

HYDERABAD | DELHI | PUNE | BANGALORE | LUCKNOW | CHENNAI | VISAKHAPATNAM | VIJAYAWADA | TIRUPATHI | KOLKATA | AHMEDABAD

ESE-2020 (MAINS)

QUESTIONS WITH DETAILED SOLUTIONS

ELECTRONICS &

TELECOMMUNICATION ENGINEERING

PAPER-II

ACE Engineering Academy has taken utmost care in preparing the ESE-2020 MAINS Examination solutions. Discrepancies, if any, may please be brought to our notice. ACE Engineering Academy do not owe any responsibility for any damage or loss to any person on account of error or omission in these solutions. ACE Engineering Academy is always in the fore front of serving the students, irrespective of the examination type (GATE/ESE/PSUs/PSC/GENCO/TRANSCO etc.,).

All Queries related to ESE - 2020 MAINS Solutions are to be sent to the following email address hyderabad@aceenggacademy.com Contact Us : 040-23234418,19,20

www.aceenggacademy.com

ELECTRONICS & TELECOMMUNICATION ENGINEERING

ESE_MAINS_2020_PAPER - II

Questions with Detailed Solutions

SUBJECT WISE WEIGHTAGE

S.No	NAME OF THE SUBJECT	Marks
01	COMMUNICATION SYSTEMS	80
02	CONTROL SYSTEMS	80
03	COMPUTER ORGANIZATION AND ARCHITECTURE	40
04	ELECTROMAGNETICS	110
05	ADVANCED ELECTRONICS	110
06	ADVANCED COMMUNICATIONS	60

	2 ESE 2020 MAINS_Paper_II Solution
	SECTION - A
01. (a)	A certain speech signal is sampled at 8kHz and coded with DPCM, the output of which
	belongs to a set of 8 symbols $s_1 - s_8$.
	The probabilities of these symbols are $p(s_1) = 0.4$, $p(s_2) = p(s_3) = 0.2$, $p(s_4) = 0.1$, $p(s_5) = 0.05$
	$p(s_6) = p(s_7) = 0.02$ and $p(s_8) = 0.01$. Calculate the entropy in bits/sec. If all symbols are
	equiprobable, what will be the entropy? (10 M
Sol:	$f_s = 8kHz$
	$P(s_1) = 0.4, P(s_2) = P(s_3) = 0.2$
	$P(s_4) = 0.1, P(s_5) = 0.05$ $P(s_6) = P(s_7) = 0.02$
	$P(s_8) = 0.01$
	$H = -\sum_{i} p_i \log_2 p_i$
	$= -[0.4 \log_2 0.4 + 2 \times 0.2 \log_2 0.2 + 0.1 \log_2 0.1 + 0.05 \log_2 0.05 + 2 \times 0.01 \log_2 0.02 + 0.01 \log_2 0.01 $
	H = 2.298 bit / symbol
	Entropy = H f_s = 18.384 k bits/sec
	If 'N' symbols are equiprobable, entropy will be $H = \log_2 N$
	$= \log_2 8 = 3 bits / symbol$
	Entropy = H f_s = 24 k bits/sec Since 1995
01. (b)	In the figure shown below, $G(s) = \frac{K}{(\tau s + 1)}$ has a time constant of 0.5seconds, and has unit
	DC gain. An integral controller is placed in forward path as $G_{c}(s) = \frac{K_{1}}{s}$ such that the ope
	loop transfer function G(s) $G_C(s)$ has a velocity error constant $K_V = 1$. Find the sensitivity of
	the closed loop system transfer function with respect to K_1 at $\omega = 1$ rad/sec.
	(10 M)
ACE End	ineering Publications Hyderabad • Delhi • Pune • Lucknow • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

	ering Publications	3	Electronics & Telecommunication Eng.
Sol:	$G(s) = \frac{K}{s\tau + 1}, \ \tau = 0.5 \text{sec}$		
	Unity DC gain $\Rightarrow G(s) _{\omega=0} = 1 \Rightarrow K = 1$		
	$\Rightarrow G_{c}(s) = \frac{K_{I}}{s}$		
	Open loop transfer function $G(s)G_c(s) =$	$=\frac{K}{s(s\tau)}$	$\frac{1}{1+1}$
	Velocity error constant $K_v = 1$		
	$G(s)G_{c}(s) = \frac{K_{I}}{s(0.5s+1)}$		
	$K_{V} = \underset{s \to 0}{\text{Lt}} sG(s)G_{C}(s) = \underset{s \to 0}{\text{Lt}} s \frac{K_{I}}{s(0.5s)}$	$\frac{\mathbf{ERI}}{\mathbf{+1}} =$	$1 \Rightarrow K_1 = 1$
	$CLTF = \frac{K_{I}}{0.5s^{2} + s + K_{I}}$		EZ Z
	$\Rightarrow \text{Sensitivity } S_{K_{I}}^{T} = \left[\frac{\partial T/T}{\partial K_{I}/K_{I}}\right] = \left(\frac{K_{I}}{T}\right)$	$\left(\frac{\partial T}{\partial K_I}\right)$	
	$=\frac{K_{I}}{\left(\frac{K_{I}}{0.5s^{2}+s+K_{I}}\right)}\left[\frac{1}{2}\right]$		$\frac{2^{2} + s + K_{I} - K_{I}(l)}{5s^{2} + s + K_{I}^{2}} = \frac{0.5s^{2} + s}{0.5s^{2} + s + K_{I}}$
	$\Rightarrow \left S_{K_{I}}^{T} \right _{\omega = \left r \right _{\text{sec}}} = \left \frac{-0.5\omega^{2} + j\omega}{-0.5\omega^{2} + j\omega + 1} \right = \left \frac{-0.5\omega^{2}}{0.5\omega^{2}} \right _{\omega = \left r \right _{\text{sec}}} = \left \frac{-0.5\omega^{2}}{0.5\omega^{2}} \right _{\omega = \left r \right _{\text{sec}}} = \left \frac{-0.5\omega^{2}}{0.5\omega^{2}} \right _{\omega = \left r \right _{\text{sec}}} = \left \frac{-0.5\omega^{2}}{0.5\omega^{2}} \right _{\omega = \left r \right _{\text{sec}}} = \left \frac{-0.5\omega^{2}}{0.5\omega^{2}} \right _{\omega = \left r \right _{\text{sec}}} = \left \frac{-0.5\omega^{2}}{0.5\omega^{2}} \right _{\omega = \left r \right _{\text{sec}}} = \left \frac{-0.5\omega^{2}}{0.5\omega^{2}} \right _{\omega = \left r \right _{\text{sec}}} = \left \frac{-0.5\omega^{2}}{0.5\omega^{2}} \right _{\omega = \left r \right _{\text{sec}}} = \left \frac{-0.5\omega^{2}}{0.5\omega^{2}} \right _{\omega = \left r \right _{\text{sec}}} = \left \frac{-0.5\omega^{2}}{0.5\omega^{2}} \right _{\omega = \left r \right _{\text{sec}}} = \left \frac{-0.5\omega^{2}}{0.5\omega^{2}} \right _{\omega = \left r \right _{\text{sec}}} = \left \frac{-0.5\omega^{2}}{0.5\omega^{2}} \right _{\omega = \left r \right _{\text{sec}}} = \left \frac{-0.5\omega^{2}}{0.5\omega^{2}} \right _{\omega = \left r \right _{\text{sec}}} = \left \frac{-0.5\omega^{2}}{0.5\omega^{2}} \right _{\omega = \left r \right _{\text{sec}}} = \left \frac{-0.5\omega^{2}}{0.5\omega^{2}} \right _{\omega = \left r \right _{\text{sec}}} = \left \frac{-0.5\omega^{2}}{0.5\omega^{2}} \right _{\omega = \left r \right _{\omega = \left r \right _{\text{sec}}} = \left \frac{-0.5\omega^{2}}{0.5\omega^{2}} \right _{\omega = \left r \right _{\omega = \left r \right _{\text{sec}}} = \left \frac{-0.5\omega^{2}}{0.5\omega^{2}} \right _{\omega = \left r \right _{\omega $	+ j1 + j1	$=\frac{\sqrt{0.5^2+1}}{\sqrt{0.5^2+1}}=1$
01 (a)	List and define various scheduling p	reform	nance criteria used for comparing various CPU-

01. (c) List and define various scheduling performance criteria used for comparing various CPUscheduling algorithms. Compute and compare the average process waiting time of First come First serve, Shortest task first and priority scheduling algorithms for the processes with their details as listed in the table. (10 M)

Process	Arrival Time	Burst Time	Priority
P ₀	0	3	1
P ₁	2	2	2
P ₂	3	4	3
P ₃	4	7	1

	4 ESE 2020 MAINS_Paper_II Solution
l :	FCFS algorithm:
	Gantt chart
	P_0 P_1 P_2 P_3
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Waiting time = Start time – Arrival time
	$P_0 = 0 - 0 = 0$
	$P_1 = 3 - 2 = 1$
	$P_2 = 5 - 3 = 2$
	$P_3 = 9 - 4 = 5$
	Average W.T. = $\frac{0+1+2+5}{4} = 2$
	Shortest Task First (Non pre-emptive):
	Gantt chart
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Working time
	$P_0 = 0 - 0 = 0$
	P ₁ = 3 - 2 = 1 Since 1995
	$P_2 = 5 - 3 = 2$
	$P_3 = 9 - 4 = 5$
	Average W.T. $= \frac{0+1+2+5}{4} = 2$
	Priority scheduling (Non pre-emptive):
	Gantt chart
	$\begin{array}{ c c c }\hline P_0 & P_1 & P_2 & P_3 \\ \hline \end{array}$
	0 3 5 12 16

	ering Publications	5	Electronics & Telecomm	unication Eng.
	Waiting time			
	$P_0 = 0 - 0 = 0$			
	$P_1 = 3 - 2 = 1$			
	$P_2 = 12 - 3 = 9$			
	$P_3 = 5 - 4 = 1$			
	Average = $\frac{1+9+1+0}{4} = 2.75$			
)1. (d)	A uniform plane wave is propagatin			
	medium of intrinsic impedance 4'	ER	No	
	instantaneous electric field, what will	be th	e magnetic field? Determine the v	_
	average power of the wave.			(10 M)
Sol:	Given : $E_x(z, t) = 1750 \cos(10^6 \pi t - \beta z)$		32	
	Or			
	$\hat{E}(z,t) = 1750\cos\left(10^6\pi t - \beta z\right)\hat{a}_x V/m$			
	Velocity, $v_p = 1.4 \times 10^8$ /sec			
	Wave impedance, $\Omega = 474 \Omega$			
	-			
	Direction propagation is $\hat{a}_k = \hat{a}_z$ (::+		etion)	
	Direction of electric field is $\hat{a}_E = \hat{a}_x$		1775	
	Let $\vec{H}(z,t) = H_0 \cos(10^6 \pi t - \beta z) \hat{a}_H$			
	Where $H_0 = \frac{E_0}{ \eta } = \frac{1750}{474}$			
	$\hat{a}_{H} = \hat{a}_{k} \times \hat{a}_{E} = \hat{a}_{z} \times \hat{a}_{x} = \hat{a}_{y}$			
	$\beta = \frac{\omega}{v_p} = \frac{10^6 \pi}{1.4 \times 10^8} = 2.24 \times 10^{-2} \text{ rad/m}$			
	Magnetic field intensity is given by			

ESE 2020 MAINS_Paper_II Solutions

6

Wave length, $\lambda = \frac{2\pi}{\beta} = \frac{\frac{2\pi}{10^6 \pi}}{1.4 \times 10^8} = 280m$

Time average poynting vector is given by

$$\overline{W}_{avg} = \frac{E_0^2}{2|\eta|} \left(+ \hat{a}_z \right)$$
$$= \frac{(1750)^2}{2 \times 474} \left(\hat{a}_z \right)$$

 $\overrightarrow{W}_{avg} = 3230.48 \, \hat{a}_z \, W \, / \, m^2$

01. (e) Processor technology deals with computation architectures whereas IC technology deals with implementation style for a given functionality. What are the different processor and IC technologies? Is processor technology orthogonal to IC technology or interdependent with IC technology? Justify your answer. (10 M)

Sol: Processor Technology:

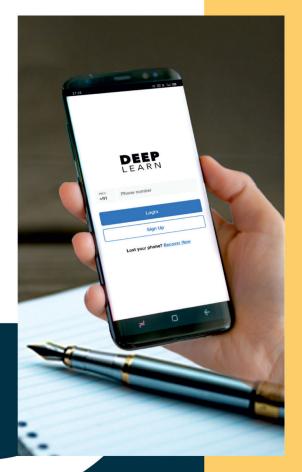
- The architecture of the computation engine used to implement a system's desired functionality.
- Processors vary in their customization for the problem at hand and thus processors can be categorized into three types.
 - \rightarrow General purpose processor
 - \rightarrow Application specific processor
 - \rightarrow Single purpose processor

	General – Purpose		cation specific	Single purpose processor	
1.	processorProgrammable deviceused in variety ofapplicationsalsoknownmicroprocessor.	1. Pro oj pa aj	processor ogrammable processor optimized for a articular class of oplications having ommon	to execute exactly one	
	-	C ge si	naracteristics. ompromise between eneral – purpose and ngle – purpose rocessors.	peripheral.	
2.	Features: (i) Program memory (ii) General data path with large register file and general ALU.	(i (i	eatures: a) Program memory b) Optimized data path b) Special functional units	 2. Features: (i) Contains only the components needed to execute a single program (ii) No program memory. 	
3.	Benefits: (i) Low time to market and NRE costs. (ii) High flexibility	-	enefits:) Some flexibility, good performance, size and power.	3. Benefits: (i) Fast (ii) Low power	
	Drawbacks: (i) High unit cost (ii) Low performance		rawbacks:) High NRE cost Ex: Microcontroller, DSP	Drawbacks: (i) No flexibility, high time to market, high NRE cost.	

