \mathrm{adj}(\mathbf{B}) }{ \mathbf{C} } = \frac{ \mathbf{A} ^{(3-1)^2}}{5^3 \mathbf{A} }$			$\begin{array}{c} R_4 \to R_4 + R_1 \\ \hline 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \end{array}$
(:: a	$dj(adj(A)_{n\times n}) = A_{n\times n} ^{(n-1)^2} and kA_{n\times n} = k^n A_{n\times n} $			$\Rightarrow A \sim \begin{bmatrix} 0 & 1 & -1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 1 \end{bmatrix}$
	$ adj(B) A ^4$			$\begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1 \end{bmatrix}$
	$\rightarrow \frac{ C }{ C } = \frac{1}{5^3 A }$			$R_2 \leftrightarrow R_3$
	$\Rightarrow \frac{ \text{adj(B)} }{ C } = \frac{ A ^3}{5^3}$			$\begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \end{bmatrix}$
	$\therefore \frac{ adj(B) }{ C } = \frac{5^3}{5^3} = 1$ (:: A = 5)			$\Rightarrow A \sim \begin{bmatrix} 0 & 0 & 1 & -1 & 0 \\ 0 & -1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1 \end{bmatrix}$
	Regular Doubt	clearin	ig Sessi	ions Free Online Test Series Programme

Affordable Fee | Available 3M |6M |12M |18M and 24 Months Subscription Packages

X DEEP

ACE

ACE Engineering Publications		4	Engineering Mathematics
$R_{4} \rightarrow R_{4} + R_{2}$ $\Rightarrow A \sim \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$ $R_{4} \rightarrow R_{4} + R_{3}$ $\Rightarrow A \sim \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$ $R_{5} \rightarrow R_{5} + R_{4}$ $\Rightarrow A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$ an Echelon form of A	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 14 So 15 So 8 15 So 15 So 15 So 15 So 15 So 15 So 15 So 15 So 16 So 16 So	Engineering Mathematics • Ans: (a) I: Here, A ⁿ is a zero matrix. ∴ rank of A ⁿ = 0 • Ans: (a) I: S1 is true because, any subset of linearly independent set of vectors is always linearly independent set. S2 is not necessarily true, for example, {X ₁ , X ₂ , X ₃ } can be linearly independent set and X ₄ is linear combination of X ₁ , X ₂ and X ₃ . • Ans: (a, b, d) I: The augmented matrix of the given system is $(A B) = \begin{pmatrix} 3 & 2 & 0 & 1 \\ 4 & 0 & 7 & 1 \\ 1 & 1 & 1 & 3 \\ 1 & -2 & 7 & 0 \end{pmatrix}$
13. Ans: (a)		C	$\Rightarrow (A B) \sim \begin{pmatrix} 1 & 1 & 1 & 3 \\ 4 & 0 & 7 & 1 \\ 3 & 2 & 0 & 1 \\ 1 & -2 & 7 & 0 \end{pmatrix}$
Sol: Given that A.adj(A) $\Rightarrow A.adj(A) = 5I$ $\Rightarrow A = 5 \neq 0,$ (\because A.ad $\therefore \rho(A_{3\times 3}) = 3$	$= \begin{bmatrix} 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$ $j(A) = adj(A) A = A I_n$)	$R_{2} \rightarrow R_{2} - 4R_{1}; R_{3} \rightarrow R_{3} - 3R_{1}; R_{4} \rightarrow R_{4}$ $-R_{1}$ $\Rightarrow (A B) \sim \begin{pmatrix} 1 & 1 & 1 & 3 \\ 0 & -4 & 3 & -11 \\ 0 & -1 & -3 & -8 \\ 0 & -3 & 6 & -3 \end{pmatrix}$
X DEEP	Deep Learn - Ind Enjoy a smooth onlin	ia's Best Oi e learning	nline Coaching Platform for GATE, ESE, and PSUs experience in various languages at your convenience

	ACE
3241	Engineering Publications

Linear Algebra

 $R_2 \leftrightarrow R_3$ $\Rightarrow (A | B) \sim \begin{vmatrix} 1 & 1 & 1 & 0 \\ 0 & -1 & -3 & -8 \\ 0 & -4 & 3 & -11 \\ 0 & -3 & 6 & -3 \end{vmatrix}$ $R_3 \rightarrow R_3 - 4R_2$: $R_4 \rightarrow$ $\Rightarrow (A | B) \sim \begin{vmatrix} 1 & 1 & 1 & 0 \\ 0 & -1 & -3 & -8 \\ 0 & 0 & 15 & 21 \\ 0 & 0 & 15 & 21 \end{vmatrix}$ $R_4 \rightarrow R_4 - R_3$ $\Rightarrow (A | B) \sim \begin{pmatrix} 1 & 1 & 1 & 3 \\ 0 & -1 & -3 & -8 \\ 0 & 0 & 15 & 21 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\Rightarrow \rho(A) = \rho(A \mid B) = 3 = no. of variables$ \therefore The system AX = B has a unique solution. Hence, options (a), (b) and (d) are false statements. Since Ans: (b) 17. **Sol:** The condition for many solutions of AX = Bis $\rho(A) = \rho(A|B) \neq n = 3$ Consider (A|B) = $\begin{vmatrix} 1 & -1 & 2 & | & 7 \\ 1 & 1 & -1 & | & 1 \\ -1 & k & 3 & | & 0 \end{vmatrix}$ $R_2 \rightarrow R_2 - R_1; R_3 \rightarrow R_3 + R_1$ $\Rightarrow (A|B) \sim \begin{vmatrix} 1 & -1 & 2 & 7 \\ 0 & 2 & -3 & -6 \\ 0 & 1 & 1 & 5 & 7 \end{vmatrix}$

 $R_3 \rightarrow 2 R_3 - (k-1) R_2$ $\Rightarrow (A|B) \sim \begin{vmatrix} 1 & -1 & 2 & 7 \\ 0 & 2 & -3 & -6 \\ 0 & 0 & 3k+7 & 6k+8 \end{vmatrix}$ If $3k + 7 \neq 0$ (or) $k \neq -7/3$ then $\rho(A) = 3 =$ ρ (A/B) = n = 3 and system will have a unique solution. If 3k + 7 = 0 (or) k = -7/3 then $\rho(A) = 2 \neq -7/3$ $\rho(A/B)$ and the system will not have a solution. Here, there is no real value of k such that $\rho(A) = 2 \neq \rho(A/B) < = n = 3.$:. The system will not have many solutions Hence, option (b) is correct. 18. Ans: (b) Sol: The condition for unique solution of AX =B is $\rho(A) = \rho(A | B) = n = 3$ (or) $|A| \neq 0$. 1995 Given, $A = \begin{bmatrix} k & 1 & 1 \\ 1 & k & 1 \\ 1 & 1 & k \end{bmatrix}$ $\Rightarrow |\mathbf{A}| = \begin{vmatrix} \mathbf{k} & 1 & 1 \\ 1 & \mathbf{k} & 1 \\ 1 & 1 & \mathbf{k} \end{vmatrix}$ \Rightarrow |A| = k(k² - 1) - (k - 1) + (1 - k) \Rightarrow |A| = (k - 1)[k² + k - 2] \Rightarrow |A| = $(k-1)^2 (k+2)$ Thus, the system has a unique solution when $(k-1)^{2}(k+2) \neq 0$

(or) $k \neq 1$ and $k \neq -2$

	Regular Doubt clearing Sessions Free Online Test Series Programme
ACE LEARN	Affordable Fee Available 3M 6M 12M 18M and 24 Months Subscription Packages

5

	ACE Engineering Publications		6	Engineering	Mathematics
19. Sol:	Ans: (a) Given $n - r = 1$, whore order of the matrix $\Rightarrow 3 - r = 1$ $\Rightarrow r = \rho(A) = 2 = nt$ in an echelon form \therefore To have rank 2 for either -1 or 0.	here $r = \rho(A)$ and $n =$ umber of non-zero row for matrix A, k must b	s e	$\Rightarrow (A/B) \sim \begin{pmatrix} 1 & -2 & 3 & & -1 \\ 0 & -1 & 1 & & 2 \\ 0 & 0 & 0 & & k-2 \end{pmatrix}$ Here, this system is consistent k-2=0 \therefore For $k = 2$, the system has in solutions.	nt only when
20. Sol:	Ans: (a) Here Rank of $A = Raccine Ra$	ank of $[A B] = 3$		3. Ans: (c) bl: Given A = $\begin{bmatrix} 1 & -1 & 5 \\ 0 & 5 & 6 \end{bmatrix}$	
	∴ The given system	has a unique solution.		$\begin{bmatrix} 0 & -6 & 5 \end{bmatrix}$ The characteristic equation is $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$	$A-\lambda I =0$
21. Sol:	Ans: (a, b, c) Now, $ A = \begin{vmatrix} 2 & 0 \\ 4 & -3 \\ 0 & 2 \end{vmatrix}$ $\Rightarrow A = 2(3-6) - 0 \Rightarrow$ $\Rightarrow A = 8 - 6 = 2 \neq 0$ $\Rightarrow \rho (A_{3\times 3}) = 3$ \Rightarrow The system will h \therefore Option (d) is not	$\begin{vmatrix} 1\\ 3\\ -1 \end{vmatrix}$ + 1(8 - 0) Since a unique solution. true and other option	ce 1	$\Rightarrow (1 - \lambda) \{(5 - \lambda)^{2} + 36\} = 0$ $\Rightarrow (1 - \lambda) (\lambda^{2} - 10\lambda + 61) = 0$ $\therefore \lambda = 1, 5 \pm 6j$ 4. Ans: 15 bl: If $\lambda = 2 + \sqrt{-1} = 2 + i$ is an eigendress matrix A then 2-i is also an eigendress matrix A. $\therefore \mathbf{P} = \text{product of eigen values}$	gen value of gen value of s of P
	are true	alle und other option		= (2 + i) (2 - i) 3 $= (4 + 1)3 = 15$	
22. Sol:	Ans: 2 Consider (A B) = $\begin{bmatrix} 1\\ 1 \end{bmatrix}$	$\begin{vmatrix} -2 & 3 & -1 \\ -3 & 4 & 1 \end{vmatrix}$		5. Ans: (a) bl: Given A = $\begin{bmatrix} 5 & -3 \\ 6 & 4 \end{bmatrix}$	
	$R_2 \rightarrow R_2 - R_1; R_3 -$	$2 4 -6 \begin{vmatrix} \mathbf{k} \end{vmatrix}$ $\Rightarrow \mathbf{R}_3 + 2\mathbf{R}_1$		$\lfloor 0 -4 \rfloor$ \Rightarrow The characteristic equation matrix $A_{2\times 2}$ is given by $ A-\lambda I $	on of a given = 0.
		Deep Learn - Ind	ia's Bes	Online Coaching Platform for GATE, ESE, and	PSUs
	LEARN	Enjov a smooth onlin	e learni	g experience in various languages at your cor	ivenience

	ACE Engineering Publications		7	Linear Algeb	ora
26. Sol:	$\Rightarrow \lambda^2 - \lambda - 2 = 0$ $\Rightarrow \lambda = 2, -1$ If $\lambda_1 = 2$ and $\lambda_2 = -1$ a matrix $A_{2\times 2}$ then the are $\lambda_1^{1000} = 2^{1000}$ and $\lambda_2^{1000} + 1$ \therefore tr (A ¹⁰⁰⁰) = 2 ¹⁰⁰⁰ + 1 Ans: -6 If λ is an Eigen value $\lambda^3 - 3\lambda^2$ is an Eigen v	are the eigen values of the eigen values of A^{100} $\lambda_2^{1000} = (-1)^{1000} = 1$ $\cdot 1$ the sof A, then value of $A^3 - 3A^2$	7 f 0 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	 ⇒ (λ-2) (λ² -2λ -15) = 0 ⇒λ = 2, -3, 5 ∴ The largest among the absolute value the eigen values of M = 5 29. Ans: (c) Sol: The given matrix is upper triangular. eigen values are same as the diagonal elements 1, 2, -1 and 0. The smallest eigen value is λ = -1. 	ora rs of The onal The
27. Sol:	Putting $\lambda = 1, -1$, and we get the eigen value -4, 0 \therefore Trace of (A ³ -3A ²) Ans: (a) Since, A is singular, Also, rank of A = 1.	nd 3 in $\lambda^3 - 3\lambda^2$, ues of $A^3 - 3A^2$ are -2 $\lambda = 0$ is an eigen value.		eigen vectors for $\lambda = -1$ is given by $(A - \lambda I) X = 0$ $\Rightarrow (A + I)X = 0$ $\Rightarrow \begin{bmatrix} 2 & 1 & -1 & 2 \\ 0 & 3 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = 0$ $\Rightarrow w = 0, y = 0, 2x - z = 0$ $\therefore X = k[1 \ 0 \ 2 \ 0]^{T}$	
28. Sol:	The root $\lambda = 0$ is reputrace of $A = n = 0 + 0$ $\Rightarrow \lambda_n = n$ \therefore The distinct eigen Ans: 5 The characteristic eq $\lambda^3 - 4\lambda^2 + a \lambda + 30 =$ Substituting $\lambda = 2$ in Now, the characteristic $\lambda^3 - 4\lambda^2 - 11 \lambda + 30 =$	eated n – 1 times. $0 + \dots + \lambda_n$. values are 0 and n. uation of M is 0(1) (1), we get a = -11 tic equation is = 0		30. Ans: 2 Sol: Consider $AX = \lambda X$ $\Rightarrow \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = \lambda \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 2 \\ 4 \\ 0 \end{bmatrix} = \lambda \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$ $\therefore \lambda = 2 \text{ is an eigen value of a given match.}$	atrix
	X DEEP	Regular Doubt Affordable Fee Ava	clearing ailable 3	ag Sessions Free Online Test Series Programme 3M 6M 12M 18M and 24 Months Subscription Packages	

	Regular Doubt clearing Sessions Free Online Test Series Programme
ACE LEARN	Affordable Fee Available 3M 6M 12M 18M and 24 Months Subscription Packages

	Engineering Publications	8	Engineering Mathematics
31. Sol:	Ans: 7 Given A = $\begin{bmatrix} 8 & -6 & 2 \\ -6 & x & -4 \\ 2 & -4 & 3 \end{bmatrix}$		Rank of $(A - \lambda I) = r = 2$, number of variables = n = 3 Number of linearly independent eigen vectors = n - r = 3 - 2 = 1
	and eigen vector $\mathbf{X} = \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$		The number of linearly independent eigenvectors corresponding to the eigen value $\lambda = 2$ is one. The number of linearly
	We know that $AX = \lambda X$		independent eigen vectors corresponding to
			an eigen value $\lambda = 3$ is one
	$\Rightarrow -6 x -4 -2 = \lambda -2$	ERII	(:: $\lambda = 3$ is a distinct eigen value)
			: The number of linearly independent eigen
	$\begin{bmatrix} 30 \\ 1 \end{bmatrix} \begin{bmatrix} 2\lambda \\ 2\lambda \end{bmatrix}$		vectors of A is 2.
	$\Rightarrow \begin{bmatrix} -16 - 2x \\ 15 \end{bmatrix} = \begin{bmatrix} -2\lambda \\ \lambda \end{bmatrix}$		33. Ans: (b)
	$\Rightarrow \lambda = 15 \text{ and } -16 - 2x = -30$		$\begin{bmatrix} 1 & 0 \end{bmatrix}$
	$\Rightarrow -2x = -14$ $\therefore x = 7$		Sol: Given $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$
			\Rightarrow The characteristic equation of a given
32.	Ans: (2)		matrix $A_{3\times 3}$ is given by $ A - \lambda I = 0$
Sol:	$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$		$\Rightarrow \begin{vmatrix} 1-\lambda & 0 & 0 \\ 1 & 0-\lambda & 1 \\ 0 & 1 & 0-\lambda \end{vmatrix} = 0$
	$\rightarrow \kappa = 2,2,3$		$\Rightarrow \lambda^{3} - \lambda - \lambda + 1 = 0$
	For the repeated eigen value $\lambda = 2$,		$ \implies \chi = \chi + \chi = 1 $ $ \implies \chi^3 = \chi^2 + \chi = 1 $ (1)
	$\mathbf{A} - \lambda \mathbf{I} = \begin{bmatrix} 2 - \lambda & 1 & 0 \\ 0 & 2 - \lambda & 0 \\ 0 & 0 & 3 - \lambda \end{bmatrix}$		$\rightarrow A - A + A - 1 - (1)$ (by Cayley-Hamilton's theory)
			Here, for $n = 3$ only the option (b) gives
	$\begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$		equation (1)
	$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$		$\therefore \mathbf{A}^{n} = \mathbf{A}^{n-2} + \mathbf{A}^{2} - \mathbf{I}.$
	Deep Learn - Ind	ia's Bes	t Online Coaching Platform for GATE, ESE, and PSUs
	ACE EARN Enjoy a smooth onlin	e learni	ing experience in various languages at your convenience

	Engineering Publications	9	Linear Algebra
34.	Ans: 1		= number of linearly independent rows
	$\begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$		\therefore The set of vectors is linear set and it
Sol:	Given $A = \begin{vmatrix} -1 & 2 & 0 \end{vmatrix}$		forms a basis of R^3
	\Rightarrow Characteristic equation of A is $ A-\lambda I =$	0	36. $k \neq 0$
	$1-\lambda$ 0 -1		Sol: If the given vectors form a basis, then they
	$\Rightarrow -1 2-\lambda 0 = 0$		are linearly independent
	$\begin{vmatrix} 0 & 0 & -2-\lambda \end{vmatrix}$		$ k \ 1 \ 1 $
	$\Rightarrow \lambda^3 - \lambda^2 - 4\lambda + 4 = 0$		$\Rightarrow 0 1 1 \neq 0$
	By Calay-Hamilton's theorem,	ERI	
	$A^{3} - A^{2} - 4A + 4I = 0$ (1)		$\Longrightarrow k^2 + k - k \neq 0$
	Given that $A^3 - A^2 - 4A + 5I = B$ (2)		$\therefore \mathbf{k} \neq 0$
	From (1) and (2), we get $B = I$		2
	$\therefore \mathbf{B} = 1$		
	Basis(Only for ECE)		
35.	Ans: (a)		
C 1			005
501:	Given $A = \begin{bmatrix} 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$		
	\Rightarrow A \sim $\begin{bmatrix} 0 & -3 & -2 \\ 0 & -2 & -3 \end{bmatrix}$		
	$\mathbf{K}_2 \rightarrow \mathbf{K}_2 - 2\mathbf{K}_1, \mathbf{K}_3 \rightarrow \mathbf{K}_3 - 2\mathbf{K}_1$		
	$\Rightarrow A_{2} \begin{vmatrix} 1 & 2 & 2 \\ 0 & 3 & 2 \end{vmatrix}$		
	$\rightarrow R^{\circ} \begin{bmatrix} 0 & -3 & -2 \\ 0 & 0 & -5 \end{bmatrix}$		
	$\frac{1}{1} \frac{1}{2} \frac{1}{2} \frac{1}{1} \frac{1}$		
	$\rightarrow p(A) = 3$		
	Regular Doub Affordable Fee Af	t clearin vailable :	g Sessions Free Online Test Series Programme 3M 6M 12M 18M and 24 Months Subscription Packages
	1102		

Calculus With Vector Calculus & Fourier Series)

Sir Isaac Newton G. W. Von Leibniz (1643 – 1727) (1646 – 1716)

01. Ans: (a)
Sol:
$$\lim_{x \to \frac{5}{4}} (x - [x]) = \lim_{x \to \frac{5}{4}} x - \lim_{x \to \frac{5}{4}} [x]$$

 $= \frac{5}{4} - 1 = \frac{1}{4}$
02. Ans: (d)

Sol:
$$\lim_{x \to 2} \frac{|x-2|}{x-2}$$

Chapter

Left Limit = $\lim_{x \to 2^-} \frac{-(x-2)}{x-2} = -$

Right Limit = $\lim_{x\to 2^+} \frac{x-2}{x-2} = 1$ ∴ Left Limit ≠ Right Limit

 \Rightarrow Limit does not exist

03. Ans: (d)

Sol: $\lim_{x \to 2^{-}} \frac{x^2 + x - 6}{|x - 2|} = \lim_{x \to 2^{-}} \frac{(x + 3)(x - 2)}{|x - 2|} = \text{Since } 1$ $\lim_{x \to 2^{-}} \frac{(x + 3)(x - 2)}{|x - 2|} = \lim_{x \to 2^{-}} \frac{(x + 3)(x - 2)}{-(x - 2)} = -5$ $\lim_{x \to 2^{+}} \frac{(x + 3)(x - 2)}{|x - 2|} = \lim_{x \to 2^{+}} \frac{(x + 3)(x - 2)}{(x - 2)} = 5$ Since $\lim_{x \to 2^{-}} \frac{x^2 + x - 6}{|x - 2|} \neq \lim_{x \to 2^{+}} \frac{x^2 + x - 6}{|x - 2|}$ $\lim_{x \to 2^{+}} \frac{x^2 + x - 6}{|x - 2|} = \text{does not exist}$

301:
$$\lim_{x \to 0} \frac{x \sin x}{1 - \cos x} = \lim_{x \to 0} \frac{\left(\frac{\sin x}{x}\right)}{\left(\frac{1 - \cos x}{x^2}\right)} = \frac{1}{\frac{1}{2}} = 2$$

05. Ans: (3)
Sol:
$$\lim_{x \to 2} \frac{\tan(x-2)(x^2 + (k-2)x - 2k)}{(x-2)(x-2)} = 5$$

$$\lim_{x \to 2} \frac{\tan(x-2)}{x-2} \cdot \lim_{x \to 2} \frac{x^2 + (k-2)x - 2k}{x-2} = 5$$
1.
$$\lim_{x \to 2} \frac{x^2 + (k-2)x - 2k}{x-2} = 5$$

In the above equation LHS is of the form 0/0, so applying L' Hospital rule, we get

$$\lim_{x \to 2} \frac{2x + (k - 2)l}{l} = 5$$

4 + k-2 = 5

6. Ans: (0.5) Sol: $\lim_{x \to 1} \left(\frac{1}{\ell n} - \frac{1}{x - 1} \right) = \frac{1}{0} - \frac{1}{0} = \infty - \infty$ (Indeterminate form) $\lim_{x \to 1} \left(\frac{1}{\ell n} - \frac{1}{x - 1} \right) = \lim_{x \to 1} \frac{x - 1 - \ell n x}{(\ell n x)(x - 1)} = \frac{0}{0}$ (Indeterminate form) Using L' Hospital rule, we get $\lim_{x \to 1} \frac{1 - 0 - \frac{1}{x}}{1 - \frac{1}{x}} = \frac{0}{1 - \frac{1}{x}}$

$$\lim_{x \to 1} \frac{1 - 0 - -}{\frac{x}{\ln x + \frac{x - 1}{x}}} = \frac{0}{0}$$

Issac Newton(most influential scientist) and Leibniz (universal genius) independently developed calculus which leads to the development of differential and integral equations of mathematical physics

ACE

Applying L'Hospital rule again, we get

$$\lim_{x \to x} \frac{1/x^2}{\frac{1}{x} + \frac{x(1) - (x - 1)}{x^2}} = \frac{1}{1 + \frac{1 - 0}{1}} = \frac{1}{2}$$
Correct answer 0.5
99. Ans: (0.25)
Sol:
$$\lim_{x \to x} \frac{\sqrt{2x + 22} - 4}{x + 3} = \frac{0}{0} \text{ (Indeterminate form)}$$

$$\lim_{x \to \infty} \frac{x \ln x}{1 + x^2} = \frac{\infty}{\infty} \rightarrow \text{ Indeterminate form}$$
using L'Hospital rule. We get

$$\lim_{x \to \infty} \frac{x \ln x}{2x} = \frac{1}{2} = \frac{1 + \ln x}{2x} = \frac{\infty}{\infty}$$
Apply L'Hospital rule. We get

$$\lim_{x \to \infty} \frac{x \ln x}{2} = 0$$

$$\therefore \lim_{x \to \infty} \frac{x \ln x}{1 + x^2} = 0$$
68. Ans: (c)
70. Ans

Affordable Fee | Available 3M |6M |12M |18M and 24 Months Subscription Packages

Engineering Publications		ACE
--------------------------	--	-----

13. Ans: (a)

Sol: Since, f is differentiable at x = 2,

$$f'(2^{-}) = f'(2^{+})$$

$$\Rightarrow (2x)_{x=2} = m$$

 $\therefore m = 4$

Since, f is continuous at x = 2i.e., $(x^2)_{x=2} = (mx + b)_{x=2}$ $\Rightarrow 4 = 2m + b$ $\therefore b = -4$ Hence, option (A) is correct.

14. Ans: (d) Sol: Lot $f(x) = x^2$

Sol: Let, $f(x) = x^2 - 2x + 2$ and [a,b] = [1,3]Then, f'(x) = 2x - 2By a mean value theorem

$$\exists c \in (1,3) \Rightarrow f'(c) = \frac{f(3) - f(1)}{3 - 1}$$
$$\Rightarrow c - 1 = 1$$
$$\therefore c = 2 \text{ (or) } x = 2$$

15. And: (b) Sol: Let $f'(x) = \sin(x) + 2.\sin(2x) + 3\sin(3x) - \frac{8}{\pi} = 0$

be the given equation.

Then,

199

$$f(x) = -\cos(x) - \cos(2x) - \cos(3x) - \frac{8}{\pi}(x) + k$$

Here, if the function f(x) satisfies the all the three conditions of the Rolle's theorem in [a, b], then the equation f'(x) = 0 has at least one real root in (a, b).

As cos(ax) is continuous & differentiable function and $a_0 + a_1x$ is continuous & differentiable function for all x, the function f(x) is continuous and differentiable for all x.

	ACEE Engineering Publications			3 Calculus
	Here, (i) $f(x)$ is contin	inuous on $\left[0, \frac{\pi}{2}\right]$		$\Rightarrow \frac{1}{5} < f(1) - 2 < \frac{1}{4}$
	(ii) f(x) is differentia	the on $\left(0, \frac{\pi}{2}\right)$		$\therefore 2.2 < f(1) < 2.25$
	(iii) $f(0) = -3 + k =$	$f\left(\frac{\pi}{2}\right)$		18. Ans: 2.5 range 2.49 to 2.51Sol: By Cauchy's mean value theorem,
	∴ By a Rolle's theo	rem, the given equation	n	$\frac{f'(c)}{f(c)} = \frac{f(3) - f(2)}{f(2)}$
	has at least one root in $\left(0, \frac{\pi}{2}\right)$. Hence, option (B) is correct.			$g'(c) g(3) - g(2)$ $\Rightarrow -e^{2c} = \frac{e^3 - e^2}{e^2}$
				$e^{-3} - e^{-2}$
16.	Ans: 19		ERII	$c = 2.5 \in (2, 3)$
Sol:	Applying Lagrange	mean value theorem w	e	19. Ans: (a)
	get	र		Sol: $f(x) = e^{\sin x} \Rightarrow f(0) = e^0 = 1$
	$f'(c) = \frac{f(3) - f(-3)}{3 - (-3)}$	$=\frac{f(3)-7}{6}$		$f'(x) = e^{\sin x} \cdot \cos x \Rightarrow f'(0) = 1$
	$\frac{f(3)-7}{6} \le 2$			$1^{n}(x) = e^{-1} \cos x + e^{-1} (-\sin x) \Rightarrow 1^{n}(0) =$ 1 - 0 = 1
	$f(3) - 7 \le 12$			Taylor's Series for $f(x)$ about $x = 0$ is
	$f(3) \leq 19$			$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \dots$
	Correct answer 19.	Sin	ce 1	1995 x ²
17	Ans: (b)			$= 1 + x + \frac{x}{2!} + \dots$
Sol.	Let $f(x)$ be defined in	n [0, 1]		
501.	By Lagrange's Mean	n Value Theorem.		20. Ans: (a)
	$\exists c \in (0,1) \text{ such that}$	at	;	Sol: Coefficient of $x^4 = \frac{f^{\text{IV}}(0)}{4!}$
	$f'(c) = \frac{f(1) - f(0)}{1 - 0}$			Given $f(x) = \log(secx)$
	$\Rightarrow \frac{1}{5-c^2} = \frac{f(1)-2}{1}$			\Rightarrow f'(x) = $\frac{1}{\sec x} \sec x \tan x = \tan x$
	$\operatorname{Min} \left\{ f'(\mathbf{x}) \right\} < f$	$(c) < Max \{f'(x)\}$		\Rightarrow f "(x) = sec ² x
	$\therefore 0 < x < 1$	0 < x < 1		\Rightarrow f'''(x) = 2 sec ² x tan x
		Regular Doubt	clearing	ing Sessions Free Online Test Series Programme
	ACE	Affordable Fee Ava	ilable 3	e 3M 6M 12M 18M and 24 Months Subscription Packages

21.

Sol:

22.

