

GATE - 2021

Questions Constitutions

ACE Engineering Academy has taken utmost care in preparing the **GATE - 2021** Examination Solutions. Discrepancies, if any, may please be brought to our notice. ACE Engineering Academy do not owe any responsibility for any damage or loss to any person on account of error or omission in these solutions.

ACE Engineering Academy is always in the fore front of serving the students, irrespective of the examination type (**GATE / ESE / PSUs / PSC / GENCO /TRANSCO etc.,).**

All Queries related to GATE-2021 Solutions are to be sent to the following: E-Mail: hyderabad@aceenggacademy.com | Call Us: 040 - 23234418, 19, 20

GATE - 2021 CIVIL ENGINEERING 06/02/21

Questions with Detailed Solutions

Forenoon Session

SUBJECTWISE WEIGHTAGE

S. No.	NAME OF THE SUBJECT	Number of Questions		
01	Engineering Mechanics	1		
02	Strength of Material	4		
03	Structural Analysis	3		
04	Construction Materials	1		
05	Construction Planning & Management	3		
06	Reinforced Cement Concrete	1		
07	Design of Steel Structures	1		
08	Geotechnical Engineering	8		
09	Fluid Mechanics & Hydraulic Machines	4		
10	Hydrology	2		
11	Irrigation Engineering	1		
12	Environmental Engineering	8		
13	Transportation Engineering	6		
14	Geomatics Engineering (Surveying)	3		
15	Engineering Mathematics	9		
16	Verbal Ability	2		
17	Numerical Ability	8		
Total No. of Questions65				

2

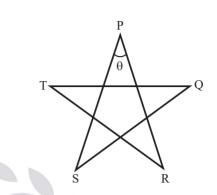
Section : General Aptitude

ACE

- 01. Humans have the ability to construct worlds entirely in their minds, which don't exist in the physical world. So far as we know, no other species possesses this ability. This skill is so important that we have different words to refer to its different flavors, such as imagination, invention and innovation.
 - (a) The terms imagination, invention and innovation refer to unrelated skills.
 - (b) No species possess the ability to construct worlds in their minds.
 - (c) Imagination, invention and innovation are unrelated to the ability to construct mental worlds.
 - (d) We do not know of any species other than humans who possess the ability to construct mental worlds.

01. Ans: (d)

- **Sol:** Only humans have the ability to construct world s entirely in their minds and no other species has this.
- 02. Statement: Either P marries Q or X marries Y Since Among the options below, the logical NEGATION of the above statement is:
 - (a) P does not marry Q and X marries Y.
 - (b) X does not marry Y and P marries Q.
 - (c) Neither P marries Q nor X marries Y.
 - (d) P marries Q and X marries Y.

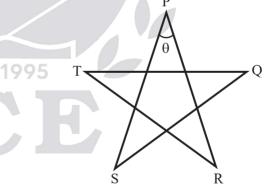

02. Ans: (c) Sol:

03. Getting to the top is _____ than staying on top. (a) easier (b) easiest (c) more easy (d) much easy

03. Ans: (a)

04.

Sol: Comparative degree : easier



Five line segments of equal lengths, PR. PS. QS. QT and RT are used to form a star as shown in the figure above.

The value of 0, in degrees, is____

(a) 45	5	(b) 72
(c) 108		(d) 36

04. Ans: (d) Sol:

Sum of the angles = 180° Each angle = $\frac{180}{5}$ = 36°

05. Four persons P, Q. R and S are to be seated in a row, all facing the same direction, but not necessarily in the same order. P and R cannot sit adjacent to each other. S should be seated to the right of Q. The number of distinct seating arrangements possible is:
(a) 4 (b) 6 (c) 2 (d) 8

ACE Engineering Publications Hyderabad + Delhi + Pune + Bhubaneswar + Bengaluru + Lucknow + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabac

ONLINE COURSES ((•))

for ESE | GATE | PSUs curated by India's best minds. Access courses through Android App (Mobile/Tab) from anywhere.

We have subscriptions options of 3 months, 6 months, 12 months, 18 months & 24 months.

RECORDED VIDEO LECTURES (RECO

- GATE + PSUs (650+ Hours*)
- ESE : General Studies (250+ Hours*)
- SSC-JE : Technical (Civil) (400+ Hours*)
- ESE + GATE + PSUs (1000+ Hours*)
- SSC-JE : GS (200+ Hours*)
- Subject wise courses available for SSC JE : GS & Tehcnical (Civil).
- Subject wise courses available for GATE / ESE (Hinglish mode).

SALIENT FEATURES

- Dynamic & Experienced Faculty.
- Covers Exam Preparation Strategy and Live Doubt clearing sessions.
- Facilitates Enhanced learning by incorporating 2d & 3d animations.
- Free Online Test Series (Total 116 tests, subject wise, sectional wise, and full length mock tests.
- Compose online study notes and save it for future reference.
- Comprises of weekly self assessment tests.
- Free Interview Guidance & Post GATE Guidance for subscribers.
- ASK AN EXPERT feature for doubt clarifications via emails/video (services to be availed within 12 hrs.)
- Procure Full set of Study Material (Optional)*
- EMI option available.

GFT 5% DISCOUNT

Use Code: GATE5

Valid till 28th Feb

Streams: EC | EE | ME | CE | CS | IN | PI

Scan QR Code

Download the Deep Learn Android App

www.deep-learn.in

۲

?

 \succ

- www.aceenggacademy.com
- Support@frostinteractive.com
- hyderabad@aceenggacademy.com
- 040-23234418/19/20

* Lectures

Engineering Publications	3 GATE_2020_Questions with Solutions
 05. Ans: (b) Sol: P and R can not adjacent 'S' is seated right of Q. (i) P Q S R After interchanging 'P' and 'R' we get one more chance. <u>R</u>QSP 	35 = C $T = 40$
(i) $Q _ \underline{S} _$ (here two chances) (ii) $\underline{Q} _ \underline{S}$ (here two chances)	= 100-65% = 35% 08.
06. A function, λ , is defined by $\lambda(p,q) = \begin{cases} (p-q)^2, & \text{if } p \ge q, \\ p+q, & \text{if } p < q \end{cases}$	RINGACTRIANGLE
The value of the expression $\frac{\lambda(-(-3+2),(-2+3))}{(-(-2+1))}$ is: (a) 0 (b) 16 (c) $\frac{16}{3}$ (d) -1	The mirror image of the above text about the X-axis
06. Ans: (a) Sol: $\lambda(p,q) = \begin{cases} (p-q)^2, & \text{if } p \ge q \\ (p+q), & \text{if } p = q \end{cases}$ $\frac{\lambda(-(-3+2), (-2+3))}{(-(-2+1))} = \frac{\lambda(1,1)}{1}$	5. TRIANĐLE 1. TRIANGLE 12
$=\frac{(1-1)^2}{1} = 0$ Since	4 TRIANGLE 3 TRIANGLE
 07. In a company, 35% of the employees drink coffee 40% of the employees drink tea and 10% of the employees drink both tea and coffee. What % or employees drink neither tea nor coffee? (a) 35 (b) 15 (c) 40 (d) 25 	$09. \oplus$ and \odot are two operators on numbers p and q such
07. Ans: (a) Sol:	If $x \oplus y = 2 \odot 2$, then $x =$
n[coffee] = 35% n[Tea] = 40% $n[c \cap t] = 10\%$ $n[c \cup T] = 35 + 40-10 = 65\%$ 100 - 65% = 35%	(a) 2y (b) $\frac{3y}{2}$ (c) y (d) $\frac{y}{2}$ 09. Ans: (c) Sol: $P \oplus q = \frac{P+q}{pq}$ $p \odot q = \frac{\gamma}{q}$

ACE Engineering Publications Hyderabad + Delhi + Pune + Bhubaneswar + Bengaluru + Lucknow + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

Â	ACE Engineering Publications
---	---------------------------------

 $\mathbf{x} \oplus \mathbf{y} = 2 \odot 2$ $\frac{x^2 + y^2}{xy} = \frac{2^2}{2}$

 $x^2 + y^2 = 2xy$ $x^2 + y^2 - 2xy = 0$ $(x-y)^2 = 0$ $\mathbf{x} - \mathbf{y} = \mathbf{0}$ $\mathbf{x} = \mathbf{y}$

10. Consider two rectangular sheets, Sheet M and Sheet N of dimensions 6 cm x 4 cm each.

Folding operation 1: The sheet is folded into half by joining the short edges of the current shape.

Folding operation 2: The sheet is folded into half by joining the long edges of the current shape.

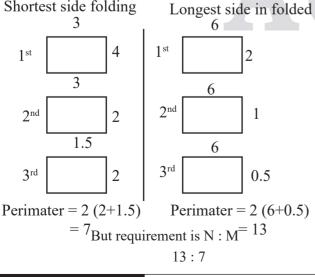
Folding operation 1 is carried out on Sheet M three times.

Folding operation 2 is carried out on Sheet N three times.

The ratio of perimeters of the final folded shape of Sheet N to the final folded shape of Sheet M is

6

Ν


(b) 13 : 7 (a) 5 : 13

(c) 3:2(d) 7:5

10. Ans: (b)

Shortest side folding

Section : Civil Engineering

01. Vehicular arrival at an isolated intersection follows the Poisson distribution. The mean vehicular arrival rate is 2 vehicle per minute. The probability (round off to two decimal places) that at least 2 vehicles will arrive in any given 1-minute interval is

01. Ans: (0.59)

Sol:

 $\lambda = 2$ veh/minute Let x = Number of vehicles arrive in a minute

P(x ≥2) = 1-P(x < 2)
= 1- { p(x = 0) + p(x=1)}
= 1 - {
$$\frac{\lambda^{\circ}e^{-\lambda}}{0!} + \frac{\lambda^{1}e^{-\lambda}}{1!}$$
}
= 1 - { $e^{-2} + 2e^{-2}$ }
= 1.3 e^{-2}
= 0.593

02. Spot speeds of vehicles observed at a point on a highway are 40, 55, 60, 65 and 80 km/h. The spacemean speed (in km/h, round off to two decimal places) of the observed vehicles is

Ans: (56.99) Sol:

Since

Space mean speed (v_i) = Harmonic mean of all spot speeds

$$\frac{1}{V} = \frac{1}{40} + \frac{1}{55} + \frac{1}{60} + \frac{1}{65} + \frac{1}{80}$$

V = 11.39 kmph $V_{c} = (n) (V)$ =(5)(11.39)= 56.99 km/hr

ACE Engineering Publications Hyderabad + Delhi + Pune + Bhubaneswar + Bengaluru + Lucknow + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabac

RECORDED VIDEO LECTURES (

Additional Subjects/Topics of ESE with respect to GATE					
Civil	Mechanical	ECE	Electrical		
Subject wise courses available for SSC-JE (English)					
Biology	Indian Polity & General Intelligence Governance & Reasoning Indian Geog		Indian Geography		
Estimation & Costing (Hindi & English)	Structural Analysis	Strength of Materials	Surveying (Geomatics)		
Irrigation Engineering	Hydrology	Environmental Engg.	RCC & PSC		
Transportation Engg.	Geo-Technical Engg.	Fluid Mechanics	Building Materials		

* Remaining Subjects Launching Soon!