- Semi custom ASIC (Gate array and standard cell)
- PLD (programmable logic device)

CE ng Publications	8 E	SE 2020 MAINS_Paper_II Solut
Full – custom	Semi – custom	PLD
1. Very large scale integration. All layers are optimized for an embedded system's particular digital implementation.	 Lower layers are fully or partially built. Designers are left with routing of wires and may be placing some blocks. 	an array of elementar programmable module (PAL, PLA, FPGA implementing a gener logic function and th
 2. Benefits: Excellent performance, small size, low power Drawbacks: High NRE cost, long time to market 	 2. Benefits: Good performance, less NRE cost than full – custom implementation Drawbacks: Still require long time to develop. 	the modules. The layout and fabrication process of each device completed in advance and independently of the application. The device
	Since 1995	Very low NRE cos immediate turn aroun time Drawback: High unit cost, bad for large volume. Power Low performance and integration density with respect to othe design styles.
Independence of processor a		Single
Flexibility, maintainability, NRE cost, time to prototype, time to market cost (low volume)		Single purpose processor → Full custom

ONLINE COURSES


for **ESE | GATE | PSUs** curated by India's best minds. Access courses through Mobile App only from anywhere.

EXCITING ANNOUNCEMENT!!

We have launched **3 months subscription for GATE 2021,** Streams: ECE | EEE | ME | CE | CS | IN | PI* **on Deep-Learn**. Online recorded classes, Fee: Rs. 16,000/- only (without Material).

RECORDED VIDEO LECTURES for **GATE + PSUs - 2021/2022**, **ESE + GATE + PSUs - 2021/2022**, **ESE : General Studies**, **SSC-JE** Streams: ECE | EEE | ME | CE | CS | IN | PI*

SALIENT FEATURES:

- Dynamic & Experienced Faculty.
- Subscription options 3 months, 6 months, 12 months, 18 months & 24 months.
- Covers Exam Preparation Strategy and Live Doubt clearing sessions.
- Facilitates Enhanced learning by incorporating 2d & 3d animations.
- Free Online Test Series (Total 118 tests, subject wise, sectional wise, and full length mock tests.
- Compose online study notes and save it for future reference.
- Comprises of weekly self assessment tests.
- Free Interview Guidance & Post GATE Guidance for subscribers.
- ASK AN EXPERT feature for doubt clarifications via emails/video (services to be availed within 12 hrs.)
- Procure Full set of Study Material (Optional)*
- ▶ EMI option available.

Scan QR Code to Download DEEP-LEARN Android Platform App

www.deep-learn.in www.aceenggacademy.com Help: support@frostinteractive.com Email: hyderabad@aceenggacademy.com Call: 040-23234418/19/20

	ו_ ידי (
Electronics a	k lei	ecommunicatio	n Eng.
			0

01. (f) Explain the following terms

E

- (i) Modal Birefringence
- (ii) Coherence Length
- (iii) Beat Length

The difference between the propagation constants for the two orthogonal modes in the single mode fiber is 250. It is illuminated with light of peak wavelength 1.55 μm from an injection laser source with a spectral width of 0.8 nm. Calculate Modal Birefringence, Coherence Length and Beat Length. (10 M)

Sol:

(i) Modal Birefringence :

Local absolute value of the difference between the propagation constants of both modes.

9

$$\Delta \beta = \left| \beta_x - \beta_y \right| = \frac{2\pi}{\lambda} \left| n_x - n_y \right| = \frac{\omega}{c} \Delta n_y$$

C: speed of light

 Δn : Refractive index difference (also called degree of birefringence)

(ii) Coherence length :

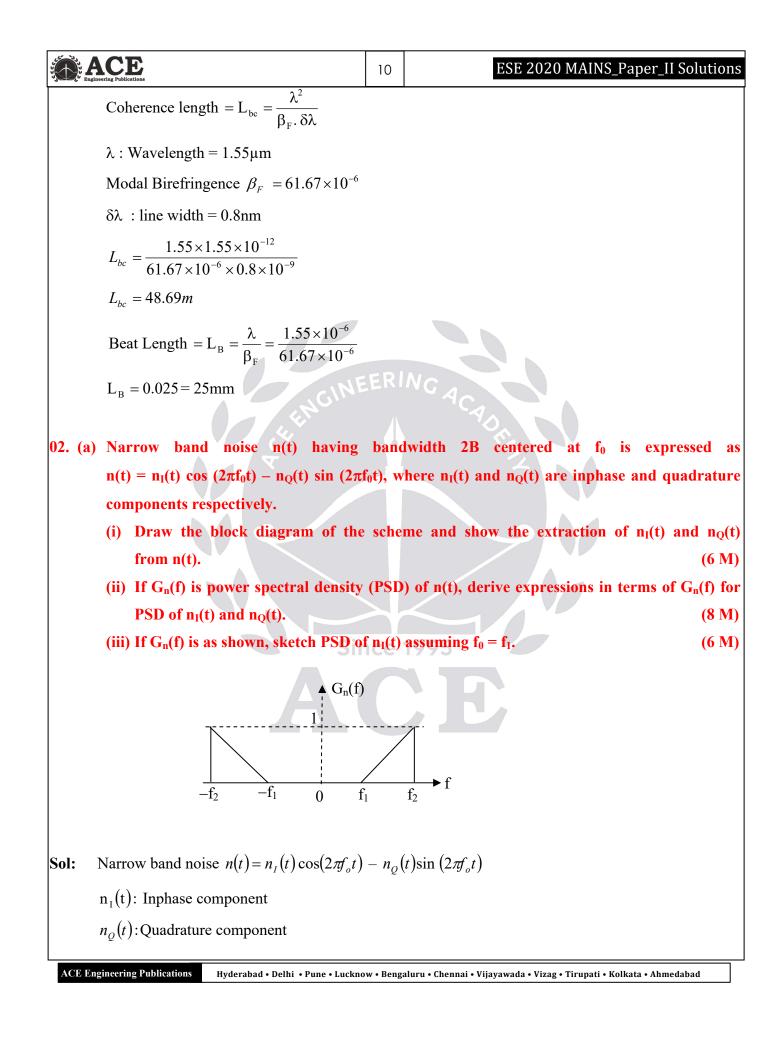
measure of temporal coherence expressed as the propagation distance over which the coherence significantly delays.

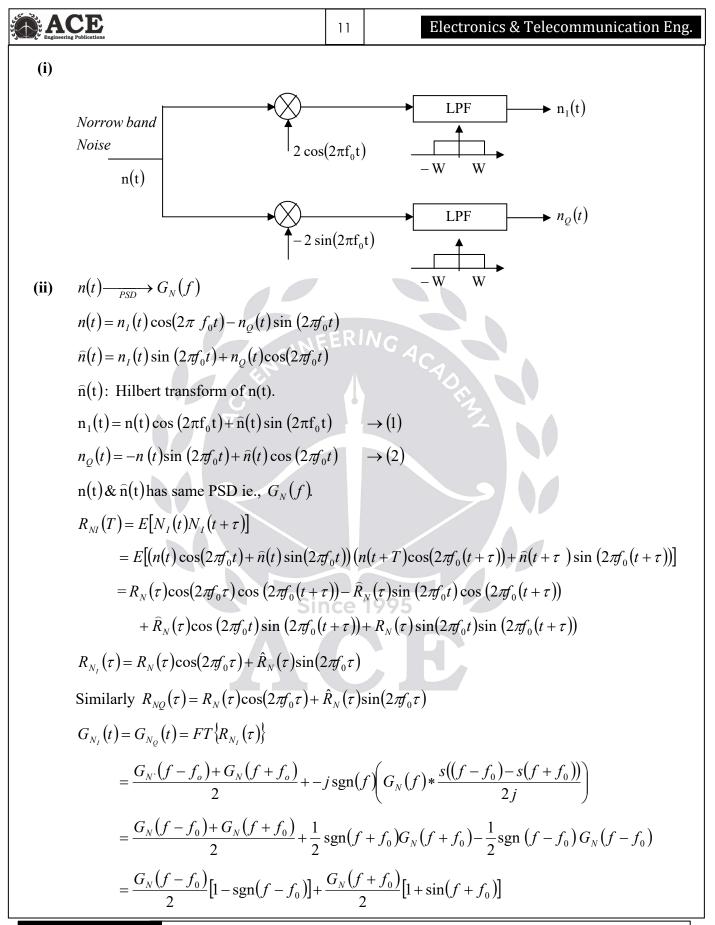
$$L_{coh} = C \tau_{ooh} = \frac{C}{\pi \Delta V}$$

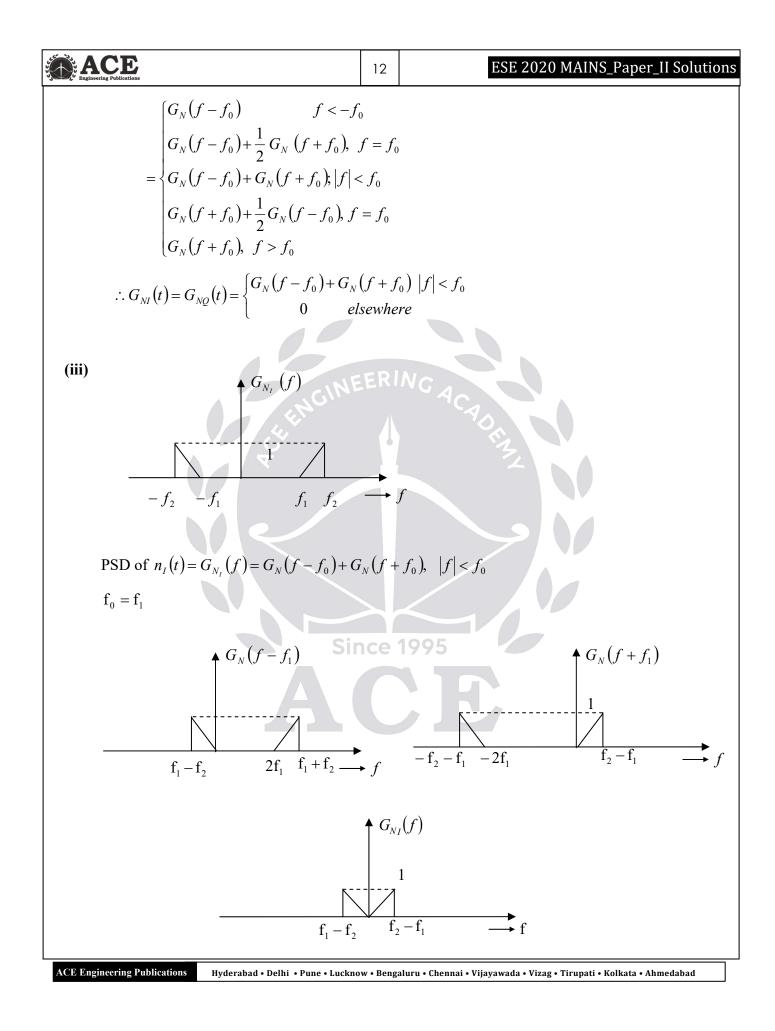
 ΔV : Optical bandwidth (full width at half maximum)