Sol:

$$\Rightarrow f^{1V}(x) = 2[\sec^{2}x \sec^{2}x + \tan x \cdot 2\sec x + \tan x]$$

$$\Rightarrow f^{1V}(0) = 2$$

$$\therefore \text{ Coefficient of } x^{4} = \frac{f^{1V}(0)}{4!} = \frac{2}{24} = \frac{1}{12}$$

Ans: (a)
Let $f(x) = 3 \sin x + 2 \cos x$

$$= 3\left(x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} \dots\right) + 2\left(1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} \dots\right)$$

$$\therefore f(x) = 2 + 3x - x^{2} - \frac{x^{3}}{2} + \dots$$

Ans: (c)

$$e^{x + x^{2}} = 1 + \frac{(x + x^{2})}{1!} + \frac{(x + x^{2})^{2}}{2!} + \frac{(x + x^{2})^{3}}{3!} + \dots$$

$$\left(\because e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots\right)$$

$$\therefore e^{x+x} = 1 + x +$$

23. Ans: (a)

Sol: Given

$$u = \sin^{-1}\left(\frac{x^2 + y^2}{x + y}\right) \Longrightarrow \operatorname{Sinu} = \frac{x^2 + y^2}{x + y}$$

 $\frac{3x^2}{2}$

 \Rightarrow f(u) = sinu is homogeneous with deg,

By Euler's theorem

$$x.u_{x} + y.u_{y} = n\frac{f(u)}{f'(u)} = 1\frac{\sin u}{\cos u} = \tan u$$

24. Ans: (a)

Sol: Given
$$u = x^{-2} \tan\left(\frac{y}{x}\right) + 3y^3 \sin^{-1}\left(\frac{x}{y}\right)$$

$$= f(x, y) + 3 g(x, y)$$

Where f(x, y) is homogeneous with deg m = -2

and
$$g(x, y)$$
 is homogeneous with deg $n = 3$
 $\Rightarrow x^2$. $u_{xx} + 2xy u_{xy} + y^2 u_{yy}$
 $= m(m-1) f(x,y) + n(n-1) g(x,y)$
 $= -2(-2-1) f(x,y) + 3[3(3-1)g(x,y)]$
 $= 6 [f(x,y) + 3 g(x,y)]$
 $= 6u$

25. Ans: (a) Sol: $\frac{du}{dt} = \frac{\partial u}{\partial x} \frac{dx}{dt} + \frac{\partial u}{\partial y} \frac{dy}{dt} + \frac{\partial u}{\partial z} \frac{dz}{dt}$ $= (3x^{2} + z^{2} + yz) e^{t} + (3y^{2} + xz) (-Sint) + (2xz + xy)3t^{2}$ At t = 0, $\frac{du}{dt} = (3(1) + 0 + 0)(1) + [3(1) + 0](0) + [0 + 1](0)$ = 326. Ans: (a) Sol: $y^{2} - x^{2} = e^{2u} (\sec^{2} v - \tan^{2} v) = e^{2u} = f(u)$ $\frac{x}{v} = \frac{e^{u} \tan v}{e^{u} \sec v} = \sin v = g(v)$

f(u) and g(v) are homogenous functions of degree 2 and 0 respectively

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial v} = 2f \Longrightarrow 2e^{2u}x\frac{\partial u}{\partial x} + 2e^{2u}y\frac{\partial u}{\partial y} = 2e^{2u}$$

Since

	ACE Engineering Publications
--	---------------------------------

$$\Rightarrow x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 1$$

Similarly

$$x \frac{\partial g}{\partial x} + y \frac{\partial g}{\partial r} = 0.g$$

$$\cos v x \frac{\partial v}{\partial x} + \cos v y \frac{\partial v}{\partial y} = 0$$

$$\Rightarrow x \frac{\partial v}{\partial x} + y \frac{\partial v}{\partial y} = 0$$

$$\therefore \left(x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} \right) \left(x \frac{\partial v}{\partial x} + y \frac{\partial v}{\partial y} \right) = 0$$

27. Ans: (a)

Sol: $u = x \log(xy)$

$$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{\partial u}{\partial x}\frac{\mathrm{d}x}{\mathrm{d}x} + \frac{\partial u}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}x}$$
$$= \left[x.\frac{1}{xy}(y) + \log(xy)\right](1) + \left[x.\frac{1}{xy}(x).\frac{\mathrm{d}y}{\mathrm{d}x}\right]$$

Given

$$\underbrace{x^3 + y^3 + 3xy}_{f(x,y)} = 1 \Longrightarrow \frac{dy}{dx} = -\frac{f_x}{f_y} = -\left[\frac{3x^2 + 3y}{3y^2 + 3x}\right]$$
$$\therefore \frac{du}{dx} = \left[1 + \log xy\right] - \frac{x}{y} \left[\frac{x^2 + y}{y^2 + x}\right]$$

28. Ans: (b)

Sol:
$$\frac{\partial(\mathbf{u}, \mathbf{v})}{\partial(\mathbf{x}, \mathbf{y})} = \begin{vmatrix} \frac{\partial \mathbf{u}}{\partial \mathbf{x}} & \frac{\partial \mathbf{u}}{\partial \mathbf{y}} \\ \frac{\partial \mathbf{v}}{\partial \mathbf{x}} & \frac{\partial \mathbf{v}}{\partial \mathbf{y}} \end{vmatrix} = \begin{vmatrix} 1 - \frac{\mathbf{y}^2}{\mathbf{x}} & \frac{2\mathbf{y}}{\mathbf{x}} \\ -\frac{\mathbf{y}^2}{\mathbf{x}} & \frac{2\mathbf{y}}{\mathbf{x}} \end{vmatrix}$$
$$= \frac{2\mathbf{y}}{\mathbf{x}} \left[1 - \frac{\mathbf{y}^2}{\mathbf{x}^2} - \left(-\frac{\mathbf{y}^2}{\mathbf{x}^2} \right) \right]$$
$$= \frac{2\mathbf{y}}{\mathbf{x}}$$

29. Ans: (c)

Sol:
$$\frac{\partial(u, v, w)}{\partial(x, y, z)} = \begin{vmatrix} u_x & u_y & u_z \\ v_x & v_y & v_z \\ w_x & w_y & w_z \end{vmatrix} = \begin{vmatrix} 3 & 2 & -1 \\ 1 & -1 & 1 \\ 1 & 2 & -1 \end{vmatrix}$$

= $3(1-2) - 2(-1-1) - 1(2+1)$
= -2
 $\therefore \frac{\partial(x, y, z)}{\partial(u, v, w)} = \frac{1}{\frac{\partial(u, v, w)}{\partial(x, y, z)}} = \frac{-1}{2}$

30. Ans: (a, b, c) Sol: $f(x) = x^3 - 3x^2 - 24x + 100$ $f'(x) = 3x^2 - 6x - 24$

Equating f ' (x) to zero for obtaining stationary points

$$3x^{2} - 6x - 24 = 0 \implies x^{2} - 2x - 8 = 0$$

 $x = -2, 4$

$$f(-3) = (-3)^3 - 3(-3)^2 - 24(-3) + 100 = 118$$

$$f(-2) = (-2)^3 - 2(-2)^2 - 24(-2) + 100 = 132$$

$$f(3) = (3)^3 - 3(3)^2 - 24(3) + 100 = 28$$

minimum at x = 3maximum at x = -2

Let us check for point of inflection

Clearly f''(x) is changing it's sign about $x = 1 \Rightarrow x = 1$ is point of inflection

a, b, c, are correct

Calculus

ACE Engineering Publicat	C
-----------------------------	---

31. Ans: (a, d)
Sol:
$$f'(x) = 6\left(\frac{4}{3}\right)x^{\frac{1}{3}} - 3\left(\frac{1}{3}\right)x^{-2/3}$$

 $= \frac{8x-1}{x^{2/3}}$
Critical points are $x = 0$, $\frac{1}{8}$
 $f(-1) = 6(-1)^{4/3} - 3(-1)^{1/3} = 9$
 $f(0) = 0$
 $f\left(\frac{1}{8}\right) = 6\left(\frac{1}{8}\right)^{4/3} - 3\left(\frac{1}{8}\right)^{1/3} = \frac{-9}{8}$
 $f(1) = 6 - 3 = 3$
Clearly from the above values absolute
minimum is - 9/8, absolute maximum is 9
32. Ans: (c)
Sol: Given $f(x) = x^3 - 9x^2 + 24x + 5$ in $[1, 6]$
 $\Rightarrow f'(x) = 3x^2 - 18x + 24$, $f''(x) = 6x - 18$
Consider $f'(x) = 0$
 $\Rightarrow 3x^2 - 18x + 24 = 0$
 $\Rightarrow x = 2, 4$ are the stationary points
At $x = 2$, $f''(2) = -6 < 0$ and
at $x = 4$, $f''(4) = 6 > 0$
 $\Rightarrow f(x)$ has a maximum at $x = 2$ and a
minimum at $x = 4$.
 \therefore The maximum value of $f(x)$ in $[1, 6] =$
max { $f(1), f(6), f(2)$ } = max { $21, 41, 25$ } = 41

Sol: Given
$$f(x) = (k^2 - 4)x^2 + 6x^3 + 8x^4$$

 $\Rightarrow f'(x) = 32x^3 + 18x^2 + 2(k^2 - 4)x$
and $f''(x) = 96x^2 + 36x + 2(k^2 - 4)$
 $f(x)$ has local maxima at $x = 0$
 $\Rightarrow f''(0) < 0$
 $\Rightarrow 2(k^2 - 4) < 0$
 $\Rightarrow k^2 - 4 < 0$ (or) $(k - 2)(k + 2) < 0$
 $\therefore -2 < k < 2$

34. Ans: 1

Sol: Let 2x & 2y be the length & breadth of the rectangle.

Let $A = 2x \times 2y = 4xy$ be the area of the rectangle.

199 Then
$$A^2 = 4x^2y^2 = x^2(1-x^2) = x^2 - x^4$$

Let $f(x) = x^2 - x^4$
Then $f'(x) = 2x - 4x^3$ and $f''(x) = 2 - 12x^2$

For maximum, we have

$$f'(x) = 0$$

$$\Rightarrow 2x(1-2x^{2}) = 0$$

$$\Rightarrow x = 0, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}$$

Here $f''(0) > 0, \quad f''\left(\frac{1}{\sqrt{2}}\right) < 0$

Deep Learn - India's Best Online Coaching Platform for GATE, ESE, and PSUs Enjoy a smooth online learning experience in various languages at your convenience

ACE Engineering Publications

- \therefore Area A = 4xy = 4x $\times \frac{\sqrt{1-x^2}}{2}$ $=2x\sqrt{1-x^{2}}$ $=2 \times \frac{1}{\sqrt{2}} \times \sqrt{1 - \frac{1}{2}} = 1$ 35. Ans: 49 Sol: Let $A = \begin{pmatrix} x & y \\ y & 14 - x \end{pmatrix}$ $|A| = x(14 - x) - y^2$ For maximum value of |A|, y = 0Now, $A = \begin{pmatrix} x & 0 \\ 0 & 14 - x \end{pmatrix}$ \Rightarrow |A| = x(14 - x) = 14x - x² Let $f(x) = 14x - x^2$ \Rightarrow f'(x) = 14 - 2x and f"(x) = -2 Consider, $f'(x) = 0 \implies x = 7$ At x = 7, f''(x) = -2 < 0 \therefore At x = 7, the function f(x) has a maximum and is equal to 49. 36. Ans: (a) Since 199 **Sol:** Given $f(x, y) = 2(x^2 - y^2) - x^4 + y^4$ Consider $f_x = 4x - 4x^3 = 0$ $\Rightarrow \mathbf{x} = 0, 1, -1$ Consider $f_v = -4y + 4y^3 = 0$ 38. \Rightarrow v = 0, 1, -1 Sol: Now, $r = f_{xy} = 4 - 12x^2$, $s = f_{xy} = 0$ and $t = f_{vv} = -4 + 12y^2$ At (0,1), we have r > 0 and $(rt - s^2) > 0$ \therefore f(x, y) has minimum at (0,1) At (-1, 0), we have r < 0 and $(rt - s^2) > 0$ \therefore f(x, y) has a maximum at (-1, 0)
- 37. Ans: (b and c) **Sol:** $f(x, y) = x^2 - y^2$ $\frac{\partial f}{\partial x} = 2x, \ \frac{\partial f}{\partial y} = -2y, \ \frac{\partial^2 f}{\partial x^2} = 2$ $\frac{\partial^2 f}{\partial v^2} = -2, \ \frac{\partial^2 f}{\partial x \partial v} = 0$ Consider $\frac{\partial f}{\partial x} = 0$, $2x = 0 \Rightarrow x = 0$ $\frac{\partial \mathbf{f}}{\partial \mathbf{y}} = 0, \quad 2\mathbf{y} = 0 \Longrightarrow \mathbf{y} = 0$ \therefore The stationary point is (0, 0)At (0,0) $r = \frac{\partial^2 f}{\partial x^2} = 2$ $s = \frac{\partial^2 f}{\partial x \partial y} = 0$ $t = \frac{\partial^2 f}{\partial v^2} = -2$ $r t - s^2 = 2 (-2) - 0 = -4 < 0$ 5 f (x,y) has neither maximum nor minimum at (0,0)Both 'b' and 'c' are correct. Ans: (a and c)

Engineering Publications	18		Engineering Mathematics
The given function can have extre	me values	39.	Ans: (c)
either at critical points or at bound	ary points	~ •	
$\frac{\partial \mathbf{f}}{\partial \mathbf{f}} = 2 - 2\mathbf{x}$		Sol:	$\int_{-4} \mathbf{x} d\mathbf{x} + \int_{-4} -\mathbf{x} d\mathbf{x} + \int_{0} \mathbf{x} d\mathbf{x}$
$\partial \mathbf{x}$			$\begin{bmatrix} \mathbf{x}^2 \end{bmatrix}^0 \begin{bmatrix} \mathbf{x}^2 \end{bmatrix}^7$
$\frac{\partial \mathbf{f}}{\partial \mathbf{y}} = 2 - 2\mathbf{y}$			$= \left\lfloor -\frac{x}{2} \right\rfloor_{-4} + \left\lfloor \frac{x}{2} \right\rfloor_{0}$
Equating $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ to zero for	obtaining		$= 0 - \left\lfloor -\frac{16}{2} \right\rfloor + \left\lfloor \frac{49}{2} - 0 \right\rfloor$
critical point.			= 8 + 24.5 = 32.5
$2 - 2x = 0 \Longrightarrow x = 1$			
$2 - 2y = 0 \Longrightarrow y = 1$	INEERI	40. C	Ans: (d)
Critical point (1, 1)	G	Sol:	$\int_{1.5}^{1.5} \mathbf{x}[\mathbf{x}^2] \mathrm{d}\mathbf{x}$
f(1,1) = 2+2(1)+2(1)-1-1=4			0
Let us check along the boundaries			$= \int x \left[x^2 dx + \int x \left[x^2$
Along $x = 0$, $f(0,y) = 2+2y - y^2$, $0 \le 1$	$\leq y \leq 9$		$\begin{array}{c} \mathbf{j} \ \mathbf{L} \ \mathbf{j} \ \mathbf{k} \ $
$f'(0, y) = 2 - 2y \Longrightarrow 2 - 2y = 0 \Longrightarrow y$	= 1		$=0+\int_{1}^{\sqrt{2}} x dx + \int_{1}^{1.5} 2x dx = \frac{3}{2}$
f(0,0) = 2			$\int_{0}^{1} \int_{\sqrt{2}}^{1} \int_{\sqrt{2}}^{2} \int_{2$
f(0,1) = 2			
$f(0,9) = 2 + 2(9) - 9^2 = -61$		41.	Ans: (d)
Along y = 0, f (x,0) = $2+2x-x^2$, 0 ≤	$\leq x \leq 9$	Sol	$\int_{-\infty}^{\pi} x \sin^8 x \cos^6 x dx$
f(0,0) = 2, f(0,1) = 2, f(0,9) = -61			$\int_{0}^{1} \frac{f(x)}{f(x)} dx$
Along $y = 9 - x$, $f(x,9-x)$			$\begin{bmatrix} a \\ f \\ g \end{pmatrix} = \begin{bmatrix} a \\ a \\ f \\ g \end{pmatrix} = \begin{bmatrix} a \\ f \\ g \\ g$
$= -61 + 18x - 2x^2, \ 0 \le x$	≤9		$\begin{bmatrix} \because \int_{0}^{\infty} \mathbf{x} f(\mathbf{x}) d\mathbf{x} = \frac{1}{2} \int_{0}^{\infty} f(\mathbf{x}) d\mathbf{x} \text{ if } f(\mathbf{a} - \mathbf{x}) = f(\mathbf{x}) \end{bmatrix}$
$f'(x,9-x) = 18 - 4x = 0 \ x = \frac{9}{2}$			$=\frac{\pi}{2}\int \sin^8 x \cos^6 x dx$
$f\left(\frac{9}{2}, \frac{9}{2}\right) = 2 + 2\left(\frac{9}{2}\right) + 2\left(\frac{9}{2}\right) - \left(\frac{9}{2}\right)^2$	$\left(-\left(\frac{9}{2}\right)^2\right) =$		$= \frac{\pi}{2} \times 2 \times \int \sin^8 x \cos^6 x dx$
-20.5			$2 \qquad \overset{\mathbf{J}}{\overset{0}{$
Absolute maximum $= 4$			$=\pi \left[\frac{(7.5.3.1)(5.3.1)}{\pi}\right] \frac{\pi}{5\pi^2}$
Absolute minimum = -61			[14.12.10.8.6.4.2] 2 4096
Correct answer a and c.			
	Learn - India's Be	est Onlin	ne Coaching Platform for GATE, ESE, and PSUs
ACE EANN Enjoy a s	mooth online learn	ning exp	perience in various languages at your convenience

	ACE Engineering Publications	19		Calculus
42.	Ans: (a)		45.	Ans: (a)
Sol:	Given that, $x \sin(\pi x) = \int_{0}^{x^{2}} f(t) dt$;	Sol:	Required area $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 \end{bmatrix}$
	Differentiating both sides, we get $x \cos(\pi x) \pi + \sin(\pi x) = f(x) 2x$			$=\int_{\frac{1}{2}} \frac{dx}{x} - \int_{\frac{1}{2}} \frac{x^2}{dx}$
	Putting $x = 4$ $4\pi \cos(4\pi) = f(4) 8$			$= \ln x \Big _{\frac{1}{2}}^{1} - \frac{x^{3}}{3} \Big _{\frac{1}{2}}^{1}$
	$\therefore f(4) = \frac{\pi}{2}$			$= \ell n 2 - \left(\frac{1}{3} - \frac{1}{3} \cdot \frac{1}{8}\right)$
43.	Ans: (b)	ER <i>II</i>	۷G	$=\ell n2 - \frac{7}{24}$
Sol:	$\lim_{x \to 0} \left[\frac{\int_{0}^{x^{2}} \sin \sqrt{t} dt}{x^{3}} \right] \left(\frac{0}{0} \text{ form} \right)$		46. Sol:	Ans: (d) $\int_{0}^{0} e^{x+e^{x}} dx = \int_{0}^{0} e^{x} \cdot e^{e^{x}} dx \text{Put } e^{x} = t$
	Using L' Hospital Rule,			$\Rightarrow e^x dx = 0$
	$= \lim_{x \to 0} \frac{(\sin x)2x - (\sin 0)(0)}{3x^2} \left(\frac{0}{0} \text{ form}\right)$			$= \int_{0}^{1} e^{t} dt = \left[e^{t} \right]_{0}^{1} = e - 1$
	$= \lim_{x \to 0} \frac{2\cos x}{3} = \frac{2}{3}$	ce 1	47.9	Ans: (a)
44.	Ans: 0.785 range 0.78 to 0.79 $\frac{\pi}{4}$ sin 2n		Sol:	$\int_{0}^{\infty} \frac{1}{(x^{2}+4)(x^{2}+9)} dx = k\pi$
Sol:	$\int_{0} \frac{\sin 2x}{\cos^4 x + \sin^4 x} dx$			$\Rightarrow \int_{0}^{\infty} \frac{1}{5} \left[\frac{1}{x^2 + 4} - \frac{1}{x^2 + 9} \right] dx = k\pi$
	$= 2 \int_{0}^{\frac{\pi}{4}} \frac{\tan x}{\cos^{2} x \left(1 + \tan^{4} x\right)} dx$			$\Rightarrow \frac{1}{5} \left[\frac{1}{2} \tan^{-1} \left(\frac{x}{2} \right) - \frac{1}{3} \tan^{-1} \left(\frac{x}{3} \right) \right]_{0}^{\infty} = k\pi$
	$= \int_{0}^{1} \frac{2t}{1+t^{4}} dt \text{(by putting tan } x = t\text{)}$			$\Rightarrow \frac{1}{5} \left[\frac{1}{2} \cdot \frac{\pi}{2} - \frac{1}{3} \cdot \frac{\pi}{2} \right] = k\pi$
	$=rac{\pi}{4}=0.785$			$\Rightarrow \frac{1}{10} \left[\frac{1}{6} \right] = k \Rightarrow k = \frac{1}{60}$
	Regular Doubt Acce Affordable Fee Ava	clearing ailable 3	g Sessi M 6M	ions Free Online Test Series Programme 1 12M 18M and 24 Months Subscription Packages

 $\label{eq:affordable} Affordable\,Fee~|~~Available~3M~|6M~|12M~|18M~and~24~Months~Subscription~Packages$

ACE

	ACE Engineering Publications	20	Engineering Mathematics
48.	Ans: (c)		If $x = 0$ then $t = 0$ and if $x = \infty$ then $t = \infty$
Sol:	$\int_{0}^{1} x \log x dx = \log x \cdot \frac{x^{2}}{2} - \int \frac{1}{x} \cdot \frac{x^{2}}{2} dx$		$\int_{x=0}^{\infty} e^{-x^2} dx = \int_{0}^{\infty} e^{-t} \frac{1}{2\sqrt{t}} dt$
	$= \left[\frac{x^{2}}{2}\log x - \frac{x^{2}}{4}\right]_{0}^{1} = -\frac{1}{4}$		$=\frac{1}{2}\int_{0}^{\infty} t^{-\frac{1}{2}} e^{-t} dt$
40			$=\frac{1}{2}\Gamma\left(\frac{1}{2}\right)$
49.	Ans: (a)		[using gamma function]
Sol:	$f(a) = \int_{0}^{\infty} e^{-x} \frac{\sin ax}{x} dx$		$=\frac{\sqrt{\pi}}{2}$ (2)
	Differentiation on both w.r.t 'a'	DI	Using (2), (1) can be expressed as
	$f'(a) = \int_{0}^{\infty} e^{-x} \frac{(\cos ax)}{x} (x) dx$		$\left(\int_{y=0}^{\alpha} e^{-y^2} dy\right) \left(\int_{x=0}^{\alpha} e^{-x^2} dx\right) = \frac{\sqrt{\pi}}{2} \cdot \frac{\sqrt{\pi}}{2} = \frac{\pi}{4}$
	$f'(a) = \int_{0}^{\infty} e^{-x} \cos ax dx$		51. Ans: (c) $1 x^2$
	$\therefore \int e^{ax} \cos bx dx = \frac{e^{ax}}{a^2 + b^2} (a \cos bx + b \sin bx)$		Sol: $I_1 = \int_{x=0}^{x=0} \int_{y=2}^{y=2} xy^2 dy dx$
	$f'(a) = \frac{e^{-x}}{(-1)^2 + a^2} (-\cos ax + a\sin ax) \Big _0^{\infty}$		$\mathbf{x} = 0$
	$=\left(0-\frac{1}{1+a^2}(-1)\right)$	ce 1	$y = x^2$ $x = 1$
	Integrate on both sides		
	$f(a) = tan^{-1}(a) + C$		$0 \qquad y=0$
	option (c) is a correct.		Changing the order of integration
50.	Ans: (d)		We get
Sol:	Let I = $\int_{y=0}^{\infty} \int_{x=0}^{\infty} e^{-x^2} e^{-y^2} dx dy$ (1)		$\int_{y=0}^{1} \int_{x=\sqrt{y}}^{1} xy^2 dy dx$
	Put $x^2 = t$		\Rightarrow I ₁ = I ₂
	$\Rightarrow x = \sqrt{t}$ $\Rightarrow dx = \frac{1}{2\sqrt{t}} dt$		$I_{1} = \int_{x=0}^{1} \frac{xy^{3}}{3} \bigg _{0}^{x^{2}} dx = \int_{0}^{1} \frac{x^{7}}{3} dx = \frac{x^{8}}{24} \bigg _{0}^{1} = \frac{1}{24}$
	2 γ t		Only option c is correct
	Deep Learn - Ind	ia's Bes	Best Online Coaching Platform for GATE, ESE, and PSUs
	ACE Enjoy a smooth onlin	e learn	rning experience in various languages at your convenience

	ACE Engineering Publications		22	Engineering Mathematics		
	$= \int_{x=0}^{\pi} \frac{\sin x}{x} \cdot (y)_{0}^{x} dx$ $= \int_{x=0}^{\pi} \frac{\sin x}{x} \cdot x dx = -6$ $= -(-1-1)$ $= 2$	$\cos x \mid_0^{\pi}$		$= \int_{0}^{3} \left[4x - \frac{2}{3}x^{2} - \frac{2}{9}x^{2} \right] dx$ $= \left[2x^{2} - \frac{2x^{3}}{9} - \frac{2x^{3}}{27} \right]_{0}^{3}$ $= [18 - 6 - 2]$ $= 10$		
56.	Ans: (1)	1 v				
Sol:	$\int_{y=0}^{1} \int_{x=0}^{y=0} \int_{z=0}^{1+x+y} dz dx dy =$ $= \int_{y=0}^{1} \left(x + \frac{x^2}{2} + xy \right)_{0}^{y}$ $= \int_{0}^{1} \left(y + \frac{y^2}{2} + y^2 \right) dy$ $= \frac{y^2}{2} + \frac{3}{2} \frac{y^3}{3} \Big _{0}^{1} = 1$	$\int_{y=0}^{1} \int_{x=0}^{y} (1+x+y) dx dy$ dy	R //	58. Ans: (d) Sol: $y = \log \sec x$, $\frac{dy}{dx} = \tan x$ Length of curve $= \int_{0}^{\pi/4} \sqrt{1 + \tan^2 x} dx$ $= \int_{0}^{\pi/4} \sec x dx = \log (\sec x + \tan x) \Big _{0}^{\pi/4}$ $= \log (\sqrt{2} + 1)$		
57.	Ans: 10			59. Ans: 25.12		
Sol:	$y = \frac{2x}{3}$ (0,0) Volume = $\iint z dx dy$ $= \int_{x=0}^{3} \int_{y=0}^{\frac{2}{3}x} (6 - x - y) dx dx$ $= \int_{0}^{3} \left[6y - xy - \frac{y^{2}}{2} \right]_{0}^{\frac{2}{3}}$	y $\frac{x}{3}$ dx		Sol: Volume = $\int_0^4 \pi y^2 dx$ = $\int_0^4 \pi x dx$ = 8π cubic units 60. Ans: 1.88 Sol: Volume = $\int_0^1 \pi x^2 dy$ = $\pi \int_0^1 y^{\frac{2}{3}} dy \approx 1.88$		
	X DEEP	Deep Learn - Indi	a's Bes	est Online Coaching Platform for GATE, ESE, and PSUs		
	ACE	Enjoy a smooth online learning experience in various languages at your convenience				

	Engineering Publications		23		Calculus
61.	Ans: (a)			63.	Ans: (c)
Sol:	The unit normal	vector to the sphere	e	Sol:	$\phi(xy) = e^{xy} \sin(x+y)$
	$x^2 + y^2 + z^2 = r^2 \text{at}$	a point (x_1, y_1, z_1) i	s		$\nabla \phi = i \frac{\partial \phi}{\partial x} + j \frac{\partial \phi}{\partial y} + k \frac{\partial \phi}{dz}$
	given by $\frac{x_1 + y_1 + y_1}{r}$	$\underline{Z_1K}$			$\nabla \phi = i[e^{xy}(y) \sin(1+y) + e^{xy}(b)(x+y) +$
	$=\frac{4i+4j+4k}{\sqrt{48}}=\frac{i+4j+4k}{\sqrt{48}}=i+4j+4$	$\frac{j+k}{\sqrt{3}}$			$j[e^{xy}(x) \sin (x + y) + e^{xy}(x) (x+y)] + k[0]]$ $(\nabla \theta)_{\left(0, \frac{\pi}{2}\right)}$
62.	Ans: (1) $(2 - 2 - 2)$				$=i\left[e^{0}\frac{\pi}{2}\sin\frac{\pi}{2}+e^{0}\cos\frac{\pi}{2}+j\left[e^{0}0\sin\frac{\pi}{2}+e^{0}\cos\pi\right]\right]$
Sol:	$\nabla \mathbf{f} = \left(\mathbf{i}\frac{\partial}{\partial \mathbf{x}} + \mathbf{j}\frac{\partial}{\partial \mathbf{y}}\right)\mathbf{x}$	$e^{y} = e^{y}i + xe^{y}j$	ERI	NG	$\nabla \phi = i \left[\frac{\pi}{2} \right] + j [0] + k [0]$
	$\nabla f\Big _{(2,0)} = i + 2j$	L. H.			Required direction = $\nabla \phi - \frac{\pi}{2}i$
	Vector along the d	irection of the straigh	ıt		$\psi = 2^{1}$
	line segment from ((2,0) to $\left(\frac{1}{2},2\right)$ is given	n	64.	Ans: (0)
	by $\overline{a} = \left(\frac{1}{2} - 2\right)i + (2)i +$	-0)i		Sol:	Given $\nabla \times \overline{F} = 0$
	$\overline{a} = -\frac{3}{2}i + 2j$			<	$\nabla \times \overline{\mathbf{F}} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial \mathbf{x}} & \frac{\partial}{\partial \mathbf{y}} & \frac{\partial}{\partial \mathbf{z}} \\ 4\mathbf{y} - \mathbf{c}_{1}\mathbf{z} & 4\mathbf{x} + 2\mathbf{z} & 2\mathbf{y} + \mathbf{z} \end{vmatrix}$
	Unit vector along \overline{a}	is $\frac{-\frac{3}{2}i+2j}{\sqrt{2}}$ Since	ce 1	199 	$= i(2-2) - j(-c_1 + 0) + k(4-4) = 0i + 0j + 0k$ $\Rightarrow c_1 = 0$
		$\sqrt{\frac{9}{4}+4}$			HC.
	The value of the dire	ectional derivative is		65. 1 Sol:	Ans: (b) $\nabla \bar{f} = 2x + 2y + 2z \neq 0$
	(i + 2 i)	3_{i+2i}		501.	Not divergence free
	$\nabla \mathbf{f} \bullet \frac{\mathbf{\overline{a}}}{\mathbf{ } \mathbf{ }} = \frac{(\mathbf{I} + 2\mathbf{J})}{\mathbf{I}}$	$\frac{1+2J}{2}$			
	a 5/2	2			$\nabla \times \overline{f} = \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \end{bmatrix}$
	$-\frac{-5}{2}+4-5/2$				$\begin{vmatrix} 0x & 0y & 0z \\ x^2 + yz & y^2 + xz & z^2 + xy \end{vmatrix}$
	$-\frac{5/2}{5/2} - \frac{5/2}{5/2} - 1$				=i(x-x)-j(y-y)+k(z-z)
	Correct answer = 1				$= 0\mathbf{i} + 0\mathbf{j} + 0\mathbf{k}$
					$\nabla \times \overline{f} = \overline{0} \Longrightarrow Curl free$
		Regular Doubt	clearin	g Sessi	ons Free Online Test Series Programme
	ACE	Affordable Fee Ava	ilable	3M 6M	12M 18M and 24 Months Subscription Packages

	ACE Engineering Publications	24	Engineering Mathematics
66.	Ans: (a)		$x = \cos \theta, y = r \sin \theta$
Sol:	$\nabla [\mathbf{f}(\mathbf{r})] = \mathbf{f}'(\mathbf{r}) \frac{\vec{\mathbf{r}}}{\mathbf{r}}$		$dx = -\sin\theta dy = \cos\theta$
	$\nabla(\sin r) = (\cos r)\frac{\vec{r}}{r}$		$\int_{c} F(\mathbf{r}) d\mathbf{r} = \int_{c} (-\mathbf{x} \mathbf{i} + \mathbf{y}\mathbf{i}) (d\mathbf{x} \mathbf{i} + d\mathbf{y} \mathbf{j})$ $= \int_{c}^{\pi/4} \cos \theta \sin \theta d\theta + \sin \theta \cos \theta d\theta$
67.	Ans: (c)		$\int_{\Theta=0}^{\Theta=0} \Theta = 0$
Sol:	div $\left[e^{r}.\vec{r}\right]$		$=\int_{0}^{\pi/4}\sin 2\theta d\theta = -\frac{\cos 2\theta}{1} ^{\pi/4} = \frac{1}{1}$
	$\nabla . (\phi \overline{A}) = (\nabla \phi) . \overline{A} + \phi (\nabla . \overline{A}) \qquad \text{(Identity)}$		$\int_{0}^{1} \frac{1}{2} \int_{0}^{1} $
	$\nabla (\mathbf{e}^{\mathrm{r}} \ \mathbf{r}) = (\nabla \mathbf{e}^{\mathrm{r}}) \ \mathbf{r} + \mathbf{e}^{\mathrm{r}} (\nabla \mathbf{r})$		
	\vec{r}	ERI	70. Ans: 139
	$= e^{r} \frac{1}{r} \cdot \vec{r} + e^{r}(3)$		Sol: $\int_{C} (\text{grad } f) \cdot dr = \int_{C} df = (f)^{(2,6,-1)}_{(-3,-3,2)}$
	$= e^{r}(3) + e^{r} \frac{r^{2}}{r}$		$= \left[2x^{3} + 3y^{2} + 4z\right]_{(-3, -3, 2)}^{(2, 6, -1)}$
	$\nabla \left(e^2 \cdot \vec{r} \right) = e^r \left(3 + r \right)$		= 139
68.	Ans: (d)	,	71. Ans: 202
Sol:	$\operatorname{curl}(\mathbf{r}^4 \mathbf{r}) = ?$;	Sol: Given $\overline{F} = (2xy + z^3)\overline{i} + x^2\overline{j} + 3xz^2\overline{k}$
	curl $[\phi \overline{F}]$ = ϕ curl \overline{F} + (grad ϕ) × \overline{F} (Identity) = curl $(r^4 \vec{r})$ = r^4 (curl \overline{r}) + grad (r^4) × \overline{r} = $r^4 \cdot 0 + 4r^3 \frac{\vec{r}}{r} \times \vec{r}$	ce 1	Curl $\overline{F} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2xy + z^3 & x^2 & 3xz^2 \end{vmatrix}$ = $\overline{i}[0-0] - \overline{j}[3z^2 - 3z^2] + \overline{k}[2x - 2x] = \overline{0}$ $\Rightarrow \overline{F}$ is irrotational
	$=\overline{0}+\overline{0}=\overline{0}$		\Rightarrow Work done by F is independent of path of curve
69	Ans: (1/2)		$\Longrightarrow \overline{\mathbf{F}} = \nabla \phi$
Sol:	Along C		where $\phi(x, y, z)$ is scalar potential
	$x = r \cos \theta, y = r \sin \theta$		\Rightarrow
	Where $r = 1$, $\theta = 0$ to $\frac{\pi}{4}$		$(2xy + z^3)\overline{i} + x^2\overline{j} + 3xz^2\overline{k} = \frac{\partial\phi}{\partial x}\overline{i} + \frac{\partial\phi}{\partial y}\overline{j} + \frac{\partial\phi}{\partial z}\overline{k}$
	Deep Learn - Ind	ia's Bes	t Online Coaching Platform for GATE, ESE, and PSUs
	ACE LEARN Enjoy a smooth onlin	ie learni	ing experience in various languages at your convenience

Engineering Publications	25		Calculus
$\Rightarrow d\phi = (2xy + z^{3}) dx + x^{2} dy + 3xz^{2} dz$ $\Rightarrow \int d\phi = \int (2xy + z^{3}) dx + x^{2} dy + 3xz^{2} dz$ $\Rightarrow \int d\phi = \int d(x^{2}y + xz^{3})$ $\Rightarrow \phi(x, y, z) = x^{2}y + xz^{3}$ $\therefore \text{ Workdone} = \int_{C} \overline{F} \cdot d\overline{r} = \phi(3, 1, 4) - \phi(1, -2, 1)$ $= [9(1) + 3(64)] - [1(-2) + 1(1)]$ $= 202$ 72. Ans: (d) Sol: 72. Ans: (d) Sol: 74. Ans: (d) Sol: 75. Ans: (d) Sol: 76. Ans: (d) Sol: 77. Ans: (d) Sol: 77. Ans: (d) Sol: 78. Ans: (d) Sol: 79. Ans: (d) Sol: 79. Ans: (d) Sol: 79. Ans: (d) Sol: 70. Ans: (d) Sol: 70. Ans: (d) Sol: 71. Ans: (d) Sol: 72. Ans: (d) Sol: 73. Ans: (d) Sol: 74. Ans: (d) Sol: 75. Ans: (d) Sol: 75. Ans: (d) Sol: 76. Ans: (d) Sol: 77. Ans: (d) Sol: 77. Ans: (d) Sol: 78. Ans: (d) Sol: 79. Ans: (d) Sol: 70.	25	73. 2 Sol: 1	Ans: (c) By Green's Theorem, we have $\int_{c} M dx + N dy = \iint_{R} \left[\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right] dx dy$ Here, $M = 2x - y$ and $N = x + 3 y$ $\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} = 2$ $\int_{(-2, 0)} \int_{(0, -1)} \int_{(-2, 0)} \int_{(0, -1)} \int_{(-2, 0)} \int_{(0, -1)} \int_{(-2, 0)} \int_{(-2, 0$
By Green's Theorem, $\int_{C} M dx + N dy = \iint_{R} \left[\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right] dx dy$ where $M = x + y$, $N = x^2$ and $\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} = 2x - 1$	ce 1	74. /	Ans: 0 Given $\overline{A} = \nabla \phi$ \Rightarrow Curl $\overline{A} = \overline{0}$ $\Rightarrow \overline{A}$ is Irrotational \therefore Line integral of Irrotational vector
The given integral = $\int_{x=0}^{2} \int_{y=0}^{2} (2x - 1) dy dx$ = $\int_{0}^{2} [2xy - y]_{0}^{2x} dx$ = $\int_{0}^{2} [4x^{2} - 2x] dx$ = $\frac{20}{3}$		i v	function along a closed curve is zero i.e. $\int_{C} \overline{A} \cdot d\overline{r} = 0$, where $C : \frac{x^2}{4} + \frac{y^2}{9} = 1$ is a closed curve.