Subject wise courses available for GATE / ESE (Hindi)

Signals & Systems - EC/EE/IN	Communications - EC	Control Systems - EC/EE/IN
Network Theory - EC/EE/IN	Power Systems - EE	IM & OR - Mech./PI

SALIENT FEATURES

- Dynamic & Experienced Faculty.
- Covers Exam Preparation Strategy and Live Doubt clearing sessions.
- Facilitates Enhanced learning by incorporating 2d & 3d animations.
- Compose online study notes and save it for future reference.
- Comprises of weekly self assessment tests.
- Free Interview Guidance & Post GATE Guidance for subscribers.
- ASK AN EXPERT feature for doubt clarifications via emails/video (services to be availed within 12 hrs.)
- Procure Full set of Study Material (Optional)*
- EMI option available.

Scan QR Code

Download the Deep Learn Android App

- www.deep-learn.in
- www.aceenggacademy.com
- Support@frostinteractive.com
- hyderabad@aceenggacademy.com
- 040-23234418/19/20

* All Subjects Launching Soon!

|⊠ €

۲

2

ACE Engineering Publications

- 03. Which one of the following is correct?
 - (a) The partially treated effluent from a food processing industry, containing high concentration of biodegradable organics, is being discharged into a flowing river at a point P. If the rate of degradation of the organics is higher than the rate of aeration, then dissolved oxygen of the river water will be lowest at point P.
 - (b) For an effluent sample of a sewage treatment plant, the ratio BOD_{5-day, 20°C} upon ultimate BOD is more than 1.
 - (c) A young lake characterized by low nutrient content and low plant productivity is called eutrophic lake.
 - (d) The most important type of species involved in the degradation of organic matter in the case of activated sludge process based wastewater treatment is *chemoheterotrophs*.

03. Ans: (d)

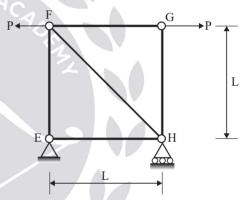
- **Sol:** *chemoheterotrophs* are organisms that obtain energy by oxidation. Chemoheterotrophs can be either autotrophic (or) heterotropic. But in ASP heterotrophs only involved in biodegradation of organics.
- 04. Consider the limit:

 $\lim_{x \to 1} \left(\frac{1}{\ln x} - \frac{1}{x - 1} \right)$

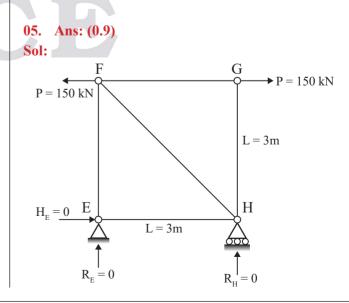
The limit (correct up to one decimal place) is_

Ans: (0.5)

Sol:


Let $\ell = \lim_{x \to 1} \left(\frac{1}{\ell n x} - \frac{1}{x - 1} \right)$ ($\alpha - \alpha$ form)

Then


$$\ell = \lim_{\mathbf{x} \to 1} \left[\frac{(\mathbf{x} - 1) - \ell \mathbf{n} \mathbf{x}}{(\mathbf{x} - 1) \ell \mathbf{n} \mathbf{x}} \right] \left(\frac{\mathbf{0}}{\mathbf{0}} \text{ form} \right)$$

$$\Rightarrow \ell = \lim_{x \to 1} \left[\frac{1 - \frac{1}{x}}{(x - 1)\frac{1}{x} + \ell nx} \right] \left(\frac{0}{0} \text{ form} \right)$$
$$\Rightarrow \ell = \lim_{x \to 1} \left[\frac{0 + \frac{1}{x^2}}{(x - 1)\left(\frac{-1}{x^2}\right) + (1)\left(\frac{1}{x}\right) + \frac{1}{x}} \right]$$
$$\Rightarrow \ell = \frac{+1}{0 + 1 + 1} = \frac{1}{2}$$
$$\therefore \ell = \pm 0.5$$

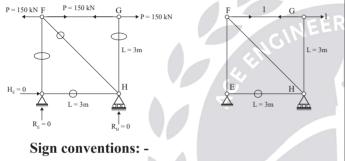
05 A truss EFGH is shown in the figure, in which all the members have the same axial rigidity R. In the figure, P is the magnitude of external horizontal NC forces acting at joints F and G.

IF R - 500×10^3 kN, P= 150 kN and L - 3 m, the magnitude of the horizontal displacement of joint G (*in mm, round off to one decimal place*) is_____

ACE Engineering Publications Hyderabad + Delhi + Pune + Bhubaneswar + Bengaluru + Lucknow + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

Taking moment about 'E'

$$\Sigma M_{E} = 0 \quad e \quad P \times P = 0$$
$$-R_{H} + P \times L - P \times L = 0$$
$$R_{H} = 0$$
$$R_{E} = 0$$


Horizontal displacement of joint 'G'

$$\delta_{\rm HG} = \Sigma \frac{PKL}{AF}$$

where,

P = forces in all the members due to real loads

K = forces in all the members due to virtual unit load applied at joint 'G' in horizontal direction.

Tension : +ve Compression : -ve

Horizontal displacement of joint 'G'

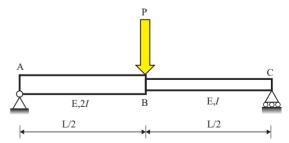
$$\delta_{\rm HG} = \Sigma \frac{\rm PKL}{\rm AE}$$

Axial rigidity (AE) = $R = 500 \times 10^3 \text{ kN}$

$$\delta_{\rm HG} = \frac{P_{\rm FG} K_{\rm FG} L_{\rm FG}}{R} + \dots$$
$$= \frac{(+150)(+1)(3000)}{500 \times 10^3}$$

= 0.9 mm

- 06. Which of the following is NOT a correct statement?
 - (a) The first reading from a level station is a 'Fore Sight'.
 - (b) Contours of different elevations may intersect each other in case of an overhanging cliff.
 - (c) Basic principle of surveying is to work from whole to parts.
 - (d) Planimeter is used for measuring ' area'


06. Ans:(a)

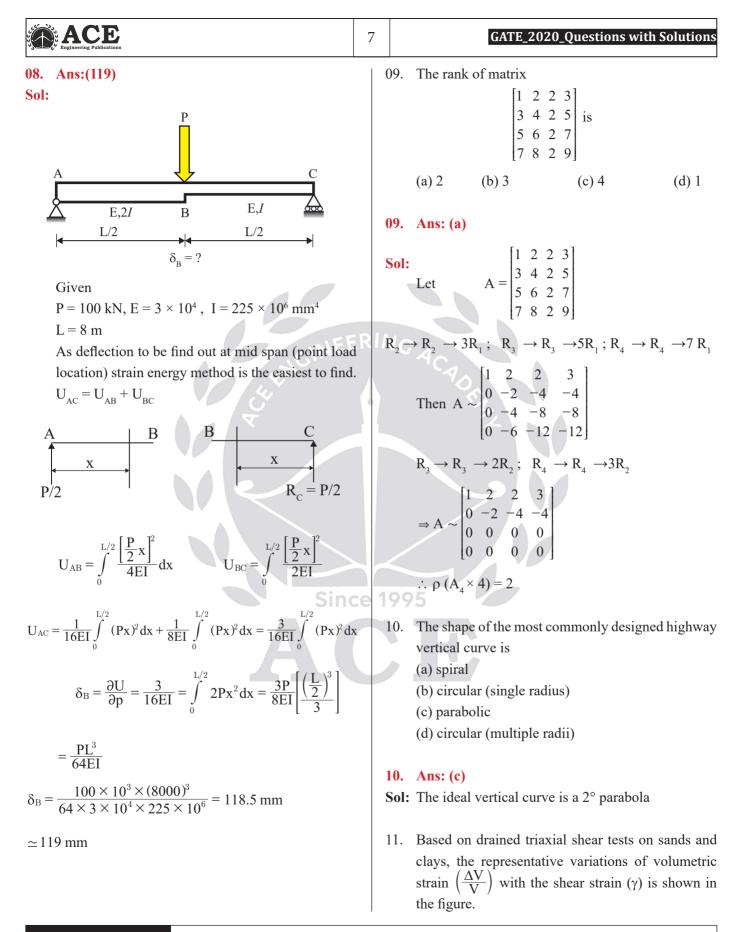
- **Sol:** The first reading from a level station is a back sight.
- 07. An unlined canal under regime conditions along with a silt factor of 1 has a width of flow 71.25 m. Assuming the unlined canal as a wide channel, the corresponding average depth of flow (in m. round off to two decimal places) in the canal will be_____

07. Ans: (2.92)

Sol: As it is assumed as a wide channel P = B = 71.25 mFor a regime channel P = 4.75 \sqrt{Q} $71.25 = 4.75 \sqrt{Q}$ $Q = 225 \text{ m}^3/\text{s}$ $V = \left(\frac{Qf^2}{140}\right)^{1/6} = 1.08 \text{ m}$ $A = \frac{Q}{V} = \frac{225}{1.08} = 208.33 \text{ m}^2$ Treating it as a very wide channel, A = BD 208.33 = 71.25DD = 2.92 m

08. Employ stiffness matrix approach for the simply supported beam as shown in the figure to calculate unknown displacements/rotations. Take length. L = 8 m; modulus of elasticity, $E = 3 \times 10^4 \text{ N/mm}^2$; moment of inertia, $I = 225 \times 10^6 \text{ mm}^4$.