(iii) Beat length:

Length required for the polarization to rotate 360 degrees. It is inversely proportional to birefringence


$$L_{\rm B} = \frac{2\pi}{\Delta\beta} = \frac{\lambda}{\Delta n}$$


Difference between propagation constant $\beta_x - \beta_y = 250$


 $\lambda = 1.55 \ \mu m$

Spectral width = 0.8 nm

Modal Birefringence = $\beta_F = \frac{\beta_x - \beta_y}{(2\pi/\lambda)} = \frac{250}{(2\pi/1.55\mu)} = 61.67 \times 10^{-6}$

p: lo sy Sol: G 	For a unity feedback system with arameter α varies from 0 to ∞ . Also op system becomes unstable. From the system poles with $\xi = 0.707$. $f(s) = \frac{3s + \alpha}{s(s+1)(s+5)}$, $H(s) = 1$ $\xrightarrow{\text{CE}} 1 + G(s) = 0$ $+ \frac{3s + \alpha}{s(s+1)(s+5)} = 0$ $3^{3} + 6s^{2} + 5s + 3s + \alpha = 0$	the ro	d the value of p oot locus plot, o	arameto	er a foi	r which t	he closed
lo sy Sol: G _	op system becomes unstable. From to stem poles with $\xi = 0.707$. $(s) = \frac{3s + \alpha}{s(s+1)(s+5)}, H(s) = 1$ $\xrightarrow{\text{CE}} 1 + G(s) = 0$ $+ \frac{3s + \alpha}{s(s+1)(s+5)} = 0$	the ro	oot locus plot, o				on of the
sy Sol: G —	stem poles with $\xi = 0.707$. $f(s) = \frac{3s + \alpha}{s(s+1)(s+5)}, H(s) = 1$ $\xrightarrow{CE} 1 + G(s) = 0$ $+ \frac{3s + \alpha}{s(s+1)(s+5)} = 0$			btain ap	proxim	ate locati	
Sol: G	$f(s) = \frac{3s + \alpha}{s(s+1)(s+5)}, H(s) = 1$ $\xrightarrow{CE} \rightarrow 1 + G(s) = 0$ $+ \frac{3s + \alpha}{s(s+1)(s+5)} = 0$	ERI					(20 M)
_	$\xrightarrow{CE} 1 + G(s) = 0$ $+ \frac{3s + \alpha}{s(s+1)(s+5)} = 0$	ERI					
	$+\frac{3s+\alpha}{s(s+1)(s+5)}=0$	ER/					
1-		ERI					
	$s^{2} + 6s^{2} + 5s + 3s + \alpha = 0$	EKI					
s^3			NGAC				
S	$s^3 + 6s^2 + 8s + \alpha = 0$		AD,				
G	$H(s) = \frac{\alpha}{s(s^2 + 6s + 8)}, H(s) = 1$						
G	$H(s) = \frac{\alpha}{s(s+2)(s+4)}, H(s) = 1$			2			
R	oot Locus:						
N	umber of root locus branches $= 3(P > z)$						
N	umber of asymptotes N=P-Z=3 Sin	ce '	1995	0			
A	ngles of asymptotes $\theta = \frac{(2q+1)!80^\circ}{(P-Z)}, q$	v = 0,1,	2				
θ	= 60°,180°, 300°		jω 6	0°			
Ce	entroid $\sigma = \frac{-2-4-(0)}{3} = -2$		+ j2.82	∞_→∞ 28, ∝= 48	8		
	$\infty - \frac{\infty}{180^{\circ}} = 0 \qquad K = 0 \qquad K = 180^{\circ}$		$\frac{BP}{.84} K = 0$ $S = 0$ $-j2.82$	28, ∝= 48	8		
				=∞ 300°			

Engineering Publications	14	ESE 2020 MAINS_Paper_II Solutions
<u>Break Point</u> $\frac{d\alpha}{ds} = 0$		
$CE:s^3+6s^2+8s+\alpha=0$		
$\alpha = -s^3 - 6s^2 - 8s$		
$\frac{d\alpha}{ds} = -3s^2 - 12s - 8 = 0$		
$s_1, s_2 = -0.845, -3.154$		
Valid break point $\delta = -0.845$		
Intersection point with imaginary axis:	FD	
	ER	MG AC
$\begin{vmatrix} s^{3} \\ s^{2} \\ s^{1} \\ s^{0} \end{vmatrix} = \begin{vmatrix} 1 & 8 \\ 6 & \alpha \\ \frac{48 - \alpha}{6} \\ \alpha \end{vmatrix}$		TO IT I
For marginal stability		
$\frac{48-\alpha}{6} = 0 \Longrightarrow \alpha = 48$		
$AE: 6s^2 + 48 = 0$		
$s^2 + 8 = 0$ Sin	nce	1995
$s = \pm j\sqrt{8} = \pm j \ 2.828$		
α > 48, the closed loop system is unstab	le	
$0 < \alpha < 48$, the closed loop system is sta	able	
α = 48, the closed loop system is margin	nal sta	ble.
\Rightarrow Given $\alpha = 0.707$		
$\theta = \cos^{-1}(\alpha) = \cos^{-1}(0.707) = 45^{\circ}$		× (1 € + + + + + + + + + + + + + + + + + +
$CE s^3 + 6s^2 + 8s + \alpha = 0$		
$s = R < 135^{\circ}$		
$CE: R^{3} < 45^{\circ} + 6R^{2} < 270^{\circ} + 8R < 135^{\circ}$	+2=0)
ACE Engineering Publications Hyderabad • Delhi • Pune • Luckno	ow • Beng	aluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

ACE Engineering Publications

15

Electronics & Telecommunication Eng.

$$R^{3}\left(\frac{1}{\sqrt{2}} + j\frac{1}{2}\right) + 6R^{2}(-j1) + 8R\left(-\frac{1}{\sqrt{2}} + \frac{j}{\sqrt{2}}\right) + \alpha = 0$$

Separate the real & imaginary parts and equating each to zero.

$$\frac{R^3}{\sqrt{2}} - \frac{8R}{\sqrt{2}} + \alpha = 0 \& \frac{R^3}{\sqrt{2}} - 6R^2 + \frac{8R}{\sqrt{2}} = 0$$
$$\frac{8R}{\sqrt{2}} = R^3 = R(R^2 - 6R^2 + \frac{8R}{\sqrt{2}}) = 0$$

$$\alpha = \frac{8R}{\sqrt{2}} - \frac{R}{\sqrt{2}} \& R(R^2 - 8.485R + 8) = 0$$

 $R = 7.404 \ and \ 1.08$

$$\Rightarrow when R = 7.404 \Rightarrow \alpha = \frac{8 \times 7.404}{\sqrt{2}} - \frac{7.404^3}{\sqrt{2}} = -245.11$$
$$\Rightarrow when R = 1.08 \Rightarrow \alpha = \frac{8 \times 108}{\sqrt{2}} - \frac{1.08^3}{\sqrt{2}} = 5.218$$
complex poles when $\alpha = 5.218$ are $1.08 < \pm 135^\circ$
$$1.08(-0.707 \pm i0.707) = (-0.7636 \pm i0.7636)$$

02. (c) Memory sub-system for a product has been designed with 3-level memory hierarchy within a budget of 22,000 rupees. The known and unknown parameters for the design are tabulated below.

Memory	Access Time	Capacity	Cost per kilobyte in rupees
Cache	5ns	1MB	1
Main Memory	- Since 199	128 MB	0.1
Solid State Drive (SSD)	5µs	-	0.001

The design achieved an effective memory access time of 20 ns with cache hit ratio 0.95 and main memory hit ratio 0.99. The SSD can be only in integer powers of 2 in GB. Find out the missing parameters in the above table. (20 M)

Sol: Calculation of capacity for SSD:

Total budget = 22000 rs

Cache = 1MB - cost per KB = 1

So, for 1MB - 1000rs

Main memory -128MB - Cost per KB = 0.1

So, for $1MB = 1000 \times 0.1 = 100rs$

	Image: Notes of the sector of				
	and $128MB = 100 \times 128 = 12800rs$				
	So, total remaining for SSD = $22000 - (12800 + 1000)$				
	= 8200				
	Cost per KB = 0.001 rs				
	Which means $1GB = 1000rs$				
	So, maximum we can have with integer power of 2 in GB				
	is 8GB – 8000rs				
	which is 2 ³³ bytes				
	Calculation of main memory access time:				
	Let main memory access time = x nsec				
	effective memory access time = 20 nsec				
$20 = 0.95 \times 5 + 0.05 \times 0.99 \times (5 + x) + 0.05 \times 0.01 \times (5 + x + 5000)$ $\Rightarrow 15.25 = 0.2475 + 0.0495x + 2.5025 + 0.0005x$ $\Rightarrow 0.05x = 12.5$					
					\Rightarrow x = 250 nsec
					\uparrow
	By this we can fill both the required fields.				
3. (a)	In a particular AM system, quadrature modulation is used where the inphase carrie				
	modulates $(m_1(t) + V_0)$ and quadrature carrier modulates $m_2(t)$, where $m_1(t)$ and $m_2(t)$ as				
	low pass band-limited message signals and V_0 is constant				
	(i) Write the expression for quadrature AM signal (4 M				
	(ii) Assuming V_0 is large, show that $m_1(t)$ can be recovered using envelope detector. (8 M				
	(iii) Propose a coherent demodulation scheme and show the recovery of $m_2(t)$. (8 N				
ol:					
	Inphase carrier modulates $(m_1(t) + V_0)$				
	Quadrature carrier modulates $m_2(t)$				
	$m_1(t), m_2(t)$ low pass band limited message signals				

Engineering Publications	17 Electronics & Telecommunication Eng
(i) $S_{AM}(t) = (m_1(t) + V_0) \cos(2\pi f_c t) +$	$m_2(t)\sin\left(2\pi f_c\ t\right)$
(ii) Output of Envelope of detector for	or the input of
$A\cos\theta - B\sin\theta$ is $\sqrt{A^2 + B^2}$	
Output of Envelope detector for the	he input of $S_{AM}(t)$ is,
$\sqrt{(m_1(t)+V_0)^2+m_2^2(t)}$	
Assuming V_0 is large, $m_1(t) + V_0$	$m_{0} >> m_{2}(t)$
Output of envelope detector can b	be approximated as
$\sqrt{(m_1(t) + v_0)^2} = m_1(t) + V_0$	
Output contains message $m_i(t)$ &	& constant V_0 , which can be eliminated by dc blocking capaciton
∴ Output of envelope detector m	$_{1}(t)$
(iii) Coherent demodulation $\overline{S_{AM}(t)}$ $\overline{S_{AM}(t)}$ $\overline{S_{AM}(t)}$ $\overline{S_{AM}(t)}$ $\overline{S_{AM}(t)}$	
$V_2 = S_{AM}(t)\sin(2\pi f_0 t)$	
$= [(m t + V_0)\cos(2\pi f_0 t) + m_2(t)]$	$\sin(2\pi f_0 t)]\sin(2\pi f_0 t)$

$$= (m_1(t) + V_0) \frac{1}{2} \sin (4\pi f_0 t) + \frac{1}{2} m_2(t) [1 - \cos (4\pi f_0 t)]$$

Output of LPF eliminates $2f_0$ terms

$$\Longrightarrow V_4 = \frac{1}{2}m_2(t)$$

ACE Engineering Publications

Hyderabad • Delhi • Pune • Lucknow • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

ONLINE + OFFLINE CLASSES

ENGLISH

ESE | GATE | PSUs – 2022

Morning / Evening / Weekend Baches for College Going Students

OELHI HYDERABAD PUNE VIJAYAWADA VIZAG TIRUPATI

COURSE DETAILS

- Classes will be planned & conducted as per Government Regulations - partially online and offline (classroom coaching).
- Payment options Available -Partial Payment/ Full Payment.
- After the payment of II
 Installment Get access to
 complete study material and
 Online Test Series.
- Recorded version of the online live class will be made available through out the course (with 3 times view).
- Doubt clearing sessions and tests to be conducted regularly.

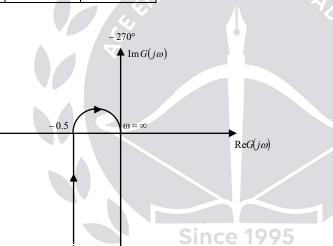
BATCH DATE

7th NOVEMBER 2020

Scan QR Code for more info.