	ACE Engineering Publications		26		Engineering Mathematics
75.	Ans: (d)			78.	Ans: (d)
Sol:	The given surface is $ \bigoplus_{s} \overline{F} \ \overline{N} \ ds = \iiint_{V} \nabla \bullet \overline{F} $	a closed surface. dv	ŝ	Sol:	Curl $\overline{f} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2xy - y & -yz^2 & -y^2z \end{vmatrix}$
	$\nabla \bullet \overline{F} = 3$ $\iiint_{V} 3 dv = 3 \iiint dv$				$= \overline{i}[-2yz + 2yz] - \overline{j}[0] + \overline{k}[0+1]$ $\Rightarrow \text{Curl } \overline{f} = \overline{k}$
	= 3 (Volume of Cylin = 3 (π (4 ²) (2))	nder)			Using Stokes' theorem, $\int_{C} \overline{f} \cdot d\overline{r} = \int_{S} \text{curl } \overline{f} \cdot \overline{N} \text{ ds} = \int_{S} \overline{k} \cdot \overline{N} \text{ ds}$
	$=96 \pi$	ENCINE		۷G	Let R be the protection of s on xy plane $\Rightarrow \int \overline{k}.\overline{N} ds = \iint \overline{k}.\overline{N} \frac{dxdy}{ \overline{x} \overline{x} } = \iint 1 dx dy$
76. Sol:	Ans: 264 Using Gauss–Diverg $\iint_{s} xy dy dz + yz dzdx + yz $	ence Theorem, $zx dx dy = \iiint_V div \overline{F} dv$			$\int_{S} \int_{R} \int_{R} N.k = \int_{R} \int_$
	$= \iiint_{V} (y + z + x) dy$ $= \int_{x=0}^{4} \int_{y=0}^{3} \int_{z=0}^{4} (x + 4y)$ $= \int_{x=0}^{4} \int_{y=0}^{3} [4x + 4y]$ $= \int_{x=0}^{4} [12x + 18 + 2y]$	(y + z) dz dy dx +8] dy dz 4] dx = 264 Since	: :e 1	79. Sol:	Ans: (d) The function $f(x) = x^2 \cos(x)$ is even function \therefore The fourier series of $f(x)$ contain only cosine terms.
77. Sol:	Ans: 0 By Stokes' theorem, $\int_{C} \bar{f} \cdot d\bar{r} = \iint_{S} (\nabla A)^{T} + \int_{S} (\nabla A)^{T$	we have $\vec{x} \times \vec{f}$). \vec{n} ds \vec{k} \vec{d}	5	80. Sol:	The coefficient of sin 2x = 0 Ans: -6.58 Let $f(x) = x - x^2$, $-\pi \le x \le \pi$ $a_o = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$ $= \frac{1}{\pi} \int_{-\pi}^{\pi} (x - x^2) dx$ $= \frac{1}{\pi} \left\{ \int_{-\pi}^{\pi} x dx - \int_{-\pi}^{\pi} x^2 dx \right\}$
	X DEEP	Deep Learn - Indi Enjoy a smooth onlin	a's Best e learni	t Onlin ng exj	ne Coaching Platform for GATE, ESE, and PSUs perience in various languages at your convenience

	Engineering Publications		27	Calculus		
	$=\frac{1}{\pi}\left[0-2\int_{0}^{\pi}x^{2}dx\right]$			$\frac{\pi}{2} = \frac{\pi}{4} + \frac{2}{\pi} \left(1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots \right)$		
	$=\frac{1}{\pi}\left[-2\left(\frac{x^{3}}{3}\right)_{0}^{\pi}\right]$			$1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$		
	$=\frac{1}{\pi}\left[-\frac{2\pi^3}{3}\right]$			$\Rightarrow \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$		
0.1	$=-\frac{2}{3}\pi^{2}=-6.58$			84. Ans: (c) 2^{2}		
81.	Ans: (a)			Sol: $f(x) = \pi x - x^2$		
Sol:	$\mathbf{b}_{n} = \frac{1}{\ell} \int_{-\ell}^{\ell} \mathbf{f}(\mathbf{x}) \sin \frac{\mathbf{n}\pi}{\ell}$	xdx	RII	$f(x) = \sum_{n=1}^{\infty} b_n \sin nx$		
	$b_5 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin \frac{5\pi}{\pi}$	x dx		$b_n = \frac{2}{\pi} \int_0^{\pi} \left(\pi x - x^2 \right) \sin nx dx$		
	$b_5 = \frac{2}{\pi} \int_0^{\pi} \sin 5x dx$	V		$b_1 = \frac{2}{\pi} \int_0^{\pi} \left[\left(\pi x - x^2 \right) \sin x \right] dx$		
	\therefore f(x)sin 5x is an ev	ven function				
	$b_5 = \frac{-2}{5} \cos 5x \Big _0^{\pi} = \frac{4}{5}$			$\frac{2}{\pi} \left[\frac{(\pi x - x^2)(-\cos x) - (\pi - 2x)(-\sin x)}{+(-2)\cos x} \right]_0^\pi = \frac{8}{\pi}$		
82.	Ans: (b)	\sim		85. Ans: (b)		
Sol:	$f(x) = \sum_{k=1}^{\infty} \frac{k}{k} \left[\frac{2-2(-1)}{k} \right]$	$\frac{n}{2}$ sin(nx)		Sol: $f(x) = (x - 1)^2$		
	π			The half range cosine series is		
	At $\mathbf{x} = \frac{\pi}{2}$ $\mathbf{k} = \frac{\mathbf{k}}{1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{2}}$			$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(n\pi x)$		
	$\pi \begin{bmatrix} 3 & 5 & 7 \\ \vdots & 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots \end{bmatrix}$	$\dots \infty = \frac{\pi}{4}$		$a_n = \frac{2}{\pi} \int_0^{\pi} (x-1)^2 \cos(n\pi x) dx$		
83.	Ans: (c)			$\frac{2}{\pi} \left[(x-1)^2 \cdot \left(\frac{\sin n\pi x}{n\pi} \right) + 2(x-1) \cdot \frac{\cos n\pi x}{n^2 \pi^2} - 2 \cdot \frac{\sin n\pi x}{n^3 \pi^3} \right]_0^1$		
Sol:	$f(0) = \frac{\pi}{4} + \frac{2}{\pi} \left(\frac{1}{1^2} + \frac{1}{3^2} \right)$	$\frac{1}{2} + \frac{1}{5^2} + \dots \end{pmatrix} \dots \dots$		$=rac{4}{n^2\pi^2}$		
	The convergence of	I(x) at $x = 0$ is valid if				
	$f(0) = \frac{f(0^-) + f(0^+)}{2}$	$\frac{1}{2} = \frac{\pi}{2}$				
	🚓 🗴 DEEP	Regular Doubt o	clearing	g Sessions Free Online Test Series Programme		
	ACE LEARN	Affordable Fee Available 3M 6M 12M 18M and 24 Months Subscription Packages				

01. Ans: (10) 03. Ans: (c) **Sol:** Total cases $= 6^4 = 1296$ Sol: Total cases for selection of 3 integers out of $20 = 20C_3 = 1140$ Favourable cases for sum is 22 = 10Let A = Product is even i. $(6, 6, 6, 4) = \frac{4!}{3!} = 4$ cases A^{C} = Product is odd Probability of three integers is odd only ii. $(6, 6, 5, 5) = \frac{4!}{2! 2!} = 6$ cases when all are odd integers. Out of first 20 integers, we have 10 odd integers and 10 Required probability $=\frac{10}{1296}$ even integers. Favourables of $A^{C} = 10C_{3} = 120$ $\therefore x = 10$ $P(A^{c}) = \frac{120}{1140} = \frac{2}{19}$ 02. Ans: (c) $P(A) = 1 - P(A^{C})$ **Sol:** Given : $P(j) \alpha j$ P(j) = kj, j = 1, 2, 3, 4, 5, 6 $=1-\frac{2}{19}$ X = i2 4 5 6 1 3 $=\frac{17}{19}$ Since 1995 4k 5k P(X = i)k 2k 3k 6k $\sum P(X = i) = 1$ 21 k = 104. Ans: (0.027) $k = \frac{1}{21}$ Sol: Let the four digit number be \therefore P(odd number of dots) = P(X = 1) + P(X = 3) + P(X = 5)T Ţ Ţ Ţ = k + 3k + 5k = 9 kThousand Hundred Tens Units $=\frac{9}{21}$ place place place place $=\frac{3}{7}$ Total cases = $9 \times 10 \times 10 \times 10 = 9000$

Calyampudi Radhakrishna Rao, <u>FRS</u> known as C R Rao (born 10 September 1920) is an Indian-born, <u>mathematician</u> and <u>statistician</u>. The <u>American Statistical Association</u> has described him as "a living legend whose work has influenced not just statistics, but has had far reaching implications for fields as varied as economics, genetics, anthropology, geology, national planning, demography, biometry, and medicine.

ACE Engineering Publications

 $\therefore \text{ Required Probability} = \frac{243}{9000}$ = 0.027

05. Ans: (a)

Sol: Total cases for arranging six boys and six girls in a row = 12!

Assume six girls as one unit.

We have a total of six boys + 1 unit = 7

They can be arranged among themselves in

7! ways and six girls can be arranged

among themselves in 6! ways.

Favourable cases = $6! \times 7!$

 \therefore Required probability = $\frac{6! \times 7!}{12!}$

06. Ans: (c)

Sol: $P = P(IB \cap IIB \cap IIIR) + P(IR \cap IIB \cap IIIR) + P(IB \cap IIR \cap IIIR)$

$$= \left(\frac{3}{5} \times \frac{2}{4} \times \frac{2}{3}\right) + \left(\frac{2}{5} \times \frac{3}{4} \times \frac{1}{3}\right) + \left(\frac{3}{5} \times \frac{2}{4} \times \frac{1}{3}\right)$$
$$= \frac{12}{60} + \frac{6}{60} + \frac{6}{60}$$
$$= \frac{24}{60}$$
$$= \frac{2}{5}$$

07. Ans: 0.02

29

Sol: Candidates attend interview with 3 pens means they attend interview with 3 pens of same colour (or) 2 pens of same colour and one different colour (or) 3 pens of different colours.

Total number of cases

$$=4C_1+2(4C_2)+4C_3=20$$

Favourable number of cases for 3 pens having same colour = $4C_1 = 4$

Required Probability =
$$\frac{4}{20} = 0.2$$

08. Ans: (d)

Sol: Number of ways, we can choose R = C(n, 3)We have to count number of ways we can choose R, so that median (R) = median (S). Each such set R contains median S, one of the $\left(\frac{n-1}{2}\right)$ elements of S less than median (S), and one of the $\left(\frac{n-1}{2}\right)$ elements of S

(3), and one of the $\left(\frac{-2}{2}\right)$ elements greater than median (S).

So, there are
$$\left(\frac{n-1}{2}\right)^2$$
 choices for R.
Required probability = $\frac{\left(\frac{n-1}{2}\right)^2}{C(n,3)}$
= $\frac{3(n-1)}{2n(n-2)}$

	ACE Engineering Publications	30		Engineering Mathematics
09.	Ans: 0.66		11.	Ans: (0.867)
Sol:	Let N = the number of families	:	Sol:	Let $A =$ Selected number divisible by 12
	Total No. of children = $\left(\frac{N}{2} \times 1\right) + \left(\frac{N}{2} \times 2\right)$			B = Selected number divisible by 15
	$\begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix}$			A \cap B = Selected number divisible by 60
	$=\frac{3N}{2}$			$P(A \cup B) = P(A) + P(B) - P(A \cap B)$
	$\left(\frac{N}{2} \times 2\right)$			$=\frac{83}{1000}+\frac{66}{1000}-\frac{16}{1000}$
	$\therefore \text{ Re quired Pr obability} = \frac{\left(\frac{2}{3N}\right)}{\frac{3N}{2}}$			$P(A \cup B) = \frac{133}{1000} = 0.133$
	$=\frac{2}{3}=0.66$ GINE		VC	$\mathbf{P}(\mathbf{A} \cup \mathbf{B})^{\mathbf{C}} = 1 - \mathbf{P}(\mathbf{A} \cup \mathbf{B})$
	Le tel N			= 1 - 0.133
10.	Ans: (c)			= 0.867
Sol:	Given: $P(A) = \frac{1}{2}P(B), P(A^{c} \cap B^{c}) = \frac{1}{3}$		12.	Ans: (0.67)
	$\mathbf{A} \cup \mathbf{B}^{\mathrm{c}} = \mathbf{A} \cup \left(\mathbf{A}^{\mathrm{c}} \cap \mathbf{B}^{\mathrm{c}}\right)$;	Sol:	Given : $P(E) = 0.4$, $P(F) = 0.3$
	$P(A \cup B^{c}) - P(A) + P(A^{c} \cap B^{c})$			$P(F \mid E) = 3 P(F \mid E^{C})$
	$=\frac{1}{2}+\frac{1}{3}$ Sin	ce 1	< 99	$\frac{P(E \cap F)}{P(E)} = 3 \frac{P(E^{C} \cap F)}{P(E^{C})}$
	$=\frac{5}{6}$			$\frac{P(E \cap F)}{0.4} = 3\frac{P(E^{c} \cap F)}{0.6}$
	$P(A^{C} \cup B^{C}) = P(A^{C}) + P(B^{C}) - P(A^{C} \cap B^{C})$			$P(E \cap F) = 2\{P(F) - P(E \cap F)\}$
	$=\frac{1}{2}+\frac{1}{2}-\frac{1}{2}$			$[:: E^{C} \cap F = F - E \cap F]$
	2 2 3			$P(E \cap F) = 2P(F) - 2P(E \cap F)$
	$=\frac{2}{3}$			$3P(E \cap F) = 2P(F)$
				$\frac{P(E \cap F)}{P(F)} = \frac{2}{3}$
				P(E F) = 0.67
	Deep Learn - Ind	ia's Bes	t Onli	ne Coaching Platform for GATE, ESE, and PSUs
	ACE Enjoy a smooth onlin	e learni	ng ex	perience in various languages at your convenience

			31		Probability & Statistics	
13. Sol: 14. Sol:	Ans: (b) Let A = First toss B = Second to P(A) = $\left(\frac{1}{3} \times \frac{1}{2}\right) + \left(\frac{1}{3} \times \frac{1}{2}\right) + \left(\frac{1}{3} \times \frac{1}{2}\right) + \left(\frac{1}{3} \times \frac{1}{2}\right) + \left(\frac{1}{3} \times \frac{1}{2} \times \frac{1}$	produces head oss produces head $\left(\frac{1}{3} \times \frac{2}{2}\right) = \frac{3}{6} = \frac{1}{2}$ $\frac{1}{2} \times \frac{2}{2} + \left(\frac{1}{3} \times \frac{2}{2} \times \frac{1}{2} \times \frac{1}{2}\right)$ $\frac{1}{2}$ appearing are different ven bers appearing are even ther than (1, 1), (2, 2), (6, 6) cases] is even only when dd and second integer is ven and second integer is		VG 15. Sol: 99	Probability & Statistics $P(A \cap B) = \frac{12}{36}$ $P(B \mid A) = \frac{P(A \cap B)}{P(A)}$ $= \frac{\frac{12}{36}}{\frac{30}{36}}$ $= \frac{2}{5}$ Ans: (d) The required probability $= \frac{1}{6} + \left(\frac{5}{6}\right)^2 \left(\frac{1}{6}\right) + \left(\frac{5}{6}\right)^4 \left(\frac{1}{6}\right) + \dots$ $= \frac{1}{6} \left[1 + \left(\frac{5}{6}\right)^2\right]^{-1}$ $= \frac{1}{6} \left(\frac{36}{11}\right) = \frac{6}{11}$ Ans: (0.248) Total number of games played = 4 P(A gets atleast 6 points) = P(6 points) + P(7 points) + P(8 points) $= P(3w, 1L) + P(2w, 2D) + P(3w, 1D)$ $+ P(4w)$	
	odd. ii. First integer is even and second integer				$= P(3W, 1L) + P(2W, 2D) + P(3W, 1D) + P(4W)$ $= (0.6)^{3} (0.1) + (0.6)^{2} (0.3)^{2} + (0.6)^{3} (0.2)$	
	is even. $A \cap B = \{(1, 3), (1, 5), (3, 1), (5, 1), (3, 5), (5, 3), (2,4), (2,6), (4, 2), (6, 2), (4, 6), (6, 4)\}$		learing	r Speci	$= (0.0)^{-} (0.1)^{+} (0.0)^{-} (0.3)^{-} + (0.0)^{-} (0.3)^{-}$ $= 0.2484$	
	ACE X DEEP	Affordable Fee Available 3M 6M 12M 18M and 24 Months Subscription Packages				

	ACE Engineering Publications	32	Engineering Mathematics	
17. Sol:	Ans: (a) 1: Given : P(A) = P(B) = P(C) = $\frac{1}{3}$ $P(A \cap B \cap C) = \frac{1}{4}$ A, B, C are pair wise independent events $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(A \cap C) + P(A \cap B \cap C))$ = P(A) + P(B) + P(C) - P(A) $P(B) - P(B) P(C) - P(A) P(C) + P(A \cap B \cap C))$ $= \frac{1}{3} + \frac{1}{3} + \frac{1}{3} - (\frac{1}{3} \times \frac{1}{3}) - (\frac{1}{3} \times \frac{1}{3}) - (\frac{1}{3} \times \frac{1}{3}) + \frac{1}{4}$ $= 1 - \frac{1}{3} + \frac{1}{4}$ $= \frac{2}{3} + \frac{1}{4}$ $= \frac{11}{12}$		Engineering Mathematics $f = \left(\frac{2}{3} \times \frac{2}{3} \times \frac{1}{4} \times \frac{1}{4}\right) + \left(\frac{1}{3} \times \frac{1}{3} \times \frac{3}{4} \times \frac{3}{4}\right) + \left(\frac{2}{3} \times \frac{1}{3} \times \frac{3}{4} \times \frac{1}{4}\right) + \left(\frac{1}{3} \times \frac{2}{3} \times \frac{1}{4} \times \frac{3}{4}\right) + \left(\frac{1}{3} \times \frac{2}{3} \times \frac{3}{4} \times \frac{1}{4}\right) + \left(\frac{2}{3} \times \frac{1}{3} \times \frac{1}{4} \times \frac{3}{4}\right) + \left(\frac{1}{3} \times \frac{2}{3} \times \frac{1}{3} \times \frac{1}{4} \times \frac{3}{4}\right) + \left(\frac{1}{3} \times \frac{2}{3} \times \frac{1}{3} \times \frac{1}{4} \times \frac{3}{4}\right) + \left(\frac{1}{3} \times \frac{1}{3} \times \frac{1}{4} \times \frac{1}{4}\right) + \left(\frac{1}{3} \times \frac{1}{4} \times \frac{1}{4}\right) + \left(\frac{1}{3} \times \frac{1}{3} \times \frac{1}{4} \times \frac{1}{4}\right) + \left(\frac{1}{3} \times \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4}\right) + \left(\frac{1}{3} \times \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4}\right) + \left(\frac{1}{3} \times \frac{1}{4} \times 1$	
			$P(H_{R} L_{T}) = 0.1 \times 0.3 + 0.9 \times 0.8$ $= 0.75$ $P(H_{T} H_{R}) = \frac{P(H_{T} \cap H_{R})}{P(H_{R})}$	
18.	Ans: (b)		$=\frac{P(H_T)P(H_R H_T)}{P(H_R)}$	
Sol:	Exactly two heads out of four tosses. i. $C_1 = 2H$, $C_2 = 2T$ ii. $C_1 = 2T$, $C_1 = 2H$ iii. $C_1 = HT$, $C_2 = HT$ iv. $C_1 = TH$, $C_2 = TH$		20. Ans: (d)	
	v. $C_1 = TH$, $C_2 = HT$		Sol: Let B_1 = Transferred ball from bag A to bag	
	vi. $C_1 = HT$, $C_2 = TH$		B is red $B_2 =$ Transferred ball from bag A to bag B is white	
	Deep Learn - Ind	ia's Bes	st Online Coaching Platform for GATE, ESE, and PSUs	
	ACE Enjoy a smooth onlin	ie learn	ing experience in various languages at your convenience	

Engineering Publications		3		Probability & Statistics			
R = Selecting a red ball from bag	g B	21.	Ans:	(a)			
W = Selecting a white ball from I	bag B	Sol:	Let	B_1 = selection of urn I			
$P(B_1) = \frac{3}{2}, \qquad P(B_2) = \frac{7}{2}$				B_2 = selection of urn II			
				B_3 = selection of urn III			
$P(R B_1) = \frac{6}{10}, P(W B_2) = \frac{5}{10}$				A = selection of whit ball			
$P(R) = P(B_1) P(R B_1) + P(B_2) P(R)$	B ₂)		P	$P(B_1) = P(2 \text{ heads}) =$			
$P(R) = \left(\frac{3}{10} \times \frac{6}{10}\right) + \left(\frac{7}{10} \times \frac{5}{10}\right) = \frac{53}{100}$		$= 0.2 \times 0.3 = \frac{6}{100}$ $P(B_2) = P(HT) + P(TH)$					
$P(W B_1) = \frac{4}{10}, \qquad P(W B_2) = \frac{4}{10}$	51EER	$= 0.2 \times 0.7 + 0.8 \times 0.3 = \frac{38}{100}$					
$P(W) = P(B_1) P(W B_1) + P(B_2) P(W)$ $= \frac{3}{10} \times \frac{4}{10} + \frac{7}{10} \times \frac{5}{10}$	W B ₂)		P	(B ₃) = P(2 tails) = $0.8 \times 0.7 = \frac{56}{100}$			
$=\frac{47}{100}$			$P(A B_1) = \frac{2}{4}, P(A B_2) = \frac{1}{4},$				
$P(B_1 W) = \frac{P(B_1 \cap W)}{P(W)}$ $= \frac{P(B_1)P(W B_1)}{P(W)}$ Since		$P(A B_3) = \frac{3}{4}$ $P(A) = P(B_1) P(A B_1) + P(B_2) P(A)$					
		199	$+ P(B_3) P(A B_3)$				
$=\frac{\frac{3}{10}\times\frac{4}{10}}{47}=\frac{12}{47}$			R	$= \frac{6}{100} \times \frac{2}{4} + \frac{38}{100} \times \frac{1}{4} + \frac{56}{100} \times \frac{3}{4}$ $= \frac{12}{100} + \frac{38}{100} + \frac{168}{100}$			
$P(B_2 R) = \frac{P(B_2 \cap R)}{P(R)}$ $= \frac{P(B_2)P(R B_2)}{P(R)}$ $= \frac{\frac{7}{10} \times \frac{5}{10}}{\frac{53}{100}} = \frac{35}{53}$				400 400 400			
			$=\frac{218}{400}$				
		$P(B_1 A) = \frac{P(A \cap B_1)}{P(A)}$					
				$=\frac{P(B_1)P(A B_1)}{P(A)}$			
Regular Doubt cle			Aring Sessions Free Online Test Series Programme				
Affordable Fee Available 3M 6M 12M 18M and 24 M				8M and 24 Months Subscription Packages			

	34		Engineering Mathematics			
$=\frac{\frac{6}{100}\times\frac{2}{4}}{\frac{218}{400}}$		$P(X = 1) = \frac{1}{3} \times \frac{3}{4} \times \frac{1}{2} + \frac{2}{3} \times \frac{1}{3} + 2$	$<\frac{1}{4}\times\frac{1}{2}+\frac{2}{3}\times\frac{3}{4}\times\frac{1}{2}=\frac{11}{24}$			
$=\frac{12}{218}$		$P(X = 2) = \frac{1}{3} \times \frac{1}{4} \times \frac{1}{2} + \frac{1}{3} \times \frac{1}{2} \times \frac{3}{4} + \frac{2}{3} \times \frac{1}{4} \times \frac{1}{2} = \frac{1}{2}$				
$=\frac{0}{109}$		P(X = 3) =	$\frac{1}{3} \times \frac{1}{4} \times \frac{1}{2} = \frac{1}{24}$			
22. Ans: (c)	-FP //	E(X) =	$\frac{11}{24} + \frac{12}{24} + \frac{3}{24} = \frac{26}{24} = \frac{13}{12}$			
Sol: Let $x =$ number of times a tossed until first head appears	coin is E E M	$E(X^2) =$	$\frac{11}{24} + \frac{24}{24} + \frac{9}{24} = \frac{44}{24} = \frac{11}{6}$			
1 2 3	·····	Var(X) =	$E(X^{2}) - (E(X))^{2}$			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		=	$\frac{11}{6} - \left(\frac{13}{12}\right)^2$			
$E(X) = P + 2qP + 3q^{2}P + .$ $E(X) = P \{1+2q+3q^{2} + .$		~	<u>11_169</u>			
$= P\{1-q\}^{-2}$			$ \begin{array}{r} 6 & 144 \\ \underline{264 - 169} \\ \underline{144} \end{array} $			
$\{ :: (1 - x)^{-2} = 1 + 2x + 3x^{2} + 2x + 3x^{2} + 3x^$	Since 1	995	$\frac{95}{144}$			
$= \mathbf{P}^{-1}$		P(X = odd) =	P(X=1) + P(X=3)			
$=\frac{1}{P}$		=	$\frac{11}{24} + \frac{1}{24}$			
23. Ans: (a, b, c)		=	$\frac{1}{2}$			
Sol:			-			
X 1 2 3						
P(X) $\frac{11}{24}$ $\frac{6}{24}$ $\frac{1}{24}$						
	n Learn - India's Res	st Online Coaching Platfor	m for GATE, ESE, and PSUs			
X DEEP LEARN Enjoy a	smooth online learni	ing experience in various	languages at your convenience			

ACE Engineering Publications

35

 $\left(\frac{ax^3}{3} + \frac{bx^4}{4}\right)_1^1 = 0.6$

4a + 3b = 7.2(2)

b = -2.4

 $E(X^2) = \int_0^1 x^2 (ax + bx^2) dx$

 $\int_{a}^{b} (ax^{3} + bx^{4}) dx$

 $=\left(\frac{ax^4}{4}+\frac{bx^5}{5}\right)^1$

= $\frac{a}{4} + \frac{b}{5}$

= $\frac{3.6}{4} - \frac{2.4}{5}$

= 0.9 - 0.48

0.42

 $var(X) = E(X^2) - (E(X))^2$

0.06

=

 $P\left(X < \frac{1}{2}\right) = \int_{-\infty}^{\frac{1}{2}} f(x) dx$

 $0.42 - (0.6)^2$

0.42 - 0.36

On solving equations (1) and (2), we get

 $\frac{a}{3} + \frac{b}{4} = 0.6$

a = 3.6

Probability & Statistics

24. Ans: (b)

Sol: Let x = Amount (in rupees) to be won by player

Х -25 36 -1-4 -9 -16 $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ 1 1 P(x) 6 6 $E(X) = -\frac{1}{6} - \frac{4}{6} - \frac{9}{6} - \frac{16}{6} - \frac{25}{6} + \frac{36}{6}$

$$E(X) = -\frac{19}{6}$$

25. Ans: (a, c, d)

Sol: Given : $f(x) = \begin{cases} ax + bx^2 & 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}$