The mid-span deflection of the beam (in mm, round off to integer) under


P= 100 kN in downward direction will be___

Since

UPCOMING BATCHES **a hyderabad**

GATE + PSUs – 2022 (REGULAR BATCHES)

Batch Type	Timings	Batch Date	Duration	Venue & Streams		
Regular	Daily 4 to 6 Hours	2 nd & 17 th April 2021 1 st & 17 th May 2021 1 st & 17 th June 2021	5 to 6 Months	Abids (CS&IT) Dilsukhnagar (EC, EE, IN) Kothapet (CE, ME, PI)		
	GATE + PSUs - 2022 (FLEXIBLE BATCHES)					
Flexible Batches	Daily 6 to 8 Hours	5 th , 20 th July 2021 4 th , 18 th August 2021	3 to 4 Months	Abids (CS&IT) Dilsukhnagar (EC, EE, IN) Kothapet (CE, ME, PI)		
GATE + PSUs – 2022 (SPARK BATCHES)						
Spark	Daily 5 to 8 Hours	17 th May 2021 1 st & 17 th June 2021	5 to 6 Months	Abids (CE, ME, CS) Kukatpally (EC, EE)		
	ESE + G	ATE + PSUs – 2022 (REG	ULAR BATCH	ES)		
Regular	Daily 6 to 8 Hours	2 nd & 17 th April 2021 1 st & 17 th May 2021 1 st & 17 th June 2021	9 to 10 Months	Kukatpally (EC, EE) Abids (CE, ME)		
ESE + GATE + PSUs – 2022 (SPARK BATCHES)						
Spark	Daily 6 to 8 Hours	17 th May 2021 1 st & 17 th June 2021	9 to 10 Months	Kukatpally (EC, EE) Abids (CE, ME)		

ACE Engineering Publications Hyderabad + Delhi + Pune + Bhubaneswar + Bengaluru + Lucknow + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

Expansion (1/1) (

Choose the CORRECT option regarding the representative behaviour exhibited by Curve P and Curve Q.

- (a) Curve P represents loose sand and normally consolidated clay, while Curve 'Q' represents dense sand and overconsolidated clay
- Р represents loose (b) Curve sand and overconsolidated clay, while Curve *'*0' represents dense sand and normally consolidated clay
- (c) Curve P represents dense sand and overconsolidated clay, while Curve 'Q' represents loose sand and normally consolidated clay
- (d) Curve P represents dense sand and normally consolidated clay, while Curve 'Q' represents loose sand and overconsolidated clay.

11. Ans: (c)

Sol:

For dense sand and OC clay, volumetric strain initially decreases and then increases with the increase in shear strain.

For loose sand and NC clay, volumetric strain decreases with the increase in shear strain.

12. A highway designed for 80 km/h speed has a horizontal curve section with radius 250 m. If the design lateral friction is assumed to develop fully, the required super elevation is

(a) 0.07	(b) 0.05
() 0.00	(1) 0.00

(c) 0.02 (d) 0.09

12. Ans:(b)

8

Sol: V = 80 kmph; R = 250 m; f = 0.15 (as per IRC) Equation of super elevation with friction

$$e + f = \frac{V^2}{127R}$$

$$e + 0.15 = \frac{80^2}{127(250)}$$

$$e + 0.15 = 0.202$$

$$e = 0.051$$

$$\approx 0.05$$

13. A small project has 12 activities - N, P, Q, R, S, T, U, V, W, X, Y, and Z. The relationship among these activities and the duration of these activities are given in the Table.

Activity	Duration (in weeks)	Depends upon
005 N	2	-
Р	5	N
Q	3	N
R	4	Р
S	5	Q
Т	8	R
U	7	R,S
V	2	U
W	3	U
X	5	T,V
Y	1	W
Z	3	X,Y

The total float of the activity "V" (in weeks, in integer) is _____

Civil Engineering

ACE SCHOLARSHIP TEST

A NATIONAL LEVEL SCHOLARSHIP TEST FOR ENGINEERS GATE | ESE | PSUs - 2022 / 2023

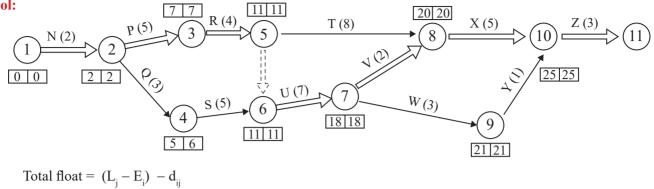
• ONLINE MODE

- AI based proctoring examination.
- candidates can take the online test from any location using a laptop/ PC with a connected webcam and good internet connection.

LAST DATE FOR ONLINE REGISTRATION 5th MARCH 2021

Exam Date : **7th March 2021** Timing: **11:00 AM**

No. of Questions: 50 25 Q: 1 Mark | 25 Q: 2 Mark Total : 75 Marks Duration : 90 Mins. Streams: EC | EE | ME | CE | CSIT | IN | PI


APPLICABLE FOR

CLASSROOM COACHING EXCLUSIVE LIVE BATCHES **DEEP-LEARN** (Pre-Recorded Classes)

🌐 www.aceenggacademy.com 🔰 🔇 040-23234418 / 19 / 20 👘

13. Ans: 0 Sol:

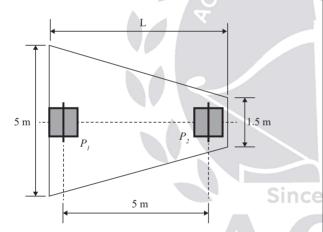
Total float = $(L_j - E_i) - d_{ij}$ Total float of "V" = (20 - 18) - 2 = 0Note: 'V' is a critical activity, hence total float of "V" =0

14. A partially-saturated soil sample has natural moisture content of 25% and bulk unit weight of 18.5 kN/m³. The specific gravity of soil solids is 2.65 and unit weight of water is 9.81 kN/m³. The unit weight of the soil sample on full saturation is

	(a) 20.12 kN/m^3	(b) 18.50	xN/m ³	(c) 21.12	2 kN/m^3	(d) 19.03 kN/m ³
14. Sol:	Ans:(d) Given, w = 25% $\gamma = 18.5 \text{ kN/m}^3$ $G_s = 2.65$ $\gamma_w = 9.81 \text{ kN/m}^3$ e.S = W.G _s e.S = 0.25 × 2.65 = 0.6625 $\gamma = \frac{\gamma_w \{G + e.S\}}{1 + e}$ $18.5 = 9.81 \left[\frac{2.65 + 0.6625}{1 + e} \right]$ e = 0.7565 $\therefore \gamma_{\text{sat}} = \frac{\gamma_w \{G_s + e\}}{1 + e}$ $= \frac{9.81 \{2.65 + 0.7565\}}{1 + 0.7565}$ $\gamma_{\text{sat}} = 19.025 \text{ kN/m}^3$ Say 19.03 kN/m ³		Sinc	e 199	continuously. The bag sections of equal cloth be shut down for clea the other 4 sections to-cloth ratio of 6.0 m sufficient treatment to are of 32 cm in diam	rough cloth bag $-m^2 = 6 \text{ m/min}$ 0.32 m red n = ?

9

$$= \frac{Q}{v} = \frac{12}{\frac{6}{60}} = \frac{12 \times 60}{6} = 120 \text{ m}^2$$

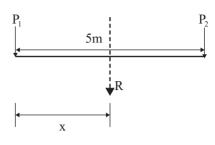

Surface area of each bag = $\pi D \times L = \pi \times 0.32 \times 5$ = 5.026 m²

Number of bags required

 $= \frac{\text{Total area of filter}}{\text{area of each bag}} = \frac{120}{5.026} = 23.87 \simeq 24$

No. of bags per each section = $\frac{24}{4}$ = 6 bags Total no. of bags required in 5 sections = 6 ×5 = 30 days

16. A combined trapezoidal footing of length L supports two identical square columns (P_1 and P_2) of size 0.5 m ×0.5 m, as shown in the figure. The columns P_1 and P_2 carry loads of 2000 kN and 1500 kN, respectively.



If the stress beneath the footing is uniform, the length of the combined footing L (in m, round off to two decimal places) is

16. Ans: (5.83)

Sol:

To have uniform stress below the footing the condition to be satisfied is that the resultant load should pass through the C.G of the footing.

Let the resultant load (R) passes at a distance, x as

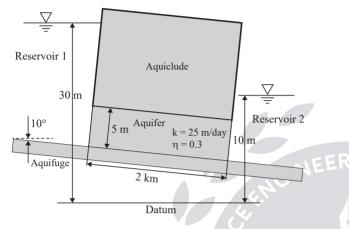
shown in the figure.