Email: hyderabad@aceenggacademy.com | www.aceenggacademy.com

ACE Engineering Publications	
---------------------------------	--


19

Electronics & Telecommunication Eng.

Mapping of section C_1 : In section $\,C_1,\,\omega\,$ varies from $\,0$ to $\infty\,$

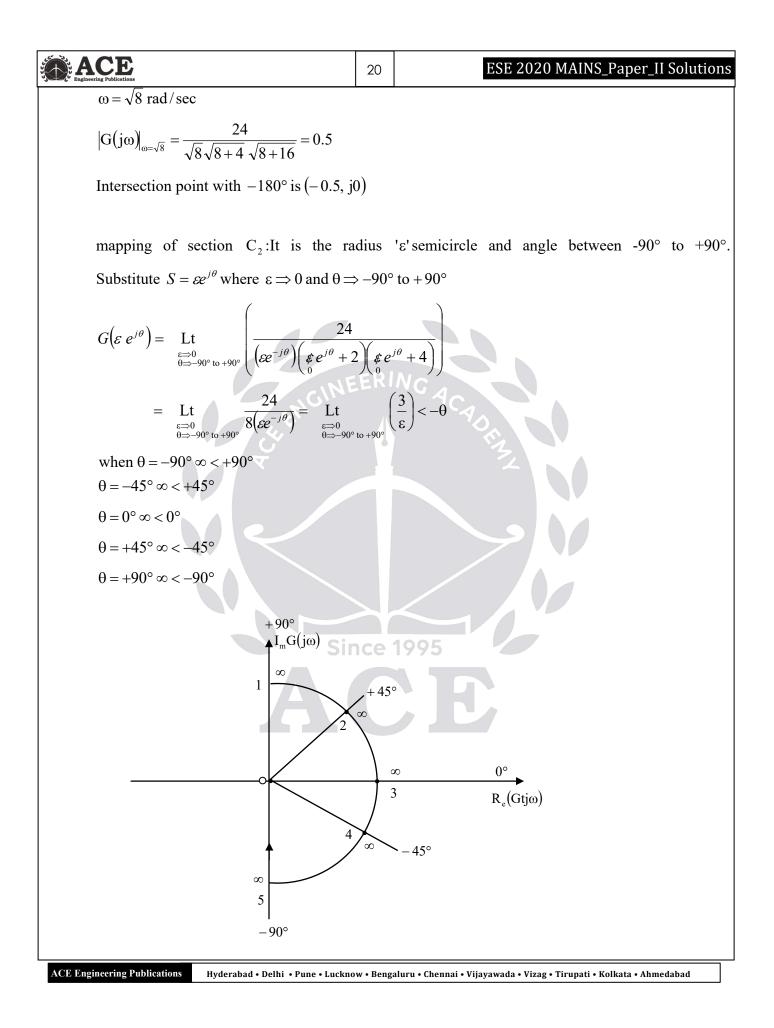
$$G(j\omega) = \frac{24}{(j\omega)(j\omega+2)(j\omega+4)}, H(j\omega) = 1$$
$$|G(j\omega)| = \frac{24}{\omega\sqrt{\omega^2+4}\sqrt{\omega^2+16}}$$
$$< G(j\omega) = -90^\circ - \tan^{-1}\left(\frac{\omega}{2}\right) - \tan^{-1}\left(\frac{\omega}{4}\right)$$

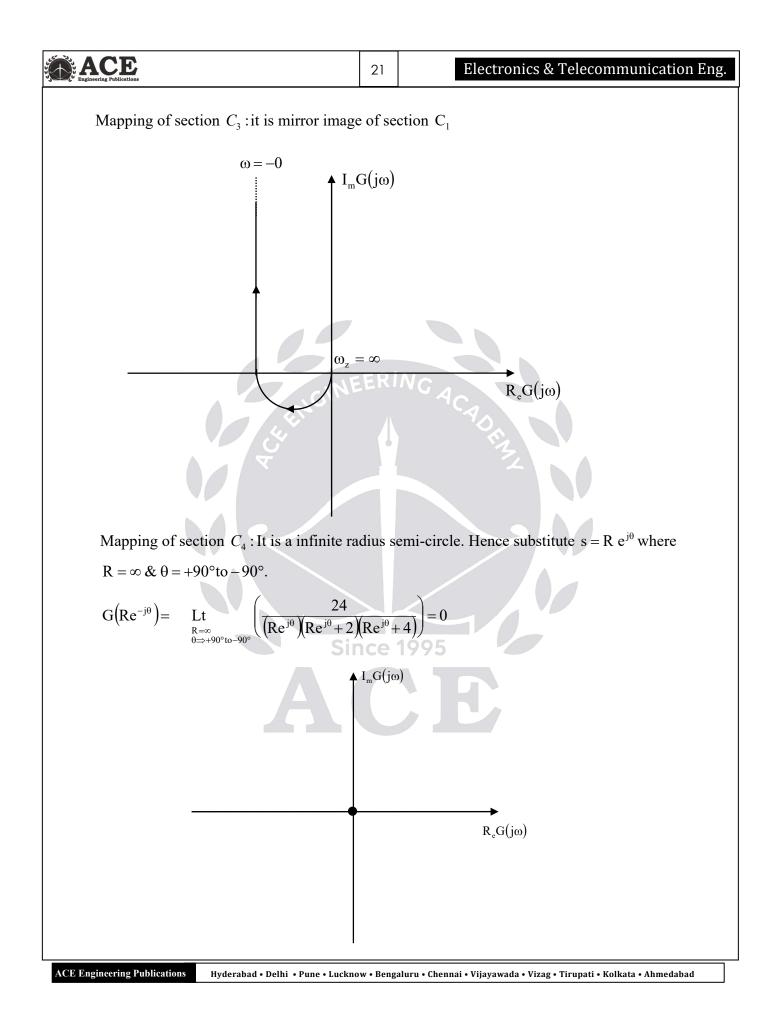
ω	G(jω)	< G(jw)	
0	∞	-90°	
8	0	-270°	GINE

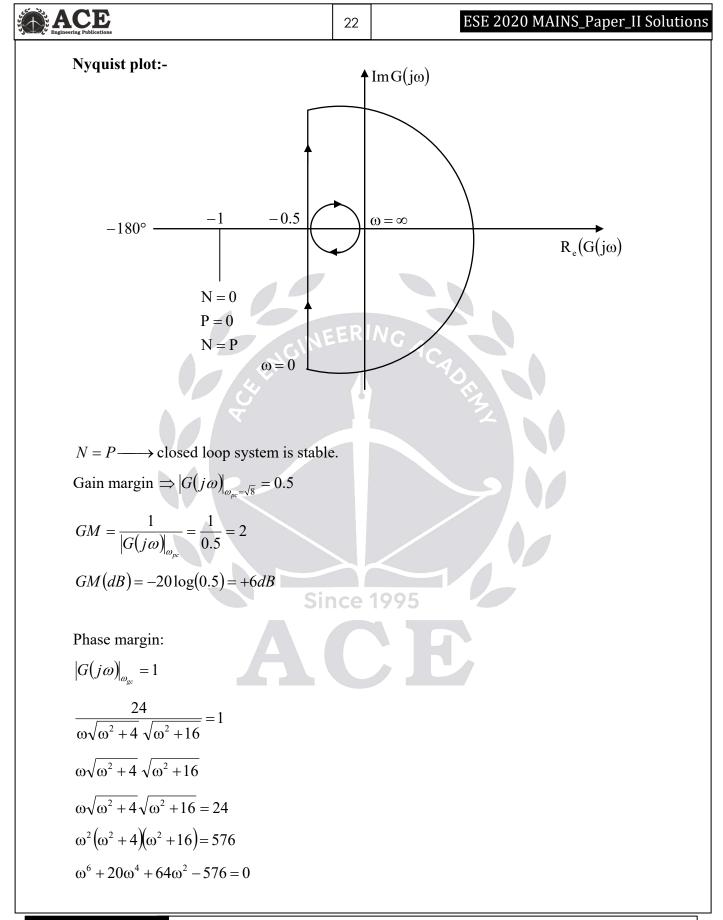
Intersection point with -180°

 $\omega = 0$

-90°


$$< G(j\omega) = -180^{\circ}$$


$$-180^{\circ} = -90^{\circ} - \tan^{-1}\left(\frac{\omega}{2}\right) - \tan^{-1}\left(\frac{\omega}{4}\right)$$
$$90^{\circ} = \tan^{-1}\left(\frac{\omega}{2}\right) + \tan^{-1}\left(\frac{\omega}{4}\right)$$
$$\int_{1}^{1} \left(\frac{\omega}{2} + \frac{\omega}{4}\right)$$


$$90^{\circ} = \tan^{-1} \left| \frac{\frac{1}{2} + \frac{1}{4}}{1 - \frac{\omega^2}{8}} \right|^{-1}$$

ACE Engineering Publications

Hyderabad • Delhi • Pune • Lucknow • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Engineering Publications	23	
$\omega_{\rm gc} = 1.93 \rm r/sec$		

 $PM = 180^{\circ} + \langle G(j\omega) |_{\omega_{gc}}$ $PM = 180^{\circ} + \left[-90^{\circ} - \tan^{-1} \left(\frac{\omega}{2} \right) - \tan^{-1} \left(\frac{\omega}{4} \right) \right]_{\omega = \omega_{gc}}$ $PM = 180^{\circ} - 90^{\circ} - \tan^{-1} \left(\frac{1.93}{2} \right) - \tan^{-1} \left(\frac{1.93}{4} \right)$

 $PM = 20.26^{\circ}$ Closed loop system is stable.

03. (c) Design a 4-bit arithmetic circuit with one selection variable s and two four-bit inputs A and B. The circuit generates the following four arithmetic operations in conjunction with the input carry C_{in}. Draw the logic diagram for the following.

S	$C_{in} = 0$	$C_{in} = 1$
0	$\mathbf{D} = \mathbf{A} + \mathbf{B}$	$\mathbf{D} = \mathbf{A} - \mathbf{B}$
1	$\mathbf{D} = \mathbf{A} + 1$	$\mathbf{D} = \mathbf{A} - 1$

(20 M)

Sol:

C_{in} Operation Adder Inputs S 0 A + B0 A, B Inputs A - B $\rightarrow A, \overline{B}, C_{in} = 1$ Inputs 0 1 A, 0001, $C_{in} = 0$ (A, 1110, $C_{in} = 1$) (A, 1110, $C_{in} = 1$) (A, 1110, C) A+11 0 A – 1 1 1 A + 1111 = A - 1FA adds $A + B + C_{in}$ Logic Diagram: B₃ A_3 B_1 \mathbf{B}_2 A۶ B_0 $I_0 I_1 I_2 I_3 \leftarrow S$ $I_0 I_1 I_2 I_3 \leftarrow S$ $I_0 I_1 I_2 I_3 \leftarrow S$ $I_0 I_1 I_2 I_3 \leftarrow S$ -C_{in} 4:1 MUX 4:1 MUX ←C_{in} -C_{in} Cin 4:1 MUX 4:1 MUX Cout FA FA FA FA Cin Y_3 Y4 Y_2 Y_1 ACE Engineering Publications Hyderabad • Delhi • Pune • Lucknow • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

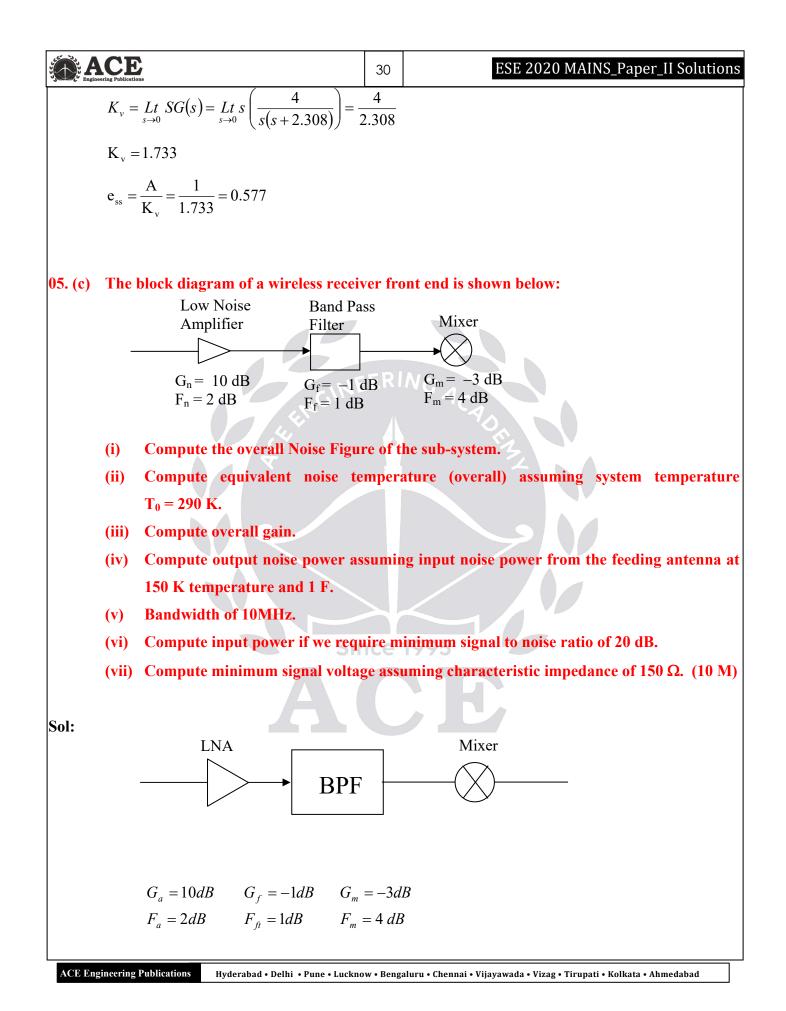
Electronics & Telecommunication Eng.