- $\int_{-\infty}^{\infty} f(x) dx = 1$
- $\int_{0}^{1} (ax + bx^{2}) dx = 1$ Since 1995
- $\left(\frac{\mathrm{ax}^2}{2} + \frac{\mathrm{bx}^3}{3}\right)_0^1 = 1$
- $\frac{a}{2} + \frac{b}{3} = 1$

3a + 2b = 6(1) E(x) = 0.6

 $\int_{0}^{1} x (ax + bx^{2}) dx = 0.6$

 $\int_{0}^{1} (ax^{2} + bx^{3}) dx = 0.6$

X DEEP

 Regular Doubt clearing Sessions
 |
 Free Online Test Series Programme

 Affordable Fee
 |
 Available 3M |6M |12M |18M and 24 Months Subscription Packages
Ans: (a) I: $n = 5$, $P = \frac{2}{3}$, $q = \frac{1}{3}$ P(even number of heads)
$= P(0 \text{ heads}) + P(2 \text{ heads}) + P(4 \text{ heads})$ $= q^{n} + nC_{2} P^{2} q^{n-2} + nC_{4} P_{4} q^{n-4}$ $= \left(\frac{1}{3}\right)^{5} + 5C_{2}\left(\frac{2}{3}\right)^{2}\left(\frac{1}{3}\right)^{3} + 5C_{4}\left(\frac{2}{3}\right)^{4}\left(\frac{1}{3}\right)$ $= \frac{1}{243} + \frac{40}{243} + \frac{80}{243}$ $= \frac{121}{243}$ Ans: 0.042 I: n = 10, p = $\frac{1}{2}$ & q = $\frac{1}{2}$ Let x = number of heads $P(x = 4) = nC_{x} p^{x} q^{n-x}$ $= 10C_{4}\left(\frac{1}{2}\right)^{4}\left(\frac{1}{2}\right)^{6}$ $= \frac{10C_{4}}{(2)^{10}} = \frac{210}{1024} = 0.205$ ∴ Required probability = $(0.205)^{2} = 0.042$ Ans: (d) I: P = $\frac{5}{2}$, q = $\frac{1}{2}$
Let A = Total of 7 successful attempts B = Last attempts

Deep Learn - India's Best Online Coaching Platform for GATE, ESE, and PSUs Enjoy a smooth online learning experience in various languages at your convenience

ACE X DEEP

Engineering Publications	37	Probability & Statistics
$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$		32. Ans: (12)
$\frac{5}{5} \times \frac{5}{5} \times 8C_{2} \left(\frac{5}{5}\right)^{5} \left(\frac{5}{5}\right)^{5}$	$\left(\frac{1}{2}\right)^3$	Sol: P(X) = $\frac{\lambda^{x} e^{-\lambda}}{x !}$, x = 0, 1, 2,
$= \frac{6^{1} 6^{1} 6^{1} 6^{2}}{10 C_{7} \left(\frac{5}{6}\right)^{7} \left(\frac{1}{6}\right)}$	$\frac{6}{3}$	P(y) = $\frac{\lambda^{y}e^{-\lambda}}{y!}$, y = 0, 1, 2,
$= \frac{8C_5}{10C_7} \times \frac{\left(\frac{(5)^7}{6^{10}}\right)}{\left(\frac{5^7}{6^{10}}\right)} =$	TIS	$P(X = 1) = P(X = 2)$ $\lambda e^{-\lambda} = \frac{\lambda^2 e^{-\lambda}}{2}$ $\Rightarrow \lambda_x = 2$ $P(Y = 3) = P(Y = 4)$
30. Ans: 0.865 range 0.86 to 0.	.87	$\lambda^3 e^{-\lambda}$ $\lambda^4 e^{-\lambda}$
Sol: Let $X =$ number of cashew nuts p	per biscuit.	3! 4!
We can use Poisson distribution	with mean	1 3
$= \lambda = \frac{2000}{1000} = 2$ $P(X = k) = \frac{e^{-\lambda} \cdot \lambda^{k}}{\sqrt{k}} (k = 0, 1, 2)$		$\frac{1}{6} = \frac{\pi}{24}$ $\lambda_y = 4$ $W = (2)^2 = (2)^2 + (-1)^2 = (2)^2$
Probability that the biscuit c	ontains no	Var(2x - Y) = (2) Var(X) + (-1) Var(Y)
cashew nut = $P(X = 0)$		
$= e^{-\lambda} = e^{-2} = 0.135$	Since 1	995 = $4 \times 2 + (1) \times 4$
Required probability = $1 - 0.135$ =	= 0.865	= 12
31. Ans: 0.27		33. Ans: (d)
Sol: Given that $\lambda = 240$ veh/h		Sol: $P(X) = \frac{\lambda^x e^{-\lambda}}{\lambda}$
$=\frac{240}{60}\operatorname{veh}/\min=4$	veh/min	x ! P(X = odd) = P(X = 1) + P(X = 3) + P(X = 5)
= 2 veh/30 sec		
\therefore The required probability = P(3)	(X = 1)	+
1 1 1 · · · · · · · · · · · · · · · · ·	$e^{-\lambda} = 2 e^{-2}$	$= \lambda e^{-\lambda} + \frac{\lambda^3 e^{-\lambda}}{2} + \frac{\lambda^5 e^{-\lambda}}{2} + \dots$
= 0.2	27	3! 5!
	egular Doubt clearing	g Sessions Free Online Test Series Programme
Afforda	ble Fee Available 3	M 6M 12M 18M and 24 Months Subscription Packages

ACE

	ACE
N 24 10	Engineering Publications

$$= e^{-1} + \frac{1}{3!}e^{-1} + \frac{1}{5!}e^{-1} + \dots$$
$$= e^{-1}\left\{1 + \frac{1}{3!} + \frac{1}{5!} + \dots\right\}$$
$$= e^{-1}\sinh(1)\dots(1)$$

$$= e^{-1}\left\{\frac{e-e^{-1}}{2}\right\}$$

$$= \frac{1 - e^{-2}}{2}$$
$$= \frac{1}{2} \left(1 - \frac{1}{e^2} \right)$$

34. Ans: 0.2

Sol: The area under normal curve is 1 and the curve is symmetric about mean.

 $\therefore P(100 < X < 120) = P(80 < X < 120)$ = 0.3Now, P(X < 80) = 0.5 - P(80 < X < 120) = 0.5 - 0.3 = 0.2

35. Ans: (a)

Sol: The standard normal variable Z is given by

$$Z = \frac{x - \mu}{\sigma}$$
When x = 438
$$440_{441}$$

$$438_{z=-2 \ z=0 \ z=1}$$

X DEE

$$Z = \frac{438 - 440}{1} = -2$$

When x = 441
$$Z = \frac{441 - 440}{1} = 1$$

The percentage of rods whose lengths lie between 438 mm and 441 mm

$$= P(438 < x < 441)$$

= P(-2 < Z < 1)
= P(-2 < Z < 0) + P(0 < Z < 1)
= $\frac{0.9545}{2} + \frac{0.6826}{2} = 0.81855$
 $\approx 81.85 \%$

36. Ans: (d)

Since

Sol: The parameters of normal distribution are μ = 68 and σ = 3 Let X = weight of student in kgs Standard normal variable = $Z = \frac{X - \mu}{\sigma}$ (a) When X = 72, we have Z = 1.33 Required probability = P(X > 72) = Area under the normal curve to the right of Z = 1.33 = 0.5 - (Area under the normal curve between Z = 0 and Z = 1.33) = 0.5 - 0.4082 = 0.0918 Expected number of students who weigh greater than 72 kgs = 300 × 0.0918

ACE Engineering Publications

(b) When X = 64, we have Z = -1.33Required probability = $P(X \le 64)$ = Area under the normal curve to the left of Z = -1.33= 0.5 - (Area under the normal curve between Z = 0 and Z = 1.33) (By symmetry of normal curve) = 0.5 - 0.4082= 0.0918Expected number of students who weigh less than 68 kgs = 300×0.0918 = 28When X = 65, we have Z = -1(c) When X = 71, we have Z = +1Required probability = P(65 < X < 71)Area under the normal curve to the left of Z = -1 and Z = +1= 0.6826(By Property of normal curve) Since Expected number of students who weighs between 65 and 71 kgs $= 300 \times 0.6826$ ≈ 205 37. Ans: 0.8051 Sol: The probability population of has Alzheimer's disease is p = 0.04, q = 0.96, n = 3500 $\mu = np = (3500) (0.04) = 140$

 $\sigma^2 = npq = (3500) (0.04) (0.96)$ $\sigma^2 = 134.4, \sigma \approx 11.59$

Let X = number of people having Alzheimer's disease

$$P(X < 156) = P\left(\frac{X - \mu}{\sigma} < \frac{150 - \mu}{\sigma}\right)$$
$$= P\left(Z < \frac{150 - 140}{11.59}\right)$$
$$= P(Z < 0.86)$$
$$Z = 0 \quad Z = 0.86$$

= 0.5 + Area between z = 0 & z = 0.86= 0.5 + 0.3051= 0.8051

38. Ans: 0.0228

Sol: Given x₁, x₂, x₃ are independent normal
random variables with means 47, 55, 60 and variances 10, 15 and 14 respectively.

Let
$$U = x_1 + x_2 - 2 x_3$$

 $E(U) = \mu_U = E(x_1) + E(x_2) - 2E(x_3)$
 $= 47 + 55 - 2 \times 60$
 $= -18$
 $Var(U) = \sigma_U^2 = var(x_1 + x_2 - 2x_3)$
 $= \sigma_1^2 + \sigma_2^2 + 4\sigma_3^2$
 $= 10 + 15 + 4 \times 14$

 Regular Doubt clearing Sessions
 Free Online Test Series Programme

 Affordable Fee
 Available 3M |6M |12M |18M and 24 Months Subscription Packages

Engineering Publications	40 Engineering Mathemati
$\sigma_{U}^{2} = 81$ $\sigma_{U} = 9$ $P(x_{1} + x_{2} \ge 2 x_{3}) = P(x_{1} + x_{2} - 2 x_{3} \ge 0)$ $= P(U \ge 0)$ $= P\left[\frac{U - \mu_{U}}{\sigma_{U}} \ge \frac{0 - \mu_{U}}{\sigma_{U}}\right]$ $= P\left(Z \ge \frac{18}{9}\right)$ $= P(Z \ge 2)$ $= 0.5 - P(0 < Z < 2)$ $= 0.5 - 0.4772$ $= 0.0228$ 39. Ans: 0.5 Sol: $y = F(2, 4) = F(2, 4)$ $= F(2, 4) = F(3, 4)$ $= F(3, 4)$ $= F(2, 4) = F(3, 4)$ $= F(3, 4)$ $= F(3, 4)$ $= F(2, 4) = F(3, 4)$ $= F(3, 4)$ $= F(3, 4)$ $= F(3, 4)$ $= F(2, 4) = F(3, 4)$ $= F$	$P(Y \ge X) = \frac{Area \text{ of the shaded portion}}{Area \text{ of the rectangle ABCDEFG}}$ $= \frac{Area \text{ of ABCG} + Area \text{ of CDG}}{Area \text{ of ABCDEFG}}$ $= \frac{1 \times 1 + \frac{1}{2} \times 1 \times 1}{1 \times 3} = \frac{3}{2}$ $= \frac{1}{2} = 0.5$ 40. Ans: 0.4 Sol: x ~ UNIF (-5, 5) f(x) = \frac{1}{10}, -5 < x < 5 $= 0, \text{ elsewhere}$ $P[100t^{2} + 20tx + 2x + 3 = 0 \text{ has complex}$ solutions] $= P\{[(20x)^{2} - 4(100)(2x + 3)] \le 0\}$ $= P\{[400x^{2} - 800x - 1200] \le 0\}$ $= P\{[(x^{-2} - 2x - 3) \le 0\}$ $= P\{[(x - 3) (x + 1) \le 0\}$ $= P(-1 < x < 3)$ $= \frac{3}{1} \frac{1}{10} dx$ $= \frac{1}{10} (x)^{3}_{-1}$ $= \frac{4}{10}$ $= 0.4$
ACE EXPLEASE Enjoy a smooth online	e learning experience in various languages at your convenience

	ACE Engineering Publications	41			Probability & Statistics
41.	Ans: (c)	4	43.	Ans: 2	
Sol:		S	Sol:	$x \sim UNIF$	(0, 1)
	0 L 2L			f(x) = 1,	0 < x < 1
	To get a shorter piece, it can be broken			= 0,	otherwise
	anywhere between 0 and L.			E(y) =	$E(-2 \log x)$
	Let X be a random variable uniformly			_	$\int_{1}^{1} 2\log x f(x) dx$
	distributed in [0, L]			_	$\int_{0}^{1} - 2 \log x \Gamma(x) dx$
	Mean $E(X) = \frac{0+L}{2} = \frac{L}{2}$				
			VC		$\int_{0}^{1} - 2\log x dx$
	$\operatorname{var}(X) = \frac{(L-0)^2}{12} = \frac{L^2}{12}$			^A C _A , _₹	$-2\{x \log x - x\}_{0}^{1}$
	44°			<u> </u>	$-2\{\log(1)-1\}-Lt[x\log x-x]\}$
42.	Ans: 0.393				
Sol:	C(0,1)			=-	$-2((0-1) - Lt_{x\to 0}[x \log x - x])$
(0	b, 0.707)		<		$-2\left\{-1-\operatorname{Lt}_{x\to 0}\frac{\log x}{\frac{1}{x}}\right\}$
	$0(0, 0) \qquad (0.707, 0) \qquad A(1, 0) \\ (1) \qquad (1) \qquad (1)^2 $	ce 1	99	5 FC	$-2\left\{-1-\operatorname{Lt}_{x\to 0}\frac{\left(\frac{1}{x}\right)}{\left(\frac{-1}{x^{2}}\right)}\right\}$
	$P\left(x^{2} + y^{2} < \frac{1}{2}\right) = P\left(x^{2} + y^{2} < \left(\frac{1}{\sqrt{2}}\right)\right)$				(∵ By L-Hospital rule)
	$=\frac{\text{Area of shaded portion}}{\text{Area of OABC}}$			=	$-2\left\{-1+\operatorname{Lt}_{x\to 0}x\right\}$
	$(\cdot \cdot)^2$			=	2
	$=\frac{\frac{1}{4}\times\pi\times\left(\frac{1}{\sqrt{2}}\right)}{1\times1}$				
	$=\frac{\pi}{8}=0.393$				
	Regular Doubt	learing	Sessi	ons Free C	Inline Test Series Programme

Affordable Fee | Available 3M |6M |12M |18M and 24 Months Subscription Packages

ACE X DEEP LEARN Affordable Fee | Ava

Affordable Fee | Available 3M |6M |12M |18M and 24 Months Subscription Packages

		1
Engineering Publications	44	Engineering Mathematics
C = size of the class = 10 median = $\ell + \begin{cases} \frac{N}{2} - m \\ \frac{1}{f} \end{cases} C$		mode = $\ell + \left(\frac{\Delta_1}{\Delta_1 + \Delta_2}\right)C$ = $40 + \left(\frac{2}{2+4}\right)10$
$= 30 + \left\{\frac{\frac{50}{2} - 16}{10}\right\} 10 = 39$ For Mode :		= 43.33 50. Ans: (i) a (ii) c (iii) d Sol: The regression line of x and y is
Class Freq	EERI	2x - y - 20 = 0
0-10 4		$2x = y + 20$ $x = \frac{1}{2}y + 10$
10-20 5	Į.	The regression coefficient of x and y is
20-30 7		b - 1
30-40 10		$b_{xy} = \frac{1}{2}$
$40-50$ 12 \rightarrow Modal class		The regression line of y on x is 2y - x + 4 = 0
50-60 8		2y = x - 4
60 – 70 4 S	ince 1	995 $y = \frac{1}{2}x - 2$
		The regression coefficient of y on x is
l = lower limit of the modal class = 40		$\mathbf{b}_{yx} = \frac{1}{2}$
f = frequency of modal class = 12		(i) The correlation coefficient is
f_{-1} = frequency preceding the modal class	s	$\mathbf{r} = \sqrt{\mathbf{b}_{yx} \mathbf{b}_{xy}} = \sqrt{\frac{1}{4}}$
f_1 = frequency succeeding the modal class	SS	$r = \frac{1}{2}$
C = size of the class = 10		2
$f_{-1} = 10, f_1 = 8$		(ii) Given $\sigma_y = \frac{1}{4}$
$\Delta_1 = f - f_{-1} = 12 - 10 = 2$ $\Delta_2 = f - f_1 = 12 - 8 = 4$		$b_{yx} = r \frac{\sigma_y}{\sigma_x}$
Deep Learn	· India's Bes	t Online Coaching Platform for GATE, ESE, and PSUs
ACE Enjoy a smooth of	online learni	ing experience in various languages at your convenience

	ACE Engineering Publications	45	Probability & Statistics
	$\frac{1}{2} = \frac{1}{2} \frac{\frac{1}{4}}{\frac{1}{4}}$		52. Ans: 0.33 Sol: $P(X + Y \le 1) = \int f(x, y) dx dy$
	$2 2 \sigma_{x}$ $\therefore \sigma_{x} = \frac{1}{4}$		$= \int_{R}^{1} \int_{R}^{1-x} (x+y) dx dy$
	(iii) Both regression lines passing throu $(\overline{x}, \overline{y})$, we have	gh	$= \int_{0}^{1} \left(xy + \frac{y^{2}}{2} \right)_{0}^{1-x} dx$
	$2\overline{\mathbf{x}} - \overline{\mathbf{y}} - 20 = 0$ $2\overline{\mathbf{y}} - \overline{\mathbf{x}} + 4 = 0$		$= \int_{0}^{1} \left[x(1-x) + \frac{(1-x)^{2}}{2} \right] dx$
	By solving these two equations, we get $\overline{x} = 12$ and $\overline{y} = 4$	ERI	$\int_{0}^{1} \left[x - x^{2} + \frac{\left(1 + x^{2} - 2x\right)}{2} \right] dx = \frac{1}{2} \int_{0}^{1} \left[1 - x^{2} \right] dx$
51.	Ans: 0.18		$=\frac{1}{2}\left[x-\frac{x^3}{3}\right]_0^1$
Sol:	Given: $b_{yx} = 1.6$ and $b_{xy} = 0.4$ $r = \sqrt{b_{yx} b_{xy}}$		$=\frac{1}{2}\left[\frac{2}{3}\right]$
	$r = \sqrt{1.6 \times 0.4}$ $r = 0.8$		= 0.33 Y
	Now, $b_{yx} = r \frac{\sigma_y}{\sigma_x}$ Sin	nce 1	y = 1 y = 0 x = 0
	$1.6 = 0.8 \frac{\sigma_y}{\sigma_x}$ $\frac{\sigma_y}{\sigma_x} = \frac{1.6}{1.8} = \frac{2}{1}$		$R = 0 \qquad (1,0) \qquad X$
	$\Rightarrow \sigma_x = 1 \text{ and } \sigma_y = 2$		
	The angle between two regression lines is		
	$\tan \theta = \left(\frac{1 - r^2}{r}\right) \left(\frac{\sigma_x \sigma_y}{\sigma_x^2 \sigma_y^2}\right)$		
	$= \left\{ \frac{1 - (0.8)^2}{0.8} \right\} \left\{ \frac{(1)(2)}{(1)^2 + (2)^2} \right\} = 0.18$		
	Regular Doub Affordable Fee A	ot clearin vailable :	g Sessions Free Online Test Series Programme 3M 6M 12M 18M and 24 Months Subscription Packages
	ACE	. anabic .	

X DEEP

Enjoy a smooth online learning experience in various languages at your convenience

 Regular Doubt clearing Sessions
 Free Online Test Series Programme

 Affordable Fee
 Available 3M |6M |12M |18M and 24 Months Subscription Packages

Chapter Differential Equations (With Laplace Transforms)

Leonhard Euler (1707 – 1783)

01. Ans: (a)
Sol: Given
$$\frac{d^3y}{dx^3} + 4\sqrt{\left(\frac{dy}{dx}\right)^3 + y^2} = 0$$

 $\Rightarrow \frac{d^3y}{dx^3} = -4\left(\left(\frac{dy}{dx}\right)^3 + y^2\right)^2$
 $\Rightarrow \left(\frac{d^3y}{dx^3}\right)^2 = 1-6\left(\frac{dy}{dx}\right)^3 + y^2\right)^2$
 $\Rightarrow (\frac{d^3y}{dx^3}\right)^2 = 1-6\left(\frac{dy}{dx}\right)^3 + 16y^2$
 \therefore Order = 3 and Degree = 2
02. Ans: (a)
Sol: $\frac{dy}{dx} = \frac{2x}{3y}$
 $\frac{dy}{dx} = -\frac{2x}{3y}$
 $3ydy = -2x dx$
 $\Rightarrow [3ydy = f-2xdx]$
 $\frac{3y^2}{2} = \frac{-2x^2}{2} + c$
 $\frac{3}{2}y^2 + x^2 = c$
 $3y^2 + 2x^2 = 2c$
 \therefore ellipse
03. Ans: (c)
Sol: Given that $\frac{dy}{dx} = \frac{1+\cos 2y}{1-\cos 2x}$
50. Given that $\frac{dy}{dx} = \frac{1+\cos 2y}{1-\cos 2x}$

Leonhard Euler is considered to be the pre-eminent mathematician of the 18th century and one of the greatest mathematicians to have ever lived. He made important discoveries in every branch of mathematic

Engineering Publications	49	Differential Equations
$LF = e^{\int 1.dx} = e^x$	07.	Ans: (c)
$\therefore ye^{x} = 2\int xe^{x}dx = 2e^{x}(x-1) + C$	Sol:	The given D.E is in the form of $\frac{dy}{dx} + py = Q$
$y(0) = 1 \implies 1 = -2 + C$		Integrating factor = $e^{\int pdx} = e^{-\int \frac{1}{x}dx}$
$\therefore C = 3$		$= e^{-\log x} = \frac{1}{x}$
$\therefore ye^x = 2e^x(x-1) + 3$		Solution to the D.E is given by
at $x = \ln 2 \rightarrow 2y = 4 (\ln 2 - 1) + 3$		$y \cdot \frac{1}{x} = \int \frac{1}{x} dx + e$
= 4(0.693 - 1) + 3 : $y = 0.886$		
	DING	$y \cdot \frac{1}{x} = \log x + \log k \Longrightarrow y = x \log kx$
06. Ans: (d)	SKINC	ACA
Sol: Given $t \frac{dx}{dt} + x = t$	08.	Ans: (c)
dx 1 (1)	Sol:	Given differential equation is (v)
$\Rightarrow \frac{1}{dt} + \frac{1}{t} = 1 \dots \dots \dots (1)$		$x(y dx + x dy)\cos\left(\frac{y}{x}\right) = y(x dy - y dx)\sin\left(\frac{y}{x}\right)$
$\therefore I.F = e^{\int \frac{1}{t} dt}$		$\Rightarrow x d(xy) \cos\left(\frac{y}{x}\right) = y(x dy - y dx) \sin\left(\frac{y}{x}\right)$
$=e^{\log t}=t$		$\Rightarrow d(xy) = \left(\frac{y}{y}\right) (x dy - y dx) \tan\left(\frac{y}{y}\right)$
Now, the general solution of (1) is		$\Rightarrow d(xy) \begin{pmatrix} x \end{pmatrix} (x dy - y dx) dd \begin{pmatrix} x \end{pmatrix}$
$x t = \int t dt$ Sin	ce 199	Dividing both sides by 'xy', we get
$=\frac{t^2}{c}+c$		$\frac{d(xy)}{xy} = \left(\frac{xdy - ydx}{x^2}\right) \tan\left(\frac{y}{x}\right)$
2		$\Rightarrow \int \frac{d(xy)}{d(xy)} = \int \tan\left(\frac{y}{y}\right) d\left(\frac{y}{y}\right)$
x = 0.5		$\int xy \int (x) (x)$
$\Rightarrow 0.5 = \frac{1}{2} + c$ (or) $c = 0$		$\Rightarrow ln(xy) = ln \left sec\left(\frac{y}{x}\right) \right + lnc$
\therefore The solution of equation (1) is		$\Rightarrow \ln(\mathbf{x}\mathbf{y}) = \ln\left[c \sec\left(\frac{\mathbf{y}}{\mathbf{y}}\right)\right]$
$x = \frac{t}{2}$		$ = \frac{1}{2} \ln(xy) - \ln\left[\frac{1}{2} \sec\left(x\right)\right] $
2		\Rightarrow xy = c sec $\left(\frac{y}{x}\right)$
		$\therefore xy \cos\left(\frac{y}{x}\right) = c \text{ is a required solution of (1)}$
Regular Doubt	learing Sess	sions Free Online Test Series Programme
ACE AIIOTUADIe Fee AV	nable SM [0]	n 12m 110m and 24 months subscription Packages

	ACE		50		Engineering Mathematics
09.	Ans: (a)				Let $x^2 = z \implies 2x \frac{dx}{dt} = \frac{dz}{dt}$
Sol:	$(x^2y^2+y)dx+(2x^2)$	(y-x)dy = 0			dy dy (1) becomes
	$(x^2 y^2 dx + 2x^3 y dy)$	+(ydx-x dy)=0			
	$(y^2 dx + 2xy dy) +$	$\left(\frac{ydx - xdy}{x^2}\right) = 0$			$\frac{\mathrm{d}z}{\mathrm{d}y} + \left(\frac{3}{\mathrm{y}} + 1\right)z = \left(-\frac{1}{\mathrm{y}^3}\right)$
	$\int d(xy^2) - \int d\left(\frac{y}{x}\right) =$	= c			I.F = $e^{\int \left(\frac{3}{y}+1\right) dy} = e^{3 \log y + y} = y^3 e^y$
	$xy^2 - \left(\frac{y}{x}\right) = c$				$\therefore z(y^3 e^y) = \int \left(\frac{1}{y^3}\right) y^3 e^y dy$ $= -e^y + c$ $x^2 y^3 e^y + e^y = c$
10	Ange (h)	NIE		Nc	x y e + e = c
IV. Soli	Ans: (0) $(y - yy^2)dy + (y + y^2)dy$	dy = 0		12	
501.	(y - xy) dx + (x + x) (y dy + y dy) + xy (y dy)	y (y - 0) = 0		12.	Ans. (a)
	(ydx + xdy) + xy (xe		5	Sol:	$x^2 \frac{dy}{dx} + 2xy - x + 1 = 0$
	$\frac{(ydx + xdy)}{xy} + (xdy)$	(-ydx) = 0			$x^{2} \frac{dy}{dt} + 2xy = (x-1)$
	$\frac{d(xy)}{(xy)^2} + \left(\frac{xdy - ydz}{xy}\right)$	$\left(\frac{\mathbf{x}}{\mathbf{x}}\right) = 0$			$\frac{dy}{dx} + \left(\frac{2}{x}\right)y = \left(\frac{1}{x} - \frac{1}{x^2}\right)$
	$\int \frac{d(xy)}{(xy)^2} + \int d\log\left(\frac{y}{x}\right)$	$\left(\right) = c$		_	$I.F = e^{\int \frac{2}{x} dx} = e^{2\log x} = x^2$
	$-\frac{1}{xy} + \log\left(\frac{y}{x}\right) = c$	Sin	ce 1	99	: solution y.x ² = $\int \left(\frac{1}{x} - \frac{1}{x^2}\right) x^2 dx$
					$=\int (x-1) dx$
11.	Ans: (a)				\mathbf{x}^2
Sol:	$2xy^3 dx + (3x^2y^2 + x)^2$	$^{2}y^{3} + 1)dy = 0$			$=\frac{\pi}{2}-x+C$
	$(3x^2y^2 + x^2y^3 + 1) dy$	$y = -2 xy^3 dx$			Given that $y(1) = 0$
	$\frac{\mathrm{dx}}{\mathrm{dy}} = -\frac{3\mathrm{x}}{2\mathrm{y}} - \frac{\mathrm{x}}{2} - \frac{1}{2\mathrm{x}}$	$\frac{1}{xy^3}$			i.e., $0 = \frac{1}{2} - 1 + C$
	$\frac{\mathrm{dx}}{\mathrm{dy}} + \left(\frac{3}{2y} + \frac{1}{2}\right)x =$	$\frac{-1}{2xy^3}$			$\Rightarrow C = \frac{1}{2}$
	$2x\frac{dx}{dt} + \left(\frac{3}{dt} + 1\right)x^2$	$=\frac{-1}{-3}$ (1)			$\therefore y = \frac{1}{2} - \frac{1}{x} + \frac{1}{2x^2}$
	ay (y)	у ⁻			\therefore Option (a) is correct.
		Deep Learn - Ind	ia's Bes	t Onlir	ne Coaching Platform for GATE, ESE, and PSUs
	ACE	Enjoy a smooth onlin	e iearill	ing exp	per rence in various languages at your convenience

	ACE Engineering Publications	51		Differential Equations
13. Sol:	Ans: (a) Given equation $(x^{2}y - 2xy^{2})dx + (3x^{2}y - x^{3})dy = 0$ $\frac{dy}{dx} = \frac{-(x^{2}y - 2xy^{2})}{(3x^{2}y - x^{3})} = \frac{2y^{2} - xy}{3xy - x^{2}}$ The above equation is homogenous Put $y = vx$ $\frac{dy}{dx} = v + x \frac{dv}{dx}$ $v + x \frac{dv}{dx} = \frac{2v^{2} - v}{3v - 1} - v = \frac{-v^{2}}{3v - 1}$ $\frac{3v - 1}{v^{2}} dv + \frac{dx}{x} = 0$ Integrating $3\log v + \frac{1}{v} + \log x = c$ $\left(\frac{x}{y}\right) + \log\left(\frac{y^{3}}{x^{2}}\right) = c$		VG 15. Sol:	$(1) \Rightarrow 2 \frac{dt}{dx} + \frac{x}{(1-x^2)}t = x$ $\Rightarrow \frac{dt}{dx} + \frac{x}{2(1-x^2)}t = \frac{x}{2}$ $IF = e^{\int \frac{x}{2(1-x^2)}dx}$ $= e^{-\frac{1}{4}\int \frac{-2x}{(1-x^2)}dx}$ $= e^{-\frac{1}{4}(1-x^2)}$ $= (1-x^2)^{-\frac{1}{4}}$ Ans: (a) $\frac{dy}{dx} + y \cot x = \csc x$ $I.F = e^{\int \cot x dx} = \sin x$ $\therefore \text{ solutions}$ sinx y = $\int \csc x[\sin x] dx + c$
14.	Ans: (b)		\langle	$\sin x \ y = \int dx + c$
Sol:	Given $\frac{dy}{dx} + \left(\frac{x}{1-x^2}\right)y = x\sqrt{y}$ Sind Dividing both sides by \sqrt{y} $\frac{1}{\sqrt{y}}\frac{dy}{dx} + \frac{x}{(1-x^2)}\frac{y}{\sqrt{y}} = x$ $y^{-\frac{1}{2}}\frac{dy}{dx} + \frac{x}{(1-x^2)}y^{\frac{1}{2}} = x$ (1) $\frac{1}{2}y^{-\frac{1}{2}}\frac{dy}{dx} = \frac{dt}{dx}$ $y^{-\frac{1}{2}}\frac{dy}{dx} = \frac{2dt}{dx}$	ce 1	99	$\sin x y = x + c$ $y = \frac{x + c}{\sin x}$ $y \frac{\pi}{2} = \frac{\frac{\pi}{2} + c}{1} = \frac{\pi}{2}$ $\therefore c = 0$ $y(x) = \frac{x}{\sin x}$ $y\left(\frac{\pi}{6}\right) = \frac{\frac{\pi}{6}}{\sin\left(\frac{\pi}{6}\right)} = (2)\frac{\pi}{6} = \frac{\pi}{3}$