 $x = \frac{P_1 \times 0 + P_2 \times 5}{P_1 + P_2}$ (taking moments about centre of column, P₁) $= \frac{2000 \times 0 + 1500 \times 5}{2000 + 1500} = 2.143 \text{ m}$

Let \overline{x} be the C.G distance of the footing from left outer face as shown

 $\overline{\mathbf{x}} = \left[\frac{a+2b}{a+b}\right] \frac{L}{3}$ (C.G distance formula for trapezodial shape)

$$= \left(\frac{5+2\times1.5}{5+1.5}\right)\frac{\mathrm{L}}{3}$$


Equating: $\overline{x} = x+0.25$ $\left(\frac{5+2\times1.5}{5+1.5}\right)\frac{L}{3} = 2.143 + 0.25$

L = 5.833 m say 5.83 m

College Goe	rs Batch for (GATE & ESE - 2022 / 2023	0	lyderabad
Batch Type	Timings	Batch Date	Duration	Venue
Morning, Evening Batches	6am to 8am & 6pm to 8:30pm	20 th March 2021	8 to 10 Months	Abids, Dilsukhnagar, Kukatpally.
GATE + PSU	s – 2022 & ES	5E + GATE + PSUs – 2022		@ DELHI
		5 th March 2021		
Regular	Daily 5 to 6	7 th April 2021	6 to 7	ACE campus
Batches	Hours	15 th May 2021	Months	Saket
		5 th June 2021		
GATE + PSU	s – 2022 & ES	E + GATE + PSUs – 2022		@ PUNE
Regular / Weekend Batches	Daily 5 to 6 Hours	20 th March 2021	6 to 7 Months	Pune Classroom
GATE + P	SUs – 2022	2 & 2023	(@ VIZAG
Weekend Batch	Saturday 2 pm to 8 pm Sunday 9am to 6pm	3 rd April 2021	6 to 7 Months	Vizag Classroom
GATE + PS	Us – 2022 &	2023	@ V	IJAYAWADA
Weekend Batch	Saturday 2 pm to 8 pm Sunday 9am to 6pm	3 rd April 2021	6 to 7 Months	Vijayawada Classroom
GATE + PS	Us – 2022		@	TIRUPATI
Weekend Batch	Saturday 2 pm to 8 pm Sunday 9am to 6pm	20 th March 2021	6 to 7 Months	Tirupati Classroom
Sce	Rs	RLY BIRD OFFER 3,000/- OFF on or before 31 st March 2	b 2	

	ACE Engineering Publications
--	---------------------------------

17. Tworeservoirs are connected through a homogeneous and isotropic aquifer having hydraulic conductivity (K) of 25 m/day and effective porosity (η) of 0.3 as shown in the figure (not to scale). Ground water is flowing in the aquifer at the steady state.

If water in Reservoir 1 is contaminated then the time (in days, round off to one decimal place) taken by the contaminated water to reach to Reservoir 2 will be

17. Ans: (2400)

Sol: k = 25 m/dayL = 2000 m

$$n = 0.3$$

 $h_{e} = 20 m$

v = ki =
$$25 \times \frac{20}{2000} = 0.25$$

v_s = $\frac{v}{n} = \frac{0.25}{0.3} = 0.8333$ m/day

$$V_{\rm s} = \frac{\rm DIST}{\rm TIME}$$

 $0.8333 = \frac{2000}{T}$

T = 2400 days

18. The values of abscissa (x) and ordinate (y) of a curve are as follows:

X	у
2.0	5.00
2.5	7.25

3.0	10.00
3.5	13.25
4.0	17.00

By Simpson's 1/3rd rule, the area under the curve (round off to two decimal places)

18. Ans: (20.67)

Sol:

 $\frac{1}{2}$

Let $x_0 = 2$, $x_1 = 2.5$, $x_2 = 3$, $x_3 = 3.5$, $x_4 = 4$ $y_0 = 5$; $y_1 = 7.25$, $y_2 = 10$, $y_3 = 13.25$ and $y_4 = 17$. Then h = 0.5The formula of simpson's 1/3rd rule to the

$$\Rightarrow \int_{2}^{4} f(x) \, dx \simeq \int_{2}^{4} f(x) \, dx = \left(\frac{0.5}{3}\right) \left[(5+17) + 2(10) + 4(7.25+13.25) \right]$$

$$\Rightarrow \int_{2}^{4} f(x) dx \simeq \int_{2}^{4} p(x) dx = \left(\frac{0.5}{3}\right) [22 + 20 + 4(20.5)]$$

$$\therefore \int_{2}^{4} f(x) dx \simeq \int_{2}^{4} p(x) dx = \frac{62}{2} = 20.67$$

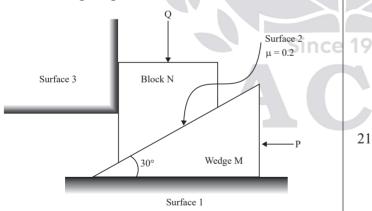
19. A tube-well of 20 cm diameter fully penetrates a horizontal, homogeneous and isotropic confined aquifer of infinite horizontal extent. The aquifer is
of 30 m uniform thickness. A steady pumping at the rate of 40 litres/s from the well for a long time results in a steady drawdown of 4 m at the well face. The subsurface flow to the well due to pumping is steady, horizontal and Darcian and the radius of influence of the well is 245 m. The hydraulic conductivity of the aquifer (in m/day, round off to integer) is

19. Ans: (36) Sol:

$$\begin{split} &d_{w}=20 \text{ cm}, \ r_{w}=10 \text{ cm}, \text{ confined aquifer} \\ &B=30 \text{ m}, \text{ Q}=40 \text{ litres/sec}, \text{ S}_{w}=4 \text{ m} \\ &R=245 \text{ m}, \qquad k=? \text{ m/day} \end{split}$$

ACE Engineering Publications Hyderabad + Delhi + Pune + Bhubaneswar + Bengaluru + Lucknow + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

Since

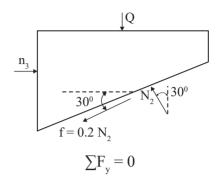


$$Q = \frac{40 \times 10^{-3}}{\left(\frac{1}{24} \times 3600\right)} = 3456 \text{ m}^3/\text{day}$$

$$Q = \frac{2\pi TS_w}{\ln \left[\frac{R}{r_w}\right]}$$

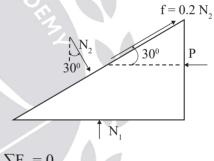
 $3456 = \frac{2\pi T \times 4}{\ln \left[\frac{245}{0.1}\right]}$ $T = 1073.11 \text{ m}^2 / \text{day}$

- T = kB1073.11 = k ×30 k = 35.77 m/day k = 36 m/day
- 20. A wedge M and a block N are subjected to forces P and Q as shown in the figure. If force P is sufficiently large, then the block N can be raised. The weights of the wedge and the block are negligible compared to the forces P and Q. The coefficient of friction (μ) along the inclined surface between the wedge and the block is 0.2. All other surfaces are frictionless. The wedge angle is 30°.



The limiting force P, in terms of Q, required for impending motion of block N to just move it in the upward direction is given as $P=\alpha Q$. The value of the coefficient ' α ' (round off to one decimal place) is

(a) 2.0	(b) 0.5
(c) 0.6	(d) 0.9


20. Ans: (d)

Sol: 1. FBD of Block N

$$N_2 \cos 30 = Q + 0.2 N_2 \times \sin 30$$

 $\therefore N_2 = Q \times 1.3054 - (1)$

$$P = N_2 \sin 30 + 0.2N_2 \cos 30$$

$$P = N_2 \times 0.6732$$

From equation (1)

$$P = Q \times 1.3054 \times 0.6732$$

$$P = 0.8788 \times Q = \alpha \times Q$$

$$\alpha \simeq 0.9$$

21. A secondary clarifier handles a total flow of 9600 m³ /d from the aeration tank of a conventional activated-sludge treatment system. The concentration of solids in the flow from the aeration tank is 3000 mg/L. The clarifier is required to thicken the solids to 12000 mg/L, and hence it is to be designed for a solid flux of 3.2 kg/m².h. The surface area of the designed clarifier for thickening (in m², in integer) is

ONLINE LIVE CLASSES

ENGLISH

EXCLUSIVE

ESE | GATE | PSU - 2022

New Batches start from 20th March & 7th April

DISCOUNTS for ESE|GATE|PSUs

2021

• **25% OFF*** for ACE Old Students • **20% OFF*** for IIT / NIT, Students

- **15% OFF*** for IIIT & Govt.
- College students

5

GENCO / TRANSCO DISCOMs

Batch Starts from 22nd Feb 2021

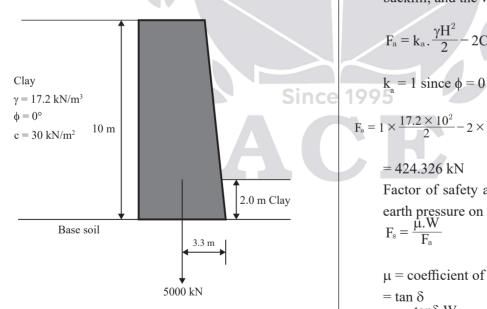
APPSC / TSPSC

Batch Starts from **16th Feb 2021**

COURSE DETAILS

- For ESE+GATE+PSUs Students
 - 1. Online Live Classes Technical Subjects Only.
 - 2. Recorded Classes General Studies Subjects (on ACE Deep Learn Platform).
- Recorded version of the online live class will be made available through out the course (with 3 times view).
- Doubt clearing sessions and tests to be conducted regularly.
- 3 to 4 hours of live lectures per day in week days (Timing 5 pm to 9 pm) On Sundays 5-6 Hours Live Online Lectures (6 days a week).
- Access the lectures from any where.

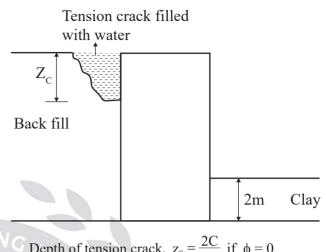
Call: 040-23234418/19/20 Email: hyderabad@aceenggacademy.com


ACE Engineering Publications

21. Ans: (375)

Sol:

 $Q = 9600 \text{ m}^3/\text{day} = 9.6 \text{ MLD}$ Concentration of solids $C_{\text{Solids}} = 3000 \text{ mg/L}$ Solids flux = 3.2 kg/m². h Surface area of clarifier = $\frac{\text{Total solids}}{\text{Solids flux rate}}$ $= \frac{9.6 \times \frac{3000}{24}}{3.2} \frac{\text{kg/hr}}{\text{kg/m}^2 - \text{hr}} = 375 \text{ m}^2$


22. A retaining wall of height 10 m with clay backfill is shown in the figure (not to scale). Weight of the retaining wall is 5000 kN per m acting at 3.3 m from the toe of the retaining wall. The interface friction angle between base of the retaining wall and the base soil is 20. The depth of clay in front of the retaining wall is 2.0 m. The properties of the clay backfill and the clay placed in front of the retaining wall are the same. Assume that the tension crack is filled with water. Use Rankine's earth pressure theory. Take unit weight of water, $\gamma_w = 9.81$ kN/m³

The factor of safety (rounded off to two decimal places) against sliding failure of the retaining wall after ignoring the passive earth pressure will be

22. Ans: (4.29)

Sol:

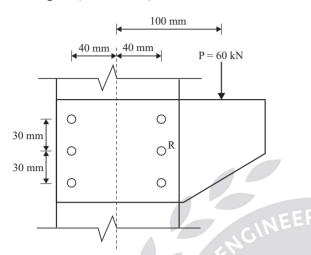
Depth of tension crack, $z_c = \frac{2C}{\gamma}$ if $\phi = 0$ = $\frac{2 \times 30}{17.2} = 3.488$ m

Tension crack develops only in the back fill (clay) The tension crack will not develop in the clay which is infront of the wall.