	ACEE	24		ESE 2020 MAINS_Paper_II Solutions	
04. (a)	Twelve different audio signals each transmitted.	ban	d-limited to	10kHz are to be multiplexed and	
	(i) TDM is used with flat top sampl pulse of 1 µsec duration for synch	roniz	zation. If san	tion and with provision of one extra pling is at Nyquist rate, calculate th . What is the bandwidth of this TDN	
	(ii) If the audio signals are multiplexe	d usi	ng FDM and	transmitted using AM - SSB, what i	
	the minimum bandwidth required	?		(20 M)	
Sol:					
(i)	N = 12	= D			
	$f_m = 10 \ kHz$	ER	INGAC		
	Sampling is nyquist rate		4	0,	
	Sampling rate 20 kHz	•		3	
	Since sampling rate 20000 samples per sec, period of time between sets of samples is $\frac{1}{20000}$ s				
	$= 50\mu$ sec.				
	Sample of each of 12 audio signals is				
	synchronizing pulse 1µ sec thus 13	pulse	es has to	sent over 50 µ sec can allocate	
	$50\mu/13 = 3.846 \mu s$ for each pulse.				
	Spacing between successive samples $= 3$.	846µs	$s - 1\mu \sec = 2.$	846µs	
(ii)	$BW_{FDM} = 12 \times 10 kHz = 120 kHz$		E		
04. (b)	Given a system transfer function G(s	$s) = \frac{1}{(s)}$	$\frac{10}{(s+1)(s+4)},$	find the equivalent state space phas	
	variable canonical representation in t	he fo	orm $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{A}\mathbf{x}$	- Bu, y = Cx + Du. Also design a stat	
	for the standard law on the search th	a4 4b		mits a neak response M = 1.25 ju	

feedback controller u = Kx such that the system admits a peak response $M_{pw} = 1.25$ in frequency domain and a peak time $t_p = 3.53$ seconds in time step response.

(20 M)

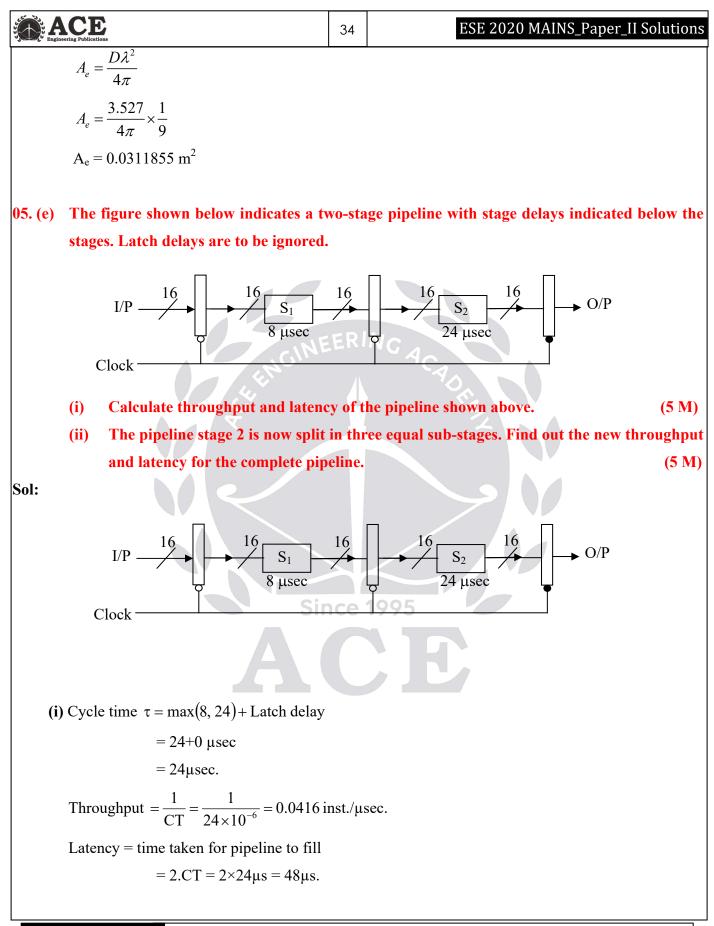
Engineering Publications	25	Electronics & Telecommunication Eng.
Sol: $G(s) = \frac{10}{(s+1)(s+4)}$		
Transfer function $G(s) = \frac{y(s)}{u(s)} = \frac{10}{s^2 + 5s}$	+4	
$\frac{y(s)}{u(s)} = \frac{10}{5^2 + 5s + 4} \cdot \frac{x(s)}{x(s)}$		
Equation u(s) can be written as		
$u(s) = (s^2 + 5s + 4)x(s)$		
$u(s) = s^2 x(s) + 5sx(s) + 4x(s)$		
Apply inverse laplace transform		
u = x + 5x + 4x - (1)	EERI	NGACA
Let $x = x_1$ $-(2)$		C III
$\dot{x}_1 = \dot{x} = x_2 \qquad -(3)$		
$\dot{x}_2 = \dot{x}$ -(4)		
Substitute (2), (3) & (4) in (1)		
$U = \dot{x}_2 + 5x_2 + 4x_1$		
$\dot{x}_2 = u - 4x_1 - 5x_2 \qquad -(5)$		
Equation (2), (3) & (5) in matrix form	nce	1995
$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -4 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} U \end{bmatrix}$		
Equation Y(s) can be written as		
Y(s) = 10x(s)		
Apply inverse laplace transform		
$\Rightarrow y = 10x \Rightarrow y = 10x_1 \qquad -(6)$		
In matrix form		
$\begin{bmatrix} Y \end{bmatrix} = \begin{bmatrix} 10 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$		

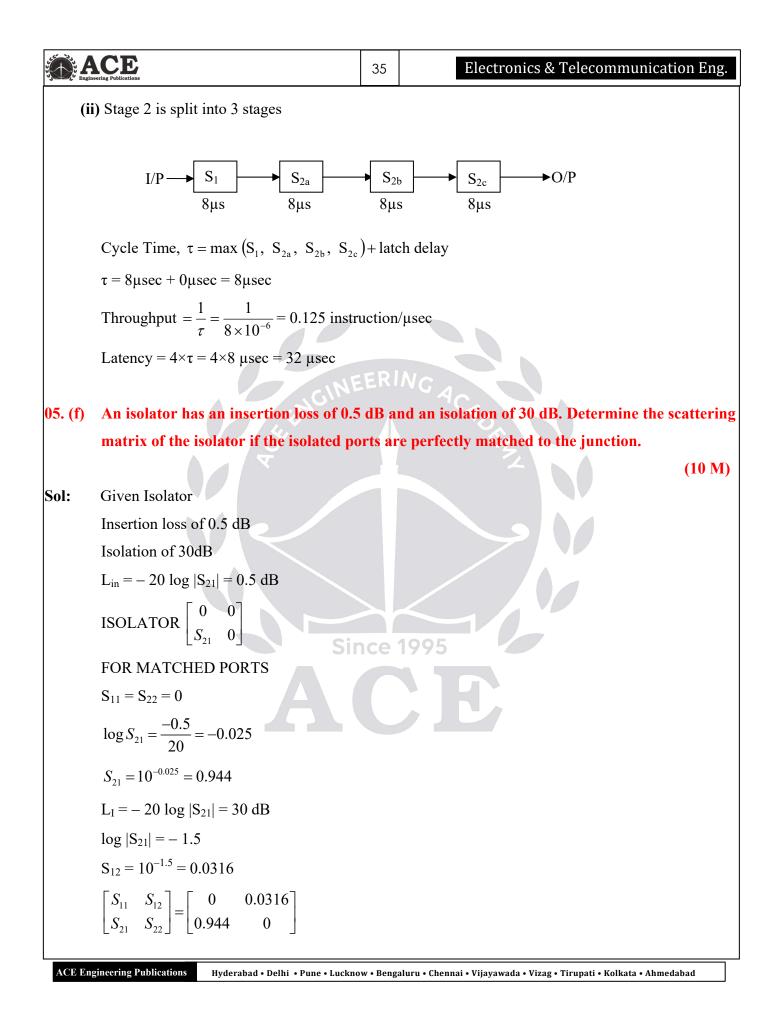

Hyderabad • Delhi • Pune • Lucknow • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Experimental Actions	26 ESE 2020 MAINS_Paper_II Solutions
Peak response in frequency domain M_{pv}	_v = 1.25
Peak time $t_p = 3.53 \text{ sec}$	
$M_{p\omega} = \frac{1}{2\xi\sqrt{1-\xi^2}} = 1.25$	
$1.25 = \frac{1}{2\xi\sqrt{1-\xi^2}}$	
$1.5625 = \frac{1}{4\xi^2 (1-\xi^2)}$	
$1.5625 = \frac{1}{4\xi^2 - 4\xi^4}$	ERING
$6.25\xi^2 - 6.25\xi^4 - 1 = 0$	ACA
$-6.25\xi^4 + 6.25\xi^2 - 1 = 0$	i rz
$\xi = 0.89, \ 0.44$	
Valid ξ is less than 0.707	
$\xi = 0.44$	
$t_{p} = 3.53 = \frac{\pi}{\omega_{d}} = \frac{\pi}{\omega_{n}\sqrt{1-\xi^{2}}}$	
$3.53 = \frac{\pi}{\omega_n \sqrt{1 - 0.44^2}} \Rightarrow \omega_n = \frac{\pi}{3.53\sqrt{1 - 0.44^2}}$	arr = 0.99 r/s
Characteristic equation \Rightarrow [SI – A _c] = 0	CE
$[Ac] = [A - BK] where K = [K_1 K_2]$	
$\begin{bmatrix} Ac \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -4 & -5 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} K_1 & K_2 \end{bmatrix}$	
$= \begin{bmatrix} 0 & 1 \\ -4 & -5 \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ K_1 & K_2 \end{bmatrix} = \begin{bmatrix} 0 \\ -4 - K_1 \end{bmatrix}$	$\begin{bmatrix} 1 \\ -5 - K_2 \end{bmatrix}$
$CE \Rightarrow SI - Ac = 0 \Rightarrow \begin{bmatrix} s & -1 \\ 4 + K_1 & s + 5 + K_2 \end{bmatrix}$	= 0
$\xrightarrow{\text{CE}} s[s+5+K_2]+(4+K_1)=0$	