 Regular Doubt clearing Sessions
 Free Online Test Series Programme

 Affordable Fee
 Available 3M |6M |12M |18M and 24 Months Subscription Packages

	ACE Engineering Publications		52	Engineering Mathematics
16.	Ans: (a)			Let $y^2 = z$ (3)
Sol:	Given $\frac{dy}{dx} + \frac{1}{x}y = x^3$	(1)		Then $2y \frac{dy}{dx} = \frac{dz}{dx}$ (4)
	$y(1) = \frac{6}{5}$	(2)		Using (3) and (4), (2) becomes
	$I.F = e^{\int \frac{1}{x} dx}$			$\frac{\mathrm{d}z}{\mathrm{d}x} - \left(1 + \frac{2}{x}\right)z = x^2 \dots $
	$= e^{\log x} = x$			Now, I.F = $e^{-\int (1+\frac{2}{x}) dx} = e^{-(x+2\log x)}$
	The solution is			: I.F = $e^{-x - \log x^2} = \frac{e^{-x}}{1 + e^{-x}} = \frac{e^{-x}}{2}$
	$\mathbf{y}(\mathbf{x}) = \int \mathbf{x}^3 \left(\mathbf{x} \right) d\mathbf{x} +$	c		$e^{\log x} = x^2$ The general solution of (5) is given by
	$xy = \frac{x^5}{5} + c \dots$	(3)		$\int G \left(\frac{e^{-x}}{x^2}\right) = \int x^2 \left(\frac{e^{-x}}{x^2}\right) dx + C$
	Using (2), (3) becom	nes		$\Rightarrow z \left(\frac{e^{-x}}{e^{-x}} \right) = \int e^{-x} dx + C$
	$\frac{6}{5} = \frac{1}{5} + c \Longrightarrow c = 1$			$ = \frac{1}{2} \left(\frac{x^2}{x^2} \right) = \int \frac{1}{2} \int \frac{1}{2} \frac{1}{x^2} dx = 0 $
	• The solution of e	mution (1) is		$\Rightarrow z \left(\frac{e^{-x}}{x^2} \right) = -e^{-x} + C$
	$y = \frac{x^4}{5} + \left(\frac{1}{x}\right)$	-)		: $\frac{y^2 e^{-x}}{x^2} = C - e^{-x}$ (6), is a general
	\therefore Option (a) is corre	ect.		solution of (1)
	1 ()	Sin		For $x = 1$ and $y = 0$, (6) becomes
17.	Ans: (a)			$\Rightarrow C = e^{-1}$
Sol:	Given $\frac{dy}{1} = \frac{x^2 + y^2}{2}$	$+ \frac{y}{2}$		Now, the solution of (1) passing through
	dx = 2y			(1, 0) is
	$=\frac{x^2}{2y}+y\left(\frac{1}{2}+\right)$	$\left(\frac{1}{x}\right)$ (1)		$\frac{y^2 e^{-x}}{x^2} = e^{-1} - e^{-x}$
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} - \left(\frac{1}{2} + \frac{1}{x}\right)y = 0$	$\frac{x^2}{2y}$		$\implies \left(1 + \frac{y^2}{x^2}\right) e^{-x} = e^{-1}$
	$\left(\because \frac{\mathrm{d}y}{\mathrm{d}x} + p(x).y = Q\right)$	$(\mathbf{x}).\mathbf{y}^{n}$		$\implies \left(1 + \frac{y^2}{x^2}\right) = e^{x-1}$
	$\Rightarrow 2y \frac{dy}{dx} - \left(1 + \frac{2}{x}\right)y$	$x^{2} = x^{2}$		$\therefore \ln\left(1+\frac{y^2}{x^2}\right) = (x-1)$
		Deep Learn - Indi	a's Bes	it Online Coaching Platform for GATE, ESE, and PSUs
	ACE	Enjoy a smooth onlin	e learni	ing experience in various languages at your convenience

	ACE Engineering Publications		53	3 Differential Equations
18.	Ans: (d)			$\mathbf{x} = \mathbf{C}_1 \ \mathbf{e}^{2t} + \mathbf{C}_2 \ \mathbf{e}^{3t} - \dots $
Sol:	$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{2y}{x} = \frac{2\ell nx}{x^3}, y($	1) = 0		$\frac{dx}{dt} = 2C_1 e^{2t} + 3C_2 e^{3t} - \dots (2)$
	$I.F = e^{\int \frac{2}{x} dx} = e^{2\ell nx} =$	x ²		$\mathbf{x}(0) = 0, (1) \Longrightarrow 0 = \mathbf{C}_1 + \mathbf{C}_2$
	$y[x^{2}] = \int \frac{2\ell nx}{x^{3}} (x^{2}) dx$	$d\mathbf{x} + \mathbf{c}$		$\Rightarrow C_2 = -C_1$ $\frac{\mathrm{dx}(0)}{\mathrm{dx}} = 10, \ (2) \Rightarrow 10 = 2C_1 + 3C_2$
	$y(x)[x^{2}] = 2\int \frac{\ell nx}{x} dx$	x + c		$\Rightarrow 10 = 2 C_1 - 3 C_1 = -C_1$
	$x^2 y(x) = 2 \left[\frac{1}{2} \ell n^2 (x) \right]$) + c		$\Rightarrow C_1 = -10 \& C_2 = 10$
			.R//	\therefore The particular solution is
	$\mathbf{v}(\mathbf{x}) = \frac{\ell n^2(\mathbf{x}) + \mathbf{c}}{2}$	NGINE		$x = -10 e^{2t} + 10 e^{3t}$
	x ²			Note: Among four options, only option (d)
	$\mathbf{y}(1) = \frac{0 + \mathbf{c}}{1} = 0$	V		satisfies $x(0) = 0$. So option (d) is correct
	c = 0			21. Ans: (b)
	$v(e) = \frac{\ell n^2(e)}{1}$			Sol: Then auxiliary equation is $D^2 + 2D + 1 = 0$
	$f(c) = e^2 e^2$			$\Rightarrow (D+1)^2 = 0$
				\rightarrow D = -1 -1
19.	Ans: (b)			General solution is $y = (C_1 + C_2 + y)e^{-1}$
Sol:	$\frac{d^2u}{dx^2} - 2x^2u + \sin x =$	=0 Sinc	:e 1	1995(1)
	ux It is a linear non hor	no concourse ocustion		$y(0) = 1, (1) \Rightarrow 1 = C_1$
	it is a finear non-nor	nogeneous equation.		$y(1) = 3, (1) \Rightarrow 3 = (C_1 + C_2) e^{-1}$
20	\mathbf{Ans} (d)			$3e = C_1 + C_2$
20. Soli	Given:			$3e = 1 + C_2$
501.				$C_2 = 3e - 1$
	$\frac{d^2x}{dt^2} - 5\frac{dx}{dt} + 6x = 0,$,		\therefore The solution is $y = [1 + 3e - 1)e^{-x}$
	The auxiliary equation	on is		$y = e^{-x} + (3e-1)xe^{-x}$
	$D^2 - 5D + 6 = 0$			
	Roots are 2, 3			
	The general solution	ı is		
		Regular Doubt c	learing	ing Sessions Free Online Test Series Programme
	ACE	Affordable Fee Avai	lable 3	e 3M 6M 12M 18M and 24 Months Subscription Packages

	ACE Engineering Publications		54	Engineerin	g Mathematics
22.	Ans: (b)			$\Rightarrow m^2 + m - \frac{5}{4} = 0$	
Sol:	Given that $\frac{d^2y}{dt^2} + 2\frac{d}{dt}$	$\frac{\mathbf{y}}{\mathbf{h}} + \mathbf{y} = 0 \dots \dots (1)$		\Rightarrow m = $\frac{-1}{-1} \pm i$	
	with $y(0) = 1$	(2)		2	
	and $y(1) = 3e^{-1}$	(3)		\therefore The general solution of (1)	l) is
	The auxiliary equa	ation corresponding to	5	$v = e^{-\frac{t}{2}} (C_1 \cos t + C_2 \sin t)$.) (2)
	given differential eq	uation is $m^2+2m+1 = 0$		1 - 1 - t) ()
	\Rightarrow m = -1, -1			$\Rightarrow y^{1} = \frac{dy}{dt} = \frac{-1}{2}e^{\frac{-1}{2}} \left[C_{1} \cos \theta\right]$	$st + C_2 sint$]
	The general solution	ion of (1) is			
	$y(t) = (C_{1+}C_2t)e^{-t}$	(4)		$+ e^{\overline{2}} \left[-C_1 \sin t + C_2 \right]$	$2 \cos t$]
	Using (2), (4) becom	nes NGINE.		(3)	
	$1 = C_1$	44		\therefore y(0) = 1	
	Using (3), (4) becom	ies V		$\Rightarrow 1 = C_1$	
	$3e^{-1} = (1+C_2)e^{-1}$			$\therefore \left(\frac{\mathrm{d}y}{\mathrm{d}y}\right) = 0$ & C ₁ = 1	
	\Rightarrow 3 = 1 +	C_2		$\left(dt \right)_{t=0}^{t=0} a c_1 a$	
	\Rightarrow C ₂ = 2			$\Rightarrow \frac{-1}{2} [1+0] + [0+C_2] =$	0
	Substituting the va	alues of C_1 & C_2 in	1		
	equation (1), we get			\Rightarrow C ₂ = $\frac{1}{2}$	
	$y(t) = (1+2t)e^{-t}$	Sin		\Box The solution of (1) with i	nitial conditions
	$\therefore y(2) = 5e^{-2}$			- ^t [1]	
				is $y = e^{\overline{2}} \cos t + \frac{1}{2}\sin t $	
23.	Ans: - 0.21			-π	
Sol:	Given $\frac{d^2y}{dt^2} + \frac{dy}{dt} - \frac{5}{4}$	y = 0(1)		Hence, $y = y(\pi) = e^{-2} \left[-1 + e^{-2} \right]$	0] = -0.21
	$\Rightarrow \left(\mathbf{D}^2 + \mathbf{D} - \frac{5}{2} \right) \mathbf{v} =$	0, where $D = \frac{d}{d}$		4. Ans: (–1)	
	$(4)^{3}$	dx	5	ol: Given that $y'' + 9y = 0$	(1)
	\Rightarrow f(D) y = 0, when	$\mathbf{f}(\mathbf{D}) = \mathbf{D}^2 + \mathbf{D} - \frac{5}{4}$		with $y(0) = 0$	(2)
	Consider Auxiliary	equation $f(m) = 0$		and $y\left(\frac{\pi}{2}\right) = \sqrt{2}$. (3)
				Consider Auxiliary equation	n f(D) = 0
		Deep Learn - Ind	a's Bes	Online Coaching Platform for GATE, ESE, a	and PSUs
	ACE		e icai ili	5 experience in various languages at your	

	ACE escring Publications	55		Differential Equations
⇒	$D^{2} + 9 = 0 \text{ where } D = \frac{d}{dx}$		26. Sol:	Ans: (b) $y = (c_1e^x + c_2 e^x \cos x + c_3 e^x \sin x)$ is the
= ∴ U: U:	$\Rightarrow D = \pm 3i \text{ are different imaginary roots}$ The general solution of (1) is $y = C_1 \cos 3x + C_2 \sin 3x \qquad(4)$ sing (2), (4) becomes $0 = C_1$ sing (3), (4) becomes)		general solution from the given independent solutions $\therefore y = c_1 e^x + e^x (c_2 \cos x + c_3 \sin x)$ $\therefore A.E. \text{ has roots } 1, (1 \pm i)$ $\therefore (D-1) (D^2 - 2D + 2) y = 0$ $(D^3 - 3 D^2 + 4D - 2) y = 0$
⇒ Su ge	$\sqrt{2} = c_2 \sin \frac{3\pi}{2}$ $C_2 = -\sqrt{2}$ ubstituting the values of C ₁ , C ₂ in (1), we et $y = -\sqrt{2} \sin 3x$ $y\left(\frac{\pi}{4}\right) = -\sqrt{2} \sin\left(\frac{3\pi}{4}\right) = -1$	e l	27. Sol: 28.	Ans: 5 y'' + 4y''' + 8y'' + 8y' + 4y = 20 $(D^4 + 4D^3 + 8D^2 + 8D + 4)y = 20e^{0.x}$ $y_p = \frac{20.e^{0.x}}{(D^4 + 4D^3 + 8D^2 + 8D + 4)}$ $= \frac{20.e^{0.x}}{4} = 5$ Ans: (a)
25. A	ns: (b)	ce 1	Sol: 99	$y^{v} - y' = 12e^{x}$ (D ⁵ - D) $y = 12 e^{x}$
Sol: c_1 \Rightarrow	$e^{x} + e^{\frac{-x}{2}} \left[c_{2} \cos\left(\frac{\sqrt{3}}{2}\right) x + c_{3} \sin\left(\frac{\sqrt{3}}{2}\right) x \right]$ $\Rightarrow AE \text{ has roots } 1, \left(\frac{-1}{2} \pm \frac{\sqrt{3}}{2} i\right)$ $\Rightarrow (D-1) (D^{2} + D + 1) y = 0$ $(D^{3} - 1) y = 0$	C		$y_{p} = \frac{12e^{x}}{D(D^{4} - 1)}$ $= \frac{12e^{x}}{D(D - 1)(D + 1)(D^{2} + 1)}$ $= \frac{12xe^{x}}{2.2}$ $y_{p} = 3x e^{x}$

	ACE Engineering Publications	56		Engineering Mathematics
29.	Ans: (c)		31.	Ans: (a)
Sol:	$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 5y = -2\cosh(x)$;	Sol:	$\frac{d^2 y}{dx^2} + y = \cos(x)$
	$(D^2 + 4D + 5) y = -(e^x + e^{-x})$			$(D^2 + 1) y = \cos x$
	$\mathbf{v} = \frac{-\left(\mathbf{e}^{\mathbf{x}} + \mathbf{e}^{-\mathbf{x}}\right)}{\left(\mathbf{e}^{\mathbf{x}} + \mathbf{e}^{-\mathbf{x}}\right)}$			A.E has roots $\pm i$
	$(D^2 + 4D + 5)$			$\therefore \mathbf{y}_{c} = (\mathbf{c}_{1} \cos \mathbf{x} + \mathbf{c}_{2} \sin \mathbf{x})$
	$=\frac{-e^{x}}{(1+4+5)}-\frac{e^{-x}}{(1-4+5)}$			$\therefore \mathbf{y} = (\mathbf{y}_{c} + \mathbf{y}_{p})$
	$=\frac{-e^{x}}{-e^{x}}-\frac{e^{-x}}{-e^{x}}$			$= (c_1 \cos x + c_2 \sin x + \frac{x}{2} \sin x)$
	10 2		NG	$\mathbf{y}(0) = 1 \Longrightarrow 1 = \mathbf{c}_1$
30.	Ans: 18			$y(\pi/2) = 0 \Longrightarrow 0 = c_2 + \frac{\pi}{4} \Longrightarrow c_2 = -\frac{\pi}{4}$
Sol:	Given that $\frac{d^2y}{dx^2} = -12x^2 + 24x - 20$ (1)			$\therefore \qquad y = \left(\cos x - \frac{\pi}{4}\sin x + \frac{x}{2}\sin x\right)$
	with $y(0) = 5$ (2)			
	and $y(2) = 21$ (3)		32.	Ans: (*)
	Integrating both sides of above differentia	.1	Sol:	$\frac{d^3y}{dx^2} + 4\frac{dy}{dx} = \sin(2x)$
	equation (1), we get			$dx^3 dx$
	$\frac{dy}{dx} = -4x^3 + 12x^2 - 20x + c_1 \dots \dots (4)$			$(D + 4D) y = \sin 2x$
	Again integrating both sides of (4) w.r.t 'x	ce 1	99	$5 \therefore y_p = \frac{\sin 2x}{(D^3 + 4D)}$
	we get			$1 \sin 2x$
	$y = -x^4 + 4x^3 - 10x^2 + c_1x + c_2 \dots \dots (5)$			$-\frac{1}{D}(D^2+4)$
	Using (2), (5) becomes			$y_{n} = \frac{1}{2} \left(\frac{-x}{1} \cos 2x \right)$
	$5 = c_2$			D(4)
	Using (3), (5) becomes $c_1 = 20$			$= -\frac{1}{4} \left(\frac{x}{2} \sin 2x + \frac{\cos 2x}{4} \right)$
	Substituting c_1 , c_2 values in (5), we get			$=-\frac{1}{2}(2x\sin 2x+\cos 2x)$
	$y = -x^4 + 4x^3 - 10x^2 + 20x + 5$			8
	$\therefore \qquad \qquad \mathbf{y}(1) = 18$			

	ACE Engineering Publications		57	Differential Equations
33.	Ans: (a)			(Expanding by binomial theorem up to D^2 terms)
Sol:	$P.I = \frac{1}{D^2 + 3D + 2} [5]$	$\cos x$]		$=\frac{1}{3}\left\{(2t-3t^{2})-\left[\frac{-6-4(2-6t)}{3}\right]+\frac{16}{9}(-6)\right\}$
	\therefore $D^2 = -a^2$	\therefore a = 1		$\therefore P.I = -2 - 2t - t^2$
	$=\frac{5}{-1+3D+2}\cos x$			35. Ans: (c)
	$=\frac{5}{2D+1}\cos x$		1	Sol: Given $(D^2 + 6D + 9) y = 9x + 6$
	3D+1			Consider Auxiliary equation $f(D) = 0$
	$=\left \frac{3}{3D+1} \times \frac{3D-1}{3D-1}\right $	cos x		$\Rightarrow D^2 + 6D + 9 = 0$
	5 (2D 1)	INE	ERI/	\Rightarrow D = -3, -3 are real and equal roots
	$=\frac{1}{9D^2-1}(3D-1)cc$	os x		\therefore The complementary function of (1) is
	$=\frac{5}{10}\left[-3\sin x-\cos x\right]$	sx]		$CF = (C_1 x + C_2) e^{-1}$ Now, the particular integral of (1) is
	$P.I = \frac{5}{10} [3\sin x + \cos x]$	sx]		PI = $\frac{1}{(D+3)^2}(9x+6)$
34.	Ans: (a)			$\Rightarrow P.I = \frac{1}{9} \left[1 + \frac{D}{3} \right]^{-2} \left(9x + 6 \right)$
Sol:	Given $y^{11} - 4y^1 + 3$ $\Rightarrow (D^2 - 4D + 3)y =$	$y = 2t - 3t^2$ (1) $2t - 3t^2$		$\Rightarrow P.I = \frac{1}{9} \left[1 - 2\frac{D}{3} + 3\left(\frac{D^2}{9}\right) - \right] (9x + 6)$
1	Now, the particular in	since the second state s	ce 1	$P = \frac{1}{2} \left(0x + 6 \right) + \frac{2}{2} \frac{1}{2} \left(0 \right)$
	$PI = \frac{1}{2}$	$2t-3t^2$		$\Rightarrow 1.1 - \frac{1}{9}(9x+0) - \frac{1}{3}\cdot\frac{1}{9}(9)$
	$(D^2 - 4D + 3)$			\Rightarrow P.I = x + $\frac{2}{2} - \frac{2}{2} = x$
	$=\frac{1}{\int (D^2-4D)}$	$\overline{(2t-3t^2)}$		• The solution of equation (1) is
	$3\left[1+\left(\frac{D}{3}\right)\right]$			$y = (C_1 x + C_2) e^{-3x} + x$
	$=\frac{1}{3}\left\{1+\left(\frac{D^2-4D}{3}\right)\right\}$	$\left(2\right)^{-1}(2t-3t^2)$		36. Ans: (d)
	$=\frac{1}{3}\left\{1-\left(\frac{D^2-4D}{3}\right)+\right.$	$-\left(\frac{D^2-4D}{3}\right)^2 \bigg\} (2t-3t^2)$)	Sol: P.I = $\frac{x^2 e^{-x}}{D^2 + 2D + 1}$ When X = e^{ax} V, where V is a function of X.
	X DEEP	Regular Doubt	clearing	g Sessions Free Online Test Series Programme
	ACE	Alloi uable ree Ava	manie 3	om jom jizm jiom and 24 monuts subscription rackages

	ACE Engineering Publications	58		Engineering Mathematics
	$y_{P} = \left(\frac{1}{f(D)}e^{ax}V\right)$			$= e^{x} \left\{ \frac{1}{5} - \frac{1}{2D+1} \cos(2x) \right\}$
	$= e^{ax} \left[\frac{1}{f(D+a)} V \right]$			$= e^{x} \left\{ \frac{1}{5} - \frac{2D-1}{4D^{2}-1} \cos(2x) \right\}$
	$\therefore a = -1 \& V = x^2$			$= e^{x} \left\{ \frac{1}{5} - \frac{\left[-4\sin(2x) - \cos(2x) \right]}{4 \times -4 - 1} \right\}$
	P.I = $e^{-x} \left[\frac{1}{(D-1)^2 + 2(D-1) + 1} \right] x^2$			$= e^{x} \left\{ \frac{1}{5} - \frac{1}{17} [4\sin(2x) + \cos(2x)] \right\}$
	$P.I = e^{-x} \left[\frac{1}{D^2} \right] x^2$			The solution is $y = CF + PI$
		R	N	$Y = C_1 \cos(2x) + C_2 \sin(2x)$
	$= e^{-x} \left[\frac{1}{D} \frac{x}{3} \right] = e^{-x} \frac{1}{12} x^4$			+ $e^{x}\left\{\frac{1}{5}-\frac{1}{17}\left[4\sin(2x)+\cos(2x)\right]\right\}$
	$=\frac{1}{12}e^{-x}x^{4}$			THE AND
			38	3. Ans: (b)
37.	Ans: (c)		S	D1: $y'' + 4y = x \sin(x)$
Sol:	Given $(D^2 + 4) y = 2e^x \sin^2 x$			$(D^2 + 4)y = x \sin x$
	Auxiliary equation is $D^2 + 4 = 0$			$y_p = \frac{x \sin x}{(D^2 + 4)}$
	Complementary function is			
	$C_1\cos(2x) + C_2\sin(2x)$ Since	ce	19	$= x \left(\frac{\sin x}{D^2 + 4}\right) - \left(\frac{2D}{\left(D^2 + 4\right)^2}\right) \sin x$
	$P.I = \frac{1}{D^2 + 4} 2e^x \sin^2 x$			x . 2
	$\left[1 \left[1 - \cos 2x\right]\right]$			$=\frac{-\sin x\cos x}{9}$
	$= 2e^{x} \left\{ \frac{1}{(D+1)^{2}+4} \begin{bmatrix} -2 \end{bmatrix} \right\}$			
	$\left(1 \left(1 \right) \right)$		39). Ans: 5.25
	$= e^{a} \left\{ \frac{1 - \cos 2x}{D^{2} + 2D + 5} \right\}$		So	bl: Given $(x^2D^2 - 3xD + 3)y = 0$ (1)
	$= e^{x} \left\{ \frac{1}{D^{2} + 2D + 5} e^{0x} - \frac{1}{D^{2} + 2D + 5} \cos 2x \right\}$			where $D = \frac{d}{dx}$
	$e^{x} \left[1_{0x} \qquad 1_{0x} \right]$			with $y(1) = 1$ and $y(2) = 14$ (2)
	$= \frac{1}{2} \left\{ \frac{1}{5}e^{-\frac{1}{(-4+2D+5)}\cos 2(x)} \right\}$			Let $x = e^{x}$ (or) $\log x = z$ (3)
				and $XD = \Theta$, $XD = \Theta(\Theta - 1)$
	Deep Learn - Ind	ia's Be	est C	Online Coaching Platform for GATE, ESE, and PSUs
	ACE Enjoy a smooth onlin	e lear	rning	g experience in various languages at your convenience

	CCE eering Publications		59	Differential Equations
	d d			$[\theta (\theta - 1) - 7\theta + 16] v = 0$
wł	here $\theta = \frac{d}{dz}$			$\rightarrow [\theta^2 - 8\theta + 16] \mathbf{v} = 0$
Us	sing (3), (1) becom	nes		$\Rightarrow f(\theta) = 0 \text{ where } f(\theta) = \theta^2 - 8\theta + 16$
[$[\theta(\theta-1)-3\theta+3]$	y = 0		The auxiliary equation is $f(m) = 0$
\Rightarrow	$(\theta^2 - 4\theta + 3)y = 0$)		$\Rightarrow m^2 3m + 16 = 0$
\Rightarrow	$f(\theta)y = 0$, where f	$(\theta) = \theta^2 - 4\theta + 3$		$\Rightarrow m = 4.4$
Th	ne auxiliary equation	on is $f(m) = 0$		$\Rightarrow m - \tau, \tau$ $\Rightarrow v = (c_1 + c_2 \tau)e^{4\tau}$
\Rightarrow	$m^2 - 4m + 3 = 0$			$\Rightarrow y_c = (c_1 + c_2 z)c$ $\Rightarrow y_c = (c_1 + c_2 \log x) x^4$
\Rightarrow	> m = 1, 3			$\Rightarrow y_c = (c_1 + c_2 \log x) x$ $\Rightarrow The concernal solution of (1) is$
\Rightarrow	$y_c = c_1 e^z + c_2 e^{3z}$	I E F		The general solution of (1) is $y = (a - b - a)y^4$
÷	The general solut	ion (1) is		$y = (c_1 + c_2 \log x)x$
У	$\mathbf{y} = \mathbf{c}_1 \mathbf{x} + \mathbf{c}_2 \mathbf{x}^3 \dots$	(4)		Tience, option (c) is correct.
	y(1) = 1	V		41. Ans: 6
\Rightarrow	$> c_1 + c_2 = 0 \dots$	(5)		$d^2 y = dy$
:	y(2) = 14		\$	Sol: Given $x^2 \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} + 2y = 0$ (1)
\Rightarrow	$> 2c_1 + 8c_2 = 0 \dots$	(6)		with y $(1) = 0$, y $(2) = 2$ (2)
So	olving (5) and (6),	we get $c_1 = -1$, $c_2 = 2$		Let $x = e^{x}$ (or) log $x = z$ (3)
	The solution of (1) with (2) is		and $xD = \theta$, $x^2D^2 = \theta(\theta - 1)$
У	$\mathbf{y} = \mathbf{y}(\mathbf{x}) = -\mathbf{x} + 2\mathbf{x}$			Using (3), (1) becomes
He	ence, $y = y(1.5) =$	5.25		$\theta(\theta - 1)y - 2\theta y + 2y = 0$
				$\Rightarrow (\theta^2 - 3\theta + 2) y = 0$
40. Ar	ns: (c)			\Rightarrow f(θ)y = 0, where f θ) = $\theta^2 - 3\theta + 2$
Sol: Gi	iven $(x^2 D^2 - 7x D^2)$	$(y + 16) y = 0 \dots (1)$,	The auxiliary equations is
wł	here $D = \frac{d}{d}$			$m^2 - 3m + 2 = 0$
т	dx			\Rightarrow m = 1, 2
Le	$et x = e^{x} (or) \log x =$	= Z (2)		The general solutions of (1) is
an	$d xD = \theta, x^2D^2 =$	$\theta(\theta-1)$		$y = c_1 e^z + c_2 e^{2z} = c_1 x + c_2 x^2$
wł	here $\theta = \frac{d}{dz}$			$\therefore y(1) = 0$
Us	sing (2), (1) becom	nes		$\Rightarrow 0 = c_1 + c_2 \dots \dots (4)$
	2 (), () 0.	Pogular Doubt	loaring	$\therefore y(2) = 2$
AC	X DEEP LEARN	Affordable Fee Ava	ilable 3	BM 6M 12M 18M and 24 Months Subscription Packages

Engineering Fublications	60	Engineering Mathematics
$\Rightarrow 2 = 2c_1 + 4c_2$ (5) Solving (4) and (5), we get $c_1 = -1$, $c_2 = 1$		$=\frac{-\cos ax}{a^2}\log[\sec(ax) + \tan(ax)] + \frac{\sin(ax)\cos(ax)}{a^2}$
\therefore The solution of (1) with (2) is $y = -x + y$	x^2	$-\frac{\sin(ax)\cos(ax)}{2}$
Hence, $y(3) = -3 + 9 = 6$		a ²
		The general solution is
42. Ans: (a)		$y = c_1 cos(ax) + c_2 sin(ax)$
Sol: Given $(D^2 + a^2) y = tan (ax) = X (say)$ Auxiliary equation is $D^2 + a^2 = 0$		$-\frac{\cos ax}{a^2}\log[\sec(ax) + \tan(ax)]$
$CF = c_1 cos(ax) + c_2 sin(ax) = c_1 y_1 + c_2 y_2$		
where $y_1 = \cos(ax)$ and $y_2 = \sin(ax)$	ERI	43. Ans: (b)
cos ax sin ax		Sol: The given equation is
$W = \begin{vmatrix} -a \sin ax & a \cos ax \end{vmatrix}$		$\left(\frac{d^2y}{dx^2}\right) - 4\left(\frac{dy}{dx}\right) + 4y = \frac{e^{2x}}{x}$
$= a \cos^2(ax) + a \sin^2(ax) = a$		The enviloer equation is
$P.I = -y_1 \int \frac{Xy_2}{w} dx + y_2 \int \frac{Xy_1}{w} dx$		$(D-2)^2 = 0 \implies D = 2, 2$
$= -\cos ax \int \frac{\tan(ax) \times \sin(ax)}{a} dx$		C.F = $(C_1 + C_2 x)e^{2x}$ = $C_1e^{2x} + C_2 xe^{2x}$
$+\sin(ax)\int \frac{\tan(ax)(\cos(ax))}{a}dx$	ce 1	$= C_{1} y_{1} + C_{2} y_{2}$ where, $C_{1} = e^{2x} \& C_{2} = xe^{2x}$ $P_{1} = A_{1} y_{1} + B_{2} y_{2}$ (i)
$= \frac{-\cos ax}{a} \int \frac{\sin^2(ax)}{\cos(ax)} dx + \frac{\sin(ax)}{a} \int \sin(ax) dx$		where, $A = -\int \frac{Py_2}{W} dx$
$=\frac{-\cos ax}{a}\int\frac{1-\cos^{2}(ax)}{\cos(ax)}dx+\frac{\sin(ax)}{a}\left[\frac{-\cos(ax)}{a}\right]$		where, $W = y_1 \cdot y_2' - y_2 \cdot y_1' = e^{4x}$
$=\frac{-\cos ax}{a}\int [\sec(ax)-\cos(ax)]dx - \left[\frac{\sin(ax)\cos(ax)}{a^2}\right]dx$		$A = -\int \frac{1}{x} \cdot \frac{e^{4x}}{e^{4x}} dx = -x$ $B = \int \frac{Py_1}{x} dx = \int \frac{e^{2x}}{e^{4x}} \cdot \frac{e^{2x}}{e^{4x}} dx = \log x$
$= \frac{-\cos ax}{a} \left[\frac{1}{a} \log(\sec(ax) + \tan(ax)) - \frac{\sin(ax)}{a} \right]$		Substituting the values of A & B in (i) $P.I = -xe^{2x} + xe^{2x} \log x$
$-\left[\frac{\sin(ax)\cos(ax)}{a^2}\right]$		The solution is $y = (C_1 + C_2x + x\log x - x) e^{2x}$
Deep Learn - Inc	dia's Bes	st Online Coaching Platform for GATE, ESE, and PSUs
ACE LEARN Enjoy a smooth onli	ne learn	ing experience in various languages at your convenience