The total active thrust on the wall, due to the backfill, and the water in the tension crack

$$F_{a} = k_{a} \cdot \frac{\gamma H^{2}}{2} - 2C\sqrt{k_{a}} \cdot H + \frac{2C^{2}}{\gamma} + \frac{\gamma_{w} z_{c}^{2}}{2}$$

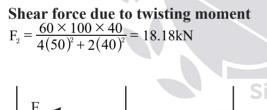
 $F_{a} = 1 \times \frac{17.2 \times 10^{2}}{2} - 2 \times 30\sqrt{1} \times 10 + \frac{2 \times 30^{2}}{17.2} + \frac{9.81 \times 3.488^{2}}{2}$ = 424.326 kN


Factor of safety against sliding neglecting passive earth pressure on front side, $F_s = \frac{\mu.W}{F}$

 $\mu = \text{coefficient of friction at base}$ $= \tan \delta$ $F_s = \frac{\tan \delta . W}{F_a}$ $= \frac{\tan 20^\circ \times 5000}{424.326} = 4.2888$

ACE Engineering Publications

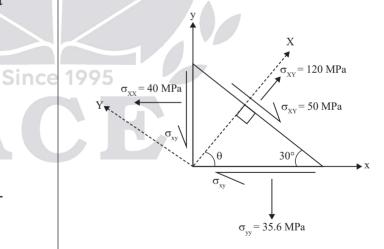
14


23. A column is subjected to a total load (P) of 60 kN supported through a bracket connection, as shown in the figure (not to scale).

The resultant force in bolt R (in kN, round off to one decimal place) is ______

23. Ans: (28.18)

Sol: $F_1 = \frac{P}{n} = \frac{60}{6} = 10 \text{ kN}$


Resultant force in bolt R

$$R = \sqrt{F_1^2 + F_2^2 + 2F_1F_2\cos\theta}$$

 $\mathbf{R} = \sqrt{(10)^2 + (18.8)^2 + 2 \times 10 \times 18.18 \cos 0^\circ}$

$$(\theta = 0^{\circ})$$

R = 28.18 kN \simeq 28.2 kN

24. The state of stress in a deformable body is shown in the figure. Consider transformation of the stress from the x-y coordinate system to the X-Y coordinate system. The angle θ, locating the X-axis is assumed to be positive when measured from the x-axis in counter -clock wise direction.

The absolute magnitude of the shear stress component σ_{xy} (in MPa, round off to one decimal place) in x-y coordinate system is _____

GATEway to Government JOBS...

CLASSROOM COACHING

COURSE DETAILS

- Experienced and erudite faculty from ACE Hyd.
- Focussed and relevant
- Structured online practice tests.
- Regular doubt clearing sessions.
- 5 to 6 Hours lectures
 per day (5-7 Days a
 week)

APPSC / TSPSC

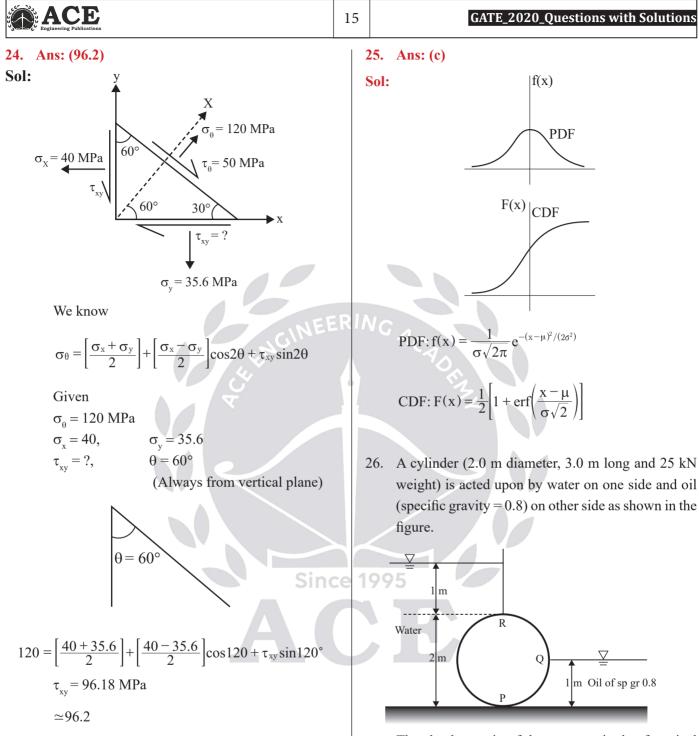
Starts from: 16th Feb, 2021

GENCO / TRANSCO / DISCOMs

Starts from: 22nd Feb, 2021

MPSC MAINS

Starts from: 5th April, 2021


KPSC / KPWD

SSC JE (GS)

OPSC

BPSC

Email: hyderabad@aceenggacademy.com | www.aceenggacademy.com

- 25. The shape of the cumulative distribution function of Gaussian distribution is
 - (a) Straight line at 45 degree angle
 - (b) Bell -shaped
 - (c) S-shaped
 - (d) Horizontal line

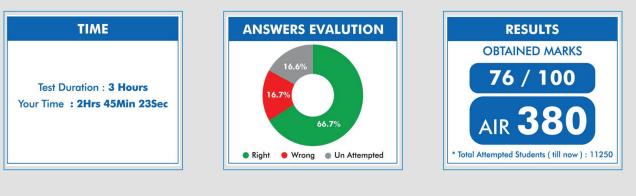
The absolute ratio of the net magnitude of vertical forces to the net magnitude of horizontal forces (round off to two decimal places) is _____

Expinering Publications	16	Civil Engineering
26. Ans: (0.61) Sol:		$= 0.8\gamma_{\rm w} \left(\frac{\pi}{4} \times 1^2 \times 3\right)$
Horizontal force:		$0.6\pi \gamma_w$
		$\Sigma F_{\rm V} = F_1 + F_2 = 2.1 \pi \gamma_{\rm w}$
R		$= 6.594 \ \gamma_{ m w}$
F_1		$\frac{\Sigma F_{\rm V}}{\Sigma F_{\rm x}} = \frac{6.594 \ \gamma_{\rm w}}{10.8 \ \gamma_{\rm w}} = 0.61$
P		Another Solution
$F_1 = \gamma . (A\overline{h})_p$	RI	26. Ans: 0.38 Sol:
$= \gamma_{w} . [(2 \times 3)(2)]$ $= 12 \gamma_{w}$		1. $\vec{\mathbf{F}}_{\mathrm{H}_{\mathrm{NET}}} = \vec{\mathbf{F}}_{\mathrm{H}_{\mathrm{water}}} - \vec{\mathbf{F}}_{\mathrm{H}_{\mathrm{oil}}}$
$F_2 = \gamma(A\overline{h})_P$		$F_{H_{Net}} = \rho_{water}.g.\overline{h}_{water}.A_{projected}{\rm cylinder} - \rho_{oil}.g.\overline{h}_{oil}.A_{project}{\rm half}{\rm cylinder}$
$= 0.8\gamma_{\rm w} \left[(1\times3)\times\frac{1}{2} \right] = 1.2\gamma_{\rm w}$		$\vec{F}_{H_{net}} = 1000 \times 9.81 \times \left(1 + \frac{2}{2}\right)(2 \times 3) - 800 \times 9.81 \times \left(\frac{1}{2}\right)(1 \times 3)$
$\therefore \Sigma F_x = 12\gamma_w - 1.2\gamma_w \Rightarrow \Sigma F_x = 10.8\gamma_w$		$\vec{F}_{Not} = 117720 - 11772$
Vertical force:		$ \vec{F}_{H_{Net}} = 105948 \text{ N} = 105.948 \text{ kN} (1)$
		2. $F_V \uparrow = F_{V_{water}}^{\dagger} + F_{V_{oil}}$
$\left(\uparrow F_{1}^{R} \uparrow \right)^{Q}$	Y	= [weight of water displaced by cylinder]
P F ₂		+ [weight of oil displaced by cylinder] $F_{v_{liquids}} = W_{water} \uparrow + W_{oil} \uparrow$
$F_1=\gamma_{\rm w}. \forall$		$F_{v_{liquids}} = \rho.g. V_{water} + \rho_{oil}g.V_{oil}$
$=\gamma_{\rm w}\left(\frac{\pi}{8}\times2^2\times3\right)$		$=\rho_{\rm w}.g.\frac{\pi R^2.L}{2}+\rho_{\rm oil}g.\frac{\pi R^2.L}{4}$
$=\frac{3\pi}{2}\gamma_{\rm w}$		$Fv_{\text{liquids}} = 1000 \times 9.81 \times \frac{\pi(1)^2(3)}{2} + 800 \times 9.81 \times \frac{\pi(1)^2}{4} \times 3$
$F_2 = \gamma_0 . V$		= 46228.536 + 18491.414

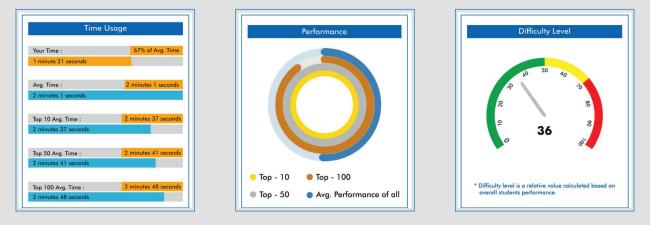
ACE Engineering Academy, the leading institute for GATE, ESE and PSUs offers postal coaching (Distance learning programme) for engineering students.