Engineering Publications	27	Electronics & Telecommunication Eng.
$s^2 + 5s + K_2S + 4 + K_1 = 0$		
$s^{2} + s(5 + K_{2}) + (4 + K_{1}) = 0$		
Compare with $s^2 + 2\xi\omega ns + \omega_n^2 = 0$		
$\Rightarrow \omega_n^2 = 4 + K_1$		
$0.99^2 = 4 + K_1 \Longrightarrow K_1 = -3.0199$		
$\Rightarrow 2\xi\omega_n = 5 + K_2$		
$\Rightarrow 2 \times 0.44 \times 0.99 = 5 + K_2$		
$0.8712 = 5 + K_2 \Longrightarrow K_2 = -4.1288$		
[K] = [-3.0199 - 4.1288]	EER	No
CIN		ACA
	ents pi	rovide the operations to be performed with flip-
flop F:		2
$X_1T_1: F \leftarrow 0$ $X_2T_2: F \leftarrow 1$		
$X_2T_2 : F \leftarrow F$ $X_3T_3 : F \leftarrow G$		
$X_4T_4: F \leftarrow \overline{F}$		
In all other conditions, the contents	of F d	o not change. Using J-K flip-flops, draw the logic
diagram showing connections of the g	gates tl	hat implement control function for F.
		(20 M)
Sol:		
T_2	[
$X_3 \longrightarrow G \rightarrow G$		Clk FF
T_4 \overline{G}		
ACE Engineering Publications Hyderabad • Delhi • Pune • Luckn	10w • Beng	aluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

	28 ESE 2020 MAINS_Paper_II Solutions
	SECTION - B
05. (a)	Band-limited message signal m(t) is encoded using PCM system which uses uniform
	quantizer and 8-bit binary encoding. If the bit rate is 56 Mb/sec, what is the maximum
	bandwidth of m(t) for satisfactory operation ?
	Calculate signal to quantization noise ratio if m(t) is full load single tone sinusoidal signal of
	frequency 1 MHz. (10 M)
Sol:	n = 8
	$r_b = 56 \text{ Mbps} = n f_s$
	$f_s = 56M/8 = 7Msps$
	$f_s = 2f_m$
	Maximum bandwidth of m(t), for satisfactory operation $= 2f_m = f_s$
	$f_m = f_s / 2 = 3.5 MHz$
	SQNR, $dB = (6n + 1.8)$
	$= 6 \times 8 + 1.8$
	= 49.8 dB
05 (b)	For a write factly of K
US. (D)	For a unity feedback system shown in the figure, $G(s) = \frac{K}{s(s+\alpha)}$ has resonant frequency ' ω_r '
	which is $\frac{1}{\sqrt{2}}$ times the damped frequency ' ω_d '. G(s) also has a setting time of $2\sqrt{3}$ seconds
	$\sqrt{2}$
	for a 2% tolerance band in its time step response. Calculate the following:
	(i) Undamped natural frequency
	(ii) Decay rate
	(iii) Peak overshoot (iv) Steady state error for the input $r(t) = t u(t)$
	(iv) Steady state error for the input $r(t) = t u(t)$
	$\frac{R(s)}{G_c(s)} \xrightarrow{Y(s)} Y(s)$
	(10 M


	g Publications	29	Electronics & Telecommunication Eng		
Sol:	$G(s)\frac{K}{s(s+\alpha)}, H(s)=1$				
=	$\Rightarrow \omega_{\rm r} = \frac{1}{\sqrt{2}} \omega_{\rm d} \ {\rm r/sec}$				
($\omega_n \sqrt{1-2\xi^2} = \frac{1}{\sqrt{2}} \omega_n \sqrt{1-\xi^2}$				
	$\sqrt{2}\sqrt{\left(1-2\xi^2\right)} = \left(\sqrt{1-\xi^2}\right)$				
-	$\Rightarrow 2(1-2\xi^{2}) = (1-\xi^{2}) \Rightarrow (2-4\xi^{2}) = (1-\xi^{2})$	²)			
=	$\Rightarrow 2 - 4\xi^2 - 1 + \xi^2 = 0 \Rightarrow 1 - 3\xi^2 = 0 \Rightarrow \xi$	$\xi = \frac{1}{\sqrt{2}}$	3		
:	$\Rightarrow t_{s} = 2\sqrt{3} = \frac{4}{\xi\omega_{n}} \Rightarrow 2\sqrt{3} = \frac{4}{0.577\omega_{n}}$	ERI	NGACAD		
=	$\Rightarrow \omega_{n} = \frac{4}{0.577 \times 2\sqrt{3}} = 2 \text{ rad/sec}$				
($CLTF = \frac{K}{s^2 + \infty s + \mu}$				
	$\omega_n = \sqrt{K} \Longrightarrow K = \omega^2 = 4$				
($\alpha = 2\xi\omega_n = 2 \times 0.577 \times 2 = 2.3$				
	$CLTF = \frac{K}{s^2 + \infty s + K} = $		1995		
i	. undammed natural frequency $\omega_n =$	2rad/s	sec		
i	i. Decay rate = $\xi \omega_n = \frac{1}{\sqrt{3}} \times 2 = 1.154$	sec			
i	ii. Peak overshoot $\Rightarrow m_p = e^{-(\pi\xi/\sqrt{1-\xi^2})}$	$\left(\right) = e^{-1}$	$\left(\pi \times 0.577 / \sqrt{1 - 0.577^2}\right)$		
	$m_{p} = 0.1086$				
	$\%m_{p} = 10.86\%$				
i	v. e_{ss} for $r(t) = tu(t)$				
	$G(s) = \frac{K}{s(s+\alpha)} = \frac{4}{s(s+2.308)}, H(s)$	s) = 1			



	vering Publications	31	Electronics & Telecommunication Eng.
(i)	$F = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 G_2}$		
	$F_a = 1.58 = 10^{0.2}, G_a = 10$		
	$F_f = 10^{0.1} = 1.25, \ G_f = 0.79$		
	$F_{\rm m} = 10^{0.4} = 2.51, G_{\rm m} = 0.5$		
	F, Overall noise Figure $= 1.58 + \frac{1.25 - 1}{10}$	$+\frac{2.5}{10\times}$	$\frac{1-1}{0.79}$
	F = 1.58 + 0.025 + 0.19 = 1.795		
	F dB = 2.54 dB		
(ii)	$T_{e} = T_{e1} + \frac{T_{e_{2}}}{G_{1}} + \frac{T_{e_{3}}}{G_{1}G_{2}}$	ERI	NGACA
	$T_{e_1} = T_0(F_1 - 1), T_{e_3} = T_0(F_3 - 1)$		O FZ
	$T_{e_2} = T_0(F_2 - 1)$		
	$T_{e_1} = 290(1.58 - 1) = 168.2$		
	$T_{e_2} = 290(1.25 - 1) = 72.5$		
	$T_{e_3} = 290(2.51 - 1) = 437.9$		
	$T_{e} = 168.2 + \frac{72.5}{10} + \frac{437.9}{10 \times 0.79}$		
	= 168.2 + 7.25 + 55.43 = 230.88	ice	1995
(iii)	Overall gain $G = G_1 G_2 G_3$		
	$= 10 \times 0.79 \times 0.5 = 3.95$		
	$G = 10 \log 3.95 = 5.96 dB$		
(iv)	150K		
	LNA BPF		Mixer

	acce 32	ESE 2020 MAINS_Paper_II Solution			
	Output noise power = K $T_e B G F$				
	$= 1.38 \times 10^{-23} \times (230.88 + 150) \times 10 \times 10^{6} \times 3.95 \times 1.795$				
	= 0.37 pWatts				
(vi)	Minimum signal to noise ratio $= 20$ dB $= 100$.				
	$(SNR)_{I/P} = F(SNR)_{O/P}$				
	$= 1.795 \times 100 = 179.5$				
	Input noise power = K TB				
	$= 1.38 \times 10^{-23} \times 380.88 \times 10 \times 10^{6}$				
	$= 525.61 \times 10^{-16}$				
	Input signal power = $179.5 \times 525.61 \times 10^{-16} = 9.4 pW$				
		NOn I			
(vii)) Minimum signal voltage $V = \sqrt{4 \ KTBR}$	32			
	$=\sqrt{4 \times 1.38 \times 10^{-23} \times 380.8}$	$8 \times 10 \times 10^{6} \times 150$			
	$= \sqrt{315368.64 \times 10^{-17}}$				
	$= 1.775 \ \mu \ Volt.$				
	Since 1995				
5. (d)	Normalised radiation intensity of an antenna is giv	ven by			
	$U_n(\theta) = 1, \ \theta^o \le \theta < 30^o$				
	$=\frac{\cos\theta}{0.866}; \mathbf{30^{\circ}} \le \theta < 90^{\circ}$				
	$= 0; 90^{\circ} \le \theta \le 180^{\circ}$				
	It is independent of Φ .				
	Determine exact directivity and maximum apertur	e area at operating frequency of 900 MH			
		(10 M			

Engineering Publications	33	Electronics & Telecommunication Eng.
Sol: $U_n(\theta) = 1$ $0 \le \theta \le 30^0$		
$=\frac{\cos\theta}{0.866};30^0\le\theta\le90^0$		
$= 0 ; 90^0 \le \theta \le 180^0$		
f = 900 MHz		
Directivity:		
$D = \frac{4\pi}{\iint\limits_{\theta \ \phi} \left[F(\theta, \phi)\right]^2 \sin \theta d\theta d\phi}$		
Where $[F(\theta, \phi)]^2 = u_n(\theta)$		
$D = \frac{4\pi}{\int_{\phi=0}^{2\pi} d\phi \int_{\theta} u_n(\theta) \sin \theta d\theta} = \frac{4\pi}{2\pi * I}$	EER	NG ACADE
$D = \frac{2}{I}$		
$I = \int_{\theta} u_n(\theta) \sin \theta d\theta = \int_{0}^{30^0} (1) \sin \theta d\theta + \int_{30^0}^{90^0} (1) \sin \theta + \int_{30^0}^{90$	$\frac{\cos\theta}{0.866}$ si	$n \theta d \theta$
$= \left(-\cos\theta\right)_{0}^{30^{0}} + \frac{1}{0.866} \left[\frac{\sin^{2}\theta}{2}\right]_{30^{0}}^{90^{0}}$		
$= -\left[\frac{\sqrt{3}}{2} - 1\right] + \frac{1}{2 \times 0.866} \left[1^2 - \left(\frac{1}{2}\right)^2\right]$		
$= \left(1 - \frac{\sqrt{3}}{2}\right) + \frac{1}{2 \times 0.866} \times \frac{3}{4} = 0.1339$	+0.433	
I = 0.5669254041570438		
$D = \frac{2}{I} = \frac{2}{0.566925} = 3.527$		
D = 3.527		
$D = \frac{4\pi}{\lambda^2} A_e \qquad \qquad \lambda$	$=\frac{c}{f}=\frac{c}{g}$	$\frac{3 \times 10^8}{200 \times 10^6} = \frac{1}{3}$

EXCLUSIVE

ONLINE CLASSES

ENGLISH

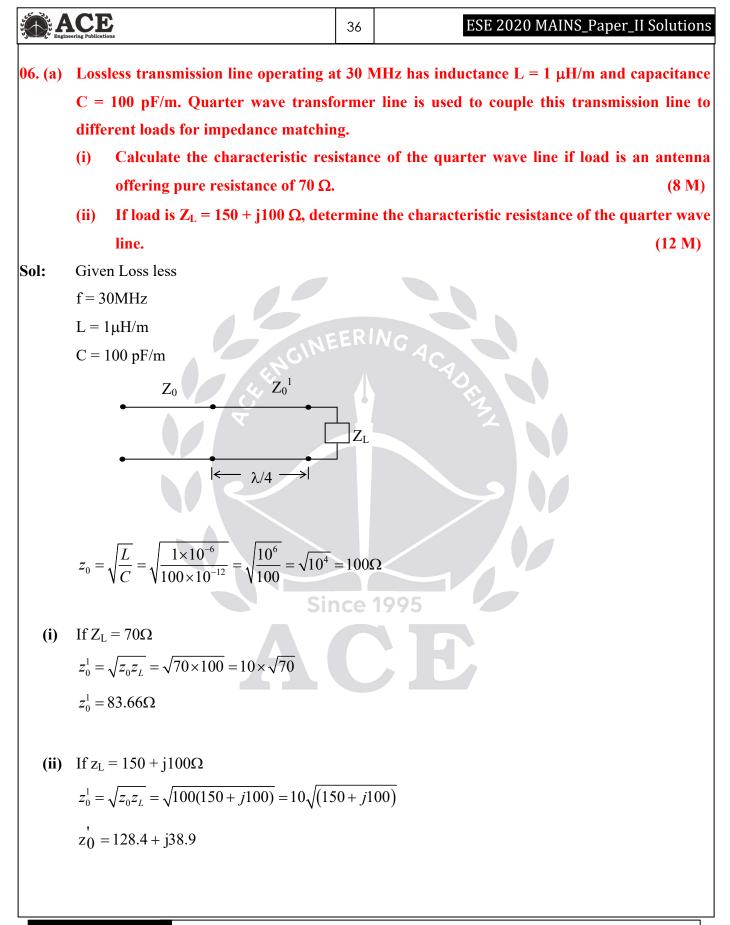
ESE | GATE | PSUs – 2022

COURSE DETAILS

• For ESE+GATE+PSUs Students

- 1. Online Live Classes Technical Subjects Only.
- 2. Recorded Classes General Studies Subjects (on ACE Deep Learn Platform)
- Recorded version of the online live class will be made available through out the course (with 3 times view).
- Doubt clearing sessions and tests to be conducted regularly.
- 3 to 4 hours of live lectures per day in week days (Timing 5 pm to 9 pm) On Sundays 5-6 Hours Live Online Lectures (6 days a week).
- Access the lectures from any where.