	Engineering Publications		61		Differential Equations
44.	Ans: (a)				Differentiating (1) wrt 'y' partially, we get
Sol:	Given				$q = \frac{\partial z}{\partial z} = -2y(x+y)\phi'(x^2 - y^2) + \phi(x^2 - y^2)$
	$(x-a)^2 + (y-b)^2 =$	$z^2 \cot^2 \alpha \dots \dots (1)$			
	Differentiating eq	uation (1) wrt 'x	,		$\Rightarrow py+qx = \left[2xy(x+y)\phi(x^2-y^2)+y\phi(x^2-y^2)\right]$
	partially, we get				$+\left[-2xy(x+y)\phi'(x^2-y^2)+x\phi(x^2-y^2)\right]$
	$2(x-a) = 2z \frac{\partial z}{\partial x} c c$	$\operatorname{pt}^2 \alpha$			$\Rightarrow py + qx = (x + y)\phi(x^2 - y^2)$
	$\Rightarrow (x-a) = pz \cot^2 c$	α(2)			\therefore py + qx = z is the required solution
	where $p = \frac{\partial z}{\partial z}$	NIE		46.	Ans: (c)
	∂x	eNGINE.		Sol:	The partial differential equation
	Differentiating eq partially, we get	uation (1) wrt 'y	,		$A\frac{\partial^2 p}{\partial x^2} + B\frac{\partial^2 p}{\partial x \partial y} + C\frac{\partial^2 p}{\partial y^2} + D\frac{\partial p}{\partial x} + E\frac{\partial p}{\partial y} + Fu = G$
	$2(\mathbf{v} - \mathbf{b}) = 2\mathbf{z} \frac{\partial \mathbf{z}}{\partial \mathbf{z}}$ co	α^{2}			is Hyperbolic if $B^2 - 4AC > 0$.
	$2(y = 0) = 2z \frac{\partial y}{\partial y}$				From the given equation, we have
	$\Rightarrow (y-b) = qz \cot^2 q$	α (3)			A = 1, B = 3, C = 1
	∂z				$B^2 - 4AC = 9 - 4 = 5 > 0$
	where $q = \frac{1}{\partial y}$			\langle	The given equation is Hyperbolic
	Equation (1) can be	re-written as	- 1	00	5
	$p^2 z^2 \cot^4 \alpha + q^2 z^2$	$\cot^4 \alpha = z^2 \cot^2 \alpha$		47.	Ans: 30 2^{2} 2^{2} 2^{2}
	\Rightarrow p ² cot ² α + q ² cot ²	² = 1		Sol:	Given $3\frac{\partial^2 \Phi}{\partial x^2} + B\frac{\partial^2 \Phi}{\partial x \partial y} + 3\frac{\partial^2 \Phi}{\partial y^2} + 4\phi = 0(1)$
	$\Rightarrow \cot^2 \alpha (p^2 + q^2) =$	1			Comparing given partial different equation
	$\therefore p^2 + q^2 = \tan^2 \alpha$ is	is the solution			with general second order linear partial
					A = 3 $B = B$ and $C = 3$
45.	Ans: (d)				The P.D.E. (1) is said to be parabolic if
Sol:	Given $z = (x + y)\phi(x)$	$x^2 - y^2$) (1)			$B^2 - 4AC = 0$
	Differentiating (1) w	vrt 'x' partially, we get			$\Rightarrow B^2 - 36 = 0$
	$p = \frac{\partial z}{\partial x} = 2x(x+y)\phi$	$\phi'(x^2 - y^2) + \phi(x^2 - y^2)$			$\therefore B^2 = 36$
		Regular Doubt o	learing	g Sessi	ons Free Online Test Series Programme
	ACE	Affordable Fee Ava	ilable 3	M 6M	12M 18M and 24 Months Subscription Packages

ACE
Engineering Publications

62

48.	Ans: (c)			$(\frac{k-1}{2})^t$
Sol:	$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} = 2\frac{\partial \mathbf{u}}{\partial \mathbf{t}} + \mathbf{u} $	(1)		$u = c_1 e^{-3x}$ Given $u(x, 0) = 6e^{-3x}$
	$u(x, 0) = 6e^{-3x}$	- (2)		$6e^{-3x} = u(x, 0) = C_1 C_2 e^{kx}$
	u = XT (3) w	where X is a function of		$c_1c_2 = 6 \& k = -3$
	'x' only and T is a fu	nction of 't' only		$u = 6e^{-3x}$ $e^{\left(\frac{-3-1}{2}\right)t}$
	Sub (3) in (1)			$u = 6e^{-3x}e^{-2t}$
	X'T = 8 XT' + XT			u oc c
	X'T = X (2T' + T)		49.	Ans: (a)
	$\frac{X'}{X} = \frac{2T' + T}{T} = K$	NGINEER	Sol:	Given $\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$ (i)
	$\frac{X'}{X} = k \& \frac{8T' + T}{T} = 1$	K y		Let $u = X(x).Y(y)$ be the solution of (i)
	$\frac{X'}{X} = k \Longrightarrow \frac{dX}{dx} = kX$	Y		Then $\frac{\partial u}{\partial x} = X'Y$ and $\frac{\partial u}{\partial y} = XY'$
	dX 1 1			Substituting in equation (i)
	$\overline{X} = k dx$			$X^{1}Y = 4XY'$
	On integrating			$\frac{X'}{X} = \frac{4Y'}{Y} = k$
	$\log X = kx + \log C_1$		\prec	X' , AY' ,
	$A = C_1 e \rightarrow (4)$	Since	199	$\overline{X} = k$ and $\overline{Y} = k$
	$\frac{2T+T}{T} = k \implies 2T'$	+T = kT		\Rightarrow X = c ₁ e ^{kx} and Y = c ₂ e ^{ky} / ₄
	$\frac{\mathrm{dT}}{\mathrm{dt}} = \frac{(\mathrm{k}-1)\mathrm{T}}{2}$	AU		Now, the solution is,
	$\frac{1}{-1}dT = \left(\frac{k-1}{-1}\right)dt$			$\mathbf{u} = \mathbf{c}_1 \mathbf{c}_2 \mathrm{e}^{\mathrm{kx}} \mathrm{e}^{\frac{\mathrm{ky}}{4}}$
	T (2)			$u = c_{0} e^{kx} e^{\frac{ky}{4}} $ (ii)
	On integrating			$u^{2} = 0, v^{2} = 0$
	$Log T = \left(\frac{k-1}{k}\right)t + 1$	ogC ₂		$(0, y) = 0e^{-x}$
				$\Rightarrow 8e^{-3y} = u(0,y) = c_3 e^{\frac{\kappa}{4}y}$
	$T = c_2 \ e^{\left(\frac{\kappa-1}{2}\right)t} \to (5)$			\Rightarrow c ₃ = 8, k = -12
	Sub (4) & (5) in (3)			$\therefore u = 8 e^{-12x-3y}$
		Deep Learn - India's	Best Onli	ne Coaching Platform for GATE, ESE, and PSUs
	ACE	Enjoy a smooth online lea	arning ex	perience in various languages at your convenience

ACE Engineering Publications

50. Ans: (c)

Sol: Given yzp - xzq = xyThe linear partial differential equation is Pp + Qq = R, where P,Q,R are functions of x,y,z P = yz, Q = -xz, R = xy

The lagrange's auxiliary equation is

$$\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$$

$$\Rightarrow \frac{dx}{yz} = \frac{dy}{-xz} = \frac{dz}{xy}$$

$$\Rightarrow \frac{dx}{yz} = \frac{dy}{-xz}$$

$$\Rightarrow ydy + xdx = 0$$
Integrating both sides
$$\frac{y^2}{y^2} + \frac{x^2}{y^2} = c.$$

$$2 2 1$$
$$\Rightarrow x^2 + y^2 = k_1$$
$$Now \frac{dy}{-xz} = \frac{dz}{xy}$$

ydy + zdz = 0

Integrating both sides

$$\frac{y^2}{2} + \frac{z^2}{2} = c_2$$
$$y^2 + z^2 = k_2$$

 \therefore The solution is

$$\phi \left[x^{2} + y^{2}, y^{2} + z^{2} \right] = 0$$

(or) $f \left[x^{2} + y^{2}, y^{2} + z^{2} \right] = 0$

51. Ans: (a)

Sol: Given p(mz - ny) + q(nx - lz) = ly - mx,

where
$$p = \frac{\partial z}{\partial x}$$
, $q = \frac{\partial z}{\partial y}$

The auxiliary equation is

$$\frac{\mathrm{d}x}{(\mathrm{m}z-\mathrm{n}y)} = \frac{\mathrm{d}y}{(\mathrm{n}x-\mathrm{l}z)} = \frac{\mathrm{d}z}{(\mathrm{l}y-\mathrm{m}x)} \dots \dots (1)$$

choose x,y,z are as lagrange's multipliers By algebra, Each ratio

$$= \frac{xdx + ydy + zdz}{x(mz - ny) + y(nx - \ln z) + z(ly - mx)}$$

Each ratio of (1) = $\frac{xdx + ydy + zdz}{0}$

$$\Rightarrow xdx + ydy + zdz = 0$$

Integrating both sides, we get

$$\Rightarrow \frac{x^2}{2} + \frac{y^2}{2} + \frac{z^2}{2} = c_1$$
$$\Rightarrow x^2 + y^2 + z^2 = k_1$$

choose *l*,m,n as another set of lagrange's multipliers,

Each ratio of

Since 1

$$(1) = \frac{ldx + mdy + ndz}{l(mz - ny) + m(nx - lz) + z(ly - mx)}$$
$$= \frac{ldx + mdy + ndz}{0}$$
$$\Rightarrow ldx + mdy + ndz = 0$$

Integrating both sides, we get

$$l\mathbf{x} + \mathbf{m}\mathbf{y} + \mathbf{n}\mathbf{z} = \mathbf{k}_2$$

$$\therefore \text{ The solution is} \\ f[x^2 + y^2 + z^2, lx + my + nz] = 0$$

or $x^2 + y^2 + z^2 = f(lx + my + nz)$

Regular Doubt clearing Sessions | Free Online Test Series Programme

Affordable Fee | Available 3M |6M |12M |18M and 24 Months Subscription Packages

ACE Engineering Publications

52. Ans: (c)

Sol: Given $p^2 + q^2 = npq$ The complete solution is

$$Z = ax + by + c \qquad \dots \dots (1)$$

where a & b are arbitrary constants

$$p = \frac{\partial z}{\partial x} = a$$
 & $q = \frac{\partial z}{\partial y} = b$

substitute these values in the equation

$$p^{2} + q^{2} = npq$$

$$a^{2} + b^{2} = nab$$

$$a^{2} + b^{2} - nab = 0$$

$$b = \frac{na \pm a\sqrt{n^{2} - 4}}{2} = \frac{na}{2} \pm \frac{a}{2}\sqrt{n^{2}}$$
The solution is

-4

Since

 \therefore The solution is

$$Z = ax + \frac{nay}{2} \pm \frac{a}{2}\sqrt{n^2 - 4}y + c$$
$$Z = ax + \frac{ay}{2}\left[n \pm \sqrt{n^2 - 4}\right] + c$$

53. Ans: (d)

Sol: Given p(1 + q) = qz

consider a trial solution

$$z = g(t)$$

where t = x + ay

$$p = \frac{\partial z}{\partial x} = \frac{\partial z}{\partial t} \cdot \frac{\partial t}{\partial x} = g'(t) = \frac{dz}{dt}$$
$$q = \frac{\partial z}{\partial y} = \frac{\partial z}{\partial t} \cdot \frac{\partial t}{\partial y} = g'(t) \cdot a = a \frac{dz}{dt}$$

substituting these values in (1), we get

$$\frac{dz}{dt} \left[1 + a \frac{dz}{dt} \right] = z \cdot a \frac{dz}{dt}$$
$$1 + a \frac{dz}{dt} = az$$

$$\Rightarrow a \frac{dz}{dt} = az - 1$$

Integrating both sides

$$\Rightarrow \int \frac{dz}{(az-1)} = \int \frac{dt}{a}$$
$$\Rightarrow \frac{\log(az-1)}{a} = \frac{t}{a} + c$$
$$\Rightarrow \frac{\log(az-1)}{a} = \left(\frac{x+ay}{a}\right) + c$$

$$\Rightarrow \frac{\log(az-1)}{a} = \frac{x+ay}{a} + c$$

$$\Rightarrow \log(az-1) = (x+ay) + ac$$

$$\therefore$$
 The solution is

$$\log (az-1) = x + ay + b \quad [\because b = ac]$$

54. Ans: (a) Sol: Given $p^2q^2 + x^2y^2 = x^2q^2(x^2 + y^2)$ Dividing both sides by x^2q^2 , we get $\frac{p^2}{x^2} + \frac{y^2}{q^2} = x^2 + y^2$ $\Rightarrow \frac{p^2}{x^2} - x^2 = y^2 - \frac{y^2}{q^2} = a^2$ [say] $\Rightarrow \frac{p^2}{x^2} - x^2 = a^2$

 $\Rightarrow \frac{p^2}{x^2} = (x^2 + a^2)$

$$\Rightarrow p^2 = x^2(x^2 + a^2)$$

 $\Rightarrow p = x(x^2 + a^2)^{\frac{1}{2}}$

$$\Rightarrow y^2 - \frac{y}{q^2} = a^2$$

$$\Rightarrow y^{2} - a^{2} = \frac{y^{2}}{q^{2}}$$
$$\Rightarrow q^{2} = \frac{y^{2}}{y^{2} - a^{2}}$$

$$\Rightarrow q = \frac{y}{\left(y^2 - a^2\right)^{\frac{1}{2}}}$$

we know that dz = pdx + qdy

$$\Rightarrow dz = x(x^2 + a^2)^{\frac{1}{2}}dx + \frac{ydy}{(y^2 - a^2)^{\frac{1}{2}}}$$

Integrating both sides, we get

$$\int dz = \int x (x^2 + a^2)^{\frac{1}{2}} dx + \int \frac{y}{(y^2 - a^2)^{\frac{1}{2}}}$$
 Since

$$\therefore \quad z = \frac{1}{3} (x^2 + a^2)^{\frac{3}{2}} + (y^2 - a^2)^{\frac{1}{2}} + b \text{ is the}$$

INGINE

required solution.

55. Ans: (b)

Sol: Given
$$pqz = p^2(xq + p^2) + q^2(yp + q^2)$$

dividing both sides by pq, we get

$$z = \frac{p}{q} (xq + p^2) + \frac{q}{p} (yp + q^2)$$
$$\Rightarrow z = px + \frac{p^3}{q} + qy + \frac{q^3}{p}$$

65

Differential Equations

$$\Rightarrow z = px + qy + \left(\frac{p^3}{q} + \frac{q^3}{p}\right)$$

$$\therefore \text{ The solution is}$$

$$z = ax + by + \left(\frac{a^3}{b} + \frac{b^3}{a}\right)$$

56. Ans: (d)

Sol: Given
$$\frac{\partial^2 u}{\partial x^2} = 25 \frac{\partial^2 u}{\partial t^2}$$

(or) $\frac{\partial^2 u}{\partial t^2} = \frac{1}{25} \frac{\partial^2 u}{\partial x^2}$ (1)
with $u(0) = 3x$ (2)
and $\frac{\partial u(0)}{\partial t} = 3$ (3)

If the given one dimensional wave equation is of the form $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial u^2}{\partial t^2}$, $-\infty < x < \infty$, t

$$\partial t^{2} = \partial x^{2}$$

> 0 and c > 0, satisfying the conditions u(x,
0) = f(x) and $\frac{\partial u(x,0)}{\partial t} = g(x)$, where f(x)

& g(x) are given functions representing the initial displacement and initial velocity, respectively then its general solution is given by

$$u(x, t) = \frac{1}{2} [f(x - ct) + f(x + ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} g(s) ds$$

Comparing the given problem with above general problem, we have

$$c = \frac{1}{5}, f(x) = 3x, g(x) = 3$$

66 Now, $u(1, 1) = \frac{1}{2} \left[f\left(1 - \frac{1}{5}\right) + f\left(1 + \frac{1}{5}\right) \right] + \frac{1}{2\left(\frac{1}{5}\right)} \int_{1 + \frac{1}{5}}^{1 + \frac{1}{5}} 3 ds$ $\Rightarrow \sin(\pi x) = \sum_{n=1}^{\infty} a_n \sin(n\pi x)$
Now, $u(1, 1) = \frac{1}{2} \left[f\left(1 - \frac{1}{5}\right) + f\left(1 + \frac{1}{5}\right) \right] + \frac{1}{2\left(\frac{1}{5}\right)} \int_{1 - \frac{1}{5}}^{1 + \frac{1}{5}} 3 ds$ $\Rightarrow \sin(\pi x) = \sum_{n=1}^{\infty} a_n \sin(n\pi x)$
$= \frac{1}{2} \left[\frac{1}{1-\frac{1}{5}} + \frac{1}{5} \left[\frac{1+\frac{1}{5}}{2\left(\frac{1}{5}\right)} + \frac{1}{2\left(\frac{1}{5}\right)} + \frac{1}{2\left(\frac{1}{5}\right)} + \frac{1}{5} \right] \qquad \Rightarrow \sin(\pi x) = \sum_{n=1}^{\infty} a_n \sin(n\pi x)$
$\Rightarrow u(1, 1) = \frac{1}{2} \left[3\left(\frac{4}{5}\right) + 3\left(\frac{6}{5}\right) \right] + \frac{5}{2} (3) (s)_{\frac{4}{5}}^{\overline{5}} \qquad \Rightarrow \sin(\pi x) = a_1 \sin(\pi x) + a_2 \sin(2\pi x) + \dots$ Comparing coefficients of sin on both sid
$\Rightarrow u(1, 1) = \frac{1}{2} \left[\frac{3}{5} \times (4+6) \right] + \frac{15}{2} \left[\frac{6}{5} - \frac{4}{5} \right] \qquad \text{of above, we get} \\ a_1 = 1, a_2 = 0, a_3 = 0, a_4 = 0, \dots $
$\Rightarrow u(1, 1) = 3 + \frac{15}{2} \left(\frac{2}{5}\right)$ $\therefore \text{ The solution of (1) with (2) from (3) and (4) is }$
$\therefore u(1, 1) = 6$ $u(x, t) = \sin(\pi x). e^{-\left[\frac{\pi^2}{1} \left(\frac{1}{\pi^2}\right)\right] \cdot t} = e^{-t} \sin(\pi x).$
57. Ans: (a)
Sol: Given that $\frac{\partial u}{\partial t} = \frac{1}{\pi^2} \frac{\partial^2 u}{\partial x^2}$ (1) Sol: Given $u_t = (\sqrt{2})^2 u_{xx}$ (1)
$\left(\because \frac{\partial \mathbf{u}}{\partial t} = \mathbf{c}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2}\right) \qquad (\because \mathbf{u}_t = \mathbf{c}^2 \mathbf{u}_{xx})$
with B.C's : $u(0, t) = 0$ (:: $u(0, t) = 0$) with B.C's: $u(0, t) = 0$
u(1, t) = 0 (:: $u(l, t) = 0$) (:: $u(0, t) = 0$)
and I.C's : $u(x, 0) = sin(\pi x) \dots (2)$ $u(\pi, t) = 0$ (:: $u(\ell, t) = 0$)
(:: u(x, 0) = f(x)) and I.C: $u(x, 0) = sin(x)$ (2)
Now, the solution of (1) is given by $(\because u(x, 0) = f(x))$
$u(x,t) = \sum_{n=1}^{\infty} a_n . \sin\left(\frac{n\pi x}{\ell}\right) . e^{-\left(\frac{n^2\pi^2c^2}{\ell^2}\right)t}$ The solution of (1) is given by
$\Rightarrow u(x, t) = \sum_{n=1}^{\infty} a_n \sin(n\pi x) \cdot e^{-n^2 t} \dots \dots \dots \dots (3)$ $u(x, t) = \sum_{n=1}^{\infty} a_n \cdot \sin\left(\frac{n\pi x}{\ell}\right) \cdot e^{-\left(\frac{\pi x}{\ell}\right) \cdot t}$
where $a_n = \frac{2}{\ell} \int_{0}^{\ell} f(x) \sin\left(\frac{n\pi x}{\ell}\right) dx$ $\Rightarrow u(x, t) = \sum_{n=1}^{\infty} a_n \sin(nx) e^{-2n^2 t} \dots (3)$
Put t = 0 in (3), we get $\Rightarrow u(x,0) = \sum_{n=1}^{\infty} a_n \cdot \sin(nx) \text{(for t = 0)}$ $\Rightarrow \sin(x) = a_n \sin(x) + a_n \sin(2x) + a_$
$\longrightarrow \operatorname{SIII}(X) = a_1 \operatorname{SIII}(X) + a_2 \operatorname{SIII}(2X) + \dots$ Deep Learn - India's Best Online Coaching Platform for GATE, ESE, and PSUs
Enjoy a smooth online learning experience in various languages at your convenience

	Engineering Publications	68	Engineering Mathematics
	$\Rightarrow 2\sin(x) = \sum_{n=1}^{\infty} a_n \sin(nx)$ $\Rightarrow 2\sin(x) = a_1 . \sin x + a_2 \sin(2x) + \dots$		$\Rightarrow b_{n} = \frac{2u_{0}}{\ell} \left[\frac{-\cos\left(\frac{n\pi x}{\ell}\right)}{\frac{n\pi}{\ell}} \right]^{\ell}$
	$\Rightarrow a_1 = 2, a_2 = 0. a_3 = 0 \dots (4)$		
	\therefore The solution of (1) with (2) from (3) and	d	$\Rightarrow b_n = \frac{2u_0}{n\pi} [1 - \cos(n\pi)]$
	(4) is given by		$\Rightarrow \mathbf{b}_{n} = \frac{2\mathbf{u}_{0}}{\left[1 - \left(-1\right)^{n}\right]} \rightarrow (7)$
	$u(x, t) = a_1.sin(x) cos(t) = 2.sin(x) cos(t)$		Using (7) (i.e. the value of b_n in (6), the
61.	Ans: (a)		required solution is), the equation (6)
			becomes
Sol:	Given $u_{xx} + u_{yy} = 0 \rightarrow (1)$	ERI	$\sum_{n=1}^{\infty} 2u_0 \left[(n\pi x) \left(\frac{-2\pi y}{\ell} \right) \right]$
	$\mathbf{u}(0, \mathbf{y}) = 0 \qquad \rightarrow (2) \qquad \forall \mathbf{y} > 0$		$u(\mathbf{x},\mathbf{y}) = \sum_{n=1}^{\infty} \frac{1}{n\pi} [1 - (-1)] \cdot \sin\left(\frac{1}{\ell}\right) e^{-\frac{1}{\ell}}$
	$\mathbf{u}(l,\mathbf{y}) = 0 \qquad \rightarrow (3) \forall \mathbf{y} > 0$		(or) $[(2n \ 1)mx] - [(2n-1)my]$
	$u(x, 0) = f(x) = u_0 \rightarrow (4)$ $0 < x l$		$u(x, y) = \sum_{n=1}^{\ell} \frac{2u_0}{(2n-1)\pi} (2) \sin \left \frac{(2n-1)\pi x}{\ell} \right e^{\lfloor \ell - \ell \rfloor}$
	$\mathbf{u}(\mathbf{x},\infty) = 0 \qquad \qquad \rightarrow (5) 0 < \mathbf{x} < l$		
	у		62. Ans: (a)
	$\int u(x,\infty) = 0$		Sol: Given $u_{xx} + u_{yy} = 0 \dots (1)$
	$y = m = \infty$		with B.C's
	$u(0, y) = 0$ $u(\ell, y) = 0$		$\left.\begin{array}{c} u\left(0,y\right)=0\\ u\left(\ell,y\right)=0\end{array}\right\} \qquad 0 \le y \le m$
	y=0 $u(x, y) = f(x)$ x		$u(\mathbf{x} 0) = 0$
	$x=0$ $x=\ell$		$ \begin{array}{c} u(x,0) = 0 \\ \vdots & n\pi x \end{array} $ $0 \le x \le \ell $
	The G.S of (1) satisfying above al	1	$u(x,a) = \sin \frac{\ell}{\ell}$
	boundary conditions is		The solution of (1) is given by
	$u(x, y) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi x}{\ell}\right) e^{-\left(\frac{n\pi y}{\ell}\right)} \to (6)$		y u(x, m) = g(x)
	2^{ℓ} ($n\pi x$).		y = m
	where $b_n = \frac{-\ell}{\ell} \int_0^{\infty} f(x) \sin\left(\frac{-\ell}{\ell}\right) dx$		$u(0, y) = 0$ $u(\ell . y) = 0$
	Now, $b_n = \frac{2}{\ell} \int_0^\ell u_0 . \sin\left(\frac{n\pi x}{\ell}\right) dx$		$y=0 \xrightarrow[x=0]{u(x, 0)=0} x=\ell$
	Men Loom Loom Ind	a'a Daa	at Online Coophing Distform for CATE ESE and Della

Deep Learn - India's Best Online Coaching Platform for GATE, ESE, and PSUs Enjoy a smooth online learning experience in various languages at your convenience

Engineering Publications	69	Differential Equations	
$\mathbf{u}(\mathbf{x}, \mathbf{y}) = \sum_{n=1}^{\infty} \mathbf{b}_{n} \cdot \sin\left(\frac{n\pi \mathbf{x}}{\ell}\right) \cdot \sinh\left(\frac{n\pi \mathbf{y}}{\ell}\right)$ where $\mathbf{b}_{n} = \frac{2}{\ell \sinh\left(\frac{n\pi \mathbf{m}}{\ell}\right)} \int_{0}^{\ell} \mathbf{g}(\mathbf{x}) \cdot \sin\left(\frac{n\pi \mathbf{x}}{\ell}\right)$ Now, $\mathbf{b}_{n} = \frac{2}{\ell \cdot \sinh\left(\frac{n\pi \mathbf{m}}{\ell}\right)} \int_{0}^{\ell} \sin\left(\frac{n\pi \mathbf{x}}{\ell}\right) \cdot \sin\left(\frac{n\pi \mathbf{x}}{\ell}\right)$ $= \frac{2}{\ell \cdot \sinh\left(\frac{n\pi \mathbf{m}}{\ell}\right)} \int_{0}^{\ell} \frac{1 + \cos\frac{2n\pi \mathbf{x}}{\ell}}{2} \cdot \frac{1}{2} \cdot \frac{\sin\left(\frac{2n\pi \mathbf{x}}{\ell}\right)}{2} \cdot \frac{1}{2} $	$\int_{0}^{\ell} dx$ $\frac{n\pi x}{\ell} dx$ $\frac{n\pi x}{\ell} dx$ $\frac{dx}{dx} EER M$ $\int_{0}^{\ell} \int_{0}^{\ell} dx$ $m = a$ $\int_{0}^{\ell} dx$	64. Ans: 0.5 64. Ans: 0.5 Sol: Given that $f(t) = 2t^2e^{-t}$ $\therefore L\{t^n\} = \frac{n!}{s^{n+1}}, n \in N$ Now, $L\{t^2\} = \frac{2!}{s^{2+1}}$ $= \frac{2}{s^3}$ $L(2t^2) = \frac{4}{s^3}$ By 1 st shifting theorem, we have $L(2t^2e^{-t}) = F(s) = \frac{4}{(s+1)^3}$ Then $F(1) = \frac{4}{(1+1)^3}$ $= \frac{4}{8} = \frac{1}{2} = 0.5$ 65. Ans: (c) Sol: $L\{\frac{\sin at}{t}\}$ $L\{\sin at\} = \frac{a}{s^2 + a^2}$ $L\{\sin at\} = \frac{a}{s^2 - a} ds$	
63. Ans: (d)		$= \left(a \cdot \frac{1}{2} \tan^{-1}\left(\frac{s}{2}\right)\right)^{\infty}$	
Sol: Given that $L\{\cos \omega t\} = \frac{1}{s^2 + \omega^2}$		(a)	
$\Rightarrow L\{\cos 4t\} = \frac{1}{(s^2 + 16)}$		$= \tan^{-1} \infty - \tan^{-1} \frac{b}{a} = \frac{\pi}{2} - \tan^{-1} \frac{b}{a}$	
:. $L\{e^{-2t}\cos 4t\} = \frac{s+2}{(s+2)^2+16}$		$= \cot^{-1}\left(\frac{s}{a}\right)$	
(from first shifting theorem)			
ACE X DEEP LEARN Affordable	Regular Doubt clearing Sessions Free Unline Test Series Programme Affordable Fee Available 3M 6M 12M 18M and 24 Months Subscription Packages		

	Engineering Publications	70	Engineering Mathematics
66.	Ans: (d)		$L{f^{l}(t)} = s. L{f(t)} - f(0)$
Sol:	$L\left\{\int_{0}^{t} e^{-t} \sin t dt\right\}$		$\Rightarrow L\{f^{l}(t)\} = s.L\left\{\frac{\sin t}{t}\right\} - f(0)$
	$L\{\sin t\} = \frac{1}{s^2 + 1}$		$L{f^{1}(t)} = s \cot^{-1} s - f(0) = s \cot^{-1} s - 1$
	$L\{e^{-t}\sin t\} = \frac{1}{(s+1)^2 + 1}$		69. Ans: (a) $(t = 0, s, t < 1)$
	$L\left\{ \int_{0}^{t} e^{-t} \sin t dt \right\} = \frac{1}{2} \left(\frac{1}{1} \right)$	\$	Sol: $f(t) = \begin{cases} t, & 0 < t \le 1 \\ 0, & 1 < t < 2 \end{cases}$
	$E\left\{\int_{0}^{1} e^{-s \sin t dt}\right\} = s\left((s+1)^{2}+1\right)$		\therefore f(t) is periodic function with period 2
67.	Ans: (b)	ERI	$L\{f(t)\} = \frac{1}{1 - e^{-2s}} \int_0^z e^{-st} f(t) dt$
Sol:	L {t e^{-t} sint}		$=\frac{1}{1-e^{-2s}}\int_0^1 t.e^{-st} dt$
	$L {sin t} = \frac{1}{s^2 + 1}$		$= \frac{1}{1 - e^{-2s}} \left[t \left(\frac{e^{-st}}{s} \right) - 1 \left(\frac{e^{-st}}{s^2} \right) \right]^{1}$
	L {t sin t}= (-1) $\frac{d}{ds} \left[\frac{1}{s^2 + 1} \right] = (-1) \frac{(-1)2s}{(s^2 + 1)^2}$		$= \frac{1}{\left[\left(\frac{e^{-s}}{e^{-s}}\right) - \left(\frac{e^{-s}}{e^{-s}}\right) + \frac{1}{e^{-s}}\right]}$
	$=\frac{2s}{\left(s^2+1\right)^2}$		$1 - e^{-2s} \left[\left(-s \right) \left(s^2 \right)^{+} s^2 \right]$
	L{e ^{-t} t sint} = $\frac{2(s+1)}{[(s+1)^2 + 1]^2}$ Since		70. Ans: (d)
		cen	Sol: $L\{U(t-1)(t^2-2t)\}$ Use Laplace Transform: $L\{U(t-c)f(t)\} =$
(9			$e^{-cs} L\{f(t+c)\}$
08.	Ans: (c)		For $(t^2 - 2t) U(t - 1)$: $f(t) = (t^2 - 2t)$, $c = 1$
Sol:	$L(\sin t) = \frac{1}{s^2 + 1}$		$= e^{-1-s} L\{((t+1)^2 - 2(t+1))\}$
	$L\left(\frac{\sin t}{t}\right) = \int_{s}^{\infty} \frac{1}{s^{2} + 1} ds$		L{((t+1) ² -2(t+1))} $\frac{2}{s^{3}} - \frac{1}{s}$
	$= \left[\tan^{-1} s \right]_{s}^{\infty}$		$=\mathrm{e}^{-1-\mathrm{s}}\left(\frac{2}{\mathrm{s}^3}-\frac{1}{\mathrm{s}}\right)$
	$=\frac{\pi}{2}-\tan^{-1}s$		$= e^{-s} \left(\frac{2}{s^3} - \frac{1}{s} \right)$
	$= \cot^{-1} s$		