$Fv_{liquid} = 64719.95N \simeq 64.72 \text{ kN} \uparrow$ $ F_{V_{Not}} _{liquids} = (F_V)_{liquids} \uparrow - W_{cylinder} \downarrow$ $ Fv_{liquids} = 64.72 \uparrow - 25 \downarrow$ $\therefore F_{V_{Not}} = 39.72 \text{ kN} \uparrow(2)$		tive Results when Five	is Combinations of Posi- Tubes used per Dilution) mL and 0.1 mL	
$ Fv_{liquids} = 64.72 \uparrow -25 \downarrow$		1		
$ F_{V_{k}} = 39.72 \text{ kN} \uparrow \dots (2)$		Combination of positive tubes	MPN Index per 100 mL	
$\cdots + v_{Not} + J_{J_{Not}} + $		0-2-4	11	
		1-3-5	19	
$\frac{F_{\rm V_{\rm Net}}}{F_{\rm H_{\rm Net}}} = \frac{39.720(\rm kN)}{105.948(\rm kN)}$		4-2-0	22	
$1_{\rm H_{Net}} = 103.948({\rm KIV})$		5-3-1	110	
$= 0.3749 \cong 0.375$ =0.38	ERIA 2	The MPN of coliform (a) 110000 (c) 1100 7. Ans: (a)	organisms per 100 mL is (b) 1100000 (d) 110	
A water sample is analyzed for coliform organism		ol:		
by the multiple tube fermentation method. Th			r(10-1-0.1) sample = 110	
results of confirmed test are as follows:		MPN against 5-3-1 for sample (0.01-0.001 - 0.00		
results of commined test are as follows.		$= 110 \times 1000$		
Sample size (mL)Number of positive results out of 5 tubesNumber of negative re- sults out of 5 tubes	2		at the same depth in m t triangular and rectange	
0.01 5 0		channel sections then of triangular section to	the ratio of hydraulic rac	
0.001 3 2 Sin	ce 19	795		
0.0001 1 4		(a) $\frac{1}{\sqrt{2}}$ (b) 1	(c) 2 (d)	
The most probable number (MPN) of coliforr organisms for the above results is to be obtaine using the following MPN Index.	n S	 Ans: (a) ol: Hydraulically efficien 	- V -	
		Hydraulically efficien	t rectangle, $R_2 = \frac{3}{2}$	
		Given $y_1 = y_2$		
		$\frac{R_1}{R_2} = \frac{y_1}{2\sqrt{2}} \times \frac{2}{y_2} = \frac{1}{\sqrt{2}}$	2	

Starts from: 1st July 2020 No. of Tests : 44 + Free 30 Practice Tests of ESE - 2020 Online Test Series Total Tests : 74


Note: GATE 2020 & ESE 2020 (Prelims) Online Test Series are available now.

MPSC PRELIMS 2020 | SSC-JE (Paper-II) MAINS 2019 KPSC (Asst. Engineer) | AAI


TEST SERIES HIGHLIGHTS

- Detailed Solutions are Available.
- Video Solutions are Available for Difficult Questions.
- All India rank will be given for each test.
- Comparison with all India toppers of ACE student.

TEST WISE STATISTICS:

QUESTION WISE STATISTICS:

Phone No.: 040-48539866, 040-40136222 | Email: Testseries@aceenggacademy.com

Engineering Publications	18		Civil Engineering
 29. Ammonia nitrogen is present in a given wastewater sample as the ammonium ion (NH‡) and ammonia (NH₃). If pH is the only deciding factor for the proportion of these two constituents, which of the following is a correct statement? (a) At pH 7.0, (NH‡) and NH₃ will be found in equal measures, (b) At pH below 9.25, NH₃ will be predominant. (c) At pH 7.0, (NH‡) will be predominant. (d) At pH above 9.25, only (NH‡) will be present 29. Ans: (b) 20. A 50 mL sample of industrial wastewater is taker into a silica crucible. The empty weight of the crucible is 54.352g. The crucible with the sample is dried in a hot air oven at 104°C till a constant weigh of 55.129 g. Thereafter, the crucible with the dried sample is fired at 600°C for 1 h in a muffle furnance and the weight of the crucible along with residue is determined as 54.783 g. The concentration of tota volatile solids is	31. 31. R Sol: e 199	(c) 198000 (d) Ans: (d)	ng/lit sts estimated by a ject is ₹160000 and mark up applied is red price (in ₹) of the 196000 200000 Bidprice rect cost + Markup ect cost + $\frac{10}{100}$ × Bid C runway provides the Gradient (%) +1.2 -0.7 +0.6 -0.8 -1.0 runway (in %, round

32. Ans: (0.32)

Sol:

Longitudinal section of runway is tabulated as given below

Station	Length (m)	Elevation (m)	RL (m)
А	0		100m
A		-	(assume)
В	300	+3.6	103.6
C	300	-2.1	101.5
D	500	+3	104.5
Е	300	-2.4	102.1
F	300	-3	99.1

Effective gradient

[Elevation of highest point(D)]

 $= \left[\frac{-\text{Elevation of lowest point(F)}}{\text{Total length}} \right] \times 100$

$$=\frac{104.5-99.1}{1700} \times 100 = 0.317 \simeq 0.32\%$$

33. The soil profile at a construction site is shown in the figure (not to scale). Ground water table (GWT) is at 5 m below the ground level at present. An old well data shows that the ground water table was as low as 10 m below the ground level in the past. Take unit weight of water, $\gamma_w = 9.81$ kN/m.

		Grount Level	
Sand $\gamma = 17.5 \text{ kN/m}^3$	•	Present GWT	5 m
$\gamma_{sat} = 18.5 \ kN/m^3$	15 m	÷	
Clay $\gamma_{sat} = 17 \text{ kN/m}^3$	8 m		

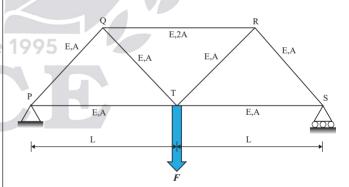
The over consolidation ratio (OCR) (round off to two decimal places) at the mid-point of the clay layer is_____

33. Ans: 1.22

Sol:

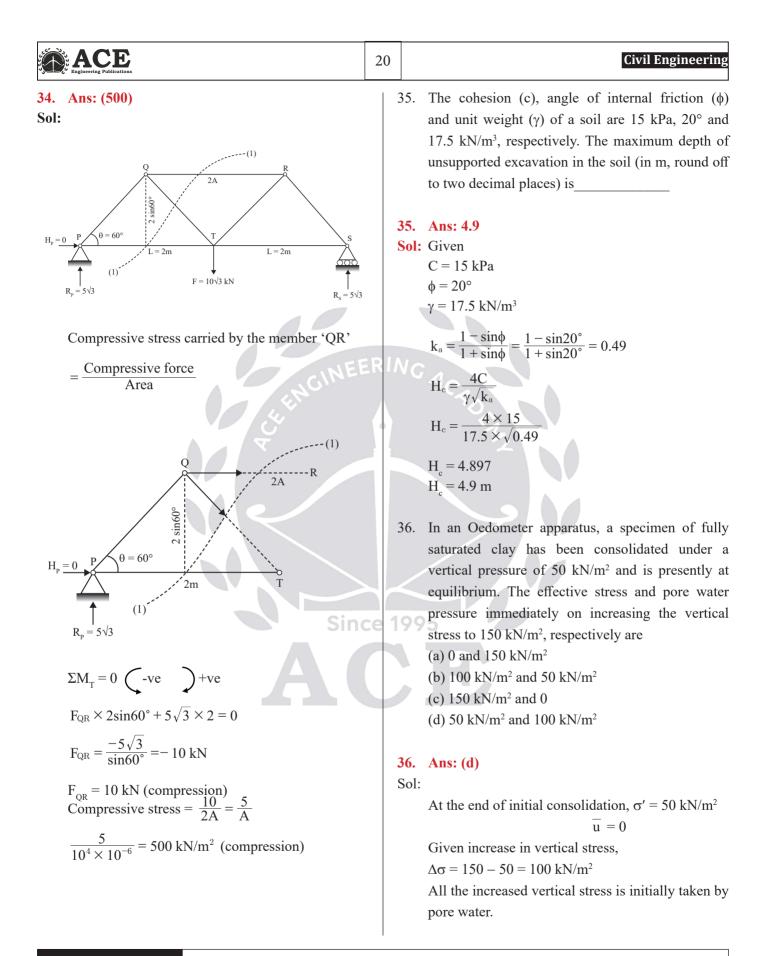
When the W.T was at 10 m depth in the past, the effective stress at mid point of clay, σ^1 $\sigma' = 10\gamma + 5\gamma'_1 + 4\gamma'_2$

 $= 10 \times 17.5 + 5[18.5 - 9.81] + 4(17 - 9.81)$


= $175 + 43.45 + 28.76 = 247.21 \text{ kN/m}^2$ When WT is 5 m depth, the σ^1 at mid point of clay, $\sigma' = 5\gamma + 10\gamma'_1 + 4\gamma'_2$

$$= 5 \times 17.5 + 10 (18.5 - 9.81) + 4(17 - 9.81)$$


- = 87.5 + 86.9 + 28.76
- = 203.16
- $\sigma'_{\rm c}$ = preconsolidation stress
- = maximum effective stress to which soil is consolidated
- σ' = present stress


OCR =
$$\frac{\sigma'_{\rm c}}{\sigma'} = \frac{247.21}{203.16} = 1.22$$

34. Refer the truss as shown in the figure (not to scale).

If load, $F=10\sqrt{3}$ kN, moment of inertia, $I = 8.33 \times 10^6$ mm⁴, area of cross- section, $A = 10^4$ mm², and length, L = 2 m for all the members of the truss, the compressive stress (in kN/m², in integer) carried by the member Q-R is