BATCH DATE


7th NOVEMBER 2020

DISCOUNTS

- **Rs. 5,000 OFF for ACE Old Students**
- Pay Full fee & Get 5% Additional Discount.
- 20% off for IIT / NIT, Students.
- 15% off for IIIT / Govt. College students.

FEE

ESE + GATE + PSUs : Rs. 70,000/-GATE + PSUs : Rs. 55,000/-(Fee can be paid in two installments)

	37 Electronics & Telecommunication Eng.						
)6. (b)	Consider a CMOS schematic for 2-iput NOR gate.						
	Design appropriate test scheme to check the following faults through control/observation o						
	voltage/current levels at input/Output/supply.						
	(i) One pMOS transistor stuck open (10 M)						
	(ii) One nMOS transistor stuck short (10 M)						
Sol:							
	V _{DD}						
(1)	A r_1 B r_2 Figure: CMOS 2 – input NOR gate (i) Consider T stuck – open fault.						
	(ii) When $A = 0$ and $B = 0$, output F will be 1 in the absence of the fault.						
	(iii) In the presence of fault, the output is floating and voltage at F will depend on charge stored						
	in load capacitor.						
	(iv) Apply two patters.						
	(a) $A = 1, B = 0$ to initialize f to 0						
	(b) $A = 0$, $B = 0$ to detect / sensitize the fault.						
(2)	(i) consider T_4 stuck – short fault.						
. ,	(ii) When $A = 0$ and $B = 0$, output F will be 1 in the absence of the fault (pull up ne						
	conducts)						
	(iii) In presence of fault, the pull down network also starts conducting, resulting in high curren						
	from V _{DD} to GND.						
	Output F becomes intermediate value denoting neither one nor zero. Here fault is sensitized.						

Engineering Publications	38	ESE 2020 MAINS_Paper_II Solutions
--------------------------	----	-----------------------------------

06. (c) Write the expression for signal to noise ratio for PIN diode. A silicon PIN photodiode incorporated into the optical receiver has a quantum efficiency of 65% when operating at wavelength of 0.9 μM. The dark current at this point is 3 nA and load resistance is 4 kΩ. The post detection bandwidth of the receiver is 5MHz and the thermal noise temperature is 20°C. If the overall signal to noise ratio is 5dB, calculate the incident power. (20 M)

Sol:

$$SNR_{PIN} = \frac{I_{ph}^{2}}{I_{n-s}^{2}}$$

$$I_{ph} : (signal)photocurrent$$

$$I_{n-s} : Noise current$$

$$\eta = 0.65$$

$$\lambda = 0.9 \,\mu\text{m}$$

$$I_{dark} = 3n\text{A} = 3 \times 10^{-9} \text{A}$$

$$R_{Load} = 4k$$

$$B = 5\text{MHz}$$

$$T = 20$$

$$Overall SNR = 5 \text{ dB}$$

$$SNR = 10^{0.5} = 3.16$$

$$Input \text{ power} = P_{0} = ?$$

$$Overall SNR = 5 \text{ dB}$$

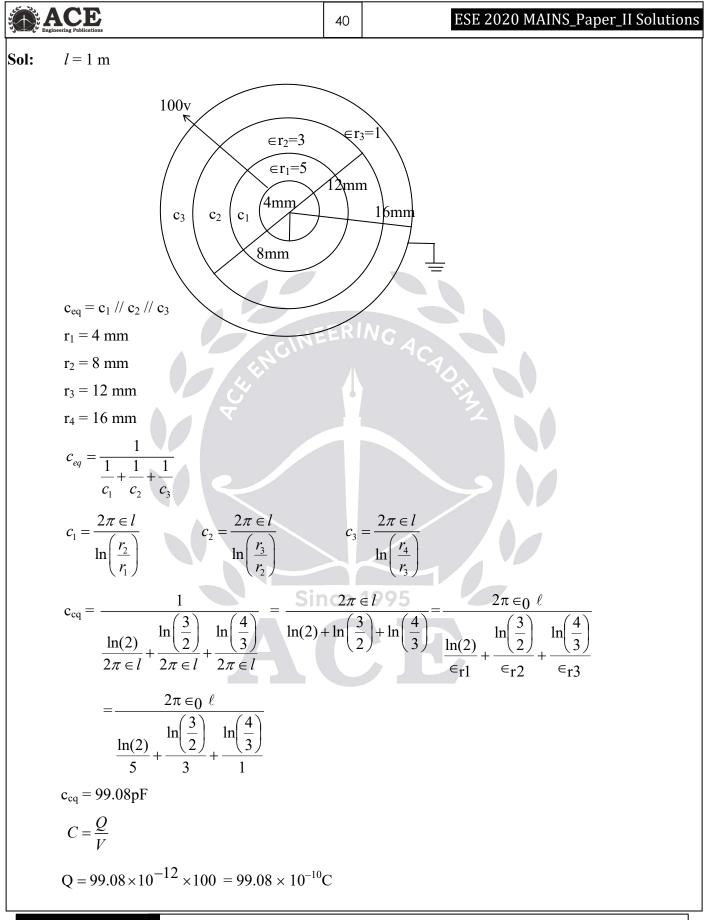
$$SNR = 10^{0.5} = 3.15$$

$$\frac{I_{ph}^{2}}{I_{n-s}^{2}} = 3.15$$

$$I_{ph} = \eta \frac{P_{0} q\lambda}{hc}$$

$$= 0.65 \times \frac{P_{0} 1.6 \times 10^{-19} \times 0.9 \times 10^{-6}}{6.62 \times 10^{-34} \times 3 \times 10^{8}}$$

$$I_{ph} = 0.47 P_{0}$$


$$Dark noise = I_{n-d} = \sqrt{2q IB} = \sqrt{2 \times 1.6 \times 10^{-19} \times 3 \times 10^{-9} \times 5 \times 10^{6}}$$

Engineering Fublications	39	Electronics & Telecommunication Eng.
Shot Noise, $I_{n-s} = \sqrt{2q} I_{ph}B = \sqrt{2 \times 1.6 \times 10^{-5}}$	<10 ⁻¹⁹	$P \times 0.47 P_o \times 5 \times 10^6$
$= 8.67 \times 10^{-7} \times \sqrt{P_o}$		
Johnson noise = $I_{n-J} = \sqrt{4 \ KTB \ R} = \sqrt{4}$	4×1.3	$38 \times 10^{-23} \times (20 + 273) \times 5 \times 10^{6} \times 4 \times 10^{3}$
$=17.98 \times 10^{-6}$		
$I_{n-noise}^{2} = I_{nd}^{2} + I_{ns}^{2} + I_{nJ}^{2} = 47.88 \times 10^{-2}$	²² + 75	$5.17 \times 10^{-14} P_o + 323.4 \times 10^{-12}$
$\frac{I_{ph}^2}{I_{n.noise}^2} = 3.15$		
$0.22 P_0^2 = 3.15 [32.34 \times 10^{-11} + 75.17 \times 10^{-11}]$	$P^{-14} P_o$	
$0.22 P_0^2 = 10.18 \times 10^{-10} + 236.785 \times 10^{-14}$	$\overline{P_o}$ R	NGAC
$P_0^2 - 1076.29 \times 10^{-14} P_o - 46.27 \times 10^{-10} =$	0	AD.
$P_0^2 - 0.11 \times 10^{-10} P_o - 46.27 \times 10^{-10} = 0$		EZ .
$P_{o} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	1	
$=\frac{0.11\times10^{-10}\pm\sqrt{0.0121\times10^{-20}+4\times4}}{10^{-20}+4\times4}$	46.27	$\times 10^{-10}$
$=\frac{0.11\times10^{-10}\pm13.604\times10^{-5}}{2}$		
$P_o = 6.802 \times 10^{-5} W$ Sin	ice	1995
Incident power $P_0 = 68.02 \ \mu W$		
07. (a) A coaxial capacitor of length 1 m is	form	ned using two concentric cylindrical conductors.
The inner conductor has radius 4	mm	and the outer conductor radius is 16 mm.
		yers of perfect dielectric materials with different
dielectric constants such that	$\mathcal{E}_{r_1} =$	$= 5,4 mm < \rho < 8mm; \ \varepsilon_{r_2} = 3,8 mm < \rho < 12 mm$ and

 $\varepsilon_{r_3} = 1,12 \, mm < \rho < 16 mm$. If the potential difference between the inner and outer conductor is

100 V, determine the capacitance and charge on the inner conductor ($\epsilon_0 = 8.854 \times 10^{-12} \, F/m$)

(20 M)

ACE Engineering Publications Hyderabad • Delhi • Pune • Lucknow • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

THE BIG FESTIVAL OFFER

Flat 20% off

From 20th to 26th October

Call: 040-48539866, 4013 6222 Email: testseries@aceenggacademy.com

www.aceenggacademy.com

	ACE
Ser Co	Engineering Publications

07. (b) (i) The impulse response of an LTI system is given by

$$\mathbf{h}(\mathbf{n}) = \left\lfloor \left(\frac{1}{4}\right)^n \cos\left(\frac{\pi}{4}\mathbf{n}\right) \right\rfloor \mathbf{u}(\mathbf{n})$$

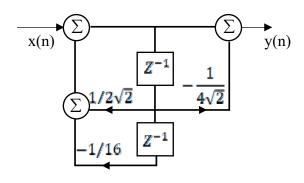
Realise this system using finite number of adders, multipliers and minimum possible unit delays. (10 M)

(ii) Consider an initially relaxed system whose output y(n) for n ≥ 0 is the Fibonacci series.
 Describe this system in the form of difference equation relating input and output.
 Obtain impulse response of this system. (10 M)

Sol: (i).
$$h(n) = \left(\frac{1}{4}\right)^n \cos\left(\frac{\pi n}{4}\right) u(n)$$
, Let $\mathbf{x}(n) = \left(\frac{1}{4}\right)^n u(n)$
$$h(n) = \mathbf{x}(n) \left[\frac{(e^{j\pi/4})^n + (e^{-j\pi/4})^n}{n} \right]$$

Apply z-transform

$$\left[\mathbf{X}(\mathbf{z}) = \frac{1}{1 - \frac{1}{4} \mathbf{z}^{-1}} \right] \left[a^n \mathbf{u}(\mathbf{n}) \underbrace{Z.T}_{1 - \alpha \mathbf{z}^{-1}} \frac{1}{1 - \alpha \mathbf{z}^{-1}} \right] \left[\alpha^n \mathbf{x}(\mathbf{n}) \underbrace{\cdots}_{X(\mathbf{z}/\alpha)} \right]$$


$$H(z) = \frac{X(z/e^{j\pi/4}) + X(z/e^{-j\pi/4})}{2} = \frac{1}{1 - \frac{1}{4}(z/e^{j/\pi 4})^{-1}} + \frac{1}{1 - \frac{1}{4}(z/e^{-j/\pi 4})^{-1}}$$

$$=\frac{1-\frac{1}{4}\cos{\pi/4}\,z^{-1}}{1-2\left(\frac{1}{4}\right)\cos(\pi/4)z^{-1}+(1/4)^2z^{-2}}$$

$$H(z) = \frac{1 - \frac{1}{4\sqrt{2}} z^{-1}}{1 - \frac{1}{2\sqrt{2}} z^{-1} + \frac{1}{16} z^{-2}} \qquad \left[a^n \cos \omega_0 \operatorname{nu}(n) \underbrace{Z, T}_{1 - 2az^{-1} \cos \omega_0 z^{-1} + a^2 z^{-2}} \right]$$

Since 1995

Direct form II [Canonical form]