Deep Learn - India's Best Online Coaching Platform for GATE, ESE, and PSUs Enjoy a smooth online learning experience in various languages at your convenience

	ACE Engineering Publications		71		Differential Equations	
71. Sol:	Ans: (b) $L\{e^{t}\} = \frac{1}{s-1}$ $e^{t} u(t-4) = [e^{t-4}. u(t-4)]$ By second shifting p $L[e^{t}.u(t-4)] = e^{4}. L[e^{t}.u(t-4)] = e^{4}. \left(\frac{e}{s}\right)$	$t - 4)]e^{4}$ property $e^{t-4} \cdot u(t - 4)]$ $\frac{e^{4s}}{-1} = \frac{e^{4-4s}}{s-1} = \frac{e^{-4(s-1)}}{s-1}$		74. Sol:	$L^{-1}\left\{\frac{1}{(s+3)^{2}+4}\right\} = \frac{1}{2}e^{-3t}\sin(2t)$ $= e^{-3t}\cos(2t) + 6e^{-3t}\frac{1}{2}\sin(2t)$ $= e^{-3t}\cos(2t) + 3e^{-3t}\sin(2t)$ Ans: (a) Given H(s) = $\frac{s+3}{s^{2}+2s+1}$	
72.	Ans: (b)	NIE		Vc	$=\frac{(s+1)+2}{2}$	
Sol:	$f(t) = 2\sqrt{\frac{t}{\pi}}$ $\Rightarrow f'(t) = \frac{1}{\sqrt{\pi t}} = g(t)$ $\therefore L\{g(t)\} = L\{f'(t)\} = L\{f'(t)\} = s \ \overline{f}(s) - f(0)$ $= s \cdot s^{-3/2} - 0 = s^{-3/2}$			75	$(s+1)^{2}$ Now, L ⁻¹ {H(s)} = L ⁻¹ { $\frac{1}{(s+1)} + \frac{2}{(s+1)^{2}}$ } = e ^{-t} L ⁻¹ { $\frac{1}{s} + \frac{2}{s^{2}}$ } (By First shifting property) = e ^{-t} (1+2t)	
73.	Ans: (d)				$x = \left[\begin{array}{c} s + 5 \end{array} \right]$	
Sol:	Expand $\frac{s+9}{s^{2}+6s+13} = \frac{s+1}{(s+3)^{2}}$ $= L^{-1} \left\{ \frac{s+3}{(s+3)^{2}+4} + \frac{1}{(s+3)^{2}+4} + \frac{1}{(s+3)^{2}+4} + \frac{1}{(s+3)^{2}+4} \right\}$ Use the linearity protonor transform $= L^{-1} \left\{ \frac{s+3}{(s+3)^{2}+4} \right\} = 0$	$\frac{+3}{)^{2} + 4} + 6 \frac{1}{(s+3)^{2} + 4}$ $6 \frac{1}{(s+3)^{2} + 4}$ perty of inverse laplace $+ 6L^{-1} \left\{ \frac{1}{(s+3)^{2} + 4} \right\}$ $e^{-3t} \cos(2t)$		501;	L $\left\{ \frac{1}{(s+1)(s+3)} \right\}$ Take the partial fraction of $\frac{s+5}{(s+1)(s+3)} = \frac{2}{s+1} - \frac{1}{s+3}$ $= L^{-1} \left\{ \frac{2}{s+1} \right\} - L^{-1} \left\{ \frac{1}{s+3} \right\}$ $\therefore L^{-1} \left\{ \frac{2}{s+1} \right\} = 2e^{-t}$ $\therefore L^{-1} \left\{ \frac{1}{s+3} \right\} = e^{-3t}$ $= 2e^{-t} - e^{-3t}$	
	Regular Doubt clearing Sessions Free Online Test Series Programme Affordable Fee Available 3M I6M I12M I18M and 24 Months Subscription Packages					
	ACE		mant J	ie зм юм 12м 18м and 24 Months Subscription Packages		
	ACE Engineering Publications	72		Engineering Mathematics		
------	---	--	-----------	--	--	--
76.	Ans: (c)	,	79.	Ans: (b)		
Sol:	$L^{-1}\left\{\frac{1}{s^{2}(s+1)}\right\} = L^{-1}\left\{\frac{-1}{s} + \frac{1}{s^{2}} + \frac{1}{s+1}\right\}$:	Sol:	Let $L{f(t)} = \overline{f}(s) = \frac{s+3}{(s+1)(s+2)}$		
	(By Partial fractions) = $-1 + t + e^{-t}$			Then $f(t) = L^{-1} \left\{ \frac{s+3}{(s+1)(s+2)} \right\}$		
77.	Ans: (a)			$\Rightarrow f(t) = L^{-1} \left\{ \frac{2}{s+1} - \frac{1}{s+2} \right\}$		
Sol:	$L^{-1}\left(\frac{1}{s+3}\right) = e^{-3t}$			$\Rightarrow f(t) = 2L^{-1}\left\{\frac{1}{s+1}\right\} - L^{-1}\left\{\frac{1}{s+2}\right\}$ $\Rightarrow f(t) = 2e^{-t} - e^{-2t}$		
	$L^{-1}\left(\frac{e^{-4s}}{s+3}\right) = e^{-3(t-4)}u(t-4)$	ERI	۷G	$\therefore f(0) = 2 - 1 = 1$		
	By 2 nd shifting property		80.	Ans: (a)		
	$\begin{cases} e^{-3(t-4)} \text{ when } t \ge 4 \\ 0 \text{ other wise} \end{cases}$		Sol:	Given $\frac{d^2y}{dt^2} - y = 1$,		
	(o other wise			ut = 1		
70				y(t) - y(t) - 1		
/8.	Ans: (b)			Taking laplace transforms both sides $L[I](i) = (i)$		
Sol:	Let $L^{-1}\left(\log\left(\frac{s-a}{s-b}\right)\right) = f(t)$		\langle	L[y''(t) - y(t)] = L(1) s ² $\overline{v}(s) - sv(0) - v'(0) - \overline{v}(s) = \frac{1}{2}$		
	$\Rightarrow L[f(t)] = \log\left(\frac{s-a}{s-b}\right)$ Sin	ce 1	99	$s^{2}\overline{y}(s) - \overline{y}(s) = \frac{1}{s}$		
	$= \log (s-a) - \log (s-b)$			s		
	$\Rightarrow L[t.f(t)] = (-1) \frac{d}{ds} (\log (s-a) - \log (s-b))$			$\left(s^2 - 1\right)\overline{y}(s) = \frac{1}{s}$		
	$=\frac{1}{s-b}-\frac{1}{s-a}$			$\therefore \overline{\mathbf{y}}(\mathbf{s}) = \frac{1}{\mathbf{s}(\mathbf{s}^2 - 1)}$		
	t. f(t) = L ⁻¹ $\left(\frac{1}{s-b} - \frac{1}{s-a} \right)$			$=\frac{1}{s(s+1)(s-1)}$		
	$= e^{bt} - e^{at}$					
	$\therefore f(t) = \frac{e^{bt} - e^{at}}{t}$					
	Deep Learn - Ind	ia's Bes	t Onli	ne Coaching Platform for GATE, ESE, and PSUs		
	ACE Enjoy a smooth onlin	Enjoy a smooth online learning experience in various languages at your convenience				

	Engineering Publications	73		Differential Equations
81.	Ans: (a)		82.	Ans: (c)
Sol:	Given that $y''(t) + 2y'(t) + y(t) = 0$ (1) and $y(0) = 0$, $y'(0) = 1$		Sol:	Given that $\frac{d^2f}{dt^2} + f = 0 \dots (1)$
	Applying Laplace transform on both sides o	f		and $f(0) = 0$, $f'(0) = 4$
	(1), we get			Applying Laplace transform on both sides of
	$L{y''(t)}+2 L{y'(t)}+L{y(t)} = L {0}$			(1), we get
	$\Rightarrow [s^2 L \{y(t)\} - s y(0) - y'(0)]$			$L\left\{ f^{11}(t) \right\} + L\left\{ f(t) \right\} = L(0)$
	$+ 2 [s L {y(t)} -y(0) + L {y(t)} = 0$ $\Rightarrow (s^{2} + 2s + 1) L {y(t)} - (s) (0) -1 -(2) (0) = 0$	0		$\Rightarrow s^{2}\bar{f}(s) - sf(0) - f^{1}(0) + \bar{f}(s) = 0$
	$\Rightarrow L\{y(t)\} = \frac{1}{s^2 + 2s + 1}$	RING	۷G	$\Rightarrow \left(s^{2}+1\right)\overline{f}\left(s\right)-\left(s\right)\left(0\right)-4=0$
	$=\frac{1}{\left(s+1\right)^2}$			$\Rightarrow \bar{f}(s) = \frac{4}{s^2 + 1}$
	$\Rightarrow y(t) = L^{-1} \left\{ \frac{1}{(s+1)^2} \right\}$			$\therefore f(t) = L^{-1} \{ f(s) \}$
				$=L^{-1}\left\{\frac{1}{s^{2}+1}\right\}=4\sin t$
	$= e^{-t} L\left\{\frac{1}{s^2}\right\}$			Hence, $L\{f(t)\} = 4L\{\sin t\} = \frac{4}{s^2 + 1}$
	$\therefore y(t) = e^{-t} u(t)$	ce 1	99	5
	Α			E

01. Ans: (d) Sol: Let $u+iv = w = f(z) = e^{-y} \cos x + ie^{-y} \sin x$ Then $u = e^{-y} \cos x$ and $v = e^{-y} \sin x$ $\Rightarrow u_x = e^{-y} (-\sin x), u_y = -e^{-y} \cos x, v_x = e^{-y} \cos x$ and $v_y = -e^{-y} \sin x$ Here, C-R equation , $u_x = v_y$ and $v_x = -u_y$ are satisfied at every point and also u, v, u_x, u_y, v_x, v_y are continuous at every point. $\Rightarrow f(z) = u+iv$ is differentiable at every point.

> $\Rightarrow f(z) = u+iv \text{ is analytic at every point}$ $\therefore f(z) = u+iv \text{ is everywhere analytic}$

Hence, f(z) is also an entire function.

02. Ans: (a)

Sol: Let u + iv = f(z) = z Im (z) = (x + iy) y

Then $u + iv = f(z) = xy + iy^2$ Since $\Rightarrow u = xy$ and $v = y^2$ $\Rightarrow u_x = y, u_y = x, v_x = 0$ and $v_y = 2y$ Here, $u_x = v_y$ and $v_x = -u_y$ only at one point origin. i.e., C.R equations $u_x = v_y$ and $v_x = -u_y$ are satisfied only at origin. Further u, v, v_x, v_y, u_x, u_y are also continuous at origin. $\therefore f(z) = z \text{ Im}(z)$ is differentiable only at

origin (0,0).

Augustin-louis Cauchy (1789-1857) 03. Ans: (d) Sol: Let $u+iv = f(z) = \overline{z} = x-iy$ Then u = x and v = -y $\Rightarrow u_x = 1$, $u_y = 0$, $v_x = 0$, $v_y = -1$ Here, one of the C-R equation $u_x = v_y$ is not satisfied at any point. $\Rightarrow f(z)$ is not differentiable at any point $\Rightarrow f(z)$ is not analytic at any point. $\therefore f(z)$ is nowhere analytic

04. Ans: (d)

Sol: $\frac{1}{1-z}$ is not analytic at z = 1, $e^{\frac{1}{z}}$ is not analytic at z = 0, ln(z) is not analytic at z = 0,

 $\cos(z)$ is analytic at every point over the entire complex plane.

1995 \therefore Option (d) is correct.

05. Ans: (b)

Sol: Let $u + iv = f(z) = (x^2 + ay^2) + ibxy$ Then $u = x^2 + ay^2$ and v = bxy $\Rightarrow u_x = 2x$, $v_x = by$, $u_y = 2ay$, $v_y = bx$ Consider C-R equations,

 $u_x = v_y \& u_y = -v_x \quad (\because f(z) = u + iv \text{ is}$ analytic) $\Rightarrow 2x = bx \& 2ay = -by$ $\therefore b = 2, a = -1$

Augustin-Louis Cauchy was a French mathematician. "More concepts and theorems have been named for Cauchy than for any other mathematician". Cauchy was a prolific writer; he wrote approximately eight hundred research articles and almost single handedly founded complex analysis.

06. Ans: (a) **Sol:** Given $u = \sinh x \cos y$ \Rightarrow u_x = coshx.cosy and u_y = -sinhx. siny Consider $dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy$ \Rightarrow dv = (-u_v)dx+(u_x)dy $(:: u_x = v_v \text{ and } v_x = -u_v)$ \Rightarrow dv = (sinhx.siny) dx + (coshx.cosy)dy \Rightarrow dv = d (coshx.siny) $\Rightarrow \int dv = \int d(\cosh x. \sin y) + k$, where k is a real integral constant. \therefore v(x, y) = cosh(x) \cdot sin(y) + k is a required harmonic conjugate function. 07. Ans: (b) **Sol:** Let $v(x,y) = 4xy-2x^2+2y^2$ Then $v_x = 4y-4x$ and $v_y = 4x+4y$ Consider $du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy$ Since \Rightarrow du = (v_v)dx+(-v_x)dy $(:: u_x = v_y \text{ and } v_x = -u_y)$ \Rightarrow du = (4x+4y)dx + (4x-4y)dy

> $\Rightarrow du = 4xdx - 4ydy + 4(ydx+xdy)$ $\Rightarrow \int du = \int (4x) dx + \int (-4y) dy + \int 4 d(xy) + k$ $\Rightarrow u = 2x^2 - 2y^2 + 4xy + k, \text{ where } k \text{ is a real integral constant.}$

$$\therefore$$
 u (x,y) = $2x^2 - 2y^2 + 4xy + k$ is a required function

08. Ans: (c)

Sol: Given $u = \log r$

$$\Rightarrow \frac{\partial u}{\partial r} = \frac{1}{r} \text{ and } \frac{\partial u}{\partial \theta} = 0$$

Consider
$$dv = \frac{\partial v}{\partial \theta} d\theta + \frac{\partial v}{\partial r} dr$$

$$\Rightarrow dv = \frac{\partial v}{\partial \theta} d\theta + \frac{\partial v}{\partial r} dr$$

$$\Rightarrow d\mathbf{v} = \left(r\frac{\partial \mathbf{u}}{\partial \mathbf{r}}\right) d\theta + \left(\frac{-1}{r}\frac{\partial \mathbf{u}}{\partial \theta}\right) d\mathbf{r}$$
$$\left(\because \mathbf{u}_{r} = \frac{1}{r}\mathbf{v}_{\theta} & \mathbf{v}_{r} = \frac{-1}{r}\mathbf{u}_{\theta}\right)$$
$$\Rightarrow \int d\mathbf{v} = \int \left(r \times \frac{1}{r}\right) d\theta + \int \left(-\frac{1}{r} \times 0\right) d\mathbf{r} = \theta + c$$
$$\therefore \mathbf{v}(\mathbf{r}, \theta) = \theta + c$$

99. Ans: (a)
Sol: Given
$$u = x^3 - 4xy - 3xy^2$$

 $\Rightarrow u_x = 3x^2 - 4y - 3y^2$ and $u_y = -4x - 6xy$
Consider $f'(z) = u_x - iu_y$ for analytic
function $f(z)$.
 $\Rightarrow f'(z) = (3x^2 - 4y - 3y^2) - i(-4x - 6xy)$
 $\Rightarrow f'(z) = 3z^2 - 0 - 0 + i4z$ (\because 'x' by 'z'
and 'y' by '0')
 $\Rightarrow \int f'(z) dz = \int 3z^2 dz + i 4\int z dz + c$,
where $c = c_1 + ic_2$
 $\Rightarrow f(z) = \frac{3z^3}{3} + i4\frac{z^2}{2} + c$

 \therefore f(z) = z³+2iz²+c is a required analytic function.

Regular Doubt clearing Sessions | Free Online Test Series Programme

76	Engineering Mathematics
	$\Rightarrow \int f'(z) dz = \int (2z - i 4z) dz + c,$
	where $c = c_i + ic_2$
k siny]	\therefore f(z) = z ² -i 2z ² + c is a required analytic
y]	function
$=-u_{y})$	12. Ans: (a)
os y] + i	Sol: Let $I = \int (x^2 + iy^2) dz$, where C : $y = x$
	from $(0,0)$ to $(1,1)$
TERI	Then I = $\int (x^2 + iy^2) (dx + idy)$
required	z=(0,0)
	$\Rightarrow I = \int_{x=0}^{1} (x^{2} + ix^{2}) (dx + idx) (\because y = x)$
	\Rightarrow I = $\int_{-1}^{1} (1+i)^2 x^2 dx$
)	x=0
we get	\Rightarrow I = (2i) $\left(\frac{x^3}{2}\right)^1$
	$\left(\begin{array}{c} 3 \end{array}\right)_{0}$
'y', we	$\therefore I = \frac{21}{3}$
Sinco 1	
Since	13. Ans: (c)
(3)	Sol: Let $I = \int_{C} z dz$, where c: $y = x^3$ from (0,0) to
-u _y)	1+i
	Then $I = \int_{-\infty}^{1} z dz$
	z=0
	\Rightarrow I = $\left(\frac{z}{2}\right)_{a}$ (: (z) is analytic
y)	function)
	\Rightarrow I = $\frac{1}{2}(1+i)^2 - \frac{1}{2}(0)$
	2 2 . I_:
y by 0)	
Learn - India's Bes	st Online Coaching Platform for GATE, ESE, and PSUs
	y by 0) $x \sin y$ $y = -u_y$ $y = -u_y$

77

Since

14. Ans: (c)

Sol: Let $f(z) = \frac{e^z + \cos(z)}{(z-4)^2}$

Then the singular point of f(z) is given by equating the denominator to zero

i.e $(z-4)^2 = 0$

- \Rightarrow z = 4 is a singular point of f(z)
- \Rightarrow z = 4 lies outside the given region.
- ... By Cauchy's integral theorem, we have

$$\oint_{C} f(z) \, dz = 0$$

15. Ans: (d)

Sol: Let
$$f(z) = \frac{\sin\left(\frac{\pi z}{2}\right)}{z-1}$$

Then the singular point of the function f(z) is given by equating the denominator to zero.

i.e z-1 = 0

(<)

ACE

X DEEP

$$\Rightarrow$$
 z = 1 is a singular point of f(z)

 \Rightarrow z = 1 lies inside the circle |z - 2| = 4

So, we can evaluate it by using Cauchy's integral formula.

Now,
$$\oint_{c} f(z) dz = \oint_{c} \frac{\sin\left(\frac{\pi z}{2}\right)}{(z-1)} dz$$

$$= 2\pi i \left[\sin\left(\frac{\pi z}{2}\right) \right]_{z=1}$$
$$\Rightarrow \oint_{c} f(z) dz = 2\pi i \left[\sin\left(\frac{\pi}{2}\right) \right]$$
$$\therefore \oint_{c} f(z) dz = 2\pi i$$

с

16. Ans: (d) Sol: Let $I = \oint_c \frac{\cosh(3z)}{2z} dz$, where C: |z| = 1Then $I = \oint_c \frac{\left(\frac{\cosh(3z)}{2}\right)}{[z-0]} dz$ $\Rightarrow I = 2\pi i \left(\frac{\cosh(3z)}{2}\right)_{z=0}$ $\Rightarrow I = \pi i [\cosh(0)]$ $\left(\because \cosh(0) = \frac{e^0 + e^0}{2} = 1\right)$ $\therefore I = \pi i$

ACE

Enjoy a smooth online learning experience in various languages at your convenience

(0, 1)

(0, -1)

(3, 1)

(3, 0)

(3, -1)

ACCE79Complex Variables
$$z = 0, 4$$
 are singular points
 $z = 0$ lies inside the rectangle
 $z = 4$ lies outside the rectangle
 $\left\{ \frac{dz}{z^{-1}(z-4)} = \int_{c}^{c} \left(\frac{1}{z-0}\right)^{u+1} dz \right.$
 $= 2\pi j \frac{F(0)}{1!}$ $\Rightarrow \oint_{c} f(z) dz = 2\pi i (c^{2})_{-2} - 2\pi i (c^{2})_{-1}$
 $\Rightarrow \oint_{c} f(z) dz = 2\pi i (c^{2}) - 2\pi i (c^{2})_{-1}$
 $\Rightarrow \oint_{c} f(z) dz = 2\pi i (c^{2}) - 2\pi i (c^{2})_{-1}$
 $\Rightarrow \oint_{c} f(z) dz = 2\pi i (c^{2}) - 2\pi i (c^{2})_{-1}$
 $\Rightarrow \oint_{c} f(z) dz = 2\pi i (c^{2}) - 2\pi i (c^{2})_{-1}$ $= 2\pi j \frac{F(0)}{1!}$ $= 2\pi j \frac{F(0)}{(z-0)^{u+1}} dz$ $= 2\pi j \frac{F(0)}{1!}$ $= \frac{-1}{(z-4)^{2}} = \frac{-1}{16}$ $\therefore F'(0) = \frac{-1}{(0-4)^{2}} = \frac{1}{16}$ $= \frac{-1}{(z-4)^{2}}$ $= 2\pi j \frac{F(0)}{16} = \frac{-\pi i}{8}$ $= 2\pi j \frac{F(0)}{16} = \frac{-\pi i}{8}$ 20. Ans: (b)Sol: Let $f(z) = \frac{c^{2}}{(z-2)(z-1)}$ Then the singular points of $f(z)$ are given
by $(z \ 2) (z \ 1) = 0$ $= \pi i dz = 2$ lie
inside the given region $|z| = 3$ Consider $f(z) = e^{z} \left[\frac{1}{(z-1)(z-2)} \right]$ $\Rightarrow f'(z) = \frac{-6}{z^{2}}$ and $f'(z_{0}) = f''(4) = \frac{-3}{128}$ Substituting above all in (1), we get $f''(z_{0}) = \frac{1}{4} + (z-4\left(\frac{-1}{16}\right) + \frac{(z-4)^{2}}{2!}\left(\frac{1}{32}\right) + \frac{(z-4)^{3}}{3!}\left(\frac{-3}{2!}\right) + \dots$

Affordable Fee | Available 3M |6M |12M |18M and 24 Months Subscription Packages

Regular Doubt clearing Sessions | Free Online Test Series Programme

Affordat

X DEEP ACE X DEEP

Engineering Publications	80	Engineering Mathematics
$\frac{1}{z} = \frac{1}{4} - \frac{1}{16}(z-4) + \frac{1}{64}(z-4)^2$		z = -2 (or) in $0 < z + 2 < 2$
$\frac{1}{256}(z-4)^3 +$		23. Ans: (d)
The above series is a Taylor series expansion of $f(z) = \frac{1}{2}$ about a point $z = 4$		Sol: Given $f(z) = \frac{1}{z} - \frac{3}{z+1} + \frac{2}{z-2}$ and
(or) in powers of $(z-4)$		z + 1 > 3
22. Ans: (c)		Let $z+1 = t$
Sol: Given $f(z) = \frac{1}{z(z+2)^3}$ and $z_0 = -2$	RIA	Then $z = t-1$ and $ t > 3$
Let $z-(-2) = t$ Then $z = t-2$		Now, $f(z) = \frac{1}{t-1} - \frac{3}{t} + \frac{2}{t-3}$
Now, $f(z) = \frac{1}{(t-2)t^3}$		But $ t > 3$
$\Rightarrow f(z) = \frac{1}{t^3} \frac{1}{(z^2 - 1)^2} = \frac{1}{-2t^3} \left[1 - \left(\frac{t}{2}\right) \right]^{-1}$		$\Rightarrow \mathbf{t} > 3 > 1$ $\Rightarrow \mathbf{t} > 3 \text{ and } \mathbf{t} > 1$
$\begin{bmatrix} (-2)(1-\frac{1}{2}) \\ 1 \end{bmatrix} = \begin{bmatrix} 2t \\ 2t \end{bmatrix}$		$\therefore \frac{ 3 }{ 3 } < 1 \text{ and } \frac{ 1 }{ 3 } < 1$
$\Rightarrow f(z) = \frac{1}{-2t^3} \left[1 + \left(\frac{t}{2}\right) + \left(\frac{t}{2}\right)^2 + \left(\frac{t}{2}\right)^3 + \dots \right], \left \frac{t}{2}\right < 1$		$ \mathbf{t} $ $ \mathbf{t} $
$(::(1-x)^{-1} = 1 + x + x^{2} + x^{3} + \dots + x^{-1}, x < 1)$	ce 1	Consider, $f(z) = \frac{1}{t-1} - \frac{1}{t} + \frac{1}{t-3}$
$\Rightarrow f(z) = \frac{1}{2t^3} + \frac{1}{4t^2} + \frac{1}{8t} + \frac{1}{16} + \frac{(-1)}{32}t + \frac{(-1)}{64}t^2 + \dots$		$\Rightarrow f(z) = \frac{1}{t\left(1-\frac{1}{t}\right)} - \frac{3}{t} + \frac{2}{t\left(1-\frac{3}{t}\right)}$
$\therefore \frac{1}{z(z+2)^3} = \left(\frac{-1}{2}\right) \frac{1}{(z+2)^3} + \left(\frac{-1}{4}\right) \frac{1}{(z+2)^2}$		$\Rightarrow f(z) = \frac{1}{t} \left[1 - \frac{1}{t} \right]^{-1} - \frac{3}{t} + \frac{2}{t} \left[1 - \frac{3}{t} \right]^{-1}$
$+\left(\frac{-1}{8}\right)\frac{1}{(z+2)}+\left(\frac{-1}{16}\right)+\left(\frac{-1}{32}\right)(z+2)$		$\Rightarrow f(z) = \frac{(1)}{t} \left[1 + \frac{1}{t} + \frac{1}{t^2} + \dots \right] - \frac{3}{t}$
$+\left(\frac{-1}{64}\right)(z+2)^{2}+$		$+\left(\frac{2}{t}\right)\left[1+\left(\frac{3}{t}\right)+\left(\frac{3}{t}\right)^{2}+\cdots\right]$
Hence the above expansion of $f(z)$ is a		

Laurent series expansion of f(z) about

X DEEP

Deep Learn - India's Best Online Coaching Platform for GATE, ESE, and PSUs Enjoy a smooth online learning experience in various languages at your convenience

ce 1

Complex Variables

$$\Rightarrow f(z) = \frac{1}{(z+1)} \left[1 + \frac{1}{z+1} + \frac{1}{(z+1)^2} + \dots \right]$$

$$-\frac{3}{(z+1)} + \frac{2}{(z+1)} \left[1 + \frac{3}{z+1} + \frac{3^2}{(z+1)^2} + \dots \right]$$

$$\Rightarrow f(z) = \frac{7}{(z+1)^2} + \frac{19}{(z+1)^3} + \frac{55}{(z+1)^4} + \dots + \dots$$

$$\therefore \text{ The above series is a Laurent series expansion of f(z) about z = -1 (or) in ||z+1| > 3$$

24. Ans: (d)
Sol: Given $f(z) = \frac{1}{(z+1)(z+3)}$ in $1 < |z| < 3$
$$\Rightarrow f(z) = \frac{1}{2} \frac{1}{(z+1)} - \frac{1}{2(z+3)}$$
 in $1 < |z| < 3$
or $1 < |z| \& |z| < 3$

$$\Rightarrow f(z) = \frac{1}{2z\left(1+\frac{1}{z}\right)} - \frac{1}{6\left(1+\frac{z}{3}\right)} \text{ in } \left|\frac{1}{z}\right| < 1$$

and $\left|\frac{z}{3}\right| < 1$
$$\Rightarrow f(z) = \frac{1}{2z} \left[1 + \left(\frac{1}{z}\right)\right]^{-1} - \frac{1}{6} \left[1 + \left(\frac{z}{3}\right)\right]^{-1}$$

$$\Rightarrow f(z) = \frac{1}{2z} \left[1 - \frac{1}{z} + \frac{1}{z^2} - \cdots - \right] - \frac{1}{6} \left[1 - \frac{z}{3} + \frac{z^2}{3^2} - \cdots - \right]$$

$$\therefore f(z) = \frac{1}{2} \left[\frac{1}{z} - \frac{1}{z^2} + \frac{1}{z^3} - \dots \right] - \frac{1}{6} \left[1 - \frac{z}{3} + \frac{z^2}{9} + \dots \right]$$

which is a Laurent series expansion of f(z)in the given region 1 < |z| < 3

25. Ans: (c)

Sol: Given that
$$X(z) = \frac{1-2z}{z(z-1)(z-2)}$$

 \Rightarrow The poles of $X(z)$ are 0, 1, 2 which are
simple poles.
 $R_1 = \operatorname{Res}[X(z) : z = 0]$
 $= \operatorname{Lt}_{Z \to 0} \left[(z-0) \frac{(1-2z)}{z(z-1)(z-2)} \right] = \frac{1}{2}$
 $R_2 = \operatorname{Res}[X(z) : z = 1]$
 $= \operatorname{Lt}_{Z \to 1} \left[(z-1) \frac{(1-2z)}{z(z-1)(z-2)} \right] = \frac{-1}{-1} = 1$
 $R_3 = \operatorname{Res}[X(z) : z = 2]$
 $= \operatorname{Lt}_{Z \to 2} \left[(z-2) \frac{(1-2z)}{z(z-1)(z-2)} \right] = \frac{-3}{2}$
26. Ans: (b)
Sol: Given $f(z) = \frac{3\sin(z)}{z-\frac{3\pi}{2}}$
 $\left(\because f(z) = \frac{\phi(z)}{[z-z_0]} \right)$
 $\Rightarrow z = \frac{3\pi}{2}$ is a singular point of $f(z)$
 $\Rightarrow z = \frac{3\pi}{2}$ is a pole of order one

Now,
$$R = \operatorname{Res}\left(f(z): z = \frac{3\pi}{2}\right) = \phi\left(\frac{3\pi}{2}\right)$$

$$\therefore R = 3\sin\left(\frac{3\pi}{2}\right) = -3$$

ACE X DEEP

 Regular Doubt clearing Sessions
 Free Online Test Series Programme

 Affordable Fee
 Available 3M |6M |12M |18M and 24 Months Subscription Packages

ACE

27. Ans: (c) Sol: Given $f(z) = \frac{e^z + z}{(z-4)^3}$ $\Rightarrow z = 4$ is a singular point of f(z) $\Rightarrow z = 4$ is a pole of order 3 Now, R = Res (f(z) : z = 3) = $\frac{1}{(3-1)!} \lim_{z \to 4} \left[\frac{d^2}{dz^2} \{(z-4)^3, f(z)\} \right]$ $\Rightarrow R = \frac{1}{2!} \lim_{z \to 4} \left[\frac{d^2}{dz^2} (z-4)^3, \frac{e^z + z}{(z-4)^3} \right]$ $\Rightarrow R = \frac{1}{2!} \lim_{z \to 4} \left[\frac{d}{dz} (e^z + 1) \right]$ $\Rightarrow R = \frac{1}{2} \lim_{z \to 4} \left[\frac{d}{dz} (e^z + 1) \right]$ $\Rightarrow R = \frac{1}{2} \lim_{z \to 4} \left[\frac{d}{dz} (e^z + 1) \right]$

28. Ana: (a)

Sol: Given $f(z) = \cot(z)$ and z = 0

X DEEP

$$\Rightarrow f(z) = \frac{\cos(z)}{\sin(z)} \qquad \left(\because f(z) = \frac{\phi(z)}{\Psi(z)} \right)$$

Here, z = 0 is a pole of order one

Now,
$$R = \operatorname{Res}(f(z): z = z_0) = \frac{\phi(z_0)}{\Psi'(z_0)}$$

 $\Rightarrow R = \operatorname{Res}(f(z): z = 0) = \frac{\cos(0)}{\cos(0)}$
 $\therefore R = 1$

Sol: Given
$$f(z) = \frac{z - \sin z}{z^2}$$
 and $z = 0$

$$\Rightarrow f(z) = \frac{1}{z^2} \left[z - \left(z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \dots \right) \right]$$

$$\Rightarrow f(z) = \frac{1}{z^2} \left[\frac{z^3}{3!} - \frac{z^5}{5!} + \frac{z^7}{7!} - \dots \right]$$

$$\Rightarrow f(z) = \frac{z}{3!} - \frac{z^3}{5!} + \frac{z^5}{7!} - \dots - \dots$$

$$\Rightarrow f(z) = \frac{1}{3!} (z - 0) - \frac{1}{5!} (z - 0)^3 + \frac{1}{7!} (z - 0)^5 - \dots - \dots$$

$$\therefore z = 0 \text{ is a removable singular point of } f(z) \text{ and residue of } f(z) \text{ at } z = 0 \text{ is zero.}$$

30. Ans: (d)

 \Rightarrow

Since 19

Sol: Given
$$f(z) = e^{\frac{1}{z-4}}$$
 and $z = 4$

95 f(z) = 1 +
$$\frac{(1/z-4)}{1!}$$
 + $\frac{(1/z-4)^2}{2!}$ + $\frac{(1/z-4)^3}{3!}$ + --

$$f(z) = 1 + \frac{1}{(z-4)} + \frac{1}{2!} \frac{1}{(z-4)^2} + \frac{1}{3!} \frac{1}{(z-4)^3} + \dots - \dots$$

Here, the expansion is containing infinite number of terms in the negative power of (z–4).