Engineering Publications	21	GATE_2020_Questions with Solutions
\therefore The increase in pore water pressure,		$y = y_1 + y_2 = 0.37 + 0.4 = 0.77$
$\Delta \overline{u} = 100$		optimum cycle time as per webster is
Increase in effective stress, $\Delta \sigma' = 0$	_	$C_{\circ} = \frac{1.5L+5}{1-v} = \frac{1.5 \times 6+5}{1-0.77}$
\therefore Immediately after increasing the load, the $\sigma' = 50$	0	$C_{0} = \frac{1-y}{1-y} = \frac{1-0.77}{1-0.77}$
and $\overline{u} = 100$		$= 60.869 \simeq 60.9 \text{ sec}$
$\sigma' = 50 + \Delta \sigma' = 50 + 0 = 50 \text{ kN/m}^2$		
$u = 0 + \Delta u = 0 + 100 = 100 \text{ kN/m}^2$		39. Which of the following is/are correct statement(s)?(a) If the whole circle bearing of a line is 270°, its reduced bearing is 90° NW.
37. The volume determined from		(b) The boundary of water of a calm water pond
$\iiint 8xyzdV \text{ for } V = [2,3] \times [1,2] \times [0,1] \text{ will be}$		will represent contour line.
$\int_{V} \int \frac{\partial y}{\partial x} dx = \int \partial$		
(in integer)	ERI	(c) In the case of fixed hair stadia tachometry, the
		staff intercept will be larger, when the staff is
37. Ans: (15)		held nearer to the observation point.
Sol: 3 2 1		(d) Back Bearing of a line is equal to Fore Bearing
Sol: Volume = $8 \int_{x=2}^{3} \int_{y=1}^{2} \int_{z=0}^{1} xyz dx dy dx$		± 180°
$\Rightarrow \mathbf{V} = 8\left(\frac{\mathbf{x}^2}{2}\right)_2^3 \cdot \left(\frac{\mathbf{y}^2}{2}\right)_1^2 \left(\frac{\mathbf{z}^2}{2}\right)_0^1$		39. Ans: (a), (b) and (d)
$\Rightarrow \mathbf{V} = 8\left(\frac{9-4}{2}\right)\left[\frac{4-1}{2}\right]\left[\frac{1-0}{2}\right]$		Sol:
\therefore V = (5) (3) (1) = 15		The principle of fixed hair tacheometry is that distances are proportional to staff intercept.
Sinc	ce 1	995 IA
38. A signalized intersection operates in two phases		A A ₁ 2
The lost time is 3 seconds per phases. The maximum		O_{1} C C_{1} C_{2}
ratios of approach flow to saturation flow for the		
two phases are 0.37 and 0.40. The optimum cycle		
length using the Webster's method (in seconds	,	
round off to one decimal place) is		
29 Amer (0.0		D
38. Ans: 60.9 Sol:		As distance increase, staff intercept also increases.
Two phase signal $(n = 2)$		
Lost time, $l = 3 \text{ sec /phase}$	4	40. Contractor X is developing his bidding strategy
Total lost time per cycle = $L = 3 \times 2 = 6$ sec		against Contractor Y. The ratio of Y's bid price to
		X's cost for the 30 previous bids in which Contractor
$y_1 = \frac{q_1}{s_1} = 0.37$; $y_2 = \frac{q_2}{s_2} = 0.4$		X has competed against Contractor Y is given in the Table

ACE Engineering Publications Hyderabad + Delhi + Pune + Bhubaneswar + Bengaluru + Lucknow + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

Total Selections in Top 10 58

and many more...

EE:9 EC:9 ME:7 CE:7 CS:7 IN:6 PI:9 XE:4

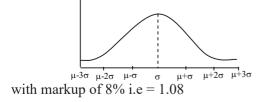
Ratio of Y's bid price to X's cost	Number of bids
1.02	6
1.04	12
1.06	3
1.10	6
1.12	3

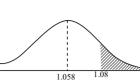
Based on the bidding behaviour of the Contractor Y. The probability of winning against Contractor Y at a mark up of 8% for the next project is

- (a) more than 50% but less than 100%
- (b) 0%
- (c) more than 0% but less than 50%
- (d) 100%

40. Ans: (c)

Sol:


Ratio of Y's bid price to X's cost	Number of bids
1.02	6 Sinc
1.04	12
1.06	3
1.10	6
1.12	3


Mean = $\frac{1.02 \times 6 + 1.04 \times 12 + 1.06 \times 3 + 1.10 \times 6 + 1.12 \times 3}{30}$

= 1.058

Mean = 1.058

Normal distribution of y's bidding

shaded portion is probability of X contractor winning contract over y which is less than 50%

(**OR**)

 $SD(\sigma) = 6(1.02 - 1.058)^{2} + (1.04 - 1.058)^{2} \times 12 + \frac{3 \times (1.06 - 1.058)^{2} + 6 \times (1.10 - 1.058)^{2} + 3 \times (1.12 - 1.058)^{2}}{30} = 0.034$ Markup is 8% $Z = \frac{T - mean}{SD} = \frac{1.08 - 1.058}{0.034} = 0.647$ Z = 0.647By general under standing of normal distribution table.

Corresponding to z = 0.647 and 8% mark up we get probability of

0.2668 = 26.68%

Which is more than 0% but less than 50%

41. The solution of the second -order differential equation $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = 0$ with boundary conditions y(0)

99
$$=$$
1 and y (1) = 3 is

(a)
$$e^{-x} - \left[3esin\left(\frac{\pi x}{2}\right) - 1\right] x e^{-x}$$

(b) $e^{-x} + (3e - 1) x e^{-x}$

(c)
$$e^{-x} - (3e - 1)xe^{-x}$$

(d)
$$e^{-x} + \left[3e\sin\left(\frac{\pi x}{2}\right) - 1\right]xe^{-x}$$

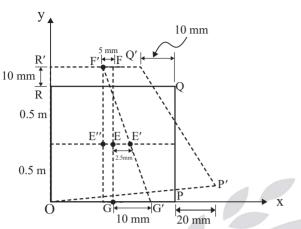
41. Ans: (b)

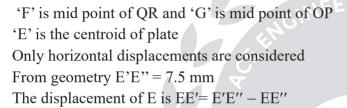
Sol:

Given f(D) y = 0 - (1)Where $f(D) = D^2 + 2D + 1$, $D = \frac{d}{dx}$ with y(0) = 1 - (2)

ACE Engineering Publications Hyderabad + Delhi + Pune + Bhubaneswar + Bengaluru + Lucknow + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

	23	GATE_2020_Questions with Solutions
and $y(1) = 3 - (3)$		= 139°
Consider auxiliary equation $f(m) = 0$		$FB_{RS} = BB_{QR} - \angle R$
\Rightarrow m ² + 2m + 1 = 0		
\Rightarrow m = -1, -1		$=(139^{\circ}+180^{\circ})-123^{\circ}$
$y = (C_1 + C_2 x) e^{-x} = C_1 e^{-x} + C_2 x e^{-x} - (4) is$		$FB_{RS} = 196^{\circ}$
a general solution of (1)		
Using (1) , (4) between	4	43. Gypsum is typically added in cement to
$1 = C_1 - (5)$		(a) increase workability
using (3) and (5), (4) becomes $2 - \frac{1}{2} + C - \frac{1}{2}$		(b) prevent quick setting
$3 = e^{-1} + C_2 e^{-1}$		(c) enhance hardening
$C_2 = 3e-1$ - (6)		(d) decrease heat of hydration
From (4) with (5) and (6) is $y = e^{-x} + (3e-1) xe^{-x}$		
$y = e^{x} + (3e^{-1}) xe^{-x}$		43. Ans: (b)
12 Travarsing is somial out for a closed travarse POPS		Sol: The Gypsum is added to cement at the end of
42. Traversing is carried out for a closed traverse PQRS		grinding clinker it is added to prevent quick setting.
The internal angles at vertices P, Q, R, and S are		
measured as 92° , 68° , 123° and 77° respectively. I	4	44. A square plate O-P-Q-R of a linear elastic material
fore bearing of line PQ is 27°, fore bearing of line	e	with sides 1.0 m is loaded in a state of plane stress.
RS (in degrees, in integer)is		Under a given stress condition, the plate deforms
		to a new configuration O-P'-Q-R' as shown in the
42. Ans: (196)		figure (not to scale). Under the given deformation,
Sol:		the edges of the plate remain straight.
•0		8 1 8
		У ↑
		10 mm
68° Sinc	ce 1	99510 mm
27°		
	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	<u>P'</u>
$r \qquad 92^{\circ} \qquad 123^{\circ} \qquad R$		10 mm
		$O \xrightarrow{P} 4 \xrightarrow{P} $
		20
77°		The horizontal displacement of the point (0.5 m, 0.5
S S S S S S S S S S S S S S S S S S S		m) in the plate O-P-Q-R (in mm. round off to one
		decimal place) is
From figure;		
$FB_{QR} = BB_{PQ} - \angle Q$		


 $FB_{\text{QR}} = BB_{PQ} - \angle Q$ $= (27^{\circ} + 180^{\circ}) - 68^{\circ}$



Civil Engineering

44. Ans: (2.5)

= 2.5 mm

= 7.5 - 5

... The horizontal displacement of mid point is 2.5 mm right wards

45. On a road, the speed - density relationship of a traffic stream is given by u =70-0.7k (where speed, u, is in km/h and density, k, is in veh/km). At the capacity condition, the average time headway will be

(a) 2.1 s (b) 0.5 s (c) 1.6 s (d) 1.0 s

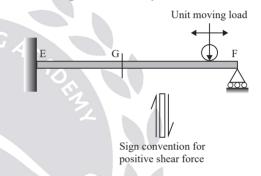
45. Ans: (a)

Sol: Linear speed density equation is given by u = 70 - 0.7 kfor maximum speed, $k = 0 \Rightarrow u_{max} = 70 \text{ kmph}$

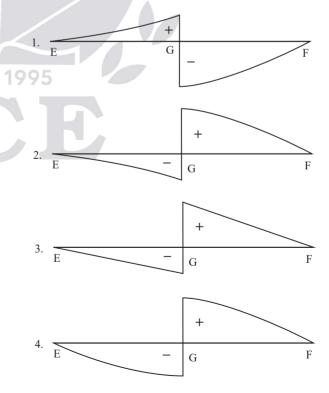
for maximum density, $u = 0 \implies 0 = 70 - 0.7 (k_{max})$

$$k_{max} = \frac{70}{0.7}$$

Capacity, $q_{max} = \frac{k_{max}}{2} \cdot \frac{u_{max}}{2}$


 $=\frac{70}{0.7\times2}\times\frac{70}{2}$

= 1750 veh/hr


Time head way, $H_t = \frac{3600}{q_{max}} = \frac{3600}{1750}$

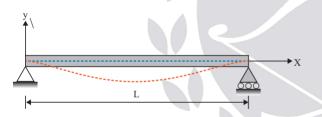
 $= 2.06 \simeq 2.1 \text{ sec/veh}$

46. A propped cantilever beam EF is subjected to a unit moving load as shown in the figure (not to scale). The sign convention for positive shear force at the left and right sides of my section is also shown