	ACE agineering Publications	42	ESE 2020 MAINS_Paper_II Solutions
(ii)	y(n) = y(n-1) + y(n-2) + x(n), y(n-2) + x(n)	(0) =	0, y(1) = 1
	Take Z.T	x	$(n-n_0)$, $Z.T$, $z^{-n_0}X(z)$
	$Y(z) = z^{-1}Y(z) + z^{-2}Y(z) + X(z)$		
	$Y(z)[1-z^{-1}-z^{-2}]=X(z)$		
	$H(z) = \frac{Y(z)}{X(z)} = \frac{1}{1 - z^{-1} - z^{-2}} = \frac{z^2}{z^2 - z - 1}$		
	Take $\frac{H(z)}{z} = \frac{z}{z^2 - z - 1}$		
	$z^2 - z - 1 = 0$	ERI	NG ACADA
	$z = \frac{1 \pm \sqrt{1+4}}{2} = \frac{1 \pm \sqrt{5}}{2}$	·	32
	$= \frac{1 \pm 2.236}{2} = 1.618, -0.618$ $\frac{H(z)}{z} = \frac{z}{(z - 1.618)(z + 0.618)}$		
	$\frac{H(z)}{z} = \frac{0.723}{z - 1.618} + \frac{0.276}{z + 0.618}$		
	$H(z) = \frac{0.723 z}{z - 1.618} + \frac{0.276 z}{z + 0.618}$ Sir	nce	1995
	As it is stated $1 = 0.722(1.618)^{10}$.()	$0.276(-0.612)^{R_{21}}(x)$
	Impulse response $h(n) = 0.723(1.618)^n n$	<i>((n)</i> -	$-0.270(-0.018)^{-u(n)}$
ACE F	Engineering Publications Hyderabad • Delhi • Pune • Luckno	ow • Beng	aluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

ACE POSTAL COACHING

POSTAL COACHING

ESE / GATE / PSUs

PSCs

ACE Engineering Academy, the leading institute for GATE, ESE and PSUs offers postal coaching (Distance learning programme) for engineering students.

Scan **QR Code** for more info.

ACE PUBLICATIONS

Limited Period Offer UPTO 25% DISCOUNT*

Call: 040-40044403, 040-23234420 | Email: acepostalcoaching@gmail.com | www.aceenggacademy.com

	CE eering Publication	ns				2	13	Electronics & Telecommunication Eng.		
07. (c)	A hexagonal cell within a four cell system has a radius of 1.387 km. A total of 60 channels are									
	used in the entire system. If the load per user is 0.029 Erlangs and $\lambda = 1$ call/hour, compute									
	the following for an Erlang C system that has 5% probability of a delayed call									
	(i) How many users per square km will this system support?									
	(ii)	What is the probability that a delayed call will have to wait for more than 10 s?								
	(iii)	(iii) What is the probability that a call will be delayed for more than 10 s?								
		Erlang C Traffic Table								
	Maximum offered load versus B and N									
		NB	1	2	5	10	15			
		14	6.70	7.31	8.27	9.15	9.76			
		15	7.39	8.03	9.04	9.97	10.60	CAN		
		16	8.09	8.76	9.82	10.79	11.44	EZ .		
	(20 M)									
Sol:	For cell system radius $R = 1.387 \text{ km}$									
	Area = $2.598 \times (1.387)^2 = 5$ sq km									
1	load per user 0.029 Erlangs									
	$\lambda = 1$ call/hour									
]	Probability of delayed call = $5\% = 0.05$									
((i)	Channels per cell $C = 60/4 = 15$ nce 1995								
		traffic intensity = 9 erlangs								
	Number of users = total traffic intensity / traffic per user = $9/0.029 = 310$ users									
		310 users/5 sq km = 62 users/sq km								
	(ii)	$\lambda = 1$, Holding time								
		$H = A_u / \lambda = 0.029$ hour = 104.4 sec								
		$P(delay > t/delay) = e^{-(-(c-A)t/H)} = e^{-(-(15-9)t0/104.4)} = 56.29\%$								
	(iii)	P(delay)	> 0) = 5	5% = 0.	05					
		P(delay > 10) = P(delay > 0)P(delay > t/delay)								
		·	=	0.05×	0.5629	= 2.81%	/0			

Hyderabad • Delhi • Pune • Lucknow • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

ACE Engineering Publications

	CE eering Publicatio	44 ESE 2020 MAINS_Paper_II Solutions
)8. (a)	Cons	sider an air filled rectangular waveguide with inner dimension of width and height a
	and	l b respectively (a > b)
	(i)	With clear reasoning describe why propagation is not possible if both electric and
		magnetic fields in the direction of propagation are zero. (6 M)
	(ii)	The propagation constant γ for TE and TM mode is given by
		$\gamma^{2} = \left(\frac{m\pi}{a}\right)^{2} + \left(\frac{n\pi}{b}\right)^{2} - \omega^{2}\mu\varepsilon$
		where m and n are integers.
		Obtain an expression for minimum frequency below which propagation is not possible
		(6 M)
	(iii)	If $a = 2cm$ and $b = 1$ cm, determine the range of frequency at which only one mode
		propagates ($\epsilon = 8.854 \times 10^{-12} \text{ F/m}, \mu_0 = 4\pi \times 10^{-7} \text{ H/m}$) (8 M)
Sol: (i)	. Give	en : Rectangular waveguide : a × b (a > b)
	Assu	me the wave is propagating along +z direction. Transverse components of electric field
	inten	sity and magnetic field intensity are given by
	$E_x =$	$\frac{-\overline{v}}{h^2}\frac{\partial E_z}{\partial x} - \frac{j\omega\mu}{h^2}\frac{\partial H_z}{\partial y}$
	$E_y =$	$\frac{-\overline{v}}{h^2}\frac{\partial E_z}{\partial y} + \frac{j\omega\mu}{h^2}\frac{\partial H_z}{\partial x}$ Since 1995
	$H_x =$	$= \frac{-\overline{v}}{h^2} \frac{\partial H_z}{\partial x} + \frac{j\omega \in \partial E_z}{h^2} \frac{\partial E_z}{\partial y}$
	<i>H_y</i> =	$=\frac{-\overline{v}}{h^2}\frac{\partial H_z}{\partial y} - \frac{j\omega \in \partial E_z}{h^2}\frac{\partial E_z}{\partial x}$
	If bo	th the electric field and magnetic field (longitudinal) components are zero along the direction
	of pr	opagation, then this mode is TEM (Transverse Electromagnetic)
	-	opagation, then this mode is TEM (Transverse Electromagnetic) or TEM wave : $E_z = 0$ and $H_z = 0$
	i.e fo	
	i.e fo by su	or TEM wave : $E_z = 0$ and $H_z = 0$

45

In order to exist wave propagation in a waveguide, either of the longitudinal components must necessarily present.

i.e. when $E_z = 0$, H_z should not be zero (or)

when $H_z = 0$, E_z should not be zero.

This indicates rectangular waveguide does not support TEM mode, rather it will support TE and TM modes.

TE mode : $E_z = 0$, $H_z \neq 0$

TM mode : $H_z = 0$, $E_z \neq 0$

(ii) Given propagation constant $v^2 = \left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2 - \omega^2 \mu \in$

The minimum frequency at which, rectangular waveguide can support propagation of modes is called cutoff frequency. Below this frequency wave propagation is not possible.

at
$$\omega = \omega_c$$
, $v = 0$
 $\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2 = \omega_c^2 \mu \in$
 $\pi^2 \left[\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2\right] = 4\pi^2 f_c^2 \mu \in$
 $f_c = \frac{1}{2\sqrt{\mu \in \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}}}$ Since 1995
 \therefore cutoff frequency, $f_c = \frac{v}{2}\sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}$

Where, $v = \frac{c}{\sqrt{\epsilon_r}}$; for dielectric filled rectangular WG

v = c; for airfilled rectangular WG

$$\therefore \quad f_c = \frac{c}{2} \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}$$

(iii) Given: a = 2cm

CE

b = 1 cm

 $\epsilon_0 = 8.854 \times 10^{-12} \text{ F/m}$

 $\mu_0 = 4\pi \times 10^{-7} \text{ H/m}$

Assume only dominant mode (which is having lowest cut off frequency) is propagating.

To propagate dominant mode (TE₁₀), $f > f_c(TE_{10})$

To reject next higher order mode (TE₂₀), $f < f_c(TE_{20})$

$$f_{c}(TE_{10}) = \frac{c}{2a} = \frac{3 \times 10^{10}}{2 \times 2} = 7.5GHz$$

$$E_{20} = \frac{c}{a} = \frac{3 \times 10^{10}}{2} = 15GHz$$

$$E_{20} = 15GHz$$

$$f_c(TE_{20}) = \frac{c}{a} = \frac{3 \times 10^{10}}{2} = 15 GHz$$

Therefore the range of frequency at which only dominant mode is propagating is 7.5 GHz < f < 15GHz.

A display is connected to part P1 of 8051 microcontroller. A sequence of 7-bit patterns are to **08. (b)** be displayed in cyclic manner continuously. Write a program in 8051 assembly to display the bit-patterns (8-bit each) with a delay of 1 second between each pair of bit-patterns. The bitpatterns are stored in program memory space at the location 400H. Assume that sub-routine for delay is available directly. Comment on your program appropriately and mention any necessary assumptions explicitly. $(20 \mathrm{M})$

46

	ACE invering Publications	47	Electronics & Telecommunication Eng.
	Program:		
	ORG 000H		Address: A + DPTR
	Start: MOV A, $\#00_{\rm H}$		Bit pattern
	MOV DPTR, #400 _H	D	<u>PTR</u> 400
	MOV R ₀ , #Count		401
	Repeat:MOV A, B		402
	INC A		
	MOV B, A		
	MOVC A, @ A+DPTR		
	MOV P ₁ , A	ERI	NGAC
	ACALL Delay		AD.
	DJNZ R ₀ , Repeat		T
	SJMP Start		
	Note:		
	(1) The 8 bit patterns to be displayed	on the	e interfaced display are stored in Program memory
	starting at 400 _H memory location.		
	(2) ORG is an Assembler Directive, wh	nich in	itializes the location counter with the value given ir
	ORG statement.		
	Sir	ice '	1995
)8. (c)	The dominant mode TE ₁₀ is propagat	ted in	a rectangular waveguide of dimensions a = 6 cm
	and b = 4 cm. The distance between n	naxim	um and minimum is found to be equal to 4.47 cm
	with the help of travelling wave detect	or. De	etermine the signal frequency. (20 M)
Sol:	Given :		
	Dominant mode, propagation,		
	Dimension : $a = 6 \text{ cm}, b = 4 \text{ cm}$		
	The distance between maximum and min	nimum	this given by $\frac{\lambda_g}{4} = 4.47$ cm
	Guide wavelength, $\lambda_g = 17.88$ cm		
	Cutoff wavelength, $\lambda_c(TE_{10}) = 2a = 2 \times c$	6 = 12	cm
	gineering Publications Hyderabad • Delhi • Pune • Luckno		aluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Engineering Publications	48	ESE 2020 MAINS_Paper_II Solution
$\frac{1}{\lambda_g^2} = \frac{1}{\lambda_0^2} - \frac{1}{\lambda_c^2}$		
$\frac{1}{\lambda_0^2} = \frac{1}{\lambda_g^2} + \frac{1}{\lambda_c^2}$		
$=\frac{1}{(17.88)^2}+\frac{1}{(12)^2}$		
$\frac{1}{\lambda_0^2} = 0.010072$		
$\therefore \lambda_0 = 9.963 \text{ cm}$		
$\frac{c}{f} = 9.963cm$	GINEERING	GAC
$f = \frac{3 \times 10^{10}}{9.963}$		YOR
Therefore signal frequency	f = 3 GHz	
	Since 199	95 F
ACE Engineering Publications Hyderabad • D	albi - Duno - Luchmany - Deve-1	• Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

GATEway to Government JOBS...

COURSE DETAILS

- Experienced and erudite faculty from ACE Hyd.
- o Focussed and relevant
- Structured online practice tests (FREE)
- Scheduled live doubt clearing sessions (FREE)
- Access lectures from anywhere.
- Recorded version of the online live class will be made available throughout the course (with 3 times view).
- 5 to 6 Hours live online lectures per day (5-7 Days a week)

KPSC / KPWD

Starts from 22nd OCT. 2020

SSC JE (GS)

Starts from 14th OCT. 2020

APPSC / TSPSC

Starts from 22nd OCT. 2020

BPSC