 \therefore The singular point z = 4 of f(z) is an essential singular point and the residue of f(z) at z = 4 is one.

Complex Variables

31. Ans: no option
Sol: Let
$$f(x) = \frac{\sin(x)}{x^2(x^2+4)}$$

 $f(x) = \frac{\sin(x)}{x^2(x+2i)(x-2i)}$
 $x = 0$ is a pole of order 1 (or) simple pole
 $x = 2i, -2i$ are simple poles

$$\int_{c}^{1} f(z) dz = 2\pi i \left\{ \frac{1}{4} - \frac{1}{16} \sin(2i) \right\}$$
 $z = 2\pi i \left\{ \frac{1}{4} - \frac{1}{16} \sin(2i) \right\}$
 $z = 2\pi i \left\{ \frac{1}{4} - \frac{1}{16} \sin(2i) \right\}$
 $z = 2\pi i \left\{ \frac{1}{4} - \frac{1}{16} \sin(2i) \right\}$
 $z = 2\pi i \left\{ \frac{1}{4} - \frac{1}{16} \sin(2i) \right\}$
 $z = 2\pi i \left\{ \frac{1}{4} - \frac{1}{16} \sin(2i) \right\}$
 $z = 2\pi i \left\{ \frac{1}{4} - \frac{1}{16} \sin(2i) \right\}$
 $z = 2\pi i \left\{ \frac{1}{4} - \frac{1}{16} \sin(2i) \right\}$
 $z = 2\pi i \left\{ \frac{1}{4} - \frac{1}{16} \sin(2i) \right\}$
 $z = 2\pi i \left\{ \frac{1}{4} - \frac{1}{16} \sin(2i) \right\}$
 $z = 2\pi i \left\{ \frac{1}{4} - \frac{1}{16} \sin(2i) \right\}$
 $z = 2\pi i \left\{ \frac{1}{4} - \frac{1}{16} \sin(2i) \right\}$
 $z = 2\pi i \left\{ \frac{1}{4} - \frac{1}{16} \sin(2i) \right\}$
 $z = 2\pi i \left\{ \frac{1}{4} - \frac{1}{16} \sin(2i) \right\}$
 $z = 2\pi i \left\{ \frac{1}{4} - \frac{1}{16} \sin(2i) \right\}$
 $z = 2\pi i \left\{ \frac{1}{4} - \frac{1}{16} \sin(2i) \right\}$
 $z = 2\pi i \left\{ \frac{1}{4} - \frac{1}{16} \sin(2i) \right\}$
 $z = 2\pi i \left\{ \frac{1}{4} - \frac{1}{16} \sin(2i) \right\}$
 $z = 2\pi i \left\{ \frac{1}{4} - \frac{1}{16} \sin(2i) \right\}$
 $z = 2\pi i \left\{ \frac{1}{4} - \frac{1}{16} \sin(2i) \right\}$
 $z = 2\pi i \left\{ \frac{1}{4} - \frac{1}{16} \sin(2i) \right\}$
 $z = 2\pi i \left\{ \frac{1}{4} - \frac{1}{16} \sin(2i) \right\}$
 $z = 2\pi i \left\{ \frac{1}{4} - \frac{1}{16} \sin(2i) \right\}$
 $z = 2\pi i \left\{ \frac{1}{4} - \frac{1}{16} \sin(2i) \right\}$
 $z = 2\pi i \left\{ \frac{1}{4} - \frac{1}{16} \sin(2i) \right\}$
 $z = 2\pi i \left\{ \frac{1}{4} - \frac{1}{16} \sin(2i) \right\}$
 $z = 2\pi i \left\{ \frac{1}{4} - \frac{1}{16} \sin(2i) \right\}$
 $z = 2\pi i \left\{ \frac{1}{4} - \frac{1}{16} \sin(2i) \right\}$
 $z = 2\pi i \left\{ \frac{1}{4} - \frac{1}{16} \sin(2i) \right\}$
 $z = 2\pi i \left\{ \frac{1}{4} - \frac{1}{16} \sin(2i) \right\}$
 $z = 2\pi i \left\{ \frac{\pi}{2} + \frac{\pi}$

 $\label{eq:affordable} Affordable\ Fee\ \mid\ Available\ 3M\ |6M\ |12M\ |18M\ and\ 24\ Months\ Subscription\ Packages$

Engineering Publications	84	Engineering Mathematics
Again,		\Rightarrow f(z) = $\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \cdots + \cdots$
$R_{2} = \operatorname{Res}\left(f(z): z = \frac{-\pi}{2}\right) = \frac{\phi\left(\frac{-\pi}{2}\right)}{\Psi'\left(\frac{-\pi}{2}\right)}$		z z^2 $2!z^3$ $\Rightarrow z = 0$ is essential singularity of f(z) Now, $R_1 = \text{Res}(f(z)) : z = 0) = \text{coefficient of}$
$\Rightarrow R_2 = \frac{e^{\frac{-\pi}{2}} \sin\left(\frac{-\pi}{2}\right)}{-\sin\left(\frac{-\pi}{2}\right)}$		$\frac{1}{z} = 1$ Now, by Cauchy's residue theorem, we have,
$\therefore R_1 = -e^{\frac{-\pi}{2}}$	RIA	$\oint_{C} f(z) dz = 2\pi i (R_1)$
Now, by Cauchy's residue theorem, we have,		$\Rightarrow \oint_{C} f(z) dz = 2\pi i (1)$
$\oint_{C} f(z) dz = 2\pi i (R_1 + R_2)$		$\therefore \oint_{C} f(z) dz = 2\pi i$
$\Rightarrow \oint_{C} f(z) dz = 2\pi i \left(-e^{\frac{\pi}{2}} - e^{-\frac{\pi}{2}} \right)$		34. Ans: (a, c, d) Sol: Given series is $\sum \frac{1}{n^n} z^n$
$\Rightarrow \oint_{C} f(z) dz = -2\pi i \left(e^{2} + e^{2} \right)$		Comparing the given series with general
$\therefore \oint_{\Omega} f(z) dz = -4\pi i \cosh\left(\frac{\pi}{2}\right) \qquad \text{Since}$	ce 1	995 series $\sum a_n(z-z_0)^n$, we get
33. Ans: (a)		Now, $r = \frac{1}{\lim_{n \to \infty} a_n ^{1/n}} = \frac{1}{\lim_{n \to \infty} \frac{1}{n} ^{1/n}}$
Sol. Given $1 = \oint_{c} \frac{1}{z} dz$, where c is $ z = 2$ Consider		$\Rightarrow r = \frac{1}{\ell \lim_{n \to \infty} \left \frac{1}{n} \right } = \frac{1}{0} = \infty$
$f(z) = \frac{e^{1/z}}{z} = \frac{1}{z} \left(1 + \frac{1}{z} + \frac{1}{2!z^2} + \frac{1}{3!z^3} + \dots \right)$		$\therefore \text{ The radius of convergence is } r = \infty,$
$\Rightarrow f(z) = \frac{1}{z} \left(1 + \frac{1}{z} + \frac{1}{2!z^2} + \frac{1}{3!z^3} + \dots \right)$		the circle of convergence is $ z-0 = \infty$ and the region of convergence is $ z-0 < \infty$
Deep Learn - Indi	a's Best e learni	t Online Coaching Platform for GATE, ESE, and PSUs ing experience in various languages at your convenience

Complex Variables

35.	Ans: (a, b, c)	36.	Ans: (a, b, c)
Sol:	Given series is $\sum \frac{n! z^n}{n^n}$	Sol:	Given series is $\sum \frac{(z-2)^n}{n}$
	Comparing the given series with general		Comparing the given series with general
	series $\sum a_n(z-z_0)^n$, we get		series $\sum a_n (z - z_0)^n$, we get
	$a_n = \frac{n!}{n^n}$ and $z_0 = 0$		$a_n = \frac{1}{n}$ and $z_0 = 2$
	$\Rightarrow a_{n+1} = \frac{(n+1)!}{(n+1)^{n+1}} = \frac{(n+1)(n!)}{(n+1)^n \cdot (n+1)} = \frac{n!}{(n+1)^n}$	ING	Consider $r = \lim_{n \to \infty} \left \frac{a_n}{a_{n+1}} \right = \lim_{n \to \infty} \left \frac{n}{n+1} \right $
	Consider $r = \lim_{n \to \infty} \left \frac{a_n}{a_{n+1}} \right = \lim_{n \to \infty} \left \frac{\frac{n!}{n^n}}{\frac{n!}{(n+1)^n}} \right $	"NG	$\Rightarrow r = \lim_{n \to \infty} \frac{1}{1 + \frac{1}{n}} = 1$: The radius of convergence is $r = 1$ the
	$\Rightarrow r = \lim_{n \to \infty} \left \frac{(n!)(n+1)^n}{(n^n)(n!)} \right = \lim_{n \to \infty} \left \frac{(n+1)^n}{n^n} \right $		circle of convergence is $ z-2 = 1$ and the region of convergence is $ z-2 < 1$
	$\Rightarrow r = \lim_{n \to \infty} \frac{\left(1 + \frac{1}{n}\right)^n}{1} = e$ Since	1995	
	$\left(\because \lim_{n \to \infty} \left(1 + \frac{a}{n} \right)^n = e^a \right)$		R
	\therefore The radius of convergence is r =e,		
	the circle of convergence is $ z - 0 = e$ and		
	the region of convergence is $ z - 0 < e$		

Numerical Methods

Chapter

6

Carl David Tolme Martin Wilhelm Runge (1856 – 1927) Kutta (1867-1944)

<u>C. Runge</u> and <u>M. W. Kutta</u> (German mathematicians) developed an important family of implicit and explicit iterative methods, which are used in <u>temporal discretization</u> for the approximation of solutions of <u>ordinary differential equations</u>. In <u>numerical analysis</u>, these techniques are known as Runge–Kutta methods.

	Engineering Publications	87	Numerical Methods
04. Sol:	Ans: 4.3 $f(x) = (x^{3} - 5x^{2} + 6x)$ $f'(x) = (3x^{2} - 10x + 6x)$ $x_{n+1} = x_{n} - \frac{f(x_{n})}{f'(x_{n})}$	- 8)	$x_{1} = x_{0} - \frac{f(x_{0})}{f'(x_{0})} = 1 - \frac{f(1)}{f'(1)}$ $= 1 - \frac{1}{4}$ $= \frac{3}{4} = 0.75$
	$\therefore x_{1} = x_{0} - \frac{f(x_{0})}{f'(x_{0})}$ $= 5 - \frac{22}{31} = 4.29$	INEER/	The second approximation is $x_{2} = x_{1} - \frac{f(x_{1})}{f'(x_{1})}$ $= 0.75 - \frac{f(0.75)}{f'(0.75)}$
05. Sala	Ans: 1.67	$(x) = 2x^2 + 1$ and $x = 2$	$= 0.75 - \frac{0.1718}{2.6875}$
501:	First iteration:	$(x) = 5x - 1$ and $x_0 = 2$	= 0.75 - 0.0639
	Here, $f(2) = 2^3 - 2 - 2$	3 = 3	$x_2 = 0.6861$
	and $f'(2) = 3(4) - 1 =$ Now, $x_1 = x_0 - \frac{f(x_0)}{f'(x_1)}$ $\therefore x_1 = 1.73$ Second iteration: Here, $f(x_1) = f(1.73)$ $= 1.73^3 - 12^3$ and $f'(x_1)$ and $f'(1.73)$ Now, $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$ $X_2 = 1.67$	11 $\frac{1}{0} = 2 - \left(\frac{3}{11}\right)$ Since $.73 - 3 = 0.45$ $(3) = 3 (1.73)^2 - 1 = 7.98$ $\frac{1}{1} = 1.73 - \left(\frac{0.45}{7.98}\right)$	 07. Ans: (c) Sol: Putting n = 0 in the iteration formula of the above example x₁ = 4x₀⁵ + N/5x₀⁴ = 4(2⁵)+30/5(2⁴) = 158/80 = 1.975 08. Ans: (a) Sol: Given x_{n+1} = 2x_n³ + 1/3x_n² + 1 Suppose the formula converges to the root after n iterations
06.	Ans: 0.6861		after in iterations $\mathbf{x} = \mathbf{x} = \mathbf{x}$
Sol:	Let $f(x) = x^3 + x - 1$, $f'(x) = 3x^2 + 1$ The first approximat	$x_0 = 1$ ion is	$x = \frac{2x^3 + 1}{3x^2 + 1}$ $\Rightarrow x^3 + x - 1 = 0$
		Regular Doubt clearin	g Sessions Free Online Test Series Programme
		Affordable Fee Available 3	3M 6M 12M 18M and 24 Months Subscription Packages

Eggineering Publications	88	Engineering Mathematics
09. Ans: (c) Sol: Let $\int_{a}^{b} f(x) dx = \int_{0}^{1} e^{x} dx \& n = 4$ Then $a = 0, b=1, f(x) = e^{x}$ and $h = \frac{b-a}{n} = \frac{1-0}{4} = 0.25$ $\boxed{\begin{array}{c} x & 0 & 0.25 & 0.50 & 0.75 & 1\\ y = f(x) = e^{x} & 1 & 1.284 & 1.649 & 2.117 & 2.718 \end{array}}$	1	Here, $y_o = 6$, $y_1 = 16$ and $y_2 = 18$ The formula of simpson's $1/3^{rd}$ rule for the given data is given by $\int_a^b f(x) dx \approx \int_a^b P(x) dx = \frac{h}{3} \begin{bmatrix} (y_o + y_n) + 2(y_2 + y_4 +) \\ + 4(y_1 + y_3 +) \end{bmatrix}$ $\therefore \int_a^b f(x) dx \approx \int_1^5 P(x) dx = \frac{2}{3} [(6+18) + 4(16)]$ $= 58.6666$
The formula of trapezoidal rule to the given data is given by $\int_{a}^{b} f(x) dx \cong \int_{a}^{b} f(x) dx = \frac{h}{2} [(y_{0} + y_{n}) + 2(y_{1} + y_{2} + y_{3})]$ $\Rightarrow \int_{0}^{1} e^{x} dx \cong \int_{0}^{1} p(x) dx = \frac{(0.25)}{2} [(1 + 2.718) + 2(1.284 + 1.649 + 2.117)]$ $\Rightarrow \int_{0}^{1} e^{x} dx \cong \int_{0}^{1} p(x) dx = \frac{(0.25)}{2} [(3.718) + 2(5.05)]$ $\therefore \int_{0}^{1} e^{x} dx \cong \int_{0}^{1} p(x) dx = \frac{(0.25)}{2} [(3.718 + 10.1)] = 1.727$		11. Ans: 5.132 Sol: Let $\int_{b}^{a} f(x) dx = \int_{0}^{\frac{\pi}{2}} (8 + 4\cos x) dx$ Then $a = 0, b = \frac{\pi}{2}$ and $f(x) = 8 + 4\cos (x)$ (i) Approximate value: $\boxed{\frac{x 0 \pi/2}{y = f(x) = 8 + 4\cos (x) 12 8}}$
10. Ans: 58.66 Sol: Let $\int_{a}^{b} f(x) dx = \int_{1}^{5} (-x^{2} + 9x - 2) dx$ and $n = 2$ Then $a = 1$, $b = 5$, $y = f(x) = -x^{2} + 9x - 2$ & $h = \frac{b-a}{n} = \frac{5-1}{2} = 2$ $\boxed{\frac{x}{y = f(x) = -x^{2} + 9x - 2} - \frac{5}{6} - \frac{1}{16} - \frac{5}{18}}$		Here, $y_o = 12 \& y_1 = 8$ The formula of trapezoidal rule is $\int_a^b f(x) dx \approx \int_a^b P(x) dx = \frac{h}{2} [(y_o + y_n) + 2(y_1 + y_2 +)$ $\therefore \int_0^{\pi/2} f(x) dx \approx \int_0^{\pi/2} P(x) dx = \frac{\left(\frac{\pi}{2}\right)}{2} [12 + 8]$ $= 15.70796$
DEEP Deep Learn - Indi ACE Enjoy a smooth online	a's Best e learni	t Online Coaching Platform for GATE, ESE, and PSUs ing experience in various languages at your convenience

	ACE Engineering Publications						89		Numerical Methods
(ii)) Exact value: Now, $\int_{a}^{b} f(x) dx = \int_{0}^{\pi/2} (8 + 4\cos(x)) dx$ $\Rightarrow \int_{a}^{b} f(x) dx = (8x + 4\sin x)_{0}^{\pi/2}$ $\therefore \int_{0}^{b} f(x) dx \simeq \left[8 \left(\frac{\pi}{2} \right) + 4\sin\left(\frac{\pi}{2} \right) \right] - (0 + 0)$								$\int_{a}^{b} f(x) dx \cong \int_{a}^{b} p(x) dx$ = $\frac{h}{3} [(y_0 + y_4) + 2(y_2) + 4(y_1 + y_3)]$ $\Rightarrow \int_{4}^{5.2} f(x) dx \cong \int_{4}^{5.2} p(x) dx$ = $\frac{0.3}{3} [(1.3862 + 1.6486) + 2(1.5260) + 4(1.4586 + 1.5892)]$
(iii)	Error		= 16.5	56637	5				$= \left(\frac{0.3}{3}\right) [(3.0348) + (3.052) + (12.1912)]$
	$Error = E$ $\Rightarrow Error$ $\therefore \% Error$ $= \frac{0.858}{16.566}$	exact va $r = 16.5$ $= 0.83$ $exact va$ $= 0.83$ $exact va$ $= 0.83$	lue - 2 56637 584 $ Error$ $Exact v$ $00 = 5$	Approx - 15.70 or /alue × 1 .1816%	imate va 1796 .00 = 5.2%	alue El		NG 13. Sol:	$f(x) = \left(\frac{0.3}{3}\right) [18.278]$ $\therefore \int_{4}^{5.2} f(x) dx \cong \int_{4}^{5.2} p(x) = 1.8278 \cong 1.83$ Ans: 0.4 $f(x) = 10x - 20x^{2} = y$
12.	Ans: (a)					>		<	Step size $=\frac{b-a}{n} = \frac{0.5}{5} = 0.1$
Sol:	Let $\int_{a}^{b} f(x)$ Then a =	$dx = \int_{4}^{5.2} 4$	ℓ n xdx 5.2, f(x	x and h x = lnx	= 0.3	Sinc	e 1	99	x 0 0.1 0.2 0.3 0.4 0.5 y 0 0.8 1.2 1.2 0.8 0
	Χ	4	4.3	4.6	4.9	5.2			Required answer
	Y=f(x) $= lnx$	1.38 62	1.4 586	1.52 60	1.58 92	1.64 86			$= \frac{h}{2} [(y_0 + y_5) + 2(y_1 + y_2 + y_3 + y_4)]$ $= \frac{0.1}{0} [0 + 2(0.8 + 1.2 + 1.2 + 0.8)]$
	The form	yo nula of	yı Simps	y2 son's 1/.	y3 3 rd rul	y4 le t the			$= \frac{2}{2} \left[0 + 2(0.0 + 1.2 + 1.2 + 0.0) \right]$ $= 0.4$

given data is given by

ACE X DEEP

Regular Doubt clearing SessionsFree Online Test Series ProgrammeAffordable FeeAvailable 3M |6M |12M |18M and 24 Months Subscription Packages

ACE

14.

Ans: (c) **Sol:** Given $f(x) = \frac{1}{x}$ The value of table for x and y 1.25 1.5 1.75 Х 1 1 0.8 0.66667 0.57143 У

Using Simpsons $\frac{1}{3}$ rule $\int \frac{1}{x} dx = \frac{h}{2} [(y_0 + y_4) + 4(y_1 + y_3) + 2(y_2)]$ $\int \frac{1}{x} dx = \frac{0.25}{3} \left[\left((1+0.5) + 4 \times (0.8 + 0.57143) + 2 \times (0.66667) \right) \right]$ $\int \frac{1}{x} dx = \frac{0.25}{3} [(1+05) + 4 \times (1.37143) + 2 \times (0.66667)]$ $\int \frac{1}{x} dx = 0.69325$

Solution by Simpsons $\frac{1}{3}$ rule is 0.69325

15. Ans: 0.6452

Sol: Let $\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{1} e^{-x} dx$ & h = 0.5

Then $f(x) = e^{-x}$, a = 0, b = 1

X	0	0.5	
$y=f(x)=e^{-x}$	1	0.6065	0.3675
	y ₀	y ₁	y ₂

By Trapezoidal rule,

X DEEP

$$\int_{0}^{1} e^{-x} dx = \frac{h}{2} [(y_0 + y_2) + 2(y_1)]$$
$$= \frac{(0.5)}{2} [(1 + 0.3678) + 2(0.6065)]$$
$$= 0.6452$$

16. Ans: (c)

Sol: Let
$$\int_{a}^{b} f(x) dx = \int_{0}^{1} e^{x} dx$$

Then $f(x) = e^x$, a = 0 and b = 1

X	0.0	0.5	1
$\mathbf{y} = \mathbf{f}(\mathbf{x}) = \mathbf{e}^{\mathbf{x}}$	1	1.6487	2.7182

Let $x_0 = 0.0$, $x_1 = 0.5$ and $x_2 = 1.0$ Then $y_0 = 1$, $y_1 = 1.6487$, $y_2 = 2.7182$ and h = 0.5

(1) **Approximate value:** $\int_{0}^{1} e^{x} dx \approx \int_{0}^{1} p(x) dx = \frac{h}{3} [(y_{0} + y_{2}) + 4(y_{1})]$ $= \frac{0.5}{3} [(1+2.7182) + 4(1.6487)]$ $=\frac{0.5}{3}[3.7182+6.5948]$ $=\frac{0.5}{3}[10.313] = \frac{5.1565}{3} = 1.7188$ 199 **Exact value:** (2) $\int_{0}^{1} e^{x} dx = (e^{x})_{0}^{1} = (e-1) = 2.71828 - 1$

(3) **Error:**

 \therefore Error = Exact value – Approximate value

= 1.71828

= 1.71828 - 1.71828= -0.00052

Deep Learn - India's Best Online Coaching Platform for GATE, ESE, and PSUs Enjoy a smooth online learning experience in various languages at your convenience

2

0.5

Since

			91	Numerical Methods
	Hence, Absolute error	r = Error		$k_2 = hf(x_0 + h, y_0 + k_1)$
		= -0.00052		= 0.2(0.2 + (0.0))
		= 0.00052		= 0.04
				-1 (0 + 0.04) 0.02
17.	Ans: 0.992			$y_1 = 0 + \frac{1}{2}(0 + 0.04) = 0.02$
Sol:	$y^1 = f(x, y) = 4 - 2xy$,	21. Ans: 0.96
	$x_0 = 0, y_0 = 0.2, h = 0.2$			$f_{ab} = f_{ab} + \frac{dy}{dt} = f_{ab} + f_{ab} $
	By Taylor's theorem,			Sol: Let $\frac{d}{dx} = f(x, y) = 4 - 2xy$
	$\mathbf{y}(\mathbf{x}) = \mathbf{y}(\mathbf{x}_0 + \mathbf{h})$			$x_o = 0, y_o = 0.2, 4 = 0.2$
	$= \mathbf{v}(\mathbf{x}) + \mathbf{h} \mathbf{v}^{1}(\mathbf{x}) + \mathbf{h}^{1}(\mathbf{x})$	h^2 $x^{11}(x)$ = 5	:R1/	$k_1 = h.f(x_o, y_o) = 0.2 (4 - x_o y_o) = 0.8$
	$-y(x_0) + H y (x_0) + \frac{1}{2}$	$\overline{2!}^{\mathbf{y}}(\mathbf{x}_0)$		$\mathbf{k}_{2} = \mathbf{h} \mathbf{f} \left(\mathbf{x}_{1} + \frac{\mathbf{h}_{1}}{\mathbf{x}_{2}} + \frac{\mathbf{k}_{1}}{\mathbf{x}_{2}} \right)$
	(0.2	$)^{2}$		$\mathbf{x}_2 = \mathbf{n} \left(\mathbf{x}_0 + \frac{1}{2}, \mathbf{y}_0 + \frac{1}{2} \right)$
	= 0.2 + 0.24) + 2!	(-0.4)		= (0.2) (4 - 2(0.1) (0.6))
	= 0.992			=(0.2)(3.88)=0.776
				$k_3 = h f(x_0 + h, y_0 + \frac{k_2}{2})$
18.	Ans: 1			
Sol:	f(x, y) = 4 - 2xy			= (0.2) (4 - 2(0.2) (0.976)) = 0.7219
	$x_0 = 0, y_0 = 0.2, f_1 = 0.2$			$k_4 = h. f (x_o + h, y_o + k_3)$
	By Euler's formula			= (0.2) (4 - 2(0.2) (0.9219)) = 0.7262
	$y_1 = y_0 + h f(x_0, y_0) = 0$	$.2 + 0.2(4 - 0) \equiv 1$	ce 1	99 $y(0.2) = y_1 = y_0 + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$
19.	Ans: 1.1			0
Sol:	By Euler's formula.			$= 0.2 + \frac{1}{6} (0.8 + 2(0.776 + 0.7219) + 0.7262)$
	$y_1 = y_0 + h f(x_0, y_0)$			= 0.97
	$y_1 = 1 + (0.1)(1-0) = 1$	1.1		22 4 1 1 1 2
				22. Ans: 1.1103
20.	Ans: 0.02			Sol: Forth order R-K method
Sol:	f(x, y) = x + y			$k_1 = hf(x_0, y_0) = (0.1)f(0,1) = (0.1)(1) = 0.1$
	$x_0 = 0, y_0 = 0, h = 0.2$			$k_2 = hf\left(x_0 + \frac{\pi}{2}, y_0 + \frac{\kappa_2}{2}\right)$
	$\mathbf{k}_1 = \mathbf{h}(\mathbf{f}_0, \mathbf{y}_0)$			$=(0.1)\mathbf{f}(0.05,1.05)$
	= 0.2(0+0) = 0			=(0.1)(1.1)=0.11
		Regular Doubt c	learing	g Sessions Free Online Test Series Programme
	ACE	Affordable Fee Ava	ilable 3	M 6M 12M 18M and 24 Months Subscription Packages

$k_{3} = hf\left(x_{0} + \frac{h}{2}, y_{0} + \frac{k_{2}}{2}\right)$
= (0.1)f(0.05,1.055) $= (0.1)(1.105) = 0.1105$
$k_4 = hf(x_0 + h, y_0 + k_3) = (0.1)f(0.1, 1.1105)$ $= (0.1)(1.2105)$ $= 0.1211$
$y_1 = y_0 + \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4)$
$y_1 = 1 + \frac{1}{6} [0.1 + 2(0.11) + 2(0.1105) + (0.1211)]$
$y_1 = 1.1103$ $\therefore y(0.1) = 1.1103$
23. Ans: i. $8x^2 - 19x + 12$ ii. 6 iii. 13
Sol: $f(x) = \frac{(x-3)(x-4)}{(1-3)(1-4)}(1) + \frac{(x-1)(x-4)}{(3-1)(3-4)}(27)$
(1)

Sol: $f(x) = \frac{(x-3)(x-4)}{(1-3)(1-4)}(1) + \frac{(x-1)(x-4)}{(3-1)(3-4)}(27) + \frac{(x-1)(x-3)}{(4-1)(4-3)}(64)$ $f(x) = 8x^{2} - 19x + 12$ f(2) = 6 $f^{1}(2) = 13$ $f(x) = f(x_{0}) + (x - x_{0}) f[x_{0}, x_{1}] + (x - x_{0}) (x - x_{1}) f[x_{0}, x_{1}, x_{2}]$ = 1 + (x - 1) 13 + (x - 1) (x - 3) 8 $= 8x^{2} - 19x + 12$ f(2) = 6 $f^{1}(2) = 13$

24. Ans: $8x^2 - 19x + 12$, 6, 13

Sol:

x	P(x)	Фp	∆²p
1	1	$\frac{27-1}{1} = 13$	
3	27	3-1	$\frac{37-13}{4} = 8$
4	64	$\frac{64 - 27}{4 - 3} = 37$	4-1

By Newton's divided difference formula $P(x) = P(x_0) + (x - x_0) f[x_0, x_1] + (x - x_0)(x - x_1) f[x_0, x_1, x_2)$ = 1 + (x - 1)13 + (x - 1) (x - 3).8 $= 8x^2 - 19x + 12$ $P^{1}(x) = 16 x - 19$ P(2) = 6 $P^{1}(2) = 13$

25. Ans: $x^2 + 2x + 3$, 4.25, 3

Sol: Since the given observations are at equal interval of width unity.

Construct the following difference table.

X	f(x)	$\Delta f(x)$	$\Delta^2 f(x)$	$\Delta^3 f(x)$
0	3			
		3		
1	6		2	
		5		0
2	11		2	
		7		0
3	18		2	
		9		
4	27			

Deep Learn - India's Best Online Coaching Platform for GATE, ESE, and PSUs

Enjoy a smooth online learning experience in various languages at your convenience

Engineering Publications	93	Numerical Methods			
Therefore f(x)					
$f(x) = f(0) + C(x,1) \Delta f(0) + C(x,2) f(0)$					
$= 3 + (\mathbf{x} \times 3) + \left(\frac{\mathbf{x}(\mathbf{x}-1)}{2!} \times 2\right)$					
$f(x) = x^2 + 2x + 3$					
$f^{l}(x) = 2x + 2$					
f(0.5) = 4.25					
f'(0.5) = 3					

Regular Doubt clearing Sessions | Free Online Test Series Programme