The CORRECT qualitative nature of the influence line diagram for shear force at G

Engineering Publications	GATE_2020_Questions with Solutions
46. Ans: (b) Sol:	$\overline{V} = \frac{U}{2}$
E G F OOO $+ve$ F F ILD For SF _G	 48. The liquid forms of particulate air pollutants are (a) fly ash and fumes (b) dust and mist (c) mist and spray (d) smoke and spray 48. Ans: (c) Sol: Mist & spray are liquid particulates in air. 49. The value of 1/2 e^x dx using the trapezoidal rule
47. A fluid flowing steadily in a circular pipe of radius R has a velocity that is everywhere parallel to the axis (centerline) of the pipe. The velocity distribution along the radial direction is $V_r = U\left(1 - \frac{r^2}{R^2}\right)$, where <i>r</i> is the radial distance as measured from the pipe axis and U is the maximum velocity at $r = 0$. The average velocity of the fluid in the pipe is (a) $\frac{U}{4}$ (b) $\frac{U}{2}$ (c) $\frac{U}{3}$ (d) $\left(\frac{5}{6}\right)U$	with four equal subintervals is (a) 2.192 (b) 718 (c) 1.727 (d) 2.718 49. Ans: (c) Sol: Let $\int_{a}^{b} f(x) dx = \int_{0}^{1} e^{x} dx & k = 4$ Then $a = 0, b = 1, f(x) = e^{x}$ and $h = \frac{b-a}{n} = \frac{1-0}{4} = 0.25$ x 0 0.25 0.50 0.75 1
47. Ans: (b) Since	$y = f(x) 1 1.284 1.649 2.117 2.718$ $= e^{x}$
Sol: Given: $V_r = U\left(1 - \frac{r^2}{R^2}\right)$ $\overline{\nabla} = ?$ $\overline{\nabla} = \frac{Q}{A}$	The formula of trapezoidal rule to the given data is given by $\int_{a}^{b} f(x)dx \simeq \int_{a}^{b} f(x)dx = \frac{h}{2}[(y_{o} + y_{n}) + 2(y_{1} + y_{2} + y_{3})]$
$V = A$ $Q = \int V_r dA = \int_0^R U \left(1 - \frac{r^2}{R^2} \right) 2\pi r.dr$ $Q = \frac{2\pi U}{R^2} \left(\frac{R^2 \cdot r^2}{2} - \frac{r^4}{4} \right) \Big _0^R = \frac{\pi}{2} U.R^2$	$\Rightarrow \int_{0}^{1} e^{x} dx \simeq \int_{0}^{1} p(x) dx = \frac{(0.25)}{2} [(1+2.718) + 2(1.284 + 1.640 + 2.117)]$ $\Rightarrow \int_{0}^{1} e^{x} dx \simeq \int_{0}^{1} p(x) dx = \frac{(0.25)}{2} [(3.718) + 2(5.03)]$
$A = \pi R^{2}$ $\implies \overline{V} = \frac{\frac{\pi}{2} U R^{2}}{\pi R^{2}}$	$\therefore \int_{0}^{1} e^{x} dx \simeq \int_{0}^{1} p(x) dx = \left(\frac{0.25}{2}\right) [(3.2.8 + 10.1)] = 1.727$

ACE Engineering Publications

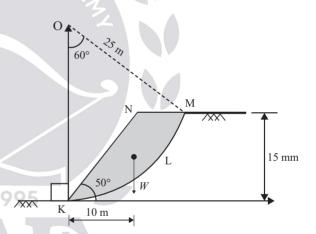

Civil Engineering

- 50. Which one of the following statements is correct?
 - (a) Combustion is an exothermic process, which takes place in the absence of oxygen.
 - (b) Pyrolysis is an exothermic process, which takes place in the absence of oxygen.
 - (c) Combustion is an endothermic process, which takes place in the abundance of oxygen.
 - (d) Pyrolysis is an endothermic process, which takes place in the absence of oxygen.

50. Ans: (d)

Sol: Pyrolosis occur in the absence of O_2 and it is endothermic Combustion exothermic occur in the presence of air.

51. The equation of deformation is derived to be $y = x^2 - xL$ for a beam shown in the figure.

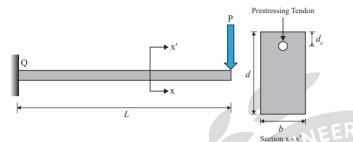

The curvature of the beam at the mid-span (in units, in integer) will be _____

51. Ans: 2

Sol:

 $y = x^{2} - xL$ slope, $\frac{dy}{dx} = 2x - L$ curvature, $\frac{d^{2}y}{dx^{2}} = 2$ @ mid span $\left(x = \frac{L}{2}\right)$ Curvature = $\frac{d^{2}y}{dx^{2}} = 2m$ (The beam has constant curvature throughout the beam)

52. An unsupported slope of height 15 m is shown in the figure (not to scale), in which the slope face makes an angle 50° with the horizontal. The slope material comprises purely cohesive soil having undrained cohesion 75 kPa. A trial slip circle KLM, with a radius 25 m, passes through the crest and toe of the slope and it subtends an angle 60° at its center O. The weight of the active soil mass (W, bounded by KLMN) is 2500 kN/m, which is acting at a horizontal distance of 10 m from the toe of the slope. Consider the water table to be present at a very large depth from the ground surface.


Considering the trial slip circle KLM, the factor of safety against the failure of slope under undrained condition (round off to two decimal places) is_____

52. Ans: (1.96) Sol: $F = \frac{C.\hat{L}R}{W.x}$ $\hat{L} = \text{length of arc} = R.\theta^{\circ}\frac{\pi}{180}$ $= 25 \times 60^{\circ} \times \frac{\pi}{180} = 26.18 \text{ m}$ $F = \frac{75 \times 26.18 \times 25}{2500 \times 10} = 1.96$

ACE Engineering Publications Hyderabad + Delhi + Pune + Bhubaneswar + Bengaluru + Lucknow + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

GATE_2020_Qu	estions with Solutions
--------------	------------------------

53. A prismatic cantilever prestressed concrete beam of span length, L = 1.5 m has one straight tendon placed in the cross-section as shown in the following figure (not to scale). The total prestressing force of 50 kN in the tendon is applied at $d_c = 50$ mm from the top in the cross-section of width. b = 200 mm and depth, d = 300 mm.

If the concentrated load, P = 5 kN, the resultant stress (in MPa, *in integer*) experienced at point 'Q' will be

53. Ans: (1)

Sol: Given Data

ACE

L = 1.5 m $P_{o} = 50 kN$ $d_{c} = 50 mm$ b = 200 mm d = 300 mm P = 5 kNMoment at Q = P

Moment at Q = PL = 5 × 1.5 = 7.5 kN.m Eccentricity e = $\frac{d}{2} - d_c = \frac{300}{2} - 50 = 10$ mm

Self weight of the beam $W_D = \gamma bD$ = 24 × 0.2 × 0.3 = 1.44 kN/m

Moment due to self weight $M_D = \frac{W_D L^2}{2}$

$$=\frac{1.44 \times 1.5^2}{2}$$

= 1.62 kNm Total moment M = $M_D + M_L = 1.62 + 7.5$ = 9.12 kN-m

Resultant Stress at O

$$=-\frac{P_{o}}{A}-\frac{Pe}{Z}+\frac{M}{Z}$$
 (considering

the compression as -ve)

27

$$= \frac{50 \times 10^{3}}{200 \times 300} - \frac{50 \times 10^{3} \times 100}{\frac{1}{6} \times 200 \times 300^{2}} + \frac{9.12 \times 10^{6}}{\frac{1}{6} \times 200 \times 300^{2}}$$
$$= -0.83 - 1.67 + 3.04$$
$$= 0.54 \text{ N/mm}^{2}$$
$$\cong 1 \text{ N/mm}^{2}$$

54. If
$$P = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 and $Q = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ then $Q^{T}P^{T}$
(a) $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$
(c) $\begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix}$ (d) $\begin{bmatrix} 2 & 4 \\ 1 & 3 \end{bmatrix}$

54. Ans: (d)

Consider
$$Q^T P^T = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$
 (OR) $Q^T P^T = (PT)^T$
$$\therefore Q^T P^T = \begin{bmatrix} 2 & 4 \\ 1 & 3 \end{bmatrix}$$

55. 'Kinematic viscosity' is dimensionally represented

(a)
$$\frac{M}{LT}$$
 (b) $\frac{T^2}{L}$
(c) $\frac{M}{L^2T}$ (d) $\frac{L^2}{T}$

55. Ans: (d)Sol: Kinematic Viscosity

$$\nu = \frac{\mu}{\rho} = \frac{kg/m.s}{kg/m^3} = m^2/s$$
$$[\nu] = \frac{m^2}{s} = \frac{L^2}{T}$$

ACE Engineering Publications Hyderabad + Delhi + Pune + Bhubaneswar + Bengaluru + Lucknow + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

Exclusive ONLINE LIVE BATCH for ESE (PRELIMS & MAINS)

♦ GATE Extra Syllabus for ESE Prelims (Technical Subjects)

Descriptive Questions for ESE Mains

Batch Starts from: 22nd Feb 2021

Duration: **3 to 4 Months**

Discount: Rs.5,000/- OFF for ACE old students

COURSE HIGHLIGHTS

- Experienced and erudite faculty members.
- Recorded version of the online live class will be made available through out the course (with 3 times view).
- Doubt clearing sessions and tests to be conducted regularly.
- ★ 5 to 6 hours of live lectures per day.
- Access the lectures from any where.
- Focussed and relevant study material.

🕸 040-23234418 / 19 / 20

Join ACE.

To Win the RACE ..

www.aceenggacademy.com